

Communication Protocol
Engineering

Second Edition

http://taylorandfrancis.com

http://taylorandfrancis.com

Communication Protocol
Engineering

Second Edition

Miroslav Popovic

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-55812-0 (Hardback)
International Standard Book Number-13: 978-1-315-15124-3 (eBook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright
.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Popovic, Miroslav, 1961- author.
Title: Communication protocol engineering / Miroslav Popovic.
Description: Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.
Identifiers: LCCN 2017043058| ISBN 9781138558120 (hardback : alk. paper) |
ISBN 9781315151243 (ebook)
Subjects: LCSH: Computer network protocols. | Computer networks--Standards.
Classification: LCC TK5101.55 .P67 2006 | DDC 621.382/12--dc23
LC record available at https://lccn.loc.gov/2017043058

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov
http://www.taylorandfrancis.com
http://www.crcpress.com

To my wife, Vlasta, and our sons Marko and Andrej

http://taylorandfrancis.com

http://taylorandfrancis.com

vii

Contents

Preface to the First Edition ... xiii
Preface to the Second Edition ..xv
Author .. xvii

 1. Introduction ...1
1.1 The Notion of the Communication Protocol5
References ...8

 2. Requirements and Analysis ...9
2.1 Use Case Diagrams ... 13
2.2 Collaboration Diagrams ... 21
2.3 Requirements and Analysis Example .. 31

2.3.1 SIP Domain Specifics ... 31
2.3.2 SIP Softphone Requirements Model35
2.3.3 SIP Softphone Analysis Model ..40

References ...44

 3. Design ...45
3.1 Class Diagrams ..50
3.2 Object Diagrams .. 61
3.3 Sequence Diagrams ..65
3.4 Activity Diagrams ... 73
3.5 Statechart Diagrams ... 89
3.6 Deployment Diagrams ... 102
3.7 Specification and Description Language 107

3.7.1 Telephone Call Processing Example 121
3.8 Message Sequence Charts .. 125
3.9 Tree and Tabular Combined Notation Version 3 129

3.9.1 TTCN-3 Language, Test Suite, and Test Systems 130
3.9.2 Basic TTCN-3 Constructs and Statements........................ 138
3.9.3 Single Component TTCN-3 Test Suites 146

3.10 Examples .. 175
3.10.1 Example 1 .. 175
3.10.2 Example 2 .. 181
3.10.3 Example 3 .. 188
3.10.4 Example 4 .. 190
3.10.5 Example 5 .. 198

References ... 207

viii Contents

 4. Implementation ... 209
4.1 Component Diagrams .. 211
4.2 Spectrum of FSM Implementations .. 217
4.3 State Design Pattern .. 237
4.4 Implementation Based on the FSM Library 241

4.4.1 Using the FSM Library .. 246
4.4.2 FSM Library Internals ... 248

4.4.2.1 FSMSystem Internals .. 249
4.4.2.2 FiniteStateMachine Internals250
4.4.2.3 Kernel Internals .. 257

4.4.3 Writing FSM Library–Based Implementations 260
4.5 Examples .. 260

4.5.1 Example 1 .. 261
4.5.2 Example 2 .. 278

References ... 287

 5. Test and Verification .. 289
5.1 Unit Testing .. 293
5.2 Conformance Testing ...303
5.3 Formal Verification ...308

5.3.1 Formal Verification Based on Theorem Proving308
5.3.2 Formal Verification Based on Communicating

Sequential Processes .. 320
5.3.2.1 Brief Overview of CSP ... 320
5.3.2.2 Brief Overview of PAT and CSP# 324
5.3.2.3 Examples of Formal Verification Based

on CSP# and PAT ... 337
5.4 Statistical Usage Testing ...368
5.5 Examples .. 382

5.5.1 Example 1 ..383
5.5.2 Example 2 .. 391

5.6 Further Reading .. 396
References ... 396

 6. FSM Library ... 399
6.1 Introduction ... 399
6.2 Basic FSM System Components ..400

6.2.1 Class FSMSystem ..400
6.2.1.1 FSM System Initialization 401
6.2.1.2 FSM System Startup ...404

6.2.2 Class FiniteStateMachine ...404
6.3 Time Management .. 407
6.4 Memory Management ..408
6.5 Message Management .. 410
6.6 TCP/IP Support ... 414

ixContents

6.6.1 Class FSMSystemWithTCP ... 415
6.6.2 Class NetFSM .. 416

6.7 Global Constants, Types, and Functions 418
6.8 API Functions .. 418

6.8.1 FSMSystem... 431
6.8.2 Add(ptrFiniteStateMachine, uint8, uint32, bool) 432
6.8.3 Add(ptrFiniteStateMachine, uint8)433
6.8.4 InitKernel ..433
6.8.5 Remove(uint8) ..434
6.8.6 Remove(uint8, uint32) ..435
6.8.7 Start ..435
6.8.8 StopSystem ...435
6.8.9 FSMSystemWithTCP ...436
6.8.10 InitTCPServer ...436
6.8.11 FiniteStateMachine ... 437
6.8.12 AddParam ...438
6.8.13 AddParamByte .. 439
6.8.14 AddParamDWord ... 439
6.8.15 AddParamWord ..440
6.8.16 CheckBufferSize ..440
6.8.17 ClearMessage .. 441
6.8.18 CopyMessage() .. 441
6.8.19 CopyMessage(uint*) ... 441
6.8.20 CopyMessageInfo ..442
6.8.21 Discard ..442
6.8.22 DoNothing ..443
6.8.23 FreeFSM..443
6.8.24 GetAutomata ..443
6.8.25 GetBitParamByteBasic ..444
6.8.26 GetBitParamWordBasic ..444
6.8.27 GetBitParamDWordBasic ...445
6.8.28 GetBuffer ...445
6.8.29 GetBufferLength ...446
6.8.30 GetCallId ...446
6.8.31 GetCount ..447
6.8.32 GetGroup ..447
6.8.33 GetInitialState ...447
6.8.34 GetLeftMbx ...448
6.8.35 GetLeftAutomata ..448
6.8.36 GetLeftGroup ..448
6.8.37 GetLeftObjectId ..449
6.8.38 GetMbxId ..449
6.8.39 GetMessageInterface ...449
6.8.40 GetMsg() ...450
6.8.41 GetMsg(uint8) ..450

x Contents

6.8.42 GetMsgCallId ... 451
6.8.43 GetMsgCode ... 451
6.8.44 GetMsgFromAutomata ... 451
6.8.45 GetMsgFromGroup .. 451
6.8.46 GetMsgInfoCoding ... 452
6.8.47 GetMsgInfoLength() ... 452
6.8.48 GetMsgInfoLength(uint8*) .. 452
6.8.49 GetMsgObjectNumberFrom ...453
6.8.50 GetMsgObjectNumberTo ..453
6.8.51 GetMsgToAutomata ..453
6.8.52 GetMsgToGroup ...454
6.8.53 GetNewMessage ...454
6.8.54 GetNewMsgInfoCoding ..454
6.8.55 GetNewMsgInfoLength ..455
6.8.56 GetNextParam ..455
6.8.57 GetNextParamByte ...455
6.8.58 GetNextParamDWord ..456
6.8.59 GetNextParamWord ... 457
6.8.60 GetObjectId ... 457
6.8.61 GetParam .. 458
6.8.62 GetParamByte ... 458
6.8.63 GetParamDWord .. 459
6.8.64 GetParamWord ...460
6.8.65 GetProcedure ..460
6.8.66 GetRightMbx .. 461
6.8.67 GetRightAutomata .. 461
6.8.68 GetRightGroup ... 461
6.8.69 GetRightObjectId .. 462
6.8.70 GetState... 462
6.8.71 IsBufferSmall .. 462
6.8.72 Initialize ..463
6.8.73 InitEventProc ..463
6.8.74 InitTimerBlock ..464
6.8.75 InitUnexpectedEventProc ...464
6.8.76 IsTimerRunning ..465
6.8.77 NoFreeObjectProcedure ..465
6.8.78 NoFreeInstances ..466
6.8.79 ParseMessage ..466
6.8.80 PrepareNewMessage(uint8*) .. 467
6.8.81 PrepareNewMessage(uint32, uint16, uint8) 467
6.8.82 Process ..468
6.8.83 PurgeMailBox ...468
6.8.84 RemoveParam ...469
6.8.85 Reset .. 469
6.8.86 ResetTimer .. 469

xiContents

6.8.87 RestartTimer ...470
6.8.88 RetBuffer ...470
6.8.89 ReturnMsg ...470
6.8.90 SetBitParamByteBasic ..471
6.8.91 SetBitParamDWordBasic ...471
6.8.92 SetBitParamWordBasic ..472
6.8.93 SetCallId() ...472
6.8.94 SetCallId(uint32) ...472
6.8.95 SetCallIdFromMsg ...473
6.8.96 SetDefaultFSMData ...473
6.8.97 SetDefaultHeader ...473
6.8.98 SetGroup ...474
6.8.99 SetInitialState ...474
6.8.100 SetKernelObjects ..474
6.8.101 SetLeftMbx ...475
6.8.102 SetLeftAutomata ...475
6.8.103 SetLeftObject ..475
6.8.104 SetLeftObjectId ...476
6.8.105 SetLogInterface ...476
6.8.106 SendMessage(uint8) ...476
6.8.107 SendMessage(uint8, uint8*) ...477
6.8.108 SetMessageFromData ...477
6.8.109 SetMsgCallId(uint32) ..477
6.8.110 SetMsgCallId(unit32, unit8*) ..478
6.8.111 SetMsgCode(uint16) ..478
6.8.112 SetMsgCode(uint16, uint8*) ..478
6.8.113 SetMsgFromAutomata(uint8)..479
6.8.114 SetMsgFromAutomata(uint8, uint8*)479
6.8.115 SetMsgFromGroup(uint8) ...479
6.8.116 SetMsgFromGroup(uint8, uint8*)480
6.8.117 SetMsgInfoCoding(uint8) ..480
6.8.118 SetMsgInfoCoding(uint8, uint8*) ..481
6.8.119 SetMsgInfoLength(uint16) ...481
6.8.120 SetMsgInfoLength(uint16, uint8*)481
6.8.121 SetMsgObjectNumberFrom(uint32)482
6.8.122 SetMsgObjectNumberFrom(uint32, uint8*)482
6.8.123 SetMsgObjectNumberTo(uint32) ...482
6.8.124 SetMsgObjectNumberTo(uint32, uint8*)483
6.8.125 SetMsgToAutomata(uint8) ..483
6.8.126 SetMsgToAutomata(uint8, uint8*)483
6.8.127 SetMsgToGroup(uint8) ..484
6.8.128 SetMsgToGroup(uint8, uint8*) ..484
6.8.129 SendMessageLeft ..484
6.8.130 SendMessageRight ...485
6.8.131 SetNewMessage ..485

xii Contents

6.8.132 SetObjectId ...485
6.8.133 SetRightMbx ...486
6.8.134 SetRightAutomata ..486
6.8.135 SetRightObject ..486
6.8.136 SetRightObjectId ... 487
6.8.137 SetState ... 487
6.8.138 StartTimer ... 487
6.8.139 StopTimer .. 487
6.8.140 SysClearLogFlag ...488
6.8.141 SysStartAll ...488
6.8.142 NetFSM ..488
6.8.143 convertFSMToNetMessage ... 489
6.8.144 convertNetToFSMMessage ... 489
6.8.145 establishConnection .. 490
6.8.146 getProtocolInfoCoding .. 490
6.8.147 sendToTCP .. 490

6.9 A Simple Example with Three Automata Instances 490
6.10 A Simple Example with Network-Aware Automata Instances ... 519

Index ... 537

xiii

Preface to the First Edition

I wrote this book as a textbook for postgraduate students, but it might also
be used by people in the industry to update specific knowledge in their life-
long learning processes. The book partly covers the actual postgraduate
course on computer communications and networks undertaken during the
first semester of studies for the M.Sc. degree in computer engineering. Since
nowadays we are witnessing the convergence of the Internet and the public
telephone network, this book might also be useful to engineers with B.Sc.
degrees in telecommunications.

The prerequisite for this book is knowledge of first order logic (predicate
calculus), operating systems, and computer network fundamentals. The
reader should also be familiar with C++ and Java programming languages.

My approach in writing this book was to provide all the details that the
reader may need. I assumed that nothing is obvious. However, if you, the
reader, find something obvious while reading the book, you are encouraged
to skip ahead. If something is not clear later on, you may always return to
what you skipped. Communication protocol engineering is a very interest-
ing combination of abstraction and practice that requires a lot of details. It
starts from a vision that gradually materializes in real-world artifacts. This
happens through a typical engineering process. This book covers all aspects
of communication protocol engineering, including requirements and analy-
sis, design, implementation, and test and verification.

Many people helped me in writing this book. My gratitude goes to all
of them. I thank my family for their continuous support; my niece Silvia
Likavec for her valuable text corrections; and B.J. Clark, Nora Konopka, and
Helena Redshaw, of Taylor & Francis, for their professional support. Special
thanks go to my colleagues from the University of Novi Sad; Prof. Vladimir
Kovacevic for giving his blessing for this book; Ph.D. student Ivan Velikic
for the excellent cooperation (in his M.Sc. thesis we actually developed the
FSM Library, one of the anchors of this book); Ph.D. student Ilija Basicevic
(for helping me with the preparation of the examples in Sections 3.10.5,
4.5.2, and 5.5.2); Sonja Vukobrat (for helping me with the preparation of the
example in Section 3.7); Laslo Benarik and Aleksander Stojicevic (for helping
me with the preparation of Chapter 6); Milan Savic; Aleksander Stojicevic;
and Cedomir Rebic (for helping me with the preparation of the examples in
Sections 3.10.1 and 3.10.2); and Nenad Cetic (for helping me with the prepara-
tion of the example in Section 4.5.1). Thank you all!

Miroslav Popovic
Novi Sad

http://taylorandfrancis.com

http://taylorandfrancis.com

xv

Preface to the Second Edition

The first edition of this book was well accepted by the readers, right from the
beginning, back in 2006 when it was printed. Barnes & Noble bestselling rat-
ing reports indicated this fact rather well, e.g., the book was the bestseller on
Oct. 4th, 2006, in the section “Networking, Telecommunications Protocols, &
Standards.” From that time to today, Communication Protocol Engineering has
been a subject on a number of graduate level (M.Sc.) courses at universities
worldwide—from the United States (The City College of New York, New
York; University Heights Newark, New Jersey; etc.), over Europe (University
of Novi Sad, Serbia; Lippe and Hoexter University of Applied Sciences,
Germany), to far-east Australia (La Trobe University, Australia), to name
just few of the more established points. Nowadays, Communication Protocol
Engineering sounds like evergreen, similar to its much older predecessors
Internet, C, and Linux, which are with us from the 1970s, and it seems that
Communication Protocol Engineering is here to stay for many years to come,
similar to its famous predecessors.

Twelve years after I wrote the first edition, I was glad to see that it was
still aligned with the state of the art very well. Still, the book needed to be
improved in two important areas, namely, compliance testing based on the
standard Testing and Test Control Notation (known as TTCN-3), and model
checking based on famous C.A.R. Hoare’s process algebra Communicating
Sequential Processes (CSP) and its accompanying tool named Process
Analysis Toolkit (PAT). Hence, I made this new edition.

Technically, I made appropriate changes in Chapters 3 and 5. In Chapter 3,
I have rewritten Sections 3.9 and 3.10 (Examples 1 and 2), and I adapted the
TTCN references throughout the book in order to introduce the current stan-
dard TTCN-3 instead of the previous standard TTCN-2 (this decision was
driven by the fact that TTCN-3 is a superset of the TTCN-2).

In Chapter 5, I revised Section 5.3. The new title of Section 5.3 is “Formal
Verification,” and it comprises the following two subsections: (i) 5.3.1. Formal
Verification Based on Theorem Proving (this is the original Section 5.3), and
(ii) 5.3.2 Formal Verification Based on Communicating Sequential Processes
(this is the new section based on C.A.R. Hoare’s process algebra CSP and the
accompanying modeling, simulation, and automatic verification tool PAT).

Many people assisted me during the writing of this second edition. My
gratitude goes to all of them. I thank Nora Konopka and Kyra Lindholm,
of Taylor & Francis, for their professional support. Thanks again to my

xvi Preface to the Second Edition

family, and my colleagues from the University of Novi Sad for their support
throughout all these years.

I would also like to express my special gratitude to Dr. Sun Jun and the
PAT Team for providing their PAT Examples in the public domain. I used
some of their CSP# models to create the examples in Section 5.3.2.3.

Miroslav Popovic
Novi Sad

xvii

Author

Miroslav Popovic, Ph.D., earned all his degrees
from the University of Novi Sad, Serbia. He defended
his diploma thesis, “An Intelligent System Restart,”
in 1984; his M.Sc. thesis, “An Efficient Virtual
Machine System,” in 1988; and his Ph.D. thesis,
“A Contribution to Standardization of ISO OSI
Presentation Layer,” in 1990. He became a full-time
professor at the University of Novi Sad in 2002.
Currently, he is teaching courses on software tools
and real-time systems programming, as well as on

intercomputer communications and computer networks. He is a member of
IEEE (both the Computer and the Communications Societies) and ACM. He
has published approximately 120 papers, and he has supervised many real-
world projects for the industry, including telephone exchanges and call cen-
ters for Russian, German, Czech, and Serbian telecommunication networks.
Taylor & Francis published his book, Communication Protocol Engineering,
in 2006. He served as Serbian MC Member in EU COST 297 High Altitude
Platforms of wireless communications, EU COST IC0703 Traffic Monitoring
and Analysis, and EU COST Action IC1001 Transactional Memories
(Euro-TM). His current research interests are engineering of computer-based
systems, parallel programming, distributed systems, and security.

http://taylorandfrancis.com

http://taylorandfrancis.com

1

1
Introduction

Originally, the term protocol was related to the customs and regulations
dealing with diplomatic formality, precedence, and etiquette. A protocol is
actually the original draft, minutes, or record from which a document, espe-
cially a treaty, is prepared, e.g., an agreement between states. Today, in the
context of computer networks, the term protocol is interpreted as a set of rules
governing the format of messages that are exchanged between computers.
Sometimes, especially if we want to be more specific, we use the term com-
munication protocol instead.

The title of this book, Communication Protocol Engineering, is used to
emphasize the process of developing communication protocols. Like other
engineering disciplines, communication protocol engineering typically
comprises the following phases (Figure 1.1):

• Requirements and analysis
• Design
• Implementation
• Test and verification

The process described in this book is the union of the UML (Unified
Modeling Language)–driven unified development process (Booch et al.,
1998) and, Cleanroom engineering (formal system design verification and
statistical usage testing), with some elements of Agile programming (par-
ticularly unit testing based on JUnit). Of course, each organization should
adapt and tune the process to its own needs and goals. For example, one
organization may stick to the UML-driven unified development process,
another may prefer Cleanroom engineering, yet another may use the combi-
nation of both, and so forth.

Because this book is written for the process in which all the existing state-
of-the-art methods and techniques in the area are applied, it is independent
of any particular engineering process. Therefore, this is as far as we will go
in discussions on processes in this book. This book is not about managing
processes. Rather, this book is intended for engineers. It provides the knowl-
edge that an engineer needs to work in a modern organization involved in
communication protocol engineering.

2 Communication Protocol Engineering

The chapters are named by typical process phases: requirements and anal-
ysis, design, implementation, and test and verification. These chapters are
actually used to classify various methods and techniques, and their accom-
panying tools. As previously stated, the approach taken in this book was to
select the best methods and techniques from various methodologies rather
than to stick just to a single methodology. The methods and techniques
introduced here originate from the following methodologies:

• UML methodology
• ITU-T system specification and description methodology
• Agile unit testing methodology
• Cleanroom engineering methodology

UML methodology is based on various kinds of graphs, also referred to as
diagrams. This book covers all of them, namely:

• Use case diagrams (Section 2.1)
• Collaboration diagrams (Section 2.2)

Requirements
and

analysis

Design

Implementation

Test
and

verification

FIGURE 1.1
Typical communication protocol engineering phases.

3Introduction

• Class diagrams (Section 3.1)
• Object diagrams (Section 3.2)
• Sequence diagrams (Section 3.3)
• Activity diagrams (Section 3.4)
• Statechart diagrams (Section 3.5)
• Deployment diagrams (Section 3.6)
• Component diagrams (Section 4.1)

ITU-T system specification and description methodology is based on three
domain-specific languages, which this book also covers. These languages
are

• Specification and description language (SDL) (Section 3.7)
• Message sequence charts (MSC) (Section 3.8)
• Testing and test control notation, ver. 3 (TTCN-3) (Section 3.9)

Agile unit testing methodology assumes writing the test cases before the
code. Today, it is supported by the following two open-source packages (both
covered in this book):

• JUnit, a package for automated unit testing of Java packages
(Section 5.1)

• CppUnit, a library for automated unit testing of C++ modules
(Section 5.5.1)

Cleanroom engineering methodology is based heavily on two main meth-
ods, both covered in this book. These methods are

• Formal system design verification. Today, more approaches exist to
formal system design verification. This book covers formal verifica-
tion based on automated theorem proving (Section 5.3).

• Statistical usage testing (Section 5.4).

The text of the book is organized as follows. At the end of this chapter,
in Section 1.1, we introduce the notion of the communication protocol and
related definitions.

Chapter 2 is devoted to the requirements and analysis phase of communi-
cation protocol engineering. The first part of that chapter introduces UML use
case and collaboration diagrams (Section 2.1 and Section 2.2, respectively).
The former is used for capturing both functional and nonfunctional system
requirements, whereas the latter is used for making system analysis models.
The second part of that chapter presents a real-world example—requirements

4 Communication Protocol Engineering

and analysis of an SIP (Session Initiation Protocol, RFC 3261) Softphone.
The example starts with the presentation of the domain-specific informa-
tion related to SIP, continues with the SIP Softphone requirements model
(in the form of the corresponding use case diagram), and ends with the SIP
Softphone analysis model (in the form of the corresponding collaboration
diagram).

Chapter 3 covers the design phase of communication protocol engineering.
In this chapter, we will see that communication protocols are actually mod-
eled as finite state machines (FSMs). The first part of the chapter introduces
UML diagrams related to the design phase: class, object, sequence, activ-
ity, statechart, and deployment diagrams (Section 3.1, Section 3.2, Section
3.3, Section 3.4, Section 3.5, and Section 3.6, respectively). The second part
of Chapter 3 covers domain-specific languages, which originated at ITU-
T, namely SDL, MSC, and TTCN-3 (Section 3.7, Section 3.8, and Section 3.9,
respectively). The third part consists of design examples. The first three
examples are rather academic, while the fourth example shows the design
of the sliding window concept. The fifth example is a real-world design
 example—the design of the SIP INVITE client transaction, which is a part of
the SIP protocol stack.

Chapter 4 is devoted to the implementation phase of communication pro-
tocol engineering. At the beginning of this chapter, we introduce the UML
component diagrams (Section 4.1). The second part of Chapter 4 presents
various implementation approaches. Section 4.2 presents three examples of
approaches that can be used. The main goal of this study is to provoke dilem-
mas by studying three different concepts of implementation and to promote
creative thinking about a spectrum of possible implementation paradigms
before restricting ourselves to a single one. This short overview includes
the implementations as nested switch-case statements, the implementation
based on the interpretation of protocol messages using a protocol definition
data structure, and the implementation based on a class hierarchy and state
transition map. The second part of Chapter 4 ends with the introduction of
the state design pattern (Section 4.3), with a catalogued FSM implementation
approach.

The third part of Chapter 4 (Section 4.4) introduces one concrete,
 industrial- strength implementation paradigm based on the FSM Library,
a library of C++ classes used for modeling communication protocols as
FSM. This paradigm has been successfully used on a series of real-world
projects, such as SS7, DSS1, V5.2, H.323, SIP, and so on. This part of the
book covers FSM Library features and internals as well as the rules for
writing FSM Library–based implementations. The last part of Chapter 4
contains two real-world examples of the FSM Library–based implementa-
tions. The first is the implementation of the POP3 communication pro-
tocol, the TCP/IP Internet protocol for receiving e-mail messages. The
second is the SIP INVITE client transaction, a part of the SIP protocol
stack.

5Introduction

Chapter 5 deals with the testing and verification phase of communication
protocol engineering. The first part starts with the introduction of unit test-
ing based on JUnit, the open-source testing framework for unit testing Java
programs, originally developed by Erich Gamma and Kent Beck (Section 5.1).
Next, we introduce conformance testing (Section 5.2), actually the first stage
of communication protocol acceptance testing. Conformance testing is typi-
cally based on the TTCN test suite specification. We then introduce formal
verification of both system design and implementation (Section 5.3) based
on: (i) automated theorem proving (Section 5.3.1) and (ii) the C.A.R Hoare’s
process algebra CSP (Section 5.3.2). In this book, we use the theorem prover
Theo (in Section 5.3.1) and the modeling, simulation, and automatic verifica-
tion tool PAT (in Section 5.3.2) as the accompanying tools for this purpose.

The first part of Chapter 5 ends with the introduction of statistical usage
testing (Section 5.4) based on product operational profiles. The second part
of Chapter 5 consists of two real-world examples. The first example shows
the unit testing of the SIP INVITE client transaction based on the usage of
the CppUint, the library for unit testing C++ modules. The second example
demonstrates the integration testing of the SIP INVITE client transaction.

Chapter 6 is written as a programmer’s reference manual for the FSM
Library. The first part starts with the introduction of two main classes,
FSMSystem and FiniteStateMachine (Section 6.2). Next, we introduce three
main groups of basic functions supported by the FSM Library: time, memory,
and message management functions (Section 6.3, Section 6.4, and Section
6.5, respectively). We then introduce two classes that support the commu-
nication of FSMs over the TCP/IP Internet (Section 6.6), namely the classes
FSMSystemWithTCP and NetFSM. The first part of Chapter 6 ends with the
introduction of global constants, types, and functions (Section 6.7).

The second part of Chapter 6 contains detailed descriptions of the indi-
vidual FSM Library Application Programming Interface (API) functions
(Section 6.8). The third part of Chapter 6 consists of two examples. The first is
a simple example with three automata (FSM) instances (Section 6.9), and the
second is a simple example with TCP/IP network-aware automata instances
(Section 6.10).

1.1 The Notion of the Communication Protocol

What is a communication protocol? A wide range of definitions are avail-
able in the literature today, for example: “An established set of conventions
by which two computers or communication devices validate the format and
content of the messages exchanged;” “A set of defined interfaces that per-
mits the computers to communicate with each other;” “A method by which
two computers coordinate their communication;” “Common agreed rules

6 Communication Protocol Engineering

followed in order to interconnect and communicate between computers;”
“The rules governing the exchange of information between devices on a data
link;” “The set of rules governing how information is exchanged on a net-
work;” and so on.

In this book, we begin with a wider informal definition. A protocol is a
set of conventions and rules governing their use that regulates the commu-
nication of an entity under observation with its environment. Such a defini-
tion enables the study of any communication, e.g., an agenda for a technical
meeting of representatives of two companies. The subject of this book is one
special class of protocols, referred to as communication protocols, that regu-
late the communication of geographically distributed program objects. The
communicating program objects are deployed on different processors in the
network. We will sometimes use the term protocol as an abbreviated form of
the phrase communication protocol to save space.

A process, as generally defined in the theory of operating systems, is a
program in execution or prepared for execution. A process may be special-
ized for data processing, communication, or some other special task (e.g., I/O
control or time management). Traditionally, a data processing algorithm is
specified by the flowchart. What the flowchart means for the data processing
process, the protocol means for the communication process.

The flowchart specifies the program control flow by the use of graphic
symbols related to the series of sequential calculations, selection, iteration,
procedure/function call, and input/output operations needed to read input
data or write output data. On the other hand, the formal specification of a
communication protocol is based on messages and consists of the following
three parts:

• The message format specification
• The message-processing procedures specification, which is essen-

tially a formal description of process reactions to input stimuli (i.e.,
messages)

• The error processing specification, which is the formal description
of process reactions to exceptional events (i.e., corrupted data or
timeouts)

The message format completely defines the structure of the message, i.e., it
defines the set of fields that constitute the message by defining the width of
individual fields (most commonly in bits, bytes, or words), the applied cod-
ing scheme (e.g., binary, ASCII, Unicode, ASN.1), and optionally legal values
(e.g., constants in binary or some symbolic form or value intervals).

Therefore, a message is a series of bits logically divided into various fields.
Typically, a message consists of a message header, which most commonly
comprises more subfields, and useful data referred to as a payload. The
payload contains data interpreted by the communicating program objects.

7Introduction

The message header contains data added for supervision and control pur-
poses in accordance with the established conventions.

The message-processing procedure (i.e., the process reaction) begins with
the message reception and is described as a series of primitive operations
that define the rules of the communication, which are the essential parts of a
protocol. Typical primitive operations include timer-start operations, timer-
stop operations, message-send operations, message-receive operations, and
message-data processing operations (e.g., cyclic redundancy checking of
message data, calculating the expected order number of the next message to
be received).

In terms of software implementation, message processing is performed by
a message processing routine. Depending on the selected working environ-
ment, this routine can be a subroutine that consists of a series of machine
instructions in a symbolic form (assembly language) or a function compris-
ing a series of statements in a higher-level programming language, such as
C/C++ or Java.

The error-processing specification defines a set of error reactions. An error
reaction is a special protocol reaction to exceptional events or, in other words,
a reaction to unexpected situations, i.e., conditions. Typical examples of unex-
pected events are the reception of a message that contains corrupted data, the
reception of a message that is out of the original order (e.g., after receiving the
messages numbered 1, 2, and 3, we receive the message numbered 7 instead of
the message numbered 4), timer expiration (e.g., the receiver has not acknowl-
edged the reception of a message to its sender within a certain interval of
time, determined by the value of the corresponding timer), and so on.

Note that a protocol can be described informally or formally. The informal
description of a protocol is referred to as its informal specification and has
the following characteristics:

• It frequently has the form of a combination of textual and graphical
descriptions of the most common scenarios of communication.

• It may state nothing about the order of the activities to be conducted
in the course of the communication.

• It is always incomplete. Most frequently, missing parts are specifica-
tions of timers, which determine time limits over individual phases
of communication.

Let us forget communication protocols for a moment and use the old
example of informal specification of a group of tasks to get a sense of the
issues stated above. While leaving the house, a mother says to her daughter:

“Do not forget to finish your homework.”
“Have your breakfast when you get hungry.”
“Before you go to school, throw the garbage out.”

8 Communication Protocol Engineering

Obviously, this specification does not say anything about the order of the
individual tasks. For example, the daughter may complete the tasks in any
order without interrupting the individual tasks (e.g., task order may be 1, 2,
3, or 1, 3, 2), or she may complete them in any order and switch between them
(e.g., she starts with task 1; then, she switches to task 2 before completing task
1; she completes tasks 2 and 3; and, at the end she finishes task 1). An essen-
tial question here is how to organize the task executions within the allocated
time. Clearly, a need exists to limit or control the task execution time. What
happens if the daughter gets preoccupied with her homework and forgets to
have breakfast before it is time to go to school?

The example above might appear to be an exaggeration of the problems
we face in reality, but its purpose is to show that informal systems specifica-
tion alone is insufficient, and that we need a formal systems specification
to make a precise and correct system implementation. Formal specification
in the area of communication protocols is based on modeling a protocol as
a finite state machine (FSM). A single FSM is often referred to by the term
automata, and we will use these two terms interchangeably in this book.

The formal specification of an FSM defines all its states and state transi-
tions, including transitions initiated by expiration of timers, in a unique and
detailed way. Today, we may make formal protocol specifications in either
UML or ITU-T domain-specific languages. Once we have a formal protocol
specification, we can implement it in Java or C++. Finally, we must test and
verify it. This procedure is basically what this book is all about.

References

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1998.

9

2
Requirements and Analysis

At the beginning of any project, engineers face the fundamental question,
“What must be done and how do we verify (deliver) the solution (system,
device, products, service, hardware or software)?” Answering this question
leads to what are called requirements. To simplify the matter, the process
of answering this question—i.e., the corresponding engineering phase—is
also commonly called requirements. Although both the working phase and
the resulting documents have the same name, the meaning is easily deduced
from the context.

The previous question actually consists of the following two questions:

 1. What must be done?
 2. How can the solution be verified?

Answering the former question leads to a set of functional requirements,
most frequently adorned by nonfunctional requirements. Functional
requirements describe the desired system behavior, while nonfunctional
requirements can be imagined as the additional attributes to the behavior
related to time restrictions, performance, and so on. To answer the lat-
ter question, we must quantify the behavior of the system. Normally, we
would say, “For this input, the system should produce this output.” Such
thinking implies the existence of a test setup that enables automated (most
preferably automatic) testing, referred to as a test bed. A test bed provides
a test harness by generating the input to the system and capturing its
output.

The ordered pair of the given input and the expected output informally
stated in the text above is called a test case. To verify complex systems,
we need many test cases. A set of test cases packed in a suitable form is
referred to as a test suite. Ideally, we would like the test suite to completely
cover the systems behavior (i.e., the functional requirements), which are
adorned with their nonfunctional requirements. Typically, one or more test
cases will be derived from each functional requirement. Clearly for any
nontrivial system, the number of test cases needed to verify the system
may be huge.

10 Communication Protocol Engineering

However, while thinking about the desired behavior of the system and its
verification, we inevitably think about the question, “How can we make it?”
Actually, we are trying to make a concept of the system or, more precisely,
its architecture. This engineering phase is called an analysis. Obviously, it
is tightly coupled with the requirements. These two phases have a highly
interactive relation.

Typically, work on the definition of the system architecture yields the
refinement of system functional requirements, and vice versa. This is espe-
cially true for communication protocol engineering. Therefore, we think of
these two phases, the requirements and the analysis, as one indivisible front-
end phase of communication protocol engineering. This is the reason they
are covered together in this chapter.

As previously mentioned, the area of communication protocol engineering
is very well founded; many standards, recommendations, and well-known
experiences exist—hence, this chapter is rather short compared to the others.
Unlike other areas of engineering, a vast majority of engineers here will be
faced with the task of implementing some already defined standards, such as
IETF RFC or ITU-T/ETSI recommendations, and so on. Very few engineers
will be in a position to create a completely new protocol, and even then they
will have many existing protocols for reference or starting points.

Many existing standards actually represent very detailed designs accom-
panied by the corresponding test suites, but others are rather informal, bring-
ing nothing more than the message syntax and encoding together with some
textual explanations of the message handling procedures. However, most
of the standards can be viewed at least as rather good starting functional
requirements that must be further formalized and analyzed. This chapter
tries to help the reader exactly in this direction. It tries to answer the ques-
tion, “How can we deal with the requirements in a systematic way?” Or, in
other words, “How do we capture the requirements and how do we proceed
with forward engineering from there?”

The overall consensus, in both academia and industry today, is that the
UML paradigm can help in this respect (Booch et al. 1998). The behavior
of the system is described with a set of use cases. Each use case captures
one functional requirement adorned with its corresponding nonfunctional
requirements. The requirements engineer models the system are by speci-
fying the individual actors and the corresponding use cases of the system.
The result is referred to as a requirements model of the system. The means
for making such models are use case diagrams, which will be introduced in
Section 2.1.

The next step in the UML paradigm is to transform the requirements model
into the analysis model. Typically, a use case is viewed as a collaboration of
classifiers. In the analysis model, three different stereotypes of classes are
used: <<boundary class>>, <<control class>>, and <<entity class>>. The means
of specifying the collaborations in UML are collaboration diagrams, which
will be introduced in a following section.

11Requirements and Analysis

Sometimes the analysts describe the static structure of the system—in
addition to its behavior—with class diagrams. This practice can be helpful
in really complex systems. In this chapter, we will present the collaboration
diagrams sufficient for the examples at hand, therefore the introduction to
class diagrams is postponed until the next chapter. Chapter 3 deals with the
communication protocol design phase in which class diagrams are essential
to show the static relations among classes.

Further on, in accordance with the UML paradigm, the requirements
model should be transformed into the test model to facilitate the system
verification (the test model is actually the test suite needed for the system
verification). Essentially, the use cases should be translated into the corre-
sponding test cases described by test scripts of some kind. UML is not spe-
cific in that respect. Of course, a few scripting languages are popular today,
such as TCL/TK, Perl, and Payton, but being general purpose languages,
these might be inappropriate for some of the projects.

To close this gap, we will introduce a domain-specific language known as
testing and test control notation, ver. 3 (TTCN-3). The TTCN-3 language
is used for specifying the test suites for communication protocols once the
software architecture is rather well known. Therefore, we will postpone
the introduction to the TTCN-3 language until Chapter 3, which deals with
the design phase of communication protocol engineering.

A general problem when transforming use cases to test cases is that the
transformation is typically done manually, i.e., it is semiautomatic. Such an
approach is both time consuming and prone to error. However, the main
conceptual problem is the test coverage of the system behavior. In practice,
the number of possible scenarios and all possible combinations of message
parameters can be impossible to cover manually. Therefore, testing at least
the most frequently used system scenarios and message parameter combina-
tions should somehow be possible.

Clearly, more detailed UML models made during the system design phase
(e.g., statecharts, to be introduced in the next chapter) can be used later for the
automatic generation of test cases. However, the problem with this approach
is that if an error exists in the UML model, it will be propagated into the
test suite and the test suite will not be able to detect the error. A well-known
principle from mathematical logic is that negation of negation leads to affir-
mation, so the bug will remain undiscovered. No matter how large test suite
we generate, it will not be able to detect the bug.

The former problem can be solved by the application of statistical usage
testing, also referred to as behavior testing. This paradigm is based on the
operational profile model of the system, which describes the statistics of the
system usage. It enables the practitioners to thoroughly test the system and
even estimate the system or software reliability. This practice is recognized
as a de facto standard by the industry (Broekman and Notenboom, 2003), and
it will be covered in detail in Chapter 5 (test and verification phase of com-
munication protocol engineering).

12 Communication Protocol Engineering

The latter problem can be solved by using one model as a source for the
software implementation generated with forward engineering and a com-
pletely different model for the system test suite generation. What is also
highly desirable is that these two models are made by two separate indi-
viduals or teams. For example, the well-known Cleanroom engineering par-
adigm is conducted by three completely separate teams. The design team
makes the design and does its formal verification, the implementation team
just does the coding, and the test team makes the operational profile of the
system and conducts the statistical usage testing. Cleanroom engineering
will be described together with statistical usage testing in Chapter 5.

Before proceeding further to the introduction of the mainstream approach
to requirements and analysis, which is based on UML, it is worth mention-
ing that, until recently, many opponents to this paradigm existed. Some
ongoing doubts still exist as to whether this is the correct choice. For exam-
ple, in his article, “Use-Cases Are Not Requirements,” Meyer argues that
a better approach to requirements and analysis is transforming the func-
tional requirements into the behavior model that takes the form of a finite
state machine (FSM) (Meyer and Apfelbaum 1999). He sees use cases as just
walks across the FSM and claims it is possible to generate them automati-
cally rather than writing them manually.

According to the methodology proposed by Meyer, after creating the
behavior model, two parallel streams of activities are started. The first
stream covers the analysis, the design, and the implementation, and yields
the implementation. The second stream covers the operational profile and
the performance analysis, as well as the automatic test suite generation.
These two streams merge at the automated testing phase.

This approach is very similar to the one used in this book. A slight differ-
ence is that the latter promotes separation of concerns between design and
implementation and promotes test teams, including the models they make,
very much like the Cleanroom engineering model does. Also, it gives more
credit to the UML use cases. If we go back to the original ideas of the UML
authors (Booch et al., 1998) and try to think of a single use case as a family
of closely related collaborations among the same set of objects, clearly a use
case really captures a part of the traditional list of functional requirements.
Use cases help us group simple and closely related functional requirements,
as will be illustrated by the examples in this chapter.

As already mentioned, use cases are the starting point of the software devel-
opment in the unified software development process (Booch et al., 1998). The
requirements model, essentially a set of use cases, is used to develop all the
models that correspond to the engineering phases of the process, namely,
the analysis model (result of the analysis phase), the design and deployment
models (results of the design phase), the implementation model (result of
the implementation phase), and the test model (result of the test preparation
phase). The focus of this chapter is on requirements and analysis modeling.

13Requirements and Analysis

The rest of the chapter is organized as follows: the use case and collabora-
tion diagrams are introduced in the next two sections. The last section of this
chapter illustrates the requirements and analysis phases of communication
protocol engineering by presenting the case of the session initiation protocol
(SIP), RFC 3261 (Rosenberg et al., 2002). That last section is divided into three
subsections: SIP domain specifics, the SIP requirements model, and the SIP
analysis model.

2.1 Use Case Diagrams

Use case diagrams are special kinds of graphs whose vertices are connected
with arcs. Two types of vertices are found in use case diagrams, namely,
actors and use cases (Figure 2.1). The actors represent humans, machines, or
software components that are the users of the software under development.
They are rendered as stick figures. Use cases represent possible uses of the
software under development and are rendered as ellipses. As already men-
tioned, we think of use cases as collaborations between the corresponding
objects that constitute the part of the software under development. Clearly,
they have different roles in the requirements and the analysis phases.

In the requirements phase, we concentrate on the functional requirements
and use the use cases to capture them (“What must be done?”). At that time,
how these requirements will be fulfilled does not matter. The only important
concern is to build a vision of the future system together with the customer.
This vision is expressed as a desirable behavior of the system and modeled
by drawing the use case diagram and writing down the descriptions of the
individual use cases as they are added to the diagram.

In other words, we concentrate on the client’s perspective of the system.
The requirements engineer tries to define the services that the system under
development should provide. They also try to define an interface to these
services. Later, the main problems that the requirements engineer must face
are

• Structuring the set of use cases by establishing the relationships
among them

• Prioritizing the set of use cases by assigning different priorities to the
individual use cases (especially important for the evolving systems)

Use cases have another role in the analysis phase. The job of the analyst is
to realize the use cases by the corresponding collaborations between objects.
The analyst reads the descriptions of the use cases and uses domain-specific
knowledge to identify the individual objects (horizontal structuring) and to

14 Communication Protocol Engineering

establish a hierarchy among them (vertical structuring). This process will be
described in the next section.

Both actors and use cases are classifiers and, normally, they are connected
by associations. The association between the actor and the use case shows
the communication between the user and the part of the system modeled by
the use case. Using associations enables us to indicate explicitly the points of
connection between the users and the system.

Because both actors and use cases are classifiers, we can define general
actors and general use cases and then specialize them using the generaliza-
tion relationship. For example, we may specify the general actor Client and
its specializations SIP Client and H.323 Client (Figure 2.2). Or, we can specify
the general use case Make a connection and its specializations Make a local con-
nection and Make a long distance connection (Figure 2.3).

Actor

Use case

-Communicates

1 1

«extends»«uses»

System

FIGURE 2.1
Basic set of graphical symbols available for rendering use case diagrams.

SIP client Client H.323 client

FIGURE 2.2
Example of the generalization and specialization of actors.

15Requirements and Analysis

Furthermore, while capturing the individual use cases, it may become
obvious that a certain use case extends another use case or that a cer-
tain use case includes some other use cases. In such circumstances, the
requirements engineer may structure the use cases using <<extends>>
and <<includes>> stereotyped relationships. Especially important things
can be indicated by using the sticky notes. Invariants, preconditions,
and postconditions can be specified by the corresponding constraints. In
more complex use case diagrams, we may need to indicate the packages
and the interfaces.

Use case diagrams are normally rendered using the appropriate graphi-
cal tools, e.g., Microsoft® Visio. This tool provides the set of graphical sym-
bols that are placed on the working sheet by the drag-and-drop paradigm.
The basic set of graphical symbols is shown in Figure 2.1. The requirements
engineer must specify the properties for each instance of a symbol in the
drawing.

Five categories of actor properties are found: general information, table of
attributes, table of operations, table of constraints, and tagged values. The
general information includes name, full path, stereotype, visibility (private,
protected, or public), and the indicators for Root, Leaf, and Abstract types of
actors. The table of attributes includes columns for the attribute name, type,
visibility, multiplicity (1, *, 0..1, 0..*, 1..1, or 1..*), and its initial value. The table
of operations comprises columns for the operation name, return type, vis-
ibility, scope (classifier or instance), and the indicator for the polymorphic
operations. The table of constraints consists of four columns: the constraint
name, stereotype (precondition, postcondition, or invariant), language type
(OCL, text, pseudocode, or code), and body of the constraint. The tagged val-
ues include notes for the documentation, location, persistence, responsibility,
and semantics.

A use case—being a classifier like an actor—has the same five categories
of properties as the actor, as well as the additional sixth category. The sixth
category of the use case properties contains the notes about the extension
points that are used to describe the <<extends>> stereotyped relations.

Make a connection

Make a local
connection

Make a long
distance connection

FIGURE 2.3
Example of structuring use cases.

16 Communication Protocol Engineering

An association between an actor and a use case has three categories of
properties: general information about the association, a table of constraints,
and tagged values. The general information includes the association name,
full path, stereotype, direction (none, forward, and backward), association
end count (default 2), and the attributes for each end of the association. The
attributes of the association end are its name, aggregation (none, compos-
ite, or shared), visibility, multiplicity, and navigability indicator (navigable
or not). The graphical symbol System is used to show the system boundaries,
i.e., to group the use cases that constitute the system under development. It
has no properties.

All the relations between the use cases have three categories of prop-
erties: general information, table of constraints, and tagged values. The
general information includes the relation name, full path, stereotype
(extends, inherits, private, protected, subclass, subtype, or uses), and
discriminator. The table of constraints is the same as the table of con-
straints for the actors and use cases. The tagged values are notes for the
documentation.

The additional graphical symbols available for drawing use case dia-
grams are shown in Figure 2.4. These symbols include notes, general
constraints, two-element constraints, OR constraints, packages, and
interfaces. The notes have two categories of properties: general proper-
ties and tagged values. The general properties include the note name and
its stereotype (none or requirement). The tagged values are notes for the
documentation.

{Constraint}Note

{Constraint} {OR}

Package
Interface

FIGURE 2.4
Additional graphical symbols available for rendering use case diagrams.

17Requirements and Analysis

All the constraints, including general, two-element, and OR constraints,
have the same categories of properties: general properties and tagged val-
ues. The general properties include the constraint name, full path, stereo-
type (precondition, postcondition, or invariant), language type (OCL, code,
pseudocode, or text), and constraint body.

Four categories of package properties exist, including general proper-
ties, table of events, table of constraints, and tagged values. The general
properties are the package name, full path, stereotype (facade, framework,
stub, or system), visibility (private, protected, or public), and the indicators
for Root, Leaf, and Abstract types of packages. The table of events contains
an entry for each event. The attributes of individual events are the event
name and event type (call event, signal event, change event, or time event).
The table of constraints has the same format as the table of constraints for
the actors, and the use cases and tagged values are just the notes for the
documentation.

The interface has four categories of properties, actually a subset of the
actor properties. These are general properties, table of operations, table of
constraints, and tagged values. All of them are the same as the correspond-
ing actor properties.

The requirements engineer renders the use case diagram along as they
talk to the customer about the desired behavior of the system to be devel-
oped. The use case diagram is intended as a medium to communicate the
requirements between the customer and the system provider. Drawing use
case diagrams is simple: the right graphical symbol is selected, dragged-and-
dropped to the working sheet, the corresponding properties are filled in, and
they are connected to the other symbols in the sheet.

As an illustration of a use case diagram, consider a simple program for
sending and receiving electronic mail messages over the Internet. The use
case diagram for such a program might look like the one shown in Figure 2.5.
A single actor is found in this diagram, who is the user of the program
(named User). On the highest level of abstraction, this program has two main
use cases, Send e-mail and Receive e-mail.

Both of these highest-level use cases make use of the use cases Use DNS
(Domain Name System) and Use TCP (Transmission Control Protocol).
The DNS service provides the mapping of the e-mail server domain
name into its IP (Internet Protocol) address. The TCP provides reliable
data delivery service. Other than that, the use case Send e-mail uses the
use case Use SMTP (Simple Mail Transfer Protocol) and the use case
Receive e-mail uses the use case Use POP3 (Post Office Protocol, Version 3).
Normally, an e-mail client uses SMTP to send an e-mail message to the
e-mail server. Similarly, a user uses POP3 to read the e-mail messages
from their mailbox.

The use case Use DNS uses the use case Use IP to send a DNS request to
the DNS server and to receive DNS responses from it. The use case Use TCP
uses the use case Use IP to send and receive segments of data and control

18 Communication Protocol Engineering

information over the Internet. The use case Use IP uses the use case Use ARP
(Address Resolution Protocol) to map the IP address of the destination host
to its physical (e.g., Ethernet) address. Alternatively, the use case Use IP uses
the use case Use NIC (Network Interface Controller) to send and receive IP
datagrams over the Internet. Finally, the use case Use ARP uses the use case
Use NIC to send an ARP request to the ARP server and to receive an ARP
response from it.

User
Send e-mail

*

*

Use DNSUse SMTP

Use TCP

Use IP

Use ARP

Use NIC

«uses»«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Receive e-mail

*

*

Use POP3

«uses» «uses»

«uses»

«uses»

FIGURE 2.5
Use case diagram of the simple program for sending and receiving e-mails.

19Requirements and Analysis

This hierarchy of use cases actually follows the hierarchy of protocols
in the TCP/IP protocol stack. As already mentioned, the concept of lay-
ered software architecture, which is traditionally explained by the ISO
OSI, was actually invented to enable the separation of functions and the
corresponding functional requests, which are referred to as use cases in
UML.

After creating the skeleton of the use case model, the requirements engi-
neer must fill in the descriptions of the individual use cases. The descrip-
tions in this example are simplified for the sake of clarity. The description of
the use case Send e-mail in plain text is the following:

Precondition:

The user has issued the send mail command.

Main flow of events:

Extract the recipient’s e-mail address from the e-mail message header (defined
by the RFC 822).
Extract the e-mail server domain name from the recipient’s e-mail address
(string after the character "@").
Use the use case Use DNS to map the server domain name into its IP address.
Use the use case Use TCP to open the TCP connection.
Use the use case Use SMTP to send the e-mail message to the e-mail server.
Use the use case Use TCP to close the TCP connection.
Prompt the user for the next command.

Exceptional flow of events:

The user may cancel the use case at any time by issuing the cancel command.

Exceptional flow of events:

If the use case Use SMTP indicates the problem in the mail delivery, this use
case should report it to the actor User.

The use case Receive e-mail is identical to the use case Send e-mail with
the difference being that the former uses the use case Use POP3 instead
of the use case Use SMTP. The following description of the use case Use
DNS is rather simple (actually, this is the description of the behavior of
the DNS client):

Main flow of events:

Send the recursive DNS request by using Use IP.
Receive the DNS response by using Use IP.

The use case Use TCP is the active (initiator’s) side of the TCP. It is defined
as follows:

20 Communication Protocol Engineering

Main flow of events:

The procedure to open the TCP connection:
 Send SYN data segment.
 Receive SYN + ACK data segment.
 Send ACK data segment.
 Indicate that the connection is established.
The data transmission procedure:
 Send and receive the data segments using the sliding window.
The procedure to close the TCP connection:
 Send FIN data segment.
 Receive ACK data segment.
 Receive FIN + ACK data segment.
 Send ACK data segment.
 Indicate that the connection is closed both ways.

Exceptional flow of events:

The use case Send e-mail may close the TCP connection at any time.

The use case Use SMTP is actually the client side of the SMTP (defined by
IETF RFC 821 and RFC 788) and can be described as follows (for simplicity,
only one exceptional flow of events is given):

Main flow of events:

Receive the message 220 READY FOR MAIL.
Send the message HELLO.
Receive the message 250 OK.
Send the message MAIL FROM: <recipient’s e-mail address>.
Receive the message 250 OK.
Send the message RCPT TO: <sender’s e-mail address>.
Receive the message 250 OK.
Send the message DATA.
Receive the message 354 START MAIL INPUT.
Send the body of the e-mail message terminated with <CR><LF>.<CR><LF>.
Receive the message 250 OK.
Send the message QUIT.
Receive the message 221.

Exceptional flow of events:

If a use case receives the message 550 NO SUCH USER HERE, as a reply to its RCPT
TO: message, it indicates the problem to the use case Send e-mail.

The use case Use POP3 is the client side of the POP3 protocol, similar to the
use case Use SMTP. The use case Use IP is actually the IP protocol, which is
described as follows:

Main flow of events:

The procedure that is used to receive the datagrams:
 Receive a datagram by using the Use NIC.
 Send the received datagram to the use case Use TCP.
The procedure that is used to send the datagrams:
 Decrement the contents of the time-to-live field of the IP datagram.

21Requirements and Analysis

 Extract the destination IP address from the datagram header.
 Extract the destination network id from the destination IP address.
 If the destination network is local the network:
 Use the use case Use ARP to determine the physical address.
 Deliver the datagram by using the Use NIC.
 Else, route the datagram.

Exceptional flow of events:

If the datagram has been corrupted during the transmission, drop it.

Exceptional flow of events:

If the time-to-live field of the datagram counts down to 0, drop it.

The use case Use ARP is an ARP client and the use case Use NIC is a net-
work card driver. The former is defined as follows:

Main flow of events:

Send an ARP request by using the use case Use NIC.
Receive the ARP response by using the use case Use NIC.

The example above, especially the use cases Use TCP and Use SMTP,
should help the reader understand that a use case is a set of event sequences,
not just a single sequence. To keep use cases simple, separating the main and
the alternative flows of events is always desirable. Usually, we start by just
writing the main flow of events for each use case and refine them later by
adding the exceptional flow of events.

After this example, it should be clear that a use case captures the intended
behavior of the part of the system (subsystem, class, or interface). Of course,
after specifying the intended behavior, we must create a set of classes that
work together to implement that behavior. The means of modeling both
static and dynamic structures of the society of objects in UML are the col-
laboration diagrams.

2.2 Collaboration Diagrams

As already mentioned, we think of use cases as collaborations between
objects. Actually, in UML we realize a use case as a collaboration of a set
of objects. This concept can be explicitly shown in UML by connecting
the use case with the corresponding collaboration using the realization
relationship.

A collaboration diagram is a special kind of graph consisting of a set
of vertices interconnected by a set of arcs. Basically, the vertices are the

22 Communication Protocol Engineering

objects and the arcs are the links that carry the messages between the
interconnected objects. Additional vertices and arcs are the notes and
the constraints (general constraints, two-element constraints, and OR
constraints).

Collaboration diagrams are normally rendered using the appropriate
graphical tools, e.g., Microsoft® Visio. This tool provides the set of graphical
symbols that are placed on the working sheet by the drag-and-drop para-
digm. The basic set of graphical symbols is shown in Figure 2.6. The engi-
neer that renders the diagram must specify the properties for each instance
of a symbol in the drawing.

Three categories of object properties exist: general properties, table of con-
straints, and tagged values. The general properties include the object name,
full path, classifier name, and multiplicity. The table of constraints and the
tagged values contain the same properties as the corresponding categories
for the use cases (see the previous section of this chapter).

While adding objects to the collaboration diagram, we are forced to intro-
duce the corresponding classifiers and to specify their properties (at least the
classifiers’ names, for a start). The classifiers have eight categories of proper-
ties, including general properties, table of attributes, table of operations, table
of receptions, table of template parameters, list of the components, table of
constraints, and tagged values. The general properties, the table of attributes,
the table of operations, the table of constraints and tagged values contain the
same properties as the corresponding categories for the use cases (see the
previous section of this chapter).

The table of receptions has five columns, which contain the reception name,
signal name, visibility (private, protected, or public), polymorphic indicator

Object : Class

1: Message1
2: Message2

Note {Constraint}

{Constraint} {OR}

FIGURE 2.6
Set of graphical symbols available for rendering collaboration diagrams.

23Requirements and Analysis

(false or true), and scope (classifier or instance). The table of template param-
eters includes the columns for the parameter name and its type. The list of
components is just a list of components that implement this class.

The links in collaboration diagrams have four categories of properties,
including general properties, table of messages, table of constraints, and
tagged values. The general properties are the link name, its full path, and the
table of link ends roles, which has two columns, the end name and its stereo-
type (none, association, global, local, parameter, self). The table of link mes-
sages has four columns, including the message name, its direction (forward
or backward), flow kind (procedure call, flat, or asynchronous), and sequence
expression. The table of constraints contains the same properties as the cor-
responding category of object (and classifier) properties. The tagged values
are just the notes for the documentation. The notes and the constraints have
the same properties as in the use case diagrams (see the previous section of
this chapter).

Most frequently, we model sequential flow of control with collaboration
diagrams. In this case, a message sequence expression takes the simple form
of a message sequence number. However, collaboration diagrams allow
modeling of more complex flows, such as iteration and branching. Iteration
is modeled by prefixing the message sequence number with the iteration
expression

*[<control variable> := <start value>..<end value>]
e.g., *[j := 1..m].

Branching is modeled by prefixing the message sequence number with the
condition clause [<condition>], e.g., [i > 10]. Alternate paths of the branch have
the same message sequence number prefixed by the unique non-overlapping
condition, where the set of conditions must cover all the possibilities.

Next, we illustrate the use of collaboration diagrams in the example of a
simple program for sending and receiving electronic mail messages over
the Internet, which was introduced and modeled in the previous section
of this chapter. The use case diagram for this program is shown in Figure
2.5. We start by making the real collaboration between objects that is a
realization of the use case model, and continue with the study of virtual
collaborations, which correspond to the peer-to-peer protocols present in
this example.

To start, imagine that we are provided with the classifier FSM for modeling
finite state machines. Clearly a single object of this class could be a realiza-
tion of a single use case, as shown in Figure 2.5. The assumption that each
use case is materialized by a single FSM object leads to a real collaboration
between objects, shown in Figure 2.7.

In this class diagram, the object mailc (abbreviation for a mail client) is
the <<boundary class>> object. All other objects are the <<control class>>

24 Communication Protocol Engineering

objects. The e-mail message itself would be the <<entity object>>, but it is
not shown in Figure 2.7. Obviously, the realization of the individual use
cases is as follows:

• The object sender is a realization of the use case Send e-mail.
• The object receiver is a realization of the use case Receive e-mail.
• The object dnsc (abbreviation for a DNS Client) is a realization of the

use case Use DNS.
• The object tcpc (abbreviation for a TCP Client, i.e., the side that initi-

ates the establishment of the TCP connection) is a realization of the
use case Use TCP.

mailc : FSM

sender : FSM receiver : FSM

smtpc : FSM dnsc : FSM pop3c : FSM

tcpc : FSM

ip : FSM

arpc : FSM

nic : FSM

FIGURE 2.7
Collaboration diagram of the simple program for sending and receiving e-mails.

25Requirements and Analysis

• The object smtpc (abbreviation for an SMTP Client) is a realization of
the use case Use SMTP.

• The object pop3c (abbreviation for a POP3 Client) is a realization of
the use case Use POP3.

• The object ip is a realization of the use case Use IP.
• The object arpc (abbreviation for an ARP Client) is a realization of the

use case Use ARP.
• The object nic is a realization of the use case Use NIC.

Figure 2.7 shows general collaboration among the relevant objects, i.e.,
it just shows the links between objects. Essentially, it shows the software
architecture. We may think of it as a family of particular collaborations.
For example, the user of the program might select the use case Send e-mail
and this would lead to a particular collaboration, or the user might select
the use case Receive e-mail and that would lead to another particular
collaboration.

Another important thing to notice and remember is that Figure 2.7 shows
only the objects of the system under development. In this case, it is a pro-
gram that runs on a computer connected to the Internet over its network
interface card. If we want the overall picture, we can also add the models
of the systems with which our system under development would normally
communicate. By adding the models of these external systems, we are mod-
eling end-to-end collaborations.

The system under development communicates with external servers,
including the ARP server, the DNS server, and the e-mail server. If we
assume that all of these servers run on the same computer, the model of
the external environment of the system under development is rather simple
(Figure 2.8). The external objects are as follows:

• The object smtps is the SMTP server.
• The object pop3s is the POP3 server.
• The object tcps is the TCP server, i.e., the side that accepts the estab-

lishment of the TCP connection.
• The object dnss is the DNS server.
• The object arps is the ARP server.
• The object ips is an instance of IP.
• The object nics is an instance of NIC.

The overall collaboration that corresponds to the main flow of events of
the use case Send e-mail, up to the point when the SMTP client receives the
message 220 READY FOR MAIL, is shown in Figure 2.9. The flow of events
is as follows:

26 Communication Protocol Engineering

 1: The object mailc sends the signal sendMail(msg) to the object sender.
The signal parameter msg is the e-mail message itself.

 2: The object sender sends the signal domainToIP(domain) to the object
dnsc. The signal parameter domain is the domain name of the e-mail
server.

 3: The object dnsc sends the signal dnsReq(domain) to the object ip. The
signal dnsReq is actually the DNS service request message.

 4: The object ip sends the signal data(dnsReq) to the object nic. The
general signal data is an IP datagram. Together with the parameter
dnsReq, it represents the datagram carrying the DNS service request
message.

 5: The object nic sends the signal frame(dnsReq) to the object nics. The
general signal frame is a data frame from the underlying physical
network (e.g., Ethernet). The signal frame(dnsReq) is the data frame
carrying the datagram that encapsulates the DNS service request
message.

 6: The object nics sends the signal data(dnsReq) to the object ips.
 7: The object ips sends the signal dnsReq(domain) to the object dnss.
 8: The object dnss sends the signal dnsRsp(ip) to the object ips. The sig-

nal dnsRsp is the DNS service response message and its parameter ip
is the IP address of the target e-mail server.

smtps : FSM

dnss : FSM

pop3s : FSM

tcps : FSM

ips : FSM

arps : FSM

nics : FSM

FIGURE 2.8
Collaboration diagram of the e-mail and DNS server.

27Requirements and Analysis

 9: The object ips sends the signal data(dnsRsp) to the object nics.
 10: The object nics sends the signal frame(dnsRsp) to the object nic.
 11: The object nic sends the signal data(dnsRsp) to the object ip.
 12: The object ip sends the signal dnsRsp(ip) to the object dnsc.
 13: The object dnsc sends the signal ipaddr(ip) to the object sender.
 14: The object sender sends the signal open(ip,25) to the object tcpc. The

signal open is an active open request to TCP (TCP should send the
SYN segment to initiate the TCP connection establishment proce-
dure). Its parameters, ip and 25, are the IP addresses of the target
email sever and the well-known TCP port number reserved for the
SMTP, respectively.

 15: The object tcpc sends the signal seg(syn) to the object ip. The general
signal seg is a TCP segment. The signal seg(syn) is a SYN (synchro-
nization) TCP segment (i.e., it has the SYN bit set in the code field).

smtps : FSM

dnss : FSMpop3s : FSM

tcps : FSM

ips : FSM

arps : FSM

nics : FSM

19
: s

eg
(s

yn
)

20
: s

eg
(s

yn
+a

ck
)

24
.2

.4
: s

eg
(a

ck
)

26
: s

eg
(2

20
)

6:
 d

at
a(

dn
sR

eq
)

9:
 d

at
a(

dn
sR

sp
)

18
: d

at
a(

sy
n)

21
: d

at
a(

sy
n+

ac
k)

24
.2

.3
: d

at
a(

ac
k)

27
: d

at
a(

22
0)

7:
dn

sR
eq

(d
om

ain
)

8:
dn

sR
sp

(ip
)

24.2.5: openAck

25: m
ail(220)

mailc : FSM

sender : FSM receiver : FSM

smtpc : FSM dnsc : FSM pop3c : FSM

tcpc : FSM

ip : FSM

arpc : FSM

nic : FSM

14: open(ip,25)

24.1: openA
ck

1: s
en

dMail
(m

sg)

24
.1

.1
: o

pe
nA

ck

2: domainToIP(domain)

13: ipaddr(ip)

4:
 d

at
a(

dn
sR

eq
)

11
: d

at
a(

dn
sR

sp
)

16
: d

at
a(

sy
n)

23
: d

at
a(

sy
n+

ac
k)

24
.2

.1
: d

at
a(

ac
k)

29
: d

at
a(

22
0)

3:
 d

ns
Re

q(
do

m
ai

n)

12
: d

ns
Rs

p(
ip

)

31: mail(220)

5: frame(dnsReq)
10: frame(dnsRsp)

17: frame(syn)
22: frame(syn+ack)
24.2.2: frame(ack)

28: frame(220)

15
: s

eg
(s

yn
)

24
: s

eg
(s

yn
+a

ck
)

24
.2

: s
eg

(a
ck

)
30

: s
eg

(2
20

)

FIGURE 2.9
Overall real collaboration of the simple program for sending and receiving e-mails and its
environment.

28 Communication Protocol Engineering

 16: The object ip sends the signal data(syn) to the object nic.
 17: The object nic sends the signal frame(syn) to the object nics.
 18: The object nics sends the signal data(syn) to the object ips.
 19: The object ips sends the signal seg(syn) to the object tcps.
 20: The object tcps sends the signal seg(syn+ack) to the object ips. The

signal seg(syn+ack) is a SYN+ACK (synchronization and acknowl-
edgment) TCP segment (i.e., it has both SYN and ACK bits set in the
code field).

 21: The object ips sends the signal data(syn+ack) to the object nics. The sig-
nal data(syn+ack) is the IP datagram that encapsulates the SYN+ACK
TCP segment.

 22: The object nics sends the signal frame(syn+ack) to the object nic. The
signal frame(syn+ack) is the data frame carrying the IP datagram that
encapsulates the SYN+ACK TCP segment.

 23: The object nic sends the signal data(syn+ack) to the object ip.
 24: The object ip sends the signal seg(syn+ack) to the object tcpc. (The

event flow now forks into two parallel flows.)
 24.1: The object tcpc sends the signal openAck to the object sender.

(The first flow begins here.)
 24.1.1: The object sender sends the signal openAck to the object

smtpc (The first flow ends here.)
 24.2: The object tcpc sends the signal seg(ack) to the object ip. (The

second flow begins here.)
 24.2.1: The object ip sends the signal data(ack) to the object nic.
 24.2.2: The object nic sends the signal frame(ack) to the object

nics.
 24.2.3: The object nics sends the signal data(ack) to the object ips.
 24.2.4: The object ips sends the signal seg(ack) to the object tcps.
 24.2.5: The object tcps sends the signal openAck to the object

smtps.
 25: The object smtps sends the signal mail(220) to the object tcps. The

general signal mail is the SMTP message. The particular signal
mail(220) is actually the message 220 READY FOR MAIL, where
the first three digits are mandatory and the rest of the message is
a human-readable comment. (Note: We have restarted the message
numbering here for brevity.)

 26: The object tcps sends the signal seg(220) to the object ips.
 27: The object ips sends the signal data(220) to the object nics.
 28: The object nics sends the signal frame(220) to the object nic.

29Requirements and Analysis

 29: The object nic sends the signal data(220) to the object ip.
 30: The object ip sends the signal seg(220) to the object tcpc.
 31: The object tcpc sends the signal mail(220) to the object smtpc. (The

example ends here.)

What we have just described is the real collaboration between objects within
the system under development as well as with the relevant objects in its sur-
roundings. The real collaboration for any nontrivial system could be rather
complex. This behavior should be clear from the previous example, where we
intentionally stopped at the certain point of the event flow, which was selected
as a compromise between showing enough complexity and maintaining clarity.

The complete list of events for the use case Send e-mail is much longer than
the one given above. For modeling the transfer of the rest of the SMTP mes-
sages (12 of them), we would need additional 84 (12 × 7) UML events, almost
three times more than already in the list above. This complexity is why we
try to break the system down into its parts and analyze them in detail later.

One important aspect of the simplification is the definition of the
Application Programming Interfaces (API). For example, we may define
the API between the sender and the hierarchically lower level objects (dnsc,
smtpc, and tcpc), or the API between tcpc and ip, and so on. Other impor-
tant items are the virtual collaborations that are governed by the peer-to-
peer protocols. Consider for example the virtual collaboration between dnsc
and dnss (Figure 2.10). The corresponding flow comprises only two events,
dnsReq(domain) and dnsRsp(ip).

The virtual collaboration between tcpc and tcps is governed by the TCP.
It is slightly more complex and comprises the following flow of events
(Figure 2.11):

 1: The object tcpc sends the signal seg(syn) to the object tcps.
 2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
 3: The object tcpc sends the signal seg(ack) to the object tcps.
 4: The object tcpc sends the signal seg(data) to the object tcps. (Data

transmission phase)
 5: The object tcpc sends the signal seg(fin) to the object tcps.
 6: The object tcps sends the signal seg(ack) to the object tcpc.

dnsc : FSM dnss : FSM

1: dnsReq(domain)
2: dnsRsp(ip)

FIGURE 2.10
Virtual collaboration between the DNS client and the DNS server.

30 Communication Protocol Engineering

 7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
 8: The object tcpc sends the signal seg(ack) to the object tcps.

Finally, the virtual collaboration between smtpc and smtps (in accordance
with SMTP) is of the same order of complexity (Figure 2.12; note that only the
first eight events are shown in the figure). The corresponding flow of events
is the following:

 1: The object smtps sends the signal mail(220) to the object smtpc.
 2: The object smtpc sends the signal mail(HELO) to the object smtps.
 3: The object smtps sends the signal mail(250_OK) to the object smtpc.
 4: The object smtpc sends the signal mail(MAIL_FROM:) to the object

smtps.
 5: The object smtps sends the signal mail(250_OK) to the object smtpc.
 6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
 7: The object smtps sends the signal mail(250_OK) to the object smtpc.
 8: The object smtpc sends the signal mail(DATA) to the object smtps.
 9: The object smtps sends the signal mail(354_START_MAIL_INPUT)

to the object smtpc.

tcpc : FSM tcps : FSM

1: seg(syn)
2: seg(syn+ack)

3: seg(ack)
4: seg(data)
5: seg(fin)

6: seg(ack)
7: seg(fin+ack)

8: seg(ack)

FIGURE 2.11
Virtual collaboration between two TCP entities.

smtpc : FSM smtps : FSM

1: mail(220)
2: mail(HELO)

3: mail(250_OK)
4: mail(MAIL_FROM:)

5: mail(250_OK)
6: mail(RCPT_TO:)

7: mail(250_OK)
8: mail(DATA)

FIGURE 2.12
Virtual collaboration between the SMTP client and the SMTP server.

31Requirements and Analysis

 10: The object smtpc sends the signal mail(MAIL_BODY) to the object
smtps.

 11: The object smtps sends the signal mail(250_OK) to the object smtpc.
 12: The object smtpc sends the signal mail(QUIT) to the object smtps.
 13: The object smtps sends the signal mail(221) to the object smtpc.

2.3 Requirements and Analysis Example

This section of this chapter illustrates the requirements and analysis phases
of communication protocol engineering with the example of a simple SIP
softphone. Normally, the requirements phase starts by acquiring the relevant
domain-specific knowledge and continues by the construction of the corre-
sponding requirements model, which is the input for the analysis phase. As
already mentioned, the output of the analysis phase is the corresponding
analysis model. Sections 2.3.1 through 2.3.3 cover a short overview of the
domain-specific information, the requirements, and the analysis models of a
simple SIP softphone.

2.3.1 SIP Domain Specifics

SIP is the application layer protocol used for creating, modifying, and termi-
nating sessions, such as Internet telephone calls and multimedia distribution
and conferences, with one or more participants. It has been standardized by
the IETF RFC 3261 (Rosenberg et al., 2002) and related series of RFCs (RFC
3262, RFC 3263, RFC 3264, RFC 3265, RFC 3372, RFC 3428, RFC 3485, RFC
3487, and others). In contrast to the ITU-T H.323 family of protocols—which
provide the whole protocol stack for multimedia communications—SIP
is just the control and signaling component on the top of the multimedia
architecture.

Aside from SIP, the multimedia architecture will typically include RTP
(Real-Time Transfer Protocol, RFC 1889), RTSP (Real-Time Streaming Protocol,
RFC 2326), MEGACO (Media Gateway Control Protocol, RFC 3015), and SDP
(Session Description Protocol, RFC 2327). SIP does not provide any service on
its own. Instead of full services, it provides primitives for the services that
are implemented in the overall architecture. These primitives are based on
an HTTP-like (Hyper Text Transport Protocol) request and response transac-
tion model.

The main SIP abstractions are the session, the dialog, and the transaction.
A multimedia session is a set of multimedia senders and receivers, as well
as data streams flowing from senders to receivers. A dialog is a peer-to-peer
relationship between two user agents (end points in the communication) that

32 Communication Protocol Engineering

persists for some time. A transaction is the collaboration between the client
and the server, which comprises all the messages from the first request sent
from the client to the server up to the final response sent from the server to
the client. The requests are processed automatically, meaning that either all
requested actions are conducted, if the request has been accepted, or none of
the actions are conducted, if the request has not been accepted.

Two main transaction types exist, referred to as invite (officially written in
capital letters, i.e., INVITE) and non-invite (or, more formally, non-INVITE)
transactions. An invite transaction is a three-way handshake comprising
the request, the response, and the acknowledgment. In contrast, a non-invite
transaction is the two-way handshake starting with the request and ending
with the corresponding response.

Notice that the roles of the user agents (communication end points) are
not fixed, and they change on the transaction by transaction bases. The user
agent that creates a new request becomes a user agent client (UAC), whereas
the user agent that receives the request becomes the user agent server (UAS).
Another important detail is that a new transaction (either invite or non-invite)
may not be started while an invite transaction is in progress. Alternatively,
a new invite transaction may be started while a non-invite transaction is in
progress.

Besides user agents, the SIP standard defines three types of SIP servers,
namely, the proxy server (stateful or stateless), the registrar, and the redirect
server. A proxy server is the mediator that helps end points set up the session.
Officially, it is an intermediary entity that acts as both a server and a client
for the purpose of making requests on behalf of other clients. A registrar is
a server that supports the registration of the user agents by maintaining the
corresponding database for the domain it handles. This database is referred
to as a location service. These two types of servers are most frequently col-
located in the same physical machine. A redirect server can be viewed as
a proxy server with limited capabilities. It is only capable of directing the
client to contact an alternate set of Uniform Resource Identifications (URI).

Requests and responses between a server and a client are sent as SIP mes-
sages. The SIP message comprises the start line, one or more header fields,
empty lines (carriage-return line-feed sequences, CRLF), and an optional
message body. The start line is different in requests and in responses. In the
former case, it is referred to as a request line, and in the latter as a status line.
The request line comprises the method name (according to the RFC 3261, six
methods are available in SIP: REGISTER, INVITE, ACK, CANCEL, BYE, and
OPTIONS), the request URI, and the SIP version (currently “SIP/2.0”). The
status line comprises the SIP version, the status code (a three-digit integer
result code), and the reason phrase (textual status description).

The SIP protocol stack comprises four layers. Starting from the top and
going down the hierarchy, these are the transaction user (TU) layer, the
transaction layer, the transport layer, and the syntax and encoding of SIP
messages. A transaction user is any SIP entity (client or server) except for the

33Requirements and Analysis

stateless proxy. The transaction layer supports transactions, which are the
key component of SIP. The transport layer provides for the transfer of SIP
messages across the Internet. SIP may use three types of transport services,
including unreliable (UDP), reliable (TCP), and encrypted (Transport Layer
Security, TLS) transport service. Most of the SIP message and header field
syntax is identical to HTTP/1.1. Although SIP is close to the HTTP philoso-
phy, it is not an extension of HTTP.

As mentioned above, the SIP standard specifies six methods, including
REGISTER for registering contact information, INVITE, ACK, CANCEL for
setting up sessions, BYE for terminating sessions, and OPTIONS for query-
ing servers regarding their capabilities. Any INVITE after the initial invite
to the same destination is called re-INVITE and is used for modifying the
session and dialog parameters. The method INVITE starts the invite trans-
action; all other methods start non-invite transactions. Interestingly enough,
six status code types are also found, depending on the value of status code
first digit, as follows:

1xx: Provisional (the request has been received and its processing has
been started)

2xx: Success (the request has been successfully processed)
3xx: Redirection (further action by the client is needed)
4xx: Client error (the request contains an error or it may not have been

fulfilled on this server)
5xx: Server error (the request is valid, but the server failed to fulfill it)
6xx: Global failure (the request cannot be fulfilled on any server)

As an example, consider the typical scenario of the SIP session setup in
Figure 2.13. (Note: This figure is actually a UML sequence diagram. Sequence
diagrams are intentionally introduced later in Chapter 3. For the moment, it
is enough to assume that the rectangular symbols are the communicating
entities and that the arrows are the messages they exchange. Time advances
downwards.) Two user agents ua1 and ua2, together with their correspond-
ing proxy servers p1 and p2, constitute the SIP trapezoid (imagine the trap-
ezoid by “drawing“ the lines that connect ua1, p1, p2, and ua2).

Suppose that ua1 wants to set up a session with ua2. It starts by sending an
invite request to the proxy server that is responsible for its domain, and that
is p1. Proxy p1 locates the proxy server responsible for the destination ua2,
namely p2, and forwards the invite request to it. At the same time, p1 sends
back the response 100 TRYING to ua1. Proxy p2 locates the destination user
agent, ua2, forwards the invite request to it, and sends back the response 100
TRYING to the proxy p1. ua2 receives the invite request and sends back the
response 180 RINGING, which is forwarded by the proxies p2 and p1 to ua1.

At this point, ua2 indicates the incoming invite request to its user. The
user accepts the request and ua2 sends back the response 200 OK, which is

34 Communication Protocol Engineering

forwarded by the proxies p2 and p1 to ua1. The dialog between ua1 and ua2
is successfully established. Further on, ua1 sends the ACK request to ua2
directly (the end of the three-way handshake). The session is successfully
established at this point. The communicating user agents may now exchange
the media. In reality, the media is exchanged in the full-duplex mode, i.e.,
both sides may send data to the other side simultaneously. Unfortunately, in
UML sequence diagrams we cannot model the full-duplex communication,
because only unidirectional messages may be used. Therefore, we represent
the media exchange by the two separate messages, namely by the message
Media (ua1 to ua2) and the message Media (ua2 to ua1).

ua1 : UserAgent

p1 : Proxy p2 : Proxy

ua2 : UserAgent

Invite

Invite

Invite100 TRYING

100 TRYING

180 RINGING

180 RINGING

180 RINGING 200 OK

200 OK

200 OK
ACK

Media (ua1 to ua2)

BYE

200 OK

Media (ua2 to ua1)

FIGURE 2.13
Example of SIP session setup (with SIP trapezoid).

35Requirements and Analysis

The session may be terminated by either ua1 or ua2. Suppose that ua2 wants
to terminate the session. It sends the BYE request to ua1 directly, which in its
turn sends back the response 200 OK. The session is successfully closed. This
is an example of the non-invite transaction.

This simplified explanation hides one rather important aspect of the invite
three-way handshake, and that is the application of the offer-answer pro-
cedure. This procedure is used by ua1 and ua2 to determine the session
parameters in accordance with SDP. The first offer must be carried either
by the invite request or by the response 200 OK. If the offer is carried by the
invite request (ua1 makes the first offer), the answer must be included in the
response 200 OK. If the offer is carried by the response 200 OK (ua2 makes
the first offer), the answer must be included in the ACK request (the last
message in the three-way handshake). The session is successfully established
only after the offer-answer procedure is successfully ended.

2.3.2 SIP Softphone Requirements Model

SIP softphone is the application that normally runs on some computer—for
example, a desktop PC—and enables its user to set up multimedia sessions
and to communicate with other SIP users or entities over the Internet. Such
an application would typically use some type of graphical user interface
(GUI) and device drivers for the sound card and the web camera, typically
provided by the local operating system (out of scope for this book) and, of
course, the SIP protocol stack.

This section shows how to construct the requirements model for the SIP
protocol stack in a simple SIP softphone. As mentioned previously, the SIP
protocol stack comprises the transaction user layer, the transaction layer, and
the transport layer. In terms of use cases, the user uses the application (soft-
phone), which in turn uses both the transaction layer and the transport layer.
The transaction layer also uses the transport layer. The use case diagram
shown in Figure 2.14 is a simple requirements model that captures these
relations.

We can refine this simple model by taking into account the details of the
individual layers of the SIP protocol stack. To start, the transaction user (TU)
layer dynamically creates and uses the user agent clients (UAC) and the
user agent servers (UAS) entities to support outgoing and incoming invite
requests. Both UAC and UAS use the transaction layer (TAL), as well as the
transport layer, which is accessible through the transport layer interface
(TLI). TAL and TLI are abbreviations introduced here (they have not been
taken from the RFC 3261).

Similar to TU, TAL dynamically creates and uses invite client transac-
tions (INVITE CT), non-invite client transactions (non-INVITE CT), invite
server transactions (INVITE ST), and non-invite server transactions (non-
INVITE ST). TAL and all transactions use TLI, but they are all also used by

36 Communication Protocol Engineering

TU. Finally, TLI uses UDP, TCP, or TLS. The detailed use case diagram of the
simple SIP softphone is shown in Figure 2.15.

Before proceeding further, two important points must be emphasized. The
first is that the direct relations between TU and TLI are strictly in accordance
with the RFC 3261, although this may seem to be an error because it violates
the ISO OSI ideal of a strictly layered architecture (no direct communica-
tion between layer i + 1 and layer i). The second point is that the relations
between TU and transactions, and transactions and TLI, are not prescribed
by the RFC 3261 but they are also not forbidden. These relations are intro-
duced to minimize the message paths at the expense of the increased rela-
tions complexity.

User

Use transaction
user layer

Use transaction
layer

Use transport layer

Use application

*

*

«uses»

«uses»

«uses»

«uses»

FIGURE 2.14
Use case diagram of the simple SIP softphone.

37Requirements and Analysis

To complete the requirements model, we need to describe the individual
use cases. The use case Use application is actually the main program that
interacts with the user and makes use of the SIP protocol stack and is out of
the scope of this book. The use case Use TU is responsible for dispatching TU
messages (coming from the application and the lower layers and going to the
user agent clients and servers and to the application), as well as for dynamic
creation of user agent clients and servers.

The use case Use UAC provides a set of procedures for the client side of the
transactions. The high-level description of these procedures follows:

User

Use TU

Use TAL

Use
non-INVITE CT

Use
INVITE CT

Use
INVITE ST

Use
non-INVITE ST

Use TLI

Use UAC Use UAS

Use TCPUse UDP Use TLS

Use application

*

*

«uses»

«uses»

«uses»

«uses» «uses»«uses»

«uses»

«uses»«uses» «uses» «uses»

«uses» «uses» «uses» «uses»

«uses» «uses» «uses» «uses»

«uses» «uses»

«uses» «uses»

«uses» «uses»

FIGURE 2.15
Detailed use case diagram of the simple SIP softphone.

38 Communication Protocol Engineering

Main flow of events:

Receive the request from the application.
Dispatch it to the corresponding procedure.
Registration procedure:
 Create and send REGISTER request.
 Receive the response.
 Indicate the response to the application.
Session setup procedure:
 Create and send INVITE request.
 Receive provisional responses (1xx), if any.
 Receive the final response (not 1xx).
 Indicate the final response to the application.
 If the final response is 2xx,
 Send ACK request.
Cancel session setup procedure:
 If the final response has not been received,
 Create and send CANCEL request.
 Receive the response.
 Indicate the response to the application.
Modify session/dialog procedure:
 Perform session setup procedure.
Query server capabilities procedure:
 Create and send OPTIONS request.
 Receive the response.
 Indicate the response to the application.
Terminate session procedure:
 Create and send BYE request.
 Receive the response.
 Indicate the response to the application.

The use case above includes only the main flow of events. A more detailed
version would also include the exceptional flow of events that would describe
the time management and the retransmissions of the unacknowledged SIP
messages. These are skipped here for brevity (in reality, we also start from a
very simple version of use cases and refine them later). The same is true for
all the other use cases given in this subsection.

The use case Use UAS provides the set of procedures for the server side
of the transactions. The high-level description of these procedures is as fol-
lows (the implementation is rather simple and takes the passive, goodwill
approach).

Main flow of events:

Receive the request from the TU dispatcher (i.e., remote SIP entity).
Dispatch it to the corresponding procedure.
Session setup service procedure:
 Receive the incoming INVITE request.
 Indicate INVITE request to the application.
 Send the provisional response, e.g., 180 RINGING.
 If the user accepts the call,
 Send the final response 200 OK.
 Receive ACK request.
Cancel session setup service procedure:
 Receive CANCEL request.
 Send the final response 200 OK.
 Report the outcome to the application.

39Requirements and Analysis

Modify session/dialog service procedure:
 Receive INVITE request.
 Send the final response 200 OK.
 Report the outcome to the application.
Query server capabilities service procedure:
 Receive OPTIONS request.
 Send the final response 200 OK.
 Report the outcome to the application.
Terminate session service procedure:
 Receive BYE request.
 Send the final response 200 OK.
 Report the outcome to the application.

The use case Use TAL is responsible for dispatching TAL messages (com-
ing from TU, UAC, UAS, and TLI and going to the TAL transactions), as well
as for dynamic creation of TAL transactions. The use case Use INVITE CT is
an invite client transaction. Its description is as follows:

Main flow of events:

Receive INVITE request from TAL.
Forward INVITE request to TLI.
Receive 1xx response from TAL.
Forward 1xx response to TU.
Receive the final response from TAL.
Forward the final response to TU.
If the final response is 3xx-6xx,
 Send ACK request to TLI.

The use case Use INVITE ST is an invite server transaction. Its description
is as follows:

Main flow of events:

Receive INVITE request from TAL.
Forward INVITE request to TU.
Receive 1xx response from TAL.
Forward 1xx response to TLI.
Receive the final response from TAL.
Forward the final response to TLI.

The use case Use non-INVITE CT is a non-invite client transaction. Its
description is as follows:

Main flow of events:

Receive the request from TAL.
Forward the request to TLI.
Receive the response from TAL.
Forward the response to TU.

The use case Use non-INVITE ST is a non-invite server transaction, which
is defined as follows:

40 Communication Protocol Engineering

Main flow of events:

Receive the request from TAL.
Forward the request to TU.
Receive the response from TAL.
Forward the response to TLI.

The use case Use TLI is responsible for dispatching transport messages. It
routes the requests from upper layers toward its remote peer in a forward
direction, and routes the responses received from its remote peer toward the
upper layers in a backward direction (non-ACK responses are sent to TAL,
whereas ACK responses are sent to TU). It may use UDP, TCP, or TLS for the
communication with its peers over the Internet. The description of this use
case is as follows:

Main flow of events:

Receive a request from upper layers.
Send the request to the remote peer.
Receive the response from the remote peer.
If the response is ACK,
 Send it to TU,
Else,
 Send it to TAL.

Now that we have completed the use case diagram, we can proceed to the
next engineering phase. This phase is the analysis, whose main goal is the
definition of the software architecture.

2.3.3 SIP Softphone Analysis Model

Generally, the analysis model is constructed by defining the collaboration in
a set of objects for each use case in the source requirements model. This pro-
cess becomes obvious when considering the rough use case diagram shown
in Figure 2.14. However, by refining the use cases, we may reach a point
when a single class can realize a single use case. Figure 2.15 is an example of
exactly such a use case diagram. Each use case is rather simple, so that a sin-
gle class can realize it. Along this approach, assume the following mapping:

• The instance of the class FSM named app realizes the use case Use
application.

• The instance of the class TUDisp named tud realizes the use case
Use TU.

• An unnamed instance of the class UAClient realizes the use case Use
UAC.

• An unnamed instance of the class UAServer realizes the use case
Use UAS.

41Requirements and Analysis

• The instance of the class TALDisp named tald realizes the use case
Use TAL.

• An unnamed instance of the class InClientT realizes the use case Use
INVITE CT.

• An unnamed instance of the class NIClientT realizes the use case Use
non-INVITE CT.

• An unnamed instance of the class InServerT realizes the use case Use
INVITE ST.

• An unnamed instance of the class NIServerT realizes the use case
Use non-INVITE ST.

• The instance of the class TLIDisp named tlid realizes the use case
Use TLI.

• The instance of the class FSM named udp realizes the use case Use
UDP.

• The instance of the class FSM named tcp realizes the use case Use
TCP.

• The instance of the class FSM named tls realizes the use case Use
TLS.

The mapping above translates the use case diagram (shown in Figure 2.15)
into the general collaboration diagram (shown in Figure 2.16). This diagram
actually shows the software architecture, which defines the software objects
that constitute the software system or product and the associations among
them.

The software architecture can be used for the further study of particular
object collaborations to check if the architecture is feasible and, if not, to
refine the use case or collaboration diagram. An example of a particular col-
laboration is shown in Figure 2.17. This diagram shows the handling of the
invite request initiated by the softphone user. The flow of events is as follows:

 1: The object app sends the event inviteReq(adr) to the object tud.
 2: The object tud sends the event inviteReq(adr) to an unnamed instance

of the class UAClient.
 3: The unnamed instance of the class UAClient sends the event

req(INVITE) to the object tald.
 4: The object tald sends the event req(INVITE) to an unnamed instance

of the class IClientT.
 5: The unnamed instance of the class IClientT sends the event

req(INVITE) to the object tlid.
 6: The object tlid sends the event req(INVITE) to its peer over the object

tcp.

42 Communication Protocol Engineering

 7: The object tlid receives the event rsp(1xx) from its peer over the object
tcp.

 8: The object tlid sends the event rsp(1xx) to the object tald.
 9: The object tald sends the event rsp(1xx) to an unnamed instance of

the class IClientT.
 10: The unnamed instance of the class IClientT sends the even rsp(1xx) to

the object tud.
 11: The object tud sends the event rsp(1xx) to an unnamed instance of

the class UAClient.
 12: The object tlid receives the event rsp(200) from its peer over the object

tcp.
 13: The object tlid sends the event rsp(200) to the object tald.
 14: The object tald sends the event rsp(200) to an unnamed instance of

the class IClientT.

app : FSM

tud : TUDisp

: UAClient : UAServer

: InClientT

tald : TALDisp

tlid : TLIDisp

tls : FSMtcp : FSMudp : FSM

: NIClientT : InServerT : NIServerT

FIGURE 2.16
General collaboration diagram of the simple SIP softphone.

43Requirements and Analysis

 15: The unnamed instance of the class IClientT sends the event rsp(200)
to the object tud.

 16: The object tud sends the event rsp(200) to an unnamed instance of
the class UAClient.

 17: The unnamed instance of the class UAClient sends the event
inviteRsp(adr) to the object tud.

 18: The object tud sends the event inviteRsp(adr) to the object app.

Generally, req() and rsp() designate SIP requests and SIP responses in the
flow of events shown above. For example, req(INVITE) is the SIP invite
request, rsp(1xx) is the SIP provisional response, and rsp(200) is the SIP final
response.

app : FSM

tud : TUDisp

: UAClient : UAServer

: InClientT

tald : TALDisp

tlid : TLIDisp

tls : FSMtcp : FSM

2: inviteReq(adr)

11: rsp(1xx)

16: rsp(200)

17: inviteRsp(adr)

10: rsp(1xx)

15: rsp(200)

8:
 rs

p(
1x

x)
13

: r
sp

(2
00

)

6:
 re

q(
IN

V
IT

E)
7:

 rs
p(

1x
x)

12
: r

sp
(2

00
)

3: req(INVITE)

4: req(INVITE)

9: rsp(1xx)

14: rsp(200)

udp : FSM

: NIClientT : InServerT : NIServerT

5: req(IN
VITE)

1:
 in

vi
te

Re
q(

ad
r)

18
: i

nv
ite

Rs
p(

ad
r)

FIGURE 2.17
Collaboration diagram showing the part of the SIP session setup.

44 Communication Protocol Engineering

References

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1998.

Broekman, B. and Notenboom, E., Testing Embedded Software, Addison-Wesley,
London, 2003.

Meyer, S. and Apfelbaum, L., “Use Cases Are Not Requirements,” http://www. geocities
.com/model_based_testing/online_papers.htm, 1999.

Rosenberg, J. et al., “RFC 3261–SIP: Session Initiation Protocol,” http://www.faqs.org
/rfcs/rfc3261.html, 2002.

http://www
http://www.faqs.org
http://www.faqs.org

45

3
Design

System design is a phase in engineering work that follows the system
requirements and analysis phases. Its main goal is to synthesize a complete
solution based on the result of the analysis phase (obtaining the analysis
model of the system), which is actually a rough architecture—a skeleton—
of the system. We can imagine the system synthesis as a process of creating
the body of the system. This body is a reflection of the details related to the
system structure and its behavior.

Note that the complete solution of the system mentioned above is not the
system itself, but rather a detailed vision of the system that comprises all
the details sufficient to construct the system. Technically, we refer to this
vision as a design model. Therefore, the system synthesis is a process that
takes an analysis model as its input and produces the design model as its
output.

The design model defines the two most important system aspects:

• System structure
• System behavior

The system structure defines the elements of the system and their associa-
tions. Sometimes it is referred to as the static structure because it defines
the static view of the system, i.e., a view without any respect to time. The
system behavior defines the outputs of the systems as functions of time or
their inputs. In the case of a family of communication protocols, which are
most frequently modeled as groups of finite state machines (automata), the
static structure defines the automata and the links between them whereas
the system behavior defines the state transitions for the individual automata
and the external messages.

Besides system synthesis, or system design, the communication protocol
design phase described in this book includes two additional designs, namely
deployment design and test design, which result in a deployment model
and a test model, respectively. The main goals of the deployment design are
identifying network nodes and configurations as well as identifying design
subsystems and interfaces. The deployment model is especially important
for the complex communication systems comprising many distributed com-
ponents. For less complex systems, it is not as important, and for very simple
systems it may not even be necessary.

46 Communication Protocol Engineering

Although the system design and deployment models make the complete
vision of the system, they do not specify how the system can be verified.
Therefore, the engineers conduct the test design by taking the requirements
and design models and creating a test model. The test model actually defines
the behavior of the testers, who emulate the environment of the system. As
already mentioned in the previous chapter, the test model is most frequently
referred to as a test suite, which comprises a set of test cases. Each test case
specifies a series of test input values (events and messages) to the system and
the corresponding output values (events and messages) that are expected
at the system output as the results of correct system reactions to the given
series.

To summarize, a communication protocol design is a process that takes the
requirements and analysis as its input and provides the following models as
its output:

• System design model
• System deployment model
• System test model

The means of making these models today are UML diagrams or some
domain-specific languages, which are introduced in this chapter. The
design engineer starts from the analysis model, essentially a collabora-
tion of <<boundary>>, <<control>>, and <<entity>> classes, described in the
corresponding collaboration diagram. The development model is made
by mapping each class from the analysis model to a set of new classes in
the development model. If the analysis model is well refined, this might
even be a one-to-one mapping or close to it. For example, the analysis
model of the SIP softphone given at the end of the previous chapter is
detailed enough, and the corresponding collaboration diagram is a good
base for the refinements that must be made during the system design
phase.

The means of defining the static structure of the system in UML are class
diagrams and object diagrams. A class diagram shows the design classes
and the static relations (dependencies, associations, and generalizations)
among them without any respect to time. It shows important details about
classes, such as their members, fields and functions, types, visibility, and so
on. The object diagram is similar to the class diagram except that it shows
the system frozen at a certain moment of time. Typically, the object diagram
will show system objects (class instances) with the characteristic and impor-
tant values of certain field members.

The means of gathering and refining details about the system behavior
are the UML interaction diagrams. Two types of interaction diagrams are
found, namely collaboration diagrams (introduced in the previous chap-
ter) and sequence diagrams. Collaboration diagrams show the interaction

47Design

organized by the architecture, meaning that their focus is an architectural
view of the system. The architecture is adorned by the flow of events. The
sequence of events is shown by adding sequence numbers as prefix labels
to the events.

Alternately, sequence diagrams show system interactions from a time
progress perspective. The top of the sequence diagram shows the objects of
the system without static relations among them. Each object is represented
further by a vertical line rendered from its bottom toward the bottom of
the diagram. Time advances in the same direction. The interaction itself is
shown by the series of events and messages sent among the objects, which
are rendered by horizontal arrows from the source object’s line to the desti-
nation object’s line.

The means of specifying complete system behavior are activity diagrams
and statechart diagrams or, more briefly, statecharts. An activity diagram
shows the action or activity states, starting from the initial and ending in
the final state. State transitions can be sequential, branching, or concurrent
(through forking and joining). The activity diagram is essentially a flowchart
that emphasizes the activity that takes place over time, similar to PERT
charts.

Statecharts are the means of specifying finite state machines in UML. They
are a type of advanced state transition graphs. A statechart shows simple
and composite states starting from the initial and ending in the final state.
The composite states are a means to organize states hierarchically. The state
transitions can be guarded by conditions and they can indicate firing events
and the corresponding actions.

The main goal of the deployment design is the decomposition of the sys-
tem in two dimensions. Horizontally, the system is partitioned into parts
that are deployed onto different network nodes. The term used for nodes
by ISO OSI is open systems. Vertically, the system is partitioned into layers.
Typical layers recognized by the USDP are the following:

• Application-specific layer
• Application-general layer (e.g., packages common for a set of

applications)
• Middleware layer (e.g., Java VM and Java packages)
• System-software layer (e.g., TCP/IP protocol stack)

Furthermore, the system-software layer is generically partitioned by ISO OSI
into the following seven layers:

• Application layer
• Presentation layer
• Session layer

48 Communication Protocol Engineering

• Transport layer
• Network layer
• Data link layer
• Physical layer

Another way to vertically partition is in accordance with the TCP/IP Internet
layers, as follows:

• Application layer
• Transport layer
• Network layer
• Network interface layer

In the context of operating systems, we can think of layers as processes.
Logically, each process has its own program and the processor that exe-
cutes it but, in reality, some of the processes may share the program or
the processor. The processes sharing the same program are referred to as
threads. The processes sharing the same processor constitute the multipro-
gramming set.

The layers do not exist for themselves—rather, they are typically created to
service the requests issued by the upper layers. When the number of requests
increases, the engineers face the scalability problem, which can be solved by
deploying the same layer on more processors. If the layers are the instances
of the same class, we refer to them as replicas. Alternately, on multiprocessor
systems with common memory, it might be possible for these layers to share
the same program.

The deployment of horizontal system partitions onto different proces-
sors or computers is used rather frequently by system designers. Examples
include the client–server architecture, the multitier architecture, and others.
This convenience is why most engineers think of it in the first place when
deployment issues are raised. However, the deployment of a vertical system
that partitions onto various processors is also possible. A typical example is
the Bluetooth Host Controller Interface (HCI), which is a demarcation line
between the host processor that executes the upper layers and the Bluetooth
link controller (a microprocessor, a microcontroller, or a digital signal pro-
cessor) that executes the lower layers.

Horizontal and vertical system partitioning are typically conducted as
two interactive activities. The designer typically partitions the horizontal
system by rendering the deployment diagram, which shows the network
nodes, links between them, and the subsystems deployed on individual
nodes. Alternately, vertical partitioning—sometimes referred to as subsys-
tem modeling—results in a class diagram that shows just the subsystems
(packages) hierarchically organized in layers, and the dependencies among

49Design

the subsystems. These two diagrams can be combined in the overall deploy-
ment diagram, which shows both the hierarchy and the deployment.

Another important design goal is identifying and providing generic
design mechanisms that handle common requirements. The generic design
mechanisms can be provided as design classes, collaborations, or subsys-
tems. Examples of the generic design mechanisms in communication proto-
col engineering are:

• Protocol (finite state machine or automata) state transition management
• Buffer management
• Timer management
• Message management

These mechanisms are common for all communication protocols. Typically,
they are designed and implemented once as a separate subsystem that com-
prises the set of classes, which is then used and refined on a series of proj-
ects. In this book, we will use one such subsystem, entitled the FSM library
(see Chapter 6). The design and the implementation of such a library is rather
specific and rests more in the domain of operating systems. Additionally,
such a library frequently already exists and the designers would just use the
mechanisms that it provides. Because of these two reasons, we intentionally
postpone presenting the FSM library details for Chapter 4.

By accepting this approach, we keep the focus on the activities that are
normally conducted during the design phase. We just assume that somebody
has written the FSM library that provides all the necessary mechanisms (state
transition, buffer, timer, and message management) and concentrate on the
design based on these mechanisms. Therefore, for a moment we should sim-
ply think of the FSM library as an infrastructure that facilitates the design
and implementation of communication protocols.

Going back to the system design itself, this chapter will cover two addi-
tional domain-specific languages that have been in use much before UML
and are still rather popular today, namely SDL and MSC. The SDL diagrams
are semantically equivalent to the UML activity diagrams and statecharts.
In principle, establishing a one-to-one mapping between them should not be
a problem. The SDL diagram, like the UML activity diagram and statechart,
specifies the complete system behavior.

The SDL diagram shows states and state transitions starting from the ini-
tial state and ending in the final state. The state transitions are rendered in
a style of flowcharts. Each state transition starts with an input message that
causes the transition. Typically, a state transition processes the received mes-
sage and optionally sends the consequent messages.

The MSC chart is semantically equivalent to the UML interaction dia-
grams, i.e., to both collaboration and sequence diagrams. In fact, the MSC
chart can be one-to-one translated into the UML sequence diagram, but the

50 Communication Protocol Engineering

opposite is not the case. By looking at both of them, they make the same impres-
sion. Most engineers have the impression that they are almost the same, with
the MSC being a little less expressive. Like the UML sequence diagrams, the
MSC chart shows the objects that communicate—together with their corre-
sponding vertical lines—and the messages they exchange, which are rendered
as horizontal arrows connecting the source and the destination vertical lines.

Finally, this chapter covers the third domain-specific language, TTCN,
which is used for making test models more formal than in UML. In con-
trast to the UML test model, which is rather descriptive and more like a gen-
eral framework, TTCN is a well-defined language for defining test suites.
As already mentioned, it originates from the ISO and has been traditionally
used for the conformance testing of communication protocols.

TTCN, much like the higher-level programming language, has built-in
types and allows a user to define new types (simple and structured) of vari-
ables, constraints, and functions in specialized tables. The essence of the
TTCN test case specification is an indented tree of events that is filled in a
table, which specifies the behavior of the testers that run the test case and the
outcomes of the test case (pass, fail, or inconclusive).

The next sections describe the class diagrams (Section 3.1), the object diagrams
(Section 3.2), the sequence diagrams (Section 3.3), the activity diagrams (Section
3.4), the statechart diagrams (Section 3.5), the deployment diagrams (Section 3.6),
the SDL diagrams (Section 3.7), the MSC charts (Section 3.8), and the TTCN-3
test suits (Section 3.9). Chapter 3 ends with a series of design examples.

3.1 Class Diagrams

A class diagram is a special type of graph that consists of a set of vertices
interconnected by arcs. They are so popular and widely used that most of the
newcomers to UML equate the UML and the class diagrams. Normally, we
use the class diagrams to model the static design view of the system. More
precisely, we typically use them to model the vocabulary of the system, col-
laborations, or database schemas.

A vocabulary of the system is a set of abstractions that are parts of the
system. A collaboration is a group of classes, interfaces, and other elements
that cooperate to provide a more complex functionality. A schema is a blue-
print that is used for the conceptual design of a database. In communication
protocol engineering, we rarely deal with real databases, but we frequently
need to design at least a couple of persistent objects that hold the system
configuration or similar information.

The basic class diagram vertices are classes, interfaces, and collaborations.
These are interconnected with three types of arcs, with dependency, gener-
alization, and association relations. To keep the size of the class diagrams

51Design

manageable, we typically render smaller collaborations that describe cer-
tain aspects of the system. If we want to put those collaborations in a larger
context, we can render the surrounding packages or subsystems. Both pack-
ages and subsystems enable hierarchical organization of class diagrams. For
example, we will render the FSM library as a package that is used by the
protocols that are the subjects of design and implementation.

We use packages and subsystems to manage complexity. Alternately, we
render class instances (objects) in class diagrams to manage ambiguity, espe-
cially when we want to explicitly show the dynamic type of an instance or
some other hidden details of the system. A special type of class diagrams are
object diagrams, which will be described in the next section of this chapter.

Like use case and collaboration diagrams described in the previous chap-
ter, class diagrams are normally also rendered using some of the commer-
cially available graphical tools, e.g., Microsoft Visio®. The same is true for
other UML diagrams described in this chapter. The basic set of graphical
symbols available for rendering class diagrams is shown in Figure 3.1. The
design engineer must specify properties for each instance of a symbol in the
drawing.

Class

Interface

«interface»
Interface

Package «subsystem»
Subsystem

Object : Class

**

1*

AssociationClass

**

FIGURE 3.1
The basic set of graphical symbols available for rendering class diagrams.

52 Communication Protocol Engineering

The most frequently used symbol in class diagrams is the class symbol.
Eight categories of class properties exist: the general information, the table of
attributes, the table of receptions, the table of parameters, the list of compo-
nents, the table of constraints, and the tagged values. The general information
includes the name; the full path; the stereotype (delegate, implementation
class, metaclass, structure, type, union, or utility); the visibility (private, pro-
tected, or public); and the indicators for the Root, Leaf, Abstract, and Active
types of classes. The table of attributes comprises columns for the attribute
name, the type, the visibility, the multiplicity (1, *, 0..1, 0..*, 1..1, or 1..*), and
its initial value. The table of operations comprises columns for the opera-
tion name, the return type, the visibility, the scope (classifier or instance),
and the indicator for the polymorphic operations. The table of receptions
includes columns for the reception name, the corresponding signal name,
the visibility, the scope, and the indicator for the polymorphic operations.
The table of template parameters stores parameter names and types. The
list of components comprises names of the components that implement this
class. The table of constraints consists of four columns: the constraint name,
the stereotype (precondition, postcondition, or invariant), the language type
(OCL, text, pseudocode, or code), and the body of the constraint. The tagged
values include the notes for the documentation, the location, the persistence,
the responsibility, and the semantics.

Two graphical symbols are available for rendering interfaces. The first
shows just the name of the interface, whereas the second also shows the
available operations. Being the specialized classifier, the interface proper-
ties are a subset of class properties. More precisely, the interface has four
categories of properties: the general information, the table of operations, the
table of constraints, and the tagged values. Those properties are the same
as the corresponding class properties with a single exception. The interface
is passive in its nature, hence the general information might not include the
indicator of Active type.

The package has four categories of properties: the general information, the
table of events, the table of constraints, and the tagged values. The general
information includes the name; the full path; the stereotype (facade, frame-
work, stub, or system); the visibility (private, protected, or public); and the
indicators for the Root, Leaf, and Abstract types of packages. The table of
events stores the event names and the types.

The subsystem has four categories of properties: the general information,
the table of operations, the table of constraints, and the tagged values. The
general information includes the name; the full path; the visibility; and the
indicators for the Root, Leaf, Abstract, and Instantiable types of subsystems.

The object has four categories of properties: the general information, the
table of attributes, the table of constraints, and the tagged values. The general
information about the object includes the object name and the correspond-
ing class name. The tagged values are just documentation notes and the tag
persistent value.

53Design

The dependency relation has three categories of properties: the general
information, the table of constraints, and the tagged values. The general
information includes the name, the stereotype (becomes, call, copy, derived,
friend, import, instance, metaclass, power type, or send), and the descrip-
tion. The tagged values are the notes for the documentation.

The generalization relation has three categories of properties: the gen-
eral information, the table of constraints, and the tagged values. The gen-
eral information comprises the name, the full path, the stereotype (extends,
inherits, private, protected, subclass, subtype, or uses), and the discrimina-
tor. The tagged values are documentation notes.

The association relation has three categories of properties: the general
information, the table of constraints, and the tagged values (documentation
notes). The general information comprises the name, the full path, the name
reading direction (forward or backward), and the information about the
association ends, which includes the name, the aggregation (none, compos-
ite, or shared), the visibility, the multiplicity, and the indicator Navigable. If
the end is navigable, it is shown with an arrow symbol, and if not, it is shown
without an arrow symbol. Because the composition relation is a specializa-
tion of the association relation, it has the same categories of properties (the
general information, the table of constraints, and the tagged values), with the
exception that the default values for the aggregation and multiplicity (of one
of the ends) are composite and 1, respectively.

The association class is a class that models the complex relation; there-
fore, its set of properties is a union of properties of classes and associations.
More precisely, the association class has five categories of properties: the
general information, the table of attributes, the table of operations, the table
of constraints, and the tagged values. The general information comprises
the name, the full path, the information about the association ends (name,
aggregation, visibility, multiplicity, and navigability), and the associa-
tion class details (visibility information and Root, Leaf, Abstract, and Active
indicators).

The object link has three categories of properties: the general information,
the table of constraints, and the tagged values (just documentation notes).
The general information includes the name and the information about each
of the two link ends. The link end information comprises the name and the
stereotype (none, association, global, local, parameter, or self).

This concludes the description of the basic graphical symbols available
for rendering class diagrams. The usage of these symbols is illustrated by
two examples, as shown in Figures 3.2 and 3.3. The first example is a sim-
ple model of the TCP/IP protocol stack, and the second example is a simple
model of a finite state machine (automata).

The TCP/IP protocol stack is modeled by the classes that represent its lay-
ers: Application, Transport, Network, and Interface. The transport layer has a
number of ports, which are modeled by the interface Port. The application
depends on the transport (this fact is modeled by the dependency relation)

54 Communication Protocol Engineering

and it gets the service it needs through the interface Port. Further down, the
transport layer depends on the network layer, which in turn is in association
with a number of interfaces.

The left side of Figure 3.2 shows the models of the host computers that are
connected to the Internet and the routers that interconnect the physical net-
works that constitute the Internet. The host computer is modeled by the class
Host. Each host comprises all TCP/IP protocol stack layers. This fact is mod-
eled by the composition relations between the class Host and the classes that
model the individual layers (Application, Transport, Network, and Interface).
The router is modeled by the class Router. Each router comprises the net-
work and the interface layer. This is modeled by the composition relations
between the class Router and the classes that model the individual layers.

The right side of Figure 3.2 shows some of the applications and protocols
available in the TCP/IP family of protocols. The electronic mail and World
Wide Web (WWW) applications—and their corresponding protocols—are
modeled by the class Email and WWW, respectively. These two applications
are the examples of particular applications, and this fact is modeled by the

Application

Transport

Port

1
*

Network

Interface

1
*

EMail WWW

TCP UDP

IP ICMP

Host

Router

11

1 1

Ethernet Serial

1*

1

*

1

1

1

*

1 1

1

*

FIGURE 3.2
Example of a simple model of the TCP/IP protocol stack.

55Design

generalization and specialization relations between the class that models
a generic application (Application) and the classes that model the particu-
lar applications (Email and WWW). Similarly, TCP and UDP are particular
transport protocols (modeled by the classes TCP and UDP), and this is mod-
eled by the generalization and specialization relations between the class that
models a generic transport protocol and the class that models TCP and UDP.

Further down the hierarchy, the Internet network layer comprises the IP
and ICMP protocols (modeled as the classes IP and ICMP). This is modeled
by the composition relations between the classes that model the network
layer and the IP and ICMP protocols. At the bottom of the hierarchy, we
show that various types of interfaces exist, e.g., Ethernet and serial, by gen-
eralization and specialization relations between the class Interface and the
classes Ethernet and Serial, which model these particular interfaces.

+entry()
+do()
+exit()

State
Transition

1

-FromSourceState

0. .*

-ToDestinationState

0..*

1

EventCondition Action

1

0..1

1

0..1

1

0..1

ConditionX EventY ActionZ

Automata

1

*

FIGURE 3.3
Example of a simple automata model.

56 Communication Protocol Engineering

The second example of simple class diagrams is a simple model of a finite
state machine (automata). The aim of this example is as an easy exercise. We
will return to the topic of modeling automata more comprehensively at the
beginning of the next chapter. The key abstractions in this example are a
finite state machine, a state, and a state transition; which are modeled by the
classes Automata, State, and Transition, respectively (Figure 3.3).

The finite state machine comprises a number of states. This fact is mod-
eled by the composition relation between the class Automata and the class
State. The multiplicity from the side of the class Automata is 1 and from
the side of class State is *. (This notation means that a finite state machine
must comprise at least one state, which technically sounds like a reasonable
requirement.)

The state transition links the source and the destination states, and this is
modeled by two association relations between the classes State and Transition.
The ends of these association relations from the side of the class Transition
are named FromSourceState and ToDestinationState, respectively. The multi-
plicity from the side of the class State is set to 1 (because each state transition
must have exactly one source and one destination state), and from the side
of the class Transition to 0..* (because a state may have zero or more outgoing
and zero or more incoming state transitions). The navigability of these two
association relations is set such that the relation FromSourceState points from
the class State to the class Transition, whereas the relation ToDestinationState
points in the opposite direction.

The main problem with this model is ambiguity. The source and the desti-
nation states may seem to be always the same (because both FromSourceState
and ToDestinationState association relations are connected to the same class,
namely the class State). However, source and destination states can be, and
most frequently are, different states. We will come back to this point shortly,
after introducing additional nodes and relations available for rendering class
diagrams, to resolve this problem in a less ambiguous way.

The key abstractions related to the transition are the condition that guards
the transition, the event that fires the transition, and the action that is taken
by the transition, which are modeled by the classes Condition, Event, and
Action. Each transition is characterized by these three optional elements, and
that is modeled by the composition relations between the class Transition
and the classes Condition, Event, and Action. The fact that these elements are
optional is modeled by setting the multiplicity to 0..1 from the side of the
corresponding classes.

Besides actions that are taken during the transitions, we can define state
bound actions, such as the action that is taken at the entrance to a certain
state, the action that is performed while the system is in a certain state, and
the action that is taken at the exit from a certain state (we will encounter
these and more in the UML statecharts later in this chapter). These action
types are modeled as the state operations entry(), do(), and exit(), which are
defined in the table of operations for the class State.

57Design

Until now, we were modeling a generic finite state machine. To make this
model useful for the implementation of a particular finite state machine,
first we need to define the concrete conditions, events, and actions. We do
so through the specialization of the base classes Condition, Event, and Action.
Figure 3.3 shows the examples of the particular condition, event, and action,
which are modeled by the classes ConditionX, EventY, and ActionZ, respec-
tively. Finally, to build the particular finite state machine, we need to instan-
tiate the classes.

This concludes the presentation of two simple examples of class diagrams.
To make this graphical language more expressive and to reduce the ambigu-
ity of the class diagrams, the graphical tool provides the additional set of
graphical symbols, which are shown in Figure 3.4. The first of them is the
metaclass, whose instances are classes that are added to the class diagram.
We can resolve the problem of ambiguity in the previous example exactly by
using the metaclass instead of the class symbol because it is then clear that
the source and the destination state may both be the same state or two com-
pletely different states. Again, as for the basic set of symbols, the additional
symbols have similar categories of properties. The metaclass has the same
properties as the class, with the exception that its stereotype (in the general
information section) is fixed to metaclass.

Both the signal and the exception symbols have the same four categories
of properties, namely, the general information, the table of parameters, the
table of constraints, and the tagged values. The general information is the
same as for the interfaces (the name, the full path, the visibility, and the indi-
cators Root, Leaf, and Abstract). The table of parameters stores the information
about the parameters, which comprise the parameter name, the type, the
kind (in, out, or in–out), and the default value.

The data type has five categories of properties. These are the general infor-
mation, the table of enumeration literals, the table of operations, the table
of constraints, and the tagged values. The general information includes the
name, the full path, the stereotype (none or enumeration), the visibility, and
the indicators Root, Leaf, and Abstract. If the data type is an enumeration, the
table of enumeration literals holds the information about the literal names
and the corresponding values.

A utility is a special class, therefore it has the same properties as the
class with the exception that its stereotype is fixed to utility. Similarly,
a parameterized class is a special class that has one or more unbound
formal parameters, therefore it has the same categories of properties as
the class. Related to the parameterized class is a bind relation, that binds
(connects) the designated arguments to the template formal parameters. It
has four categories of properties: the general information (just the name
and the description), the list of bound arguments, the table of constraints,
and the tagged values. The bound element adds the result of binding
between the template parameters and their actual values. It has the same
categories of properties as the class.

58 Communication Protocol Engineering

«metaclass»
Metaclass

«signal»
Signal

«exception»
Exception

«utility»
Utility

«datatype»
DataType ParamClass

Parameter

«bind»

BoundElement

«traces»

«refines» «uses»

* *

*

* *

*

AssociationClass

Note

{Constraint} {Constraint} {OR}

FIGURE 3.4
Additional graphical symbols available for rendering class diagrams.

59Design

The next three symbols are the traces, refines, and uses relations. We can
think of them as specialized dependency relations. The traces relation con-
nects two model elements from two different models. The refines relation
connects a more detailed model element to its previous version. The uses
relation indicates the dependency relationship between two model elements
where one requires another to fully operate. All these relations have the
same categories of information as the dependency relation, with the excep-
tion that their stereotype is fixed.

The next four symbols are the note, the constraint note, the constraint
shown as arrow, and the OR constraint, which we have already encountered
in both use case and collaboration diagrams (described in Chapter 2). The
last three symbols are used to describe the relations among more than two
model elements. The first is the N-ary association, which models the associa-
tion among more than two classifiers. Its properties are the same as for the
binary association with the additional properties for each association end
(the name, the aggregation, the visibility, the multiplicity, and the navigabil-
ity indicator).

The second symbol is the N-ary association class, which models more com-
plex associations among more than two classifiers. Again, its properties are
the same as for the binary association class with additional properties for
each association end. The third and the last symbol is the N-ary object link,
which interconnects more than two objects. Its properties are the same as the
binary object link with additional properties for each end (the name and the
stereotype).

At the end of this section, we focus on the domain-specific class diagrams.
As already mentioned, the reader should assume and accept that somebody
has already prepared the infrastructure for the design and implementation
of communication protocols. There is no need to start modeling generic
automata every time we start a new project, but rather we do it once and
then use it on a number of projects. This practice is what in UML is called
providing generic design mechanisms.

In this book, we design and implement communication protocols based
on the FSM library. A typical class diagram is shown in Figure 3.5. The FSM
library is shown as the package FSMLibrary in the diagram and, on most
occasions, such representation would be sufficient. It actually comprises
a rather ramified hierarchy of C++ classes (we will go into more details in
the next chapter). The two most important classes are the FiniteStateMachine
and FSMSystem. The fact that the FSM library contains these classes is mod-
eled by the composition relations between the package FSMLibrary and the
classes FiniteStateMachine and FSMSystem. The multiplicity is set to 1 on both
sides (one library contains one such class).

The communication protocol is modeled by the class Automata. The fact
that it is a specific type of finite state machine is modeled by the general-
ization and specialization relation between the class Automata and the class
FiniteStateMachine. The former inherits all the attributes and operations from

60 Communication Protocol Engineering

the latter. The list given in Figure 3.5 is not exhaustive, and its purpose is
merely to provide the preliminary information about the basic functionality
provided by the class FiniteStateMachine, and that it is the full set of generic
design mechanisms that are needed. Once we have this class, designing a
protocol essentially means defining its states and state transitions, and this is
basically what we do in this chapter. After the design is finished, implement-
ing the design (in this context) actually means writing the corresponding
state transition routines (functions) in C++.

Another important class is the class FSMSystem. It actually provides a run-
time system for all communication protocols. At the system startup, the main

-StateTransition1()
-StateTransition2()
-StateTransition3()
+Initialize()
+Start()

-Attributes

Automata

#GetLeftMbx()
#GetLeftAutomate()
#GetLeftGroup()
#GetLeftObjectId()
#SetLeftMbx()
#SetLeftAutomate()
#SetLeftObject()
#SetLeftObjectId()
#Initialize()
#InitEventProc()
#InitUnexpectedEventProc()
+FiniteStateMachine()
+~FiniteStateMachine()
+Process()

-NumOfStates
-NumOfTimers
-MaxNumOfProcPerState
-States
-ConnectionId
-GroupId
-CallId
-LeftMbx
-LeftAutomate
-LeftGroup
-LeftObjectId
-RightMbx
-RightAutomate
-RightGroup
-RightObjectId
-State

FiniteStateMachine

�is is not the complete
specification of the
class FiniteStateMachine.
Its just a snippet that
should give you an idea
of its coplexity.

#GetBuffer()
#GetMsg()
#GetMsgToAutomate()
#GetMsgToGroup()
#GetMsgInfoLength()
#GetMsgObjectNumberTo()
#SendToMbx()
+FSMSystem()
+~FSMSystem()
+Add()
+Delete()
+InitKernel()
+Start()
+StopSystem()

-PostOffice
-Buffers
-Timer
#Automates
#NumberOfMbx
#NumberOfAutomates
-NumberOfObjects
-FreeKernelMemory : bool
-SystemWorking : bool

FSMSystem

«uses»

�is is not the complete
specification of the
class FSMSystem.

FSMLibrary

1

1

1

1

FIGURE 3.5
Typical communication protocol class diagram.

61Design

program, here referred to as utility class (not shown in Figure 3.5), registers
the given communication protocol by calling the method Add() of the class
FSMSystem, and by giving the reference to the class that models the protocol
(Automata in this example) as its parameter. Once registered, the protocol
can receive, process, and generate events (messages) through the mailboxes
provided by the FSMSystem.

As we will see in the next chapter, the FSMSystem manages all events. It
analyzes the event source and destination to locate the destination proto-
col. Once it is found, the FSMSystem looks up its current state, determines
the state transition routine based on the event code (type), and calls it. This
mechanism is modeled by the Uses relation between the class FSMSystem
and the class Automata.

As we can see, the class Automata is a specialization of the class
FiniteStateMachine and is used by the class FSMSystem during the system
run-time. More briefly stated, the class Automata depends on the package
FSMLibrary. This fact is also modeled in Figure 3.5 by the corresponding
dependency relation between the class and the package.

3.2 Object Diagrams

Object diagrams are a special type of class diagrams that typically show a
set of objects (instances of classifiers) and their links. Pure object diagrams
contain only objects and their links. However, sometimes we may put some
classifiers in the object diagram, especially to clarify the relations between
the classes and the objects. We may also use packages or subsystems to deal
with complexity.

Object diagrams, like class diagrams, are used to show the static design
view of the system. As already mentioned in the previous chapter, the col-
laboration diagram is used to model the behavior of the system. It also shows
the architecture of the system; hence, we say that the collaboration diagram
is organized by the architecture. We can think of the object diagram as one
snapshot of the collaboration diagram. Imagine that time is frozen. Whatever
we can see in the collaboration diagram at that single moment of time is an
object diagram.

Later in this chapter, we will introduce deployment diagrams, and in
Chapter 4 we will introduce component diagrams. Both deployment and
component diagrams can contain only objects and their links. In such cases,
they are actually pure object diagrams.

Clearly, the graphical symbols available for rendering object diagrams are
the same as the symbols used for class diagrams (sometimes referred to as
a static structure). In practice, we use only a very limited subset of those

62 Communication Protocol Engineering

symbols, most frequently only two of them (object and object link). The prop-
erties of these symbols are described in Section 3.1.

The usage of object diagrams can reduce the ambiguity of the static struc-
ture twofold. First, by rendering instances of classifiers, we can better under-
stand the relations among them. For example, rendering just the classes in
the TCP/IP protocol stack model may not give a clear indication of what the
network really looks like. Second, by showing the values of the key class
attributes, we can recognize reality more easily. For example, by showing
the status of the individual protocols, we can comprehend their expectations
from other cooperating protocols.

These ideas are illustrated by the following two examples. The first is an
object diagram that shows the snapshot from a simple mail transfer protocol
(Figure 3.6). The second is an example of a simple finite state machine object
diagram (Figure 3.7).

Figure 3.6 shows the software running on two host computers that are
connected to two different local area networks, which are interconnected by
a router. The host computers clearly require full protocol stacks whereas the
router requires only the two lowest level layers (IP and network interface).

status=AWAITING_220
client : SMTPClient

port25c : Port

port25status=opened
tcpc : TCP

ipc : IP

status=active
ic : Ethernet

net1 : LAN

status=active
ir1 : Ethernet

status=active
ir2 : Ethernet

ipr : IP

net2 : LAN

status=active
is : Ethernet

ips : IP

port25status=opened
tcps : TCP

port25s : Port

status=INITIAL
server : SMTPServer

code=220
text=READY FOR MAIL

msg : SMTPMsg

FIGURE 3.6
Snapshot from the simple mail transfer protocol (SMTP).

63Design

cu
rr

en
tS

ta
te

=S
0

st
at

es
={

s0
, s

1}

au
t :

 A
ut

om
at

a

id
=T

00
co

nd
iti

on
=c

on
00

ev
en

t=
ev

e0
0

ac
tio

n=
ac

t0
0

ne
xt

St
at

e=
S0

t0
0

: T
ra

ns
iti

on

id
=S

0
tr

an
sit

io
ns

={
t0

0,
t0

1}

s0
 :

St
at

e
id

=T
01

co
nd

iti
on

=c
on

01
ev

en
t=

ev
e0

1
ac

tio
n=

ac
t0

1
ne

xt
St

at
e=

S1

t0
1

: T
ra

ns
iti

on

id
=S

1
tr

an
sit

io
ns

={
t1

0}

s1
 :

St
at

e
id

=T
10

co
nd

iti
on

=c
on

10
ev

en
t=

ev
e1

0
ac

tio
n=

ac
t1

0
ne

xt
St

at
e=

S0

t1
0

: T
ra

ns
iti

on

FI
G

U
R

E
3.

7
E

xa
m

pl
e

of
 a

 s
im

pl
e

fi
n

it
e

st
at

e
m

ac
h

in
e

(F
SM

) o
bj

ec
t d

ia
gr

am
.

64 Communication Protocol Engineering

One host computer, shown on the left side of the figure, runs the SMTP cli-
ent on top of the TCP/IP protocol. The other host computer hosts the SMTP
server.

The first benefit of this object diagram is that it really makes clear which
layers are required by the hosts and which are required by the routers.
Graphically, we see the network, which was rather difficult to visualize just
by looking at the class diagram shown in Figure 3.3. Enough order is found
in this object diagram, too. More symbols are used than in the class diagram,
but only five per host and two per router. Of course, if we try to model a large
network there would be a flood of objects; therefore, we should always try to
restrict our modeling to a certain aspect of a system.

The second benefit is that we can peacefully study all the details of a cer-
tain moment in the life of a protocol, in this case SMTP. It is like looking at
the photograph of a certain party. This one shows the moment when the
SMTP server has prepared the message 220 READY FOR MAIL and its inten-
tion was to send it at the moment when the time has been frozen. We can
imagine what the sensation of looking at a series of such object diagrams
would be, like watching a replica of an important event in a game in slow
motion. After receiving the message 220 READY FOR MAIL, the SMTP client
would prepare the message HELO, and so forth.

Besides current messages, other details are also important. For example,
Figure 3.6 shows that the TCP port number 25 is opened from both sides, and
from there we can deduce that the SMTP client and server had to establish
the TCP connection in the first place, before they could proceed any further.
Some details may seem obvious (for example, that all Ethernet cards and
their drivers must be active), but they also help in making the complete pic-
ture of the selected moment. In a series of object diagrams, the changes of
values of certain attributes, such as status, are the most interesting and most
informative parts.

The second example of object diagrams is a simple finite state machine
object diagram, which is shown in Figure 3.7. A simple finite state machine
object, named aut, is an instance of the class Automata (Figure 3.4). It com-
prises a set of two state objects, namely s0 and s1, which are the instances of
the class State. Their identifications are S0 and S1, respectively. The current
state of the automata is the state with the identification S0.

The state object s0 contains a set of two transition objects, namely t00 and
t01, which are the instances of the class Transition (Figure 3.4). Similarly, the
state object s1 contains a set with one transition object, named t10. The tran-
sition objects t00, t01, and t10 model the automata state transitions from the
state with the identification S0 to the state with the identification S0, or more
briefly from S0 to S0, next from S0 to S1, and last from S1 to S0, respectively.

The attributes of the transition objects are the transition identification, the
condition that guards the transition, the event that fires the transition, the
action that is taken by the transition, and the next state identification. Their
identifiers are id, condition, event, action, and nextSate, respectively. id and

65Design

nextState would typically be strings or integers. condition, event, and action
are the instances of the class Condition, Event, and Action.

An important detail is that the values of these attributes are the instances
of classes that are specialized from the classes Condition, Event, and Action.
For example, the values of the attribute condition (namely con00, con01, and
con10), are the instances of the classes (e.g., Condition00, Condition01, and
Condition10), which are actually specializations of the class Condition. Such
modeling allows us to use polymorphism, the most powerful abstraction of
object-oriented design and programming.

3.3 Sequence Diagrams

Two types of UML interaction diagrams are used, namely, sequence diagrams
and collaboration diagrams. We have already introduced collaboration dia-
grams in the previous chapter. They can be used in both the analysis and
design phases of communication protocol engineering. Sequence diagrams
are just another type of interaction diagrams and are semantically equiva-
lent to collaboration diagrams. This means that a one-to-one mapping exists
between these two formalisms that are used for specifying interactions.

An interaction is basically a set of objects and their relationships, together
with the messages that are exchanged among the objects. Both sequence and
collaboration diagrams show interactions. The major difference between
them is that the sequence diagrams emphasize time ordering of messages
whereas the collaboration diagrams emphasize the structural organization
of a set of objects. The sequence diagrams are particularly useful for visual-
izing dynamic behavior in the context of the use case scenario. Generally,
they are better suited for modeling sequences of events, simple iterations,
and branching. Alternately, collaboration diagrams are more useful for mod-
eling complex iterations and branching and for visualizing multiple concur-
rent flows of control.

Sequence and collaboration diagrams also differ in appearance. As we
have already seen in the previous chapter, a collaboration diagram looks like
a graph. It consists of objects that are linked together in a certain arrange-
ment. A sequence diagram appears more like a table whose columns are
related to individual objects and whose rows are related to the messages
that are exchanged among the objects. We can imagine the horizontal axis
x, at the top of the diagram, pointing from left to right, and the vertical axis
y that points from top to bottom. The objects that participate in the interac-
tion are arranged across the x-axis, starting on the left with the objects that
are initiating the interaction and proceeding to the right with more subordi-
nate objects. The messages that are exchanged among the objects are ordered
in increasing time along the y-axis. (Actually, we have already informally

66 Communication Protocol Engineering

encountered sequence diagrams in Chapter 2. See the example of the SIP
session setup in Figure 2.13.)

The sequence diagrams have two key features that distinguish them
among other diagrams:

• Object lifeline
• Focus of control

An object lifeline is a dashed vertical line that represents the existence of
an object over a period of time. The object lifeline starts with the reception
of the message stereotyped as <<create>> and ends with the reception of the
message stereotyped as <<destroy>>. The end of the life of an object is indi-
cated by the mark “X.” However, most of the objects will exist throughout the
interaction. Such objects are normally placed at the top of the diagram and
their lifeline typically goes to the end of the diagram.

The focus of control represents the period of time during which the object
executes. It is rendered as a long, thin rectangle. We can model recursion, a
call to self-operation, or call-back by placing a new focus of control symbol
on top of the current focus of control symbol and slightly to the right, so that
both of the symbols are visible. We can explicitly show the part of the focus
of control where the actual computation takes place by shading the corre-
sponding region.

We can model the mutation of objects in their state, role, or attribute values
in sequence diagrams. Two methods to do this exist: The first is by placing
a new copy of the object in the sequence diagram and showing the change
by connecting the existing and the new object copy with the transition
<<become>>. This procedure can be repeated if we want to show a sequence
of changes. The second method is by placing a new copy of the object directly
on the object’s lifeline and showing the change of state, role, or attribute val-
ues then and there.

The set of graphical symbols available for rendering sequence diagrams
is shown in Figure 3.8. Similar to the diagrams that were previously intro-
duced, each of the symbols has its own properties with the exception of the
focus of control, which has no properties on its own (it is a symbol that can
exist only on top of the object’s lifeline). The designer must fill in the proper-
ties after adding the symbol to the diagram.

The object and its lifeline have three categories of properties: the general
information, the table of constraints, and the tagged values. The general
information includes the name, the full path, the classifier, and the multi-
plicity. Other categories of properties are already explained in the previous
sections.

The message has four categories of properties: These are the general infor-
mation, the table of arguments, the table of constraints, and the tagged val-
ues (documentation notes). The general information includes the name, the

67Design

direction (forward or backward), the operation, and the sequence expression.
The table of arguments holds information about the arguments, such as the
name, the type, the language, and the value.

The following four types of messages are used:

• Flat
• Call
• Return
• Asynchronous

The flat message models the communication between the objects that con-
vey information, which should result in an action. The call message models
a synchronous procedure call that should result in some action. The return
message models returns from the procedure, which conveys the return
value that will cause an action. The asynchronous message models the

Object : Class

Message (flat) Message (call)

Message (return) Message (asynchronous)

Note {Constraint}

{Constraint} {OR}

FIGURE 3.8
Set of graphical symbols available for rendering sequence diagrams.

68 Communication Protocol Engineering

asynchronous communication between two objects, which also carries some
information that will trigger an action. The note, the constraint note, the con-
straint, and the OR constraint are symbols that we have already encountered
and explained in Sections 3.1 and 3.2.

Next, we illustrate the use of sequence diagrams by four examples
shown in Figures 3.9 through 3.12, which are semantically equivalent to the

sender dnsc smtpc tcpc tcps dnsssmtps
1: sendMail(msg)

2: domainToIP(domain)

3: dnsReq(domain)

4: dnsRsp(ip)

5: ipadr(ip)
6: open(ip,25)

7: seg(syn)

8: seg(syn+ack)

8.1: openAck
8.2: seg(ack)8.1.1: openAck

8.2.1: openAck

9: mail(220)

10: seg(220)

11: mail(220)
12: mail(HELO)

13: seg(HELO)

14: mail(HELO)

15: mail(250_OK)

16: seg(250_OK)

17: mail(250_OK)
18: mail(MAIL_FROM:)

19: seg(MAIL_FROM:)

20: mail(MAIL_FROM:)

21: mail(250_OK)

22: seg(250_OK)

23: mail(250_OK)
24: mail(RCPT_TO:)

25: seg(RCPT_TO:)

26: mail(RCPT_TO:)

27: mail(250_OK)

28: seg(250_OK)

29: mail(250_OK)

30: mail(DATA)

FIGURE 3.9
Sequence diagram showing the interaction between a simple program for sending and receiv-
ing e-mails and its environment.

69Design

collaboration diagrams shown in Figure 2.9 through 2.12, with one excep-
tion. Figures 3.9 and 2.9 do relate to the same interaction, but they are not
exactly semantically equivalent because of two reasons. First, the former
shows fewer objects than the latter, mainly because of the limited diagram
width. Second, the latter shows only a part of the interaction shown by the
former. Interestingly enough, this seems to be a general rule. The sequence
diagrams typically show fewer objects and more messages than collabora-
tion diagrams.

The example shown in Figure 3.9 generally illustrates the same use case
Send e-mail as the collaboration diagram shown in Figure 2.9. Figure 3.9
shows only the most important subset of objects but, at the same time, it illus-
trates the interaction long enough to show the moment when the SMTP client
sends the SMTP message DATA toward the SMTP server. The collaboration

dnsc dnss

1: dnsReq(domain)

2: dnsRsp(ip)

FIGURE 3.10
Sequence diagram showing the interaction between the DNS client and the DNS server.

tcpc tcps

1: seg(syn)

2: seg(syn+ack)

3: seg(ack)

4: seg(data)

5: seg(fin)

6: seg(ack)

7: seg(fin+ack)

8: seg(ack)

FIGURE 3.11
Sequence diagram showing the interaction between two TCP entities.

70 Communication Protocol Engineering

diagram shown in Figure 2.9 shows the situation only up to the point when
the SMTP client receives the message 220 READY FOR MAIL, which is actu-
ally the very beginning of the SMTP protocol. The names of the objects, mes-
sages (signals), and message arguments used in both figures are explained in
Chapter 2. The exact flow of events shown in Figure 3.9 is as follows:

 1: The object mailc (not shown in the diagram) sends the signal
sendMail(msg) to the object sender.

 2: The object sender sends the signal domainToIP(domain) to the object
dnsc.

 3: The object dnsc sends the signal dnsReq(domain) to the object dnss.
 4: The object dnss sends the signal dnsRsp(ip) to the object dnsc.
 5: The object dnsc sends the signal ipadr(ip) to the object sender.
 6: The object sender sends the signal open(ip,25) to the object tcpc.
 7: The object tcpc sends the signal seg(syn) to the object tcps.

smtpc smtps

1: mail(220)

2: mail(HELO)

3: mail(250_OK)

4: mail(MAIL_FROM:)

5: mail(250_OK)

6: mail(RCPT_TO:)

7: mail(250_OK)

8: mail(DATA)

9: mail(354_START_MAIL_INPUT)

10: mail(MAIL_BODY)

11: mail(250_OK)

12: mail(QUIT)

13: mail(221)

FIGURE 3.12
Sequence diagram showing the interaction between the SMTP client and the SMTP server.

71Design

 8: The object tcps sends the signal seg(syn+ack) to the object tcpc. (The
event flow now forks into two parallel flows.)

 8.1: The object tcpc sends the signal openAck to the object sender. (The
first flow begins here.)

 8.1.1: The object sender sends the signal openAck to the object
smtpc. (The first flow ends here.)

 8.2: The object tcpc sends the signal seg(ack) to the object tcps. (The
second flow begins here.)

 8.2.1: The object tcps sends the signal openAck to the object smtps.
 9: The object smtps sends the signal mail(220) to the object tcps. (Note:

We have restarted the message numbering here for brevity. We pro-
moted 8.2.2 to 9.)

 10: The object tcps sends the signal seg(220) to the object tcpc.
 11: The object tcpc sends the signal mail(220) to the object smtpc.
 12: The object smtpc sends the signal mail(HELO) to the object tcpc.
 13: The object tcpc sends the signal seg(HELO) to the object tcps.
 14: The object tcps sends the signal mail(HELO) to the object smtps.
 15: The object smtps sends the signal mail(250_OK) to the object tcps.
 16: The object tcps sends the signal seg(250_OK) to the object tcpc.
 17: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 18: The object smtpc sends the signal mail(MAIL_FROM:) to the object

tcpc.
 19: The object tcpc sends the signal seg(MAIL_FROM:) to the object tcps.
 20: The object tcps sends the signal mail(MAIL_FROM:) to the object

smtps.
 21: The object smtps sends the signal mail(250_OK) to the object tcps.
 22: The object tcps sends the signal seg(250_OK) to the object tcpc.
 23: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 24: The object smtpc sends the signal mail(RCPT_TO:) to the object tcpc.
 25: The object tcpc sends the signal seg(RCPT_TO:) to the object tcps.
 26: The object tcps sends the signal mail(RCPT_TO:) to the object smtps.
 27: The object smtps sends the signal mail(250_OK) to the object tcps.
 28: The object tcps sends the signal seg(250_OK) to the object tcpc.
 29: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 30: The object smtpc sends the signal mail(DATA) to the object tcpc.

Another practical detail about sequence diagrams is that not only their
width but also their height is limited. Because of this, we are normally forced

72 Communication Protocol Engineering

to break the flow of events at a certain point. In the previous example, it
was after the object smtpc has sent the signal mail(DATA) to the object tcpc.
Typically, we would continue that flow on another sequence diagram. A good
practice is to pick the breaking points logically, for example, at the beginning
or at the end of certain communication phases.

It is also important to emphasize that the sequence diagram in Figure 3.9
shows only main flows of events. It does not show what happens in the case
of errors. The error handling is typically shown in separate sequence diagrams.
We can use packages to wrap together all the related sequence diagrams.

Figure 3.9 shows also that the real overall interaction can be fairly complex.
To deal with the complexity, we can focus on the individual virtual interac-
tions instead. For example, the sequence diagram showing the interaction
between the DNS client and server is a trivial one (Figure 3.10). The overall
flow of events is then reduced to only the following two events:

 1: The object dnsc sends the signal dnsReq(domain) to the object dnss.
 2: The object dnss sends the signal dnsRsp(ip) to the object dnsc.

Similarly, the virtual interaction between two TCP entities, modeled by the
objects tcpc and tcps, is governed by the TCP protocol. It is slightly more com-
plex and comprises the following flow of events (Figure 3.11):

 1: The object tcpc sends the signal seg(syn) to the object tcps.
 2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
 3: The object tcpc sends the signal seg(ack) to the object tcps.
 4: The object tcpc sends the signal seg(data) to the object tcps. (This is the

data transmission phase.)
 5: The object tcpc sends the signal seg(fin) to the object tcps.
 6: The object tcps sends the signal seg(ack) to the object tcpc.
 7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
 8: The object tcpc sends the signal seg(ack) to the object tcps.

Finally, the virtual interaction between the SMTP client and server, modeled
by the objects smtpc and smtps, is of the same order of complexity (Figure 3.12).
The interaction is governed by the SMTP protocol. The corresponding flow
of events is the following:

 1: The object smtps sends the signal mail(220) to the object smtpc.
 2: The object smtpc sends the signal mail(HELO) to the object smtps.
 3: The object smtps sends the signal mail(250_OK) to the object smtpc.
 4: The object smtpc sends the signal mail(MAIL_FROM:) to the object

smtps.

73Design

 5: The object smtps sends the signal mail(250_OK) to the object smtpc.
 6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
 7: The object smtps sends the signal mail(250_OK) to the object smtpc.
 8: The object smtpc sends the signal mail(DATA) to the object smtps.
 9: The object smtps sends the signal mail(354_START_MAIL_INPUT)

to the object smtpc.
 10: The object smtpc sends the signal mail(MAIL_BODY) to the object

smtps.
 11: The object smtps sends the signal mail(250_OK) to the object smtpc.
 12: The object smtpc sends the signal mail(QUIT) to the object smtps.
 13: The object smtps sends the signal mail(221) to the object smtpc.

3.4 Activity Diagrams

Up to now, we have introduced three types of diagrams that are used for
modeling dynamic aspects of systems. These are the use case, the collabora-
tion, and the sequence diagrams. The use case diagrams are used first for
capturing the requirements of the system. Next, they are translated into col-
laboration diagrams that model the architecture of the system. Then, at the
beginning of the design phase, both collaboration and sequence diagrams
are used for building up the storyboards of scenarios.

These scenarios describe the interaction among the most interesting
objects; hence, we refer to them as interaction diagrams. The interaction itself
is shown by the messages that are dispatched among the objects. Generally,
interaction (collaboration and sequence) diagrams are similar to Gantt charts.
The main difference between the collaboration and sequence diagrams is
that the former emphasizes structural relations whereas the latter empha-
sizes the time ordering of messages.

The storyboards of scenarios are a good place to start the design— therefore,
they are a type of design front-end. Although the interaction diagrams make
a perfect start of the design, they are seldom used as the final artifacts of the
design phase because of two problems:

• The interaction diagrams are most frequently incomplete.
• The interaction diagrams specify the external behavior of individual

objects, leaving their internal behavior unknown.

As already mentioned, the interaction diagrams typically cover the main
flow of events and, because of the limited space in the diagrams, even the

74 Communication Protocol Engineering

main flow must be partitioned into logical communication phases. Other,
less frequent flows (including error handling) are modeled in additional
interaction diagrams. All these diagrams can be sorted into packages for
easier manipulation. However, no matter how pedantic the engineer is, the
set of interaction diagrams remains incomplete by an unwritten rule. Some
scenarios are always missing. In the area that is of primary interest for this
book, the packages of interaction diagrams are especially vulnerable to the
specification of timers and complex, unforeseen error scenarios.

Another problem we encounter while trying to make the packages of inter-
action diagrams complete is that they become voluminous and, as a result,
hard to comprehend. This behavior is what we should expect when we try
to enumerate and describe the cases instead of trying to create the rules that
generate these cases. Even a simple program performing some simple arith-
metic calculations can produce enormous numbers of execution cases when
we take into account the cardinal numbers of sets of values that the com-
mon variable types can have. Because of the coverage problems, an implicit
engineering rule is that a design based solely on the interaction diagrams is
considered as incomplete. This may not be true in the case of simple systems,
but generally it is. Therefore, we need the design back-end: the means to end
the design.

The secret of how to finish the design is found by turning our attention
to the internal behavior of the objects and trying to specify it. This attitude
is like turning the interaction diagrams inside out. We want to specify the
activities that should take place to provide the desired external behavior and
what should be the order (flow) of the activities in the scope of a single object
or in the scope of a set of objects that are involved in the interaction. The
means to do this in UML are the activity diagrams, which are similar to
PERT network charts. The alternative means to specify the behavior of single
objects in UML are statecharts, which will be introduced in the next section.

An activity diagram is essentially a flowchart that shows the flow of con-
trol from activity to activity. If we model the behavior of a single object, we
render the flow of control within that single object. The activity diagrams are
even more powerful and they allow us to model the behavior of a group of
objects by rendering the flow of control in that larger scope. Additionally, we
can model a single flow of control or more concurrent flows of control within
both a single object and a group of objects.

In the context of a single object, we typically partition its behavior into a set
of its operations and then model the flow of control of these operations indi-
vidually. Therefore, the most elementary level of modeling by using activity
diagrams is the level of the object’s operation. On the opposite side of the
scope scale, we can model the workflow of a group of cooperating objects.
We will return to that point shortly.

The most elementary activity is an action state. It is defined as an atomic
(i.e., uninterruptible) program computation. Examples of action sates are the
following:

75Design

• Create another object
• Destroy another object
• Call an operation on an object
• Return a value
• Send a signal to an object
• Receive a signal from an object
• Evaluate an expression
• Execute a single statement

The action states can be specified in informal text, pseudocode, or a higher-
level programming language. Although it is generally assumed that the
action state takes a small amount of execution time, that finite amount of
time must be taken into account, especially in the models of hard, real-time
systems.

By combining more action states, we are building more complex activities,
which are referred to as activity states. We can think of the activity state as
a composite state that is made of other activity states and action states. The
activity state can also comprise some special actions, such as entry and exit
actions. The former is taken at the entrance to the activity state, and the latter
is taken at its exit.

The state transitions in activity diagrams normally take place after comple-
tion of the last activity in the originating state. A transition without a guard
(condition) immediately passes control to the destination state. Such a transi-
tion is referred to as a triggerless, or completion, transition. A transition can
branch into two or more guarded transitions, or it can fork into more concur-
rent transitions. More concurrent transitions can join into a single transition,
as we will explain shortly with some simple examples.

An activity diagram is a special type of a graph that comprises a set of
vertices that are interconnected by arcs. The basic set of graphical symbols
available for rendering activity diagrams is shown in Figure 3.13. Each sym-
bol has a set of properties that must be set by the designer once they add a
symbol to the diagram.

The initial state has three categories of properties. These are the general
information, the table of constraints, and the tagged values (documentation
notes). The general information is just the name and the type (initial). Each
activity diagram must start with this symbol.

The final state has the same categories of properties as the initial state sym-
bol, with the exception that its type is final. If the activities specified by the
activity diagram go on forever, the diagram will not contain this symbol.
Alternately, it can contain one or more such symbols.

The action state has five categories of properties, namely, the general infor-
mation, the call action, the list of deferred events, the table of constraints, and
the tagged values (documentation notes). The general information comprises

76 Communication Protocol Engineering

the name, the stereotype, and the partition. The call action specifies the
name of the operation and the table of its arguments, which holds informa-
tion about the argument name, type, language, and value.

The activity state has six categories of properties. These include the gen-
eral information, the table of entry actions, the table of exit actions, the table
of internal transitions, the table of constraints, and the tagged values. The
general information is just the name and the stereotype. Both the table of
entry and the table of exit actions store the corresponding action names and
their types. The table of internal transitions comprises their properties. Each
internal transition is characterized by its name, its stereotype, and the event
that triggers the transition.

The control flow transition has four categories of properties, including the
general information, the table of actions, the table of constraints, and the
tagged values (documentation notes). The general information comprises
the name and, optionally, the corresponding event and the guard expres-
sion. The table of actions holds action names and their types. The decisions,
as well as the fork and join transitions, have three categories of properties,
namely, the general information (just the name), the table of constraints, and
the tagged values.

We illustrate the usage of these basic symbols by the following four sim-
ple examples shown in Figures 3.14 through 3.17. The example in Figure 3.14
shows a simple sequence of interruptible activities (i.e., activity states),
namely, openPort(p), sendData(seg), and closePort(p). Normally, these activity
states would be modeled by the activity diagrams themselves on the sub-
ordinated level of the hierarchy. The control flow transitions between the
individual activity states in this example are triggerless, or completion

ActionState

State

FIGURE 3.13
The basic set of graphical symbols available for rendering activity diagrams.

77Design

transitions, which means that they are not triggered by other events. They
also may not be guarded because their sources are not decisions.

The exact semantics of the states in this example are not really important;
for example, we can interpret it as open the given port, send the given seg-
ment of data, and close the port at the end. Generally, we should think of
the activity state as an operation (i.e., procedure or function) which consists
of executable statements or calls to other operations, including calls to itself
(recursion). Thinking about forward engineering helps make useful activity
diagrams. Try to imagine how the model would map to the code. It really
does not make any difference how the mapping is made, either automatically
with a tool or by hand.

The example in Figure 3.15 is an illustration of activity flow with branch-
ing. Actually, it is a simplified implementation of the reliable transport mech-
anism known as Automatic Repeat Question (ARQ). The whole operation
begins by starting the retransmission timer T1. This beginning is modeled
by the activity state startTimer(T1). The operation then sends the datagram
and waits for the answer. These two activities are modeled by the activity
state sendPacket(d) and a=waitAnswer(), respectively.

If the retransmission timer expires, the packet is retransmitted. This mech-
anism is modeled by the transition guarded by the expression [T1 expired],
the activity state restartTimer(T1), and the completion transition back to the
activity state sendPacket(d). The reception of the answer is modeled by the

openPort(p)

sendData(seg)

closePort(p)

FIGURE 3.14
An example of a simple sequence of activity states.

78 Communication Protocol Engineering

startTimer(T1);

sendPacket(d);

a=waitAnswer();

[T1 expired]
restartTimer(T1);

stopTimer(T1);

[else]

return true;

return false;
[ELSE]

[a==ACK]

FIGURE 3.15
Example of a simple flow of activities with branching.

79Design

transition that covers all the other cases (guard expression [ELSE]). The oper-
ation proceeds by stopping the retransmission timer, and this action is mod-
eled by the activity state stopTimer(T1). If the answer is the acknowledgment
(ACK), the operation returns the value true; otherwise, it returns the value
false.

The previous example uses two branches. Each branch has one incom-
ing and two or more outgoing transitions. The outgoing transitions are
guarded by the Boolean expressions that are evaluated at the entrance to
the branch. The set of guards has two important features:

• The guards must not overlap—this makes the flow of control
unambiguous.

• The guards must cover all possibilities—this ensures that the flow
of control is not going to freeze.

Precisely these two features force us to make complete models and speci-
fications of activities that describe the behavior of the system. When we
render interaction (collaboration and sequence) diagrams, no such enforce-
ments are present. As a result, they remain unfinished. Of course, at the
time when we render interaction diagrams, we really do not want to make
them final; rather, we want to check the most important aspects and sce-
narios, and to make our analysis more comprehensive and useful for the
finalization later. Therefore, when we start rendering the activity diagram,
we already have a good overall vision, but non-overlapping and complete
coverage features are the driving forces of the design finalization.

One safe way to provide both of these features is to use only the decisions
with two outgoing transitions and to guard one of them by the keyword
ELSE, as in the example in Figure 3.15. Special attention should be paid to
the decisions with more outgoing transitions, which are guarded by explicit
expressions (i.e., without the keyword ELSE). However, the price that we
may pay for safety is ambiguity. For example, if the operation in the previ-
ous example returns the value false, it might do so because the correct not
acknowledge answer (NAK) has been received. However, the operation will
return the same value if any other message (including corrupted ACK or
NAK) has been received.

The example in Figure 3.16 illustrates the usage of loops in activity dia-
grams. Imagine that the IP protocol must route a datagram over a physical
network, which has the Maximal Transfer Unit (MTU) smaller than the data-
gram size. Normally, the IP protocol partitions the datagram into fragments
(that fit MTU) and routes the resulting fragments individually in such cases.
The standard means to model repetitive activities in activity diagrams are
loops.

The example in Figure 3.16 starts by setting the control variable i to the
value 0. It continues with no operation activity state, followed by the decision

80 Communication Protocol Engineering

that checks the loop continuation condition (i < n). If the condition is satis-
fied, the flow enters the loop body (sendFragment(i)). The loop body is fol-
lowed by the activity state that updates the control variable (i = i + 1). The
example terminates when the loop continuation condition becomes false.

The example in Figure 3.17 shows the usage of concurrent control flows.
Imagine that we want to model a simple communication over the TCP con-
nection. First, we must establish the TCP connection by opening a particular
TCP port. We model this by the activity state openPort(p). Once the connec-
tion is established, the TCP protocol provides simultaneous transfer of data
in both directions (full-duplex). To model that, we need to fork a single flow
of control into two parallel (concurrent) flows of control. One of them enters
the activity state sendData(), which models the activity of sending the data to
the remote site. The other control flow enters the activity state receiveData(),
which models the activity of receiving the data from the remote site.

These two activities logically evolve in parallel over time. On a multipro-
cessor system, they can be deployed on two different processors to maximize
the system throughput. In such a case, these two activities would also be par-
allel in reality. Alternately, single-processor systems create quasi-parallelism
using the time-sharing operating system. The activities are then not paral-
lel in reality, but they are still concurrent because they can compete for the
same resources. Additionally, the activities can communicate using signals.

i = 0;

sendFragment(i);
[i < n]

i = i + 1;

[ELSE]

no operation

FIGURE 3.16
Example of a loop in an activity diagram.

81Design

Traditionally, such communicating sequential processes are referred to as
coroutines.

Although the model shown in Figure 3.17 is fairly simple, it may reflect a
realistic communication, such as a Telnet session. Imagine that the activity
state sendData() is a composite state that reads the user keystrokes and sends
them to the Telnet server over the TCP connection, in a loop, until the end-
of-file key combination is detected. The activity state receiveData() in this sce-
nario would be also a composite activity state, which receives the responses
from the Telnet server and displays them on the monitor in a loop, until the
end-of-communication signal is detected (typically, it would be sent when
the end-of-file key combination is detected).

Once one of the parallel activities finishes, it proceeds to the control flow
joint synchronization point where it waits for the other parallel activity to
finish. When both of the activities are finished, the corresponding parallel
control flow joins into a single control flow, which enters the activity state
closePort(p); after finishing that activity, it terminates.

openPort(p);

sendData(); receiveData();

closePort(p);

FIGURE 3.17
Example of a simple set of concurrent flows.

82 Communication Protocol Engineering

As we have seen from the previous example, fork and join synchronization
points are rendered as either thick horizontal or vertical lines. It is impor-
tant to remember that they must be balanced. Similar to the subexpression—
which must begin with the opening parenthesis and end with the closing
one—each nesting level of the concurrent control flows must begin with the
fork symbol and end with the corresponding join symbol. Apart from that,
no restrictions are placed on the number of nesting levels, at least not in the-
ory. Of course, in practice we should not go beyond a manageable number.

The set of additional symbols that are available for rendering activity dia-
grams is shown in Figure 3.18. These are the object in state, the object in flow,
and the swim lane symbols, as well as the symbols common for all diagrams,
namely, the note, the constraint note, the two-element constraint, and the OR
constraint.

The object flow transition enables us to show how the object state changes
in the activity diagrams. Typically, we render the objects showing the cur-
rent and the new states and we connect them by the object flow transition.
The objects themselves may be results of activity states and can be used by
other activity states. The object flow symbol has the same four categories of
properties as the control flow symbol (described previously in this section).

The swim lane has no strict semantics. It is normally used to show indi-
vidual parties in the workflows. The swim lane is typically implemented as
a class or a set of classes. It is better suited for modeling business processes,
but it can also be used for modeling communication protocols. The swim
lane has three categories of properties: general information (essentially, its
name), the table of constraints, and the tagged values.

Swimlane
Object : Class

Note {Constraint}

{Constraint} {OR}

FIGURE 3.18
Additional graphical symbols available for rendering activity diagrams.

83Design

The example in Figure 3.19 illustrates the usage of objects, data flow transi-
tions, and swim lanes, with the example of activities initiated by the Domain
Name System (DNS) client request for mapping a given domain name onto
the corresponding IP address. Figure 3.19 is a type of a workflow conducted
by the DNS client and server in their cooperative work of translating a
domain name into the IP address. The DNS client is represented by the first
swim lane and the DNS server is represented by the second. This activity

DNS serverDNS client

m1=createDNSmsg();

m1.setDomain(D);

send(m1); m2=receive();

m2.setIP(ip);

ip=map(domain);

send(m2);m3=receive();

return m3;

domain=?
ip=?

m1 : DNSmsg

domain=D
ip=?

m1 : DNSmsg

domain=D
ip=?

m2 : DNSmsg

domain=D
ip=?

m2 : DNSmsg

domain=D
ip=IP

m2 : DNSmsg
domain=D
ip=IP

m3 : DNSmsg

ip=IP
domain=D

m3 : DNSmsg

domain=D
ip=IP

m3 : DNSmsg

Input param: D
D is the given
domain name.

FIGURE 3.19
Workflow between the DNS client and server with the message flow.

84 Communication Protocol Engineering

diagram shows both the control flow among individual activity states and
data flow, which are created by a series of objects that are consumed and
produced by the activity states of both DNS client and server.

The given domain name is the input parameter of the DNS client opera-
tion that translates the domain name into the corresponding IP address.
This operation starts by the activity state createDNSmsg(), which creates an
empty DNS message. This action is modeled by placing the object m1 that
represents the DNS message in the activity diagram and by connecting it to
the activity state createDNSmsg(), with the arrow pointing toward the object
m1. This means that the object m1 is produced by the activity state creat-
eDNSmsg(). The fact that the message is empty is indicated by the unknown
values of both attributes domain and ip (the unknown value is denoted by the
question mark character, “?”).

Next, the activity state sets the attribute domain to the value of the input
parameter D, thus creating a new state of the object m1. This action is mod-
eled by placing a new copy of the object m1 in the activity diagram and by
adding two object flow arcs. The first connects the previous object copy and
the activity state m1.setDomain(D). The arrow points toward the activity state,
which means that the state consumes the object. The second object flow arc
connects the activity state and the new copy of the object m1, thus implying
that the activity state produces it.

The control flow then forks into two independent flows. One is conducted
by the DNS client and the other is conducted by the DNS server. The DNS
client continues by sending the DNS message as a DNS request to the DNS
server. The corresponding activity state creates a new object, named m2, and
places it in the second swim lane, because we assume that the DNS server
runs on a different machine, or at least in a different address space. The DNS
server, in turn, receives the DNS message. A common mechanism for copy-
ing the message from an internal operating system buffer to the buffer that
is located within the address space of the DNS server is modeled by placing
two different copies of the object m2.

The DNS server continues by translating the given domain name into
the corresponding IP address and by setting the attribute ip to the value IP,
which denotes the result of that translation. This fact is shown in the third
copy of the object m2. The DNS server proceeds by sending the completed
DNS message, which models the DNS response message, to the DNS client,
which, in turn, receives it and creates the copy of the object m3 in its address
space. Finally, two independent control flows join together and the DNS cli-
ent returns the completed DNS message to its user, thus creating the final
copy of the object m3.

As this example shows, the models of the workflows are useful because
they show and specify the external behavior, i.e., the interface and protocol
between the objects in the form of the corresponding sequence of messages
exchanged by the objects, as well as the internal behavior of objects in the
form of the series of activity states visited by them. The first is created by

85Design

modeling the data and object flow, and the second is created by modeling
the control flow across the objects. Again, by taking care of the complete
coverage of possibilities, without any overlaps, we ensure that the model is
complete. (This was not the main goal of the last example, at least not to the
extent of the previous one, but we should keep that in mind.)

Figure 3.20 shows the activity diagram for one real protocol, TCP, and fol-
lows the conventions introduced by the corresponding IETF RFC 793. The
user requests are written in capital letters. The user requests are OPEN,
SEND, and CLOSE. Two types of OPEN requests are used, namely active
OPEN and passive OPEN. The difference between the two depends on which
one is taking the initiative in the connection establishment procedure.

The next convention is that the names of the events and actions are written
in lowercase letters, with the following abbreviations:

• TCB (Transmission Control Block)
• snd (send)
• rcv (receive)
• SYN (indicates that the synchronization bit of the TCP segment is

set)
• ACK (indicates that the acknowledgment bit of the TCP segment is

set)
• SYN, ACK (both SYN and ACK bits are set)
• FIN (indicates that the final bit of the TCP segment is set)
• ACK of SYN (denotes the acknowledgment of the SYN segment)
• ACK of FIN (denotes the acknowledgment of the FIN segment)
• MSL (Maximum Segment Lifetime)

The TCP events are actually modeled as guard expressions whereas the
TCP activities are modeled as UML action states (a relatively short and unin-
terruptible series of executable statements). Notice that we could model the
TCP activities either by action or by activity states because these activities
are essentially interruptible. However, because they can be implemented
as rather short routines—which do not involve reception of any signals—
modeling them as action states makes more sense than as activity states.

The TCP protocol spends most of the time in one of its stable states wait-
ing for a certain event to occur. The TCP stable states are modeled by the
UML activity states. While being in one of its stable states, the TCP protocol
just waits for an event (it does not execute any statements). The process that
executes the TCP protocol is blocked and it does not compete for the pro-
cessor’s execution time. Therefore, the activity corresponding to the stable
state is more than interruptible—it is blocked. Because such an abstraction
is missing in the UML activity diagrams, we are forced to model it with an

86 Communication Protocol Engineering

[active OPEN]

[passive OPEN]

create TCB

CLOSED

LISTEN

create TCB

snd SYN

SYN SENT

[CLOSE]

delete TCB

SYN RCVD
[rcv SYN]

snd ACK

snd SYN
[SEND][rcv SYN]

snd SYN, ACK

snd ACK

[rcv SYN, ACK]

ESTAB
[rcv ACK of SYN]

snd FIN

[CLOSE]

FIN WAIT 1

[CLOSE]
snd ACK

[rcv FIN]
CLOSE WAIT

snd FIN

[CLOSE]

LAST ACK

CLOSED

[rcv ACK of FIN]FIN WAIT 2

snd ACK
[rcv FIN]

CLOSING

[rcv ACK of FIN]

snd ACK

[rcv FIN]

TIME WAIT delete TCB
[Timeout=2MSL]

[rcv ACK of FIN]

FIGURE 3.20
TCP activity diagram.

87Design

abstraction that is the closest to it, and that is the activity state. The model
of the TCP protocol shown in Figure 3.20 comprises the following activity
states (the names of the states are taken from the RFC 793):

• CLOSED (no connection exists)
• LISTEN (wait for a connection request from any remote TCP and

port)
• SYN SENT (wait for a matching connection request after having sent

a connection request)
• SYN RCVD (wait for a confirming connection request acknowledg-

ment after having both received and sent a connection request)
• ESTAB (the connection is established, i.e., open)
• FIN WAIT 1 (wait for a connection termination request from the

remote TCP, or an acknowledgment of the connection termination
request that was previously sent)

• CLOSING (wait for a connection termination request acknowledg-
ment from the remote TCP)

• FIN WAIT 2 (wait for a connection termination request from the
remote TCP)

• TIME WAIT (wait for enough time to pass to be sure that the remote
TCP has received the acknowledgment of its connection termination
request)

• CLOSE WAIT (wait for a connection termination request from the
local user)

• LAST ACK (wait for an acknowledgment of the connection termina-
tion request previously sent to the remote TCP, which includes an
acknowledgment of its connection termination request)

The activity diagram shown in Figure 3.20 is fully compliant with the orig-
inal TCP standard. Interested readers can refer to IETF RFC 793 for more
details.

The last example in this section shows a model of a simplified send e-mail
operation. The corresponding activity diagram (Figure 3.21) is a straight-
forward implementation of a typical SMTP scenario (client side), which
has already been introduced in this chapter (Figure 3.12) and in Chapter 2
(Figure 2.12). Although simplified, in the sense that it just follows the suc-
cessful path of the SMTP scenario, it is a complete specification of a desired
behavior because it covers all possibilities in a non-overlapping manner.

Again, like the previous example, the events associated with the reception
of the corresponding messages are modeled as guard expressions, while the
actions taken by the SMTP client are modeled by the corresponding action
states. Additional similarity with the previous example is that the SMTP

88 Communication Protocol Engineering

WAIT 220

snd HELO

[rcv 220]

WAIT 250

snd MAIL FROM:

[rcv 250]

WAIT 250

snd RCPT TO:

[rcv 250]

WAIT 250

snd DATA

[rcv 250]

WAIT 354

return false
[ELSE]

snd BODY

[rcv 354]

WAIT 250

snd QUIT

[rcv 250]

WAIT 221

return true

[rcv 221]

return false
[ELSE]

return fa lse
[ELSE]

return false
[ELSE]

return false
[ELSE]

return false
[ELSE]

return false
[ELSE]

FIGURE 3.21
Simple send e-mail operation activity diagram (SMTP client side).

89Design

client, like the TCP protocol, spends most of its time in its stable states, wait-
ing for a message from the SMTP server. If the received message is the one
expected, the SMTP client sends the next message, prescribed by the ideal
SMTP scenario, and proceeds to the next stable state. If the received message
is not the one expected, the SMTP client returns the value false and the opera-
tion terminates.

The e-mail is successfully sent if all of the prescribed messages between
the SMTP client and server are successfully exchanged. In this case, the send
e-mail operation returns the value true and terminates.

3.5 Statechart Diagrams

In contrast to activity diagrams—which can be used for modeling activities
both inside the individual objects and across the workflow of objects—the
statechart diagrams are normally used for modeling the lifetime of a single
object, typically, an instance of a class or a use case. The activity diagrams
emphasize the flow of the action and the activity states, whereas the stat-
echarts emphasize the event-ordered behavior of an object, which is espe-
cially suitable for modeling reactive systems.

The common feature of both activity diagrams and statechart diagrams
is that they aim at making complete models of behavior, i.e., for use in the
design back-end. The driving forces for providing complete behavior speci-
fications are the same, namely, the complete coverage of possibilities without
overlaps. The styles differ a bit. By an unwritten rule, the decision symbols
are extensively used in activity diagrams and seldom used in statechart dia-
grams. Therefore, the coverage of possibilities is shown explicitly in activity
diagrams and more implicitly in statechart diagrams.

That the activity and statechart diagrams are semantically equivalent is
also important to emphasize, i.e., we can use both of them for modeling the
same behavior on a comparable level of details. They merely provide two dif-
ferent views of the same behavior. The activity diagrams are better suited for
modeling individual operations, whereas the statechart diagrams are better
for modeling the behavior of entire stateful objects, especially if the behavior
is driven by events (messages).

Statecharts were originally invented for modeling state machines, which
makes them a perfect tool for modeling communication protocols because the
protocols are essentially state machines. According to the UML terminology,
a state machine is a sequence of states an object goes through in its lifetime.
A state is a situation during which an object satisfies a certain condition, per-
forms an activity, or waits for an event. An event is an occurrence of a stimulus
that triggers the state transition. An action is an atomic executable statement
(computation). An activity is a non-atomic execution composed of actions and

90 Communication Protocol Engineering

other activities. A transition is a relation between the source and the target
states (these can be different states or the same state) that specifies the actions to
be taken when the given event occurs and the given guard condition is satisfied.

The key abstractions in the context of state machines are the object state
and the state transition. We can think of the object state as a period of an
object’s lifetime (it can be just a moment characterized by a certain condi-
tion, a period of a certain activity, or an interval of time in which the object
waits for a certain event). Alternately, we can think of the state transition as a
rather short interval of object’s lifetime, which is related to actions caused by
a certain event, and is defined by the following five attributes:

• The source state
• The event trigger
• The guard condition
• The actions
• The target state

A statechart diagram is a special type of graph that comprises a set of
vertices that are interconnected by arcs. The basic set of graphical symbols
available for rendering statechart diagrams is shown in Figure 3.22. Each
symbol has a set of properties that must be set by the designer once they add
the symbol to a diagram.

The initial state has three categories of properties. These are the general
information, the table of constraints, and the tagged values (documentation
notes). The general information is just the name and the type (initial). Each
statechart diagram must start with this symbol.

The final state has the same categories of properties as the initial state
symbol, with the exception that its type is final. If the lifetime specified by
the statechart diagram is infinite, the diagram will not contain this symbol.
Alternately, it can contain one or more such symbols.

The state has six categories of properties. These include the general infor-
mation, the table of entry actions, the table of exit actions, the table of inter-
nal transitions, the table of constraints, and the tagged values. The general

State

FIGURE 3.22
Basic set of symbols available for rendering statecharts.

91Design

information is just the name and the stereotype. Both the table of entry and
the table of exit actions store the corresponding action names and their
types. The table of internal transitions comprises their properties. Each inter-
nal transition is characterized by its name, its stereotype, and the event that
triggers the transition.

The following eight common types of actions are used:

• Create an object
• Destroy an object
• Call an operation on another object
• Call an operation on this object (local invocation)
• Send a signal (message) to another (or this) object
• Return a value
• Terminate execution
• Uninterrupted action (other unclassified types of actions)

Four common types of events are also used:

• Signal event: This object has caught (received) the signal (message)
that was thrown (sent) by another (or this) object. In UML, we model
the signal by the class stereotyped as <<signal>>. We can also use a
dependency relation, stereotyped as <<send>>, between the opera-
tion of the class that sends the signal and the class that defines the
signal to explicitly show the source of the signal. A signal is an asyn-
chronous event.

• Call event: The object’s operation is called by another (or this)
object. A call event is a synchronous event. The event name and the
parameters are the names and the parameters of the corresponding
operations, respectively.

• Change event: The given condition is satisfied. Generally, the condi-
tion is related to the state of this object (value of its attributes) or to
absolute time. We use the keyword when to specify the condition,
e.g., when((time == 17:00), or when(key == pressed). A change event is
an asynchronous event.

• Time event: The given interval of time has expired. We use the key-
word after to specify the expression that evaluates to a period of
time, e.g., after(10s), or more symbolically after(T1), which means that
the timer T1 has expired. By default, the starting time of such an
expression is the time since entering the current state. If we want the
starting time to be other than that, we must specify it explicitly. We
should note that time events enable implicit timer management, as
will be illustrated shortly.

92 Communication Protocol Engineering

The transition has four categories of properties. These are the general
information, the table of actions, the table of constraints, and the tagged
values (documentation notes). The general information comprises the name
and optionally the corresponding event and the guard expression. The table
of actions holds action names and their types. The decision has three cat-
egories of properties, namely, the general information (just the name), the
table of constraints, and the tagged values (same as the decision in activity
diagrams).

Simple examples that illustrate the usage of the basic set of graphical sym-
bols for rendering statechart diagrams seem to be appropriate at this point. The
following two examples, shown in Figures 3.23 and 3.24, are semantically
equivalent to the simple examples of activity diagrams shown in Figures
3.14 and 3.15, respectively. The activity diagram shown in Figure 3.14 illus-
trates a sequence of three activity states, namely, openPort(p), sendData(seg),
and closePort(p). Figure 3.23 shows three versions of statechart diagrams that
model the same behavior. These are the versions A, B, and C.

Version A models the behavior by a sequence of three transient states,
namely, Opening, Sending, and Closing. By selecting appropriate names, we
can indicate what type of activity is taking place in each of the states. The
original activities openPort(p), sendData(seg), and closePort(p) are modeled
as internal transitions of the states Opening, Sending, and Closing, respec-
tively. We could also use entry or exit actions instead of internal transitions.
Alternately, we could model this simple behavior by only one transient
state with three internal transitions. Generally, by compressing models we
decrease their clarity, and we should seek the compromise appropriate for
the project at hand. Of course, defining clarity is tricky because it is essen-
tially a matter of taste.

Version B is the model of the same behavior that employs another way of
modeling activities in the statechart diagrams, and that is by actions taken by
state transitions. This version of the model comprises three transient states,
namely, Initial, Ready, and Finished, which are connected by triggerless transi-
tions. Such transitions take place immediately after their source state is left
(finished). The original activities openPort(p), sendData(seg), and closePort(p)
are modeled here by the actions of the corresponding state transitions.

Finally, version C is the most compressed form of the model with the
equivalent semantics. It comprises only one state transition, from the ini-
tial to the final state, which conducts a series of actions, namely, openPort(p),
sendData(seg), and closePort(p). This extreme shows the power of statechart
diagrams. Generally, statecharts are more expressive than activity diagrams
when it comes to modeling state machines, therefore we can model the same
behavior in less space.

The activity diagram shown in Figure 3.15 is a model of a reliable packet
delivery operation, which starts the timer T1, sends a packet, and waits for
the answer from the remote site. If the timer T1 expires before the answer is
received, the packet is sent again. If the answer is ACK, the operation returns

93Design

In
iti

al

Re
ad

y

Fi
ni

sh
ed

/ o
pe

nP
or

t(p
)

/ s
en

dD
at

a(
se

g)

/ c
lo

se
Po

rt
(p

)

O
pe

ni
ng

Se
nd

in
g

C
lo

sin
g

/ o
pe

nP
or

t(p
),

se
nd

Pa
ck

et
(p

),
cl

os
eP

or
t(p

)

V
er

sio
n

A
.

V
er

sio
n

B.
V

er
sio

n
C

.

FI
G

U
R

E
3.

23
E

xa
m

pl
e

of
 a

 s
im

pl
e

st
at

e
m

ac
h

in
e

w
it

h
a

si
ng

le
 p

at
h

of
 e

vo
lu

ti
on

.

94 Communication Protocol Engineering

the value true. Otherwise, it returns the value false. Figure 3.24 shows two ver-
sions of statechart diagrams that are models of the same behavior, namely,
versions A and B.

Version A models the given behavior by explicit, rather than implicit, timer
management. The triggerless transition from the initial state to the Waiting
starts the retransmission timer T1 and sends the packet by conducting
the actions startTimer(T1) and sendPacket(d). The expiration of the timer T1
is modeled here by the signal event T1 expired. The corresponding transi-
tion restarts the timer T1 and sends the packet again. The reception of the
answer from the remote site is modeled by the signal answer received. The
corresponding transition stops the timer T1 and leads to the decision with

Waiting
/ startTimer(T1), sendPacket(d)

T1 expired/restartTimer(T1), sendPacket(d)

answer received/stopTimer(T1)

[answer==ACK]/return true

[ELSE]/return false

Waiting
/ sendPacket(d)

after: T1/sendPacket(d)

answer received

[answer==ACK]/return true

[ELSE]/return false

Version A

Version B.

FIGURE 3.24
An example of a simple state machine with alternative paths and loops of evolution.

95Design

two outgoing transitions. The first is taken if the answer is ACK; otherwise,
the second is taken. Those who prefer not to use decision symbols in their
statechart diagrams should delete it along with the previous transition, and
add the event answer received to both transitions that lead to the final state.

Version B, in contrast to version A, models the given behavior by implicit
timer management. Here the triggerless state transition from the initial
state to the Waiting state just sends the packet by conducting the action
sendPacket(d). The existence of the state transition triggered by the time event
after: T1 implicitly implies that the timer T1 has started at the entrance of the
Waiting state. If the timer T1 expires, the packet is sent again by the action
sendPacket(d) and the timer T1 is restarted at the new entrance to the Waiting
state. The event answer received occurs when this object receives the answer
from the remote side. This event triggers the transition that leads to the deci-
sion and, later, to the final state. The timer T1 is implicitly stopped at the
exit from the Waiting state. The result is a more compressed form of a model
with more implicit details, which may not be seen at first glance. We can use
either one of these two styles, but we should be consistent and stick to one
on a certain project.

Now that we have covered the basics of statechart diagrams, we proceed
to their more advanced abstractions. First, besides entry and exit actions and
internal transitions, a state can perform an ongoing activity that we can spec-
ify by using the keyword do. Most of the states are stable states, which means
that the object is blocked while waiting for an event. Some of the states are
transient, which means that they perform certain computations and then fin-
ish. Sometimes we need to also model active states, which perform some
activities while simultaneously waiting for an event to occur; we do these by
using the keyword do. Generally, the special do transition can name another
state machine or a sequence of actions.

Deferred events are the next important abstraction in the context of states.
Until now, we were not interested in the events that occur during the state
that does not react to them. What happens to these events? They are simply
lost. If we want to save them so that they can be processed later in some
other states, we must specify that they are to be deferred by using the special
action named defer. Each event that is associated with this special action will
be saved for further processing by the states that explicitly name that event
in one of their transitions.

We have already shown how to manage complexity by using hierarchical
organization. Statechart diagrams allow us to use that powerful concept in
the context of states. Until now, we have dealt with simple states. Actually, a
state in UML can also be a composite state, which means that it can comprise
simple states and other composite states. This nesting of states can go to an
unlimited depth, at least in theory.

A composite state can contain either sequential or concurrent substates.
The sequential substates are disjoint, i.e., an object can be in only one of
them at a certain point in time. The concurrent substates are orthogonal,

96 Communication Protocol Engineering

which means that an object at a certain point in time is in all of the concur-
rent substates that are active at that point. We can think of a concurrent state
as one aspect (orthogonal axis) of the object’s lifetime.

The state transitions until now were transitions between simple states.
After the introduction of composite states, the situation becomes more com-
plex in this respect. Besides the transitions between simple states, there exist
the transitions between simple states and composite states, as well as the
transitions from substates to external states. The transitions from external
states to substates of a composite state are not allowed. This asymmetrical
relation raises the following question: What happens to the flow of states
inside a composite state if a transition from that composite state to another
state is triggered?

The answer is that the information about the point of interruption inside
the composite state is lost by default. This means that the processing will be
restarted from the very beginning when that composite state is reentered
once again later. This means that the composite state operates without con-
text saving, which is referred to as a history in the UML.

If we want the composite state to operate with the history—which means it
is able to restart from the point of interruption at its reentrance—we can use
the special history state. The history state is a special type of an initial state
that is the target for the transitions from the external states. Once activated,
it restarts the operation at the point of interruption. The following two types
of history states are used:

• The shallow history state (marked with the symbol H)
• The deep history state (marked with the symbol H*)

The shallow history state ensures context-saving only on the first level
of nesting of composite states. Alternately, the deep history state provides
context-saving on the innermost state at any depth. If there are more nesting
levels, the shallow history remembers the outermost nested state and the
deep history remembers the innermost nested state.

Like activity diagrams, statechart diagrams also support modeling con-
currency. We model concurrent activities in statechart diagrams by using
concurrent sequences of substates inside a certain composite state. Typically,
each such sequence begins with the initial state and ends with the final state.
The transition from the external state to this composite state forks to concur-
rent substates, which at the end joins in the transition from this composite
state to the external state. The usage of concurrent substates is advisable
only if the behavior of one of these concurrent flows is affected by the state
of another. Alternately, if the behavior of the concurrent flows is driven
by the signals (messages) they exchange, partitioning the object into more
active objects is preferable.

97Design

The set of additional symbols that are available for rendering statechart
diagrams is shown in Figure 3.25. These are the composite state, the shal-
low history state, the deep history state, the fork or join synchronization
point, the note, the constraint note, the constraint, and the OR constraint.
These symbols, like others, have their properties. The composite state has the
same categories of properties as a simple state, plus two additional indicators
(Concurrent and Region) which determine whether the composite state is con-
current or not and if it is a region or not. Both shallow and deep history states
have the same three categories of properties. These are the name, the table
of constraints, and the tagged values. The rest of the symbols have already
been introduced.

Figure 3.26 shows the simple example of a statechart diagram that uses the
shallow history state. Imagine a simple state machine that starts from the
state Idle. The event sendCharacter(ch) triggers its transition to the composite
state Sending Segment, which starts with the shallow history state to ensure
context saving. Because this state comprises only simple states, the applica-
tion of the deep history state, instead of the shallow history state, would have
the same effect because only one level of nesting of composite states is found.

The state machine remains in the substate Buffering while it is filling the
corresponding buffer with new incoming characters. This status means that
the state machine will wait for the additional event sendCharacter(ch) until the
buffer becomes full, when the state machine will proceed to the state Sending.
After it sends all the characters from the buffer, the state machine leaves the
compound state Sending Segment and triggerlessly transits to the state Idle.

If the event break occurs while the state machine is in the compound state
Sending Segment, its context will be saved and the state machine will leave it
and move to the state Break. It will remain in this state until the event continue

Composite state H H*

Note {Constraint}

{Constraint} {OR}

FIGURE 3.25
Additional graphical symbols available for rendering statecharts.

98 Communication Protocol Engineering

H

Bu
ffe

rin
g

Se
nd

in
g

w
he

n:
 b

uff
er

 fu
ll

Se
nd

in
g

se
gm

en
t

Id
le

Br
ea

k

se
nd

C
ha

ra
ct

er
(c

h)
se

nd
C

ha
ra

ct
er

(c
h)

br
ea

k
co

nt
in

ue

�
e

co
m

po
sit

e
st

at
e

Se
nd

in
g

se
gm

en
t

Id
le

FI
G

U
R

E
3.

26
E

xa
m

pl
e

of
 a

 c
om

p
os

it
e

st
at

e
th

at
 u

se
s

th
e

sh
al

lo
w

 h
is

to
ry

 s
ta

te
.

99Design

occurs. Then the state machine will reenter the compound state Sending
Segment, the context will be restored, and the state machine will resume the
processing from the point of interruption.

The example in Figure 3.27 shows simplified DNS client and server state-
chart diagrams. Both of them have just a single state. Being simple enough,
these diagrams make very clear how statechart diagrams are used to make
complete designs of communication protocols. Typically, a job performed by
the communication protocol is to receive a message, process it, and send one
or more messages as the result of this processing. Both DNS client and server
go along this simple scheme.

The DNS client starts from the initial state by receiving a call to map the
given domain name into the corresponding IP address. This action is mod-
eled by the call event map(d) in Figure 3.27. This event triggers the transi-
tion of the DNS client from the initial state to the state Wait DNS Response.
During the course of this transition, the DNS client sends the signal (mes-
sage) DNSrequest(d), which causes the signal event receive DNSrequest(d) at the
DNS server side.

The DNS client is simply blocked in the state Wait DNS Response while wait-
ing for the signal DNSresponse(d,ip). The signal event receive DNSresponse(d,ip)
triggers the DNS client transition to its final state. During this transition, the
DNS client extracts the IP address from the received signal and returns it as
its return value. This is modeled by the return action return(ip).

The DNS server starts with the triggerless transition from its initial state to
the state Wait DNS Request, where it is blocked while waiting for the signal
DNSrequest(d). The signal event receive DNSrequest(d) causes the DNS server

Wait DNS response

map(d)/send DNSrequest(d)

receive DNSresponse(d,ip)/return(ip)

Wait DNS request

DNS client DNS server

receive DNSrequest(d)/send DNSresponse(d,ip)

FIGURE 3.27
DNS client and server statechart diagrams.

100 Communication Protocol Engineering

to map the given domain name to the corresponding IP address, to create the
signal (message) DNSresponse(d,ip), and to send it to the DNS client. The DNS
server performs all these actions during the transition to the same state, i.e.,
Wait DNS Request. This ensures that after servicing the current request, the
DNS server remains available for servicing the next DNS request.

The example in Figure 3.28 shows the statechart diagram for one real pro-
tocol, namely TCP. It starts with the triggerless transition from the initial
state to the state CLOSED, in which it awaits one of the two possible call
events. The call event passive OPEN causes TCP to create TCB (modeled with
the action create TCB) and to move to the state LISTEN. Alternately, the call

CLOSED

LISTEN

passive OPEN/create TCB

SYN SENT

active OPEN/create TCB, snd SYN

SEND/snd SYN

CLOSE/delete TCB

SYN RCVD
rcv SYN/snd SYN, ACK

EST AB

rcv ACK of SYN rcv SYN, ACK/snd ACK

rcv SYN/snd ACK

CLOSE WAIT

rcv FIN/snd ACK

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

LAST ACK

CLOSED

CLOSE /snd FIN

CLOSE/snd FIN

rcv ACK of FIN

CLOSE/snd FIN

rcv FIN/snd ACK

rcv ACK of FIN

rcv ACK of FIN

rcv FIN/snd ACK after: 2MSL/delete TCB

FIGURE 3.28
TCP statechart diagram.

101Design

event active OPEN causes TCP to additionally send the signal SYN (TCP seg-
ment with the bit SYN set in the header) to the remote TCP entity. This is
modeled with the actions create TCB and snd SYN.

TCP is blocked in the state LISTEN while waiting for one of the two pos-
sible events. The signal event rcv SYN triggers it to send the signal SYN, ACK
(TCP segment with both bits SYN and ACK set) to the remote TCP entity and
to move to the state SYN RCVD. The call signal SEND causes TCP to send
the signal SYN to the remote TCP entity, and to move to the state SYN SENT.

While blocked in the state SYN SENT, TCP can be triggered by one of
three possible events. If the call event CLOSE occurs, TCP deletes TCB (mod-
eled with the action delete TCB) and returns to the initial state. If the signal
event rcv SYN occurs, TCP sends the signal ACK and moves to the state SYN
RCVD. If the signal event rcv SYN, ACK occurs, TCP sends the signal ACK to
the remote TCP entity and moves to the state ESTAB.

After reaching the state SYN RCVD, TCP can react to one of the two pos-
sible events. If the call event CLOSE occurs, TCP sends the signal FIN to the
remote TCP entity and moves to the state FIN WAIT 1. If the signal event rcv
ACK of SYN, occurs, TCP moves to the state ESTAB.

Two events are recognizable in the state ESTAB. If the call event CLOSE
occurs, TCP sends the signal FIN to the remote TCP entity and moves to the
state FIN WAIT 1. If the signal event rcv FIN occurs, TCP sends the signal
ACK and moves to the state CLOSE WAIT.

In the state FIN WAIT 1, TCP may receive either FIN or ACK of FIN signals.
In the former case, it sends the signal ACK and moves to the state CLOSING,
whereas in the latter case it just moves to the state FIN WAIT 2, where it
waits for the signal FIN to send the signal ACK and move to the state TIME
WAIT. On the alternative path, TCP moves from the state CLOSING to the
state TIME WAIT after it receives the signal ACK of FIN.

Upon the entrance to the state TIME WAIT, a timer with the period 2MSL
is started. When this period expires, TCP deletes TCB and moves back to its
initial state CLOSED. After reaching the state CLOSE WAIT, TCP waits for the
call event CLOSE to send the signal FIN and move to the state LAST ACK, and
from there to the initial state CLOSED after it receives the signal ACK of FIN.

The example in Figure 3.29 shows the statechart diagram of a simple send
e-mail operation (SMTP client side). It starts with the triggerless transition
from its initial state to the state WAIT 220, where it waits for the signal (mes-
sage) 220 from the SMTP server. When the signal event rcv 220 occurs, the
SMTP client sends the signal HELO to the SMTP server and moves to the state
WAIT 250 1. After receiving the signal 250, the SMTP client sends the message
MAIL FROM: to the SMTP server and moves to the state WAIT 250 2.

Next, two signals of 250 in succession cause the SMTP client first to send
the signal RCPT TO:, then to send the signal DATA to the SMTP server, and
finally to reach the state WAIT 354. Upon reception of the signal 354, the
SMTP client sends the body of the e-mail message and moves to the state
WAIT 250 4. After receiving the signal 250, it sends the signal QUIT to the

102 Communication Protocol Engineering

SMTP server, and finally, after receiving the signal 250 again, it returns the
value true and moves to its final state.

The main problem in this oversimplified version of the SMTP client is that it
can block indefinitely while waiting for a signal from the SMTP server. The first
thing that would be added in a more realistic design is a time limit on waiting
for signals, which would be modeled with timers (keyword after:). The reaction
to the expiration of a timer could be as simple as returning the value false and
moving to the final state, or it can include some type of a recovery mechanism.

3.6 Deployment Diagrams

Deployment diagrams are used to model the deployment of the compo-
nents, the component instances, objects, and packages on nodes and node

WAIT 220

WAIT 250 1

rcv 220/snd HELO

WAIT 250 2

WAIT 250 3

rcv 250/snd MAIL FROM:

rcv 250/snd RCPT TO:

rcv 250/snd DATA

WAIT 354

WAIT 250 4

rcv 354/snd BODY

WAIT 221

rcv 250/snd QUIT

rcv 221/return(true)

FIGURE 3.29
Simple send e-mail operation statechart diagram (SMTP client side).

103Design

instances. A component is a part of the system that implements a set of
interfaces. It typically models a physical package of logical elements, such
as classes, interfaces, and collaborations. The common forms of packages
are the following:

• Executables
• Libraries
• Tables
• Files
• Documents

A node is a physical element that models a computational platform, which
comprises a set of resources, such as memory banks, buses, I/O channels,
controllers, processors, and so on. The examples of nodes are the following:

• Personal computers
• Mainframes
• Embedded controllers
• Mobile or cellular phones
• Network routers

We use deployment diagrams in the design phase of communication pro-
tocol engineering for the following two main purposes:

• To identify network nodes and configurations
• To identify design subsystems and interfaces

The software architecture is closely related to the structure of the physical
network. Sometimes the latter can be fixed and, in such a case, it governs the
distribution of functionality across the network nodes as well as the selec-
tion of active classes. Alternately, both software architecture and network
structure can be subjects of design and, in that case, some particular net-
work structures can yield more appropriate software architecture and sys-
tem solutions.

While trying to identify network nodes and configurations, we typically
render network nodes as cubes, interconnect them with association relations,
and think how to deploy individual components on these nodes. We show
the deployment in the deployment diagrams by adding the component sym-
bols (rectangles with tabs) and by connecting the related nodes and compo-
nents with the dependency relations. Another way to do this is to adorn the
node instances by the names of the components that are deployed on them.

Similarly, while trying to identify the subsystems and interfaces, we typi-
cally render the packages with their corresponding interfaces. We try to

104 Communication Protocol Engineering

organize them into hierarchical layers (e.g., application-specific, application-
general, middleware, and system-software). Finally, we show which inter-
faces (services) are provided by which packages or components and also
which packages or components are users of the services provided through
those interfaces.

Deployment diagrams are a special type of graph that comprise the set
of vertices that are interconnected with the corresponding arcs. Figure 3.30
shows the basic set of graphical symbols available for rendering deployment
diagrams. These are the node, the node instance, the component, the compo-
nent instance, the object, the package, the interface, the association relation,
the aggregation relation, the dependency relation, the note, the constraint

Node Node instance

Component Component instance

Object : Class Package
Interface

** 1*

Note {Constraint}

{Constraint}

{OR}

FIGURE 3.30
Basic set of symbols available for deployment diagrams.

105Design

note, the two-element constraint, and the OR constraint. Each symbol has a
set of properties, which must be set by the designer once they add the symbol
to the diagram. The new symbols are the symbols representing the nodes,
the components, and their instances. The rest of the symbols are already
introduced in the previous sections about class and object diagrams (called
together a static structure).

The node has six categories of properties. These are the general informa-
tion, the table of attributes, the table of operations, the list of components, the
table of constraints, and the tagged values. The general information includes
the name, the full path, the stereotype, the visibility, and the indicators Root,
Leaf, and Abstract. The list of the components comprises the names of the
components that are deployed by this node.

The component has seven categories of properties, including the general
information, the table of attributes, the table of operations, the list of nodes,
the list of classes, the table of constraints, and the tagged values. The general
information comprises the name, the full path, the stereotype, the visibility,
and the indicators Root, Leaf, and Abstract. The list of nodes holds the names
of the nodes that deploy this component. The list of classes stores the names
of the classes that are implemented in this component.

The node instance has four categories of properties: These are the gen-
eral information, the table of attribute values, the table of constraints, and
the tagged values (documentation and persistent). The general information
comprises the node instance name and the node name. The table of attribute
values stores the name, the stereotype, the type, and the value for each attri-
bute. The component instance has the same categories of properties as the
node instance, with the exception that its general information differs and it
comprises the name of the component instance and the component name.

The deployment diagram in Figure 3.31 shows an example of a network
configuration comprised of three personal computers that are connected to
the Internet. A personal computer is modeled as the node PC. Individual PCs
are modeled as node instances, namely Machine1, Machine2, and Machine3.
The Internet is modeled as the node instance, named Network, of the node
type named Internet. The real links that connect PCs to the Internet are mod-
eled with the association relations between the node instances Machine1,
Machine2, and Machine3, and the node instance Internet. The one-to-one
nature of these links is modeled by setting the multiplicities on both sides of
the associations to 1.

This diagram is what the physical infrastructure of this example looks like.
The software components are deployed as follows: The e-mail client execut-
able is deployed to the first PC, the DNS server executable is deployed to
the second PC, and the SMTP server is deployed to the third PC. We model
the e-mail client executable with the component EMailClient, which is ste-
reotyped as the <<executable>>, and its particular instance is deployed to the
first PC with the component instance client.exe. Similarly, the DNS server

106 Communication Protocol Engineering

executable is modeled with the component DNSServer and its particular
instance is deployed to the second PC with the component instance dnss.exe.
Finally, the SMTP server is modeled with the component SMTPServer and its
particular instance is deployed to the third PC with the component instance
smtps.exe.

The deployment diagram in Figure 3.32 shows the example of subsystems
and interfaces. While thinking about the system shown in the previous
example (Figure 3.31), we can identify three application layer packages, two
system-software layer packages, and three interfaces. The application layer
packages are the packages EMailClient, SMTPServer, and DNSServer, whereas
the system-software packages are the packages TCP/IP and OS.

The package TCP/IP provides two service types through the interface
TCPport and IPint, respectively. The services provided through the former
interface are used by the package EMailClient and SMTPServer, whereas
the services provided through the latter interface are used by the package
EMailClient and DNSServer. Similarly, the package OS provides services
through its interface OSapi. These services are used by the package TCP/IP.

Interested readers can find more information about the UML diagrams in
the original books by Booch, Rumbaugh, and Jacobson (Booch et al. 1998).
This section concludes the part of this chapter based on UML. The second
part of the chapter will be based on domain-specific languages.

Machine 1 : PC

Network : Internet

Machine 3 : PC

1

1 1

1

«executable»
client.exe : EMailClient

«executable»
smtps.exe : SMTPServer

Machine 2 : PC

1

1

«executable»
dnss.exe : DNSServer

FIGURE 3.31
Example of a network configuration.

107Design

3.7 Specification and Description Language

Software for real communication systems and devices (concentrators, packet
switches, gateways, routers, and so on) is very complex and, therefore, hard
to understand. Proving that this type of software is correct is very difficult;
thus, special attention is paid to its design. Software of this type can be mod-
eled in the form of an individual or a group of finite state machines. Japanese
designers were the first to apply this method of specification and description
of communication protocols in the 1970s. Not long after its initiation, the
CCITT (predecessor of ITU-T) has standardized it in the form of the so-called
Specification and Description Language (SDL).

EMailClient

TCP/IP

OS

DNS serverSMTP server

IPint

TCP port

OSapi

Application layer
packages

System-software
layer packages

FIGURE 3.32
Example of subsystems and interfaces.

108 Communication Protocol Engineering

SDL creators have been facing the following dilemma. Traditionally, a
finite state machine (FSM) has been modeled by a state transition graph.
Typically, a state transition graph is graphically illustrated by circular sym-
bols representing states and arrows representing state transitions. State
labels are state names, whereas state transition labels indicate FSM input
that causes the corresponding state transition and FSM output produced
by the same transition. An advantage of this type of FSM representation
is that all the stable FSM states are clearly indicated and can be easily
noticed. Alternately, a disadvantage of this type of FSM representation is
that message-processing procedures are not defined formally. Informally
written state transition labels, placed close to the corresponding arrows,
indicate only the FSM input causing the transition and the output that the
FSM must produce. This information is far from being sufficient for writing
the software that implements the given FSM—it only provides some hints
to programmers.

Another approach would be to use a flowchart, a traditional way of speci-
fying data-processing algorithms. An advantage of this type of FSM rep-
resentation is that message-processing procedures are clearly and precisely
defined. A disadvantage is that stable FSM states are not clearly indicated,
therefore they can hardly be noticed. The FSM states can be marked as cer-
tain points in a flowchart by using informal annotations, and that is simply
not comprehensible enough.

The creators of the SDL language have found a solution to this dilemma
by combining the abovementioned approaches, namely, the state transition
graph-based approach and the flowchart approach. This combination has
been cleverly made by simple extension of the set of graphical symbols avail-
able for drawing flowcharts. The key new graphical symbols introduced are
the symbols corresponding to an FSM stable state and the symbols that rep-
resent FSM inputs and outputs (input and output messages). We will fully
describe all the SDL graphical symbols later in this chapter.

The protocol designer uses SDL language to specify and describe the cor-
responding automata instance by listing all its states and state transitions.
Although the number of states can be very large, this task is simplified by
the fact that in a given state, only a limited number of events can occur. This
means that the automata instance can evolve from a given state only for a
limited number of new states. For example, consider a telephone call autom-
ata instance waiting for the first digit to be dialed (the automata instance
enters this state immediately after the user has initiated an outgoing call, i.e.,
after the so-called “hook-off” event). The telephone call automata instance
cannot evolve from this state to any other arbitrary state. More precisely, in
this state only the following three events are possible:

• The user ends the call (hook-on event), which causes the automata
instance to evolve to its initial idle state.

109Design

• The user dials a digit (digit event). This event triggers the state tran-
sition from the current state to the state of waiting for the second
digit.

• The user does nothing during a certain interval of time. This will
cause the expiration of the corresponding timer and a state transi-
tion to the state in which the telephone line is blocked.

Communication protocol is by nature a reactive system. Normally, it is
blocked in its current state while waiting for one of a few recognizable events
to occur. Statistically, it is inactive most of the time. A recognizable event
triggers the corresponding state transition to a new state, where the proto-
col is again blocked while waiting for further events. The state transitions
comprise a finite number of primitive operations that are statistically rather
short.

An important characteristic of program implementations of the proto-
cols is that they are not trying to monopolize the CPU. This implies that
the execution of this type of a program should be organized as a process
with stable states. In contrast to the conventional time-slicing system, where
the task switching is driven by timer interrupts, the switching of processes
with stable states is performed at the moment at which the running process
reaches its new stable state. Whereas conventional tasks can be interrupted
in an arbitrary point of time (determined by the asynchronous occurrence of
a timer interrupt signal), a process with stable states is normally not subject
to preemption because, unlike conventional tasks, they are not monopoliz-
ing the processor. Of course, a process with stable states can be interruptible
so that the whole system can react to the urgent events handled by the higher
priority tasks.

Enumeration of the possible states and state transitions, as described
above, is a logical process that seems to be straightforward for the experts.
However, graphical language, such as SDL, is needed to make it possible for
design engineers to easily make complete formal specifications of the proto-
cols. The main advantages of graphically oriented languages are as follows:

• Graphical language is easy to read and, because of that, it is easy to
check specification completeness and correctness.

• The specification can be easily extended.
• The specification can be directly implemented in software. This

means that if the specification is correct, a high probability exists
that the software implementation is also correct.

According to ITU-T, the complete software (system) is decomposed into a
set of functional blocks. Each functional block consists of a set of processes
and each process comprises a number of tasks (Figure 3.33).

110 Communication Protocol Engineering

A process is essentially an execution of a logical function, which consists
of a series of operations applied to message information elements (referred to
as tasks) in discrete points of time. Either it is in some of its stable states or it
makes its transition from the current to the next state. (In Chapter 4, we refer
to the state transition as unstable states).

A signal is defined as a data stream that delivers information to the receiv-
ing process. A data stream among the processes inside the same functional
block represents the internal signal, whereas a data stream between the pro-
cesses that are parts of different functional blocks represents the external
signal to the receiving process. Therefore, from the receiving process point
of view, the signal can be classified as internal or external, depending on
whether it originates from the same or from a different functional block.

Today, SDL is a standard design language that can be used to specify and
describe any system implemented in hardware or software, particularly real-
time systems. In this book, we are especially interested in one type of the
real-time systems—communications systems.

The basic set of SDL rules is given in ITU-T recommendation Z.100e.
Additional explanations are given in a series of subsequent ITU-T recom-
mendations, namely Z.100d1e, Z.100nce, Z.100nfe, Z.100p1e, and Z.100s1e.
The main characteristics of the SDL language are as follows:

System

Functional block
1

Functional block
2

Functional block
3

Process 1 Process 3Process 2

Task 1 Task 2 Task 3

FIGURE 3.33
Structure of the communication software according to ITU-T.

111Design

• It is easy to learn.
• It is easy to extend the specification in case of the new requirements.
• In principle, it can support various methodologies for making the

system specifications.

Two forms of SDL language exist, graphical (SDL-GR) and program
(SDL-PR). The graphical form has been widely accepted for two reasons.
First, it is closer to human understanding because it is easier to under-
stand and follow. Second, in principle, it does not require the support by
special, and frequently very expensive, software tools. Of course, a piece
of paper and a pencil is hardly sufficient for a professional work. At least a
modern graphical editor that supports the SDL set of graphical symbols is
needed to enable the making of decent specifications. In this book, we use
Microsoft Visio® for that purpose.

The second SDL form, SDL-PR, is practically a higher-level programming
language of textual type (similar to C/C++ and Java programming languages).
Clearly, this programming language is less synoptic and is harder to follow
than the graphical form. It is intended to be used mainly by the accompa-
nying software tools, such as Telelogic® Software Development Tools (SDTs).
The goal of using such software tools is not just to make isolated specifica-
tion and description documents, but rather to make electronic specifications,
essentially models of protocols. The software tools can then be used to inter-
pret the models and generate the corresponding program code.

In addition to the tools provided by Telelogic®, other tools exist based on
this philosophy that is, as already mentioned, referred to as model integrated
computing (MIC). One of them is also already mentioned, GME.

The main SDL applications are the following:

• Call processing in switching systems
• Error supervision and management in telecommunication systems
• Supervision, control, and data acquisition systems
• Telecommunication services
• Data transfer protocols
• Protocols in computer communications

The SDL language basics are as follows: SDL is based on a set of special
symbols and the rules for their application. The graphical form (SDL-GR) is
based on special graphical symbols whereas the program form (SDL-PR) is
based on a set of special keywords. Both SDL forms use the same set of key-
words specialized for data representation.

Later, we assume that a system consists of a number of protocols. Also, we
refer to a set of hierarchically organized protocols as a family of protocols or
a protocol stack. Typically, each protocol that is a part of the family performs

112 Communication Protocol Engineering

its well-defined task. The family of protocols conducts rather complex tasks
by cooperation of its members.

A system is described as a set of interconnected functional blocks. Channels
are defined as communication links that are used for the interblock com-
munication and for the communication between the blocks and the envi-
ronment. Each block comprises a number of processes that communicate by
exchanging signals. A channel is typically implemented as a FIFO (First-
In-First-Out) queue that stores the signals (i.e., messages) to be transferred
through the channel. A process is defined as a finite state machine (automata
instance) that is described by the given set of states and state transitions.

The next simple example illustrates the notions and terms introduced
above. Both graphical and program SDL forms are presented. The only goal
of presenting the program form is to provide the intuition for the reader
that will help them understand the main differences between the graphical
and program forms of the SDL language. The aim of this book is not to fully
cover the program form of the SDL language.

The example is a simple game called Daemongame. The core of the game is a
simple FSM that has only two states, even and odd. Timing is controlled with
a single timer. The expiration of the timer (this event is labeled none) causes
the FSM to switch from an even state to an odd state. The player presses a
button when they wish (this event is labeled Probe), i.e., at arbitrary points of
time. If the FSM is in an even state, the player gets one negative point (Lose).
If the FSM is in an odd state, the player gets one positive point (Win). If the
player scores more Win than Lose points, they win the game.

The first step in describing this simple system is to define input and output
signals. Input signals are as follows:

• Newgame: The player wants to start the game.
• Probe: The player has pressed a button.
• Result: The player wants to see the current score.
• Endgame: The player wants to quit the game.

Output signals are the following:

• Gameid: current game identification
• Win: positive point
• Lose: negative point
• Score: total amount of points (number of Win points minus number

of Lose points)

The specification of the game Daemongame in the graphical form of SDL
is shown in Figure 3.34. It contains a single functional block labeled Game.

113Design

Input signals are Newgame, Probe, Result, and Endgame. Output signals are
Gameid, Win, Lose, and Score. Signal declarations are shown in the upper left
corner of the figure.

The Daemongame system specification in the program form of SDL is as
follows:

system Daemongame
 signal Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score(Integer);
 channel Gameserver.in
 from env to Game
 with Newgame, Probe, Result, Endgame;
 endchannel Gameserver.in;
 channel Gameserver.out
 from Game to env
 with Gameid, Win, Lose, Score;
 endchannel Gameserver.out;
block Game referenced;
endsystem Daemongame;

Generally, any system SDL program specification starts with the key-
word system and ends with the keyword endsystem. This particular program
defines all the required signals (Newgame, Probe, Result, Endgame, Gameid,
Win, Lose, and Score), the input channel Gameserver.in, and the output chan-
nel Gameserver.out.

 system Daemon game

signal
Newgame, Probe, Result,
Endgame, Gameid, Win, Lose,
Score (Integer)

Game

Newgame,
Probe,
Result,

Endgame

Gameid,
Win,
Lose,
Score

FIGURE 3.34
Structure of the system Daemongame.

114 Communication Protocol Engineering

In contrast with the graphical form, which is easy to understand, the pro-
gram form represents a lower-level specification, closer to the machine and
with more details. For example, in the graphical form a channel is simply
represented by an arrow pointing to or from the functional block. The chan-
nel declaration in the program form is much more detailed: It comprises the
channel name (e.g., Gameserver.in), its direction (e.g., from the environment
toward the functional block Game), and a list of signals that must be trans-
ferred over the channel (e.g., Newgame, Probe, Result, and Endgame).

The next lower hierarchical level of detail describes a single functional
block of this simple system, namely, the block Game. Its specification is given
in both forms of SDL. The graphical form of the specification is given in
Figure 3.35. The program form of the specification is given immediately after
a short explanation of Figure 3.35.

Figure 3.35 shows that the block Game consists of two processes, namely
Monitor and Game. The processes are connected to the environment and to
each other by signaling paths. It also shows that the input channel Gameserver.
in consists of two signaling paths, the signaling path R1 (which is used to
carry Newgame signal) and the signaling path R2 (which is used to carry the
signals Probe, Result, and Endgame). The output channel Gameserver.out com-
prises the single signaling path R3. A single internal signaling path exists
inside the block Game, the path R4, which is used to carry the internal signal

 block Game

signal
Gameover (Pid)

Monitor (1,1)

R1

Newgame

R3

Gameid,

Win,

Lose,

Score

Game (0,)

R2Probe,Result,
Endgame

R4
G

am
eo

ve
r

FIGURE 3.35
Structure of the functional block Game.

115Design

Gameover from the process Game to the process Monitor. This new signal is
declared in the upper left corner of the graphical specification.

The specification of the block Game in SDL-PR is as follows:

block Game;
 signal Gameover(Pid);
 connect Gameserver.in and R1, R2;
 connect Gameserver.out and R3;
 signalroute R1 from env to Monitor with Newgame;
 signalroute R2 from env to Game with Probe,Result,Endgame;
 signalroute R3 from Game to env with Gameid,Win,Lose,Score;
 signalroute R4 from Game to Monitor with Gameover;
 process Monitor(1,1) referenced;
 process Game(0,) referenced;

endblock Game;

The specification given above starts with the keyword block and ends with
endblock. Inside the body of the definition of the block Game, we start with the
declaration of the internal signal Gameover by declaring its name, followed
by the list of its parameters enclosed in parenthesis. The signal Gameover has
a single parameter, the identification of a process (Pid) that is sending this
signal.

Further on, we connect the channel Gameserver.in with the signaling paths
R1 and R2. We also connect the channel Gameserver.out with the signaling
path R3. We proceed with the declarations of signaling paths (keyword sig-
nalroute). Each declaration indicates the signaling path name, its direction
(by using the keywords from and to), the names of the processes it connects
(note that env is the special process which represents the environment), and
a list of signals it carries (by using the keyword with). For example, the first
signal path declaration shown in SDL-PR above declares the signaling path
R1, which carries the signal Newgame from the process env (environment) to
the process Monitor.

We end the definition of the functional block Game by declaring the processes
it contains. A process in general is declared by the keyword process. A process
declaration indicates the name of the process followed by the initial and maxi-
mal number of process instances that can appear in the system. The maximal
number of process instances is an optional parameter, i.e., it can be omitted.

The process Monitor is declared as Monitor(1,1), which means that the block
Game should initially create one instance of this process and, at the same
time, it is also the maximal number of Monitor instances that can be created
in this block. Alternately, the process Game is declared as Game(0,), which
means that initially there are no Game instances, but also that the maximal
number of Game instances is not limited, i.e., in theory it is allowed to cre-
ate an infinite number of process Game instances inside the functional block
Game. Of course, in reality this number is always limited to the available
hardware resources.

In this particular example, we have declared two processes, Monitor and
Game, that operate inside the functional block Game. The process Monitor

116 Communication Protocol Engineering

handles the interaction with a player. It is a mediator between the player and
the process Game, which is essentially a model of the win–lose game. Due to
the fact that the process Monitor is trivial and actually insignificant for this
example, we will define only the process Game on the next hierarchically
lower level of abstraction. On this level of detail, the process Game is mod-
eled as a finite state machine (automata instance).

As already mentioned, the creators of SDL-GR (the graphical form of SDL)
have extended the basic set of traditional flowchart symbols with a set of
graphical symbols specialized for modeling finite state machines. The com-
plete set of graphical symbols available for describing processes in SDL-GR
is shown in Figure 3.36.

The meaning of the individual graphical symbols shown in Figure 3.36 is
as follows:

• State: Specifies a stable state in which a process is blocked while
waiting for one of the recognizable signals (referred to as input).

• Input: Specifies the reception of a given input signal (i.e., the occur-
rence of a certain event).

State
Internal
output
signal

Internal
input
signal

External
output
signal

External
input
signal

Decision

Task Save
signal

FIGURE 3.36
Set of graphical symbols available in SDL-GR.

117Design

• Output: Specifies the transmission of a given output signal (normally
the output signal generated by a certain process represents an input
signal for a process that receives it).

• Decision: Specifies an operation that checks if a given condition is
true or false and, based on the outcome, selects one of the two pos-
sible paths in the current state transition.

• Task: Specifies an action in the course of current state transition that
is neither decision nor output.

• Save signal: Specifies that recognition (processing) of a given signal
should be postponed until it reaches a state where it is recognizable
This symbol is used in specifications of signaling systems (e.g., SS7).
It is seldom used in other applications, such as call processing.

The specification of a process in SDL-GR is generally made as a combina-
tion of the instances of the graphical symbols shown and explained above.
An example of this type of specification is shown in Figure 3.37. It specifies
and describes the process Game, the core of the win–lose game.

The evolution of the process starts from an unnamed state in the upper
right corner of the graphical presentation (Figure 3.37). Starting from this
state, the process unconditionally transits to its next stable state even. During
this transition, the process Game sends the signal Gameid to the player.

While the process Game is in its stable state even, it awaits one of two pos-
sible events: the reception of the signal Probe or the expiration of the timer
labeled none. If the timer expires, the process Game receives the correspond-
ing signal none, and this causes the process to evolve into the next stable state
odd. If the process receives the signal Probe, it sends the signal Lose to the
player and updates the player’s score, which is stored in the variable count,
by adding one negative point. The process does not change its stable state,
i.e., it remains in its current state (which is denoted with the character “–”),
and that is the state even.

In its stable state odd, the process Game recognizes two same possible events,
the reception of the signal Probe or the expiration of the timer labeled none.
Actually, the timer none determines the time interval the process will spend
in either the even or odd state before switching to the other one. Hence, if the
timer none expires, the process evolves into the stable state even. Alternatively,
if the process receives the signal Probe, it sends the signal Win to the player
and updates the player’s score (value of the variable count) by adding one posi-
tive point. The process remains in its current state (i.e., the state odd).

The upper left corner of the graphical representation of the process Game
(Figure 3.37) shows one important example of simplifying SDL-GR dia-
grams. Because the reception of the input signals Result and Endgame is
possible in both even and odd states, a straightforward solution would be to
mechanically add these inputs and their processing to both states. The result
would be a diagram that is much more complex and harder to understand

118 Communication Protocol Engineering

and follow. A more elegant solution is to draw the description of the process-
ing of the inputs Result and Endgame in both states as a separate drawing in
the diagram, as shown in Figure 3.37.

Generally, it is always useful to try to find identical processing of input
signals (state transitions) that repeat in a number of stable states and to

Initial

Gameid
to

player

Even

None Probe

Odd

Probe None

Lose
to

player

Count=count
–1

–EvenWin
to

player

Count=count
+1

–

Even, odd

Result Endgame

Score (count)
to

player

Even, odd

Gameover
(player)

Final

FIGURE 3.37
Process Game specification in SDL-GR.

119Design

simplify the specification by drawing these parts separately in the diagram.
This type of a model reduction is really easy. We just draw an oval state
symbol and write a list of the states (the list comprises the state names sepa-
rated by commas) that share the common inputs inside the state symbol.
Then we can copy and paste common state transitions. At the end, we can
just remove the redundant state transitions. Of course, in the simple dia-
grams such as in the example at hand, we can see this in advance and draw
accordingly, as we did for the processing of the inputs Result and Endgame
in the states even and odd.

If the process Game receives the signal Result, which comes from the envi-
ronment, i.e., from the player, the process sends the signal Score(count) to the
environment (actually to the player) and it remains in its current state (even
or odd). Alternately, if the process Game receives the signal Endgame, it sends
the signal Gameover to the process Monitor and the game ends, i.e., the func-
tional block deletes the process Game.

The specification of the process Game in SDL-PR (SDL program form) is as
follows:

process Game(0,); fpar player Pid;
 dcl count Integer := 0; /* the counter that contains the result */
 start;
 output Gameid to player;
 nextstate even;
 state even;
 input none;
 nextstate odd;
 input Probe;
 output Lose to player;
 task count:=count-1;
 nextstate -;
 state odd;
 input Probe;
 output Win to player;
 task count:=count+1;
 nextstate -;
 input none;
 nextstate even;
 state even,odd;
 input Result;
 output Score(count) to player;
 nextstate -;
 input Endgame;
 output Gameover(player);
 stop;

endprocess Game;

The definition of the process starts with the keyword process and ends
with the keyword endprocess. As already mentioned, initially no instances
of the process Game are used, and the maximal number of its instances is
unlimited. The process declaration is followed by the construct fpar player
Pid, which defines the formal process parameter player that is assigned the
value Pid. At the beginning of the game, the run-time environment creates
an instance of the process, and assigns a unique Pid number to it.

120 Communication Protocol Engineering

Next, we declare the integer variable count (using the keyword Integer),
which contains the current total value of points that the player has scored
so far. After the label start, we define a series of statements that are executed
by the process at its startup. In this example, the process Game at its startup
sends the signal Gameid to the player and enters its initial stable state even
(next state of the process is defined by the keyword nextstate).

For each stable state (keyword state) of the process, we define all the rec-
ognizable input signals (using the keyword input) and on the next level of
indentation, we define the corresponding state transition as a series of state-
ments that ends with the nextstate statement. For example, the recognizable
input signals in the stable state even are the signal none, which relates to the
expiration of the corresponding timer, and the signal Probe, generated by the
player’s stroke of the pushbutton. In the case the timer none expires, the pro-
cess evolves to its next stable state odd. Alternatively, if the process receives
the signal Probe, it sends the signal Lose to the player (using the keyword
output), performs the task of decrementing the score by 1 (using the keyword
task), and remains in its current state (the statement nextstate -;).

The stable state odd is defined in a similar manner. The input signals recog-
nized by the process in its stable state odd are the signal Probe and the expi-
ration of the timer none. If the process receives the signal Probe, it sends the
signal Win to the player, increments the score by 1, and remains in its current
stable state as odd. Alternatively, if the timer none expires, the process evolves
into its stable state even. Finally, we define the state transitions initiated by
the reception of the input signals Result and Endgame in either the state even
or odd.

Understanding the principals of SDL-PR helps in more easily understand-
ing the communications protocol software implementation in the state-
of-the-art, higher-level programming languages such as C/C++ or Java.
Although SDL-PR can resemble a pseudolanguage when compared to these
programming languages, in reality it is a specialized language of higher
level abstraction and it is feasible to construct a compiler for it. However,
the study of the compilers is out of the scope of this book. The primary goal
of this book in this respect is to provide an insight into the manual coding
of SDL graphical diagrams in some of the abovementioned programming
languages (C/C++ or Java).

The example under study can help in this respect. Obviously, two levels of
nesting are included in it. The first level of nesting corresponds to the current
stable state, in which the process is blocked while waiting for the next input
signal, i.e., start, even, and odd. The second level of nesting corresponds to the
type of input signal, i.e., Probe, none, Result, or Endgame.

The simplest method to implement this selection construction with two
levels of nesting in the C/C++ or Java programming language is to use
nested switch-case statements. The first switch-case statement is used to locate
the current state. Then in each case clause of the first switch-case statement,
another switch-case statement is used to locate the state transition statements

121Design

that correspond to the given input signal. This type of protocol implementa-
tion will be covered in detail in the next chapter.

3.7.1 Telephone Call Processing Example

The second example of the system specification made in SDL-GR is the speci-
fication of the telephone call processing system. The description of this sys-
tem is given in the separate ITU-T recommendation Q.71. The Q.71 compliant
program system consists of six mutually interconnected functional entities
(referred to as functional blocks), namely FE1, FE2, FE3, FE4, FE5, and FE6
(Figure 3.38). The aim of this example is just to illustrate SDL-GR applicabil-
ity, and the details of the recommendation Q.71 (such as the concrete names
of the entities, their types and links, i.e., relations) are not really significant
for the comprehension of the usage of SDL-GR. The reader that is more inter-
ested in Q.71 details can refer to the corresponding ITU-T recommendation.
We use the hypothetical telephone call processing system CallProcessor to
make further illustrations more concrete, without diving into the bulk of
details of Q.71 recommendation. Comparing it to the real Q.71-compliant
system, the CallProcessor is a very simplified academic example that consists
of a single functional block, namely TelephoneLine (Figure 3.39). This func-
tional block is linked with the environment by one input channel, named
input, and one output channel, named output. So far, this example is very
similar to the previous example Daemongame, which also comprises the sin-
gle functional block Game that is interconnected with the environment with
one input and one output channel.

The functional block TelephoneLine is shown in Figure 3.40. This simple
functional block consists of the single process FE1. Two lists of signals are

FE 1 : A FE 2 : B FE 3 : B FE 4 : B FE 5 : A

FE 6 : D

rk rj rj rk

rl

rlrl

Where:
A, B, and D are the types of functional entities
FE1, FE2, FE3, FE4, FE5, and FE6 are the names of the functional entities
rk, rj, and rl are the relations between the functional entity types

FIGURE 3.38
Functional model of the telephone call processing system.

122 Communication Protocol Engineering

declared (using the keyword signallist) in the upper left corner of Figure 3.39,
namely, input and output. The process FE1 is connected both to the telephone
user (shown by the arrows placed at the right of FE1) and to the telephone
exchange (indicated by the arrows placed at the bottom of FE1). It can receive
one of the three possible input signals (hookOff, dialDigit, and hookOn) from
the telephone user’s side. Alternately, it can send the output signal initiate-
OutgoingCall to the telephone exchange or it can receive the input signal asn-
werReceived from the exchange.

The process FE1 is specified in the graphical form of SDL, SDL-GR, in
Figure 3.41. This process resides in the telephone exchange and it commu-
nicates with the human that uses the telephone to establish a call, talk to
the called party, and release the call at the end of the conversation. In real-
ity, such a process must handle many scenarios, e.g., the user picks up the
receiver but does not dial the number, or stops after dialing an insufficient
number of digits.

The process specified in Figure 3.41 is rather simplified but it still captures
the most significant part of the telephone line functionality on the calling
party side. The telephone line in this context is a processor that hosts FE1,
together with the interfacing hardware that connects it to both the calling
party user’s telephone and switching unit of the telephone exchange. For
brevity, we refer to the former simply as a user and to the latter as a tele-
phone exchange, or just an exchange.

system CallProcessor

signallist
input, output

TelephoneLineInput Output

FIGURE 3.39
Hypothetical system CallProcessor.

123Design

The process FE1 has four stable states, namely, IDLE, WAIT_DIGIT, WAIT_
ANSWER, and CONVERSATION. The evolution of the process starts from
the state IDLE. The single recognizable input signal in this state is the signal
hookOff. If the process FE1 receives the signal hookOff, it performs the task
prepareForDialing and moves to its next stable state WAIT_DIGIT. While per-
forming the task prepareForDialing, the process connects the free-to-dial tone
to the calling party user. This tone serves as the indication to the user that
they can start dialing the number of another user to which they wish to talk.

Two recognizable input signals are used in the stable state WAIT_DIGIT,
i.e., the process can either receive the input signal hookOn or the input signal
dialDigit. In this simplified example, we assume that the telephone number
of the called party consists of a single digit. However, in real ISDN telephone
networks, a so-called enblock dialing mode exists in which the ISDN terminal
sends the complete telephone number to the telephone exchange in a single
SETUP message. Therefore, this simplified example is not so far from reality.
If the process FE1 receives the input signal hookOn, it evolves into its initial
state IDLE. If it receives the input signal dialDigit, it sends the output signal
initiateOutgoingCall to the telephone exchange and it moves to the stable state
WAIT_ANSWER.

In the stable state WAIT_ANSWER, two events are again possible—the
reception of the input signal hookOn or the reception of the input signal answer-
Received. In the former case, the process goes back to its initial state IDLE,

 block TelephoneLine

signal
hookOff, dialDigit, hookOn,
initiate OutgoingCall,
answerReceived

an
sw

er
Re

ce
iv

ed

hookOff,
dialDigit,
hookOn

FE 1initiate OutgoingCall

FIGURE 3.40
Structure of the functional block TelephoneLine.

124 Communication Protocol Engineering

whereas in the latter it evolves into its next stable state CONVERSATION.
The input signal asnwerReceived is actually the result of the series of events
that start with the input signal hookOff at the called party side. The telephone
line entity at the called party translates it to the signal answerIncomingCall
and sends it to the exchange at the called party side, which in turn sends it
to the exchange at the calling party side. Finally, the exchange at the calling
party side translates it to answerReceived and sends it to FE1.

In the final stable state CONVERSATION, only a single event is possible.
The process FE1 can receive the input signal hookOff, and if it does, that is the
end of the conversation phase of the call and the process will return to its ini-
tial stable state IDLE. This closes the circle and the process is ready to process
a new call originating from the same telephone line. Clearly, an instance of
the process FE1 is assigned to each telephone line in the telephone exchange.

Idle

hookOff

prepareFor-
Dialing

WAIT_DIGIT

hookOn dialDigit

Idle
initiateOutgoing

Call

WAIT_ANSWER

WAIT_ANSWER

answerReceived hookOn

IdleConversation

hookOn

Idle

FIGURE 3.41
Simplified model of the Q.71 FE1 in SDL-GR.

125Design

In this example, we described the process FE1 that is assigned to the call-
ing party telephone line without going into a detailed specification of the
operations performed by the telephone exchanges and the called party tele-
phone line involved in the call. Obvious from this example should be that
SDL diagrams are self-documented formal specifications and that no need
really exists for any additional textual descriptions.

The SDL diagram shows the possible evolution paths of a process (a call
processing in the example above). It defines unambiguously all telephone
stable states, as well as all possible input signals for each state. The func-
tional specification is based on the logical advance of a call, expressed in
terms of telephony events. This makes it completely independent of both the
hardware structure of the hosting system and the selected programming
language and framework.

The SDL diagram is drawn based on the observations of a single telephone
call without thinking about other calls, which are processed simultaneously
(quasi-parallel by a single CPU or genuinely parallel by a multi-CPU system).
This approach greatly simplifies software design. Finally, the existing SDL
diagram can be easily extended by adding new states and input signals with-
out the need to start drawing a new diagram from the very beginning. This
possibility also enables the easy removal of revealed design errors.

3.8 Message Sequence Charts

An alternative method of specifying communication systems is by draw-
ing message sequence charts that show the sequences of messages (signals)
exchanged by the communicating entities. The ITU-T has developed a special
language for this purpose, briefly referred to as MSC (Message Sequence Charts),
and has standardized it in the Z.120 series of ITU-T recommendations.

MSC is based on the idea of following a single evolution path of a process.
We start from a certain, most frequently initial, state of the process (e.g., the
state IDLE in the previous example). After that, we select one of the possible
input signals and follow the evolution path to which it points. In the previ-
ous example, a single input signal can be received in the state IDLE: signal
hookOff, which causes the transition to the state WAIT_DIGIT.

In the newly reached stable state, we select again one of the recognizable
events (the input signals that may be received in the stable state WAIT_DIGIT
are hookOff or dialDigit; let us assume that we have selected dialDigit) and we
follow the process evolution along the corresponding path (in the case of
the input signal dialDigit, the process moves to the state WAIT_ANSWER).
At the same time, as we mentally follow the evolution path of the process,
we draw the messages that are exchanged between the process and its envi-
ronment on the paper or, even better, the corresponding graphical editor.

126 Communication Protocol Engineering

The messages are represented by the graphical arrow symbols that are
labeled by the message names. This is how we get the MSC charts.

Clearly, an MSC chart represents a single trace over the corresponding
path, through the SDL diagram, or some other form of specifying finite state
machines. We can see intuitively that for the real automata that we come
across in practical applications, a finite number of paths exist that cover the
SDL diagram. The set of the MSC charts that are obtained by visiting these
paths represents the specification that is in a logical sense equivalent to the
SDL diagram.

However, an obvious disadvantage of this type of a specification, in a form
of a set of the MSC charts, is that it is much less evident than the SDL dia-
gram. Therefore, when communication protocol designers refer to the for-
mal specification, they really assume the SDL diagram. This disadvantage
becomes obvious if, instead of dealing with a single automaton, we try to
follow the evolution of a group of automata, which communicate between
themselves, as well as with the environment, e.g., the group of automata
defined in the abovementioned recommendation Q.71. The number of evolu-
tion traces of such systems can be extraordinarily large.

Not only must we select the initial state of a single automata, we must do it for
all the automata from the group we want to analyze. Furthermore, in the case
of simple and loosely coupled automata, an increase in the number of possible
path combinations is not so high, but in the case of complex or tightly coupled
automata, it is clear that the number of evolutions of the system can be huge.

The discussion above naturally raises the following questions: For what
purpose are MSC charts useful? Do we need them at all? Practical expe-
rience shows that making the MSC charts can be useful at the beginning
of the design process, when the designers talk rather freely about possible
communication scenarios. These scenarios of message exchange most fre-
quently represent the so-called main branches, i.e., main paths, through the
protocol. Typically, they go from the beginning (the initial state) to the end
(logically, the last state in the chain of states), e.g., from the state IDLE to the
state CONVERSATION, such as in the previous example, without any errors
or other exceptional events. Later, after finishing the analysis of the main
paths, the paths of minor importance are analyzed. These are related to vari-
ous less frequent cases, such as handling timer expirations, error recovery
procedures, and so on.

All these scenarios, in the form of MSC charts, would be very useful in
the later stages. Actually, these charts will be used as individual test cases
during the implementation phase to partially check the functionality of the
individual software modules (this is the so-called unit testing). They are also
used during the final phase of the software verification as test cases for the
compliance testing. The goal of compliance testing is to check if the software
is compliant with the specification.

In most cases, the number of manually written MSC charts is finite and not
too large (on the order of a few hundred at most). Later, during the testing

127Design

and verification phase, automatically generating a much larger number of
test cases would be an ideal way (logically equivalent to MSC charts) to
check the system much more thoroughly. This testing most frequently takes
the form of statistical usage testing, which enables quality engineers to esti-
mate the software reliability without any previous knowledge about the sys-
tem under examination.

As already mentioned, the MSC language—similar to the SDL language—
has both the graphical and program form. The graphical form of the MSC
language is more interesting than the program form for developing com-
munications software. The next example illustrates the message exchange
among the functional entities FE1, FE2, FE3, FE4, and FE5, in the case of
the successful establishment and successful release of the ISDN connection
between two subscribers. From this example, MSC is obviously useful for
tracing the message exchange between more processes, which is not so easy
and clear by looking at the set of corresponding SDL diagrams.

We start drawing the MSC chart by placing the rectangle graphical sym-
bols that represent the communicating entities (i.e., processes) at the top of
the chart sheet. The names of the entities are used to label these rectangular
symbols. Next, we draw a vertical line from each rectangular symbol to the
bottom of the sheet. After that, we enter a series of messages exchanged by
the processes shown on the top of the chart. Each message (i.e., signal) is
represented by the arrow symbol labeled with the message name. The arrow
starts from the vertical line that represents the process sending the message
and ends at the vertical line that represents the process receiving the mes-
sage. The time advances in the direction from top to bottom of the sheet, i.e.,
the messages that appear on the top of the chart are exchanged before the
messages that appear at the bottom of the chart.

An example of the MSC chart is shown in Figure 3.42. This example illus-
trates the scenario of successful establishment and release of the ISDN con-
nection. The functional entities FE1 and FE5 are assigned to the calling and
called party user, respectively. Initially, the functional entity FE1 receives
the signal SETUP_req from the environment (in reality, this signal is gener-
ated by the signaling system DSS1). After receiving the signal SETUP_req,
FE1 translates it to the signal SETUP_req_ind and sends this new signal to
FE2. FE2 forwards this signal to FE3, FE3 forwards it to FE4, and finally FE4
forwards it to FE5.

After receiving the signal SETUP_req_ind, the functional entity FE5 imme-
diately sends two signals, the signal SETUP_ind to its environment and the
signal REPORT_req_ind back to FE4. The latter signal is forwarded from FE4
to FE3, then from FE3 to FE2, and finally from FE2 to FE1. FE1 translates this
signal to REPORT_ind and sends the latter to its environment.

The acceptance of the call by the calling party is signaled to FE5 by the sig-
nal SETUP_resp. FE5 translates this signal to the signal SETUP_resp_conf and
sends the latter over the chain of FEs back to FE1. FE1 in its turn translates it
to SETUP_conf and sends the latter to its environment. This is the final step

128 Communication Protocol Engineering

of the connection establishment procedure. The next communication phase
is a conversation.

At the end of the conversation, the calling party user initiates the call release
procedure by sending the signal DISC_req to the functional entity FE1, which
in turn translates it to DISC_req_ind and sends the latter to FE2. The func-
tional entity FE2 translates this signal to the signal RELEASE_req_ind and
sends the latter to both FE1 and FE3. From there, we have two parallel flows of
messages. FE1 replies to the signal RELEASE_req_ind by the signal RELEASE_
req_conf. Alternately, FE3 forwards the signal RELEASE_req_ind to FE4, which
translates it to DISC_req_ind and sends the latter to FE5. FE5 indicates the
reception of that signal by sending the signal DISC_ind to its environment.

FE1 FE2 FE3 FE4 FE5

SETUP_req
SETUP_req_ind

SETUP_req_indPROCEEDING_req_ind
SETUP_req_ind

SETUP_req_ind
SETUP_indREPORT_req_ind

REPORT_req_ind
REPORT_req_ind

REPORT_req_ind
REPORT_ind

REPORT_ind

SETUP_resp
SETUP_resp_conf

SETUP_resp_conf
SETUP_resp_conf

SETUP_resp_conf
SETUP_conf CONNECT_req_ind

DISC_req
DISC_req_ind

RELEASE_req_ind
RELEASE_req_ind

DISC_req_ind
DISC_ind

RELEASE_req_ind

RELEASE_resp_conf

DISC_resp
RELEASE_req_ind

RELEASE_resp_conf

RELEASE_resp_conf
RELEASE_resp_conf

FIGURE 3.42
Example of the MSC chart: Successful ISDN call establishment and release.

129Design

The environment answers with the signal DISC_resp, which is then trans-
lated to RELEASE_req_ind and sent to FE4. The functional entity FE4 trans-
lates that to the signal RELEASE_resp_conf and sends the latter to both FE3
and FE5. Finally, FE3 forwards that final signal to FE2. This is the final step
of the call release procedure.

This real-world example shows the main advantage of using MSC charts—
instead of speculatively analyzing the parallel work of five finite state
machines (FE1, FE2, FE3, FE4, and FE5) by looking at their SDL diagrams,
here on a single chart we see how the system evolves through the procedures
of call establishment and release. At this level of abstraction, we are not inter-
ested in the individual work of the individual automata. We just follow the
interaction based on the message exchange between the automata in a given
group.

3.9 Tree and Tabular Combined Notation Version 3

In this section, we cover the Testing and Test Control Notation Version 3
(TTCN-3), a language that was originally standardized by the European
Telecommunication Standardization Institute (ETSI) by extending the previ-
ous language Version 2 (TTCN-2). A group of designers may employ TTCN-3
to make a formal specification of test procedures that are used to check if
the implementation behaves in conformance with the system’s formal speci-
fication. The type of testing that is conducted in accordance with such test
procedures is referred to as conformance testing. The object of the testing is
typically called an implementation under test (IUT) or a system under test
(SUT). Since an IUT might be a part of a SUT, in this section we use the term
SUT as a more general term. The system that is used to test a SUT is called
the test system (TS), see Figure 3.43.

Test
system

(TS)

System
under

test
(SUT)

FIGURE 3.43
Standard test configuration.

130 Communication Protocol Engineering

Since TTCN-3 is a rather complex standard, here we cover the TTCN-3
basic features, which are sufficient for making simple test suites, and we
leave the more advanced TTCN-3 features (such as multicomponent TTCN-3
and procedure-based communication) to the reader as an option for further
study (see Willock, 2011). Therefore, this section is organized in the following
subsections:

• TTCN-3 Language, Test Suite, and Test Systems
• Basic TTCN-3 Constructs and Statements
• Single Component TTCN-3 Test Suites

3.9.1 TTCN-3 Language, Test Suite, and Test Systems

TTCN-3 is an internationally standardized language specially designed for
testing. Besides reusing many basic constructs and statements from conven-
tional programming languages, TTCN-3 introduces testing-oriented exten-
sions and more advanced concepts, including (1) the type system with native
types for lists, test verdicts, and test components; (2) direct support for tim-
ers, message-based and procedure-based communication; and (3) built-in
data matching, distributed test system architecture, and test components
concurrent execution.

TTCN-3 standards provide clear and precise language definitions, so
test cases written in TTCN-3 are unambiguous, and their execution on
any TTCN-3 compliant testing system must have the same behavior. This
independence from testing tool vendors enables easy test suite migration to
other testing tools and their reuse. Although in this book, we primarily use
TTCN-3 for conformance testing, actually TTCN-3 may be used across the
whole product development cycle.

The TTCN-3 core notation is an intuitive textual format for defining
test cases that is quite similar to conventional programming languages.
Additionally, TTCN-3 supports specifying test cases using other presenta-
tion formats. These presentation formats may be converted into the core
notation with the same semantics. Initially, two presentation formats have
been standardized, namely the tabular presentation format and the graphi-
cal presentation format. The former was designed to further the support
of the existing TTCN-2 tabular format, and enable migration of existing
TTCN-2 legacy artifacts into the TTCN-3 tools. The latter uses an extended
version of the MSC notation for specifying test cases. Since neither of these
two presentation formats were accepted by the TTCN-3 community, they are
not described further in this book.

When comparing TTCN-3 with TTCN-2, we need to consider the four major
areas of improvement, namely the productivity, the expressiveness, the flex-
ibility, and the extensibility. The core TTCN-3 notation has been developed
as a textual language resembling conventional programming languages,

131Design

with the intention to enable productivity. TTCN-3’s better expressiveness
and flexibility is based on various language extensions, such as (1) support
for the testing IP based systems and text based protocols like HTTP and
SIP, and (2) support for testing systems based on remote procedure calls,
like CORBA and web services. In order to support extensibility, TTCN-3 has
explicit hooks and mechanisms that allow new language features and nota-
tions to be easily integrated.

Generally, there are two kinds of new features: the self-contained and
the multifaceted features. Some examples of self-contained features are the
integration of IDL and XML type definitions and the definition of a com-
mon set of documentation tags, whereas some examples of multifaceted
features are behavior types, type parameterization, and test deployment
support. The self-contained features have been defined by the new parts
in the TTCN-3 standards, whereas the multifaceted features have been
defined by separate extension packages, including the necessary modifica-
tions to the core language, the operational semantics, and the parts of the
TTCN-3 standards.

Next, we introduce the TTCN-3 Test Suite. The TTCN-3 test suite is a col-
lection of modules. A module comprises definitions of data types, values,
and test cases, as well as a control part that specifies how different test cases
are to be executed. A module may import necessary definitions from other
modules, which is key for test suite modularization.

Obviously, a test case running on a test system must be able to communi-
cate with a SUT in order to test it. Generally, TTCN-3 supports two types of
communication among test cases and SUTs, namely message-based commu-
nication and procedure-based communication. Since message-based com-
munication is still dominantly used, we focus on it in this book. Normally,
we use the TTCN-3 type record to define needed message types. A record is
an ordered structured type, which is a collection of basic type elements (such
as integer and charstring) and other structured type elements that corre-
spond to individual message fields. Many message types comprise a field
that defines the kind of the message, and such a field is typically defined
using the TTCN-3 type enumerated.

To define a message type, we normally first define the types of individual
message fields, and then we define the message type itself. For example, let’s
define the message type Msg, which comprises the four fields, namely ID,
Kind, Question, and Answer. Assume that the types of these fields are 16-bit
integer, enumerated, charstring, and charstring, respectively. We would then
use the following definitions to define the message type Msg:

type integer ID (0..65535);
type enumerated Kind (e_Question, e_Answer);
type charstring Question;
type charstring Answer;
type record Msg {

132 Communication Protocol Engineering

 ID id;
 Kind kind;
 Question question;
 Answer answer;
}

The communication messages are the actual instances of message types,
and these instances are called templates. In TTCN-3, templates are used to
send particular messages or to test whether received messages are in the
set of expected messages. We may specify a set of expected messages using
ranges, lists, and matching attributes (we will illustrate this later on). It is
important to remember that a template for a type must specify a value or a
matching expression for each field of this type. If the value of some field type
is unknown, i.e., it may contain any value, we encode such a value with the
character “?.” Furthermore, if some field of a message type is optional, and if
this field should not be the part of the template we are creating, then we have
to assign the special value omit to this field.

The template definition resembles the definition of a function. We spec-
ify the type (template), the name, and the list of its formal parameters.
Instantiating a template (i.e., creating the concrete message) resembles a
function call—we specify the template name and the list of its real param-
eters, which are used to replace the formal parameters.

For example, using the message type Msg, we may define the parametrized
template t_request as follows:

template Msg t_request(ID p_id, Question p_question) := {
 id := p_id,
 kind := e_Question,
 question := p_question,
 answer := omit
}

Similarly, we may define the parametrized template t_response:

template Msg t_response(ID p_id, Answer p_answer) := {
 id := p_id,
 kind := e_Answer,
 question := ?,
 answer := p_answer
}

Next, we introduce test components and communication ports. Each test
case runs on the test component it has been assigned to. A test suite may use
a single or multiple test components, which may communicate with each
other, and/or with the SUT over communication ports. A port is theoretically

133Design

an infinite first-in-first-out (FIFO) queue oriented in the receive direction,
which stores messages in message-based communication (or calls in proce-
dure-based communication) until they are processed by the test component
that is the owner of that port. Many simple test suites use a single test com-
ponent to execute test cases, and a single communication port to commu-
nicate with the SUT. Here is an example definition of the test component
named ComponentS, which uses the single port pt of the type PortS:

type component ComponentS {
 port PortS pt
}

Each port has a type, which defines the type of the communication
 (message-based or procedure-based) and the types of messages that may be
communicated over that port. Within the definition of a port, each message
type is given the attribute in/out/inout that determines whether a message of
that type may be received (in), sent (out), or received and sent (inout) from the
test component owning that port. For example, the port type PortS that may
be used to both send and receive the message type Msg is defined as follows:

type port PortS {
 inout Msg
}

A test case may send and receive messages (i.e., templates) on a port using
the method send and the method receive, respectively. For example, a test
case sends the message t_requestMsg on the out/inout port pt using the fol-
lowing statement:

pt.send(t_requestMsg(12345, "SUT what is your name?"));

Similarly, a test case receives the message t_responseMsg on the in/inout
port pt using the following statement:

pt.receive(t_responseMsg(12345, "My name is SUT XY."));

Although the syntax of statements for sending and receiving messages is
very similar (only the method name is different), there is a fundamental dif-
ference in their semantics, i.e., in the way they operate. The method send is
a nonblocking method and it always successfully sends the outgoing mes-
sage, whereas the method receive is a blocking method and returns when
the specified incoming message appears at the head of the input FIFO queue.
More precisely, if the input FIFO queue is empty, the method receive blocks
until the specified message arrives into the input FIFO queue. If some other
message is at the head of the input FIFO queue, the method receive remains

134 Communication Protocol Engineering

blocked forever (we normally use timers to recover from such situations, as
will be shown later).

A typical test case resembles a single- or multiphase interview. In each
phase, the test case asks a question by sending a request message to the SUT,
and then it checks the SUT’s answer by matching the SUT’s response mes-
sage with the expected message (i.e., particular template). If the response
matches the expected message, SUT passed that phase, and the test case pro-
ceeds to the next phase. If SUT passes all the phases, the test case sets the
final verdict by using the keyword setverdict to the value pass. An example
of the body of a simple single-phase test case is the following:

pt.send(t_requestMsg(12345, "SUT what is your name?"));
pt.receive(t_responseMsg(12345, "My name is SUT XY."));
setverdict(pass);
stop;

In this simple example above, the test case sends the messages t_request-
Msg over the port pt, matches the SUT’s response form the same port pt to
the message t_replyMsg, and if the test case receives that message, it sets the
verdict to pass, and stops its execution using the keyword stop.

Besides the verdict pass, the test verdict may be none, inconc (i.e., incon-
clusive), fail, or error. The meaning of these verdicts are as follows (we will
return to more detailed technical treatment of test verdicts later in the text
that follows):

• The verdict none is the default verdict and it is implicitly set by the
test system before the test case starts executing.

• The verdict pass means that the test case has been completed
successfully.

• The verdict inconc means that there is not enough evidence to pro-
claim that the SUT is conformant to the specification.

• The verdict fail indicates that the SUT is not compliant with the
specification.

• The verdict error indicates that the test case terminated with a run-
time error, e.g., divide by zero.

In order to complete the simple test case above, we have to give it a name
and define the test component that will execute it. If we give it the name
tc_simple1 and if we assume that it will run on the component ComponentS,
the complete test case would be the following:

testcase tc_simple1() runs on ComponentS {
 pt.send(t_requestMsg(12345, "SUT what is your name?"));
 pt.receive(t_responseMsg(12345, "My name is SUT XY."));

135Design

 setverdict(pass);
 stop;
}

If we want to activate this test case, we have to declare that it should exe-
cute, by using the keyword execute, within the control part of the test mod-
ule, which is declared by the keyword control, as follows:

control {
 execute(tc_simple1())
}

Although our test case above looks simple and elegant, it will be blocked
forever in two cases. The first case is when the SUT sends the unexpected
response message, i.e., when it sends any other message not equal to t_response
Msg(12345, “My name is SUT XY.”). The second case is when the SUT, for
some reason, does not send any response message at all. So, besides the suc-
cessful case when the SUT returns the expected response message within
some reasonable amount of time, we have two failure cases.

Generally, in TTCN-3 we use the statement alt to specify alternative SUT
behaviors at a given point of a test case. The statement alt blocks until any of
its alternatives matches. The alternatives are checked, starting from the first
and towards the last, until the first matching alternative is found. The way to
receive any message is to use the method receive without parameters, which
will match with any message at the head of the input FIFO queue.

We may fix the initial test case above by introducing the statement alt with
three alternatives, which correspond to three possible SUT behaviors (i.e., the
one successful and the two failure cases). Additionally, we must introduce a
timer that will limit the time interval for awaiting a response message from
SUT. Let’s give this timer the name responseTimer. This timer should be started
before the statement alt, and it should be stopped when any response message
from SUT is received. Of course, there is no need to stop the expired timer.

The fixed test case operates as follows. It sends the request message to the
SUT, starts the timer responseTimer, and checks the alternatives. If the response
message is the expected one, it sets the verdict to pass. If the response mes-
sage is any other (unexpected) message, it stops the time responseTimer, and
sets the verdict to fail. If the timer responseTimer expires, it just sets the ver-
dict to fail. The complete code of the fixed test case is as follows:

testcase tc_simple1() runs on ComponentS {
 timer responseTimer;
 pt.send(t_requestMsg(12345, "SUT what is your name?"));
 responseTimer.start(5.0);
 alt {
 []pt.receive(t_responseMsg(12345, "My name is SUT XY.")){

136 Communication Protocol Engineering

 responseTimer.stop;
 setverdict(pass);
 }
 []pt.receive {
 responseTimer.stop;
 setverdict(fail);
 }
 []responseTimer.timeout {
 setverdict(fail);
 }
 }
 stop;
}

Obviously, dealing with unexpected or untimely SUT behavior may lead
to considerable code duplication. If we needed to add two additional cases
for every receive statement in order to catch incorrect or missing responses,
then our test cases would become very long and verbose, thus hard to com-
prehend and maintain. Because of this, TTCN-3 offers a so-called default
behavior construct, which allows us to handle unexpected situations implic-
itly. Instead of writing code to handle unexpected situations explicitly, we
write the default behavior handler in a single place and define that this han-
dler should be used implicitly when none of the explicitly available alterna-
tives match (we will come to this later in this section).

Sometimes, test cases that require access to more than one interface can
be better structured by having one dedicated test component per interface.
These interfaces need to be described within the so-called test system inter-
face (TSI), which defines the common interface towards the SUT that differ-
ent test components share in order to test the SUT. One of these components
is called the Main Test Component (MTC), which is typically responsible
for creating other test components, collecting their individual verdicts, and
calculating the final verdict for the whole test case.

Next, we introduce TTCN-3 Test Systems. So far, we learned the TTCN-3
language elements for writing the so-called abstract test suites, which do
not provide any system specific information, such as message encoding or
practical communication setup. In the abstract test cases shown in this sec-
tion, we send and receive messages without being concerned with the details
how these messages are sent in the physical world. However, in order to create
real test suite, we have to commute from an abstract to the real world. An
abstract test suite is not directly executable, so we have to provide a TTCN-3
compiler or interpreter for it. Additionally, outside of an abstract test suite,
we have to provide the following parts:

• Message Codecs, which are able to encode messages that are sent to
the SUT and decode messages that are received from the SUT.

137Design

• An SUT Adapter that maps the TTCN-3 port to the real port used
by the SUT, and the TTCN-3 communication mechanism to the real
communication mechanism used by the SUT.

• A Platform Adapter, which typically provides the real implementa-
tion of timers and the mechanism for calling external platform spe-
cific functions.

• Test Management provides support for creating test campaigns, or
for customizing log formats and handling log records. It is especially
important for a dynamic test environment, where test cases and/
or order of their execution are frequently changed. In this case, we
need advanced test management support in order to avoid unneces-
sary, time-consuming test suite recompilations.

The additional parts, mentioned above, communicate with the abstract
test suite using the two standard interfaces, namely the TTCN-3 Runtime
Interface (TRI) and the TTCN-3 Control Interface (TCI). The TRI specifies
operations for the SUT adapter and the platform adapter, whereas the TCI
specifies operations for the test management, the component handling, the
logging, and the encoders and the decoders (i.e., codecs). Figure 3.44 shows
the block diagram of the complete TTCN-3 Test System architecture.

Component
handling

TCI-CH

Test executable

Generated code Runtime system

TRI

Test
management

Test
logging

TCI-TLTCI-TM

CoDec

TCI-CD

SUT and platform adapters

Platform adapterSUT adapter

FIGURE 3.44
Architecture of the TTCN-3 Test System.

138 Communication Protocol Engineering

The source abstract test suite is compiled into the module Generated
Code, shown in the center of the Figure 3.44. The generated code is executed
on the module Runtime System, which implements the TTCN-3 operational
semantics. These two modules together are called the TTCN-3 Executable
(TE). The test executable uses the interface TRI to call functions provided by
the SUT Adapter and the Platform Adapter, shown in Figure 3.44. These
adapters map common operational abstractions, like communication ports
and timers, to real mechanisms available on particular test system platforms.

On the other hand, the interface TCI connects the test executable with the rest
of the modules shown in Figure 3.44, namely the component handling (CH), the
test management (TM), the test logging (TL), and the codec (CD). Since the inter-
face TCI is rather complex, it has been partitioned into the four sub-interfaces: the
interface TCI-CH, the interface TCI-TM, the interface TCI-TL, and the interface
TCI-CD. The roles of these four modules (and their corresponding sub-interfaces)
are the following: The module CH is used to specify how test components are
created and implemented when the test system is actually deployed, the module
TM is used to control test case creation and execution, the module TL used to cre-
ate execution logs, and the module CD is used to specify external codecs.

3.9.2 Basic TTCN-3 Constructs and Statements

In this section we briefly introduce basic TTCN-3 constructs and statements.
The TTCN-3 test suite consists of modules like programs in common program-
ming languages. Each module may have a definition part and an optional
control part. A control part is similar to the function main in programming
languages. In this section, we focus primarily on the module definition part.

The basic TTCN-3 constructs are the following:

• Identifiers
• Modules
• Scopes
• Constants
• Variables
• Comments
• Basic data types
• Subtypes
• Functions
• Predefined functions
• Parameters with default values

Identifiers uniquely identify named entities in the TTCN-3 code in the
same way that identifiers in programming languages do. They consist of
alphanumeric characters and underscores, must start with a letter, and are

139Design

case sensitive. TTCN-3 has its own naming convention for identifiers, which
is rather similar to naming conventions in programming languages. So, we
skip its formal specification here, and instead use it consistently in the code
snippets in this section, so readers will become familiar with it.

Modules are defined using the keyword module followed by the module
name and the module body, which is enclosed in the curly brackets. The
module body consists of a definition part and an optional control part. The
control part is defined using the keyword control followed by the control
part body that is enclosed in the curly brackets. The body of the control part
defines how the defined test cases are to be executed. The syntax for defining
modules is the following:

module module_name {
 // Here goes the definition part, which defines data types and constants

 control {
 // Here goes the control part that executes the test cases
 }
}

Scopes are defined by code blocks enclosed in the curly brackets. The code
blocks may contain code statements and nested code blocks. The outermost
scope is the current module. The purpose of TTCN-3 scopes is the same as in
programming languages, and they follow the same rules. Definitions made
in the current scope are only visible within that scope and in the nested
scopes. In TTCN-3, it is not possible to reuse the identifiers that were intro-
duced in the outer scopes. The following are the nine basic scope units:

• Module definitions part
• Control part of a module
• Component types
• Functions
• Altsteps
• Test cases
• Statement blocks
• Templates
• User-defined named types

All the identifiers must be declared before they are used, except the mod-
ule identifiers, which may be declared and referred to in any order.

Constants are defined using the keyword const in any scope. A constant
is assigned the value within its declaration, which has the following syntax:

const const_type const_name := const_value;

140 Communication Protocol Engineering

where const_type is the type of the constant, const_name is the identifier of
the constant, and const_value is the value assigned to the constant. Generally,
const_value may be an expression with constants, but references to other con-
stants must be made without creating cycles. By using constants, we create
test suites that are easier to understand and maintain.

Variables are declared using the keyword var in any scope, except at the
top module level, because in TTCN-3 there are no global variables. Global
variables are not allowed in TTCN-3 because of data races that would oth-
erwise occur when distributed test components would try to update them.
Like in programming languages, variables are used to save temporary val-
ues during program execution. A variable may be assigned the initial value
within its declaration, or later in a separate assignment statement. However,
using a variable before it is assigned a value results in a run-time error.

Besides simple variables, we can declare arrays the same way we do in other
programming languages, after the array name we define its size enclosed
by square brackets. Arrays are indexed starting from 0, and any attempt to
access a value outside of the permitted range would lead to an error.

Comments in TTCN-3 are classified as block comments, line comments,
or documentation comments. The block comment starts with characters
“/*”, may span several lines, and ends with characters “*/”, whereas the
line comment starts with characters “//” and extends to the end of the line.
Documentation comments are defined in standard ETSI ES 201 873-10 (see
Part 10: TTCN-3 Documentation Comment Specification). Like in some other
programming languages, such as Java, an external documenting tool pro-
cesses these documentation comments to automatically generate the up-to-
date test suite user documentation.

Basic data types, also known as built-in data types, are a constitutive part
of the TTCN-3 language. The TTCN-3 may be classified as a strongly typed
language with a very rich type system. Here we will introduce only the most
frequently used simple data types and the subtyping mechanisms for intro-
ducing user-defined types. The most frequently used basic data types are
integer, Boolean, and charstring. Possible values of the type integer are pos-
itive and negative whole numbers, including zero, possible values of the type
Boolean are true and false, whereas possible values of the type charstring
are strings of ASCII characters that are enclosed by double quotes. However,
unlike in other programming languages, nonprintable control characters,
such as new line or tab, cannot be expressed using escape sequences.

Subtypes in TTCN-3 may be defined using two available subtyping mech-
anisms. The first subtyping mechanism restricts the set of possible values of
a given ordered type to a particular range of values. For example, the type
integer may be subtyped to a range of its values, by specifying a lower and
an upper bound of that range. According to the first subtyping mechanism,
a new subtype is defined by the type declaration of the following syntax:

type parent_type new_type new_type_range

141Design

Here, parent_type is the parent type, new_type is the name for the newly
defined type, and new_type_range is the new subtype’s restricted range of
values. We already saw the following example of the first subtyping mecha-
nism in the previous section:

type integer ID (0..65535);

A constant or a variable of the given subtype must obey the subtype
restrictions. An assignment outside of the allowed range of values would
cause a compile time or run time error. For example, assigning the value -1 to
a variable of the type ID would cause such an error.

The second subtyping mechanism restricts the set of possible values of
a given ordered type to a particular list of values. According to the second
subtyping mechanism, a new subtype is defined by the type declaration of
the following syntax:

type parent_type new_type new_type_list

where parent_type is the parent type, new_type is the name for the newly
defined type, and new_type_list is the new subtype’s restricted list of values.
For example, we define the new type SomeNumbers by listing the list of its
possible values 1, 3, 5, and 8:

type integer SomeNumbers (1, 3, 5, 8);

While introducing subtyping, we already touch upon compatibility
restrictions. TTCN-3 enforces type compatibility of values in assignments,
instantiations, expressions, and comparisons. We already mentioned that
assigning the value to the given variable that is outside of its set of pos-
sible values causes a compile time or a run time error. In principle, a vari-
able can be assigned a value of another type if they have the same root
type and the value conforms to the associated subtype constraints of that
variable.

Functions are defined in the module definitions part by the keyword func-
tion, followed by a function name, an optional parameter list, an optional
return value, and the function body enclosed by curly brackets. A function
body typically contains definitions of local constants and variables, and
statements that define dynamic behavior. Functions may be called from the
module control part, from test cases, or from other functions.

The function’s return value may be a value like in common programming
languages or a template. The return value is defined by the keyword return
after the parameter list in the function header, followed by the return type.
In this case, the function body must contain at least one return statement fol-
lowed by a value or template, which must be compatible with the specified
type in the function header.

142 Communication Protocol Engineering

Function parameters are declared with an optional passing mode, their
type, and their name. There are the three parameter passing modes, namely
the passing mode in (this is the default mode), the passing mode out, and
the passing mode inout. In case of the passing mode in, function param-
eters are passed by value, i.e., the actual parameters are copied into the for-
mal parameters before the function body is executed. In cases of the passing
modes out and inout, function parameters are passed by reference. In par-
ticular, in the case of the passing mode out, the formal parameters are cop-
ied into actual parameters, whereas in the case of the passing mode inout,
parameter passing is performed in both directions. Obviously, an actual
parameter cannot be a constant if it is to be passed in the modes out and
inout.

TTCN-3 introduces a term instantiating a function, which corresponds
to a function call in other programming languages. We may instantiate a
function by specifying the function name and its actual parameters. There
are two possible ways to specify the actual parameters—with or without the
parameter names. If actual parameters are specified without their names,
they must be specified in the same order as the corresponding formal param-
eters that are specified in the function header. If the actual parameters are
specified by referring to the names of formal parameters, they may be speci-
fied in any order.

As in other programming languages, functions may be defined externally,
i.e., outside of the current module. We use the keyword external in front of
the function prototype to declare such a function.

Predefined functions are functions prepared in advance that are already
available for use, much like built-in (or basic) data types. These functions
enable productive work—without them the user would need to write every-
thing from scratch. The most important predefined functions are as follows:

• Value conversion functions, e.g., integer to a character
• String handling functions
• Length and size functions
• Presence checking functions
• Codec functions

Parameters with default values enable smooth evolution of test suite
libraries by adding parameters without breaking previous releases. Once a
formal parameter with a default value is defined in the list of formal param-
eters, it may be omitted in an actual parameter list. Obviously, an in param-
eter may have a default value, whereas out and inout parameters may not
have a default value.

The parameter default value is used when no actual parameter is provided
for a formal one. Typically, when the trailing formal parameters in a param-
eter list have default values, they can all be omitted in an actual parameter

143Design

list. In case of other parameters that follow a parameter with a default value,
the parameter with the default value could be omitted in the actual param-
eter list by using the character dash ‘-‘ instead of a value.

The alternative convention of providing actual parameters is to assign
actual parameters to the formal parameter names explicitly. This alternative
convention may be used for all the parameter passing modes (in, out, and
inout). However, it is not allowed to mix the conventional and the assign-
ment conventions. Also, the assignment convention may not be used for the
parameter with a default value.

Here we conclude our brief introduction to basic TTCN-3 constructs, and
we switch to basic TTCN-3 statements. The basic TTCN-3 statements are

• Operators
• Expressions
• Assignments
• Conditional statements
• Loops
• Labels and goto statements
• Log statements
• Control part
• Preprocessing macros

Operators are classified into five categories: arithmetic operators (+, -, *, /,
mod, rem), relational operators (==, <, >, != , >=, <=), logical operators (not
and, or, xor), binary string operators (not4b, and4b, xor4b, or4b), and string
operators (&, <<, >>, <@, @>). Operator precedence (i.e., operator priorities) is
defined similar to other programming languages, e.g., / has higher priority
than +, etc.

We construct expressions by applying operators to operands, which may
be literals, constants, and variables. Expressions are evaluated according to
operator priorities, or from left to right when operators have the same prior-
ity. If in doubt, we may group subexpressions by parentheses. Of course,
operands of arithmetic, logical, and string concatenation operators must
have the same root type. In TTCN-3, all variables must be initialized before
the expression is evaluated (unlike common programming languages where
this is not required).

Assignments are used to update variables. The expression on the right-
hand side and the variable of the left-hand side must be of compatible types
and the expression must evaluate to a value. If these conditions are met, the
value of the expression is stored into the variable.

Conditional statements, like in other programming languages, are used
to organize control flow within the dynamic parts of test suites. There are
two kinds of conditional statements: the statement if–else and the statement

144 Communication Protocol Engineering

select–case–else. These statements may be nested and mutually nested. The
syntax of the statement if–else is as follows:

if (condition_expression)
 statement_true
else
 statement_false

where condition_expression is a Boolean expression, statement_true is a state-
ment that is executed if the expression evaluates to the value true, and state-
ment_false is a statement that is executed otherwise. Most frequently, these
statements are some block statements wherein some processing is performed:

if (condition_expression) {
 // Do something if the condition is true
}
else {
 // Do something else if the condition is not true
}

The syntax of the statement select–case–else is

select (control_variable) {
 case (values_1)
 statement_1
 ...
 case (values_n)
 statement_n
 ...
 else
 statement_else
}

where control_variable is the name of the control variable that governs the
selection of possible cases, values_1 to values_n are the specifications of pos-
sible values, statement_1 to statement_n are the corresponding statements,
and statement_else is the statement that is executed if none of the cases was
selected. Here is a simple example:

integer v_int;
 // assume that a value has been assigned to v_int
 select (v_int) {
 case (0 .. 9) {
 log(v_int, " is a one digit positive integer");
 } case (10 .. 19) {
 log(v_int, " is a two digits positive integer");

145Design

 }else case{
 log(v_int, " is not a one digit or a two digits positive integer");
 }
}

Loops are used to specify repetitive behavior. There are the three kinds of
loops in TTCN-3: the statement for, the statement do–while, and the state-
ment while. Within a loop, the statement break may be used to exit the loop,
whereas the statement continue may be used to skip the current iteration.
The syntax of the statement for is as follows:

for (initial_stmt; condition_exp; next_stmt)
 body_statement

where initial_stmt is the initial statement typically used to declare a control
variable and to assign it an initial value, condition_exp is the condition expres-
sion that is checked before the next loop iteration starts (if the expression is
not true, the loop terminates), next_stmt is the statement that is executed after
each iteration, and body_statement is the loop’s body. The following simple
example, with the typical control variable i, looks familiar:

for (integer i := 0; i < n; i := i + 1)
 // Do something that depends on the value of i

The syntax of the statement do–while is as follows:

do
 body_statement
while (condition_exp)

The syntax of the statement while is

while (condition_exp)
 body_statement

Labels and goto statements provide a mechanism to jump from one part
of a program to another. Although they provide compatibility with TTCN-2,
their usage in TTCN-3 is strongly discouraged. The statement label defines a
label within a logical block statement (e.g., function or control part), whereas
the statement goto is a control flow statement that transfers control to the
specified label within the same block statement. So, it is not possible to jump
out of (or into) the functions, test cases, and the control part; it is not possible
to jump into both the loop and conditional statements.

Log statements are used for writing relevant information on the test sys-
tem’s logging interface. The particular format of logged values depends

146 Communication Protocol Engineering

on the logging interface implementation. We may log the variables, arrays
(whole arrays by specifying their name), constants, function parameters,
function instances (that have the statement return), test component refer-
ences, templates, timers, and related operations.

The control part of the module is the entry point for execution of a test
suite, which is similar to the function main in other programing languages.
The control part specifies the dynamic behavior of the test system. It may
contain control statements and function calls. The main role of the control
part is to execute test cases. The control part is not allowed to directly com-
municate with the SUT, to set a verdict, or to create dynamic configurations.
These operations must be performed only within test cases.

Preprocessing macros are used in definition or control parts to locate the
position of the macro call. TTCN-3 compiler replaces these macros with their
charstring or integer values. More precisely, these values are inserted in
the program source code instead of the macro calls. By the convention, the
macro’s names are enclosed by underscores. Currently, TTCN-3 offers the
following preprocessing macros: _MODULE_, _FILE_, _BFILE_, _LINE_,
and _SCOPE_.

The value of the macro _MODULE_ is the name of TTCN-3 module in
which the macro was called.

The value of the macro _FILE_ is the full pathname (ending with the basic
file name) of the file in which the macro was called.

The value of the macro _BFILE_ is the basic file name (without its path) of
the file in which the macro was called.

The value of the macro _LINE_ is the number of the source code (i.e., file)
line in which the macro was called.

The value of the macro _SCOPE_ depends on whether the correspond-
ing scope is named or unnamed. The following basic scopes are named: the
module, the control part (has a special name “Control”), the function, the
component, the test case, the altstep, the template, and the user-defined type.
If the corresponding scope is named, the value of the macro _SCOPE_ is its
name; otherwise, the value is the name of the next higher basic scope.

3.9.3 Single Component TTCN-3 Test Suites

Although TTCN-3 resembles a common programming language, it’s a
domain-specific language for developing test cases, which defines the inter-
action between the test system and the SUT. In this section, we study the
message-based communication with the SUT and test cases executed on a
single test component (i.e., nonconcurrent TTCN-3 test suites).

We introduce the concepts for message-based communication and single
component test suites through examples for testing the Address Resolution
Protocol (ARP) server. So, the test setup is such that test cases executing on a
test system (also called the tester) imitate an ARP client, whereas the SUT is
the real ARP server under testing, see Figure 3.45.

147Design

The main task of the ARP is to map a given network address, such as the
Internet Protocol version 4 (IPv4) address, into the corresponding physical
(or hardware) address, such as Ethernet address, which is also known as the
Media Access Control (MAC) address. The ARP is a simple client–server
protocol, which uses a simple message format containing one address reso-
lution request or response. The size of the ARP messages depends on the
size of the particular network and physical addresses. For example, the
size of the IPv4 address is 32 bits (4 bytes), the size of the MAC address is
48 bits (6 bytes), and the size of ARP messages used to map IPv4 to the MAC
addresses is 28 bytes.

The fields of the ARP message used for mapping IPv4 to MAC addresses
are as follows (we refer to individual bytes, also called octets, of the message
by using their index, which starts from 0):

• Hardware type (HTYPE), bytes 0–1, specifies the type of the physical
address (for Ethernet, HTYPE is equal to 1).

• Protocol type (PTYPE), bytes 2–3, specifies the network protocol (for
IPv4, PTYPE is equal to 0x0800).

• Hardware address length (HLEN), byte 4, is the length of the hard-
ware address (for Ethernet, HLEN is equal to 6).

• Protocol address length (PLEN), byte 5, is the length of the network
address (for IPv4, PLEN is equal to 4).

• Operation (OPER), bytes 6–7, specifies the operation that the sender
is performing (1 for request, 2 for reply).

• Sender hardware address (SHA), bytes 8–13, is the sender’s MAC. In
the message ARP request, this field is the MAC of the host sending
the request. In the message ARP reply, this field is the MAC of the
host that the request was looking for, i.e., the result of the request
mapping.

• Sender protocol address (SPA), bytes 14–17, is the sender’s IPv4
address.

ARP
client

imitator
(TS)

ARP
server
(SUT)

FIGURE 3.45
Test configuration for testing the ARP Server.

148 Communication Protocol Engineering

• Target hardware address (THA), bytes 18–23, is the receiver’s MAC.
In the message ARP request this field is ignored. In the message
ARP reply, this field is the MAC of the host that sent the initial mes-
sage ARP request.

• Target protocol address (TPA), bytes 24–27, is the receiver’s IPv4
address.

We may describe the types of the fields of the ARP message by the following
supplementary types (note that generally we may specify hexadecimal num-
bers using the construct ‘h_num’H, where h_num is a hexadecimal number):

type integer Int8 (0..'FF'H)
type integer Int16 (0..'FFFF'H)

where Int8 corresponds to a single byte field and Int16 corresponds to a dou-
ble byte field. Then we may define possible values of the field OPER using
the following enumerated type (note that generally we may explicitly assign
a value to an enumeration element by writing the particular value enclosed
in the parenthesis after the particular enumeration element name):

type enumerated ARPOperation (
 e_ARPRequest(1),
 e_ARPReplay(2)
);

Using these supplementary types, we may describe the ARP message by
the following record type:

type record ARPMessage {
 Int16 htype,
 Int16 ptype,
 Int8 hlen,
 Int8 plen,
 Int16 oper,
 charstring sha,
 charstring spa,
 charstring tha,
 charstring tpa
}

Finally, we may construct individual ARP messages using the following
parametrized template:

template ARPMessage t_ARPMessage(
 Int16 p_oper, Int48 p_sha, Int32 p_spa, Int48 p_tha, Int32 p_tpa

149Design

):= {
 htype := 1,
 ptype := 0x0800,
 hlen := 6,
 plen := 4,
 oper := p_oper,
 sha := p_sha,
 spa := p_spa,
 tha := p_tha,
 tpa := p_tpa
}

The ARP operates as follows: Assume that the router R has to deliver
an IPv4 datagram to the host H, which for example has the IPv4 address
192.168.0.48 and the MAC address 00:EB:24:B2:05:C8. First, R will have a look
in its own local routing table for the entry corresponding to H’s IPv4 address.
If R finds it there, then R reads the H’s MAC address from that entry and uses
it to perform direct datagram delivery to H.

If R does not find the entry for the IPv4 address 192.168.0.48, then R broad-
casts the message ARP request for this IPv4 address by sending the Ethernet
frame to the destination MAC address FF:FF:FF:FF:FF:FF. The ARP server S
receives this message, finds the mapping in its local table, creates the cor-
responding message ARP reply, and sends it to R, which, in turn, performs
direct datagram delivery to H, and updates its local routing table accordingly.

The tester (i.e., test system) may test ARP by executing a simple test case,
which first sends the message ARP request (with SPA set to its IPv4 address,
SHA set to its MAC address, and TPA set to the IPv4 address 192.168.0.48;
THA is ignored), and then receives the message ARP reply with the required
mapping (with SPA set to the IPv4 address 192.168.0.48 and SHA set to
the MAC address 00:EB:24:B2:05:C8), see the MSC in the Figure 3.46. If the

Tester ARP server

ARP_request

ARP_reply

FIGURE 3.46
MSC for mapping the IPv4 address into the corresponding MAC address.

150 Communication Protocol Engineering

received message ARP reply contains the correct mapping, the tester would
set the test verdict to pass; otherwise, it would set the test verdict to fail.

Here, we introduce the following concepts for message-based communica-
tion and single component test suites:

• Ports
• Components
• Test Cases
• Templates
• Message-Based Communication
• Timers
• Alt Statement
• Altsteps
• Default Altsteps
• Functions

Ports are used for exchanging messages. The messages sent to a port are
immediately delivered to the related receiver, whereas the messages received
from a port are stored in the unbounded FIFO queue, which is implicitly
assigned to a port. Although the queue is theoretically unbounded, i.e., of infi-
nite length, TTCN-3 implementations may introduce some practical limits.

Directions of messages exchanged over ports are defined from the test sys-
tem point of view. There are the three possible message transfer modes for
exchanging messages over ports, namely the mode out, the mode in, and
the mode inout. The mode out is used for sending messages from the test
system to the SUT, the mode in is used for receiving messages sent from the
SUT to the test system, whereas the mode inout is used for the bidirectional
exchange of messages between the test system and the SUT.

Generally, a single port may be used for exchanging more message types.
Moreover, messages of different message types may be exchanged over the
same port in the same or in the different message transfer modes. In the most
general example, messages of the types A, B, and C may be exchanged over
the same port in the transfer modes out, in, and inout, respectively.

Most frequently we will use a single port for the exchange of a single type
of message in a single transfer mode. For example, we may define the mes-
sage port type ARPPort for the bidirectional exchange of messages, or the
type ARPMessage in the message transfer mode inout, in order to test the
target ARP server:

type port ARPPort message {
 inout ARPMessage
};

151Design

However, sometimes we will need to define different message types to
be exchanged over the same port type in various message transfer modes.
For example, imagine that we want to test the Email server. Since Email
clients use SMTP protocol for sending email messages to the Email server,
and POP3 protocol for receiving email messages from the Email server, we
would define one message port type with two different message types, for
example, as follows:

type port MailPort message {
 inout SMTPMessage;
 inout POP3Message
}

Components are used for executing test cases. A component may have its
local state that comprises its constants, variables, and timers. The compo-
nent’s interface is defined by its ports. In order to define a component type,
we have to provide the list of particular port instances used by that compo-
nent type, where each item in that list indicates the type of the port and the
name of the port instance. It is not necessary that all the ports have different
types. Some of the ports may have the same type, but their names must be
different, i.e., unique.

For example, we may define the component type ARPTester, which uses
a single port instance of the type ARPPort with the name serverPort, as
follows:

type component ARPTester {
 port ARPPort serverPort
}

Optionally, we may define component’s constants, variables, and timers,
within the component’s type definition. As shown in the previous section,
constants are defined by their type, name, and value; variables are defined
by their type and name and optional initial value; and timers are defined by
their name and optional default duration of the type float. It is important to
notice that each instance of a component type has its own instances of the
ports, variables, and timers (i.e., they are analogous to nonstatic class attri-
butes in programming languages).

For example, we may extend the previous definition of the component type
ARPTesterS by introducing the constant c_maxRequests (the max number of
ARP requests that an ARPTester may send in a burst, i.e., without waiting for
a reply before issuing the next request), the variable v_noRequests (the num-
ber of requests sent to the SUT), and the timer t_inactive (that may bound the
time interval for waiting the reply from the SUT), with the default duration
of 0.5 s. The extended type ARPTesterS is as follows:

152 Communication Protocol Engineering

type component ARPTesterS {
 const integer c_maxRequests := 1000;
 var integer v_noRequests;
 timer t_inactive := 0.5;
 port ARPPort serverPort
}

Test cases are used to describe the expected behavior of the SUT, and to set
the test verdict depending on the real behavior of the SUT. More precisely,
test cases define the behavior of the main test component within a given test
configuration that may generally have more test components. As its name
suggests, a single component TTCN-3 test suite’s test configuration has a
single test component, which must be the main test component.

The Test System Interface (TSI) is the interface between the TS and the SUT.
In case of a single component TTCN-3 test suite, TSI is completely defined by
the set of ports of the main test component, thus TSI is defined implicitly and
there is no need to define it separately.

When writing a test case, we use the clause runs on to specify the com-
ponent type that will execute that test case. Most frequently, a test case will
not have parameters, and in such a case we simply omit the list of formal
parameters by writing the empty pair of parenthesis after the test case name.
For example, the following empty test case tc_nop (which does not perform
any operation) is designed to be executed on the component type ARPTester,
which has no parameters:

testcase tc_nop() runs on ARPTester {};

We have already introduced possible test verdicts (none, pass, inconc, fail,
and error) without going too much into detail. Actually, each test component
has its own local verdict, which is a variable of the type verdicttype that we
may set or get using the test component’s operations setverdict or getver-
dict, respectively. The exception is the verdict error, which can be set only by
the runtime execution system (within the error handling routine) and cannot
be set by a test case. Like any other variable, we may log the local verdict cur-
rent value by the statement log.

As already mentioned, the initial value of the local verdict (i.e., its default
value) is the verdict none. For example, since the test case tc_nop performs no
operation, its final verdict is the verdict none, too.

Unlike simple variables, the possible values of the local verdict are not just
elements of a conventional enumeration. Instead, verdicts are assigned different
strengths, such that all the verdicts are ordered by their strength, from the weak-
est (none) to the strongest (error), according to the following list: <none, pass,
inconc, fail, error>. Assignment of a value to the local verdict is governed by the
following important rule: The current value of the local verdict can be assigned
the next value only when the next value is stronger than the current value.

153Design

For example, the value of the local verdict can be changed from none
to pass or fail, but it cannot be changed, for example, from fail to pass.
Therefore, in the test case tc_remains_fail, as shown below, the final test
verdict remains fail, because the assignment of the verdict pass after the
assignment of the verdict fail is not possible (and thus the runtime execution
system just ignores it):

testcase tc_remains_fail() runs on ARPTester {
 var verdicttype current_verdict;
 setverdict(fail);
 …
 // later in the code…
 setverdict(pass);
 current_verdict = getverdict; // verdict remains fail
};

Besides the local verdict, a test component also has the implicit variable
of the type charstring, which may be used to describe the reason for the
particular verdict assignment. This variable is assigned by the setverdict
operation and the reason string is passed as one or more optional parameters
at the end of the setverdict operation’s parameter list (these parameters are
specified the same way as those for the log statement). For example, in the
test case tc_always_pass, we describe the reason for setting the test verdict to
pass:

testcase tc_always_pass() runs on ARPTester {
 // Check the SUT behavior
 setverdict(pass, 'The SUT behavior was as expected.')
};

We should note that in the case of a single component TTCN-3 test suite,
the overall test verdict is equal to the local verdict of the main test compo-
nent (whereas in the case of the multi component test suite, it is evaluated
based on the local verdicts of individual test components).

As we have already seen, a test case is executed from the control part by
the statement execute, which returns the overall test case’s verdict. The ver-
dict returned by the statement may be stored in the variable of the type ver-
dicttype for further processing, or it may be ignored if it is not needed. Note
that assignments to the user-defined variable of the type verdicttype are
not governed by the assignment rule for the test component’s local verdict,
because it is a simple variable, so its value can be changed freely.

The second parameter of the operation execute is optional, and when it is
supplied it defines the upper bound on the test case execution time. Under
the hood, the runtime execution system starts the corresponding timer, and if
the timer expires it terminates the test case with the verdict error. We should

154 Communication Protocol Engineering

note that even if some of the test cases have the overall test verdict error,
other test cases defined within the control part will be executed as requested.

The following example illustrates the control part that executes the three
previously introduced test cases. The execution time for all the test cases is
bounded to the time interval of 5s and the return verdict is stored into the
user-defined variable result for all the executions:

control {
 var verdicttype result;
 result := execute(tc_nop(), 5.0);
 result := execute(tc_remains_fail(), 5.0);
 result := execute(tc_always_pass(), 5.0);
};

Usually, a control part, such as the one shown above, is just a list of execute
statements, but when needed, we may use conditional statements and loops
(introduced in the previous section) within a more complex control part.

Like functions, test cases may have in, out, and inout parameters. The in
parameters are passed by a value, whereas the out and inout parameters are
passed by a reference. In the latter case, changes of parameters within the
test case cause updates of real parameters in the control part. But, if the test
case verdict is error, the values of out parameters are undefined.

The function’s restrictions of its real parameters (which we have already
seen) apply to test case parameters, too. The real inout parameter cannot be
uninitialized, and the real out, as well as the real inout parameter, cannot be
a constant expression. For example, the following test case tc_counting has
the inout parameter p_count, which may be used for counting the number of
test case executions:

testcase tc_counting(inout p_count) runs on ARPTester {
 p_count := p_count + 1;
 setverdict(pass);
};

Within the control part, we may define the initialized inout variable v_
count in order to count the number of test case executions:

control {
 var integer v_count := 1;
 // execute tc_counting 10 times
 for (integer i := 0; i < 10; i := i + 1) {
 log("v_count = ", v_count);
 execute(tc_counting(v_count));
 }
}

155Design

The local constants, variables, and timers of the test component which the
test case runs on, are in the scope of this test case. These constants, variables,
and timers may be used the same way as ordinary test case’s local variables.
This concept is similar to the concept of inheriting attributes of a supper
class in a subclass in programming languages.

In TTCN-3, a function may also inherit local constants, variables, and timers
of the test component on which it runs. Note that for all the test cases and func-
tions running on the same test component, these inherited local constants,
variables, and timers appear as global entities, and we should use them care-
fully (the same way we use global variables in other programming languages).

In the following test case tc_using_comp_vars, we set the local variable of
test component ARPTesterS the same way as we set the test case’s local vari-
able v_current:

testcase tc_using_comp_vars() runs on ARPTesterS {
 var integer v_current := 1
 …
 v_noRequests := 10;
 v_current := 1;
 …
}

A test case implicitly terminates with its last statement. We may explic-
itly terminate a test case using the operation stop or the operation testcase.
stop. We use the operation stop to terminate an error-free test case execution
and the operation testcase.stop to terminate an erroneous test case execu-
tion. The operation stop returns the overall test verdict to the control part
(analogously to the statement return that returns the return value of the
called function to the calling function in other programming languages). On
the other hand, the operation testcase.stop sets the test verdict to error and
terminates the test case. We may use the operation’s optional arguments to
indicate the reason for termination (the same way as we use the optional
arguments of the operation setverdict).

Templates are used to define messages exchanged between the test system
and the SUT. When we want to send a particular message from the test system
to the SUT, we use the template instance that defines a single value of the cor-
responding type, i.e., that particular message. But, when we want to receive a
reply from the SUT, we would more frequently use matching expressions with
template instances specifying more possible reply messages.

Generally, a template defines a set of values of a given type. This set may
contain just a single value, more values, or even all the values of the given type
(we specify all the values using the character ‘?’). In the example below, we
use the nonparametrized template t_fixedARPRequest to define the fixed ARP
request message from the test system to the SUT, with SPA set to “192.168.0.40”
(this is the test system’s IPv4 address), SHA set to “00:EB:24:B2:05:C0” (this is

156 Communication Protocol Engineering

the test system’s MAC address), TPA set to “192.168.0.48” (this is the IPv4
address that has to be resolved), and THA set to 0 (actually, it could be any
value, because ARP protocol ignores THA field in the ARP request message):

template ARPMessage t_fixedARPRequest () := {
 htype := 1,
 ptype := 0x0800,
 hlen := 6,
 plen := 4,
 oper := 1,
 sha := "00:EB:24:B2:05:C0",
 spa := "192.168.0.40",
 tha := 0,
 tpa := "192.168.0.48"
}

On the other hand, the previously introduced parametrized template
t_ARPMessage defines a subset of all the possible values of the record
type ARPMessage, with the first four fields fixed to the values 1, 0x0800, 6,
and 4, respectively.

Although templates are used to specify values, they are not values. Even
a single-valued template is not a value. Thus, a template cannot be directly
used in an expression.

However, templates can be passed as in parameters to functions and test
cases. Such a parameter must be defined with the additional keyword tem-
plate in order to distinguish it from the simple value. For example, the fol-
lowing test case has the template as its input parameter:

testcase tc_withParam(
 in template t_ARPMessage p_msg
) runs on ARPTester {
 // some statements that depend on p_msg
};

Message-based communication between the test system and the SUT
is conducted over TSI ports in order to effectively test the SUT. The type
port supports the three main operations, namely send, receive, and check.
The operation send sends the specified message to the SUT. The operation
receive compares the received message with the specified template, and
if they match, it receives the message from the port’s queue; otherwise it
blocks. The operation check is similar to the operation receive, but it does
not remove the received message from the port’s queue. Besides receiving
a message from a single port, it is also possible to receive a message from
any port. In the following paragraphs, we study these operations in more
detail.

157Design

The port’s operation send sends the particular message (single value tem-
plate instance) over the specified port. For example, the following test case
creates the ARP request message req_msg, with SPA set to “192.168.0.40” (the
test system’s IPv4 address), SHA set to “00:EB:24:B2:05:C0” (the test system’s
MAC address), TPA set to “192.168.0.48” (the IPv4 address that has to be
resolved), and THA set to 0 (actually, it could be any value), and sends this
message over the port serverPort to the SUT:

testcase tc_resolve_part_1() runs on ARPTester {
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1, // ARP operation: 1 – request
 "00:EB:24:B2:05:C0", // test system’s MAC address
 "192.168.0.40", // test system’s IPv4 address
 0, // this field is ignored by ARP
 "192.168.0.48" // target IPv4 address to be resolved
);
 // send the ARP request message
 serverPort.send(req_msg);

 // part 2 - to be finished later
};

The state of the SUT cannot influence the execution of the operation send,
which is executed by the test system. Once the message is delivered over the
specified port, the operation send is finished, and the test case proceeds to
the next statement following it, no matter whether SUT really received the
message or not.

When we define a template using a simple type rather than a record, the
particular template instance might not be distinguished from the ordinary
value of the corresponding type. In such a case, the value must be pre-
ceded by a type name. For example, assume that we defined the template
t_MyIPAddresses using the type charstring, and assume that “128.0.0.0” is a
member of t_MyIPAddresses. In order to send the value “128.0.0.0” as one of
the t_MyIPAddresses instances, we must explicitly write the template name
before the particular value:

type charstring t_MyIPAddresses {"128.0.0.0", …};
somePort.send(t_MyIPAddresses: "128.0.0.0");

The port’s operation receive is generally used for receiving messages from
the SUT. Unlike the operation send, its argument is a template that may
specify more possible SUT replies rather than just one particular SUT reply
(which is allowed as a special case). Also, the operation receive is a blocking
operation, whereas the operation send is a nonblocking operation.

158 Communication Protocol Engineering

The operation receive performs two steps. In the first step, it compares the
message at the head of the port’s queue with the specified template. If this mes-
sage is a member of the set of messages specified by the template, we say that
the message matches the template. More precisely, if the template specifies a
single message, the message at the head of the queue must be that message. If the
template specifies a subset of messages of the message type that may be received
over the specified port, the message at the head of the queue must be a member
of that subset. Finally, if the template specifies any message of the corresponding
message type, then the message at the head of the queue must be of that type.

In the second step of the operation receive there are two possible cases. If
the message at the head of the queue matches the template, this message is
dequeued from the head of the queue and delivered to the receiving process,
which proceeds to the next statement that follows the operation receive. If
the message at the head of the queue does not match the template, and if
there are no alternatives, then the receiving process blocks within the opera-
tion receive (we introduce alternatives later in the following text).

The message at the head of the queue may mismatch the template in two
possible cases. The first case is when the queue is empty. No message mis-
matches any template, and consequently the receiving process blocks. The
second case is when there is some message at the head of the queue that mis-
matches the template, so the receiving process again blocks. However, there
is a fundamental difference between these two cases. In the latter case, the
receiving process blocks forever (even if the right message is received later,
because it will still not be positioned at the head of the queue), whereas in the
former case, the receiving process blocks temporarily. If the right message is
received later, the receiving process would be unblocked.

The following test case tc_resolve tests the whole ARP. Its first part is the
same as in the previous test case tc_resolve_part_1. In its second part, the
test case tc_resolve creates the expected ARP reply message rpy_msg, with
SPA set to“192.168.0.48” (the IPv4 address that has to be resolved); SHA set to
“00:EB:24:B2:05:C8” (the expected MAC address that should be the result of
the ARP resolution); TPA set to“192.168.0.40” (test system’s IPv4 address); and
THA set to “00:EB:24:B2:05:C0” (test system’s MAC address), which receives
this message over the port serverPort, and sets the test verdict to pass.

testcase tc_resolve() runs on ARPTester {
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1, // ARP operation: 1 - request
 "00:EB:24:B2:05:C0", // test system’s MAC address
 "192.168.0.40", // test system’s IPv4 address
 0, // this field is ignored by ARP
 "192.168.0.48" // target IPv4 address to be resolved
);
 // send the ARP request message

159Design

 serverPort.send(req_msg);

 // part 2 – create ARP reply, receive it, and set test verdict
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2, // ARP operation: 2 - reply
 "00:EB:24:B2:05:C8", // target MAC address – expected value
 "192.168.0.48", // target IPv4 address to be resolved
 "00:EB:24:B2:05:C0", // test system’s MAC address
 "192.168.0.40" // test system’s IPv4 address
);
 // receive the ARP reply message
 serverPort.receive(rpy_msg);
 // set test verdict to pass
 setverdict(pass);
};

In the previous test case, the operation receive may block the receiving pro-
cess temporarily if the test system still did not receive a reply from the SUT.
Alternatively, the operation receive may block forever if the test system received
the message that mismatched the expected message rpy_msg. The receiving
process will not block, or will be unblocked, if the test system receives the
expected message rpy_msg. Once this expected message is received, the test
case will set the test verdict to pass and it will successfully terminate.

The operation receive also offers an option to save the received message
into the specified variable of the corresponding type (e.g., the type that is
used in the definition of the template). The syntax of the statement using this
option is as follows:

port.receive(template) -> value variable

where port is the name of the port over which the message is to be received, tem-
plate is the name of the template that the received message should match, and
variable is the name of the variable where the received message should be stored.

Alternatively, by using the operation receive without the argument, we may
receive any message over the specified port, but we cannot save that message.
Of course, the received message must be of the correct type. For example, the
following statement will receive any message of the type ARPMessage:

serverPort.receive;

Like in the case of the operation send, if the type of the operation’s argument
could not be uniquely determined, it must be specified explicitly as follows:

port.receive(type: template)

160 Communication Protocol Engineering

where port is the name of the receiving port, type is the name of the message
type, and the template is the name of the template.

The port’s operation check receives the message from the specified port, but
it does not remove it from the port’s queue. The receiving process will block
if the queue is empty or if the message at the head of the queue mismatches
the specified template. Alternatively, if the message at the head of the queue
matches the specified template, the operation check successfully finishes, and
the receiving process proceeds to the next statement following it.

The operation check is the operation on the specified port whose argu-
ment is the operation receive with its argument. For example, the following
statement checks any message on the port serverPort:

serverPort.check(receive);

Alternatively, the following statement checks the particular ARP reply
rpy_msg on the port serverPort:

serverPort.check(receive(rpy_msg));

Like the operation receive, the operation check offers the option for saving
the checked message into the specified variable. The syntax of the statement
for using this option is the same as for the operation receive. For example,
the following statement saves the checked message rpy_msg into the variable
v_msg of the type ARPMessage:

ARPMessage v_msg;
serverPort.check(receive(rpy_msg)) -> value v_msg;

Besides receiving and checking messages on the particular port, we may
receive or check messages on any port. We may want to do this in order to
receive or check the unexpected messages and we may do this simply by
using the keyword any port as the port name in the corresponding state-
ments. Of course, sending some message on any port would be an ambigu-
ous operation, thus this option is not supported.

For the sake of illustration, assume that SysTester is the test component
with two ports, namely serverPort and serverPort2. Further assume that the
port serverPort connects the test system with the primary ARP server, and
the port serverPort2 connects the test system with the secondary ARP server
(which is a backup in case of the primary ARP server failure).

Generally, we may receive any message on any port by using the operation
receive on any port and without a template, as follows:

any port.receive;

If this statement is executed on the test component SysTester, it would
block until there is a message in at least one of the two message queues.

161Design

Alternatively, if both queues contain messages, this statement would ran-
domly select one of the two queues, and it would dequeue the message from
the head of the selected queue. However, in this case, there are no means to
determine from which port the message was dequeued.

Alternatively, we may receive the specified message(s) on any port. For
example, if the following statement is executed on the test component
SysTester, it would receive the message rpy_msg either from the port serverPort
or the port serverPort2:

any port.receive(rpy_msg);

Again, it would not be possible to determine whether the message rpy_msg
was received from the port serverPort or the port serverPort2. In this particu-
lar example, this would mean that the system as a whole (primary plus sec-
ondary ARP servers) reacted as expected. However, in some other protocols,
receiving excepted messages from any port might not be what we are really
looking for. Receiving unexpected messages from any port is the intended
usage of the keyword any port.

Like in the case of the ordinary receipt of the specified port, we may save
the message received on any port into the specified variable. The syntax is
the same. For example, if the following statement is executed on the test com-
ponent SysTester, it would save the received message rpy_msg (received from
either of two available ports) into the variable v_msg:

any port.receive(rpy_msg) -> value v_msg;

Timers are used to describe the protocol’s timing properties. The
moment in time is represented by the nonnegative floating point num-
ber (float). The type timer supports the five main operations: start, stop,
timeout, read, and running. The operation start starts the specified timer,
the operation stop stops the specified timer, the operation timeout waits
for the specified timer to expire, the operation read returns the duration
since the specified timer was started, and the operation running returns
the Boolean indicator indicating whether the specified timer is running
(the indicator has the value true if the timer running; otherwise it has the
value false).

We may declare a timer within the test component, the test case, the con-
trol part of a module, the function, or the altstep. Each timer exists only
within the scope in which it was declared. Once the timer’s scope is left,
the timer is destroyed, and thereafter becomes unavailable. We may declare
a timer without explicitly specifying its default duration. For example, the
following declaration declares the timer t_T1 without the explicit default
duration:

timer t_T1;

162 Communication Protocol Engineering

Alternatively, we may declare a timer with the explicit default duration.
For example, the following declaration declares the timer t_T2 with the
default duration of 1s:

timer t_T2 := 1.0;

We start the specified timer by the operation start, which has the timer
duration as an optional argument. If we use this optional argument, and if
the timer was declared with the explicit default duration, the value of the
optional argument will overwrite the default value. For example, the follow-
ing statement starts the timer t_T2 for the duration of 2s:

t_T2.start(2.0);

We typically use the operation timeout to simulate the desired rhythm of
messages that are sent towards the SUT. For example, imagine that we want
to send the ten req_msg messages towards the SUT over the port serverPort,
with the 1s time interval between two adjacent messages. We may do this by
the following snippet of code:

for (integer i := 0; i < 10; i := i + 1) {
 serverPort.send(req_msg);
 t_T2.start;
 t_T2.timeout;
}

We may stop the running timer by the operation stop. It is important
to remember that the timer’s states stopped and expired are two different
states. Note that the operation timeout on the previously stopped timer
would block forever, because this timer would remain in the state stopped
and would never go (back) to the state expired. Another important detail to
remember is that starting the running, or expired, timer is equivalent to first
stopping and then restarting the timer.

The operation running and the operation read are typically combined. In
the following example, we start the timer t_T1 with the duration of 10s and
then while it is running, we use the timer t_T2 to report, every 1s, the time
that elapsed from the moment when the timer t_T1 was started:

t_T1.start(10.0);
while(t_T1.running) {
 log(t_T1.read, " seconds elapsed since t_T1 was started…");
 t_T2.start(1.0);
 t_T2.timeout;
}
log("t_T1 expired.");

163Design

We may pass timers as inout arguments to altsteps or functions, but we
cannot pass them to test cases. A timer does not need to be in the running
state in order to be passed as an argument.

Alt Statements are used to combine several blocking operations as pos-
sible alternatives to continue process execution, in order to avoid unbounded
blocking of individual blocking operations. The statement alt executes the
first blocking operation that is ready to proceed.

For example, as already mentioned, the standalone operation receive will
block forever if no message, or some unexpected message, is received. The
usual way to overcome this situation is to guard this blocking operation
receive by using a timer. We do this by starting a timer and using the alt
statement with two alternatives, namely the operation receive on the speci-
fied port, with the template specifying the expected message(s), and the
operation timeout on the running timer.

However, this solution with these two alternatives does not eliminate pos-
sible indefinite blocking in case when some unexpected message is received
on the specified port. Therefore, if we want to completely eliminate indefi-
nite blocking we must use the statement alt with the three alternatives in the
order listed below:

• The operation receive on the specified port with the template speci-
fying the expected message(s)

• The operation receive on the specified port without any template,
which is used to receive the unexpected messages.

• The operation timeout on the running timer, which is used to ter-
minate indefinite blocking in case when no messages are received in
some reasonable interval of time (which is equal to the duration of
the timer)

This order of alternatives in the statement alt is important, because the
alternatives are evaluated from top to bottom, and the first one that is ready
to proceed will be executed. So, the position of the alternative may be seen as
its priority, because if two alternatives are ready to proceed, the one that is
closer to the top of the list of alternatives will get executed.

So, how should we order the alternatives? Generally, we put the alterna-
tives for the expected messages on the top of the list, and then we proceed to
various kinds of unexpected messages and errors going down the list.

The following test case uses this strategy to test the ARP:

testcase tc_resolve_guarded() runs on ARPTester {
 timer t_T1;
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"

164 Communication Protocol Engineering

);
 // send the ARP request message
 serverPort.send(req_msg);
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2, "00:EB:24:B2:05:C8", "192.168.0.48",
 "00:EB:24:B2:05:C0", "192.168.0.40"
);
 // start the timer t_T1 with duration 1s
 t_T1.start(1.0);
 // use the statement alt with 3 alternatives
 alt {
 []serverPort.receive(rpy_msg) { // rpy_msg received
 t_T1.stop;
 setverdict(pass);
 };
 []serverPort.receive { // unexpected message received
 t_T1.stop;
 setverdict(fail);
 };
 []t_T1.timeout { // timer expired
 setverdict(fail)
 }
 }
};

What happens if a message arrives on some port, or some timer expires,
while the other alternative is evaluated? Obviously, immediate and con-
tinuous reevaluation of all the alternatives would lead to race conditions.
Therefore, the statement alt uses the concept of the snapshot in order to keep
the top-down order of evaluation and to avoid race conditions. More pre-
cisely, the statement alt performs the following steps in a loop until it breaks
from it:

• Take a snapshot of the current state of the test component.
• Evaluate all the alternatives from the top to the bottom of the list.
• When the first alternative that is ready to proceed is found, break

this loop and execute that alternative.

Furthermore, the statement alt offers the option to specify Boolean guards
for its alternatives, which we did not use so far. Actually, the empty square
brackets that we used to mark the beginning of an alternative are the place-
holder for an optional Boolean guard. The Boolean guard is the Boolean
expression, which evaluates to the values true or false.

165Design

The statement alt considers only the alternatives whose Boolean guards
evaluate the value true, and skips the alternatives whose Boolean guards
evaluate the value false. The special guard else is used to mark the default
alternative at the end of the list of alternatives, which will be selected if none
of the previous alternatives were selected.

In the following example, we use two Boolean guards to guard the recep-
tion of the corresponding messages, and we also use the default guard else:

alt {
 [select_msg == 1] pt.receive(t_msg1) { setverdict(pass); };
 [select_msg == 2] pt.receive(t_msg2) { setverdict(pass); };
 [else] { setverdict(fail); }
}

In the previous example, the test verdict would be set to pass if the first
Boolean guard evaluates the value true and the message t_msg1 is received
over the port pt, or if the second Boolean guard evaluates to the value true
and the message t_msg2 is received over the port pt. Otherwise, the test ver-
dict would be set to fail.

Generally, the Boolean guards in the list of alternatives do not have to be
orthogonal and complete, i.e., more or none of them may evaluate the value
true. If more Boolean guards evaluate the value true, the corresponding
alternatives are evaluated top-down until the first alternative ready to pro-
ceed is selected. If none of the Boolean guards evaluate the value true and
we do not use the default guard else, there are two possible cases: (1) the
Boolean guards are independent of the snapshot and (2) the Boolean guards
are dependent on the snapshot.

If the first case, the statement alt would block forever, which is considered
to be a test case design error. In the second case, there is a chance that the
statement alt will not block forever, because it will continue taking snapshots
in a loop, and for some future snapshot some Boolean guards may evaluate
the value true. However, there is the risk that this does not happen, because
of a design error, so we would be better off by avoiding such designs.

Motivated by these concerns, TTCN-3 standard forbids using operations in
Boolean guards whose results may change in repeated evaluations, such as
checking whether a timer is running or not. Also, functions that are called
from Boolean guards must not change the current snapshot. The examples
of forbidden operations, within such functions, are the operation receive on
a port; the operations start, stop, and timeout on a timer; and operations that
update the test component’s local variables.

As discussed so far, the statement alt may be seen as a selection of
alternatives—once the alternative with the highest priority that is ready
to proceed is selected, it is executed, and the execution continues with the
next statement following the statement alt. But, sometimes we would like
to repeat the whole selection from the beginning. A traditional way to do it

166 Communication Protocol Engineering

would be to introduce a loop with a break indicator around the statement alt.
The more elegant way to do it is to use the statement repeat.

The statement repeat repeats the whole enclosing statement alt from the
very beginning—the Boolean guards and the alternatives are evaluated
again and the next alternative is selected. We may use the statement repeat
only within the alternatives of the statement alt (typically, as the last state-
ment in the alternative) or within the alternatives of an altstep. The way the
statement repeat operates is somewhat similar to the tail recursion in func-
tional programming languages.

As an example, we may use the statement repeat to construct a simple ARP
server robustness test. Sometimes, the SUT may return the correct reply to
the single request, but when the same request is repeated more times, the
SUT may become overloaded or some internal synchronization error may
lead to a failure, which may cause incorrect replies from the SUT or absence
of replies. To test robustness of the SUT, we adapt the test case tc_resolve_
guarded such that we send the burst of the same ten ARP requests (by using
a simple for loop) and then we expect to receive the same ten ARP replies (by
using the statement repeat):

testcase tc_resolve_robustness() runs on ARPTester{
 timer t_T10;
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"
);
 // send the burst of 10 ARP request messages
 for(integer i := 0; i < 10; i := i + 1){
 serverPort.send(req_msg);
 }
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2,"00:EB:24:B2:05:C8","192.168.0.48",
 "00:EB:24:B2:05:C0","192.168.0.40"
);
 // start the timer t_T1 with duration 10s
 t_T10.start(10.0);
 // use the statement alt and repeat to receive 10 ARP replies
 alt{
 [] serverPort.receive(rpy_msg){ // rpy_msg received
 setverdict(pass);
 repeat; // repeat in order to receive the next reply
 };
 [] serverPort.receive{ // unexpected message received
 t_T10.stop;

167Design

 setverdict(fail);
 };
 [] t_T10.timeout{ // timer expired
 setverdict(fail)
 }
 }
};

So far, we have seen only the statements alt with more alternative block-
ing operations. Since the statement alt with a single alternative behaves as
a single alternative without the enclosing statement alt, we would naturally
write the single alternative as a stand-alone operation (without the enclosing
statement alt).

Interestingly enough, and for the reason that would become apparent later
on when we introduce default altsteps, according to the TTCN-3 standard, a
stand-alone blocking operation will be treated by implicitly wrapping it into
the enclosing statement alt. For example, the stand-alone blocking statement:

serverPort.receive(rpy_msg);

 is implicitly expanded to:
alt {
 [] serverPort.receive(rpy_msg) {}
}

Altsteps are named groups of alternatives, which may be referred to within
the statement alt. Like functions, they may have parameters, but unlike func-
tions they may use the Boolean guards and the operations receive and time-
out. The following typical altstep has the timer p_timer as its parameter, and
it checks the timeout condition on this timer:

altstep alt_timeout(inout timer p_timer) {
 [] p_timer.timeout { setverdict(fail) }
};

We may now use the altstep alt_timeout within the statement alt, for exam-
ple, in order to bound time interval for waiting the message rpy_msg:

t_T1.start(1.0);
alt {
 [] serverPort.receive(rpy_msg){ // rpy_msg received
 t_T1.stop;
 setverdict(pass);
 };
 [] serverPort.receive{ // unexpected message received

168 Communication Protocol Engineering

 t_T1.stop;
 setverdict(fail);
 };
 [] alt_timeout(t_T1) // timer expired
};

The altstep alt_timeout has the single alternative. If an altstep has more
alternatives, they are evaluated the same way as in the statement alt. Once
the first alternative that may proceed is selected, individual statements in
this alternative are executed until the last statement in this alternative is
completed, or the explicit statement return is encountered. The statement
return cannot specify the return value, and it transfers control back to the
statement following the altstep call within the enclosing statement alt.

An altstep may also have local variables, which are typically used for sav-
ing received messages and some intermediate results. Like a test case, an
altstep may also use the clause runs on to inherit ports, timers, variables,
and constants of the corresponding test component. The following altstep
alt_receive_10 uses the variable v_count to count the number of received rpy_
msg messages, and also uses the clause runs on to inherit the port serverPort
from the test component ARPTester:

altstep alt_receive_10(in ARPMessage rpy_msg) runs on ARPTester {
 var integer v_count := 0;
 alt{
 [] serverPort.receive(rpy_msg){ // expected message received
 v_count := v_count + 1;
 if(v_count == 10){ // expected number of replies
 setverdict(pass)
 }
 else if(v_count > 10){ // unexpected number of replies
 setverdict(fail)
 }
 else {
 repeat // repeat in order to receive the next message
 }
 };
 [] serverPort.receive{ // unexpected message received
 setverdict(fail)
 }
};

It is important to remember that an altstep must not change the current
snapshot by the initialization of its local variables. The restrictions on opera-
tions that may be used for initializing the altstep’s local variables are actu-
ally the same as the restrictions for the Boolean guards of the statement alt,

169Design

which we have already discussed previously. An example of the initializa-
tion that does not change the current snapshot is the statement for saving the
received message into the altstep’s local variable.

The altstep call has an optional block statement following it, which is exe-
cuted after the altstep if any of the alternatives within the altstep are trig-
gered. This block statement may be, for example, used to stop a running timer.

We may now use the altsteps alt_timeout and alt_receive_10 to construct the
statement alt for receiving the ten rpy_msg messages with the guard against
unexpected messages and within the time interval bounded by the timer t_
T10; we also use the optional statement block after the altstep alt_ receive_10
call to stop the timer t_T10:

// create the ARP reply message
ARPMessage rpy_msg := t_ARPMessage(
 2, "00:EB:24:B2:05:C8","192.168.0.48","00:EB:24:B2:05:C0", "192.168.0.40"
);
t_T10.start(10.0);
alt {
 [] alt_receive_10(rpy_msg){ // receive 10 rpy_msg
 t_T10.stop
 };
 [] alt_timeout(t_T10) // timer expired
};

The reception of the ten rpy_msg messages is performed by the altstep
alt_receive_10, which contains the statement repeat. Note that the inner of the
two nested alt statements would be repeated. More precisely, the statement
alt defined within the altstep alt_receive_10 would be repeated.

We may use the operation return to end the execution of altstep at the
desired point. The operation return returns the control to the enclosing
statement alt, and then the optional block statement following the altstep
call is executed. Alternatively, we may use the operation break to end the
execution of the altstep at some point. The operation break returns control
to the statement following the enclosing statement alt. Note that the optional
block statement following the altstep call would not be executed in this case.

So, we should remember that the operation return leaves the enclosing
altstep, whereas the operation break leaves the enclosing statement alt from
which the altstep was called.

Normally, some more simple altsteps appear in many alt statements. The
altstep alt_timeout, which we introduced earlier, is a typical example of such
an altstep. Another typical example is the following altstep named alt_
receive_any, which is typically used to catch unexpected messages:

altstep alt_receive_any() runs on ARPTester {
 [] any port.receive {

170 Communication Protocol Engineering

 setverdict(fail);
 };
};

We may avoid adding such frequently used altstep to all the alt statements
in our test suite by using them as default altsteps. Although they have a spe-
cial name, we define the default altsteps exactly the same way we define the
nondefault altsteps that we have used so far, such as the altstep alt_receive_
any we have defined above.

The default altstep is an altstep that has been activated by the operation
activate, and it remains the default altstep until it is deactivated by the opera-
tion deactivate. The operation activate adds the default altstep at the head
of the list of default altsteps. This list of default altsteps is implicitly added
at the end of each alt statement in the test suite. The operation deactivate
removes the specified default altstep from the list of default altsteps.

Since the list of the default altsteps is evaluated from head to tail, the default
altstep Y that has been activated after the default altstep X has a higher prior-
ity than the altstep X. In other words, if the altstep Z has been activated last
and the altstep A has been activated first, Z would have the highest priority
and A would have the lowest priority. In practice, we use this rule such that
we activate the more general default altsteps before the more specific default
altsteps, thus the latter would have a higher priority.

The parameter of the operation activate is the altstep together with its
arguments, and the return value of the operation activate is the reference to
the activated default altstep, which is of the type default. The parameter of
the operation deactivate is the reference to the default altstep that should be
deactivated.

There is one important rule related to the default altstep’s call by reference
parameters, i.e., out and inout parameters. Values and templates cannot be
out or inout parameters of default altsteps. The reason for introducing this
rule is that a value or a template passed by a reference to the default altstep
might not exist at the time when the default altstep has to be executed.

Another important rule is that timers and ports may be passed as inout
parameters to the default altsteps. Alternatively, a default altstep may inherit
timers and ports of the test component that it runs on. In other words, in
order to provide access to timers and ports within the default altstep, we may
either pass them as inout parameters or we may provide access to the test
component’s timers and ports by using the clause runs on.

In the following two examples, we adapt the previously introduced test
case tc_resolve_guraded by using the default altsteps alt_timeout and alt_
receive_any. We do the adaptation in two steps: In the first step we just intro-
duce the default altsteps and then in the second step we use the convention
of the implicit expansion of stand-alone blocking statements into the corre-
sponding statement alt, but in the reverse order, to further shorten the final
test case. The result of the first step of adaptation is the following test case:

171Design

testcase tc_resolve_default1() runs on ARPTester {
 timer t_T1;
 var default v_ref1, v_ref2;
 // activate the default altsteps – more general first
 v_ref1 = activate(alt_timeout(t_T1));
 v_ref2 = activate(alt_receive_any());
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1,"00:EB:24:B2:05:C0","192.168.0.40",0,"192.168.0.48"
);
 // send the ARP request message
 serverPort.send(req_msg);
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2,"00:EB:24:B2:05:C8","192.168.0.48",
 "00:EB:24:B2:05:C0","192.168.0.40"
);
 // start the timer t_T1 with duration 1s
 t_T1.start(1.0);
 // use the statement alt with 3 alternatives (2 are implicit)
 alt {
 [] serverPort.receive(rpy_msg){ // rpy_msg received
 t_T1.stop;
 setverdict(pass);
 };
 // alt_receive_any is implicitly considered first
 // alt_timeout is implicitly considered second
 }
 // deactivate the default altsteps
 deactivate(v_ref1);
 deactivate(v_ref2);
};

Remember that we intentionally activate the more specific default altsteps
later than the more general, so that the former have a higher priority. In this
example, we activated the default altstep alt_receive_any after the default alt-
step alt_timeout, so that the unexpected message may be cached before the
timer t_T1 expires.

Next, we transform the statement alt with a single alternative into the corre-
sponding stand-alone blocking statement. The resulting test case is the following:

testcase tc_resolve_default2() runs on ARPTester {
 timer t_T1;
 var default v_ref1, v_ref2;

172 Communication Protocol Engineering

 // activate the default altsteps – more general first
 v_ref1 = activate(alt_timeout(t_T1));
 v_ref2 = activate(alt_receive_any());
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
 1, "00:EB:24:B2:05:C0","192.168.0.40",0,"192.168.0.48"
);
 // send the ARP request message
 serverPort.send(req_msg);
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2,"00:EB:24:B2:05:C8","192.168.0.48",
 "00:EB:24:B2:05:C0","192.168.0.40"
);
 // start the timer t_T1 with duration 1s
 t_T1.start(1.0);
 // this stand-alone blocking statement is implicitly expanded
 // into the corresponding single-alternative alt statement
 serverPort.receive(rpy_msg){ // rpy_msg received
 t_T1.stop;
 setverdict(pass);
 };
 // deactivate the default altsteps
 deactivate(v_ref1);
 deactivate(v_ref2);
};

Obviously, by using the default altsteps we may get rather compact code.
However, the disadvantage of using the default altsteps is that we may forget
which default altsteps are currently active and their order of activation, espe-
cially if we often activate and deactivate them. The code using the default alt-
steps may be hard to understand and maintain, so we should use the default
altsteps carefully.

Functions in TTCN-3 may be also used to specify communication behav-
ior, and they may contain all the kinds of statements that we have intro-
duced so far. Unlike the altsteps that must start with the statement alt at
the topmost level, the functions may start with any statement, including, for
example, the statement send.

In the following example, we define the function sendReqBurst whose
parameter is the number of ARP requests to be sent (p_noReqs) and that runs
on the test component ARPTester:

function sendReqBurst(in integer p_noReqs) runs on ARPTester {
 // create the ARP request message

173Design

 ARPMessage req_msg := t_ARPMessage(
 1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"
);
 for(var integer i := 0; i < p_noReqs; i++) {
 serverPort.send(req_msg)
 };
 return;
};

The function sendReqBurst has access to the port serverPort because it runs
on the test component ARPTester, which comprises this port. Alternatively,
we may pass the port as an inout parameter of a function. The function send-
ReqBurst does not have a return value, and we use the statement return at the
end of the function to explicitly indicate the end of the function.

Next, we adapt the previously introduced test case tc_resolve_robustness to
use the newly introduced function sendReqBurst:

testcase tc_resolve_robustness_fun() runs on ARPTester {
 timer t_T10;
 // call the function to send the burst of 10 requests
 sendReqBurst (10);

 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
 2,"00:EB:24:B2:05:C8","192.168.0.48",
 "00:EB:24:B2:05:C0","192.168.0.40"
);
 // start the timer t_T1 with duration 10s
 t_T10.start(10.0);
 // use the statement alt and repeat to receive 10 ARP replies
 alt {
 [] serverPort.receive(rpy_msg){ // rpy_msg received
 setverdict(pass);
 repeat; // repeat in order to receive the next reply
 };
 [] serverPort.receive{ // unexpected message received
 t_T10.stop;
 setverdict(fail);
 };
 [] t_T10.timeout{ // timer expired
 setverdict(fail)
 }
 }
};

174 Communication Protocol Engineering

TTCN-3 makes no distinction between the ordinary value-computing
functions and the communication-behavioral functions. We may call the
former functions from the latter and vice versa. Both simple and recursive
function calls are allowed.

The function defined using the clause runs on naturally can be executed
on the instance of the specified component type, but it can also be executed
on the instance of the component type that is the extension of the specified
component type. The extended component type must have all the timers,
ports, constants, and variables of the original type and it may have addi-
tional timers, ports, constants, and variables. For example, the function send-
ReqBurst can be also executed on the test component type ARPTesterS, which
is the extension of the component type ARPTester.

Analogously, the altstep defined using the clause runs on can be executed
both on the instance of the specified component type and on the instance of
the component type that is the extension of the specified component type.
For example, the altstep alt_timeout can be executed both on the component
types ARPTester and ARPTesterS.

The next restriction applies to both functions and altsteps. A function or
an altstep that is defined without the clause runs on, cannot be called with
the clause runs on.

Finally, we summarize similarities and differences between the functions and
the altsteps. The similarities between the functions and the altsteps are as follows:

• Both may define communication behavior.
• Both may have parameters.
• Both may be defined using the clause runs on.
• Both may call functions and altsteps.

The differences between the functions and the altsteps are as follows:

• Altsteps can be used at the top level of the statement alt, whereas
functions can only be used in the statements within alternatives or
the Boolean guards.

• Altsteps without values and template parameters passed by a refer-
ence can be activated as the default altsteps, whereas functions can-
not be used to specify the default behavior.

• Altsteps must start with the statement alt, whereas functions may
start with any statement.

• Altsteps cannot use initializations of local variables that change the
current snapshot, whereas functions can use local variables without
any restrictions.

• Altsteps cannot have return value, whereas functions can have
return value.

175Design

3.10 Examples

This section contains some examples that are related to the communication
protocol design. These should help the reader to consolidate their under-
standing of the concepts and techniques introduced so far.

3.10.1 Example 1

This example demonstrates the procedures for connection establishment
and release that are performed by two communicating processes, namely
TE1 and TE2. The processes TE1 and TE2 are specified by their statechart
diagrams shown in Figures 3.47 and 3.48, respectively. The semantically
equivalent SDL diagrams are shown in Figures 3.49 and 3.50, respectively.

The process TE1 has four stable states, labeled TE1_IDLE, TE1_
CONNECTING, TE1_CONNECTED, and TE1_DISCONNECTING. While
the process TE1 is in the state TE1_IDLE, it can receive only the message
CONNECT_req from the user and after receiving that message, the process TE1
sends the message CONNECT_ind to the process TE2, and evolves to its next
stable state TE1_CONNECTING. In that state, the process may receive one
of two possible input messages, namely CONNECT_conf or CONNECT_reject.
In the former case, the process moves to the stable state TE1_CONNECTED,
whereas in the latter case, it evolves to its initial stable state TE1_IDLE.

TE1_IDLE

TE1_CONNECTING

rcv CONNECT_req/snd CONNECT_ind

TE1_CONNECTED

rcv CONNECT_conf

TE1_DISCONNECTING

rcv DISCONNECT_req/snd DISCONNECT_ind

rcv DISCONNECT_conf

rcv CONNECT_reject

FIGURE 3.47
Statechart diagram of the process TE1.

176 Communication Protocol Engineering

In its stable state TE1_CONNECTED, the process TE1 may receive the
message DISCONNECT_req from the user. In that case, it sends the mes-
sage DISCONNECT_ind to the process TE2 and evolves to the stable state
TE1_DISCONNECTING. From that stable state, it returns to its initial stable
state TE1_IDLE after receiving the message DISCONNECT_conf from its peer
process TE2.

The SDL diagram specification of the process TE2 is much simpler because it
comprises only two stable states, namely, TE2_IDLE and TE2_CONNECTED.
In the former state, the process TE2 may receive only the message CONNECT_
ind, to which it replies by the message CONNECT_conf and after that, it
evolves to the state TE2_CONNECTED. In the latter state, the process may
receive one of two possible messages, CONNECT_ind or DISCONNECT_ind.
In the former case, the process TE2 replies with the message CONNECT_reject
and remains in its current state. In the latter case, it replies with the message
DISCONNECT_conf and goes back to its initial state TE2_IDLE.

The scenario of a successful connection establishment and release is illus-
trated by the MSC chart shown in Figure 3.51. The top of the chart shows the
communicating entities, the human user, and the program processes TE1 and
TE2. The vertical lines are drawn from the rectangular graphical symbols
down to the bottom of the sheet. The time advances in the same direction.

The connection establishment procedure starts when the user sends the
message CONNECT_req to the process TE1 (this event is noted by the arrow
drawn from the vertical line labeled USER to the vertical line labeled TE1),
which in turn sends the message CONNECT_ind to the process TE2. The
process TE2, in turn, replies with the message CONNECT_conf. Upon receipt
of the message CONNECT_conf, the process TE1 forwards it to the user. This
completes the connection establishment procedure. The next communication
phase is normally used for the desired data transfer. Because of that, it is
most frequently referred to as a data transfer phase.

TE2_IDLE

TE2_CONNECTED

rcv CONNECT_ind/snd CONNECT_conf rcv DISCONNECT_ind/snd DISCONNECT_conf

rcv CONNECT_ind/snd CONNECT_reject

FIGURE 3.48
Statechart diagram of the process TE2.

177Design

TE1_IDLE

CONNECT_req

CONNECT_ind

TE1_CONNECTING

CONNECT_conf CONNECT_reject

TE1_CONNECTING

TE1_CONNECTED TE1_IDLE

TE1_CONNECTED

DISCONNECT_req

DISCONNECT_ind

TE1_DISCONNECTING

TE1_DISCONNECTING

DISCONNECT_conf

TE1_IDLE

FIGURE 3.49
SDL diagram of the process TE1.

178 Communication Protocol Engineering

The connection release procedure starts when the user sends the mes-
sage DISCONNECT_req to the process TE1, which translates it to the mes-
sage DISCONNECT_ind and sends it to the process TE2, which, in turn,
replies by the message DISCONNECT_conf. Upon receipt of the message
DISCONNECT_conf, the process TE1 forwards it to the user. This completes
the connection release procedure.

Next, we develop a simple TTCN-3 test suite specification for this example,
which comprises two test cases. We start by defining the new types Address,
Data, and Msg:

type enumerated Code (
 CONNECT_req, CONNECT_ind,
 CONNECT_conf, CONNECT_reject,
 DISCONNECT_req, DISCONNECT_ind,
 DISCONNECT_conf, DISCONNECT_reject
);
type integer Adress;
type integer Data;
type record Msg {
 Code code;
 Address source_address;

TE2_IDLE

CONNECT_ind

TE2_CONNECTED

CONNECT_ind DISCONNECT_ind

CONNECT_conf CONNECT_reject DISCONNECT_conf

TE2_CONNECTED – TE2_IDLE

FIGURE 3.50
SDL diagram of the process TE2.

179Design

 Address destination_address;
 Data user_data;
}
Then by using the message type Msg, we define the suitable parametrized
templates t_request and t_indication:
template Msg t_request(Code p_code, Address p_src, Address p_dst) := {
 code := p_code,
 source_address := p_src,
 destination_address:= p_dst,
 user_data := ?
}

template Msg t_indication(Code p_code, Address p_src, Address p_dst) := {
 code := p_code,
 source_address := p_src,
 destination_address:= p_dst,
 user_data := ?
}

Let’s assume that USER, TE1, and TE2, are assigned the addresses 0, 1, and
2, respectively. Let’s also assume that the test system plays the role of TE1,
and that it communicates with USER and TE2 over the ports pt_user and
pt_te2, respectively. Finally, we assume that both of these ports are of type
PortTS, which are defined as follows:

USER TE1 TE2

CONNECT_req

CONNECT_ind

CONNECT_conf

CONNECT_conf

DISCONNECT_req

DISCONNECT_ind

DISCONNECT_conf

DISCONNECT_conf

FIGURE 3.51
Successful connection establishment and release MSC.

180 Communication Protocol Engineering

type port PortTS {
 inout Msg
}

Our simple test suites use a single test component named ComponentTS to
execute test cases, and ComponentTS, in turn, uses two previously mentioned
communication ports to communicate with USER and TE2:

type component ComponentTS {
 port PortTS pt_user;
 port PortTS pt_te2
}

The first test case tests the connection establishment phase of the com-
munication, which correspond to the top half of the MSC chart shown in
Figure 3.51:

testcase tc_no1() runs on ComponentTS {
 pt_user.receive(t_request(CONNECT_req, 0, 1));
 pt_te2.send(t_indication(CONNECT_ind, 1, 2));
 alt {
 [] pt_te2.receive(t_indication(CONNECT_conf, 2, 1)) {
 pt_user.send(t_indication(CONNECT_conf, 1, 0));
 setverdict(pass);
 }
 [] pt_te2.receive(t_indication(CONNECT_reject, 2, 1)) {
 setverdict(inconc);
 }
 }
 stop;
}

The second test case tests both the connection establishment phase and
the connection release phase of the communication, which correspond to the
complete MSC chart shown in Figure 3.51:

testcase tc_no2() runs on ComponentTS {
 // check the connection establishment phase
 pt_user.receive(t_request(CONNECT_req,0,1));
 pt_te2.send(t_indication(CONNECT_ind,1,2));
 alt {
 [] pt_te2.receive(t_indication(CONNECT_conf,2,1)) {
 pt_user.send(t_indication(CONNECT_conf,1,0));
 // the connection is successfully established
 }

181Design

 [] pt_te2.receive(t_indication(CONNECT_reject,2,1)) {
 setverdict(inconc);
 stop
 }
 }
 // check the connection release phase
 pt_user.receive(t_request(DISCONNECT_req, 0, 1));
 pt_te2.send(t_indication(DISCONNECT_ind, 1, 2));
 alt {
 [] pt_te2.receive(t_indication(DISCONNECT_conf, 2, 1)) {
 pt_user.send(t_indication(DISCONNECT_conf, 1, 0));
 // the connection is successfully released
 setverdict(pass);
 }
 [] pt_te2.receive {
 // receive any other message
 setverdict(fail);
 }
 }
 stop;
}

We may execute both of these test cases by using the following control
part:

control {
 execute(tc_no1())
 execute(tc_no2())
}

The reader is encouraged to play more with this simple example. For exam-
ple, we can change the previous example so that before the existing connec-
tion is established, the process User checks if the process TE1 is ready for the
communication. The MSC chart that specifies a new connection establish-
ment procedure is shown in Figure 3.52.

3.10.2 Example 2

Figure 3.53 shows a hypothetical computer network with a star topology.
Three terminal nodes (N1, N2, and N3) are connected to one transit node
(TN). The routing table residing in TN is shown in Figure 3.53 to the right of
TN. Terminal nodes generate messages for other terminal nodes in the net-
work. Depending on the value of the message parameter (1, 2, or 3), a transit
node delivers the message to its destination by sending it to the correspond-
ing port (A, B, or C).

182 Communication Protocol Engineering

USER TE1 TE2

CONNECT_req

CONNECT_ind

CONNECT_conf

CONNECT_conf

DISCONNECT_req

DISCONNECT_ind

DISCONNECT_conf

DISCONNECT_conf

READY_req

READY_conf

FIGURE 3.52
New connection establishment procedure MSC.

N2

TN

N1 N3

A

B

C

1 A
2 B
3 C

Routing table

FIGURE 3.53
Hypothetical star network with one transit and three terminal nodes.

183Design

The communication process that resides in the terminal node of the
network is specified by the statechart diagram shown in Figure 3.54.
The process that executes in the transit node is described by the stat-
echart diagram shown in Figure 3.55. The semantically equivalent SDL
diagrams are shown in Figures 3.56 and 3.57, respectively.

The process that runs in the terminal node of the network has two stable
states, N123_IDLE and N123_MSG_SENT. The state transition is initiated
by the user message MSG_req. The process returns to its initial state after
the reception of one of three possible messages, namely, MSG_conf, MSG, or
MSG_reject. The process that resides in the transit node of the network has
a single state, TN_IDLE. This process routes the input message toward its
destination.

Figure 3.58 shows the scenario of a successful message delivery. The node
N1 sends the correct message to the node N3 over the node TN. The user is
informed about the successful delivery by the message MSG_conf. Figure 3.59
shows the scenario of an unsuccessful message delivery. The node N1 has

N123_IDLE

N123_MSG_SENT

rcv MSG_req/snd MSG(dest) rcv MSG/snd MSG

rcv MSG

rcv MSG_conf/snd MSG_conf
rcv MSG_reject/snd MSG_reject

FIGURE 3.54
Statechart diagram of the process that runs in a terminal node of the network.

TN_IDLE

rcv MSG(dest)/port=route(dest)
[port is invalid]/snd MSG_reject

[port is valid]/snd MSG, snd MSG_conf

FIGURE 3.55
Statechart diagram of the process that resides in the transit node of the network.

184 Communication Protocol Engineering

N
12

3_
ID

LE
N

12
3_

M
SG

_S
EN

T

M
SG

M
SG

_r
eq

M
SG

_c
on

f
M

SG
M

SG
_r

ej
ec

t

N
12

3_
ID

LE
M

SG
(d

es
t)

M
SG

_c
on

f
M

SG
M

SG
_r

ej
ec

t

N
12

3_
M

SG
_S

EN
T

N
12

3_
ID

LE

FI
G

U
R

E
3.

56
SD

L
 d

ia
gr

am
 o

f t
he

 p
ro

ce
ss

 th
at

 r
u

n
s

in
 a

 te
rm

in
al

 n
od

e
of

 th
e

ne
tw

or
k.

185Design

TN_IDLE

MSG(dest)

port=route(dest)

Is port
valid?

MSG_rejectMSG

No

Yes

MSG_conf

–

–

FIGURE 3.57
SDL diagram of the process that resides in the transit node of the network.

186 Communication Protocol Engineering

sent the message to the unknown destination, which has been rejected from
the node TN by the message MSG_reject.

Next, we develop a simple TTCN-3 test suite specification for this example,
which comprises two test cases. We start by defining the new types Address,
Data, and Msg:

type enumerated Code (
 MSG_req,
 MSG_conf,
 MSG_reject
);
type integer Adress;
type integer Data;
type record Msg {
 Code code;

N1 TN N3

MSG_req

MSG(dest)

MSGMSG_conf

MSG_conf

FIGURE 3.58
Successful message delivery MSC.

N1 TN N3

MSG_req

MSG(dest)

MSG_reject

MSG_reject

FIGURE 3.59
Unsuccessful message delivery MSC.

187Design

 Address destination_address;
 Data user_data;
}

Then by using the message type Msg we define the suitable parametrized
templates t_request and t_response:

template Msg t_request(Code p_code, Address p_dst) := {
 code := p_code,
 destination_address:= p_dst,
 user_data := ?
}

template Msg t_response(Code p_code, Address p_dst) := {
 code := p_code,
 destination_address:= p_dst,
 user_data := ?
}

Let’s assume that the test system plays the role of N1 in Figures 3.58
and 3.59, and that it communicates with USER and TN over the ports pt_user
and pt_tn, respectively. We assume that both of these ports are of type PortN,
which is defined as following:

type port PortN {
 inout Msg
}

Our simple test suites use a single test component named ComponentN to
execute test cases, and ComponentN, in turn, uses two previously mentioned
communication ports to communicate with USER and TN:

type component ComponentTS {
 port PortN pt_user;
 port PortN pt_tn
}

The first test case tests the successful delivery of the correct message from
N1 to N3, in accordance with the MSC chart shown in Figure 3.58:

testcase tc_no1() runs on ComponentN {
 pt_user.receive(t_request(MSG_req, 3));
 pt_n1.send(t_request(MSG_req, 3));
 alt {
 [] pt_n1.receive(t_response(MSG_conf, 3)) {
 pt_user.send(t_response(MSG_conf, 3));

188 Communication Protocol Engineering

 setverdict(pass);
 }
 [] pt_n1.receive(t_response(MSG_reject, 3)) {
 pt_user.send(t_response(MSG_reject, 3));
 setverdict(fail);
 }
 }
 stop;
}

The second test case tests the successful drop of the incorrect message
from N1 to non-existing N4, in accordance with the MSC chart shown in
Figure 3.59:

testcase tc_no2() runs on ComponentN {
 pt_user.receive(t_request(MSG_req, 4));
 pt_n1.send(t_request(MSG_req, 4));
 alt {
 [] pt_n1.receive(t_response(MSG_conf, 4)) {
 pt_user.send(t_response(MSG_conf, 4));
 setverdict(fail);
 }
 [] pt_n1.receive(t_response(MSG_reject, 4)) {
 pt_user.send(t_response(MSG_reject, 4));
 setverdict(pass);
 }
 }
 stop;
}

We may execute both of these test cases by using the following control part:

control {
 execute(tc_no1())
 execute(tc_no2())
}

The reader is encouraged to play more with this example. One interesting
direction of generalization would be to consider a more complex network,
such as the one shown in Figure 3.60.

3.10.3 Example 3

This example illustrates reliable packet delivery based on message acknowl-
edgment. Each communication process expects the acknowledgment of the

189Design

message that it has previously sent. If the acknowledgment is not received
within the limited period of time, the corresponding timer will expire, the
process will assume that the message or its acknowledgment have been lost,
and the process will retransmit the message once again.

The statechart diagram and the SDL diagram of the process are shown in
Figures 3.61 and 3.62, respectively. The process has two stable states, FSM_
IDLE and FSM_MSG_SENT. In its initial state, the process starts the timer
T1, sends the message with the sequence number SN, and evolves into its
next stable state FSM_MSG_SENT. In that state, the process either receives
the acknowledgment, stops the timer T1, and returns to its initial state, or the
timer T1 expires and, in turn, the process retransmits the message.

In any state (FSM_IDLE or FSM_MSG_SENT), the process can receive a
message from its peer process. The process acknowledges the message if the
sequence number of the message is valid (in communication protocols, the
process would normally maintain the counter of the next expected message
in a sequence by incrementing its contents for each received message—a
validity check in this context would be to compare the sequence number
in the received message with the contents of this counter). If the sequence
number, RN, of the message is invalid, the process throws the message away.

Figure 3.63 illustrates two scenarios of the communication between two
peer processes. The MSC on the left in Figure 3.63 shows a successful mes-
sage delivery. The process FSM1 sends the message M1 to the process FSM2,
which in turn sends the acknowledgment ACK to the process FSM1.

The MSC on the right in Figure 3.63 shows a more complex scenario of suc-
cessful message retransmission after the unsuccessful first message deliv-
ery attempt. The process FSM1 sends the message M1, the process FSM2
receives it and sends its acknowledgment ACK, but gets lost. The timer T1

N2

TN1

N1 N3

A

B

C

Routing table

TN2D

N4

A

B

1 A
2 B
3 C
4 D

1 A
2 A
3 A
4 B

Routing table

FIGURE 3.60
Topology of a more complex hypothetical network.

190 Communication Protocol Engineering

expires and the process FSM1 retransmits the message M1. The process
FSM2 receives it and sends its acknowledgment ACK, which is successfully
received by FSM1.

3.10.4 Example 4

This example illustrates the sliding window concept, which provides a reli-
able and efficient transport service. Voluminous literature can be found that
addresses this topic (Halsall, 1988). The design shown here is based on the
Go-back-N retransmission mechanism. It also supports the robust frame
acknowledgment procedure (one ACK may acknowledge more than one
frame).

The collaboration diagram in Figure 3.64 shows two distributed applica-
tions that communicate with the help of two communication objects, which
are deployed at the local and remote side. The application a1 sends the data
packed into messages (M) to the object p (primary), which, in turn, encap-
sulates the messages into I (information) frames, together with its sequence
number V(s), and sends them to the object s (secondary). The object s checks
the frame I sequence number against the number it expects V(r), and if they
match, it accepts the frame I and acknowledges it by sending the message
ACK to the object p. If these numbers do not match, the object s rejects the
received I frame and sends the corresponding message NAK. We assume

FSM_IDLE

FSM_MSG_SENT

rcv ACK

after: T1/ snd MSG(SN)

rcv MSG(SN)

[SN is ok] / snd ACK

[ELSE]/destroy MSG(SN)

/snd MSG(SN)

[SN is ok]/snd ACK

[ELSE]/destroy MSG(SN)

FIGURE 3.61
Statechart diagram of the communicating process that provides the reliable message delivery
based on the retransmission scheme.

191Design

FSM_IDLE

Start T1

MSG(SN)

FSM_MSG_SENT

FSM_MSG_SENT

ACK T1

Stop T1 Start T1

FSM_IDLE

MSG(SN)

–

FSM_IDLE,
FSM_MSG_SENT

MSG(SN)

Is SN
ok?

ACK

Yes

Destroy
MSG(SN)

No

– –

FIGURE 3.62
SDL diagram of the communicating process that provides the reliable message delivery, based
on the retransmission scheme.

192 Communication Protocol Engineering

that the numbers V(s) and V(r) are maintained in the variables vs and vr,
respectively. The object s delivers all the correctly received messages to the
remote application a2.

In this example, we are mainly interested in the communication proto-
col between the primary and the secondary side of the communication link,
which is established by the corresponding communication processes, p and
s. The process p is modeled with the activity diagram shown in Figures 3.65
and 3.66, whereas the process s is modeled with the activity diagram shown
in Figure 3.67.

Assume that the variable rc holds the number of the I frames that were sent
by the process p but are still not acknowledged by the process s. The activ-
ity diagram in Figure 3.65 starts with the transition from the initial state to
the state IDLE. During this transition, the variables vs and rc are reset. After
receiving a message M from the application a1, p checks if the send window
is full. If the send window is not full, p calls the procedure send(M) to encap-
sulate M into I and sends it toward s. If the send window is full, p adds M to
the input queue (inputQueue). In both cases, it returns to the state IDLE.

a1 p s a2

M
I

ACK/NAK M

FIGURE 3.64
Example 4 collaboration diagram.

FSM1 FSM2

Start T1

Stop T1

FSM1 FSM2

Start T1

T1 expired
Start T1

Stop T1

M1

ACK

M1

M1

ACK

ACK

FIGURE 3.63
Example with two scenarios (with and without message retransmission).

193Design

IDLE

/rc=0, vs=0

rcv M

[else]

I=new I(vs, M)

[rc<WINDOW]

Create I
frame

Reset retransmission count, rc
reset V(S), vs

inputQueue.add(M)

Window
is full

retransmissionQueue.add(I)

T=getTimer()

Allocate and
start new
timer

mapTtoI.put(T,I)
Put new
pair (T,I)
into map T to I

vs++, rc++

IDLE

/snd I update counters and

Add I frame to
retransmission
queue

Primary
(P) side

Message from the
application received

IDLE

restartTimer(T)

T expired

I=map.get(T)

IDLE

/snd I

T expired

Get the corresponding
I frame and retransmit it

mapItoT.add(I,T) Put new
pair (I,T)
into map I to T

send(M)

send(M) definition

call send(M)

FIGURE 3.65
Example 4 activity diagram, part I.

194 Communication Protocol Engineering

The procedure send(M) first creates the frame I and encapsulates the current
value of the variable vs and the message M in it by supplying them as argu-
ments of the corresponding constructor. It then adds the frame to the retrans-
mission queue (retransmissionQueue), allocates and starts a new timer (T),
adds the pair (T,I) to the map mapTtoI, adds the pair (I,T) to the map mapItoT,

IDLE

iter=retransmissionQueue.Iterator()

rcv ACK

[iter.hasNext()==true]

I=iter.next()

iter.remove()

[else]

T=map I to T(I)

stopTimer(T)

mapItoT.remove(I)

mapTtoI, remove(T)

[I.N>=ACK.N]

[rc < WINDOW]

iter=inputQueue.Iterator()

[iter.hasNext()==true]

M=iter.next()

send(M)

IDLE

[else]

[else]

IDLE

iter=retransmissionQueue.Iterator()

rcv NAK

[iter.hasNext()==true]

I=iter.next()

IDLE
[else]

Go-back-N
retransmission
procedure

[I.N>=NACK.N]

[else]

T=mapItoT.get(I)

Robust ACK procedure
(one ACK may acknowledge
more I frames)

restartTimer(T)

/snd I

iter.remove()

FIGURE 3.66
Example 4 activity diagram, part II.

195Design

increments vs and rc, and sends the frame I toward s. The map mapTtoI is
used to search for the frame I that corresponds to the given timer T, whereas
the map mapItoT is used to search for the timer T that corresponds to the
given frame I. Notice that the procedure send(M) assigns a timer to each
frame it sends. When the timer expires, p restarts the timer (restartTimer(T)),
finds the corresponding frame by using the map mapTtoI, and retransmits
the frame toward s.

When p receives the message ACK from s, it provides the iterator on the list
retransmissionQueue and starts iterating through this list. For all the frames
whose sequence number is smaller than the sequence number in the received
ACK message, p finds the corresponding timer (by using the map mapItoT),
stops it, and removes both the pair (T,I) from the map mapTtoI and the pair
(I,T) from the map mapItoT.

Because some of the slots (or at least one of them) should be free after the
previous iteration, p provides the iterator on the list inputQueue and starts
iterating through it. It iterates while empty slots exist in the send window,

IDLE

Secondary
(S) side

/vr=0

reset V(R), vr

rcv I

NAK=new NAK(vr)

IDLE

/snd NAK

vr++

ACK=new ACK(vr)

IDLE

/snd ACK

[vr==I.N]

Accept
I frame

Reject I frame and
initiate Go-back-N
retransmission
procedure at P side

FIGURE 3.67
Example 4 activity diagram, part III.

196 Communication Protocol Engineering

and, while iterating, it removes the messages from the input queue and sends
them by calling the procedure send(M), as explained previously.

If the process p receives the message NAK, it performs the Go-back-N
retransmission procedure. Essentially, p scans the whole retransmission
queue. For each frame whose sequence number is greater than or equal to
the sequence number in the receive message ACK, p finds the corresponding
timer, restarts it, and retransmits the frame toward s.

The activity diagram shown in Figure 3.67 models the process s. It starts with
the triggerless transition from the initial state to the state IDLE. During this tran-
sition, the variable vr is reset. After receiving the frame I, s checks its sequence
number equal to the value of the variable vr. If the values are the same, s accepts
the frame by incrementing vs, creating the message ACK, and sending it to p. If
the values are different, s rejects the frame by sending the message NAK to p.

Figures 3.68 through 3.70 show three typical scenarios. The sequence dia-
gram shown in Figure 3.68 illustrates a successful frame delivery scenario.
The frames I(0) and I(1) are sent through the window and are acknowledged
with ACK(1) and ACK(2), respectively. After some delay, I(2) is sent and it is
also successfully acknowledged with ACK(3).

The sequence diagram shown in Figure 3.69 illustrates the Go-back-N pro-
cedure. The process p starts by sending the frames I(0) and I(1). The frame
arrives at s side regularly but I(1) gets lost. This causes the mismatch of

p s

I(0)

I(1)
ACK(1)

ACK(2)

I(2)

ACK(3)

FIGURE 3.68
Example 4 MSC diagram: Successful frame delivery.

197Design

sequence numbers at the secondary side when it successfully receives I(2),
because the value of the variable vr is 1 (which indicates that s is awaiting
I(1) instead of I(2)). Because the sequence number of the frame and the value
of the variable are not the same, s rejects the frame by sending the message
NAK(1). The process p, in turn, retransmits both I(1) and I(2).

The sequence diagram shown in Figure 3.70 illustrates the frame retrans-
mission triggered by the retransmission timer. The process p starts again by
sending I(0) and I(1) in succession. The process s in its turn acknowledges
them by ACK(1) and ACK(2), respectively. The message ACK(1) arrives suc-
cessfully at the primary side, but the message ACK(2) gets lost. This causes
the corresponding timer to expire after a while. Triggered by that event, p
restarts the timer and retransmits the frame I(1). During the second time,
both I(1) and the corresponding ACK(2) are successfully transferred over the
communication link. After receiving ACK(2), p stops the timer and removes
I(1) from the retransmission queue.

p s

I(0)
I(1)

I(2)

ACK(1)

NAK(1)

I(1)

I(2)

ACK(2)

ACK(3)

FIGURE 3.69
Example 4 MSC diagram: Go-back-N retransmission.

198 Communication Protocol Engineering

3.10.5 Example 5

In this example, we design the SIP INVITE client transaction in accordance
with RFC 3261, Section 17.11. First, let us return to the requirements and anal-
ysis of a SIP Softphone, introduced as an example at the end of Chapter 2. In
that example, we constructed the use case diagram and transformed it into
the corresponding general collaboration diagram. At the very end of that
example, we showed the one particular collaboration related to the success-
ful session establishment.

Now, let us zoom in on the general collaboration diagram of a SIP Softphone
with the focus on the SIP INVITE client transaction and the surrounding
objects with which it directly communicates. The resulting general collabo-
ration diagram is shown in Figure 3.71. The SIP INVITE client transaction
is modeled as an unnamed object of the class InClientT because this object

p s

I(0)

I(1)
ACK(1)

ACK(2)

T(1) expired
I(1)

ACK(2)

FIGURE 3.70
Example 4 MSC diagram: I frame retransmission triggered by the retransmission timer.

199Design

is dynamically created upon user request. It collaborates with the following
three objects:

• tud, which represents the transaction user dispatcher
• tald, which represents the transaction layer dispatcher
• tlid, which represents the transport layer dispatcher

Similarly, we can zoom in on the particular collaboration diagram that
illustrates a successful session establishment scenario (Figure 2.17) to pro-
vide the corresponding particular collaboration of the SIP INVITE client
transaction with its surrounding objects (Figure 3.72). As already men-
tioned in Chapter 2, req() and rsp() designate requests and responses, respec-
tively. More precisely, req(INVITE) is the SIP invite request, rsp(1xx) is the
SIP provisional response, and rsp(200) is the SIP final response. Note that
the first message 1:req(INVITE) sent from the object tald to the SIP INVITE
client transaction object in Figure 3.72 corresponds to the fourth message
4:req(INVITE) sent from the object tald to the SIP INVITE client transaction
object in Figure 2.17. Note also that Figure 3.72 shows only the messages
exchanged among the objects shown in this figure, and that the sequence
numbers of these messages are assigned accordingly.

Another particular collaboration that corresponds to an unsuccessful ses-
sion establishment scenario is shown in Figure 3.73. This scenario is the same
as the previous one up to the step number 6, when instead of the success-
ful final response rsp(200), the unsuccessful final response rsp(300-699) is

tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

FIGURE 3.71
SIP INVITE client transaction collaboration diagram.

200 Communication Protocol Engineering

tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

5: rsp(1XXX)

8: rsp(200)

3: rsp(1XX)

6: rsp(200)
2: re

q(IN
VIT

E)
1: req(INVITE)

4: rsp(1XX)
7: rsp(200)

FIGURE 3.72
Successful session establishment collaboration diagram.

tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

5: rsp(1XXX)

8: rsp(300–699)

3: rsp(1XX)

6: rsp(300–699) 2: re
q(IN

VIT
E)

9: re
q(A

CK)1: req(INVITE)
4: rsp(1XX)

7: rsp(300–699)

FIGURE 3.73
Unsuccessful session establishment collaboration diagram.

201Design

received. In step 7, tald forwards rsp(300-699) to the SIP INVITE client trans-
action, which in accordance with RFC 3261, forwards it toward the upper
layer and sends the message ACK to the remote site. These two actions are
performed in steps 8 and 9, respectively. Semantically equivalent sequence
diagrams are shown in Figures 3.74 and 3.75. Figure 3.74 illustrates a suc-
cessful session establishment, whereas Figure 3.75 shows an unsuccessful
session establishment scenario.

Based on the SIP INVITE client transaction state transition graph (RFC 3261,
page 127) we can construct the corresponding statechart diagram (Figure
3.76). This statechart diagram starts with the transition from the initial state
to the state Calling, which is triggered by the reception of the signal (message)
req(INVITE) from the transaction user (TU). The signal req(INVITE) models
the original request SIP INVITE. During this transition, the SIP INVITE cli-
ent transaction forwards the message req(INVITE) to the transport layer.

At the entrance to the state Calling, two timers are started, timer A (TA) and
timer B (TB). The former corresponds to the time interval that must elapse
before the response to the request INVITE can be received, whereas the lat-
ter limits the time interval during which the SIP INVITE client transaction
waits for the response to the request INVITE. Initially, TA is set to the value
T1 (estimated round-trip time, RTT, which is by default 500 ms) and TB is set
to 64 × T1.

tud : TUDisp tald : TALDisp : InClientT tlid : TLIDisp

1: req(INVITE)

2: req(INVITE)

3: rsp(1XX)
4: rsp(1XX)

5: rsp(1XX)

6: rsp(200)
7: rsp(200)

8: rsp(200)

FIGURE 3.74
Successful session establishment sequence diagram.

202 Communication Protocol Engineering

If the timer TA expires, the SIP INVITE client transaction restarts it by dou-
bling its current value (TA = TA × 2) and retransmits the signal req(INVITE).
Initial values of TA and TB (T1 and 64 × T1, respectively) allow this proce-
dure to repeat the maximum of seven times before the timer TB expires. If
the timer TB expires (or if a transport error is detected), the SIP INVITE client
transaction informs TU accordingly and moves to the state Terminated, and
from there to its final state.

Most frequently, a response to the request INVITE will be received before
the timer B expires. In such a case, the SIP INVITE client transaction stops
both timers and moves to the next state, which depends on the type of
response. If the provisional response rsp(1xx) is received, the SIP INVITE
client transaction forwards it to TU and moves to the state Proceeding. If the
successful final response rsp(2xx) is received, the SIP INVITE client transac-
tion forwards it to TU and moves to the state Terminated. If the unsuccessful
final response rsp(300-699) is received, the SIP INVITE client transaction for-
wards it to TU and sends the signal (message) ACK to the remote site.

While being in the state Proceeding, the SIP INVITE client transaction sim-
ply forwards all the preliminary responses rsp(1xx) to TU. Once it receives
the successful final response rsp(2xx), it also forwards it to TU and moves
to the state Terminated. If the SIP INVITE client transaction receives the

tud : TUDisp tald : TALDisp : InClientT tlid : TLIDisp

1: req(INVITE)

2: req(INVITE)

3: rsp(1XX)
4: rsp(1XX)

5: rsp(1XX)

6: rsp(300–699)
7: rsp(300–699)

8: rsp(300–699)
9 req(ACK)

FIGURE 3.75
Unsuccessful session establishment sequence diagram.

203Design

unsuccessful final response rsp(300–699) in the state Proceeding, it forwards
that response to TU, sends the signal req(ACK) to the remote site, and moves
to the state Completed.

At the entrance to the state Completed, the third timer, the timer D (TD), is
started. While being in the state Completed, the SIP INVITE client transac-
tion just confirms any unsuccessful final responses rsp(300-699) by sending
the SIP message ACK to the remote site. If the SIP INVITE client transaction
detects a transport error, it informs TU accordingly and moves to the state
Terminated. Finally, when the timer D expires, the SIP INVITE client transac-
tion finishes simply by moving to the state Terminated.

We finalize this example with the semantically equivalent SDL diagram,
which, due to its size, is shown in the next four figures (in these figures,
TPL stands for the transport layer and TU stands for the transaction user).
Figures 3.77 through 3.80 illustrate the processing of events in the states
Calling, Proceeding, Completed, and Terminated, respectively.

Calling

TA exp./reset TA, snd req(INVITE)

rcv req(INVITE)/snd req(INVITE)

Proceeding

rcv rsp(1xx)/snd rsp(1xx)

rcv rsp(1xx)/snd rsp(1xx)

rcv rsp(300–699)/snd rsp(300–699), snd req(ACK)

Completed

rcv rsp(300–699)/snd req(ACK)

Terminated

TD exp.

rcv rsp(300–699)/snd rsp(300–699), snd req(ACK)

rcv rsp(2xx)/snd rsp(2xx)

rcv rsp(2xx)/snd rsp(2xx)

Trans. Err/inform TU

TB exp. or Trans. Err/inform TU

FIGURE 3.76
Statechart diagram of the SIP INVITE client transaction.

204 Communication Protocol Engineering

Initial

Invite

Start Timer B
Tb=64*T1

Start Timer A
Ta=T1

Calling

Unreliable

Transport

Reliable

Invite_T to
TPL

FIGURE 3.77
SDL diagram of the SIP INVITE client transaction, part I.

205Design

1xx

Calling

Timer A 300–699 2xx Timer B

Start Timer A
Ta=2*Ta

Start Timer D
Td=0

Completed

Proceeding

1xx to TU 2xx to TU

Transport

Start Timer D
Td=64*T1

Reliable

Unreliable

Stop Timer A
Stop Timer B

Stop Timer A
Stop Timer B

Stop Timer A
Stop Timer B

Stop Timer A

–

Retransmit
INVITE to

TPL

ACK_T to
TPL

Transp. error

Inform TU

Terminated

300–699 to
TU

Stop Timer A
Stop Timer B

FIGURE 3.78
SDL diagram of the SIP INVITE client transaction, part II.

206 Communication Protocol Engineering

Proceeding

300–699 2xx 1xx

2xx to TU300–699 to TU 1xx to TU

Terminated

Completed

Start Timer D
Td=0

Transport

Start Timer D
Td=64*T1

Reliable Unreliable

–
ACK_T to

TPL

FIGURE 3.79
SDL diagram of the SIP INVITE client transaction, part III.

207Design

References

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1998.

Willock, C., Deiß, T., Tobies, S., Keil, S., Engler, F., Schulz, S., An Introduction to TTCN-
3, Second Edition, John Wiley & Sons, Chichester, West Sussex, UK, 2011.

Halsall, F., Data Communications, Computer Networks and OSI, Addison-Wesley,
Reading, MA, 1988.

Completed

Trans. errorTimer D300–699

ACK_T to
TPL

Terminated

Stop Timer D

–
Inform TU

FIGURE 3.80
SDL diagram of the SIP INVITE client transaction, part IV.

http://taylorandfrancis.com

http://taylorandfrancis.com

209

4
Implementation

The system implementation is a phase in engineering work that follows the
system design phase. This phase consists of the following two steps:

• Transform a design model into the implementation model
• Transform the implementation model into a higher-level program-

ming language code

A design model is given in the form of the corresponding UML (Booch
et al., 1998) or SDL diagrams, which are the results of the previous phases
of communication protocol engineering, i.e., requirements, analysis, and
design. The implementation model takes the form of the corresponding
UML component diagram. The output of the implementation phase is
a set of source code modules, today most frequently in C/C++ or Java,
which is also referred to as the implementation. This may sound confus-
ing, but in reality, the correct meaning of the term is easily deduced from
its context.

Logically, implementation as a phase of the production process is a well-
defined mapping of a design model into a higher-level programming lan-
guage source code. Implementation as a product is a result of this mapping. The
attribute well-defined reflects the assumption that both detailed procedures
and adequate tools are provided for transforming models into program
source code. This well-defined mapping of a model into the program source
code is referred to as forward engineering in UML terminology. Likewise,
the reverse mapping of a program source code into the model is referred to
as backward engineering.

In a mathematical sense, both the mapping of a program into the pro-
gram source code and the result of that mapping (i.e., the implementation
in both of its meanings) are not unique. Therefore, logically, more than one
correct implementation exists for a given model of the communication proto-
col. Under the correct implementation, we assume an implementation that
for given input produces expected outputs within the expected time frame,
which is defined with the corresponding timers. We say for such implemen-
tation that it is compliant (conformant) with (to) the given model. The terms
compliant and conformant are synonyms in this context. If the model has been
standardized (e.g., by IETF or ITU-T), we say that the implementation is com-
pliant with the standard.

210 Communication Protocol Engineering

The concept of forward and backward engineering is an intriguing one.
Proponents of the model-based software development and various initia-
tives in Model-Driven Architecture (MDA) strongly believe that forward and
backward engineering is possible, and they are putting forth tremendous
efforts to make it real. Quite a number of commercially available tools are
made with this goal in mind. The agile programming community is strongly
opposed to it because their members believe that only the program source
code is the complete specification of the system. From their point of view,
only the set of test cases that successfully pass are proof that the implementa-
tion is correct.

Other groups also exist between these two extremes that are trying to close
the gap between software modeling and programming (also called coding).
For example, the creators of the StateWORKS® tool and the corresponding
approach claim that although UML tool vendors made serious attempts to
generate code from models, they are facing major difficulties, and that these
tools can so far produce only header files or code skeletons. As an alternative,
they introduced the notion of the totally complete models in an attempt to
completely eliminate programming. The models in StateWORKS® are sets of
virtual finite state machines (VFSMs) that run on top of the VFSM Executor,
which is essentially an interpreter.

This book has a similar but different approach. We try to shrink the
gap between communication protocol modeling and programming, both
by making detailed models and by providing the FSM library, which
forces programmers to transform models into code in a uniform way. This
methodology makes forward engineering well defined. As already men-
tioned in the previous chapter, the FSM library provides two main classes,
namely FiniteStateMachine and FSMSystem. The former is used to model
and implement individual FSMs and the latter is used as their execu-
tion platform, which comprises common services and an event (message)
interpreter.

When it comes to programming interpreters and FSM-related libraries,
a broad spectrum of possible implementations exists, starting with the
traditional structural or procedural solution, continuing with a series of
mixed solutions, and ending with the object-oriented solutions of both
static and dynamic type. This situation is justified by the fact that the
implementation style depends highly on the type of target architecture.
For example, if we consider a microcontroller as the target architec-
ture, we are naturally forced to select a structural solution in the C/C++
programming language. If we consider more powerful architectures,
in terms of resources, we may also take into consideration the object-
oriented approaches supported by the C++ and Java programming
languages.

In Section 4.1, we introduce the component diagrams, which are the means
of making implementation models. We then illustrate a spectrum of possible
finite state machine implementations, including the catalogued state design

211Implementation

pattern (Gamma et al. 1995), which is explained in Section 4.3. After that,
we cover the concepts and, most importantly, the design and implementation
details of the FSM library (its reference manual is given in Chapter 6). We
conclude this chapter with two implementation examples.

4.1 Component Diagrams

In Chapter 3 we were dealing with abstractions in the conceptual world. The
design phase typically starts with exploration in the realm of interaction
diagrams, where we try to get a better feeling of the system. We finish the
design phase by defining the static structure and the complete behavior of
the system in the corresponding class and activity, or statechart diagrams,
respectively. At the end of the design phase, we also specify the deployment
of individual software components by rendering the corresponding deploy-
ment diagrams.

In the implementation phase, we are materializing the design abstractions
(such as classes, interfaces, and collaborations) into the components that live
in the physical world. As already mentioned, a component is a physical and
replaceable part of the system that realizes the given set of interfaces. What
we actually do at the beginning of the implementation phase is pack the
design abstractions into packages with well-defined interfaces, referred to as
components. Examples of such packages are traditional binary object librar-
ies, dynamically linkable libraries (DLLs), and executables; as well as tables,
files, and documents.

The components and classes are very much alike. Both can:

• Realize a set of interfaces
• Participate in relations (dependencies, generalizations, and associations)
• Be nested
• Have instances
• Participate in interactions

The differences between the components and the classes are as follows:

• The former represents physical entities, whereas the latter is a con-
ceptual abstraction, so they exist on different levels of abstraction.

• The former only has operations that are accessible through its inter-
faces, whereas the latter may have both operations and attributes.

The most important feature of the component is that it is replaceable.
This means that we can substitute a component with another one without

212 Communication Protocol Engineering

any influence on the system as a whole. This replacement is completely
transparent to the users of the replaced component. A new component
provides the same or perhaps even better services through the exact same
interfaces.

We distinguish the following three types of components:

• The deployment components (already introduced in the context of
deployment diagrams) are the parts of the executable system, such
as executables and DLLs.

• The work product components are the artifacts of the development
process (such as project settings or the source code) and data files
that are used to build the deployment components.

• The executable components are the parts of the run-time system, e.g.,
DCOM and CORBA components.

We make the implementation models by rendering the component dia-
grams. The set of graphical symbols that are available for rendering compo-
nent diagrams is shown in Figure 4.1. As usual, we select a symbol from the
set of available symbols, drag and drop it onto the working sheet, and fill in
the data related to its properties. The set of symbols available for rendering
component diagrams is obviously a subset of the set of symbols available
for rendering deployment diagrams. The properties of these symbols are
explained in Chapter 3 (see Section 3.6).

Package
Component

Node

Interface

{Constraint}

Note

{Constraint} {OR}

FIGURE 4.1
Set of symbols available for rendering component diagrams.

213Implementation

In communication protocol engineering, we are mainly using component
diagrams for:

• Modeling APIs
• Modeling executables and libraries
• Modeling source code

Well-defined application programming interfaces (APIs) are some of the
most important features of the well-structured software system. An API is
an interface that is realized by one or more components. Being an interface,
it actually defines a set of services. It represents a clear demarcation line
between the service users and the service providers. The former receives the
service without caring who is providing it. The same also holds true in the oppo-
site direction: the latter provides the service without caring who receives it.

We may think of APIs as the programmatic seams of the system. We use
them to connect more components together to create more complex systems.
Each component is replaceable. We can replace it with another component
whenever there is a need. The developers of the component that use some
APIs do not care who or how it will be provided. They only care about how
to fulfill the requirements for the component they are working on currently.
Alternately, the system integrator must care that all of the needed compo-
nents are provided and that they are compliant with their APIs.

Figure 4.2 illustrates the modeling of APIs by means of a very simple exam-
ple. Imagine that we have been provided with the TCP/IP protocol stack
packed as a dynamically linkable library, named tcpipstack.dll. It defines the
API that comprises three interfaces, namely, TCPSockets, UDPSockets, and
IPInterface. The first provides communication services over TCP ports, the
second over UDP ports, and the third directly over IP.

Provided with such a component, we are now able to create a new compo-
nent that uses it. For example, we can create the DLL sip.dll (Figure 4.3). This

tcpipstack.dll

TCPSockets

UDPSockets

IPInterface

FIGURE 4.2
Example of a simple API.

214 Communication Protocol Engineering

new component provides the SIP services through the interface SIPInterface.
The fact that sip.dll uses services provided through the interface TCPSockets
is modeled by connecting these two with the dependency relation.

Besides modeling APIs, we can use component diagrams to model execut-
ables and libraries. Generally, if the system under development comprises
more executables and associated object libraries, it may be wise to make a
model that illustrates their relationships. This is especially important if we
want to keep versioning and configuration management during the system
lifetime under control.

Modeling of executables and libraries can help in making the decision
regarding the physical partitioning of the system. The issues that affect this
decision-making are as follows:

• Technical issues
• Configuration management issues
• Reusability issues

Figure 4.4 shows the model of a simple executable, named softphone.exe.
This executable uses the DLL sip.dll through the API that comprises the sin-
gle interface SIPInterface. Farther down the hierarchy, sip.dll receives the com-
munication service that is provided by the DLL tcpipstack.dll through the
interface TCPSockets.

Each library and executable is built in the environment of a separate soft-
ware project. Generally, a software project comprises the project configura-
tion (settings) files, the source code files, and the object libraries. The source

tcpipstack.dll

TCPSockets

UDPSockets

IPInterface

sip.dll

SIPInterface

FIGURE 4.3
Example of a simple API user.

215Implementation

code files typically include the module declaration (header) and the mod-
ule definition files. The developers try to logically organize these files into
a file system structure by placing the related files into the same directory
(folder).

In the case of complex projects, the corresponding directory tree can get
rather ramified, and sometimes it may not be clear where to put new soft-
ware modules. This can be especially confusing for the new members of the
development team. Things get even worse when we must manage splitting
and merging of groups of files as development paths fork and join.

In such cases, it is advisable to make a model of the software project, also
referred to as the source code model. An example of such a model is shown
in Figure 4.5. The executable Main.exe is built in accordance with the project
definition file Main.dsw. Because the project comprises all the module head-
ers and module definition files, the file Main.dsw has a dependency relation
with all of them. (For clarity, only some of these dependencies are shown in
Figure 4.5.)

Farther down the hierarchy, the source code files AutomataA.cpp and
AutomataB.cpp use the header files AutomataA.h and AutomataB.h, respec-
tively. Both of these header files use the header file Constants.h. Finally, all
of the header and source code files, except Constants.h, use the framework
FSMLibrary.

tcpipstack.dll

TCPSockets1

UDPSockets

IPInterface

sip.dll

SIPInterface

softphone.exe

FIGURE 4.4
Model of a simple executable.

216 Communication Protocol Engineering

«f
ra

m
ew

or
k»

FS
M

 L
ib

ra
ry

«e
xe

cu
ta

bl
e»

M
ai

n.
ex

e
«fi

le
»

M
ai

n.
ds

w

«fi
le

»
M

ai
n.

cp
p

«fi
le

»
A

ut
om

at
aB

.c
pp

«fi
le

»
C

on
st

an
ts

.h

«fi
le

»
A

ut
om

at
aB

.h

«fi
le

»
A

ut
om

at
aA

.c
pp

«fi
le

»
A

ut
om

at
aA

.h

FI
G

U
R

E
4.

5
M

od
el

 o
f a

 s
im

pl
e

pr
oj

ec
t.

217Implementation

4.2 Spectrum of FSM Implementations

As mentioned in Chapter 3, we model communication protocols as finite
state machines (FSMs). A broad spectrum of various solutions exists for
the implementation of FSMs. This section contains a short overview of only
three, perhaps the most representative approaches to the implementation of
FSMs. The complete treatment of all methodologies and corresponding tools
is outside the scope of this book, and as an alternative we simply want to
develop ideas by exploring different implementations of a simple FSM (coun-
ter by modulo 2). The goal is to familiarize the reader with this subject by
showing what the problems are and how they can be tackled.

The three approaches to FSM implementation are illustrated by simple
implementations of modulo 2 counters in the Java programming language.
As already mentioned, communication protocol developers today mainly
use C/C++ and Java, and the selection of the programming languages for
certain projects mainly depends on the target platform. By mixing examples
in Java and C/C++, we want to show that all these languages are applicable
in the area of communication protocol engineering, and that the selection of
a programming language is not the highest priority issue. Actually, we start
with Java in Sections 4.2 and 4.3, switching to C++ later.

The state design pattern is a particular FSM implementation type that is
special because it was catalogued by Gamma et al. in 1995. Because of that,
it receives its own separate section. However, none of these four approaches
are used later in this book. Instead, we introduce the FSM Library-based
implementation paradigm, which is more like the state-of-the-art paradigm.
In other words, first we show what is possible, and perhaps what is next, and
then we turn to the current practice in communication protocol engineering.

Let us turn our attention to the subject of the implementation, a communi-
cation protocol. As already mentioned in Chapter 1, the communication pro-
tocol is defined with the syntax of its messages, the set of procedures (actions)
that process the messages, and the set of reactions to exceptional events
(timer and error management). In the programming world, they are mod-
eled as finite state machines, also referred to as automata. Mathematically,
the abstract automata are defined as

 A X Y S t o S= (, , , , ,)0

where
 X = {X1, X2, …Xn} is a set of input signals (input alphabet)
 Y = {Y1, Y2, …Ym} is a set of output signals (output alphabet)
 S = {S1, S2, …Sk} is a set of states (state alphabet)
 S0 is the initial state
 t is the transition function that maps the Cartesian product of S x X to S
 o is an output function that maps the Cartesian product of S x X to Y

218 Communication Protocol Engineering

Abstract automata are typically illustrated in the form of a state transition
graph. The example of the state transition graph in Figure 4.6 illustrates the
counter by modulo 2, which is actually the example of a finite state machine
we want to implement in Java. It is formally defined as follows:

 C X Y S t o S= (, , , , ,)0

where
 X = {0, 1}
 Y = {0, 1, 2}
 S = {S1, S2, S3}
 S0 = S1

The functions t and o are defined in Table 4.1.
The input and output alphabets comprise the signals {0, 1} and the sig-

nals {0, 1, 2}, respectively. The automata can take one of the three possible
states, namely, S1, S2, and S3. The initial state of the automata (S0) is the state

TABLE 4.1

The Counter by Modulo 2 Transition Table

Next State//Output Signal Input Signal 0 Input Signal 1

State S1 1/0 2/1
State S2 2/1 3/2
State S3 3/2 1/0

S1 S2

S3

B12
(1/1)

B23

(1/2)
B31(1/0)

B22(0/1)
B11

(0/0)

B33

(0/2)

Legend:
Bij-i is the number of the current
state, j is the number of the next state
(x,y) - x is an input signal, y is an
output signal

FIGURE 4.6
Counter by modulo 2 state transition graph.

219Implementation

S1. Both transition and output functions are defined in Table 4.1. The rows
of this table correspond to the automata states (S1, S2, and S3), whereas the
columns correspond to the input signals (0 and 1). The elements of Table 4.1
have the format s/y, where s corresponds to the next state number and y cor-
responds to the output signal.

The same information about the next state and the output signal is shown
differently in the state transition graph (Figure 4.6). The arcs of the state tran-
sition graph are labeled as Bij(x/y), where i is the number of the current state,
j is the number of the next state, x is the input signal that triggers the transi-
tion, and y is the output signal generated by the transition. The correspond-
ing statechart diagram is shown in Figure 4.7.

The simplest but perhaps still the most frequently used FSM implemen-
tation is based on the structural or procedural approach. This implemen-
tation is made in the form of nested selection statements in higher-level
programming languages. In the programming languages C/C++ and
Java, we typically use switch–case statements for this purpose, because
the control flow structures made with if and else–if statements are less
readable.

Typically, the outermost switch–case statement selects a case that corre-
sponds to the current state of automata. In the code paragraph that defines
the processing of the current state, normally we use the second, nested
switch–case statement, which selects the case that corresponds to the input
signal. The program paragraph that corresponds to that input signal effec-
tively performs the transition by creating the corresponding output signals
and evolving to the next state. This evolution is made simply by updating the
content of a variable that holds the identification of the current state (most
frequently, this is just the index of the state).

Actually, the structure of the resulting program code is very similar to
the program representation of SDL (SDL-PR), which was introduced in
Chapter 3, and this fact was also mentioned there. Generally, communication

S1

S2

S3

1/1 1/2

1/0

0/1

0/20/0

FIGURE 4.7
Counter by modulo 2 statechart diagram.

220 Communication Protocol Engineering

protocol implementation based on nested switch–case statements looks like
the following:

switch(state) {
 case STATE_1:
 switch(message_code) {
 case MESSAGE_CODE_1:
 // processing of the message code 1 in the state 1
 break;
 case MESSAGE_CODE_2:
 // processing of the message code 2 in the state 1
 break;
 case MESSAGE_CODE_3:
 // processing of the message code 3 in the state 1
 break;
 ...
 default:
 // processing of the unexpected message in the state 1
 break;
 }
 case STATE_2:
 switch(message_code) {
 case MESSAGE_CODE_1:
 // processing of the message code 1 in the state 2
 break;
 case MESSAGE_CODE_2:
 // processing of the message code 2 in the state 2
 break;
 ase MESSAGE_CODE_3:
 // processing of the message code 3 in the state 2
 break;
 ...
 default:
 // processing of the unexpected message in the state 2
 break;
 }
 ...
 case STATE_N:
...
}

We illustrate this general scheme by applying it to the implementation of
the counter by modulo 2 in Java. The three states of the counter are labeled as
S1, S2, and S3 in the program code. The input signals 0 and 1 are labeled as
M1 and M2, respectively. The demonstration program reads the actual input
signals from the standard input file (by default, this is the keyboard). The
generated output signal is represented by a simple printout on the standard
output file (by default, this is the monitor). The demo program code is the
following:

package automata;
import java.util.*;
import java.io.*;
public class Environment1 {
 public static void main(String[] args) throws IOException {
 char ch = '0';
 Automata1 a1 = new Automata1();
 System.out.println("This is the example of counter by modulo 2.");
 System.out.println("Automata evolution has started...");

221Implementation

 while(true) {
 System.out.print("Enter input signal (0/1 and <ENTER>):");
 ch = (char)System.in.read();
 System.in.skip(2);
 if(((ch!='0') && (ch!='1'))) break;
 a1.processMsg(ch);
 }
 }
}

The demo program initially creates the object a1, an instance of the class
Automata1, which is the structural and procedural implementation of the
counter by modulo 2. After printing two welcome messages, it falls into an
infinite while loop in which it prompts the user for the input signal and reads
it. If the input signal is neither 0 nor 1, the demo program breaks the loop
and terminates. Otherwise, it performs one step of the automata evolution by
calling the procedure processMsg() of the object a1.

The Java code for the class Automata1 is the following:

package automata;
public class Automata1 {
 private static final int S1 = 0;
 private static final int S2 = 1;
 private static final int S3 = 2;
 private static final char M1 = '0';
 private static final char M2 = '1';
 private int state=S1;
 public void processMsg(char msg) {
 switch(state) {
 case S1:
 switch(msg) {
 case M1:
 System.out.println("Output signal: 0");
 break;
 case M2:
 System.out.println("Output signal: 1");
 state = S2;
 break;
 default:
 break;
 }
 break;
 case S2:
 switch(msg) {
 case M1:
 System.out.println("Output signal: 1");
 break;
 case M2:
 System.out.println("Output signal: 2");
 state = S3;
 break;
 default:
 break;
 }
 break;
 case S3:
 switch(msg) {
 case M1:
 System.out.println("Output signal: 2");
 break;

222 Communication Protocol Engineering

 case M2:
 System.out.println("Output signal: 0");
 state = S1;
 break;
 default:
 break;
 }
 break;
 default:
 break;
 }
 }
}

The implementation above starts with the definition of the symbolic con-
stants that correspond to the possible automata states (namely S1, S2, and S3)
and valid input signals M1 and M2 (input signals 0 and 1). Next, we define
the variable state that holds the current automata state and we set it to the
value S1 (the automata initial state).

The method processMsg starts with the switch–case statement that selects
the further execution path depending on the content of the variable state (i.e.,
the current automata state). Three possible cases are found that are defined
by the corresponding case clauses. Each of these clauses contains a further
switch–case statement that distinguishes between two valid input signals,
namely M1 and M2. The nested case clause that corresponds to the particular
input signal prints the message, which corresponds to the output signal, and
updates the variable state, if the current state of the automata changes.

This example demonstrates the main advantage of the structural or proce-
dural approach: simplicity, which yields greater performance in terms of execu-
tion speed. Another advantage is that we can easily construct a compiler or a
code generator that generates such implementations (a good example that justi-
fies this claim is SDL-PR). The main disadvantage of this approach is its bad
scalability, which becomes evident in the case of large-scale implementations,
i.e., implementations of automata that have a large number of states and state
transitions.

The code size for such program implementations increases linearly with
the number of states and the number of state transitions. Another disad-
vantage of this approach is that it is monolithic which implies that it is static
regarding the possible need to change the automata, either by adding new, or
deleting the existing states, or by adding or deleting state transitions.

In this type of implementation, the structure of the automata (its vertex
and arcs) is built into the machine code of the implementation (hard-coded).
We say that the input signal processing flow is governed by the structure of
the machine code. If we want to add or delete a state or a state transition, we
must change the program code, recompile it, and install the new version on
the target platform. Most frequently, the installation procedure requires the
system to be restarted at its end. Restarting the system means that effectively
it will not be operational for a certain short interval of time. The problem

223Implementation

is that some types of systems, such as nonstop systems, may not tolerate
restarts no matter how short the time interval is.

Some systems try to make restarts allowable by providing processor tan-
dem configurations. Typically, in such a system, one of the processors con-
tinues the normal operation while the other restarts after an update. In that
case, we have a synchronization problem, which of course can be solved but
could become rather complex. Generally, system restarts are problematic and
should be handled with special care.

On the other end of the spectrum of FSM implementations, we have the
diametrical approach to FSM implementation in which the structure of the
automata is not defined by the program control flow, but rather with the cor-
responding data structure. The simple interpreter uses this data structure
to process the incoming events (messages), therefore it is referred to as an
event interpreter. The data structure implementations in assembler and C
programming languages are built from lists and lookup tables.

The automata evolution is driven by the incoming events. Each input event
triggers one step of the evolution. The event interpreter carries out the evolution
step by traversing the data structure to determine the current state and the state
transition that corresponds to the input event type. In contrast to this common
part of the message processing flow—which is directed by the data structure—
program parts that correspond to particular reaction tasks are dedicated rou-
tines that perform specific functions, which cannot be generalized.

Figure 4.8 illustrates the FSM implementation based on the event inter-
preter and the data structure that defines the FSM structure (essentially, the
state transition graph). New, incoming events (messages) are added at the
end of the message queue (see the top left corner of Figure 4.8). The inter-
preter takes the messages from the head of the message queue and processes
them by using the data structure, which comprises

• An automata control table
• An automata state table
• A list of valid events (one such list exists for each automata state)

The automata control table is assigned to automata to store its current state
and optionally some of its additional attributes. The automata state table is a
lookup table that maps the state index onto the address of the corresponding
list of valid events in that state. The elements of this list contain the complete
information necessary and sufficient to perform the state transition from the
current state to the next state, which is determined by the event type. This
information is stored in the following fields:

• event ID: holds the event type to which this element corresponds
• task address: contains the pointer to the corresponding routine

(procedure)

224 Communication Protocol Engineering

• next state: stores the index of the next state
• next: contains the pointer to the next element in the list

The event interpreter processes the message through the following steps:

• Get the message from the head of the message queue.
• Locate the automata control table by examining the content of the

message header (the message destination field, in particular).
• Read the current state and locate the corresponding list of valid

events by looking up the automata state table.
• Determine the event type by examining the content of the message

header (the message code field, in particular) and locate the corre-
sponding element in the list of valid events (ignore the event if such
an element does not exist).

• Perform the task by calling the corresponding task routine as a sub-
routine (procedure).

Interpreter

Current state

Event ID

Task address

Next state

Next

. . .

k

0

Task 1

Task n

. . .

Index Address

i Li

j Lj

k Lk

. . .

. . .

j

Automata
state table

Automata
control tableMessage queue

List of events valid
in the current state

Li

Tasks

k

FIGURE 4.8
Event interpreter and the data structure that defines the FSM structure.

225Implementation

• Read the index of the next state from the field next state.
• Update the field current state by storing the index of the next state

into the field current state.

The advantage of this approach is that we can construct a compiler that
transforms the design FSM model into the corresponding data structure and
the set of task routines. The automatic translation performed by the compiler
increases the probability that the implementation is compliant with the design
model and, therefore, that it is correct. Moreover, the routine performed by
the event (described above) is fairly simple and short. The price that is paid
for the correctness and simplicity is poor performance. The decrease in the
processing throughput is proportional to the number of memory accesses to
the corresponding elements of the data structure.

Two characteristics of this approach are not obvious from Figure 4.8 and
require further explanation. The first characteristic is universality. Since the
FSM structure is built into the corresponding data structure, the event inter-
preter routine is completely independent from it. The event interpreter always
repeats the same routine. This is the same for all FSMs. Therefore, this routine
is universal in contrast to the implementation with nested switch–case state-
ments, which implement just one particular FSM. This characteristic is espe-
cially important from the point of software maintenance. If we want to change
the FSM structure by adding or deleting states or state transitions, we must
update the data structure. There is no need to change the simple interpreter
routine at all.

The second characteristic of the event interpreter-based approach is that it
enables sharing of common tasks between more state transitions. In princi-
ple, this is also possible in the nested switch–case-based approach by intro-
ducing common functions, which are called from the corresponding case
program clauses, but this is seldom used by their practitioners. In the event
interpreter-based approach, this possibility becomes more apparent and is,
therefore, implemented because tasks are already specified as procedures
(subroutines) rather than case program clauses.

Because of task sharing, the number of tasks may generally be smaller
than the number of state transitions. We can also organize tasks hierarchi-
cally, such that higher-level tasks call their subordinate tasks. This makes it
possible to implement more complex tasks by using simple primitives. Such
organization has the following advantages:

• Better performance in terms of code size
• Enables dynamic mutation of tasks

By exploiting these characteristics in environments with dynamic loaders, such
as Java, we can implement dynamically reconfigurable automata. The autom-
ata in such environments change during normal system operation, and those

226 Communication Protocol Engineering

changes do not demand any system restarts. In such environments, it is desirable
to use the object-oriented approach and to define the FSM structure with the set
of objects rather than with a data structure, such as the one previously described.
The event interpreters in such implementations interact with the objects that
materialize the FSM structure instead of using the traditional data structures.

The following code illustrates FSM structure modeling with the group of
classes written in Java:

package automata2;
import java.util.*;
import java.io.*;

class Task {
 public int id;
 public Task(int ident) {id=ident;}
 public void processMsg() {System.out.println(id);}
}

class Branch {
 private String msgcode;
 private Task task;
 private String nextstateid;

 public Branch(String msg, Task tsk, String nextsts) {
 msgcode=msg;
 task=tsk;
 nextstateid=nextsts;
 }
 public String getMsgCode() {return msgcode;}
 public Task getTask() {return task;}
 public String getNextStateId() {return nextstateid;}
}

class State {
 private String stateid;
 public Set setofbranches;

 public State(String id,Set branches) {
 stateid=id;
 setofbranches=branches;
 }
 public String getStateId() {return stateid;}
 public Set getSetOfBranches() {return setofbranches;}
}

class AStructure {
 private String automataid;
 private Set setofstates;

 public AStructure(String id,Set states) {
 automataid=id;
 setofstates=states;
 }
 public String getAutomataId() {return automataid;}
 public Set getSetOfStates() {return setofstates;}
}

class Automata {
 protected AStructure structure;
 protected String stateId;

227Implementation

 protected State initial;

 public Automata(AStructure str,String id,State s) {
 structure = str;
 stateId=id;
 initial=s;
 }
 public void processMsg(String msg) {
 State currentS = initial;
 Iterator iterA =
structure.getSetOfStates().iterator(); while(iterA.hasNext()) {
 State eachS = (State)iterA.next();
 if(eachS.getStateId().equals(stateId)) {
 currentS=eachS;
 break;
 }
 }
 Iterator iterS =
currentS.getSetOfBranches().iterator(); while(iterS.hasNext()) {
 Branch eachB = (Branch)iterS.next();
 if(eachB.getMsgCode().equals(msg)) {
 Task t=eachB.getTask();
 t.processMsg();
 stateId=eachB.getNextStateId();
 break;
 }
 }
 }
}

The class Task models the task that is performed during the transition from
the current state to the next state. The task identification is stored in the class
field id. The user of the class Task specifies the particular task identification as
the parameter of the class constructor. The default message processing function,
named processMsg(), just prints the task identification to the standard output file.

The class Branch models the arc of the state transition graph. The attributes
of the state transition are the message code that triggers the state transition,
the task that is performed during the state transition, and the identification
of the next stable state. The corresponding fields are named msgcode, task,
and nextstateid, respectively. These fields are set by the class constructor. The
current content of these fields is returned by the functions getMsgCode(), get-
Task(), and getNextStateId(), respectively.

The class State models a single FSM state. The state attributes are the state
identification and the set of the outgoing state transitions (the target state is
irrelevant; it can be this state or some other state). The corresponding class
fields are named id and branches, respectively. Their content is set by the class
constructor and returned by the functions getStateId() and getSetOfBranches(),
respectively.

The class AStructure models the FSM structure. Its attributes are the autom-
ata identification and the corresponding set of states. The corresponding
class fields are automataid and setofstates. The class constructor gets particular
values for these fields through its parameters. The functions getAutomataId()
and getSetOfStates() return the current values of these fields.

228 Communication Protocol Engineering

Finally, the class Automata models the complete FSM. Its attributes are the
FSM structure (essentially the set of sets of state transitions), the current state
identification, and the initial state identification. The corresponding class
fields are named structure, stateId, and initial, respectively. These fields are set
by the class constructor.

The function processMsg(String msg) is the event interpreter. The input argu-
ment msg is the message, which triggered the state transition. The interpretation
starts with the iteration through the set of states to locate the object that cor-
responds to the FSM current state (its identification is stored in the field stateId).
This is a typical object-oriented approach, which avoids the unpopular switch–
case and similar selection statements. Principally, this first iteration is really not
needed and can be easily eliminated by saving the current state object instead of
the current state identification. However, the first iteration is intentionally kept
to make the example more informative by showing how we can use two subse-
quent iterations to search through the set of sets of state transitions.

The second iteration searches through the set of state transitions that cor-
respond to the current state to locate the state transition that corresponds to
the input message msg. After locating the state transition, it gets the object
that corresponds to the state transition task and calls its processMsg() func-
tions, which, in turn, prints the task identification to the standard output file.

From the program code given above, the classes Task, Branch, AStructure,
and Automata are obviously generic and can be used for the construction of
any FSM. Besides that, this solution enables the design and implementation
of dynamically reconfigurable FSMs, because sets in Java can be dynami-
cally updated with the corresponding task object dynamically loaded and
unloaded.

We illustrate the applicability of this set of classes with the following
implementation of the counter by modulo 2 in Java (the corresponding over-
all class architecture is shown in Figure 4.9):

class Task0 extends Task {
 public Task0(int ident) {super(ident);}
 public void processMsg() {System.out.println("0");}
}

class Task1 extends Task {
 public Task1(int ident) {super(ident);}
 public void processMsg() {System.out.println("1");}
}

class Task2 extends Task {
 public Task2(int ident) {super(ident);}
 public void processMsg() {System.out.println("2");}
}

class Automata2 {
 public static void main(String[]args) throws IOException {
 Automata a2 = makeAutomata();
 char ch;
 String msg;
 System.out.println("This is the example of counter by modulo 2.");

229Implementation

 System.out.println("The automata evolution has started...");
 while(true) {
 System.out.print("Enter input signal (0/1 and <ENTER>): ");
 ch = (char)System.in.read();
 System.in.skip(2);
 if(((ch!='0') && (ch!='1'))) break;
 if(ch=='0') msg="0"; else msg="1";
 a2.processMsg(msg);
 }
 }
 private static Automata makeAutomata() {
 Branch b11 = new Branch("0",new Task0(0),"0");
 Branch b12 = new Branch("1",new Task1(1),"1");
 Set s1 = new HashSet();
 s1.add(b11); s1.add(b12);
 state S1 = new State("0",s1);

 Branch b22 = new Branch("0",new Task1(1),"1");
 Branch b23 = new Branch("1",new Task2(2),"2");
 Set s2 = new HashSet();
 s2.add(b22); s2.add(b23);
 State S2 = new State("1",s2);

 Branch b33 = new Branch("0",new Task2(2),"2");
 Branch b31 = new Branch("1",new Task0(0),"0");
 Set s3 = new HashSet();
 s3.add(b33); s3.add(b31);
 State S3 = new State("2",s3);

 Set a = new HashSet();
 a.add(S1); a.add(S2); a.add(S3);
 AStructure as = new AStructure("0",a);

 Automata au = new Automata(as,"0",S1);
 return au;
 }
}

At the beginning of this example, we define the application-specific tasks,
namely, Task0, Task1, and Task2, which are responsible for printing the coun-
ter by modulo 2 outputs (0, 1, and 2, respectively). Note that the number of
tasks (three) is smaller than the number of state transitions (six) in this par-
ticular example. The application-specific processMsg() functions are defined
by overriding the default functions.

The definitions of the classes Task0, Task1, and Task2 are followed by the
definition of the class Automata2, which comprises two public functions:
main() and makeAutomata(). The function main() starts by calling the function
makeAutomata(), which, in turn, returns the counter by the modulo 2 object,
named a2. After that, it falls into an infinite while loop in which it reads the
standard input file. If the input character is neither “0” nor “1,” it breaks the
loop and the program terminates. Otherwise, it converts an input character
into the corresponding string (“0” and “1,” respectively) and passes it as an
input event to the event interpreter.

The function makeAutomata() constructs individual state transitions
(instances of the class Branch), individual states (instances of the class State),

230 Communication Protocol Engineering

the counter by modulo 2 structure (an instance of the class AStructure), and
the counter by modulo 2 itself (an instance of the class Automata). It first
constructs the state transition b11, which for the input “0” moves the FSM
from the state S1 to the same state, and during that transition it performs
the task Task0. Similarly, it constructs the state transition b12, which for the

Task

Branch

State

AStructure

+processMsg()

Automata

1
1

1
*

1

*

1

1

Task0

Task1

Task2

Automata2

1 1

FIGURE 4.9
Static structure used in the second approach to the FSM implementation.

231Implementation

input “1” moves the FSM from the state S1 to the state S2, and during that
transition it performs the task Task1. Next, it constructs the set of state tran-
sitions s1 and the state S1.

Likewise, this function constructs the state transitions b22 and b23 and the
state S2, as well as the state transitions b33 and b31 and the state S3. Finally,
it constructs the structure of the counter by modulo 2, named as, and the
counter by modulo 2, named au.

The third approach to FSM implementation, from the broad spectrum of
implementations, is illustrated next. In this approach, we define the FSM
structure with the corresponding class hierarchy and the set of lookup
tables that map FSM inputs into the corresponding state transitions. This
approach also uses message interpretation and is therefore universal,
like the previous one, but it yields much better performance that is com-
parable with the performance of the first approach (nested switch–case
statements).

The first idea behind this concept is to model each FSM stable state with
the class that is derived from the basic class State. The second idea is to con-
sider a state transition (represented with the corresponding arc of the state
transition graph) as a transient (i.e., unstable) state. Each state transition is
modeled with a class that is derived from the class that represents its origi-
nating stable state.

These two ideas lead to a class hierarchy with two hierarchical levels. The
root of the class hierarchy is the basic class State. The first level of hierarchy
defines the FSM stable states, whereas the second level of hierarchy defines
its unstable states, i.e., state transitions.

We illustrate this approach with the example of counter by modulo 2. The
corresponding class hierarchy is shown in Figure 4.10. The first hierarchy level
defines the FSM stable states S1, S2, and S3. All of these are derived from the
basic class State. The second level defines FSM state transitions B11, B12, B22,
B23, B33, and B31. Notice that B11 and B12 are derived from their originat-
ing state S1. Similarly, B22 and B23 are derived from S2, and B33 and B31 are
derived from S3.

The third idea behind this approach is that FSM evolution takes place by
traversing the class hierarchy tree and by using polymorphism, one of the
most powerful abstractions of object-oriented programming. Concretely, the
event interpreter performs the following steps:

• Use the FSM input message (signal) and the lookup table (map),
which are associated with the FSM current state, to determine the
corresponding unstable state (state transition).

• Perform the application-specific task by calling the message process-
ing function defined within the class that models the corresponding
unstable state.

• Move the FSM into its next stable state.

232 Communication Protocol Engineering

The class hierarchy for the counter by modulo 2 is defined with the following
Java module:

package automata;
import java.util.*;

class State {
 public State msgToBranch(String msg) {return new State();}
 public State processMsg() {return new State();}
}

class S1 extends State {
 public State msgToBranch(String msg) {
 return Structure3.getBranch("0",msg);
 }
}
class S2 extends State {
 public State msgToBranch(String msg) {
 return Structure3.getBranch("1",msg);
 }
}
class S3 extends State {
 public State msgToBranch(String msg) {
 return Structure3.getBranch("2",msg);
 }
}

class B11 extends S1 {
 public State processMsg() {
 System.out.println("Output: 0");
 return new S1();
 }
}
class B12 extends S1 {

State

S1 S2 S3

B22 B23B12B11 B33 B31

FIGURE 4.10
Counter by modulo 2 state class hierarchy.

233Implementation

 public State processMsg() {
 System.out.println("Output: 1");
 return new S2();
 }
}

class B22 extends S2 {
 public State processMsg() {
 System.out.println("Output: 1");
 return new S2();
 }
}
class B23 extends S2 {
 public State processMsg() {
 System.out.println("Output: 2");
 return new S3();
 }
}

class B33 extends S3 {
 public State processMsg() {
 System.out.println("Output: 2");
 return new S3();
 }
}
class B31 extends S3 {
 public State processMsg() {
 System.out.println("Output: 0");
 return new S1();
 }
}

public class Automata3 {
 private State state;

 public Automata3() {
 state = new S1();
 }
 public void processMsg (char chmsg) {
 String msg;
 if(chmsg=='0') msg="0"; else msg="1";
 state = state.msgToBranch(msg);
 state = state.processMsg();
 }
}

The basic class State has two default functions, msgToBranch() and
 processMsg(). Both functions return an instance of the class State. The fact
that the instance of the class derived from the class State is also considered to
be the instance of the class State that enables the event interpreter to employ
polymorphism. We will return to this point shortly.

The function msgToBranch() is responsible for mapping the FSM input mes-
sage into the corresponding state transition object. The input message in this
simple example is a one-character string (“0” or “1”). The function can return
any instance of the basic class State, but normally in this example, it should
return the instance of the class B11, B12, B22, B23, B33, or B31.

The function processMsg() carries out the application-specific task for the
given input message. It returns the FSM’s next stable state. The idea is that
the FSM dynamically changes its behavior. The FSM is in a certain state,

234 Communication Protocol Engineering

either stable or unstable, at any point in time, but it is always represented by
a single object. That object is actually returned by one of these two functions,
which are called in the course of FSM evolution.

Next, we define the classes that model the FSM stable states, namely, S1, S2,
and S3. Each of these classes extends the basic class State and overrides the
default function msgToBranch() with the application-specific one. These partic-
ular functions actually delegate their responsibility to the function getBranch()
of the class Structure3 by passing their identification (“0,” “1,” and “2” for S1, S2,
and S3, respectively) and the input message to it. More precisely, these simple
functions just return the unstable state object that is provided by the function
getBranch() to their caller, and that is the event interpreter.

The stable state classes are followed by the classes that model the FSM
unstable states, namely, B11, B12, B22, B23, B33, and B31. Each of these classes
extends the corresponding stable state class and overrides the default func-
tion processMsg(), which each individual class inherits from the basic class
State, with the application-specific one. These particular functions perform
the application-specific tasks and return the corresponding next stable state
object (S1 for B11 and B31, S2 for B12 and B22, and S3 for B23 and B33). The
application-specific tasks in this simple example are implemented as the cor-
responding print statements to the standard output file.

The FSM is modeled with the class Automata3. This class has a single attri-
bute named state, which is set by the class constructor to the FSM initial
stable state, namely S1. Later, during the FSM evolution, it changes and can
become any FSM state, either stable or unstable.

The class Automata3 has a single function, named processMsg(), that is the
FSM event interpreter. This function performs one state transition in two
steps. In the first step, it calls the function msgToBranch() of the FSM current
stable state object. This effectively starts the state transition by moving the
FSM from its current stable state to the unstable state that corresponds to the
input message. In the second step, the event interpreter calls the function
 processMsg() of the FSM unstable state, which performs the application-specific
task and returns the next FSM stable state object. This effectively completes
the state transition. Interestingly, the state class hierarchy in this approach is
completely application-specific, whereas the event interpreter is very simple
and generic and therefore can be reused in the implementations of other FSMs.

The following utility classes support the mapping of input messages to the
corresponding state transitions (unstable state objects):

package automata;
import java.util.*;

class MapContainer {
 private String identification;
 private Map map;

 public MapContainer(String id,Map m){
 identification = id;
 map = m;

235Implementation

 }
 public String getId() {return identification;}
 public Map getMap() {return map;}
}

public class Structure3 {
 private static Set maps;

 public void setMaps(Set m) {
 maps = m;
 }
 public static State getBranch(String id,String msg) {
 Map m = new HashMap();
 Iterator iter = maps.iterator();
 while(iter.hasNext()) {
 MapContainer each = (MapContainer)iter.next();
 if(each.getId().equals(id)) {
 m = each.getMap();
 break;
 }
 }
 return (State)m.get(msg);
 }
}

The class MapContainer stores the map identification and the map itself
in the attributes identification and map, respectively. These attributes are set
by the class constructor. Their current content is available through the cor-
responding get functions.

The class Structure3 contains a set of maps for all FSM stable states. This
set is established by the function setMaps() and is searched by the function
getBranch(). The input parameters of the function getBranch() are the map (i.e.,
stable state) identification and the input message. The function getBranch()
iterates through the set of map containers, locates the one with the given
identification, uses the located map to get the state transition that corre-
sponds to the input message, and returns it to its caller.

An important feature of this approach is that it is based on Java sets and
maps, which makes it an ideal environment for making dynamically recon-
figurable FSMs as Java sets and maps can be dynamically updated. For
example, if we want to add a new state transition B21, it would be sufficient
to write, compile, and dynamically load a new class B21 that represents it,
and add the corresponding entry in the map that is associated to the FSM
stable state S2.

Because the current Java version does not support a map of maps, the solu-
tion for mapping input events to the corresponding state transitions pre-
sented here is based on the usage of a set of maps. It is worth mentioning that
an environment with a map of maps would enable top performance imple-
mentations based on two connected mappings. The key for the first mapping
would be the FSM current stable state, whereas the key for the second map-
ping would be the input message. The performance of such implementations
would be even better than the performance of the implementations based on
nested switch–case statements.

236 Communication Protocol Engineering

The class Environment3 uses the previously defined classes and demon-
strates their usability. The corresponding Java code is the following (the
overall class architecture is shown in Figure 4.11):

package automata;
import java.util.*;
import java.io.*;

public class Environment3 {
 public static void main(String[] args) throws IOException {
 char ch = '0';
 Automata3 a3 = new Automata3();

 Map m1 = new HashMap();
 m1.put("0",new B11()); m1.put("1",new B12());
 MapContainer M1 = new MapContainer("0",m1);

 Map m2 = new HashMap();
 m2.put("0",new B22()); m2.put("1",new B23());
 MapContainer M2 = new MapContainer("1",m2);

 Map m3 = new HashMap();
 m3.put("0",new B33()); m3.put("1",new B31());
 MapContainer M3 = new MapContainer("2",m3);

 Set maps = new HashSet();
 maps.add(M1); maps.add(M2); maps.add(M3);

 Structure3 st3 = new Structure3();
 st3.setMaps(maps);

 System.out.println("This is the example of counter by modulo 2.");
 System.out.println("The automata evolution has started...");
 while(true) {
 System.out.print("Enter input signal (0/1 and <ENTER>): ");
 ch = (char)System.in.read();
 System.in.skip(2);
 if(((ch!='0') && (ch!='1'))) break;
 a3.processMsg(ch);
 }
 }
}

The function main starts by creating the object a3, an instance of the counter
by modulo 2. It then creates all the necessary maps and map containers, the
set of maps named maps, the object st3, and an instance of the class Structure3.
After this, it sets the set of maps by calling the function setMaps() and falls into
an infinite while loop in which it reads FSM input messages and calls the event
(message) interpreter until the user enters a signal that is neither “0” nor “1.”

The keys for searching Java maps in this simple example are just simple
strings (“0” and “1”). This Java map is a rather powerful abstraction because
its key may be any class whose instances are comparable. This makes it pos-
sible to model real communication protocol messages with such classes and
to build Java maps for them. Once we model the messages by the correspond-
ing objects, FSM objects can interact with them in an object-oriented fashion.

If we want to provide a full object-oriented treatment of communication pro-
tocol messages, we must provide the corresponding serialization functions. Two

237Implementation

types of these functions are actually used. The first type is used for converting
an object into a series of octets that can be transported over the communication
line. The second type performs the reverse operation by converting the received
series of octets into the corresponding object. If we do not provide these seri-
alization functions, we are forced to operate directly on numbers and use
switch–case and similar statements unpopular in the object-oriented world.

4.3 State Design Pattern

The State design pattern is one of the approaches to FSM implementation.
As previously mentioned, the State pattern is shown in a separate sec-
tion because it was catalogued by Gamma et al., and therefore it is not just

State

S1 S2 S3

B22 B23B12B11 B33 B31

Automata3

–state1
1

Environment3

11

Structure3

MapContainer

1
*

1 1

FIGURE 4.11
The static structure used in the third approach to the FSM implementation.

238 Communication Protocol Engineering

another example, but a well-defined and proven concept. The reader may
find the complete description of the State pattern in the original book on
design patterns (Gamma et al., 1995). Here we present just a brief overview
and an example that demonstrates the State pattern applicability.

The original motivation to introduce this design pattern was to support
objects that change their behavior as their state changes, exactly what the
FSMs do. For example, when the counter by modulo 2 (Figure 4.6) is in its
initial state S1, it produces the output 0 for the input 0, but when its state
changes to S2 or S3, it produces different outputs for the same input (1 in the
state S2, and 2 in the state S3). Similarly, the input 1 yields the output 1 in the
state S1, the output 2 in the state S2, and the output 0 in the state S3.

The key idea of this design pattern is to separate the FSM appearance from
its behavior. We define the FSM appearance with the FSM wrapper class,
which is referred to as a context. The context defines the user interface (a set
of operations accessible by the FSM users) and contains the current FSM state
object, which is one of the concrete FSM state objects.

The FSM behavior is defined with the wrapped state hierarchy. The root of
this hierarchy is the generic state class, which actually defines an interface for the
concrete states of the context. Each concrete state class is derived from the generic
state class, and it provides the state-specific behavior of the context (FSM).

The State pattern revolves around polymorphism. Essentially, context
(FSM) delegates the state-specific requests to the current state object. More
precisely, each operation defined within the user interface simply calls the
corresponding operation on the current state object (these operations usually
have the same name). The context can pass itself as a parameter to the called
operation and thus make itself accessible to the concrete state, if needed.

Typically, clients initially configure the context with state objects. Later,
during the normal system operation, clients do not deal with state objects
directly. Notice that either the context class or the concrete state subclass can
change the context current state. Therefore, the FSM transition logic can be
centralized, distributed, or hybrid.

According to the authors, the State pattern consequences are the following:

• It localizes state-specific behavior.
• It makes state transitions explicit.
• State objects can be shared.

At the end of this short overview of the State pattern, we illustrate its appli-
cability with the simple example of a State pattern-based implementation of
the counter by modulo 2. The corresponding class diagram is shown in Figure
4.12. The context in this example is the class Automata4. The attribute state holds
the current FSM state object. The key function processMsg() delegates message
processing to the current FSM state object by calling its function processMsg().

The generic state class State defines a simple interface, which comprises
a single function, processMsg(). Generally, such a function would define the

239Implementation

default FSM behavior, which can then be overridden in the concrete substate
classes. In this simple example, as we will shortly see, no such behavior is
allowed, and therefore the corresponding operation is simply empty.

The concrete substate classes S1, S2, and S3 are derived from the generic
state class State. Each of these classes provides a state-specific behavior by
overriding the function processMsg() with its own particular definition. The
corresponding code in Java is the following:

package automata4;
import java.util.*;

public class Automata4 {
 private State state;
 public Automata4() {state = new S1();}
 public void setState(State s) {state = s;}
 public void processMsg(char msg) {
 state.processMsg(this,msg);
 }
}

class State {
 public void processMsg(Automata4 a,char ch) {
 }
}

class S1 extends State {
 public void processMsg(Automata4 a,char ch) {
 if(ch=='0') {
 System.out.println("Output 0");
 a.setState(new S1());
 } else {
 System.out.println("Output 1");
 a.setState(new S2());
 }
 }
}

class S2 extends State {

+processMsg()
–state : State

Automata4

+processMsg()

State
–state

1 1

state.processMsg()

+processMsg()

S1

+processMsg()

S2

+processMsg()

S3

FIGURE 4.12
Static structure used by the State design pattern.

240 Communication Protocol Engineering

 public void processMsg(Automata4 a,char ch) {
 if(ch=='0') {
 System.out.println("Output 1");
 a.setState(new S2());
 } else {
 System.out.println("Output 2");
 a.setState(new S3());
 }
 }
}

class S3 extends State {
 public void processMsg(Automata4 a,char ch) {
 if(ch=='0') {
 System.out.println("Output 2");
 a.setState(new S3());
 } else {
 System.out.println("Output 0");
 a.setState(new S1());
 }
 }
}

The definition of the class Automat4 begins with the definition of the field
state, which is used to store the FSM current state object. The class construc-
tor sets this field to the FSM initial state object, which is an instance of the
class S1. The function setState() is used by the FSM concrete state objects to
change the FSM state (an example of distributed transit logic). The function
processMsg() simply calls the corresponding function on the FSM current
state object.

The class State defines a simple state interface with just one function—
processMsg()—which is empty because this example has no default behav-
ior. The class S1 is an example of a concrete substate class. It defines the
S1-specific FSM behavior by overriding the function processMsg() that it
inherits from the base class State. This function checks whether the input
signal is 0 or 1, prints the corresponding output signal, and changes the FSM
state by calling the function setState(). We made the context accessible by
passing it as a parameter to the function processMsg().

The following Java code creates the working environment for this example
(given without the comments because a similar code is already explained in
a previous section):

package automata4;
import java.util.*;
import java.io.*;

public class Environment4 {
 public static void main(String[] args) throws IOException {
 char ch = '0';
 Automata4 a4 = new Automata4();
 System.out.println("This is the example of counter by modulo 2.");
 System.out.println("The automata evolution has started...");
 while(true) {
 System.out.print("Enter input signal (0/1 and <ENTER>): ");
 ch = (char)System.in.read();
 System.in.skip(2);

241Implementation

 if(((ch!='0') && (ch!='1'4))) break;
 a4.processMsg(ch);
 }
 }
}

4.4 Implementation Based on the FSM Library

In the previous two sections, we have explored various approaches to the
FSM implementations by means of simple examples. The reader should
be much more familiar with FSM implementation by now, but for serious
communication protocol engineering we need much more. We need a well-
established working environment that will enable productive and repeatable
development processes that yield maintainable products (communication
protocols) of high quality.

The main measure (metrics) of quality in the context of communication
protocols is their reliability, which is considered to be proportional to the
number of remaining software bugs. Another important quality measure
is the product performance measure with its throughput (the number of
messages processed in the given interval of time) and hardware resources
needed to achieve that throughput (RAM and ROM size and processor speed
measured in MIPS or MHz). Generally, one of the key factors to successful
software quality assurance is the quality of the software tools used in the
development process. Communication protocol engineering is by no means
an exception in this respect.

In this section, we present an example of the state-of-the-art working envi-
ronment for the productive development of communication protocols. The
environment is effectively created by an integrated development environ-
ment, which includes a C++ compiler and the domain-specific C++ library,
named FSM Library. As already mentioned, the FSM Library includes two
fundamental classes, FSMSystem and FiniteStateMachine. The former creates
the execution platform for a group of FSMs whereas the latter is the base
class for implementing individual FSMs.

The FSM Library API comprises two interfaces, which are defined by the
class FSMSystem and FiniteStateMachine. The complete FSM Library pro-
grammer reference manual is given in Chapter 6. The reference manual also
includes two representative implementation examples. In this section, we
focus on the FSM Library concepts and internals.

The key concept behind the FSM Library is to enable productive imple-
mentations of FSMs in a uniform way. The main task of the FSM Library
user is to implement the FSM state transition functions. The user does this by
translating the design artifacts (statechart diagram, activity diagram, or SDL

242 Communication Protocol Engineering

diagram) into the corresponding C++ class function members. This trans-
lation can be done manually or with a software tool (typically used if the
product performance is not critical).

The process of translation is both productive and uniform because the
FSM Library provides all the functions needed to effectively construct an
FSM state transition. These functions can be classified into the following
function groups:

• Message handling functions (both message header and message
payload handling functions). These functions support both message
coding and decoding (i.e., message synthesis and analysis).

• Message sending functions.
• Timer handling functions (essentially start, stop, and restart timer).

The reader may be puzzled by the fact that the list given above does not
include any message receiving functions. The FSM Library is specific in this
respect. The developer does not need to explicitly call a function that receives
a message (signal). Rather, the FSM execution platform (provided by the class
FSMSystem) routes all sent messages toward their destination automata, locates
the state transition function that corresponds to the message type (determined
by the content of the corresponding message header field), and calls it as its
subroutine. We will see shortly that the function that performs the message
routing and processing (named Start) is actually the event interpreter.

Therefore, the FSM Library completely supports the message handling
style present in the design artifacts (statecharts, activity diagrams, and SDL
diagrams), which just name the input event (message) without taking care
of how that event is effectively recognized (received). The FSM Library pro-
vides the class FSMSystem to support the straightforward implementations
of design artifacts. Once provided with the class FSMSystem, the developers
do not care how the message is received; they simply write the C++ function
that performs the state transition when the message is received.

Other FSM Library specifics are the following:

• The FSM implementation is independent from the underlying real-
time kernel.

• The FSM Library provides the mechanism to send messages to the
dynamically allocated automata instances, which are referred to as
unknown automata instances.

• The FSM Library provides public mailboxes, which can be used as
message queues with different priorities.

• The FSM Library separates the message handling functions from the
real-time kernel. This feature is referred to as the encapsulation of
the message handling functions.

243Implementation

• The FSM Library treats timers as special messages, which are dis-
tinguished from the communication protocol messages by the code
that determines the message type.

• The logging system provided by the FSM Library is based on the
test version of the real-time kernel, which is derived from the target
(final) real-time kernel.

• The FSM implementation is independent from the concrete formats
of the communication protocol messages.

• The FSM Library provides automatic message buffer reallocation in
cases where current buffer capacity becomes insufficient for storing
additional message parameters.

The following paragraphs provide short comments on each of these FSM
Library specifics. We proceed through the list of specifics from its beginning
toward its end.

An important design decision was to make the FSM Library independent
from the underlying run-time kernel. This decision is important because it
enables easy porting of the FSM implementations to various target platforms
(bare machine, UNIX, Windows NT). The internal class KernelAPI facilitates
this independence. It represents a clean interface between the FSM imple-
mentation and the run-time system. The kernel developer must derive a new
class from the class KernelAPI and write its real member functions by taking
into account the details of the particular target platform. An example of such
implementation is shown later in this section.

The second FSM Library-specific feature is related to the beginning of
the communication between two FSMs, namely, FSM A and FSM B, where
the former has the active role and the latter is passive. The problem is
simple if A always communicates with the same B, but it becomes more
complex if B is not known in advance (B is an unknown FSM). Consider
a pool of FSMs, where each is capable of performing the same task. FSM
A is principally interested in engaging with any instance from the pool
that is free.

The FSM Library facilitates the communication with the unknown autom-
ata by placing all relevant data into the header of the message that is sent to
it. The message destination is set to the special code, named UNKNOWN_
AUTOMATA. The function member Start of the class FSMSystem recognizes
this code and dynamically allocates an automata instance, which will be the
message destination and therefore involved in the further communication
with the message originator. In the case when there are no free automata
instances available in the pool, the function Start calls the special function
NoFreeInstances, which is responsible for the recovery procedure. Typically,
this function informs the message originator about the automata instance
outage by sending it an appropriate signal, such as NAK, DISCONNECT, and
so on.

244 Communication Protocol Engineering

The third FSM Library-specific feature is the provision of general purpose
mailboxes, which can be used both as public mailboxes and private mail-
boxes. The former are actually FIFO message queues that contain messages
for various destinations, whereas the latter contain messages for a single des-
tination, which is an FSM that owns the private mailbox. Generally, we can
use only a single public mailbox to enable the communication between all
FSMs present in the system. Such a solution can suffice in the case of sim-
ple systems with a small number of FSMs and soft real-time requirements.
However, a single public mailbox may not be sufficient in the case of more
complex systems because the FSM Library mailbox is just a FIFO message
queue without any support for message prioritization.

The absence of message prioritization can lead to a case where an FSM pro-
cesses an outdated message instead of processing the corresponding timeout
message, just because the outdated message is ahead of the timeout message
in the public mailbox. Such cases can lead to dysfunctional behaviors that are
not caused by design oversights but, rather, inappropriate implementation.

The regular method of supporting message prioritization in the FSM Library-
based implementations is to use more public mailboxes that are assigned dif-
ferent priorities. For example, we can use three public mailboxes for three
different priorities. These three public mailboxes are effectively treated as
three FIFO message queues with different priorities (e.g., high, medium, and
low). We can select a strategy of using private mailboxes instead. We can also
mix public and private mailboxes if we wish. Actually, the function Start (the
member of the class FSMSystem) treats them equally. In its loop, it searches
all the mailboxes for messages. The effective mailbox priority is determined
by the order of that search (i.e., it starts from the mailbox index 0).

The fourth FSM Library–specific feature is the encapsulation of the mes-
sage handling functions. Generally, real-time kernels can store the message
source and destination information in the message header or in the separate
data structure. By separating the message handling functions into a group
that handles the message header and a group that handles the message pay-
load, the FSM Library provides complete FSM implementation independence
from the message source and destination information location.

An additional enhancement related to the message destination provided
by the FSM Library is the support for sending messages to the left or to the
right FSM. The abstraction of the left and right FSM originally comes from
SDL. If the SDL symbol for sending a message points to the left, we say that
the message is sent to the left FSM. Similarly, if the symbol points to the right,
we say that the message is sent to the right FSM.

The internal class KernelAPI provides the functions SendMessageLeft and
SendMessageRight, which are inherited by the class FiniteStateMachine, to sup-
port this abstraction. These two functions enable the direct coding of cor-
responding parts of SDL diagrams, and the resulting C++ code has a great
similarity with the original SDL diagrams. For example, consider the follow-
ing snippet of C++ code that corresponds to a state transition:

245Implementation

StopTimer(FE4_TIMER1);
DisconnectRingTone();
PrepareNewMessage(0x00,r2_SetupRespConf);
SendMessageLeft();
StartChargingIncoming();
Connect();
SetState(FE4_ACTIVE);

The call of the function SendMessageLeft() above is a direct encoding of the
corresponding left-pointing SDL graphical symbol. This snippet of code is a
typical state transition implementation based on the FSM Library, which is
rather short and easy to read and map to the original design model. These
are two key implementation features that ensure productivity and quality.

The fifth FSM Library–specific feature is that it treats timers as special
messages, distinguished from the communication protocol messages by the
code that determines the message type. Some of the message header param-
eters are meaningless for timers. The corresponding message header fields
are used by the FSM Library API functions related to timers to store the data
specific for individual timers, such as timer duration.

All timers used by a certain FSM type must be initialized in the FSM
class function member Initialize() by calling the function InitTimerBlock() (see
Section 6.8.74). The parameters of this function are the timer identification,
the timer duration, and the identification of the message to be sent when
the timer expires. In response to a series of InitTimerBlock() calls, the system
creates the corresponding array of timers. The identification of a timer effec-
tively becomes the index of this array.

Once initialized, the timer can be started by the function StartTimer(),
stopped by the function StopTimer(), restarted by the function RestartTimer(),
or checked by the function IsTimerRunning(). All these functions have a single
parameter, the identification of the timer. Therefore, the resulting C++ code
resembles the original design model to a great extent. Moreover, when the
timer expires, the corresponding message is automatically sent to the FSM
that started it, which processes this message in the same fashion as all other
messages. This feature also contributes to the similarity of the resulting C++
code and the original design model.

The sixth FSM Library–specific feature is that the logging subsystem pro-
vided by the FSM Library is based on the test version of the real-time ker-
nel, which is derived from the target (final) real-time kernel. The logging
subsystem is important in communication protocol engineering because
certain design oversights or implementation errors become evident only in
complex circumstances, which can happen only after long run-time periods.
Typically, such circumstances are difficult to repeat and therefore develop-
ers normally use log files to backtrack the sources of errors once they occur.

The FSM Library provides a complete logging subsystem that is used both
during system testing and normal system exploitation. The internal class
LogAutomata defines the necessary set of functions. FSM tracing is based on
the interception of all relevant internal functions, such as FSM state updating,

246 Communication Protocol Engineering

message processing, timer management functions, and so on. Automatic log-
ging of various events makes the resulting log file outlook uniform, and thus
easy to read by any member of the development team. All logging events are
prioritized, which helps developers to easily define exactly which events they
want to trace.

Traditionally, log files are located on mass storage devices such as hard
disks or flash memory. The FSM Library introduces an enhancement in this
respect. The internal class LogInterface defines the interface between the sys-
tem implementation and the concrete logging media, such as the conventional
log file, the TCP/IP connection to the logging server, and so on. Logging to
the concrete media is provided by a subclass that is derived from the base
class LogInterface. Examples of such classes are the classes LogFile and LogTCP.

The seventh FSM Library–specific feature is that the FSM implementation is
independent of the concrete formats of communication protocol messages. The
feature is facilitated by the internal class MessageHandler, which provides a set of
generic functions for manipulating message parameters. Basically, two families
of these functions exist, namely, get and add. The former returns the value of the
given parameter, whereas the latter adds the given message parameter to the
message. The parameter is specified with its identification (code) and its value.

The class MessageHandler uses the class MessageInterface, which is an abstract
class that defines the interface for the abstract message format. Normally, the
developer derives a class from the class MessageInterface for each concrete
message format and writes its function in accordance with the format-specific
details. An example of such a class is the class StandardMessage, which models
a message that comprises a sequence of octets (characters). Such an approach
centralizes message handling functionality. This centralization eliminates
code redundancy and increases code coverage. Additionally, development
team productivity is increased because message handling functions and
FSMs can be developed in parallel.

The eighth and last FSM Library-specific feature is that it provides auto-
matic message buffer reallocation in cases where the current buffer capacity
becomes insufficient for storing additional message parameters. Although
this functionality is rather easily implemented, it is important because it
makes the process of message creation completely transparent. The pro-
grammer just adds parameters to the new message as needed, without hav-
ing to take care about the size of the free space in the corresponding buffer.
This detail is completely hidden by the message handling functions.

4.4.1 Using the FSM Library

Using the FSM Library is rather easy. It helps a lot in both the design and
implementation phases of the development process. The author’s experience
shows that both students and engineers working in the industry can start
using it only after a couple of days of training. Actually, it does not take more
than writing one example based on the FSM Library to start using it. Besides

247Implementation

that, it is a well-established working environment that has been used in a
series of the real-world projects for the industry.

When it comes to design, the FSM Library greatly simplifies matters
by providing two fundamental classes, FSMSystem and FiniteStateMachine.
The existence of these two classes makes the system static structure well
known from the start (Figure 3.5). Each protocol is modeled by the subclass
derived from the base class FiniteStateMachine. The resulting FSM is executed
by the event interpreter, which is hidden inside the class FSMSystem. These
two classes practically encapsulate all domain-specific design patterns
needed for designing a communication protocol.

The overall result is that the class diagram is almost not needed at all,
at least not for realistic communication systems that comprise less than a
dozen communication protocols. Even for very complex communication sys-
tems based on the FSM Library, the class diagram can be used more as an
accompanying document. The most informative part of such a class diagram
would be the one that specifies the mailboxes present in the system, as well
as the timers used by individual FSM types.

The real valuable design artifacts for the paradigm based on the FSM
Library are the complete models of the system behavior in the form of
the activity, statechart, or SDL diagrams. This is the case because the FSM
Library de facto specifies the skeleton of the system static structure, but it
does not (and cannot) specify the complete system behavior. It provides only
primitive behavior from which we can build more complex behavior, in par-
ticular, the state transitions.

Once we have finalized the detailed design diagrams (activity, statechart, or
SDL diagrams), we are ready to proceed to the implementation phase of the
development process. The main task of implementing FSMs by using the FSM
Library, besides writing the initialization function and a couple of simple aux-
iliary functions, is the encoding of state transitions by using the set of primi-
tives provided within the FSM Library application programming interface (see
Section 6.8). A good thing about these primitives is that they provide mapping
of SDL steps in almost a one-to-one manner. The names of the primitives are
almost self-documenting, at least after the short experience you get by using
them. The code resembles the original design artifacts (especially SDL dia-
grams). All these attributes help any member of the development team to read,
understand, and continue the work that was done by some other member of the
development team, especially if they have the design artifact at their disposal.

It is also worth mentioning that besides forward engineering, the FSM
Library helps backward engineering too. This is especially true if the back-
ward engineering is done by hand. Using software tools for that purpose is
also possible if the development team strictly obeys certain coding guide-
lines. The key for successful forward and backward engineering is a well-
defined API (see Section 6.8).

We demonstrate the usage of the FSM Library API by the examples at the
end of this chapter, as well as with the examples at the end of Chapter 6.

248 Communication Protocol Engineering

4.4.2 FSM Library Internals

This section describes the FSM Library internals. The main FSM Library
components are the following:

• The class FSMSystem

• The class FiniteStateMachine

• The real-time kernel

The class FSMSystem provides the following functionalities:

• Initialization of the FSM objects: The result is a set of the corre-
sponding transition tables, which determine which state transitions
are triggered by the individual events (messages).

• Routing of messages: This component locates the message destina-
tion FSM, looks up its state transition table to find the state transition
that corresponds to the message type, and calls the corresponding
function as its subroutine.

• Public mailbox prioritization: The public mailbox priority decreases
as its identification increases. The identification is actually the index
of the corresponding mailbox array. The public mailbox with the
identification 0 has the highest priority.

• Allocation of FSMs from the pool of FSMs: If the message destina-
tion is an unknown object of a certain type, a free FSM from the cor-
responding pool is allocated to process that message.

The class FiniteStateMachine provides the following functionalities:

• Maintaining the current state variable (the field member of this class)
• Maintaining the state transition table
• FSM evolution support by providing the address of the state transi-

tion function that corresponds to the incoming message type
• Message handling (message checking, parsing, and creation)
• Message exchange (the message send operation is explicit whereas

the message receive operation is implicit)
• Memory management (supports requesting and releasing buffers

for messages)
• Timer management (supports starting, stopping, restarting, and

testing timers)

The functionalities provided by the real-time kernel are inherited by the
class FiniteStateMachine (message exchange, buffer, and timer management).
The following subsections describe the internals of these three components.

249Implementation

4.4.2.1 FSMSystem Internals

As already mentioned, the class FSMSystem provides the execution platform
for all FSMs present in the system. The list of concrete functionalities pro-
vided by this class is already given in the previous section. The heart of the
class FSMSystem is the function Start, which actually provides all the listed
functionalities. Essentially, it is the event (message) interpreter. Its program
code in C++ is as follows:

void FSMSystem::Start(){
 SystemWorking = true;
 while(SystemWorking) {
 Sleep(1);
 for(uint8 i=0; i<NumberOfMbx; i++) {
 uint8 *msg = GetMsg(i);
 if(msg == NULL){
 continue;
 }
 uint8 automataType = GetMsgToAutomata(msg);
 if(((automataType > NumberOfAutomata) ||
 (NumberOfObjects[automataType] == 0))){
 // Error handling
 DiscardMsg(msg);
 continue;
 }
 uint32 objNum = GetMsgObjectNumberTo(msg);
 if(objNum == UNKNOWN_AUTOMATA){
 ptrFiniteStateMachine object =
 FreeAutomata[automataType].Get();
 if(object != 0) object->Process(msg);
 else
 (Automata[automataType][0])->NoFreeObjectProcedure(msg);
 continue;
 }
 else if(objNum > NumberOfObjects[automataType]) {
 // Error handling
 DiscardMsg(msg);
 continue;
 }
 else {
 (Automata[automataType][objNum])->Process(msg);
 }
 }
 }
}

The function Start initially sets its field member SystemWorking to the value
true and enters the loop, which is executed while SystemWorking has the value
true. Once this variable is set to the value false (this is exactly what the API func-
tion StopSystem() does), the function Start exits the loop and terminates. Because
this function is the FSM event interpreter, once it stops, the whole system stops.

Inside the while loop, this function enters the nested for loop in which it
checks all mailboxes for messages. This for loop starts from the mailbox with
the identification (index) 0, thus making it the highest priority mailbox. As
it proceeds toward the identification NumberOfMbx, the priority of the cor-
responding mailboxes decreases.

250 Communication Protocol Engineering

Once it finds a message in the mailbox, it exits the nested for loop and
continues with determining the destination automata (FSM) type identi-
fication by calling the function GetMsgToAutomata(). If the identification is
invalid (greater than the configuration parameter NumberOfAutomata) or if
no instances of that type are found, the function discards the message by
calling the function DiscardMsg() and continues the main loop.

If the automata type identification is valid and at least one instance of that
type is found, the function Start determines the destination object identifi-
cation by calling the function GetMsgObjectNumberTo(). If this identification
is equal to UNKNOWN_AUTOMATA, the function Start tries to allocate an
object from the pool of objects of the given type by calling the function Get()
on the object of that type.

If at least one free object is found in the pool (actually an array of objects
of the given type), the function Get() will return the identification (array
index) of the first one and, in turn, the function Start will call its function
ProcessMsg(). Behind the scenes, the function ProcessMsg() locates the state
transition that corresponds to the message type, calls it its subroutine, and
continues the main loop. If no free objects are in the pool, the function Start
discards the message and continues the main loop.

Finally, if the message destination is a known object (its identification
is not equal to UNKNOWN_AUTOMATA), the function Start checks if
its identification is valid (not greater than the configuration parameter
NumberOfObjects[automataType]). If the object identification is valid, the func-
tion Start calls object function ProcessMsg() and continues the main loop.

4.4.2.2 FiniteStateMachine Internals

The class FiniteStateMachine is at the top of the FSM Library class hierarchy
(Figure 4.13). It hides the details of the FSM Library internal static structure
from its user. The class FiniteStateMachine inherits logging-related func-
tionality from the class LogAutomata (shown as the left branch of the class
hierarchy in Figure 4.13). Alternately, the class FiniteStateMachine inherits
the buffer, timer, and message management functionality from the class
KernelAPI (shown as the right branch of the class hierarchy in Figure 4.13).
Both FiniteStateMachine and KernelAPI inherit the message management
functionality from the class MessageHandler.

The class LogAutomata conceptually uses the logging services provided
through the interface created by the class LogInterface. The logging services
are provided in run-time reality by the object that is an instance of a sub-
class, which is derived from the base class LogInterface. Figure 4.13 shows two
examples of such classes, namely, LogFile and LogTCP. The former provides
the recording of log events into the file located on some mass storage device.
The latter uses the TCP/IP network to send log events packed into messages
to the logging server, which, in turn, writes the log events to a file, perhaps
located on its hard disk.

251Implementation

Similarly, the class MessageHandler uses services of the abstract interface
provided by the class MessageInterface. The real providers of the message
handling services are subclasses derived from the base class MessageInterface.
Figure 4.13 shows three examples of such classes, namely, StandardMessage,
H323Message, and SS7Message. In the examples in this book, we use the class
StandardMessage, which creates an abstraction of the message comprising a
series of octets (characters) that can be partitioned into an arbitrary number
of message fields (carrying message parameters) of arbitrary size (given as a
number of octets).

In the text that follows, we cover the most important details of the
class FiniteStateMachine, KernelAPI, and MessageHandler. The effect of this
top-down approach is that we introduce first the functionality solely
provided by the class FiniteStateMachine, then the functionality that the
class FiniteStateMachine inherits from the class KernelAPI, and finally
the functionality that the class FiniteSateMachine inherits from the class
MessageHandler.

FSMSystem

FiniteStateMachine KernelAPI MessageHandler

LogAutomata

LogInterface

LogFile LogTCP

MessageInterface

StandardMessage H323Message SS7Message

FIGURE 4.13
Internal FSM Library static structure.

252 Communication Protocol Engineering

The class FiniteStateMachine comprises all attributes and operations neces-
sary for the definition and evolution of a single FSM. The FSM state is mod-
eled with the structure SState:

struct SState {
 SState(uint16 maxNumOfProceduresPerState);
 ~SState();
 bool StateValid; // if true, data are valid
 unsigned short NumOfBranches; // number of branches in a state
 // procedure for processing unexpected message
 PROC_FUN_PTR UnexpectedEventProcPtr;
 SBranch* PBranch; // pointer on data for each branch
};

The field NumOfBranches contains the number of outgoing state transitions
(branches) for the corresponding state. The field UnexpectedEventProcPtr is a
pointer to the C++ function that handles the reception of unexpected mes-
sages. Finally, the field PBranch contains a pointer to the array of the SBranch
instances, which model individual outgoing state transitions. The structure
SBranch definition is the following:

struct SBranch {
 uint16 EventCode; // message code
 PROC_FUN_PTR ProcPtr; // message processing function
};

The field EventCode contains the code of the event (message) that triggers
this state transition. The field ProcPtr contains the pointer to the C++ func-
tion that performs the actions during this particular state transition.

Generally, an FSM can use a number of timers. Each timer is represented
with an instance of the structure TimerBlock:

struct TimerBlock {
 TimerBlock(uint16 v, uint16 s) :
 Count(v), SignalId(s), Valid(false), TimerBuffer(0){}
 TimerBlock() :
 Count(INVALID_32), SignalId(INVALID_16), Valid(false),
 TimerBuffer(0) {};
 uint32 Count; // in time slices
 uint16 SignalId; // message code
 bool Valid; // if true, data is valid
 ptrBuff TimerBuffer; // Ptr to timer buffer
};

The field Count defines the timer duration, the field SignalId defines the code
of the message (signal) that is generated when the timer expires, the field Valid
is set if the timer is running, and the field TimerBuffer contains the pointer to
the buffer used by the timer expiration message.

The main private field members of the class FiniteStateMachine are as
follows:

class FiniteStateMachine : public KernelAPI, LogAutomate {…
 private:

253Implementation

 uint16 NumOfStates; // Number of FSM states
 uint16 NumOfTimers; // Number of timers
 uint16 MaxNumOfProcPerState; // Max. no. of branches
 SState *States[MAX_STATE_NO]; // State data
 uint32 ConnectionId; // Current connection
 uint32 CallId; // Current call
 uint8 State; // Current state

The fields NumOfStates, NumOfTimers, and MaxNumOfProcPerState are the
dimensions of the corresponding arrays. They define the number of FSM
states, the number of timers it uses, and the maximum number of branches,
respectively. The field States is an array of pointers to the instances of the
structure SState that contains pointers to arrays of instances of the structure
SBranch. This data structure corresponds to the FSM state transition table.

The field ConnectionId carries the domain-specific name but actually con-
tains the FSM object identification that is unique within the scope of objects
of the same type. During the system initialization, the class FSMSystem cre-
ates the array of FSM objects of the same type. The index of the object in
that array is written into this field at that time. This identification can be
used as appropriate for the application at hand. The FSM Library user can
take advantage of the fact that all message sending functions automatically
copy the content of this field into the object identification field of the message
header.

The field CallId carries another domain-specific name but it can be used for
various purposes in various applications. In contrast to the field ConnectionId
whose uniqueness is limited to the scope of a single FSM type, the value of
the field CallId is unique in the scope of the whole system. Traditionally, it
has been used to identify a single call, but generally it can be used to iden-
tify any communication process of interest. Like the field ConnectionId, this
field is also copied by the message sending functions to the message header
automatically.

Finally, the field State is the FSM current state identification, which is the
value of the index of array defined in the field States. This field defines the
context of the FSM.

As already mentioned, the FSM Library supports the abstraction of the left
and right FSM. The message sending functions, namely SendLeftAutomata()
and SendRightAutomata()—originally defined in the class KernelAPI—require
data about the left and right FSM. Relevant FiniteStateMachine attributes are
as follows:

// Left automata data
uint8 LeftMbx; // left mbx id
uint8 LeftAutomata; // left automata
uint8 LeftGroup; // left group
uint32 LeftObjectId; // left object
// Right automata data
uint8 RightMbx; // right mbx id
uint8 RightAutomata; // right automata
uint8 RightGroup; // right group
uint32 RightObjectId; // right object

254 Communication Protocol Engineering

We finish the overview of the FiniteStateMachine internals with its initializa-
tion and control functions:

FiniteStateMachine(
 uint16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE);
virtual void Initialize(void) = 0;
void InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
void InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
PROC_FUN_PTR GetProcedure(uint16 event);
virtual void NoFreeInstances() = 0;
virtual void Process(uint8 *msg);
void FreeFSM();

The class constructor first sets the number of timers, the number of states,
and the maximal number of branches per state. It then calls the function
Initialize(), provided by the user. This function typically uses a series of calls
to functions InitEventProc() and InitUnexpectedEventProc(). The former defines
the state transition function for the given state and message type whereas
the latter defines the unexpected message handler for the given state.

The function GetProcedure() is a control function that returns the address of
the state transition function for the given message type in the current state.
The function NoFreeInstances() is a recovery function that is called in cases
where no more free objects of this type are found. The function Process() is
the prototype of the state transition function. The function FreeFSM() releases
the FSM object by returning it to the pool of objects of this type.

The class KernelAPI provides the following groups of functions:

• Initialization functions
• Memory management functions
• Message management functions
• Timer management functions

The initialization functions provided by the class KernelAPI are its con-
structors (see Section 6.8) and the function setKernelObjects, whose prototype
is as follows:

void setKernelObjects(TPostOffice *o, TBuffers *b, CTimer *t);

The parameters of this function are the pointers to the objects that comprise
the system mailboxes, buffers, and timers. These objects will be described
in the next section.

The memory management functions provided by the class KernelAPI are
the following:

uint8 *GetBuffer(uint32 length);
void RetBuffer(uint8 *buff);

255Implementation

bool IsBufferSmall(uint8 *buff, uint32 length);
uint32 GetBufferLength(uint8 *buff);

The function GetBuffer() returns the pointer to the buffer of the sufficient
size (not less than specified by its parameter). The function RetBuffer() releases
the given buffer. The function IsBufferSmall() checks the size of the given buf-
fer. The function GetBufferLength() returns the size of the given buffer.

The message management functions provided by the class KernelAPI are
the following:

void Discard(uint8* buff);
void SetMessageFromData();
void SendMessage(uint8 mbxId);
void SendMessage(uint8 mbxId, uint8 *msg);
void SendMessageLeft();
void SendMessageRight();
void ReturnMsg(uint8 mbxId);

The function Discard() releases the given message. The function
SetMessageFromData() copies the data about this FSM (type, group, and
instance identifications) to the corresponding fields of the new message
header. According to the FSM Library terminology, the current message
is the one that has been received and processed, whereas the new mes-
sage is the message that is currently under construction (and will be sub-
sequently sent).

The function SendMessage(uint8 mbxId) sends the new message to the
given mailbox. The function SendMessage(uint8 mbxId, unit8 *msg) sends the
given message to the given mailbox. The functions SendMessageLeft() and
SendMessageRight() send the new message to the left and right automata,
respectively. The function ReturnMsg() sends the current message to the
given mailbox.

The timer management functions provided by the class KernelAPI are as
follows:

uint8 *StartTimer(uint16 code, uint32 count, uint8 *info=0);
void StopTimer(uint8 *timer);
bool IsTimerRunning(uint8 *timer);

The function StartTimer() starts the given timer by setting its duration
and the corresponding message buffer. The function StopTimer() stops the
given timer. The function IsTimerRunning() checks if the given timer is
running.

The interface defined by the class MessageHandler comprises the following
two parts:

• Message header handling
• Message payload handling

256 Communication Protocol Engineering

The message header handling part provides getting and setting functions
for the individual message header fields. The main message header fields are
as follows:

• MSG_FROM_AUTOMATA: the identification of the originating
FSM type

• MSG_TO_AUTOMATA: the identification of the destination FSM type
• MSG_CODE: the identification of the message type
• MSG_OBJECT_ID_FROM: the identification of the originating FSM

object
• MSG_OBJECT_ID_TO: the identification of the destination FSM

object
• MSG_CALL_ID: the identification of the application-specific com-

munication process
• MSG_INFO_CODING: the identification of the message format type
• MSG_LENGTH: the message payload length in octets

The timer message is a special message. If the timer expires, it is sent to
the same FSM that created it. Because of this, the message header fields
MSG_FROM_AUTOMATA and MSG_OBJECT_ID_FROM are not needed,
and thus can be used to hold information about the timer duration and the
destination mailbox identification.

The class MessageInterface defines the set of abstract functions that handle
the message payload. The key idea behind the abstraction introduced by the
class MessageInterface is the generic message parameter definition, which is
independent from the particular message format. Each message parameter is
uniquely defined by the following data:

• The message parameter identification
• The message parameter length (size)
• The message parameter value (content)

Depending on the message format type, the first and the second items
listed may be implicit or explicit. Some of the messages carry the message
parameter identification and length, and some do not. However, all three
items must be known to the message handling functions.

Another important fact related to the message format is that particular
message formats can be disassembled to a series of primitive elements of the
following types:

• Byte (1 byte)
• Word (2 bytes)

257Implementation

• DWord (4 bytes)
• Sequence of bytes (n bytes)

Therefore, the class MessageInterface includes the functions that provide
access to these primitive types of information. These functions can be parti-
tioned into the following two groups:

• Current message handing functions
• New message handling functions

The current message handling functions are as follows:

uint8 *GetParam(uint8 paramCode);
bool GetParamByte(uint8 paramCode, BYTE ¶m);
bool GetParamWord(uint8 paramCode, WORD ¶m);
bool GetParamDWord(uint8 paramCode, DWORD ¶m);

The first function returns a pointer to the parameter (sequence of octets)
whose identification (paramCode) is given. The next three functions return
the requested parameter of the size Byte, Word, and DWord, respectively. The
new message handling functions are as follows:

uint8 *AddParam(uint8 paramCode, uint8 paramLength, uint8 *param);
uint8 *AddParamByte(uint8 paramCode, BYTE param);
uint8 *AddParamWord(uint8 paramCode, WORD param);
uint8 *AddParamDWord(uint8 paramCode, DWORD param);
bool RemoveParam(uint8 paramCode);

The first four functions add the given sequence of octets, Byte, Word, and
DWord parameter, respectively, to the new message. The function RemoveParam()
removes the parameter—whose identification is given—from the message.

Each message handling function consists of two parts, a preparation part and
an operation part. The preparation part of the current message handling func-
tions includes preparing temporary data and message parsing. In case of mes-
sage syntax errors, message handling functions report an error by returning the
value false. The preparation part of the new message handling functions includes
allocation of the message buffer and initialization of the message header fields
MSG_CODE, MSG_INFO_CODING, and MSG_LENGTH (initially set to 0).

4.4.2.3 Kernel Internals

As already mentioned, the class FiniteStateMachine is independent of the par-
ticular real-time kernel with the introduction of the API defined by the class
KernelAPI. Generally, the class FiniteStateMachine can use services provided
by any real-time kernel that is a subclass of the class KernelAPI. In this sec-
tion, we cover the internals of one such kernel (a default one), which is simply
referred to as Kernel.

258 Communication Protocol Engineering

Figure 4.14 shows the static structure of Kernel. The root of the structure is
the class KernelAPI, which acts as the wrapper of Kernel. This class contains
pointers to the following three main parts of Kernel:

• Memory manager
• Message manager
• Time manager

The interfaces to these three resource managers are defined by the classes
TBuffers, TPostOffice, and CTimer, respectively. The memory manager com-
prises the class TBuffers and a set of instances of the class TBufferQueue. The
message manager consists of the class TPostOffice and a set of instances of the
class TMailBox. The time manager is implemented by the class CTimer itself.

The class TBuffers creates an abstraction of a set of buffer pools. The size of the
buffers in the pool is the same, but these sizes are different between the pools.

#Buffers
+PostOffice
-TimerResolution

Kernel::CTimer

#Buffers
#BuffersLength
#ClassBufferNum

Kernel::TBuffers

#BufferPtr
#BuffersInitiated
#CsBuffer
#FreeBufferCount
#Head
#Tail

Kernel::TBufferQueue

#MailBoxes
#MailBoxesNum

Kernel::TPostOffice

#Buff
#Count
#CsMailBox
#Head
#Tail

Kernel::TMailBox

-Buffers
-PostOffice
-Timer
-TimerResolution

Kernel::KernelAPI

1
1

1

*

1

1

1

1

1
*

1

1

FIGURE 4.14
Internal Kernel static structure.

259Implementation

For example, we can have three pools with three different sizes, namely, small,
medium, and large. The class TBufferQueue models one such a pool.

The constructor of the class TBufferQueue initially allocates an array of bytes
(uint8), which is the actual memory space that accommodates the memory pool:

// calculate memory size for all buffers and get memory for them
memSize = bufferLength + BUFF_HEADER_LENGTH;
memSize *= buffersNo;
BufferPtr = new uint8[memSize];

This memory space is then partitioned into individual memory buffers
that are added to the list of free buffers that actually represent the buffer
pool. A buffer consists of the buffer header and the space for useful data. The
buffer header comprises the pointers to the previous and to the next element
in the list and the buffer code that indicates buffer size. Each buffer pool is
defined with the pointer to the list of free buffers and the size of the buffers
in that list. The class TBuffers holds the array of pointers to the instances of
the class TBufferQueue (in the field member Buffers), as well as the array of the
corresponding buffer sizes (in the field member BuffersLength).

The function GetBuffer() provided by the class KernelAPI first searches the
field BuffersLength to find the pool of buffers of the sufficient size. It then gets
the buffer from the head of the list of free buffers and returns the pointer to
it. The function RetBuffer() uses buffer code from its header to return the buf-
fer by adding it to the end of the corresponding list.

The class TPostOffice stores the array of pointers to the corresponding
mailboxes. A mailbox is implemented as an instance of the class TMailBox.
Actually, the class TMailBox is very similar to the class TBufferQueue. The
main difference between them is that the former provides atomic (uninter-
ruptible) access to the list of messages. This feature is needed because the list
of messages is a resource shared by two concurrent processes, namely the
event interpreter and the time interrupt routine.

The atomic mailbox access is ensured by two virtual functions, namely
MbxLock() and MbxUnlock(). The former function locks the mailbox and the
latter unlocks it. These functions ensure the FSM Library’s portability. They
can be implemented by the use of semaphores provided by the local operat-
ing systems. (The FSM Library supports OS Linux® and Windows® NT at
the moment.)

The class CTimer is the most target-platform-dependent part of Kernel. It
consists of two parts, a platform-dependent part and a platform-independent
part. The platform-dependent part comprises the time-driven routine that is
periodically called by the local operating system and the routines that pro-
vide access to shared data. The platform-independent part consists of the list
of running timers and routines that maintain that list. The list of running
timers is implemented as a traditional delta list (the timer at the head of the
list contains the absolute time interval whereas all other timers contain the
time interval relative to the previous timer in the list).

260 Communication Protocol Engineering

To simplify timer maintenance, the function StopTimer() does not analyze
the current status of the given timer (already expired or still running)—it
simply marks the timer as expired. If the timer was still running, it will
remain in the list of running timers. When it expires, it is forwarded to the
given mailbox and from there it is discarded by the function member Get()
of the class TMailBox.

4.4.3 Writing FSM Library–Based Implementations

Normally, we start by deriving subclasses from the base class
FiniteStateMachine. For each such subclass, we must define the following
functions (see Section 6.8 for more details):

• GetMessageInterface(): This function returns the pointer to the par-
ticular message interface object.

• SetDefaultHeader(): This function sets the default message header
parameters.

• GetMbxId(): This function returns the identification of the mailbox
associated to this FSM type.

• GetAutomata(): This function returns the identification of this FSM type.
• SetDefaultFSMData(): This function sets default FSM data.
• NoFreeInstances(): This recovery function is called when the pool of

objects is exhausted.
• Initialize(): This function initializes FSM-related data, including the

state transition table.

We then write the main program, which typically follows these steps:

• Create an instance of the class FSMSystem.
• Initialize the real-time kernel.
• Set the system parameters.
• Register (add) all FSM objects with the instance of the class

FSMSystem.
• Start the system by calling the function Start() (defined within the

class FSMSystem).

4.5 Examples

This section includes two representative examples of FSM Library–based
implementations. The first example is the implementation of an application

261Implementation

for reading Internet electronic mail. The second example shows an imple-
mentation of the SIP invite client transaction.

4.5.1 Example 1

This example demonstrates how an application for reading Internet elec-
tronic mail can be constructed. The application is actually an e-mail client
that comprises the following three objects (see the general collaboration dia-
gram in Figure 4.15):

• user: a user interface
• pop3: the implementation of the POP3 protocol (refer to the origi-

nal RFC 1939, freely available on the Internet at www.ietf.org/rfc
/rfc1939.txt)

• channel: responsible for the direct communication with the e-mail
server over the TCP protocol

As shown in Figure 4.15, the objects user, pop3, and channel are the instances
of the classes UserAuto, ClAuto, and ChAuto, respectively. The object pop3 is
the central object. On its left side is the object user, and on its right side is the
object channel. The interaction between these objects is illustrated with three
typical scenarios that are shown in Figures 4.16 through 4.18. Figure 4.16
shows a successful session during which all pending e-mails are received
and saved as files on a mass storage device. The flow of events from the point
of view of the object pop3 is as follows:

• Triggered by the reception of the message User_Check_Mail from the left
object, it sends the message Cl_Connection_Request to the right object.

• Upon the reception of the message Cl_Connection_Accept from the right
object, it sends the message User_Connected to the left object. The con-
nection with the e-mail server is successfully established at this point.

• After receiving the username and password carried by the mes-
sage User_Name_Password from the left object, it first sends the user-
name in the message MSG(USER name) to the right object, which is
acknowledged with the message MSG(+OK) from the right object,
and it then sends the password in the message MSG(PASS password)
to the right object, which is also acknowledged with the message
MSG(+OK) from the right object. The user authentication procedure
is successfully finished at this point.

user : UserAuto pop3 : ClAuto channel : ChAuto

FIGURE 4.15
Receive e-mail application collaboration diagram.

http://www.ietf.org
http://www.ietf.org

262 Communication Protocol Engineering

user pop3 channel

User_Check_Mail

Cl_Connection_Request

Cl_Connection_Accept

User_Connected
User_Name_Password

MSG(USER name)

MSG(+OK)

MSG(PASS password)

MSG(+OK)

MSG(STAT)

MSG(+OK nn mm)

MSG(RETR nn)

MSG(mail)

MSG(mail)

Mail(mail)

MSG(mail)

Mail(mail)

Mail(mail)
MSG(DELE nn)

MSG(+OK)

User_Save_Mail

Repeat e-mail read
and delete procedures
at this point.

MSG(QUIT)

Cl_Disconnected

User_Disconnected

FIGURE 4.16
Successful receive e-mail session establishment scenario.

263Implementation

user pop3 channel

User_Check_Mail

Cl_Connection_Request

Cl_Connection_Accept

User_Connected

User_Name_Password

MSG(USER name)

MSG(+OK)

MSG(PASS password)

MSG(-ERR)

MSG(QUIT)

Cl_Disconnected

User_Disconnected

FIGURE 4.17
Invalid e-mail password processing scenario.

user pop3 channel

User_Check_Mail

Cl_Connection_Request

Cl_Connection_Reject

User_Connection_Fail

TIMER1_EXPIRED

FIGURE 4.18
Unsuccessful receive e-mail session establishment scenario.

264 Communication Protocol Engineering

• It then checks the status of the pending e-mails by sending the mes-
sage MSG(STAT) to the right object and receiving the answer in the
message MSG(+OK nn mm), where nn is the number of messages in
the maildrop and mm is the size of the maildrop in octets.

• While pending e-mails remain, it repeats the sequence of the e-mail
read procedure and the e-mail delete procedure. The e-mail read
procedure starts with the message MSG(RETR nn) to the right object
(nn is the order number of the e-mail message to be received). The
right object, in turn, sends an e-mail message in a series of MSG(mail)
messages (the size of the last one is smaller than 255 octets). The
e-mail delete procedure starts with the message MSG(DELE nn)
sent to the right object (nn is the order number of the message to
be deleted by the e-mail server). After reception of the acknowledg-
ment MSG(+OK) from the right object, the left object is informed
accordingly with the message User_Save_Mail (normally, the object
user should save the current e-mail message as a file on a mass stor-
age device at this point).

• Finally, the object pop3 starts the session closing procedure by send-
ing the message MSG(QUIT) to the right object. Then, upon recep-
tion of the message Cl_Disconnected from the right object, it sends the
message User_Disconnected to the left object.

Figure 4.17 shows the invalid password processing scenario. It is the same
as the previous scenario up to the point where the object pop3 sends the mes-
sage MSG(PASS password) to the right object. Because the password is invalid,
the right object responds with the message MSG(-ERR) and the object pop3
immediately proceeds to the session closing procedure.

Figure 4.18 shows the unsuccessful session establishment scenario. It
starts in the same way as the scenario in Figure 4.16. Assume that the TCP
connection with the e-mail server cannot be established for some reason.
Therefore, the TIMER1_ID that was started by the right object expires and
the associate message TIMER1_EXPIRED triggers the right object to send
the message Cl_Connection_Reject. The object pop3, in turn, sends the mes-
sage User_Connection_Fail to the left object.

To keep this example simple enough, we focus further on the design and
implementation of the key object in this application, the object pop3. The
complete dynamic behavior of this object is specified with the SDL diagram,
which is shown in Figures 4.19 and 4.20. The corresponding FSM is defined
with nine states (Cl_Ready, Cl_Connecting, Cl_Authorizing, Cl_User_Check, Cl_
Pass_Check, Cl_Mail_Check, Cl_Receiving, Cl_Deleting, and Cl_Disconnecting),
six input messages (User_Check_Mail, Cl_Connection_Reject, Cl_Connection_
Accept, User_Name_Password, MSG, and Cl_Disconnected), and seven output
messages (Cl_Connection_Request, User_Connection_Fail, User_Connected,
MSG, Mail, User_Save_Mail, and User_Disconnected).

265Implementation

Cl_Ready

Cl_Connecting

Cl_Connecting

User_Check-
_Mail

Cl_Connection
_Request

Cl_Connection
_Reject

Cl_Connection
_Accept

User_Connection
_Fail

User_Connected

Cl_Ready Cl_Authorizing

Cl_Authorizing

User_Name-
_Password

MSG(USER
name)

Cl_User_Check

Cl_User_Check

MSG(+OK) MSG(-ERR)

MSG(PASS
password) MSG(QUIT)

Cl_Pass_Check Cl_Disconnecting

Cl_Pass_Check

MSG(+OK) MSG(–ERR)

MSG(STAT) MSG(QUIT)

Cl_Mail_Check Cl_Disconnecting

FIGURE 4.19
POP3 client SDL diagram, part I.

266 Communication Protocol Engineering

Cl_Mail_Check

Cl_Receiving

MSG(+OK nn
mm)

nn > 0

MSG(RETR nn) MSG(QUIT)

NoYes

Cl_Receiving Cl_Disconnecting

MSG(mail)

Mail(mail)

Cl_Deleting

Cl_Deleting

MSG(+OK)

User_Save-
_Mail

nn = nn – 1

nn > 0

MSG(RETR nn)

Cl_Receiving

Yes

MSG(QUIT)

No

Cl_Disconnecting

Cl_Disconnecting

Cl_Disconnected

User_Disconnected

Cl_Ready

MSG(DELE nn)

size < 255

–

Yes

No

FIGURE 4.20
POP3 client SDL diagram, part II.

267Implementation

By convention, the names of all messages (except Mail) exchanged between
the object pop3 and the left object begin with the prefix User_. The names
of the control messages exchanged between the object pop3 and the right
object begin with the prefix Cl_. The names of the POP3-related messages
exchanged between the object pop3 and the right object are named MSG. Two
types of MSG messages are used—commands directed to the e-mail server
and responses received from it.

The MSG commands are as follows:

• MSG(USER name) corresponds to the original POP3 command for
specifying the name of the user mailbox.

• MSG(PASS password) corresponds to the original POP3 command
for specifying the password for the previously specified mailbox.

• MSG(STAT) corresponds to the original POP3 command for inquir-
ing about the mailbox status.

• MSG(RETR nn) corresponds to the original POP3 command for
reading the pending e-mail message number nn.

• MSG(DELE nn) corresponds to the original POP3 command for
deleting the pending e-mail message number nn.

• MSG(QUIT) corresponds to the original POP3 command for closing
the current session.

The MSG responses are the following:

• MSG(+OK) corresponds to the original POP3 acknowledgment
message.

• MSG(ERR) corresponds to the original POP3 error message.
• MSG(mail) corresponds to the actual e-mail message that was

received from the e-mail server.

Figure 4.19 shows valid state transitions for the states Cl_Ready,
Cl_Connecting, Cl_Authorizing, Cl_User_Check, and Cl_Pass_Check. The
eight state transitions are shown in Figure 4.19, as follows:

• From Cl_Ready to Cl_Connecting, triggered by User_Check_Mail

• From Cl_Connecting to Cl_Ready, triggered by Cl_Connection_Reject

• From Cl_Connecting to Cl_Authorizing, triggered by Cl_Connection_
Accepted

• From Cl_Authorizing to Cl_User_Check, triggered by User_Name_
Password

• From Cl_User_Check to Cl_Pass_check, triggered by MSG(+OK)

• From Cl_User_Check to Cl_Disconnecting, triggered by MSG(ERR)

268 Communication Protocol Engineering

• From Cl_Pass_Check to Cl_Mail_check, triggered by MSG(+OK)

• From Cl_Pass_Check to Cl_Disconnecting, triggered by the MSG(ERR)

Figure 4.20 shows valid state transitions for the states Cl_Mail_Check,
Cl_Receiving, Cl_Deleting, and Cl_Disconnecting. The seven state transitions
are shown in Figure 4.20, as follows:

• From Cl_Mail_Check to Cl_Receiving, triggered by MSG(+OK) and
guarded by the condition nn > 0

• From Cl_Mail_Check to Cl_Disconnecting, triggered by MSG(+OK)
and guarded by the condition !(nn > 0)

• From Cl_Receiving to Cl_Deleting, triggered by MSG(mail) and
guarded by the condition mail(size) < 255

• From Cl_Receiving to Cl_Receiving, triggered by MSG(mail) and
guarded by the condition !(mail(size) < 255)

• From Cl_Deleting to Cl_Receiving, triggered by MSG(+OK) and
guarded by the condition nn > 0

• From Cl_Deleting to Cl_Disconnecting, triggered by MSG(+OK) and
guarded by the condition !(nn > 0)

• From Cl_Disconnecting to Cl_Ready, triggered by Cl_Disconnected

Next, we proceed to the implementation in C++ based on the FSM Library.
First, we define symbolic constants specific for this project in a header file,
which is typically named const.h. The content of this file is as follows:

#ifndef _CONST_H_
#define _CONST_H_
#include <fsm.h>
const uint8 CH_AUTOMATA_TYPE_ID = 0x00;
const uint8 CL_AUTOMATA_TYPE_ID = 0x01;
const uint8 USER_AUTOMATA_TYPE_ID = 0x02;

const uint8 CH_AUTOMATA_MBX_ID = 0x00;
const uint8 CL_AUTOMATA_MBX_ID = 0x01;
const uint8 USER_AUTOMATA_MBX_ID = 0x02;

// channel messages
const uint16 MSG_Connection_Request = 0x0001;
const uint16 MSG_Sock_Connection_Reject = 0x0002;
const uint16 MSG_Sock_Connection_Accept = 0x0003;
const uint16 MSG_Cl_MSG = 0x0004;
const uint16 MSG_Sock_MSG = 0x0005;
const uint16 MSG_Disconnect_Request = 0x0006;
const uint16 MSG_Sock_Disconnected = 0x0007;
const uint16 MSG_Sock_Disconnecting_Conf = 0x0008;

// pop3 client messages
const uint16 MSG_User_Check_Mail = 0x0009;
const uint16 MSG_Cl_Connection_Reject = 0x000a;
const uint16 MSG_Cl_Connection_Accept = 0x000b;
const uint16 MSG_User_Name_Password = 0x000c;

269Implementation

const uint16 MSG_MSG = 0x000d;
const uint16 MSG_Cl_Disconnected = 0x000f;

// user messages
const uint16 MSG_Set_All = 0x0010;
const uint16 MSG_User_Connected = 0x0011;
const uint16 MSG_User_Connection_Fail = 0x0012;
const uint16 MSG_Mail = 0x0013;
const uint16 MSG_User_Save_Mail = 0x0015;
const uint16 MSG_User_Disconnected = 0x0014;

#define ADRESS "krtlab8"
#define PORT 110

#define TIMER1_ID 1
#define TIMER1_COUNT 10
#define TIMER1_EXPIRED 0x20

#define PARAM_DATA 0x01
#define PARAM_Name 0x02
#define PARAM_Pass 0x03
#endif // _CONST_H_

The file const.h starts with the definitions of automata types and their
private mailbox identifications. The identifications assigned to the classes
ChAuto, ClAuto, and UserAuto are CH_AUTOMATA_TYPE_ID, CL_
AUTOMATA_TYPE_ID, and USER_AUTOMATA_TYPE_ID, respectively.
The identifications of their private mailboxes are CH_AUTOMATA_MBX_
ID, CL_AUTOMATA_MBX_ID, and USER_AUTOMATA_MBX_ID, respec-
tively. Next, we define the symbols that correspond to the codes of the
messages recognized by the classes ChAuto, ClAuto, and UserAuto, respectively.
By convention, these symbols are provided by prefixing the names of the mes-
sages from the SDL diagram (Figures 4.19 and 4.20) with the prefix MSG_.

At the end of the file const.h, we define the domain name and the num-
ber of the port, which are used to establish the TCP connection with the
e-mail server (symbols ADDRESS and PORT), channel timer-related con-
stants (symbols TIMER1_ID, TIMER1_COUNT, and TIMER1_EXPIRED),
and the identifications of the message parameters (symbols PARAM_DATA,
PARAM_Name, and PARAM_Pass).

Next, we write the header file ClAuto.h. Its content is as follows:

#ifndef _Cl_AUTO_H_
#define _Cl_AUTO_H_
#include <NetFSM.h>
#include <fsmsystem.h>
#include "const.h"
class ClAuto : public FiniteStateMachine {
 // for FSM
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();

270 Communication Protocol Engineering

 uint8 GetAutomata();
 uint32 GetObject();
 void ResetData();
 // FSM States
 enum ClStates {
 FSM_Cl_Ready,
 FSM_Cl_Connecting,
 FSM_Cl_Authorizing,
 FSM_Cl_User_Check,
 FSM_Cl_Pass_Check,
 FSM_Cl_Mail_Check,
 FSM_Cl_Receiving,
 FSM_Cl_Deleting,
 FSM_Cl_Disconnecting
 };
public:
 ClAuto();
 ~ClAuto();
 void Initialize();
 void FSM_Cl_Ready_User_Check_Mail();
 void FSM_Cl_Connecting_Cl_Connection_Reject();
 void FSM_Cl_Connecting_Cl_Connection_Accept();
 void FSM_Cl_Authorizing_User_Name_Password();
 void FSM_Cl_User_Check_MSG();
 void FSM_Cl_Pass_Check_MSG();
 void FSM_Cl_Mail_Check_MSG();
 void FSM_Cl_Receiving_MSG();
 void FSM_Cl_Deleting_MSG();
 void FSM_Cl_Disconnecting_Cl_Disconnected();
protected:
 int m_MessageCount;
 char m_UserName[20];
 char m_Password[20];
};
#endif /* _Cl_AUTO_H */

After listing all necessary header files, we declare the class ClAuto, which
is derived from the base class FiniteStateMachine. The declaration of the class
ClAuto starts with the declaration of field and function members that are
mandatory for any class that is derived from the class FiniteStateMachine (as
explained previously in this chapter). It continues with the declaration of
FSM state names and state transition function prototypes.

By convention, FSM state names are the names from the SDL diagram with
the prefix FSM_ (e.g., the initial state Cl_Ready is named FSM_Cl_Ready in
the C++ code). The state transition function is named by concatenating the
state name and the input message name and by prefixing this composite
name with FSM_ (e.g., the state transition function performed when the FSM
in state Cl_Ready receives the message User_Check_Mail is named FSM_Cl_
Ready_User_Check_Mail). As previously mentioned, ClAuto FSM has nine
states and fourteen state transitions.

The reader may be puzzled with the fact that there are fourteen valid FSM
state transitions and only ten state transition functions declared in the header
file ClAuto.h. This circumstance is because some of the state transitions are
triggered with the same message type but different message content—e.g.,
MSG(+OK) and MSG(–ERR)—or they are guarded with the complementary

271Implementation

conditions—e.g., (nn > 0) and !(nn > 0). To clearly understand these matters,
remember that FiniteStateMachine derivatives react to various message types
in various FSM states. This is how we calculate the number of state transitions.

If we apply the principle stated above to the class ClAuto, we have the situ-
ation where all the states react to a single message with the exception of
the state Cl_Connecting, which reacts to two valid messages, Cl_Connection_
Reject and Cl_Connection_Accept. Because of this, we have (8 × 1) + (1 × 2)
state transition functions, which resolves to ten state transition functions, as
mentioned above.

Finally, we write the class ClAuto definition file, named ClAuto.cpp.
The content of this file is as follows:

#include <stdio.h>
#include "const.h"
#include "ClAuto.h"
#define StandardMessageCoding 0x00

ClAuto::ClAuto() : FiniteStateMachine(0, 9, 2) {}
ClAuto::~ClAuto() {}

uint8 ClAuto::GetAutomate() {
 return CL_AUTOMATA_TYPE_ID;
}

uint8 ClAuto::GetMbxId() {
 return CL_AUTOMATA_MBX_ID;
}

uint32 ClAuto::GetObject() {
 return GetObjectId();
}

MessageInterface *ClAuto::GetMessageInterface(uint32 id) {
 return &StandardMsgCoding;
}

void ClAuto::SetDefaultHeader(uint8 infoCoding) {
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

void ClAuto::SetDefaultFSMData() {
 SetDefaultHeader(StandardMessageCoding);
}

void ClAuto::NoFreeInstances() {
 printf("[%d] ClAuto::NoFreeInstances()\n", GetObjectId());
}

void ClAuto::Reset() {
 printf("[%d] ClAuto::Reset()\n", GetObjectId());
}

void ClAuto::Initialize() {
 SetState(FSM_Cl_Ready);

 // set message handlers
 InitEventProc(FSM_Cl_Ready, MSG_User_Check_Mail,
(PROC_FUN_PTR)&ClAuto::FSM_Cl_Ready_User_Check_Mail));

272 Communication Protocol Engineering

 InitEventProc(FSM_Cl_Connecting, MSG_Cl_Connection_Reject,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject));

 InitEventProc(FSM_Cl_Connecting, MSG_Cl_Connection_Accept,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept));

 InitEventProc(FSM_Cl_Authorizing, MSG_User_Name_Password,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Authorizing_User_Name_Password));

 InitEventProc(FSM_Cl_User_Check, MSG_MSG,
 (PROC_FUN_PTR)&ClAuto::FSM_Cl_User_Check_MSG));

 InitEventProc(FSM_Cl_Pass_Check, MSG_MSG,
 (PROC_FUN_PTR)&ClAuto::FSM_Cl_Pass_Check_MSG));

 InitEventProc(FSM_Cl_Mail_Check, MSG_MSG,
 (PROC_FUN_PTR)&ClAuto::FSM_Cl_Mail_Check_MSG));

 InitEventProc(FSM_Cl_Receiving, MSG_MSG,
 (PROC_FUN_PTR)&ClAuto::FSM_Cl_Receiving_MSG));

 InitEventProc(FSM_Cl_Deleting, MSG_MSG,
 (PROC_FUN_PTR)&ClAuto::FSM_Cl_Deleting_MSG));

 InitEventProc(FSM_Cl_Disconnecting, MSG_Cl_Disconnected,
(PROC_FUN_PTR)&ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected));
}

void ClAuto::FSM_Cl_Ready_User_Check_Mail(){
 PrepareNewMessage(0x00, MSG_Connection_Request);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Connecting);
}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject(){
 PrepareNewMessage(0x00, MSG_User_Connection_Fail);
 SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Ready);
}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept(){
 PrepareNewMessage(0x00, MSG_User_Connected);
 SetMsgToAutomata(USER_AUTOMATE_TYPA_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Authorizing);
}

void ClAuto::FSM_Cl_Authorizing_User_Name_Password(){
 char* name = new char[20];
 char* pass = new char[20];
 uint8* buffer = GetParam(PARAM_Name);

 memcpy(m_UserName,buffer+2,buffer[1]);
 m_UserName[buffer[1]] = 0; // terminate string
 buffer = GetParam(PARAM_Pass);

273Implementation

 memcpy(m_Password,buffer+2,buffer[1]);
 m_Password[buffer[1]] = 0; // terminate string
 char l_Command[20] = "user";
 strcpy(l_Command+5,m_UserName);
 strcpy(l_Command+5+strlen(m_UserName),"\r\n");

 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_User_Check);
}

void ClAuto::FSM_Cl_User_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 data[size]=0;
 printf("%s",data);
 if((data[0] == '+')) {
 char l_Command[20] = "pass ";
 strcpy(l_Command+5,m_Password);
 strcpy(l_Command+5+strlen(m_Password),"\r\n");
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Pass_Check);
 else {
 char l_Command[20] = "quit\r\n";
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 AddParam(PARAM_DATA,6,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Pass_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 data[size]=0;
 printf("%s",data);
 if((data[0] == '+')) {
 char l_Command[20] = "stat\r\n";
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 AddParam(PARAM_DATA,6,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Mail_Check);
 else {
 char l_Command[20] = "quit\r\n";
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);

274 Communication Protocol Engineering

 AddParam(PARAM_DATA,6,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Mail_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer+2,size);
 data[size]=0;
 printf("%s",data);
 int l_nDigit = 1;
 while(buffer[l_nDigit+6] != ' ') l_nDigit++;
 memcpy(data,buffer +6,l_nDigit);
 data[l_nDigit]=0;
 m_MessageCount = atoi(data);

 if((m_MessageCount == 0) {
 char l_Command[20] = "quit\r\n";
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 AddParam(PARAM_DATA,6,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Disconnecting);
 else {
 char l_Command[20] = "retr ";
 strcpy(l_Command+5,data);
 strcpy(l_Command+5+l_nDigit,"\r\n");
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+l_nDigit+2,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Receiving);
 }
}

void ClAuto::FSM_Cl_Receiving_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 char temp[4];
 memcpy(temp,data,3); temp[3] = 0;
 if((strcmp(temp,"+OK") != 0) {
 PrepareNewMessage(0x00, MSG_Mail);
 SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 AddParam(PARAM_DATA,size,(uint8*)data);
 SendMessage(USER_AUTOMATA_MBX_ID);
 if((size < 255) {
 char l_Command[20] = "dele ";
 itoa(m_MessageCount,data,10);
 strcpy(l_Command+5,data);
 strcpy(l_Command+5+strlen(data),"\r\n");
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);

275Implementation

AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Deleting);
 }
 }
}

void ClAuto::FSM_Cl_Deleting_MSG(){
 PrepareNewMessage(0x00, MSG_User_Save_Mail);
SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 m_MessageCount——;
 if(m_MessageCount > 0) {
 char data[5];
 char l_Command[20] = "retr ";
 itoa(m_MessageCount,data,10);
 strcpy(l_Command+5,data);
 strcpy(l_Command+5+strlen(data),"\r\n");
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Receiving);
 else {
 char l_Command[20] = "quit\r\n";
 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 AddParam(PARAM_DATA,6,(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected(){
 PrepareNewMessage(0x00, MSG_User_Disconnected);
 SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Ready);
}

The file ClAuto.cpp starts with a list of all necessary header files (stdio.h,
const.h, and ClAuto.h), followed by the definition of the symbolic constant
StandardMessageCoding and the set of mandatory function definitions: class
constructor, class destructor, and functions GetAutomata(), GetMbxId(),
GetObject(), GetMessageInterface(), SetDefaultHeader(), SetDefaultFSMData(),
NoFreeInstances(), Reset(), and Initialize().

The class constructor ClAuto() calls the constructor of the class
FiniteStateMachine with a list of parameters, which specifies that the
ClAuto FSM has no timers, nine states, and the maximum of two state
transitions per state (see the FSM Library API specification in Section 6.8,
particularly, Section 6.8.11). The class destructor performs no particular
operation.

The mandatory functions provide the following functionalities:

276 Communication Protocol Engineering

• The function GetAutomata() returns the ClAutomata type identification
(the constant CL_AUTOMATA_TYPE_ID). See also Section 6.8.24.

• The function GetMbxId() returns the associated mailbox identification
(the constant CL_AUTOMATA_MBX_ID). See also Section 6.8.38.

• The function GetObject() returns the object identification. Actually,
it returns the value returned by the FSM Library function GetObject
Id(). See also Section 6.8.60.

• The function GetMessageInterface() returns the pointer to the mes-
sage coding object (an instance of the class StandardMessage). See also
Section 6.8.39.

• The function SetDefaultHeader() sets default data in the new message
header by calling two FSM Library functions, SetMsgInfoCoding()
and SetMessageFromData(). See also Section 6.8.97, Section 6.8.117, and
Section 6.8.108.

• The function SetDefaultFSMData() sets the new message header
default values by calling the function SetDefaultHeader() and speci-
fying the constant StandardMessageCoding as its parameter.

• The function NoFreeInstances() just prints the information message to
the standard output file. See also Section 6.8.78.

• The function Reset() also just prints the information message to the
standard output file. See also Section 6.8.85.

The most important mandatory function is the function Initialize(). It
starts by setting the FSM initial state, Cl_Ready (denoted with the constant
FSM_Cl_Ready). It continues by setting the state transition functions (also
referred to as message handlers). Each message handler is set by a single
call to the FSM Library function InitEventProc(). The first parameter of this
function is the state name, the second is the input message name, and the
third is the address of the corresponding ClAuto function member (see also
Section 6.8.73).

The set of mandatory functions is followed by the set of state transi-
tion functions. As already mentioned, ten such functions are used. Each
of these functions processes a single message type in a single state, as
follows:

• The function FSM_Cl_Ready_User_Check_Mail() processes the mes-
sage User_Check_Mail in the state Cl_Ready.

• The function FSM_Cl_Connecting_Cl_Connection_Reject() processes
the message Cl_Connection_Reject in the state Cl_Connecting.

• The function FSM_Cl_Connecting_Cl_Connection_Accept() processes
the message Cl_Connection_Accept in the state Cl_Connecting.

277Implementation

• The function FSM_Cl_Authorizing_User_Name_Password() processes
the message User_Name_Password in the state Cl_Authorizing.

• The function FSM_Cl_User_Check_MSG() processes the message
MSG in the state Cl_User_Check.

• The function FSM_Cl_Pass_Check_MSG() processes the message
MSG in the state Cl_Pass_Check.

• The function FSM_Cl_Mail_Check_MSG() processes the message
MSG in the state Cl_Mail_Check.

• The function FSM_Cl_Receiving_MSG() processes the message MSG
in the state Cl_Receiving.

• The function FSM_Cl_Deleting_MSG() processes the message MSG
in the state Cl_Deleting.

• The function FSM_Cl_Disconnecting_Cl_Disconnected() processes the
message Cl_Disconnected in the state Cl_Disconnecting.

The function FSM_Cl_Ready_User_Check_Mail() is a typical simple state
transition function. First, it creates a new message by calling the function
PrepareNewMessage(). (Its first parameter is the message length and the second is
the message type; the third parameter is optional and is not used in this example.
See also Section 6.8.81.) It then sets the destination FSM type and object identifi-
cation by calling the function SetMsgToAutomata() (its parameter is the FSM type
identification; see also Section 6.8.125) and the function SetMsgObjectNumberTo()
(its parameter is the FSM object identification; see also Section 6.8.123), respec-
tively. Next, it sends the new message to the destination mailbox by calling
the function SendMessage() (its parameter is the mailbox identification; see also
Section 6.8.106). Finally, it sets the new FSM state by calling the function SetState
(its parameter is the state identification; see also Section 6.8.137).

The next two functions, FSM_Cl_Connecting_Cl_Connection_Reject() and
FSM_Cl_Connecting_Cl_Connection_Accept(), are very similar to the one previ-
ously described (only the message type and the new state name are different). But
the fourth state transition function, FSM_Cl_Authorizing_User_Name_Password(),
is more complex. It demonstrates well how a state transition function can get a
parameter from the current message and how it can add a parameter to the new
message. This concrete state transition function gets two parameters (username
and password) from the current message by calling the function GetParam() (its
parameter is the identification of the parameter type; see also Section 6.8.61). It
also adds one parameter (username) to the new message by calling the function
AddParam() (its parameters are the message parameter type, length, and pointer;
see also Section 6.8.12).

The fifth state transition function, FSM_Cl_User_Check_MSG(), is even
more complex because it involves branching depending on the value of the
current message parameter. By making a branch, the state transition function

278 Communication Protocol Engineering

actually selects one of two possible paths of the FSM evolution, which yields
two different output (new) messages and two different destination FSM
states. The sixth state transition function is very similar to the fifth one.

The seventh state transition function, FSM_Cl_Mail_Check_MSG(), brings
one new important detail. It shows how a state transition function can save
some data (in this example, the number of pending e-mail messages, which
is stored in the class field member m_MessageCount) so that it can be shared
or used by other state transitions—in this example, by the ninth state transi-
tion function, FSM_Cl_Deleting_MSG().

The rest of the state transition functions do not bring anything essentially
new. However, the reader is advised to study them in detail as an additional
exercise.

4.5.2 Example 2

The aim of this example is to implement the SIP invite client transaction
design, which is given in Section 3.10.5 (Chapter 3, Example 5). Briefly, in that
section we examined the general collaboration diagram of the SIP Softphone
(see Section 2.3.3, Figure 2.16) with the focus on the invite client transac-
tion. The result is the general collaboration diagram shown in Figure 3.69.
We then made two particular collaboration diagrams and their semantically
equivalent sequence diagrams for the cases of successful and unsuccessful
SIP session establishment (Figures 3.70 through 3.73). Finally, we devised the
complete dynamic behavior specification in the form of the statechart dia-
gram (Figure 3.74) and semantically equivalent SDL diagram (Figures 3.75
through 3.78).

We start the implementation of this design by defining the symbolic con-
stants, such as the FSM type names (e.g., the name of the invite client FSM type
is InviteClienteTE_FSM), mailbox names (e.g., the name of the invite client mail-
box is InviteClienteTE_FSM_MBX), names of the FSM Library related message
types, timer names (e.g., TIMER_A, TIMER_B, and TIMER_D), names of the
SIP messages (e.g., INVITE, OPTIONS, CANCEL, ACK, BYE, and RESISTER),
names of the response codes (e.g., _180_RINGING, _200_OK, _302_MOVED_
TEMPORARILY, _401_UNAUTHORIZED, _403_FORBIDDEN, and _404_
NOT_FOUND), and names of situations (e.g., URI_IN_TO_UNRECOGNIZED
and NOT_TO_CURRENT_USER). Traditionally, we write definitions of all these
constants in the file constants.h.

Next, we write the class that represents an SIP message, simply named
Message. The most important field member of this class is the last (also
referred to as the current) SIP message (its type is the C++ type string). Other
field members hold the relevant SIP session related information. The func-
tion members support SIP message analysis and synthesis (parsing and cre-
ation). Actually, the class Message that is used in this example is a simple
wrapper around the OpenSIP SIP message parser. (OpenSIP is freely avail-
able on the Internet at https://www.opensips.org/.)

https://www.opensips.org

279Implementation

We skip the content of the file constants.h and the source code of the class
Message intentionally to keep this example short enough and easily compre-
hendible, and we proceed with the introduction of the supplementary class
TALE. The declaration of the class TALE is as follows:

#ifndef _TALE_FSM_
#define _TALE_FSM_
#include "../kernel/fsm.h"
#include "../message/message.h"
#include "../constants.h"

class TALE : public FiniteStateMachine {
 uint8 MessageCopy[MAX_LENGTH_MESSAGE];
 uint32 IndexTLI;
 BOOL IndexTLISet;
public:
 void SetIndexTLI(uint32 newIndexTLI);
 uint32 GetIndexTLI();
 BOOL IsTransportReliable();
 void SendMessageToTU();
 void SendMessageToTPL();
 void SendErrorMessageToTU();
 void MakeLocalCopyOfMsg();
 void SendCopiedMessageToTPL();

public:
 TALE(uint16 numOfTimers, uint16 numOfState, uint16 maxNumOfPrPerSt);
 ~TALE();
};

The class TALE is a good example of how we can make our implemen-
tations more compact. As we can see from the previous example, send-
ing a single message requires a series of FSM Library function calls.
For example, forwarding the current message would require a series of
calls to the function CopyMessage(), SetMsgToAutomata(), SetMsgToGroup(),
SetMsgObjectNumberTo(), and function SendMessage()—five function calls. In
the case of simple designs, we can tolerate repetition of this series of function
calls, but in cases requiring more complex design or platforms with limited
resources, this repetition may not be tolerated.

Consider the SIP invite client transaction FSM. It has thirteen state transi-
tions, and most of them require sending a message to either the TPL (transport
layer) or TU (transaction user). We would need to repeat the same series of
function calls about ten times. Consider now the whole SIP Softphone, which
supports four types of transactions (invite, non-invite, client, and server trans-
actions). In such situations, replacing this series of function calls with a single
function call (which, in turn, performs the original sequence of function calls)
makes sense.

This replacement is exactly the reason why the class TALE has been intro-
duced in the first place. This class inherits all field and function members
from the class FiniteStateMachine, from which it is derived. It also adds some
new field and function class members. All classes that implement SIP trans-
actions are derived from the class TALE. The most important field member of
the class TALE is the field MessageCopy, which holds the copy of the last sent

280 Communication Protocol Engineering

message. Actually, this field is the retransmission buffer (remember that SIP
invite client in the state Calling must retransmit the message INVITE in case
the timer A expires).

The two most important function members are the functions
SendMessageToTU() and SendMessageToTPL(). The former sends the current
message to TU and the latter to TPL. They are very similar; therefore, it is suf-
ficient to study just one of them. Here is the source code of the former function:

void TALE::SendMessageToTU() {
 CopyMessage();
 SetMsgToAutomata(UA_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 SendMessage(UA_Disp_FSM_MBX);
}

This is the most elegant way to forward a message in FSM Library-based
implementations. The function CopyMessage() copies the current (last
received) message to the new (output) message. The symbolic constant
UA_Disp_FSM is the name of the UA (user agent) FSM type, and the con-
stant UA_Disp_FSM_MBX is the name of its mailbox. As we will shortly see,
the use of the functions SendMessageToTU() and SendMessageToTPL() signifi-
cantly compresses the source code. They make one-to-one mapping of SDL
diagrams to C++ code possible.

Next, we proceed to the implementation of the invite client transaction
FSM. We implement it by writing the class InviteClientTE. Note that in
Figures 3.69 through 3.73, we used the abbreviation InClientT for this name.
The declaration of the class InviteClientTE is as follows:

#ifndef _InviteClientTE_FSM_
#define _InviteClientTE_FSM_
#include "TALE.h"

class InviteClientTE : public TALE {
 Message SIPMsg;
 uint32 cseq_number;
 uint32 TimerADuration;

public:
 enum States {
 STATE_INITIAL,
 STATE_CALLING,
 STATE_PROCEEDING,
 STATE_COMPLETED
 };
 // state Initial message handlers
 void Evt_Init_INVITE();
 // state Calling message handlers
 void Evt_Calng_TIMER_A_EXP();
 void Evt_Calng_RESPONSE_1XX();
 void Evt_Calng_RESPONSE_2XX();
 void Evt_Calng_TIMER_B_EXP();
 void Evt_Calng_RESPONSE_3_6XX();
 void Evt_Calng_TRANSPORT_ERR();
 // state Proceeding message handlers

281Implementation

 void Evt_Proc_RESPONSE_1XX();
 void Evt_Proc_RESPONSE_2XX();
 void Evt_Proc_RESPONSE_3_6XX();
 // state Completed message handlers
 void Evt_Comptd_TIMER_D_EXP();
 void Evt_Comptd_RESPONSE_3_6XX();
 void Evt_Comptd_TRANSPORT_ERR();
 // unexpected messages message handler
 void Event_UNEXPECTED();
 // problem specific functions
 void RetransmitInvite();
 BOOL SendAckMessageToTPL();
 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:

The class InviteClientTE is derived from the class TALE. The meaning of its
field members is as follows:

• The field SIPMsg is the SIP message parser (an instance of the class
Message).

• The field cseq_number holds the value of the SIP message header field
CSeq, which is used to identify and order transactions (see RFC 3261,
Subsection 8.1.1.5).

• The field TimerADuration contains the current value of the timer A
(remember, the value of the timer A is doubled each time it expires).

Next, we enumerate the names of the FSM states. There are altogether four
FSM states: STATE_INITIAL, STATE_CALLING, STATE_PROCEEDING, and
STATE_COMPLETED. A short explanation is needed at this point. According to
the original specification (RFC 3261, Figure 5, page 128), the invite client trans-
action FSM also has four explicitly rendered states, namely, Calling, Proceeding,
Completed, and Terminated. The initial state is omitted in the original specifica-
tion. In our implementation, we create a pool of InviteClientTE objects, which are
dynamically allocated on demand by the TU. These objects are never really ter-
minated. Once they play their simple role, they are returned to the pool of free
InviteClientTE objects, and from there they are dynamically assigned to play the
same role again. Therefore, we renamed the state Terminated to Initial. We also
made this state the source of the initial state transition (triggered with the mes-
sage INVITE from TU), thus making the FSM a never-terminating one.

We then list the state transition function prototypes for each state indi-
vidually. The naming convention is the same as in the previous example:

282 Communication Protocol Engineering

The name of the state transition function is constructed by concatenating
the state name and the message name and by prefixing that name with a
certain prefix. The naming convention is applied more freely in this example
by shortening the state names. This practice is frequently done to keep the
name lengths acceptable (short enough, but providing code readability at the
same time). Thirteen valid state transitions and their corresponding state
transition functions (message handlers) are used. The fourteenth message
handler, named Event_UNEXPECTED(), handles all unexpected messages
in all states.

Finally, we list the function prototypes of the problem-specific functions
and mandatory FiniteStateMachine abstract functions. These functions—
except the function RetransmitInvite()—are intentionally skipped in the text
that follows to keep the presentation of this example short.

We finish the implementation by writing the class InviteClientTE definition
file, named InvClientTE.cpp. The content of this file is as follows:

#include <stdio.h>
#include "InvClientTE.h"
#include "../Message/message.h"
#include "timer_values.h"
#define StandardMessageCoding 0x00

InviteClientTE::InviteClientTE() : TALE(10, 10, 10) {}
InviteClientTE::~InviteClientTE() {}

void InviteClientTE::Initialize() {
 SetState(STATE_INITIAL);
 // define timers
 InitTimerBlock(TIMER_A,1,TIMER_A_EXPIRED);
 InitTimerBlock(TIMER_B,1,TIMER_B_EXPIRED);
 InitTimerBlock(TIMER_D,1,TIMER_D_EXPIRED);
 // state STATE_INITIAL message handlers
 InitEventProc(STATE_INITIAL, INVITE,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Init_INVITE);
 // state STATE_CALLING message handlers
InitEventProc(STATE_CALLING, TIMER_A_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_A_EXP);

InitEventProc(STATE_CALLING, RESPONSE_1XX_T,
 (PRO_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_1XX);

InitEventProc(STATE_CALLING, RESPONSE_2XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_2XX);

InitEventProc(STATE_CALLING, TIMER_B_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_B_EXP);

InitEventProc(STATE_CALLING, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Ev_Calng_RESPONSE_3_6XX);

283Implementation

InitEventProc(STATE_CALLING, TRANSPORT_ERR,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TRANSPORT_ERR);

 // state STATE_PROCEEDING message handlers
InitEventProc(STATE_PROCEEDING, RESPONSE_1XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_1XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_2XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_2XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

 // state STATE_COMPLETED message handlers
InitEventProc(STATE_COMPLETED, TIMER_D_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TIMER_D_EXP);

InitEventProc(STATE_COMPLETED, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);
InitEventProc(STATE_COMPLETED, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, TRANSPORT_ERR,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TRANSPORT_ERR);

 // unexpected messages message handler
InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_CALLING,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_PROCEEDING,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_COMPLETED,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);
}

void InviteClientTE::Evt_Init_INVITE() {
 SendMessageToTPL();
 if (!IsTransportReliable()){
 TimerADuration = GetT1();
 setTimerCount(TIMER_A, TimerADuration);
 StartTimer(TIMER_A);
 }
 setTimerCount(TIMER_B, 64*GetT1());
 StartTimer(TIMER_B);
 MakeLocalCopyOfMsg();

284 Communication Protocol Engineering

 SetState(STATE_CALLING);
}

void InviteClientTE::Evt_Calng_TIMER_A_EXP(){
 TimerADuration = 2 * TimerADuration;
 setTimerCount(TIMER_A, TimerADuration);
 RestartTimer(TIMER_A);
 RetransmitInvite();
}

void InviteClientTE::Evt_Calng_RESPONSE_1XX(){
 uint16 val;
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 GetParamWord(INDEX_TLI_PARAM, val);
 SetIndexTLI(val);
 SetState(STATE_PROCEEDING);
}

void InviteClientTE::Evt_Calng_RESPONSE_2XX(){
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_TIMER_B_EXP(){
 StopTimer(TIMER_A);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_TRANSPORT_ERR(){
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_RESPONSE_3_6XX(){
 uint16 val;
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 GetParamWord(INDEX_TLI_PARAM, val);
 SetIndexTLI(val);
 SendAckMessageToTPL();
 if (IsTransportReliable())
 setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);
 else
 setTimerCount(TIMER_D, 64*GetT1());//64T1
 StartTimer(TIMER_D);
 SetState(STATE_COMPLETED);
}

void InviteClientTE::Evt_Proc_RESPONSE_1XX(){
 SendMessageToTU();
}

void InviteClientTE::Evt_Proc_RESPONSE_2XX(){
 SendMessageToTU();
 SetState(STATE_INITIAL);
}

285Implementation

void InviteClientTE::Evt_Proc_RESPONSE_3_6XX(){
 SendMessageToTU();
 SendAckMessageToTPL();
 if (IsTransportReliable())
 setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);
 else
 setTimerCount(TIMER_D, 64*GetT1()); //64T1
 StartTimer(TIMER_D);
 SetState(STATE_COMPLETED);
}

void InviteClientTE::Evt_Comptd_TIMER_D_EXP(){
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Comptd_RESPONSE_3_6XX(){
 SendAckMessageToTPL();
}

void InviteClientTE::Evt_Comptd_TRANSPORT_ERR(){
 StopTimer(TIMER_D);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Event_UNEXPECTED() {
}

void InviteClientTE::RetransmitInvite(){
 SendCopiedMessageToTPL();
}

The mandatory function Initialize() starts by setting the FSM initial state
STATE_INITIAL. It then initializes the timers A, B, and D by calling the
FSM Library function InitTimerBlock() (its parameters are the timer identifi-
cation, the timer interval duration, and the identification of the associated
message; see also Section 6.8.74). The function Initialize() finishes by setting
the FSM state transition functions. These functions process various message
types in different states, as follows:

• The function Evt_Init_INVITE() processes the message INVITE in
the state STATE_INITIAL.

• The function Evt_Calng_TIMER_A_EXP() processes the message
TIMER_A_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_1XX() processes the message
RESPONSE_1XX_T in the state STATE_CALLING.

• The function Evt_Calng_ RESPONSE_2XX() processes the message
RESPONSE_2XX_T in the state STATE_CALLING.

• The function Evt_Calng_TIMER_B_EXP() processes the message
TIMER_B_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T,
and RESPONSE_6XX_T in the state STATE_CALLING.

286 Communication Protocol Engineering

• The function Evt_Calng_TRANSPORT_ERR() processes the message
TRANSPORT_ERR in the state STATE_CALLING.

• The function Evt_Proc_RESPONSE_1XX() processes the message
RESPONSE_1XX_T in the state STATE_PROCEEDING.

• The function Evt_Proc_RESPONSE_2XX() processes the message
RESPONSE_2XX_T in the state STATE_PROCEEDING.

• The function Evt_Proc_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T,
and RESPONSE_6XX_T in the state STATE_PROCEEDING.

• The function Evt_Comptd_TIMER_D_EXP() processes the message
TIMER_D_EXPIRED in the state STATE_COMPLETED.

• The function Evt_Comptd_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T,
and RESPONSE_6XX_T in the state STATE_COMPLETED.

• The function Evt_Comptd_TRANSPORT_ERR() processes the mes-
sage TRANSPORT_ERR in the state STATE_COMPLETED.

• The function Event_UNEXPECTED() processes all unexpected mes-
sages in all states.

As we can see from the source code above, the state transition functions
(message handlers) are short and easily readable because each program state-
ment is easily traceable back to the original statechart and SDL diagrams.
For example, consider the first state transition function Evt_Init_INVITE().
The original SDL specification of this state transition starts with the recep-
tion of the message INVITE (Figure 3.75). This step is provided by the class
FSMSystem. The next step in the SDL diagram says: “Invite_T to TPL.” This
step is implemented with a single program statement, namely, the function
call to the function SendMessageToTPL().

The next step in the SDL diagram is the question, “Is transport reliable?” We
implement it also with a single function call to the function IsTransportReliable().
We continue the SDL coding in this manner. If the transport is reliable, the
initial value of the timer A is provided by calling the function GetT1()—a way
to parameterize the software. Next, we set the timer A duration by calling the
function setTimerCount()—this is the undocumented FSM Library function at
the moment, to be included in the next official release—and start the timer A
by calling the function StartTimer() (the parameter of this function is the timer
identification; see also Section 6.8.138).

At the end of this function, we set the duration of the timer B and start it, make
the local copy of the last sent message by calling the function MakeLocalCopy()—
remember that it is needed for the possible retransmission—and set the new
state by calling the function SetState() (its parameter is the state identifica-
tion; see also Section 6.8.137).

287Implementation

Next, the state transmission function EvtCalng_TIMER_A_EXP() performs
the reaction to the timer A expiration (see the corresponding SDL specifica-
tion in Figure 3.75) with only four program statements. The first one doubles
the timer A duration, the second sets this new duration, the third restarts
the timer A by calling the FSM Library function RestartTimer() (see Section
6.8.87), and the fourth retransmits the message INVITE by calling the func-
tion RetransmitInvite(). Also, all the other state transition functions are made
in this spirit of one-to-one mapping from the original SDL diagram. The
reader is advised to study them as an additional exercise.

References

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

http://taylorandfrancis.com

http://taylorandfrancis.com

289

5
Test and Verification

The test and verification phase is a phase of communication protocol engi-
neering work that follows the implementation phase. The primary goal
of this phase is to verify that the implementation in the higher-level pro-
gramming language is correct. The implementation is correct if it meets
its original requirements, which are modeled in the form of use cases (see
Chapter 2).

The correctness of the implementation is checked with the test suite, which
is typically designed in TTCN-3 (see Section 3.9). The test suite itself is imple-
mented in a higher-level programming language, e.g., Java or C++. But how
do we verify the correctness of the test suite implementation? The answer
is that we do not check the correctness of the test suite independently. We
always check the correctness of the implementation under the test and test
suite simultaneously. Theoretically, a bug in a test suite can cover a bug in the
implementation; we should be aware of this, but such cases seldom happen
in practice.

Typical testing activities conducted in the communication protocol engi-
neering test and verification phase are the following:

• Unit testing
• Integration testing
• Conformance testing
• Load testing
• In-field testing
• Formal verification
• Statistical usage testing

The first four types of activities (unit testing, conformance testing, load
testing, and in-field testing) stem from traditional software engineering,
whereas the last two (formal verification and statistical usage testing)
originate from Cleanroom engineering. Today, communication protocol
engineers tend to complement software engineering with Cleanroom engi-
neering testing approaches, therefore we cover all the above listed activities
in this chapter.

As its name suggests, unit testing is used for testing individual software
units before their integration into the product. Typically, a software unit is a

290 Communication Protocol Engineering

single class written in a separate Java compilation unit or C++ module. This
class most commonly implements a simple communication protocol or part
of a more complex communication protocol. In the case of the FSM Library–
based paradigm, such a unit would be a C++ module that defines the class
derived from the class FiniteStateMachine.

Unit testing of communication protocols is relatively straightforward.
Typically, we construct a set of test cases that check individual FSM state
transitions, as well as more complex FSM transactions (series of FSM state
transitions). We will use JUnit and CppUinit testing frameworks for unit
testing of communication protocols in this book. Details of unit testing are
given in Section 5.1 (Unit Testing) and Section 5.5.1 (Example 1).

The next phase is integration testing. The philosophy of integration test-
ing starts from the fact that some of the units have successfully undergone
unit testing and that they are available for further testing, whereas the rest
of them are not. For the purpose of integration testing, we introduce replace-
ments for the units that are not available, which are referred to as the imita-
tors (or simulators).

There are two kinds of imitators, namely drivers and stubs. A driver is
an active imitator that generates input messages for the real objects (units)
under test. A stub is a passive imitator that accepts the output messages
generated by the objects under test. Stubs can also send replays that are
expected from the objects they are imitating. Of course, we can construct
more complex imitators that act as both drivers and stubs. In this book, we
will call the collaborations of real objects, drivers, and stubs simply integra-
tion test collaborations.

Generally, communication protocols are well suited for integration testing
because families of communication protocols are hierarchically organized in
layers with well-defined interfaces. The communication between individual
protocols is based on messages, which are traditionally exchanged through
the mailboxes (as in implementations based on the FSM Library). Simulating
the environment of a real object under test in such a situation is easy. Drivers
and stubs simply exchange messages with objects under test. Actually, they
act on behalf of the units that will communicate with the units under test in
the final product.

Normally, protocol stacks are implemented in the bottom-up fashion, start-
ing from the lowest layer of the protocol stack and building the next layer on
top of the previous one. Drivers and stubs in such an approach simulate only
a part of the environment, the higher layer of the protocol stack in particular.
An example of simple integration test collaboration is given in Section 5.5.2
(Example 2).

When all software units have undergone unit and integration testing, the
final product is integrated and ready for acceptance testing, which comprises
conformance testing (also referred to as compliance testing), load testing,
and in-field testing. Preliminary acceptance testing can be organized solely
by the production organization and conducted on its premises. However,

291Test and Verification

final acceptance testing is organized and conducted by the organization that
has the legal authority to issue acceptance certificates.

As suggested by its name, the aim of conformance testing is to prove
that the product (implementation) under test conforms to the original
requirements. In the area of communication protocol engineering, these
requirements would normally be standards issued by the IETF, ISO, ITU-
T, ETSI, and similar organizations. The newer standards made by ITU-T
and ETSI most frequently include the conformance test suite specification
in TTCN-3.

Conformance testing is a kind of functional testing (also referred to as
black box testing). The testers are not interested in the structure of the prod-
uct and its internal behavior. They only ensure that the external behavior
of the product meets the original specification. Typically, this behavior is
specified with the set of scenarios described in TTCN-3. We will return to
the subject of conformance testing in Section 5.2.

The load testing typically involves exposing the implementation under
test to the conditions of the real exploitation. Conceptually, this means
that the implementation under test must service the requests coming
from more independent sources simultaneously. While conformance test-
ing focuses on the correctness of services given to the minimal number
of request sources, load testing checks the correctness of services driven
by the requests coming from independent sources, preferably in an inter-
leaved fashion.

Normally, load testing is conducted in a laboratory-simulated environ-
ment. Typically, we would construct, purchase, or lease the specialized
equipment referred to as a load generator. A load generator is normally a
programmable device that offers a selection of predefined scenarios and
their parameters (such as number of request sources, duration of individ-
ual communication phases, and so on) as well as definitions of completely
new scenarios.

The name load generator may be misleading because it suggests that the
device generates only the requests—which it does—but it also receives the
responses from the implementation under test and checks if it operates cor-
rectly. For example, after the connection is successfully established, it sends
and receives test tones to check that the connection is really usable. During
load testing, we primarily check declared traffic capabilities of the product.
A typical requirement would be that the number of lost requests must not
exceed the given limit after the given number of requests has been issued in
accordance with the given request arrival distribution.

We also normally check the behavior of the implementation under test for
both lower and higher rates of request arrivals. With an extremely low rate
of requests, we want to check the sustainability of long-lasting connections,
whereas with an extremely high rate, we want to make sure that the overload
protection mechanisms are in place and that they function correctly. After
successful load testing, the implementation under test is integrated into the

292 Communication Protocol Engineering

target network for in-field testing. In-field testing is essentially the experi-
mental exploitation of the product for the given interval of time (e.g., three
months).

The aim of in-field testing is to detect, locate, and eliminate bugs that are
exposed by the real-world scenario (also referred to as a traffic case) that could
not be simulated in the laboratory. During this last phase of acceptance test-
ing, log files always prove to be extremely useful. Today, the log files can be
collected over the Internet and analyzed remotely. Also, installing software
upgrades can be done by uploading new software patches over the Internet.

Detecting bugs through the analysis of the log files can be augmented by
adding program hooks for certain, really infrequent traffic cases. Defining
state transition preconditions, postconditions, and invariants and checking
them at run-time is also extremely useful for detecting bugs during in-field
testing, and later during normal system exploitation. Although communi-
cation protocol maintenance is an integral part of communication protocol
engineering, it is out of scope of this book (see directions for further reading
in Section 5.6).

Traditional software engineering comprises a number of development
phases, such as requirements, analysis, design, implementation, unit test,
integration, integration test, verification, and maintenance. These phases
can be cascaded in the case of the waterfall process model or revisited in
the case of the spiral-incremental process model. The number of remaining
bugs is the main software quality metric. Another important metric used in
software engineering is test coverage (measured as the percentage of tested
software paths, variable usages, and so on).

Cleanroom engineering, in contrast to traditional software engineering, is
organized as a sequence of the following development activities:

• Formal model development.
• Formal verification of the formal model.
• Handing formal model to the implementation team, which imple-

ments it in a higher-level programming language.
• Operational profile modeling.
• Automatic test suite generation, which is based on the given opera-

tional profile model.
• Statistical usage testing and software reliability estimation: If at least

one test case from the automatically generated test suite fails, the
implementation under test is thrown away and the complete devel-
opment cycle is repeated from the very beginning (starting with the
formal model development).

The complete treatment of formal modeling and verification is out of the
scope of this book (see directions for further reading in Section 5.6). As a
means of introduction to the area of formal methods, formal modeling and

293Test and Verification

verification based on theorem proving and model checking is covered in
Section 5.3, which is divided into Subsections 5.3.1 and 5.3.2. The paradigm
described in the subsection 5.3.1 is based on the application of the theorem
prover named THEO, whereas the paradigm described in the subsection
5.3.2 is based on the model checker PAT.

Operational profile modeling, automatic test suite generation, statistical
usage testing, and software reliability estimation are described in Section 5.4.
The paradigm described in that section is based on the application of the
software tool, which is named generic test case generator (GTCG).

5.1 Unit Testing

The aim of unit testing is to check the correctness of an individual software
unit (Java compilation unit or C/C++ module). A generally accepted belief,
especially among proponents of agile methods such as extreme program-
ming, is that unit testing should be conducted by the programmer who is
implementing the target software unit, because it greatly improves program-
mer’s productivity. In principle, unit tests should be written before, or at least
during, the implementation of the target software unit.

Of course, the programmer must clearly distinguish between the roles of
an implementer and a tester (the author of extreme programming, Kent Beck,
uses the metaphor: “by changing hats” to explain this paradigm). The pro-
grammer, as unit tester, concentrates on the unit interface. By thinking about
the interface and by writing unit tests, the programmer gets a clearer picture
about the services that the target software unit must provide. The program-
mer should also try to make test cases that cover boundary conditions, as
well as situations that would be potentially hard to manage for the target
software unit.

The programmer, as the unit implementer, concentrates on the implemen-
tation of the original unit design. They should forget about unit tests and
concentrate on mapping the design to code. This should be a straightforward
task if a proper framework (such as the FSM Library) is provided.

Unit testing helps programmers produce software units of better qual-
ity in shorter time intervals and this has been proven in practice. First, by
creating unit tests, the programmer becomes even more familiar with the
implementation at hand. Second, the programmer gets immediate feedback.
If there is a bug, it is easy to detect in the scope of a particular test case. If the
test case passes, the programmer gets immediate satisfaction that they have
done their job well.

Unit test cases should be executed frequently during the target unit’s
implementation. As time passes, new test cases are added and old cases are
run again. Even if no new test cases are used, we should rerun all existing

294 Communication Protocol Engineering

unit tests every time we add new functionality. Testing that is conducted by
running an unchanged test suite to check if the new software functionality
has not affected existing functionalities is referred to as regression testing.

Regression testing is the key point of this paradigm. It enables a dramatic
increase of productivity because it builds the programmer’s confidence that
everything is in good order and under control; therefore, the programmer can
work more relaxed. Regression testing also encourages experimenting. In sit-
uations when alternative paths may be used in the course of implementation,
the programmer may try out a way that seems most appropriate. If one or
more test cases fail in the regression testing that is subsequently conducted,
the programmer may decide to reset to the starting point by retrieving the
previous version from the installed version of the control system database.

Unit testing (including regression testing) definitively has a positive
impact on a programmer’s psychology. It is estimated to be the key factor for
increases in the programmer’s productivity. The next question is “to what
extent should we go with the unit testing?” The answer is not easy. Certainly,
any amount of unit testing is better than none. Alternately, an attempt at
exhaustive unit testing might be counterproductive.

The right choice is somewhere between these two extremes. We do not
need to test trivial things, such as class function members that set or get the
value of a certain private field member. Rather, we should concentrate on
the boundary conditions and parts of code where it becomes more complex.
Although generally unpopular among professionals, copy–paste practice
may be tolerated for generating a set of similar test cases.

Three principal preconditions exist for a successful unit testing practice:

• A proper unit testing framework must be provided.
• Test cases should not involve any human intervention.
• The implementation under test must not be changed.

A proper unit testing framework must provide three main functions:

• Test case registration: This function enables registering new test
cases within the given test suite hierarchy. On each level of the hier-
archy, a set of individual test cases may be found, as well as other
hierarchically subordinated test suites (very similar to the file sys-
tem structure).

• Test case execution: This function provides automatic execution of
all test cases defined within the given test suite hierarchy. It must not
require more than a single push button to be started. Otherwise, the
framework is simply not usable.

• Test case reporting: This function must provide a general report on
the outcome of the execution of all test cases, as well as individual
reports for all test cases that failed or caused errors.

295Test and Verification

The second precondition is that test suite execution should not involve any
human intervention. This is the essential precondition to make unit testing
completely automatic. If we want to eliminate human intervention, we must
secure two conditions: First, the input data required by a test case must be
defined as symbolic constants in its source code or in other external files.
Second, the results of the test case must be automatically checked by a test
case itself. The unit testing framework must provide adequate functions for
this purpose.

A typical function for checking test case results is the function
assert(condition), where condition is a Boolean expression that evaluates to
either the value true or false. The test case continues (pass) in the former case
and breaks (fail) in the latter case. If the test case execution successfully
reaches the end of the test case, it is considered successful (qualified with
the verdict pass). Otherwise, it is considered unsuccessful (qualified with the
verdict fail). If the test case execution breaks because of some error (most
typically, an exception such as “divide by zero”), it is qualified with the ver-
dict error.

Another typical function for checking test case results is the function
assertEquals(p1,p2). This function call is semantically equivalent to the func-
tion call assert(p1==p2). This means that if the parameters p1 and p2 are equal
(of course, they must be comparable), the test case execution continues; oth-
erwise, it breaks. Typically, one of the parameters is a constant and another
is a program variable.

Although these two functions are semantically equivalent, the function
assertEquals() is advantageous when it comes to test case reporting. If the
function assert() breaks the test case execution, the unit testing framework
reports only that the condition evaluated to the value false, which is not a
very informative report. Alternately, if the function assertEquals() breaks, the
framework provides the report “expected C but was V,” where C is the value
of the constant (e.g., p1) and V is the real value of the variable (e.g., p2).

We can further improve the readability of the test case execution reports
by using the optional text string parameter of the function assertEquals().
Generally, the function call format for this function is assertEquals(text, condi-
tion), where text is the text string that explains the meaning of this assertion
point in more detail. The string text is used as a prefix of the test report
shown above. For example, if the value of the variable ch should be ‘A’ but it
turns out to be ‘B’ instead, the function call assertEquals(“Check ch:,” ‘A’, ch)
would produce the report, “Check ch: expected ‘A’ but was ‘B.’”

Besides the functions assert() and assertEquals(), unit testing framework
typically provides two additional functions for writing test cases: setUp() and
tearDown(). The former sets up the test fixture whereas the latter destroys it.
A test fixture is a set of objects that act as samples for testing. Normally, the
test fixture comprises the instance of the unit under test (e.g., the instance
of the class that is derived from the class FiniteStateMachine) and also other
supplementary objects, which are required for effective unit testing.

296 Communication Protocol Engineering

Typically, the unit testing framework offers the base class for writing test
cases, which provides the functions assert(), assertEquals(), setUp(), and tear-
Down(). The programmer normally derives his tester class from this base
class, fills in setUp() and tearDown() functions, and starts writing individual
test cases. Each function member of the tester class—whose name follows
the given naming convention—is a single test case.

Remember that concrete setUp() and tearDown() implementations are
shared by all test cases defined within a single tester class. Actually, these
two functions are implemented as null (empty) methods on test cases. The
execution of each test case starts with the call to the function setUp(), pro-
ceeds with a call to the user-defined function that implements a single test
case, and ends with the call to the function tearDown(). Normally, we put the
test case initialization and cleanup code in the functions setUp() and tear-
Down(), respectively.

The third unit testing postulate is that the unit under test must not be
touched at all. We are only allowed to write new classes that are derived from
the base class, which is provided by the unit testing framework. Changing
the source code of the unit under test for the purpose of its testing is strictly
forbidden, even by adding a simple print statement to the standard output
file. Because of that, the only proper way to do the unit testing is to drive the
unit under test with various messages, capture its responses, and check the
correctness of the unit’s external behavior.

This kind of controlled execution of the implementation under test is
referred to as the test harness. The key request is that it must be fully auto-
matic. The programmer should provide the mechanisms that support the
test harness while he plays the role of the implementer (what we refer to as
the design for testability). Otherwise, providing a test harness can be a very
hard task. For example, consider a simple program that reads its input from
the keyboard and writes its output to the monitor by using the operating
system services, which cannot be replaced. Because we are not allowed to
change the source code of the implementation under test, providing a test
harness in this case is hardly achievable.

An example of the unit testing framework is JUnit, an open-source test-
ing framework for unit testing Java programs that was originally developed
by Erich Gamma and Kent Beck. Based on this framework, the open-source
community came up with CppUnit, a semantically equivalent testing frame-
work for unit testing C++ modules. These frameworks are very simple but
powerful enough to enable industrial-strength unit testing of individual
software units. Because JUnit and CppUnit are semantically equivalent, we
will treat them as two implementations of the same framework.

The framework comprises the interface Test and two fundamental classes,
the classes TestSuite and TestCase, as in Figure 5.1. As shown in the figure, the
test suite (an instance of the class TestSuite) can contain an arbitrary number
of test cases (instances of the class TestCase), as well as an arbitrary number
of other hierarchically subordinated test suites. This arrangement allows

297Test and Verification

programmers (playing the role of unit testers) to organize test cases into a
hierarchy of test suites to their convenience.

Any concrete tester class (such as the class MyTester in Figure 5.1) must be
derived from the base class TestCase, which, among others, provides the four
fundamental functions described above, namely, setUp(), tearDown(), assert(),
and assertEquals(). By convention, an individual test case is written as the
function member of the tester class, whose name starts with the word “test,”
for example, test1, test2, and so on.

Next, we illustrate JUnit’s usability on a concrete example. In the example
that follows, we demonstrate the unit testing paradigm for the case where
the implementation under test is counter by modulo 2. The particular imple-
mentation we are interested in is the one based on the State design pattern.
This implementation was presented in Section 4.3.

As already mentioned in Section 4.3, the function processMsg(), which pro-
cesses FSM input (message), prints its results by calling the function member
println() of the class MyIO, rather than by calling the standard I/O function
System.out.println(). This is a good example of how we can provide support
for the test harness in our design and implementation. Here is the source
code of the class MyIO:

package automata4;
import java.util.*;

public class MyIO {
private static String lastOutput;

* «interface»
Test

TestSuite TestCase

MyTester

1

FIGURE 5.1
Structure of the JUnit testing framework.

298 Communication Protocol Engineering

 public static String getLastOutput() { return lastOutput; }
 public static void println(String s) {
 lastOutput = s;
 System.out.println(s);
 }
}

The field member lastOutput is used to store the last output generated by
the FSM. The function getLastOutput() returns this last output generated by
the FSM to its caller. It is used by the test case function to retrieve the last FSM
output to compare it with the expected output (also referred to as the “golden
output”). The function println() is simple enough—it just stores the output
of the FSM and prints it by calling the standard function System.out.println().

Although we do not need it in this example, we can generally use an analo-
gous approach for capturing the FSM inputs also. Instead of calling the stan-
dard function System.in.read() directly, we can construct and call the function
member read() of the class MyIO. This function would, in its own turn, read
the input by calling the standard input functions and store that input into
the corresponding field member of the class MyIO (e.g., lastInput). The last
FSM input would be available through the function member getLastInput().

After providing test harness support, we continue with the definition of
the tester class, which is named Automata4Tester in this example. The source
code of this class is as follows:

/*
* Automata4 tester
*
*/

package automata4;
import junit.framework.*;

public class Automata4Tester extends TestCase {
 protected Automata4 a4;
 public Automata4Tester(String name) {
 super(name);
 }

 protected void setUp() {
 // setup code
 a4 = new Automata4();
 }

 protected void tearDown() {
 // cleanup code
 }

 // test case 1
 public void test1() {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 a4.processMsg('0');
 assertTrue(MyIO.getLastOutput() == "Output 0");
 }

299Test and Verification

 // test case 2
 public void test2() {
 for(int i=0;i<100;i++) {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }
 }

 // test case 3
 public void test3() {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }
 // test case 4
 public void test4() {
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }

 // test case 5
 public void test5() {
 for(int i=0;i<1000;i++) {
 test3();
 test4();
 }
 }
 public static TestSuite suite() {
 return new TestSuite(Automata4Tester.class);
 }

 public static void main(String[] args) {
 junit.textui.TestRunner.run(suite());
 }
}

The tester class Automata4Tester is derived from the class TestCase. Its field
member a4 is an instance of the implementation under test, namely, the class
Automata4. The constructor of the class Automata4 simply calls the construc-
tor of its super class (the class TestCase) and passes its input parameter (String
name).

The function setUp() creates an instance of implementation under test
by instantiating the class Automata4, and storing its instance into the field
member a4. The function tearDown() is empty in this example because the
Java garbage collector takes care of unused objects. The garbage collector

300 Communication Protocol Engineering

destroys the object that is stored in the field member a4 at the end of the test
case.

The function test1() is the first test case defined within the tester class
Automata4Tester. Basically, it tests the FSM state transition from the state S0 to
the state S0, which is driven by the input value 0. It does the same operation
twice. It supplies input 0 to the implementation under test (stored in the field
member a4) each time by calling its function processMsg() and passing it the
parameter, ‘0’.

Assuming that the implementation under test was in its initial state and
that it reacted correctly to the given input, its last output should be the text,
“Output 0”. The test case function test1() checks that assumption by calling
the function assertEquals(). The first real parameter of that function call is the
value of the last output, which is returned by the function member getLast
Output() of the class MyIO, whereas the second parameter is the expected
string, “Output 0”.

Second, the test case function test1() again supplies input 0 to the imple-
mentation under test (stored in the field member a4) by calling its function
processMsg() and passing the parameter ‘0’ to it. Assuming that the imple-
mentation under test has reacted properly in the first place, it would be
in the initial state at the time the second call to the function processMsg()
happens. Driven with the input ‘0’, it should again produce the output
string “Output 0”. The test case function test1() checks this assumption
again, only this time it does so by calling the function assert(). The real
parameter of this function call is the condition MyIO.getLastOutput() ==
“Output 0”.

The function test2() is the second test case defined within the tester class
Automata4Tester. This test case is slightly more complex than the previous
one. The previous test case checks if the implementation under test reacts
correctly when it is driven twice with the same input value ‘0’ in the same
current state (S0). We did this on purpose—first, to demonstrate the usage
of both assert() and assertEquals(), and second, the implementation under test
may not always react correctly if it is driven with a certain input value in the
given state, at least not in theory.

This practice may seem paranoid but, in reality, various types of time- and
FSM evolution-dependent bugs are hidden at the beginning and become evi-
dent only later during the FSM evolution. Returning to the problem at hand,
we ask ourselves: Will this FSM react correctly many times, for example, 100
times? With JUnit at our disposal, we can easily construct a test case that
resolves such dilemmas.

This is exactly what the test case function test2() does. It does so by execut-
ing the body of the for loop 100 times. Inside the body of the loop, it drives
the implementation under test with input value ‘0’ by calling its function pro-
cessMsg(). After each of these calls, it checks if the last output was the string
“Output 0” by calling the function assertEquals().

301Test and Verification

The function test3() is the third test case defined within the tester class
Automata4Tester. This is a typical FSM-related test case, characterized with
complete coverage of the FSM state transition graph. The flow of the state
transitions checked by this test case is the following:

• From S0 to S0, driven with the input 0 (expected output 0)
• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S1, driven with the input 0 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S2, driven with the input 0 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test4() is the fourth test case defined within the tester class
Automata4Tester. This is another typical FSM-related test case, characterized
by its progressive nature. The counter is always driven with the input “1” so
that its content is incremented every time. This test case does not provide the
full state transition graph coverage, but it is valid, and we can think of many
partial graph coverage test cases. The flow of the state transitions checked by
this test case is as follows:

• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test5() is the fifth, and the last, test case defined within the
tester class Automata4Tester. It is a fairly simple, yet rather intensive, test case
that is based on the combination of the previous two test cases. The test case
function test5() repeats the body of the for loop 1,000 times. Inside the body of
the loop, it just calls the functions test3() and test4() in succession.

The function suite() returns the test suite, which it creates by calling the
constructor of the class TestSuite. The real parameter of this function call is
the name of the implementation under test class file (Automata4Tester.class).
The constructor of the class TestSuite finds all the functions whose names
start with the word “test” defined within the class Automata4Tester and auto-
matically adds them to the test suite it creates.

The function main() runs the test suite defined by the previous function
suite(). It does that by calling the function run() of the class TestRunner, which
is an integral part of the JUnit testing framework. The real parameter of this
function call is the test suite that is created by the function suite(). This test
suite contains all test cases defined within the class Automata4Tester.

In the case of more complex implementations, we may decide to create
more tester classes rather than define all test cases within a single tester

302 Communication Protocol Engineering

class, such as the class Automata4Tester. In such a situation, we would need
to create a hierarchy of test suites and an overall tester class that would auto-
matically run all test cases in all test suites. The source code of such a tester
class is the following:

/*
* Tester
*
*/

package automata4;
import junit.framework.*;

/*
* TestSuite that runs all test suites
*
*/

public class AllTests {
 public static void main (String[] args) {
 junit.textui.TestRunner.run(suite());
 }
 public static TestSuite suite() {
 TestSuite suite = new TestSuite("All Tests");
 suite.addTest(Automata4Tester.suite());
 // add other test suites here
 return suite;
 }
}

The class AllTests comprises two function members, namely, the functions
suite() and main(). The former function creates and returns the test suite that
is in the root of the test suite hierarchy. This means that it contains all other
hierarchically subordinated test suites. The latter function executes the root
test suite, i.e., it executes all test suites that were added to it.

The function suite() creates the root test suite simply by calling the construc-
tor of the class TestSuite. The real parameter of this function call is the name of
that test suite (the string “All Tests”). It then adds the test suite that contains
the test cases defined within the tester class Automata4Tester to the root test
suite. It does this by calling the function member addTests() of the root test
suite object suite. Generally, in the case when we have multiple tester classes,
we would repeat the call to the function addTests() for each tester class.

The function main() runs the test suite defined by the previous func-
tion suite(). It does this by calling the function member run() of the class
TestRunner. The real parameter of this function call is the test suite created
by the function member suite() of the class AllTests. This test suite contains a
single, hierarchically subordinated test suite, which in turn contains all test
cases defined within the class Automata4Tester.

We start the automatic execution of all test cases defined within the class
Automata4Tester by running the file Automata4Tester.class. Similarly, we start
the automatic execution of all test cases defined within all tester classes (in
this simple example, we have just one of them: the class Automata4Tester) by

303Test and Verification

running the file AllTests.class. In both cases, we should get the same result.
Each test case function will print its own outputs to the standard output file.
At the end, the test runner will print out the final report, which should look
like this:

Time: 1,783
OK (5 tests)
Press any key to continue...

The number 1783 corresponds to the number of seconds that were needed
to execute all test cases, whereas the number 5 in parenthesis corresponds to
the total number of test cases that were executed.

5.2 Conformance Testing

As already mentioned at the beginning of this chapter, conformance testing
is the first step of acceptance testing (followed by load testing and in-field
testing). The aim of conformance testing is to check the functional correct-
ness of external behavior of the implementation under test without checking
its inner workings. Essentially, conformance testing is functional testing that
is based on the “black box” approach.

The main goal of conformance testing is to separately check the correct-
ness of each individual function of the implementation under test (IUT). The
sample test case for a simple SIP softphone (IUT) is: “Initiate session setup.
Check if IUT sends the message INVITE to the outbound proxy server (imi-
tated by the testing framework). Make the testing framework replay with
the message 404 (not found). Check if IUT replays with the message ACK”
(see sequence diagram in Figure 5.2). We are intentionally making test cases

iut : SoftPhone tester : TestingFramework

Invite

404

ACK

FIGURE 5.2
Example of the conformance testing test case.

304 Communication Protocol Engineering

as simple as possible so we can easily interpret their outcomes. Of course,
some of the test cases are inevitably complex and we cannot do anything
about this, but we should never make them more complex than they need
to be.

More precisely, we do not try to check more functions simultaneously
by interleaving the corresponding scenarios. For example, consider the SIP
proxy server as the implementation under test. In the case of conformance
testing, we are only interested if it can support a single session establishment
at a time. Normally, we would not be interested in checking if it can support
multiple session establishments simultaneously. Actually, that is exactly the
purpose of load testing.

When it comes to specifying official conformance test suites for real-world
protocols (like SIP), this is a really serious business conducted by the inter-
national standardization institutions, such as IEEE, ISO, IETF, ITU-T, ETSI,
and others. The results are rather voluminous specifications that most fre-
quently use TTCN language. The most recent version of TTCN at the time of
this writing is the TTCN-3 (see Section 3.9), which enables both tabular and
program formats of specifications.

For a better understanding of the scope of conformance testing, consider
the documents currently available from ETSI (you can download them from
the Internet; see http://www.etsi.org) that are related to conformance testing
of SIP (IETF RFC 3261). These documents are the following:

• Conformance test specification for SIP, Part 1: Protocol implementa-
tion conformance statement proforma (ETSI TS 102 027-1)

• Conformance test specification for SIP, Part 2: Test suite structure
and test purposes (ETSI TS 102 027-2)

• Conformance test specification for SIP, Part 3: Abstract test suite
and partial protocol implementation of extra information for testing
(ETSI TS 102 027-3)

The first document is the proforma to be completed by the vendor of the
implementation to claim implementation capabilities. The guidance for com-
pleting the proforma is given in Section 5. This document is used both dur-
ing static conformance review and during the test suite parameterization
phase of conformance testing.

The second document describes the test suite structure and the purposes
of individual test cases. This document was used as the test plan before the
test suite was written in the TTCN-3 language. Now it is used as the refer-
ence document for understanding the abstract test suite, which is given in
the third document.

The third document specifies the abstract test suite to be used for SIP con-
formance testing. Actually, it is composed of two files, the archive (ZIP file)
that contains SIP test suite in TTCN-3 program format, and the SIP test suite

http://www.etsi.org

305Test and Verification

overview file (PDF file). The SIP test suite in TTCN-3 program format can be
executed using a commercially available TTCN-3 tool.

The SIP conformance test suite specification by ETSI (the three documents
listed above) considers four types of implementations under test. The imple-
mentations are as follows (see IETF RFC 3261 for their definitions):

• User agent that behaves as client or server
• Registrar
• Proxy server (both outbound and simple proxy server)
• Redirect server

The present version of the specification considers the following three types
of sessions:

• Sessions that are established using a proxy server
• Sessions that are established directly (without proxy)
• Sessions that are established using the redirect server

The way the SIP conformance test suite is structured is a good example
of typical conformance test suite structuring. All test cases are classified
into the following four main groups (which correspond to the main SIP
functionalities):

• Registration
• Call control
• Querying for capabilities
• Messaging

The test cases in the main groups are further classified according to the
role that should be checked. The roles for the main group registration are
the registrant and the registrar. The roles for the main group call control are
originating endpoint, terminating endpoint, proxy, and redirect server. The roles
for the main group querying for capabilities are originating endpoint, terminat-
ing endpoint, and proxy. The roles for the main group messaging are registrant,
registrar, originating endpoint, terminating endpoint, proxy, and redirect server.

Some of the role subgroups are further divided into functional subgroups.
For example, the role subgroup originating endpoint of the main group call
control is divided into three functional subgroups, namely, call establishment,
call release, and session modification. Finally, functional subgroups of test cases
can be divided into three test groups: valid behavior (V), invalid behavior (I),
and inopportune behavior (O).

Notice that official conformance testing can be conducted only by autho-
rized organizations (national certification centers, telecom operators, and so

306 Communication Protocol Engineering

on) that use special tools that themselves were certified for such usage. These
tools are professional equipment, most frequently referred to as testers, e.g.,
a SIP tester. A tester typically comprises the framework that supports test
suite administration, execution (most frequently based on interpretation),
and associated reporting. Such a framework is referred to as the testing
framework.

The testers may be rather sophisticated. Most of them support most of— if
not all—the state-of-the-art protocols. Alternately, almost unique testers are
also used that support ultramodern protocols that have not become part of
the mainstream protocols. Both of these types of testers can be rather expen-
sive. Most frequently, competent and efficient operating of protocol testers
requires special training.

Because of that, most of the small- and even middle-scale organizations
involved in protocol development cannot afford purchasing testers and
employing full-time employees (confusingly enough, also called testers) for
the purpose of conformance testing. Rather, they rent the equipment or the
person who can operate it for the purpose of the unofficial and preliminary
conformance testing at the client location. The goals of this preliminary con-
formance testing are to reduce the overall cost and to minimize the risk of
failing the official conformance testing.

Some organizations use open source test suites to reduce the cost of the
preliminary conformance testing. An example of such a test suite is the SIP
Forum Basic UA Test Suite created by Nils Ohlmeier, freely available on the
Internet at https://github.com/nils-ohlmeier/sipsak (in accordance with the
GPL license). This test suite is comprised of the following two parts:

• SIP Forum Testing Framework (SFTF)
• Basic UA tests

SFTF provides regular functions of test suite administration (e.g., adding
new test cases, simply referred to as “the tests”), test suite execution control
(executing all tests, selected groups of tests, or individual tests), and test suite
execution reporting (both by printouts in the interactive window and in the
log files, with five possible levels of logging details). The testing framework
contains the logic required to execute the test, parse incoming messages, and
create replies.

The second part (listed above) is simply a subdirectory that contains all
basic user agent tests (i.e., test cases). The tests and SFTF itself are written in
Python. The goal of these tests is not to provide complete conformance test-
ing of SIP implementations, as the ETSI specification does. Rather, the goal
is to check the well-known SIP interoperability problems, which frequently
occur in immature SIP User Agent (UA) implementations, such as the simple
SIP softphone.

Additionally, these tests can discover the implementation under test
behavior that conforms to the original SIP specification but is considered

https://github.com

307Test and Verification

a suboptimal implementation solution. Such cases are reported as warnings
(W). The developer should consider revising the implementation in the case
of warnings to make it more robust.

Many tests in this test suite are adopted from the IETF’s SIP torture tests
Internet draft (available on the Internet under the name draft-ietf-sipping-
torture-tests-02). The rest of the tests are the contributions from the SIP Forum
members. Original IETF SIP torture tests focus on areas that have caused
problems in the past or have particularly unfavorable characteristics if han-
dled improperly. Some of them test only the parser and others test both the
parser and the application above it. Some use valid and some use invalid SIP
messages to check target functionality.

The SIP Forum tests are classified into the following eight test groups: pro-
tocol tortures (26 tests), authentication (4 tests), registration (1 test), dialog
and transaction processing (19 tests), DNS (2 tests), NAT capabilities (2 tests),
services (2 tests), and warnings about obsolete features (5 tests). All tests
are defined in one spreadsheet (XLS file). The test attributes (spreadsheet
columns) are the following: number, title, tested device, expected behavior,
typical failures, notes, call flow, source (the corresponding section in RFC
3261), and comment.

For example, the test number 201 entitled “A Short Tortuous Request” tests
the SIP user agent server behavior. The expected behavior is, “Server con-
siders the request valid and generates a proper response”. The call flow is
illustrated with the sequence diagram shown in Figure 5.3.

c : UAC s : UAS

Invite

180 (Ringing)

Cancel

200 (OK)

487 (Request terminated)

ACK

FIGURE 5.3
Example of the SIP protocol torture test.

308 Communication Protocol Engineering

5.3 Formal Verification

5.3.1 Formal Verification Based on Theorem Proving

This section covers the formal verification of communication protocols based on
automated theorem proving. The reader will learn how to use automated theo-
rem proving for formal verification of both communication protocol specifica-
tion and its implementation. Normally, the communication protocol is modeled
as the finite state machine. Basic knowledge of predicate calculus (first-order
logic) is assumed for easy and complete understanding of this section.

The outline of this section is the following:

• Axiomatic specification of finite state machines
• Theoretic specification of test cases
• Formal verification of the specification
• Directions for generating test cases
• Formal verification of the implementation
• Software development process based on the formal verification
• A realistic example

The axiomatic specification of the finite state machine is the model of
the FSM in the predicate calculus. This model is the set of well-formulated
formulas. The first well-formulated formula in the model is optional and it
defines the initial state of the FSM. Its general format is the following:

State(INITIAL).

State is a predicate and INITIAL is the name (label) of the FSM initial state.
The names State and INITIAL are non-interpretative user-defined names
(like names of the user-defined functions and constants in the higher-level
programming languages). For brevity, in this section we use the name S
instead of State and we label finite state machine states with numbers (0, 1,
2…) rather than with symbolic names.

The fact that this first well-formulated formula is optional requires a short
comment. In most of the formal FSM descriptions, such as UML activity dia-
grams and statecharts, the specification of the FSM initial state is mandatory.
Here, it is not. If we always want to examine the FSM evolution, beginning
from the same state, we will define it as the FSM initial state in the FSM axiom-
atic specification. Alternately, sometimes it is possible and preferable to exam-
ine the FSM evolution beginning from different FSM states. In that case, we
do not define the FSM initial state in the FSM axiomatic specification; instead
we define it on the left-hand side of the concluding well-formulated formula.

The rest of the well-formulated formulas in the FSM axiomatic specifica-
tion are obligatory. Each of the mandatory well-formulated formulas models

309Test and Verification

a single FSM state transition (also referred to as a FSM branch). The format of
the well-formulated formula that models the time invariant FSM state transi-
tion from the state X to the state Y triggered with the input T and generating
the output R is as follows:

 {State(X)&Input(T)} => {State(Y)&Output(R)}

State, Input, and Output are predicates. X, Y, T, and R are constants that label
the source FSM state, the destination FSM state, the particular FSM input,
and the particular FSM output, respectively. Most frequently, we use abbre-
viated names I and S instead of Input and Output, respectively. In the case
that the state transition generates more, say N, output signals (messages), the
corresponding well-formulated formula has the following format:

 {State(X)&Input(T)} => {State(Y)&Output(R_1)&
 Output(R_2)&…&Output(R_N)}

where R_1, R_2…R_N are the labels of particular output signals.
Next, we introduce the concept of control predicates. As their name suggests,

the control predicates are used to control the FSM activity. A global control
predicate is used to enable or disable the complete FSM activity. Usually we
name it A(N_I), where A stands for Automata and N_I labels the particular FSM.

Besides the global control predicate, state transition control predicates
also exist, one for each FSM state transition. A state transition control predi-
cate enables or disables the associated state transition. We typically name it
T(M_I), where T stands for Transition and M_I labels the particular FSM state
transition. The state transition well-formulated formula that includes control
predicates has the following format:

 {Automata(I)&Transition(J)&State(X)&Input(T)} => {State(Y)&Output(R)}

I is the label of the particular FSM and J is the label of the particular state
transition modeled with this formula. If we include both Automata(I) and
Transition(J), the state transition is enabled. If we skip Automata(I), the FSM
(i.e., all its state transitions) are disabled. If we skip Transition(J), this indi-
vidual state transition is disabled. This concludes the presentation of the axi-
omatic specification of a single FSM.

A theoretical test case for a single FSM is the theorem about the particular
FSM evolution path, which states that for a given series of inputs (I1, I2…In),
FSM performs a series of state transitions (S1, S2…Sn), which will produce
a series of particular output values (O1, O2…On). The corresponding well-
formulated formula has the following format:

 {Automata(N)&Transition(M)&Input(I1)&…&Input(In)} =>
 {Output(O1)&...&Output(On)&State(S1)&…&State(Sn)}

310 Communication Protocol Engineering

Most frequently, we only want to check that FSM produces the expected
series of outputs and that at the end it reaches the expected final state Sn. The
corresponding theorem has a very similar, but simpler format:

 {Automata(N)&Transition(M)&Input(I1)&…&Input(In)} =>
 {Output(O1)&...&Output(On)&State(Sn)}

Before proceeding to modeling the groups of communicating FSMs, let us
look at a simple example. The following shows the axiomatic specification
of the counter by modulo 2 (see the statechart diagram in Figure 5.4) and a
sample theorem about its expected behavior. The FSM axiomatic specifica-
tion is as follows:

S(0)
{A(0)&T(0)&S(0)&I(0)} => {S(0)&O(0)}
{A(0)&T(1)&S(0)&I(1)} => {S(1)&O(1)}
{A(0)&T(2)&S(1)&I(0)} => {S(1)&O(1)}
{A(0)&T(3)&S(1)&I(1)} => {S(2)&O(2)}
{A(0)&T(4)&S(2)&I(0)} => {S(2)&O(2)}
{A(0)&T(5)&S(2)&I(1)} => {S(0)&O(0)}

S(0)

S(1)

I(1)/O(1)

I(1)/O(2)

Counter by
modulo 2

S(2)

I(1)/O(0)

I(0)/O(0)

I(0)/O(1)

I(0)/O(2)

FIGURE 5.4
Counter by modulo two statechart.

311Test and Verification

The first well-formulated formula defines the state S(0) as the FSM initial
state. Next, six well-formulated formulas define six FSM state transitions—
from the state S(0) to S(0), from S(0) to S(1), from S(1) to S(1), from S(1) to S(2),
from S(2) to S(2), and from S(2) to S(0), respectively. A(0) is the global control
predicate. T(0), T(1)…T(5) are the individual state transition control predi-
cates. The sample theorem is as follows:

{A(0)&T(0)&I(0)&T(1)&I(1)} => {O(0)&O(1)&S(1)}

It may be interpreted as follows: The FSM is globally enabled by including
the general control predicate A(0) on the left-hand side of the concluding
well-defined formula. The first FSM state transition is enabled by including
the state transition predicate T(0). The FSM is stimulated with the input I(0),
which should result in the output O(0). The second FSM state transition is
enabled by including the state transition control predicate T(1). The FSM is
stimulated with the input I(1), and the FSM should generate O(1) at its out-
put. Finally, the FSM should reach the state S(1).

We can prove this theorem with the automated theorem prover THEO
developed by Monty Newborn (2001). To do that, we must write the theorem
in a text file, compile it using the program Compile (cc.exe), and prove it by
running the program THEO (teo.exe). The final result looks like this:

Predicates: S A T I O
Functions: 0 1 . 2 3 4 5 :
EQ:
ESAF:
ESAP:
 0 <BC: 19 NC: 6 AC: 3 U: 0>
 1 {T0 N1 R1 F0 C9 H0 h0 U11} *
.Proof Found!

Of course, realistic FSMs never operate in isolation. Rather, they normally
operate in groups of cooperating finite state machines. For example, accord-
ing to ITU-T, the system consists of functional blocks interconnected with
communication channels (see Section 3.7, SDL). Each functional block com-
prises finite state machines (processes) interconnected with signaling paths
(routes). A communication channel may comprise one or more signaling
paths. Finite state machines communicate by exchanging signals (events,
messages) over signaling paths.

We can use such a kind of traditional system decomposition for our conve-
nience, but it is not required. In the opposite extreme, we can have a chaotic
system in which each FSM talks to all other FSMs (like stations in wireless
networks). We can even connect more FSMs in signaling networks with all
kinds of topologies, such as start, bus, or a network that connects an arbi-
trary number of FSMs. The means to model all these abstractions in the first-
order logic are predicates and their compositions.

To start, we can introduce the notation Signal(SIG_N) that represents
the act of signaling the particular signal, where Signal is a predicate and

312 Communication Protocol Engineering

SIG_N is the label of a particular signal. We then can introduce the nota-
tion SignalOverPath(SIG_N,PATH_M) that represents the act of signaling
the particular signal over the particular signaling path, and so on. The well-
formulated formulas that model state transitions do not change much. For
example, the state transition from the state X to the state Y is triggered with
the signal P and generates the signal Q, and looks like this:

 {State(X)&Signal(P)} => {State(Y)&Signal(Q)}

In the formula above, Signal(P) is received and Signal(Q) is sent out of any
signaling path, channel, or network. In the case where the former signal is
transferred over path M and the latter signal is sent over the path N, the for-
mula would look like this:

 {State(X)&SignalOverPath(P,M)} => {State(Y)&SignalOverPath(Q,N)}

After introducing the concept of signaling between finite state machines in
a group of cooperating FSMs, we can proceed to the axiomatic specification
of the group of FSMs. As shown above, each FSM in a group is specified with
a set of well-formulated formulas (one optional for the initial state and one
mandatory for each individual state transition). Consequently, the specifica-
tion of a group of FSMs is the union of sets of well-formulated formulas for
individual FSMs that constitute that group.

The theoretical test case for the group of FSMs is just a generalization of
the theoretical test case for the individual FSM. The left-hand side of the
corresponding well-formulated formula consists of control predicates, if
any, and staring signals whereas the right-hand side of the formula lists the
resulting signals and final states of individual FSMs. The format of the typi-
cal theorem about the evolution of the group of FSMs is as follows (assume
the system with two FSMs):

 {Signal(A)} => {Signal(B)&Signal(C)&Signal(D)&State(X)&State(Y)}

In the sample theorem above, Signal(A) triggers the evolution of the system.
As the result of the evolution, the system generates three signals: Signal(B),
Signal(C), and Signal(D). At the end of the evolution, the FSMs reach their
final states, namely, State(X) and State(Y).

We now illustrate the concepts introduced above by the means of a simple
example. Consider a simple system with three FSMs (see their statechart dia-
grams in Figure 5.5). The first FSM waits for the signal E(0) in its state S(0).
After receiving that signal, it sends the signal E(10) and goes to the state S(1),
where it waits for the signal E(1). Once it receives the signal E(1), it sends the
signal E(20) and goes to the state S(2). The second and the third FSMs are
very much alike. The former waits for the signal E(10) and, after receiving
that signal, it sends the signal E(11). The latter waits for E(20) and sends E(21).

313Test and Verification

S(
0)

S(
1)

S(
10

)
S(

20
)

E(
20

)/
E(

21
)

E(
10

)/
E(

11
)

E(
0)

/E
(1

0)

E(
1)

/E
(2

0)

Fi
rs

t
FS

M
Se

co
nd

FS
M

�
ird

FS
M

S(
2)

S(
11

)
S(

21
)

FI
G

U
R

E
5.

5
St

at
ec

ha
rt

s
of

 th
re

e
co

m
m

u
n

ic
at

in
g

FS
M

s.

314 Communication Protocol Engineering

Next, we construct the theorem about the expected behavior of this simple
system. This theorem says that if we supply signals E(0) and E(1) to this sys-
tem, the first FSM will start evolving and will generate the signals E(10) and
E(20). These two signals will trigger the second and the third FSMs, which
will, in turn, generate signals E(11) and E(21), respectively. Finally, these
FSMs will reach final states S(2), S(11), and S(21), respectively.

The axiomatic specification of this simple system and the theorem
explained above are specified in the following sequence of well-formulated
formulas:

; Simple system with 3 FSMs
; Axiomatic spec. of the first FSM
S(0).
{S(0)&E(0)} => {S(1)&E(10)}.
{S(1)&E(1)} => {S(2)&E(20)}.

; Axiomatic spec. of the second FSM
S(10).
{S(10)&E(10)} => {S(11)&E(11)}.

; Axiomatic spec. of the third FSM
S(20).
{S(20)&E(20)} => {S(21)&E(21)}.

; Theorem
conclusion
{E(0)&E(1)} => {S(2)&S(11)&S(21)&E(10)&E(20)&E(11)&E(21)}.

To automatically prove this theorem, we run Compile and THEO once again.
The final result looks like this:

Predicates: S E
Functions: 0 1 10 2 20 11 21 : .
EQ:
ESAF:
ESAP:
 0 <BC: 14 NC: 3 AC: 3 U: 0>
 1 {T0 N1 R1 F0 C1 H0 h0 U14} *
.Proof Found!

Next, we introduce the concept of a theoretical log file. As already men-
tioned, a theoretical test case is a theorem about an FSM’s expected behavior.
It defines starting (input) signals on its left-hand side and a series of expected
output signals and traversed FSM states (including the final ones that we are
most interested in) on its right-hand side. We refer to the right-hand side of
the theoretical test case as the theoretical log file.

A strong similarity exists between the theoretical and the real log files. The
real log file is the result of the system execution in real time. It represents a
particular path of the system evolution. The theoretical log file is the result of
the virtual (speculative) system execution. It shows the expected outcomes,
such as generated signals and traversed states (including the final states).

However, one principal difference between the two of them is that the logs
in the real log file usually have a time stamp. The value of the time stamp

315Test and Verification

is usually unique (with the exception of the logs in multiprocessor systems).
Alternately, logs in the theoretical log files are individual predicates that cor-
respond to signals and states, and they do not have any time stamp at all.

Furthermore, we can write logs in the theoretical log file in any order,
because the operator “&” is a commutative one. The easiest way to think
about it is that the theoretical test case is true forever. Hence, it really does
not matter in which order we name the logs. Another way to think about it
is that all of them have happened at the same moment of time. Therefore, all
logs have the same “time stamp,” which may be omitted because it does not
provide any meaningful information, and then again the order of logs does
not matter.

Actually, when we look at the FSM axiomatic specification, and the theo-
retical test case more closely, we notice that no explicit notion of time exists
at all. The only notion of time present there is an implicit one, and it is made
through control predicates. Although the absence of an explicit notion of
time may seem confusing and disadvantageous, it is the main source of the
power of proving theorems.

To understand why, imagine that we made a system that reacts in certain
ways when it receives two different messages, but we are not sure what will
happen if these two signals arrive at exactly the same time. If the probability
of this event is very low, it can take a long period of time before the event
happens and we face a system failure. With the theorem-proving approach,
we check such situations immediately. Imagine the enormous amounts of
test time that are saved this way.

Another powerful characteristic of this approach is that each theoretical
test case actually represents a family of test cases. For example, let us return
to the counter by modulo 2. Consider the theorem:

 {A(0)&T(0)&I(0)} => {O(0)&S(0)}

Because in first-order logic, I(0) <=> I(0)&I(0), we can rewrite the theorem as
follows:

 {A(0)&T(0)&I(0)&I(0)&I(0)&I(0)&I(0)} => {O(0)&S(0)}

We may interpret this theorem as follows: If we apply the same signal I(0)
many times (even up to infinity), we will always get the signal O(0) at the
FSM output and it will remain in the state S(0). Therefore, by proving indi-
vidual theoretical test cases, most frequently we are actually checking the
families of test cases. This concludes the presentation of axiomatic specifica-
tion and theoretical test cases related to FSMs.

Now let us see how we can use this in communication protocol engineer-
ing. We start with the formal verification of the specification. The concept
is rather simple, although it can prove to be difficult to realize in practice.
Ideally, two independent teams must be present (or at least a person who is

316 Communication Protocol Engineering

“changing hats”), namely, the design and testing teams. The former writes
the axiomatic specification of the family of communication protocols that is
modeled as a group of FSMs. The latter writes and proves the theoretical test
cases.

If a theoretical test case fails (the proof of the theorem cannot be found), at
least one error is generated in either axiomatic specification or in the theo-
rem. It may be the case that two or even more errors occur in both of them.
Most frequently, the errors are trivial oversights made by theorem writers
because they are not so familiar with the system at hand. If not, the errors are
typically caused by rather nontrivial oversights in the system design.

Finding these errors is not a trivial task at all. Typically, we would try to
shorten the theorem or the axiomatic specification and see what happens.
Of course, with an automated theorem prover, such as THEO, at our dis-
posal, this is much easier than doing it by hand. Control predicates may help,
also—with them, we can sequence the events to our convenience. The need
for them is typically a clue that we have synchronization problems.

We can also use an automated theorem prover for automatic test case gen-
eration. To do that, we assume that axiomatic specification of the system
is errorless. We start by selecting one of the possible input signals on the
left-hand side of the theorem. We then check various output signals at the
right-hand side of the theorem by trying to prove the theorem. If the proof is
found, our assumption was correct and we keep that signal at the right-hand
side. If not, we continue by checking other signals.

Of course, some input signals can just cause internal state transitions and
no signals at the output of the system. The right-hand side will remain empty
in that case. By continuing this process, we can generate theoretical test cases
of arbitrary length:

 {I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)}

Similarly, we can make guesses about transient or final states of the system,
for example:

 {I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)&S(P)&S(Q)}

The real benefit of such automatically generated test cases is that they can
be translated into executable test cases and used for automatic testing of the
system implementation. Generating test cases in the previously described
fashion is not very efficient, and neither it is well coordinated. We can gener-
ate test cases more cleverly by respecting the structure of the FSM axiomatic
specification rather than viewing it as a black box. Actually, the FSM axiom-
atic specification introduced in this section is yet another means of modeling
the FSM state transition graph.

Generating test cases by traversing the FSM state transition graph is pos-
sible with the goal to achieve its complete coverage. Three possible types of

317Test and Verification

FSM state transition coverage exist, namely, node, branch (arc), and path cov-
erage. That the path coverage cannot be achieved if the graph is cyclic is well
known. Alternately, branch coverage subsumes node coverage and, because
of that, seems to be the best selection.

Sometimes we may have the opposite problem. The test suite (a set of test
cases) may already be available, such as the SIP conformance test suite avail-
able from ETSI in TTCN-3 language (see Section 5.3). In such a situation, we
can use a tool to translate TTCN-3 test cases into theorems, and then we can
use the automated theorem prover to formally verify conformance of the
system axiomatic specification with the standard.

Yet another application of the automated theorem prover is the formal
verification of the system implementation. To do this, we assume that a con-
formance test suite is already available and use the reverse engineering tool
to extract the axiomatic specification of the system from the implementation
source code and, optionally, from log files if some are available. The reverse
engineering tool normally relies on conventions that govern the structure of
the source code and log files.

For example, the reverse engineering tool for the FSM Library-based imple-
mentations relies on the specification of the FSM Library API (see Section 6.8).
This tool simply searches the source code for specific library functions and
their real parameters to retrieve the well-formulated formulas that consti-
tute system axiomatic specification. More precisely, the tool extracts the ele-
ments of the left-hand side of the state transition well-formulated formula by
searching for library functions InitEventProc() and InitUnexpectedEventProc().

The real parameters of the function InitEventProc() are the source state, the
triggering signal (event, message), and the state transition function. The first
two parameters (state and signal) are exactly the elements of the left-hand side
of the corresponding well-formulated formula. The real parameters of the func-
tion InitUnexpectedEventProc() are the source state and the state transition func-
tion. The state is the first element of the left-hand side of the well-formulated
formula. The second element is any signal that is not valid for the given state.

The reverse engineering tool proceeds by examining an individual state
transition function. It creates one well-formulated formula (they all have the
same left-hand side) for each state transition function execution path. For
example, a state transition function with a simple sequence of statements
yields a single formula, whereas a state transition function that has a switch
with three cases yields three formulas.

The right-hand side of the state transition well-formulated formula is con-
structed by the analysis of the state transition function. The tool first searches
for the functions PrepareNewMessage() and SendMessage() to extract symbolic
names of the signals that are generated by that execution path of the state
transition function. It then searches for the function SetState(), whose real
parameter is the name of the destination state. If this function is not found,
the tool assumes that the FSM state should not be changed and copies the
state name from the left-hand side to the right-hand side of the formula.

318 Communication Protocol Engineering

This procedure is repeated for all state transition functions. Finally, the
tool provides complete axiomatic specification of the system in ASCII format,
which is readable by the automated theorem prover. We then use already
available test cases to formally verify the system implementation source
code.

Although most frequently we assume that the tools and other components
we use are bug-free (in this particular case, these tools are the reverse engi-
neering tool, compiler, linker, loader, and operating system), sometimes they
are not. No matter how low the probability of such a failure is, it can hap-
pen and when it does, it compromises the formal verification of the source
code. In such a case, we can use the reverse engineering tool that extracts the
axiomatic system specification from log files. The example of the particular
log file that was created by the FSM Library-based implementation is given
in Section 5.5.1. Principally, the axiomatic specification that is provided from
the log file is usually incomplete (except when it contains traces of all pos-
sible system execution paths), but even as such, it is sufficient to locate and
eliminate the problem at hand.

When it comes to the application of formal verification methods, software
development processes can be classified into three different categories. The
Cleanroom engineering is a typical representative of the first category. It uses
formal verification methods to formally verify the system design. The sec-
ond category uses formal methods to formally verify the system implemen-
tation, whereas the third uses it to formally verify both the system design
and implementation.

We will end this section with a more realistic example—the axiomatic
specification of the FSM that implements both ITU-T Q.71 FE1 and FE5 call
control functional entities (see Figure 3.38, Section 3.7.1) and a sample theo-
retical test case. The former functional entity models the functionality of the
calling party (also referred to as subscriber A) whereas the latter models the
functionality of the called party (also referred to as subscriber B). The follow-
ing is the axiomatic specification of the FSM, named FE1FE5 (ITU-T Q.71 FE1
and FE5 merged together):

;
; FE1FE5 definition
;
; Initial state definition:
S(FE1FE5_ON_HOOK).

{S(FE1FE5_ON_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_ON_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_ReportReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_SetupReqInd)} =>
{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.

319Test and Verification

{S(FE1FE5_ACTIV)&E(User_ON_HOOK)} =>
{S(FE1FE5_ON_HOOK?)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(User_ON_HOOK)} =>
{S(FE1FE5_ON_HOOK)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(User_OFF_HOOK)} =>
{S(FE1FE5_ACTIV)&E(r3_SetupRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)}.

conclusion
; {S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)} =>
; {S(FE1FE5_UNKNOWN_FE2)&E(r1_SetupReqInd)}.

; {S(FE1FE5_UNKNOWN_FE2)&E(User_ON_HOOK)} =>
; {S(FE1FE5_DISCONNECTING_FE2)}.

{S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)&E(User_ON_HOOK)} =>
{S(FE1FE5_DISCONNECTING_FE2)&E(r1_SetupReqInd)}.

Actually, this file contains three theorems (starting after the keyword
conclusion). The first two are commented out (the semicolon character “;” at
the beginning of the line means that the line is a comment) leaving only
the third open as a subject to prove by the automated theorem prover.
The first commented theorem claims that if the FSM FE1FE5 is stimulated
with the input signal User_OFF_HOOK in its initial state FE1FE5_ON_
HOOK, it will generate the output signal r1_SetupReqInd and move to the
state FE1FE5_UNKNOWN_FE2. The second commented theorem claims
that if the FSM FE1FE5 is further stimulated with the signal User_ON_
HOOK in the state FE1FE5_UNKNOWN_FE2, it will just move to the state
FE1FE5_DISCONNECTING_FE2.

Finally, the third theorem—which is actually the subject of automated
theorem proving—is a simple composition of the previous two theorems. It
states that if the FSM FE1FE5 is stimulated by the sequence of the input sig-
nals User_OFF_HOOK and User_ON_HOOK in its initial state FE1FE5_ON_
HOOK, it will generate the output signal r1_SetupReqInd and finish in the
state FE1FE5_DISCONNECTING_FE2. To automatically prove this theorem,
we run Compile and THEO once again. The final result looks like this:

Predicates: S E
Functions: FE1FE5_ON_HOOK User_OFF_HOOK r1_SetupReqInd User_ON_HOOK
FE1FE5_DISCONNECTING_FE2 . r1_DisconnectRespConf FE1FE5_UNKNOWN_FE2
r1_DisconnectReqInd User_DIGIT r1_ProceedingReqInd
FE1FE5_WAIT_FOR_DIGITS r1_ADDL_AddrReqInd r3_DisconnectReqInd
FE1FE5_WAIT_ON_HOOK r1_SetupRespConf FE1FE5_ACTIV r1_ReportReqInd

320 Communication Protocol Engineering

r3_DisconnectRespConf r3_SetupReqInd FE1FE5_WAIT_OFF_HOOK
r3_ReportReqInd FE1FE5_ON_HOOK? r3_SetupRespConf :
EQ:
ESAF:
ESAP:
0 <BC: 56 NC: 4 AC: 4 U: 0>
1 {T1 N1 R1 F0 C49 H1 h0 U8} *
.Proof Found!

5.3.2 Formal Verification Based on Communicating Sequential Processes

This section covers formal verification of communication protocols based on
the process algebra named Communicating Sequential Processes (CSP) and
aided by the toolkit named Process Analysis Toolkit (PAT). PAT supports a
rich modeling language named CSP#, which is essentially the CSP extended
with elements of the programming language C#. PAT also supports the First-
Order Logic (FOL) and Linear Temporal Logic (LTL) formulas. Actually, PAT
is a powerful toolkit comprised of many modules, including the module CSP#,
the module Real-Time Systems (RTS), the module Probability CSP (PCSP),
the module Probability RTS (PRTS), the module Labeled Transition Systems
(LTS), the module Timed Automata (TA), the module NesC (targeting sen-
sor networks), the module Orc (targeting Service Oriented Architecture),
the module Stateflow (MDL), the module Security, the module Web Services
(WS), and the module UML to PAT (for translating UML state machines to
CSP#). We focus on the module CSP# in this book, because it is the most com-
monly used module.

In this section, the reader will learn from examples how to model protocols
in CSP# and how to formally verify them by checking their desired prop-
erties, which are normally specified in the form of the corresponding FOL
and/or LTL formulas. We will start with some more simple, classical exam-
ples (such as alternating bit protocol and two-phase commit protocol), we
will continue with various leader election protocols (in complete graphs, in
rings, and in rooted trees), and we will end with an example of a real-world
communication protocol for providing telecomm services (such as basic call
establishment and release, unconditional call forwarding, etc.).

The outline of this section is the following:

• Brief overview of CSP in Section 5.3.2.1
• Brief overview of PAT and CSP# in Section 5.3.2.2
• Examples of formal verification based on CSP and PAT in

Section 5.3.2.3

5.3.2.1 Brief Overview of CSP

Process algebra is a formal method that uses an algebraic approach to study
the communications of concurrent systems. Three well-known process

321Test and Verification

algebras are Calculus of Communicating Systems (CCS), Communicating
Sequential Processes (CSP), and Algebra of Communicating Processes
(ACP). This section serves as a brief introduction to CSP (Hoare, 1985),
which was initially proposed by C.A.R. Hoare in 1978, and since then
it has been developed into one of the most mature formal methods that
are based on process algebras. CSP is specialized in modeling the inter-
action between concurrent systems using mathematical theories. Due to
its powerful expressiveness, CSP is widely used in many different fields,
such as real-time systems, web services, security, etc. CSP processes are
composed of primitive processes and actions, which are connected by
operators.

Here are the most important notions related to CSP processes:

• αP = α(P) is the alphabet of the process P, i.e., the set of actions that
P can engage in.

• αc is the set of messages that are communicable on channel c.
• a → P means that the process first performs the action a and then

behaves as the process P. We read it as a then P.
• (a → P) | (b → Q) means the choice between (a → P) and (b → Q),

where b is the second action and Q is the second process.
• (x : A → P(x)) means the choice of x from A then P(x).
• μ X : A • F(X) means the process X with the alphabet A such that

X = F(X).
• P / s means P after engaging in events of trace s.
• P || Q means P in parallel with Q (i.e., the parallel execution of P

and Q).
• P [|X|] Q means that P and Q perform concurrent events on a set of

channels X.
• l : P means P with the name l.
• L : P means P with names from the set L.
• P ┌┐ Q means the nondeterministic choice between P and Q. We

read it as P or Q.
• P □ Q means the deterministic choice between P and Q. We read it

as P choice Q.
• P \ C means P without the elements of the set C.
• P ||| Q means the interleaving of P and Q. We read it P interleaves Q.
• P >> Q means P is chained to Q.
• P // Q means P is subordinate to Q.
• P ; Q means that P is successfully followed by Q. We read it P fol-

lowed by Q.

322 Communication Protocol Engineering

• P ◅ b ▻ Q means P if b (is true), else Q.
• *P means repeat P (more precisely, P repeats an arbitrary number of

times).
• b * P means while b (is true) repeat P.
• x := e means x becomes (the value of) e.
• b!e means on (the channel) b output (the value of) e.
• b?x means from (the channel) b input to x.
• l!e?x means the call of the shared subroutine named l with the value

parameter e and the results to x.
• P sat S means that the process P satisfies the specification S.
• tr is an arbitrary trace of the specified process, e.g., 〈x, y〉 where x and

y are the elements of the alphabet of the specified process.
• ref is an arbitrary refusal of the specified process. The refusal of the

process is the set of actions (events) in which the process cannot
engage.

• x√ means the final value of x produced by the specified process.
• var(P) is the set of variables assignable by the process P.
• acc(P) is the set of variables accessible by the process P.
• Skip is a process which does nothing but terminates successfully.
• Stop is a process which is in the state of deadlock and does nothing.

The most important notions related to CSP special events are the following:

• √ means success (successful termination of the specified process).
• l.a means participation in event a by a process named l.
• c.v means communication of the value v on the channel c.
• l.c is the channel c of a process named l.
• l.c.v means communication of the message v on the channel l.c.
• acquire means acquisition of a resource.
• release means release of a resource.

Formal system verification in CSP is based on the trace model of a process,
which is a set of traces, where each trace represents a sequence of events
that the process may perform. The most important notions related to process
traces are as follows:

• 〈〉 is the empty trace.
• 〈a〉 is the trace containing only a (the singleton sequence).
• 〈a, b, c〉 is the trace with three symbols, a then b, then c.

323Test and Verification

• “+ is the trace catenation operator in this book. For example, 〈a, b, c〉 =
〈a, b〉 “+ 〈〉 “+ 〈c〉.

• sn is the trace s repeated n times. For example, 〈a, b〉2 = 〈a, b, a, b〉.
• s ↑ A means s restricted to A (in this book ↑ is used as a restriction

operator). For example, 〈b, c, d, a〉 ↑ 〈a, c〉 = 〈c, a〉.
• s ≤ t means s is a prefix of t. For example, 〈a, b〉 ≤ 〈a, b, c〉.
• s ≤n t means s is like t with up to n symbols removed. For example,

〈a, b〉 ≤2 〈a, b, c, d〉.
• s in t means trace s is in the trace t (i.e., s is the subtrace of the trace t).

For example, 〈b, c〉 in 〈a, b, c, d〉.
• #s means the length of trace s. For example, #〈b, c, b, a〉 = 4.
• s ↓ b means the count of b in s. For example, 〈b, c, b, a〉 ↓ b = 2.
• s ↓ c means the communications on the channel c recorded in s. For

example, 〈c.1, a.4, c.3, d.1〉 ↓ c = 〈1, 3〉.
• s ; t means the trace s successfully followed by the trace t. For exam-

ple, (s “+ 〈√〉) ; t = s “+ t.
• A* means the set of sequences with elements in A, or more formally

A* = {s | s ↑ A = s}.
• s0 means the head of s. For example, 〈a, b, c〉0 = a.
• s’ means the tail of s. For example, 〈a, b, c〉’ = 〈b, c〉
• s[i] means the ith element of s. For example, 〈a, b, c〉[1] = b.
• f *(s) means apply f on each element of s; we read it as f star of s. For

example, square*(〈1, 5, 3〉) = 〈1, 25, 9〉.

The syntax of CSP core language is defined as follows:

P, Q ::= Skip | Stop | a → P | P ; Q | c?x → P |
 c!x → P | P || Q | P [|X|] Q | P ◅ b ▻ Q

At the end of this section, let’s have a look in some of the evergreen exam-
ples of CSP processes from Hoare (1985).

Example 1: The process COPY, which immediately copies every message it
has input from the channel named left by outputting it to the channel named
right.

αleft(COPY) = αright(COPY)
COPY = μ X • (left?x → right!x → X)

The process COPY satisfies the following specification:

COPY sat right ≤1 left

324 Communication Protocol Engineering

Example 2: The process DOUBLE is like process COPY, except that every
input number is doubled before it is output.

αleft(DOUBLE) = αright(DOUBLE) = N
DOUBLE = μ X • (left?x → right!(x + x) → X)

The process DOUBLE satisfies the following specification:

DOUBLE sat right ≤1 double*(left)

5.3.2.2 Brief Overview of PAT and CSP#

PAT is an extensible and modularized framework for automatic system analysis
based on CSP, which is freely available for noncommercial research at http://
sav.sutd.edu.sg/PAT/. This self-contained framework supports modeling, sim-
ulating, and verifying concurrent real-time systems including communication
protocols. PAT supports various model checking techniques targeting different
properties, such as deadlock-freeness, divergence-freeness, reachability, LTL
properties with fairness assumptions, refinement checking, and probabilistic
model checking. Moreover, the PAT development team implemented advanced
optimization techniques, including partial order reduction, symmetry reduc-
tion, process counter abstraction, and parallel model checking, in order to
achieve good performance from the user point of view.

The main PAT facilities are as follows:

• Multidocument and multilanguage editor for creating models
• Simulator for visual and interactive simulation of system behav-

iors, including random simulation, step-by-step simulation, com-
plete state graph generation, trace playback, and counterexample
visualization

• Verifiers for deadlock-free analysis, reachability analysis, state/event
LTL checking (with and without fairness assumptions), and refine-
ment checking

• Documentation and many examples (we focus on some of them in
the next section)

The PAT framework has been developed by J. Sun, Y. Liu, J.S. Dong, and
their colleagues at the National University of Singapore since 2007 (Sun 2009).
The first time that PAT was successfully demonstrated internationally was at
the 30th International Conference on Software Engineering in 2008. Over the
last decade, many other researches worldwide have been using PAT to model
and verify various systems, ranging from recently proposed distributed
algorithms and security protocols to real-world systems like multilifts and
pacemakers. However, in this book, we focus on communication protocols.

http://sav.sutd.edu.sg
http://sav.sutd.edu.sg

325Test and Verification

We continue with a brief overview of CSP#. CSP# (pronounced “CSP
sharp”) is a super-language for CSP, which combines high-level operators
(mostly coming from CSP) such as conditional and nondeterministic choices,
interrupt, parallel composition, interleaving, hiding, and asynchronous mes-
sage passing, with low-level C# programming language constructs such as
variables, arrays, and control flow statements like if–then–else and while
and for loops. CSP# supports both general models of communication among
processes, namely shared memory and message passing. The former model of
communication is supported by the means of global variables, whereas the
second model is supported by the channels for asynchronous message pass-
ing or by the CSP multiparty barrier synchronization. The main CSP# design
principle is to keep the original CSP as a core sublanguage and additionally
to provide access to data states and executable data operators from C#.

The CSP# language constructs may be divided into the following four
groups:

• The core subset of CSP operators, including event-prefixing, internal
and external choices, alphabetized lock-step synchronization, condi-
tional branching, recursion, etc.

• The language constructs that are regarded as a syntactic sugar to CSP,
including global variables and asynchronous channels: Although,
the original CSP supports modeling of shared variables and asyn-
chronous channels as processes, the dedicated language constructs
offer better usability and improved verification efficiency.

• The set of event annotations: Since CSP supports only the notion of
safety, the event annotations provide additional means for modeling
fairness using event-based compositional language.

• The language constructs for stating assertions that may be automati-
cally verified using PAT built-in verifiers.

The language syntax structures are classified as follows:

• Global definitions
• Process definitions
• Assertions

5.3.2.2.1 CSP# Global Definitions

CSP# global definitions include:

• Model names
• Global constants
• Global variables and arrays

326 Communication Protocol Engineering

• Asynchronous channels
• Macros

Model names are given using a declaration //@@ model_name @@.
Constants are specified using the C macro directive #define or the key

word enum. A constant value may be either integer or Boolean Examples:

#define N 10; // N == 10
enum {zero, one, two}; // zero == 0, one == 1, two == 2

Variables and arrays are specified using the keyword var. Since CSP# is a
weekly typed language, no typing information is required. However, cast-
ing between incompatible types leads to run-time exceptions. PAT supports
multidimensional arrays by converting them into one-dimensional arrays.
The index range of an array dimension may be specified explicitly by giving
the lower bound or the upper bound or both. Examples are as follows:

var x = 0; // variable x set to 0
var ba = [1, 2, 3, 4]; // array ba with 4 elements
var leader[3]; // array leader with 3 elements set to 0
var knight : {0..} = 0; // array knight with specified lower index 0

Elements of an array may be set using event-prefixing, e.g.,

P() = a {m[1][9] = 1} –> Skip

User-defined type may be specified using the declaration var<type> var_
name; e.g.,

var<MyType> x; // default constructor MyType is called
var<MyType> x = new MyType(100); // constructor with one parameter

Channels and channel arrays are specified using the keyword channel,
which has two parameters, namely the channel name and the corresponding
buffer size. Examples are as follows:

channel c 10; // channel c with buffer size 10
channel c[3] 10; // channel array c comprising 3 channels

Macros may be defined using the C macro directive #define, which has
two parameters, namely the macro (instruction) name and its definition. An
example is

#define condition x==0; // the name is condition, the definition is x==0

Model inclusion: a submodel may be included in the current model using
the directive #include. For example:

#include "c:\submodel.csp";

327Test and Verification

5.3.2.2.2 CSP# Process Definitions

CSP# process definitions include:

• Stop
• Skip
• Event prefixing
• Statement block inside events
• Channel input/output
• Sequential composition
• External/internal choice
• Conditional choice
• Case
• Guarded process
• Interleaving
• Parallel composition
• Interrupt
• Hiding
• Atomic sequence
• Recursion
• Assert

Processes may be defined using the equations of the following format:

 P x x xn(, , ,)1 2 = exp

where P is a process name, x1, …, xn is an optional list of formal param-
eters, and exp is a process expression. A process P may be referenced by the
expression:

 P y y yn(, , ,)1 2

where y1, …, yn are the real parameters (or arguments). Self-recursion and
mutual-recursion among processes is normally allowed.

Stop is the deadlock process, whereas Skip is a process that immediately
terminates.

Even prefixing e –> P describes a process which performs an event e
first and then behaves as process P. An event may be in a simple form (just
the event name) or in a compound form, such as event_name.e1.e2 where
e1 and e2 are expressions composed from variables, including process

328 Communication Protocol Engineering

parameters, channel input variables, and global variables. Examples are
as follows:

VM() = coin –> chocolate –> VM(); // chocolate vending machine
Phil(i) = get.i.(i + 1)%N –> Rest(); // i is a process parameter

Event name is an arbitrary (user-defined) string. It may also be a channel
name. It cannot be the name of a global variable/constant, a process, a pro-
cess parameter, or a proposition.

Statement blocks inside events (a.k.a. data operations): A statement
block {statements} may be attached to an event simply using the expression
event_name{statements}, where statements may include declarations of local
variables and arrays, control flow constructs made using the keywords like
if–then–else and while, references to global variables, C# functions, etc.,
e.g.,

P() = incx{x = x + 1;} –> Stop // increment global variable x

The attached statement block is executed atomically (i.e., without inter-
leaving with other processes). On the other hand, an event with an attached
statement block may be viewed as a labeled piece of code, which is also some-
times used for constructing counterexamples. A reader should note that here
are no per process local variables in CSP#, so processes need to use global
variables instead.

Invisible events may be specified using the keyword tau, e.g., tau{x = x +
1;} is equivalent with {x = x + 1;}.

Channel input/output is written similar to simple event prefixing. Simple
examples are as follows (let c be the channel name and P be a process expres-
sion; imagine channel as a FIFO buffer):

c!a.b –> P // output values of expressions a and b
c?x.y –> P // input values of local free variables x and y
c!10 –> P // output constant 10
c?[x > y]x.y –> P // if x > y input values of x and y

We may use an arbitrary number of variables/expressions in channel
input/output by separating them with dots (‘.’), but we cannot use global
variables in channel input expressions. Here is an example of two processes
involved in an asynchronous communication over the channel c:

channel c 1;
P(i) = c!i –> P(i)
Q() = c?x –> a.x –> Q()
System() = P(3) ||| Q()

In the example above, communication over channel c is asynchronous
because the size of the channel is nonzero (it is 1). We may turn this commu-
nication into synchronous communication by setting the size of the channel

329Test and Verification

c to zero (channel c 0). Furthermore, we may attach statement blocks to
asynchronous/synchronous channel input/output, e.g.,

channel c 1; // or channel c 0;
var x = 0;
P() = c!x{x = 1} –> P()
Q() = c?y{x = y} –> Q()
System() = P() ||| Q()

The execution sequence in the example above is c!x, (x = 1), c?y, (x = y).
Note that the scope of the channel’s input variable (such as x and y above) is
after the channel input event and within the enclosing process. Such vari-
ables may be referenced in the scope, but cannot be updated.

We should also remember that if channel input expressions evaluate to
constants, the process can receive only the matching channel outputs. For
example, process P(i) = (c?i.(i + 1) –> Skip) can receive only the sequence of
values i, (i + 1) from the channel c. Furthermore, local free variables used in
channel input can be reused again in the next channel inputs.

CSP# also supports channel arrays, for example:

channel c[2] 1;
S(i) = c[i]!i – S(i);
R() = c[0]?x –> a.x –> R() [] c[1]?x –> a.x –> R();
System() = (|||i:{0..2}@S(i)) ||| R()

Channel operations may be used to query the buffer information of an
asynchronous channel. A channel operation is invoked by the static method
call: call(channel_operation, channel_name). There are five channel operations:

• cfull is a Boolean function that tests weather the buffer if full or not.
• cepmty is a Boolean function that tests weather the buffer if empty

or not.
• ccount is an integer function that returns the number of elements in

the buffer.
• csize is an integer function that returns the buffer size.
• cpeek returns the first element (the head) of the buffer.

Sequential composition P; Q means that P and Q execute sequentially.
There are three kinds of choices in CSP#:

• The general choice P [] Q, which means that either P or Q may exe-
cute. If P performs an event first, it takes control, otherwise Q takes
control.

• The external choice P [*] Q is resolved by the environment through
observation of a visible event (not a tau event). If the first event of
both P and Q are visible, P [] Q and P [*] Q have the same result.

330 Communication Protocol Engineering

• The internal choice P <> Q means that either P or Q may execute and
the choice is made internally and nondeterministically. Although
nondeterminism is normally undesirable, it may be useful in the
modeling phase for hiding irrelevant (or unknown) details.

The generalized forms of general/external/internal choices are as follows:

• [] x : {1..n} @ P(x) is the generalized form for P(1) [] … [] P(n)
• [*] x : {1..n} @ P(x) is the generalized form for P(1) [*] … [*] P(n)
• <> x : {1..n} @ P(x) is the generalized form for P(1) <> … <> P(n)

Conditional choices are also supported in CSP#. Besides the traditional
conditional choices used in programming languages which are based on
the keywords if, else, and else if, CSP# introduces more specialized condi-
tional choices, such as the atomic conditional choice (ifa) and the blocking
conditional choice (ifb). The formats of conditional choices are as follows:

• if (condition1) P else if (condition2) Q else R. Of course, the shorter if
and if–then–else formats are also allowed.

• ifa (condition) P else Q. The atomic conditional choice (ifa) performs
condition checking and the first event of P or Q atomically.

• ifb (condition) P. The blocking conditional choice (ifb) is similar to
the guarded process, but unlike the guarded process, in ifb condi-
tion checking and process execution are separated. There is no else
in ifb, and side effects are not allowed.

The case construct in CSP# is somewhat similar to the switch–case con-
struct in say, C#:

case {
condition1: P
condition2: Q
…
default: R

}

The guarded process executes when its guarded condition is satisfied (i.e.,
the condition is true), otherwise the whole process waits:

[condition] P

Interleaving P ||| Q means that P and Q execute concurrently without
barrier synchronization, except during termination events (termination
events must be executed jointly by all the interleaving processes). Of course,

331Test and Verification

P and Q may communicate over shared variables and channels. The general-
ized format of interleaving is as follows:

||| x : {0..n} @ P(x)

We may specify groups of interleaving processes by using looping vari-
ables with a finite, or even infinite, range. We may do the same with the
parallel composition and the internal/external choices. Examples are as
follows:

||| {50} @ P(); // interleaving of 50 P()
||| {..} @ Q(); // interleaving of infinite number of Q()
||| {} @ P(); // this is equivalent to Skip
[] x : {0..1} @ ((||| {x} @ P()) ||| (||| {x} @ Q()))
// <=> (Skip|||Skip) [] (||| {1} @ P()) ||| (||| {1} @ Q())

A looping variable x may also be used as a process parameter within the
process, e.g.:

||| x : {0..n} @ (a.x –> Skip)

Generally, the symbols used to define a looping variable’s range (like n in
the example above) can be global constants or process parameters, but they
cannot be global variables.

Parallel composition P || Q means that P and Q execute concurrently
with possible lock-step synchronization, a.k.a., barrier synchronization.
Lock-step synchronization means that P and Q simultaneously perform the
same event. In the following example, P and Q are lock-step synchronized
by the event b:

P() = a –> b –> Stop;
Q() = b –> Stop;
System() = P() || Q()

The execution sequence for the example above is a, b, Stop, because P
performs a first, then both P and Q perform b, and, finally, both P and
Q perform Stop. Obviously, lock-step synchronization assumes that the
alphabets of parallel processes are known. It is well-known that deter-
mining the alphabet of a process automatically is generally not trivial
(because of process self/mutual referencing and the usage of process
parameters), and, in fact, sometimes it is not even possible (for example,
in the case of a nonterminating processes). However, PAT provides a
best-effort automatic procedure for determining the default alphabet of
a given process. When the default alphabet is not as expected, we may
manually modify it. For example, if we use data operations (statement
blocks attached to events), PAT will not cover them when determining
the default alphabet, and we would have to manually modify the default
alphabet.

332 Communication Protocol Engineering

Alternatively, we may decide to manually specify the alphabet of a process
using the directive #alphabet P {events}, where P is the process name, and
events is a comma-separated list of event expressions. The event expressions
may also contain variables, for example, the alphabet of a process P(x) may
be specified as #alphabet P {a.x};.

The important principle of CSP# (and PAT) is that the process signature com-
prises both the process expression and the process alphabet, i.e., processes with
the same process expression, but with different alphabets, which are seen as
different processes. To cope with this, we sometimes need to introduce supple-
mentary processes. For example, if the process P has different alphabets in two
different parts of a model, we may introduce supplementary processes Q and R:

Q() = P();
#alphabet Q = {x};
R() = P();
#alphabet R = {y};

Generalized parallel composition has the following format:

|| x : {0..n} @ P(x);

We may also use indexed event lists within alphabets. For example:

#alphabet P {x:{0..N}; y:{0..N} @ e.x.y};

The interrupt composition P interrupt Q means that P executes until the
first visible event of Q is engaged, and then control is switched to Q (the
first visible event may occur at any point of P). The corresponding execution
trace is a trace of P, followed by a trace of Q. The main purpose of interrupt
abstraction is modeling the interrupt processing behavior.

Hiding may be used to define a process with a reduced alphabet, e.g.,
P \ A is a process whose alphabet is #alphabet(P) \ A, where A is any subset
of #alphabet(P). We use hiding to hide unimportant events from a process
alphabet (for example, to prevent unwanted synchronization in parallel com-
position) or in order to introduce nondeterminism. For example Phil specifies
a philosopher who gets forks, eats, and puts the forks away when finished,
whereas dashPhil hides the events related to forks:

Phil() = getfork.1 –> getfork.2 –> eat –>
 putfork.1 –> putfork.2 –> Phil();
dashPhil() = Phil() \ { getfork.1, getfork.2, putfork.1, putfork.2};

For our convenience, we may use indexed event lists for defining a set of
events with the same prefix, for example:

dashPhil() = Phil() \ { x:{1..2}@getfork.x, y:{1..2}@putfork.y};

Atomic process P is declared using the declaration atomic{P}, which
means that its events should be executed atomically. Also, if a statement

333Test and Verification

block is prefixed with the keyword atomic, this block should be executed as
one superstep without interleaving with other processes. Such a statement
block may contain any process statements and may be nondeterministic.
Generally, an atomic process has a higher priority than a non-atomic process,
i.e., if an atomic process has an enabled event, that event will execute before
the events of non-atomic processes. However, if multiple atomic processes
are enabled, they interleave each other.

We may use atomic processes and atomic statement blocks to reduce the
model state space and thus speedup model checking, especially when the
model comprises parallel process compositions. The state space may be some-
times reduced exponentially. Using atomic is actually similar to manual partial
order reduction. An important rule is that local events that are invisible to the
verifying property and independent of other events will get the higher priority.

Recursion is constructed by the self or mutual process referencing. The
following example illustrates a system with mutual recursion:

P(i) = a.i – Q(i);
Q(i) = b.i – P(i);
System() = P(1) || Q(2);

A parameter of the recursive process may be any valid expression, e.g.,
P(x + y), P(new List()), etc. However, when a parameter is a user-defined type,
the user must take special care to pass the correct value type, because CSP#
is not a typed language, so PAT does not support compile time type check-
ing. The user should be also very conscious of possible negative side effects,
which may, for example, appear within constructs with choices (e.g., exp1 []
exp2—a side effect in exp1 may remain even when exp2 is selected).

We may also use recursion to implement common loops. For example, the
behavior of the while loop while (condition) {P()} is equivalent to the behavior
of the following process:

Q() = if(condition) {P(); Q()};

Assert is used to add an assertion in the program. PAT simulator and
verifiers check the assertion in run-time, and, if the assertion fails, the cor-
responding run-time exception is thrown and the system evaluation is
stopped. For example:

var x = 0;
P() = assert(x = 0); a{x = x + 1;} –> P();

5.3.2.2.3 CSP# Assertions

Assertions are queries about system behavior. CSP# assertions include:

• Deadlock-freeness
• Divergence-free

334 Communication Protocol Engineering

• Reachability analysis
• Linear Temporal Logic (LTL)
• Refinement/Equivalence

The deadlock-freeness assertion claims that a process P is deadlock-free:

#assert P() deadlockfree;

PAT uses a depth-first-search or a breadth-first-search algorithm to search
the process’s state space. A deadlock state is a state with no further move-
ment, except a successfully terminated state. A process is deadlock-free if it
does not have any deadlock states.

A divergence-free assertion claims that a process P is divergence free:

#assert P() divergencefree;

A process is divergent if it performs internal transitions forever without
engaging in any useful events, e.g., P = (a –> P) \ {a}; a divergent-free process
is a process that is not divergent.

A deterministic assertion claims that a process P is deterministic:

#assert P() deterministic;

A process is deterministic if it does not have a state with more than one
outgoing transitions driven with the same event. Otherwise it is nondeter-
ministic, e.g., P = a –> Skip [] a –> Stop.

The nonterminating assertion claims that a process P is nonterminating:

#assert P() nonterminating;

A process is nonterminating if it does not have a terminating state (either
a successfully terminated state or a deadlock state), e.g., such as P = a –> P.

The reachability assertion claims that a process P may reach a state satis-
fying a given condition (where a condition is a proposition defined as a global
definition):

#assert P() reaches condition;

In the following example, the reachability assertion claims that the process
P reaches a state satisfying the condition (x < 0):

#define goal x < 0;
var x = 0;
P() = a{x = x + 1;} –> P();
#assert P() reaches goal; // this will not be satisfied

335Test and Verification

The optimized reachability allows, for example, minimizing a given cost
function during the reachability search:

#assert P() reaches goal with min(cost);

For example:

#define goal x = 14;
var cost = 0;
var x = 0;
P() = if (x <= 14) {{some arithmetic with x} –> P()};
#assert P() reaches goal with min(cost);

LTL assertion claims that a process P satisfies a given LTL formula F:

#assert P() |= F;

An LTL formula is evaluated on an infinite sequence of truth evaluations
over a path traversing the process state space, and a specified position on that
path. The syntax of an LTL formula F is as follows:

F = event | proposition | [] F | <> F | X F | F1 U F2 | F1 R F2

where [] (or ‘G’) reads as always , <> (or ‘F’) reads as eventually, X reads as
next, U reads as until, and R (or ‘V’) reads as release (note that in PAT [], <>,
R may also be written as ‘G’, ‘F’, and ‘V’, respectively).

The semantic of unary modal operators is as follows:

• X ϕ, neXt, ϕ holds in the next state: • → • ϕ - - - → • → •
• G ϕ, Globally, ϕ holds on the entire subsequent path: • ϕ → • ϕ - - -

→ • ϕ → • ϕ
• F ϕ, Finally, ϕ eventually has to hold: • → • - - - → • ϕ → • (holds

somewhere on the subsequent path)

The semantic of binary modal operators is as follows:

• U ϕ, Until, ϕ holds at the current or future position, and ψ has to hold
until that position; at that position ψ does not have to hold anymore:
• ψ → • ψ - - - → • ψ → • ϕ

• R ϕ, Release, ϕ is true until the first position in which ψ becomes
true, or ϕ is true forever if such position does not exist: • ϕ → • ϕ - - -
→ • ψ → • ψ, or • ϕ → • ϕ - - - → • ϕ → • ϕ

The LTL assertion is true if and only if the given formula F is satisfied for
all the possible paths corresponding to all the possible system executions.

336 Communication Protocol Engineering

Internally, PAT first constructs a Buchi automaton equivalent to the negation
of F and a Buchi automaton of the process P, and then uses these automa-
tons to check the LTL assertion. For example, the following LTL assertion
claims that the philosopher can always eventually eat, i.e., the nonstarvation
property:

#assert Phil() |= [] <> eat;

Events in LTL formulas may also be component events like eat.0, and chan-
nel events like “c!3.8” and “c?19” (here we must use “” because ‘!’ and ‘?’ are
special characters). In case of synchronous channels, PAT automatically con-
verts channel input/output operators (‘!’ and ‘?’) to dots in the events, e.g., the
channel event “c!3.8” is converted to c.3.8.

Refinement/Equivalence is the FDR (Failures-Divergences Refinement)
approach for checking whether an implementation meets its specification. In
contrast to an LTL assertion, a refinement assertion compares the complete
behaviors of two processes, for example, whether one is a subset of another.
CSP# supports the following notions of a refinement relationship:

• #assert P() refines Q(): P() refines Q() in the trace semantics
• #assert P() refines <F> Q(): P() refines Q() in the stable failures

semantics
• #assert P() refines <FD> Q(): P() refines Q() in the failures diver-

gence semantics

When it comes to verifying CSP# assertions, PAT supports the following
options of admissible behavior (the process-level options are enabled only
for the systems with interleaving or parallel composition):

• All (or No Special Fairness) is a default option that allows all behav-
iors to occur. We choose this option to give all the next states (that
have the same previous state) the same fairness, i.e., the same pos-
sibility to happen, which also means that there is no special fairness
for each process.

• Event-level Weak Fair Only means that for every event in the sys-
tem, if the event is eventually always enabled, then the event always
eventually occurs.

• Event-level Strong Fair Only means that for every process in the
system, if the process is always eventually enabled, then the event
always eventually occurs.

• Process-level Weak Fair Only means that for every process in the
system, if the process is eventually always enabled, then the process
is always eventually engaged.

337Test and Verification

• Process-level Strong Fair Only means that for every process in the
system, if the process is always eventually enabled, then the process
is always eventually engaged.

• Global Fair Only (or Strong Global Fairness) means that for every
transition in the system, if the transition can always eventually be
taken, then the transition is actually always eventually taken.

A detailed discussion of the above listed options is outside the scope of
this book. Also, in order to save the space in the following examples, we
sometimes present verification results for only some of the options. Shorter
counterexamples are provided without comment so that the reader may ana-
lyze and think about them, while longer counterexamples are skipped to
save space (of course, an interested reader may repeat the presented experi-
ments using the freely available PAT and reproduce all the counterexamples
on their own).

5.3.2.3 Examples of Formal Verification Based on CSP# and PAT

In this section, we study the following examples:

• Alternating bit protocol
• Two-phase commit protocol
• Various leader election protocols in the complete graphs, the rings,

and the rooted directed trees
• Telecomm service system

5.3.2.3.1 Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a data link layer protocol that retransmits
lost or corrupted messages. Actually, it is a special case of a sliding window
protocol where a timer regulates the order of messages to provide reliable
message transmission over a data link, using the 1-bit window. Transmitter
A sends messages to receiver B (initially the channel from A to B is empty).
Each message contains data and a 1-bit sequence number (SN) whose value
is 0 or 1. B acknowledges the successfully received messages by sending the
appropriate ACK: ACK0 for a message with SN 0 or ACK1 for a message with
SN 1.

A resends a message continuously with the same sequence number
until it receives an ACK with the same sequence number, then A toggles
(complements) the sequence number and starts sending the next message.
Symmetrically, when B receives an uncorrupted message with SN 0, B
resends ACK0 continuously until it receives an uncorrupted message with
SN 1, then it switches to ACK1, etc. Therefore, A may still receive ACK0 when

338 Communication Protocol Engineering

it has already switched to resending a message with SN 1, and vice versa. A
treats such ACKs as negative-ACKs (NAKs) by simply ignoring them.

The ABP is initialized by sending a bogus message and ACKs with SN 1,
so the first real message is a message with SN 0.

We illustrate the ABP in Figure 5.6. A starts by sending the information
message I1 with the data bit 1, and it keeps resending it until it receives
ACK1. Once B receives the message, it acknowledges it by the ACK1, and it
keeps resending ACK1 until it receives the message I0. In order to keep the
figure readable, we show the message I1 and ACK1 as quarter-length arrows.
Later on, when A receives ACK1 it starts sending I0, when B receives I0 it
starts sending ACK0, and so on. In order to keep the figure readable, we do
not show other messages that were resent.

The parametrized ABP model in CSP# was created by Dr. Sun Jun. The fol-
lowing is ABP model for the parameter ChannelSize set to 1 (in the model that
has the constant CHANNELSIZE):

#define CHANNELSIZE 1;
channel c CHANNELSIZE;
channel d CHANNELSIZE;
channel tmr 0;

Sender(alterbit) =
(c!alterbit -> Skip [] lost -> Skip);
tmr!1 -> Wait4Response(alterbit);

Wait4Response(alterbit) =
(d?x -> ifa (x == alterbit) {
 tmr!0 -> Sender(1 - alterbit)
 } else {
 Wait4Response(alterbit)
 })
[] tmr?2 -> Sender(alterbit);

Receiver(alterbit) =
c?x -> ifa (x == alterbit) {
 d!alterbit -> Receiver(1 - alterbit)
 } else {
 Receiver(alterbit)
 };

Timer = tmr?1 -> (tmr?0 -> Timer [] tmr!2 -> Timer);

ABP = Sender(0) ||| Receiver(0) ||| Timer;

#assert ABP deadlockfree;
#assert ABP |= []<> lost;

In the model above we model the sender (i.e., transmitter), the receiver, and
the sender’s timer by the processes Sender (and Wait4Response), Receiver, and
Timer, respectively. For simplicity, messages only have the sequence num-
ber and no data. Messages from Sender to Receiver are transferred over the
channel c, whereas messages from Receiver to Sender are transferred over the
channel d. Both channels c and d are ordinary CSP# channels, but in this

339Test and Verification

model, we call them the unreliable channel c and the perfect (or reliable)
channel d, because the former models an unreliable channel and the latter
models a reliable channel. The third channel in this model is a synchronous
channel tmr between Sender and Timer, which is used to model timer-related
events, namely start timer (the event tmr.1), stop timer (the event tmr.0), and
timeout (the event tmr.2).

As mentioned above, the sender is modeled by the processes Sender and
Wait4Response. Within Sender, we use external choice [] to model the unre-
liability of channel c. In particular, the construct (c!alterbit -> Skip [] lost ->
Skip) means that Sender will either successfully send the message alterbit, or
it will skip sending it, which is equivalent to losing the message on an unre-
liable channel—in the model, this case corresponds to the event lost. Next,
Sender starts the timer using the channel output event tmr!1, and, further on,
behaves as Wait4Response.

Within Wait4Response we use external choice [] to model a possible timer
expiration event (i.e., the timeout behavior). In particular, Wait4Response will

A B

I1
I1

ACK1

ACK0

I0

I1
ACK1

ACK1

I1

ACK1

FIGURE 5.6
ABP sequence diagram.

340 Communication Protocol Engineering

either receive an ACK/NAK from the Receiver (the event d?x when the alter-
bit sent from Receiver will be assigned to the local variable x) or the timeout
will occur (the event tmr?2). After receiving an ACK/NAK, Wait4Response
atomically compares its alterbit with x, which is the alterbit sent by Receiver.
If these values are equal (it means that Wait4Response received an ACK),
then Wait4Response stops the timer (by using the event tmr!1), creates the
new message by toggling its alterbit (by using simple arithmetic expression:
1 – alterbit), and after that behaves as Sender.

If the value of Wait4Response’s alterbit and x are not equal (it means that
Wait4Response received NAK), then Wait4Response ignores that NAK (just
does noting), and continues waiting for ACK, i.e., continues behaving as
Wait4Response. In case of timeout (the event tmr?2), Wait4Response further on
behaves as Sender.

Receiver operates symmetrically to Sender (and Wait4Response). When
Receiver receives an uncorrupted or corrupted message (the event c?x), it
atomically compares its alterbit with x, which is the alterbit sent by Sender.
If these values are equal (it means that Receiver received an uncorrupted
message), then Receiver sends ACK (i.e., its current alterbit), constructs the
new ACK for the next uncorrupted message (by using the simple arithme-
tic expression: 1 – alterbit) and behaves as Receiver. Alternatively, if Receiver
received a corrupted message (where the values of its current alterbit and x
where not equal), it continues waiting an uncorrupted message, i.e., it contin-
ues behaving as Receiver.

The timer models a discrete timer. At the beginning Timer waits to be
started (the event tmr?1). Once started, Timer may be either ([]) stopped by
Wait4Response (the event tmr?0) or it may expire and generate a timeout sig-
nal (the event tmr!2) towards Wait4Response. In both cases, after engaging in
a prefix event (tmr?0 or tmr!2) it continues behaving as Timer.

The complete system is modeled as a parallel composition of Sender,
Receiver, and Timer. Initially, both Sender and Receiver set their local variables
alterbit to 0.

There are two assertions at the end of the model. The first assertion claims
that ABP is deadlock-free. As a result of verifying this assertion, PAT pro-
duces the following positive report:

The Assertion (ABP() deadlockfree) is VALID.

The second assertion claims that always, at some point, a message from
Sender to Receiver will be lost (the event lost will happen). The verification
result for this assertion depends on the admissible behavior option that we
select. As expected, if we select the options “Event-level Strong Fair Only” or
“Global Fair Only”, the verification result is positive:

The Assertion (ABP() |= []<> lost) is VALID.

341Test and Verification

But, if we select the option “All”, the result is negative with the following
counterexample:

The Assertion (ABP() |= []<> lost) is NOT valid.
A counterexample is presented as follows.
<init -> c!0 -> (c?0 -> d!0 -> tmr.1 -> d?0 -> tmr.0 -> c!1 -> c?1
-> d!1 -> tmr.1 -> d?1 -> tmr.0 -> c!0)*>

Similarly, if we select the options “Event-level Weak Fair Only,” “Process-
level Weak Fair Only,” or “Process-level Strong Fair Only,” the result is also
negative, with rather lengthy counterexamples that a reader may reproduce
on their own.

5.3.2.3.2 Two-Phase Commit Protocol

Two-phase commit protocol (2PC) is one of the most widely used atomic
commitment protocols (ACPs). It coordinates all the processes participating
in a distributed atomic transaction on whether they should commit or abort
(or rollback) the transaction. In the theory of distributed computing, 2PC is
viewed as a specialized consensus protocol. The 2PC advantages are sim-
plicity and resilience to many temporary system failures, such as process,
network node, or communication failures. However, in some rare cases, sys-
tem administrators must perform manual failure recovery procedures. To
enable failure recovery, which is automatic in most of the cases, participat-
ing processes must maintain logs of the protocol’s states. Many existing 2PC
variants use different logging strategies and recovery procedures.

The protocol relies on the following three assumptions:

• One node is the coordinator, whereas the rest of the nodes are partici-
pants (the coordinator may be selected using a leader election protocol).

• Each node has a stable storage for storing a write-ahead log, which is
never lost or corrupted in a node crash.

• No node crashes forever.
• Any two nodes can (directly or indirectly) communicate with each other.

During normal operation (i.e., when there are no failures) the protocol
consists of the following two phases:

• The commit request phase (or voting phase), in which the process
coordinator requests from all the processes participating in the
transaction (or participants, cohorts, workers, or pages) to prepare
to commit/abort the transaction by performing all the necessary
steps locally, and to vote “yes” (commit) if the local preparation was
successful or “no” (abort) if some problem during local preparation
was detected.

342 Communication Protocol Engineering

• The commit phase, in which the coordinator decides whether to
commit (if all the participants voted “yes”) or abort the transac-
tion (if at least one participant voted “no”), and notifies the decision
result to all the participants. The participants, in turn, perform all
necessary local actions (effectively realizing commit) on their local
resources (or recoverable resources) and their portions in the trans-
action’s output (if any).

The commit request phase consists of the following steps:

 1. The coordinator sends the message query to commit to all the par-
ticipants and waits until it receives replies from all of them.

 2. The participants execute the transaction locally (and update their
logs) to the point where they will be asked to commit/abort.

 3. Each participant replies to the coordinator with the message agree-
ment, which carries its vote—yes (commit) if its actions were suc-
cessful, or no (abort) if otherwise.

The completion phase in case of success (commit) consists of the following
steps:

 1. The coordinator sends the message commit to all the participants
and waits for their ACKs.

 2. Each participant completes the transaction locally and releases all
locks and resources.

 3. Each participant sends the message ACK to the coordinator.
 4. The coordinator completes the transaction once it receives all the ACKs.

The transaction will fail if any of the participants votes no, or the coordina-
tor’s timer expires (and signals a timeout). The completion phase in case of
failure (abort) consists of the following steps:

 1. The coordinator sends the message rollback to all the participants
and waits for their ACKs.

 2. Each participant undoes the transaction locally, and then releases all
locks and resources.

 3. Each participant sends the message ACK to the coordinator.
 4. The coordinator completes the transaction once it receives all the

ACKs.

We illustrate the 2PC by the sequence diagram in Figure 5.7. As shown, the
protocol consists of two phases. In the commit request phase, the coordinator

343Test and Verification

sends the message query to commit to each participant, and all the partici-
pants vote yes or no by using the corresponding message agreement. In the
commit phase, depending on the results of the previous phase, the coordina-
tor sends either the message commit or the message rollback to each partici-
pant, and all the participants reply with the message ACK.

The parametrized 2PC model in CSP# was created by Dr. Sun Jun slightly
different than the one explained above. The following is the simplified 2PC
model for the parameter Page set to 2 (in the model that is the constant N):

#define N 2;
enum {Yes, No, Commit, Abort};
channel vote 0;
var hasNo = false;

//The following models the coordinator
Coord(decC) =
(|||{N}@ request -> Skip);

(|||{N}@ vote?vo -> atomic{tau{if (vo == No) {hasNo = true;}} -> Skip});

decide -> (
 ([hasNo == false] (|||{N}@inform.Commit -> Skip);
 CoordPhaseTwo(Commit))
 []
 ([hasNo == true] (|||{N}@inform.Abort -> Skip);
 CoordPhaseTwo(Abort))
);

CoordPhaseTwo(decC) = |||{N}@acknowledge -> Skip;

//The following models a page
Page(decP, stable) =

Coordinator Participant

Query to commit

Agreement (yes/no)

ACK

Commit/rollback

�e commit request phase

�e commit phase

FIGURE 5.7
2PC sequence diagram.

344 Communication Protocol Engineering

request -> execute ->
 (vote!Yes -> PhaseTwo(decP) [] vote!No -> PhaseTwo(decP));

PhaseTwo(decP) =
inform.Commit -> complete -> result.decP -> acknowledge -> Skip
[]
inform.Abort -> undo -> result.decP -> acknowledge -> Skip;

#alphabet Coord {request, inform.Commit, inform.Abort, acknowledge};
#alphabet Page {request, inform.Commit, inform.Abort, acknowledge};

System = Coord(Abort) || (|||{N}@Page(Abort, true));

Implementation =
System \ {request, execute, acknowledge, inform.Abort, inform.Commit,
 decide, result.Abort, result.Commit};

Specification = PC(N);
PC(i) =
[i == 0](|||{N}@complete -> Skip)
[]
[i > 0](vote.Yes -> PC(i-1) [] vote.No -> PU(i-1));

PU(i) =
[i == 0](|||{N}@undo -> Skip)
[]
[i > 0](vote.Yes -> PU(i-1) [] vote.No -> PU(i-1));

#assert System deadlockfree;
#define has hasNo == 1;
#assert System |= [](has -> <> undo);
#assert System |= [](request -> <> undo);

#assert Specification deadlockfree;
#assert Implementation refines Specification;

In the model above, we model the coordinator and the participant (page)
by the processes Coord (and CoordPhaseTwo) and Page (and PhaseTwo), respec-
tively. For simplicity, only messages carrying a Page’s vote (Yes/No) are sent
over the channel vote to Cord. The rest of the communication is modeled
as a barrier synchronization, mostly using component events like inform.
Commit, where inform corresponds to a channel and Commit corresponds
to a message. In the two special cases, simple events are used rather than
component events, namely the event request models the exchange of a query
to commit message, whereas the event acknowledge models the exchange of
an ACK message. This mapping of message names (given in the informal
protocol specification at the beginning of this section) to the correspond-
ing events used in the CSP# model was done with a good choice of event
names, so that the reader would not have any difficulties in recognizing the
correspondences.

At the beginning of the model, we define the global constants N, Yes, No,
Commit, and Abort; the channel vote with the (FIFO buffer) size 0 (which
implies synchronous communication); and the Boolean variable hasNo with
the initial value false (assuming final success, i.e., commit).

345Test and Verification

The process Coord initially executes the event request once per each Page
in the system (here twice, because N==2): (|||{N}@ request –> Skip); and then
Coord waits for the votes from all Pages: |||{N}@ vote?vo. After receiving a
vote from a Page, Coord atomically (see the keyword atomic) checks whether
the vote (in the variable vo) is No, and if it is, Coord sets hasNo to true (effec-
tively changing the final result to failure, i.e., abort); otherwise it ignores the
vote (Skip).

Next, Coord decides the final outcome (success/failure) based on the con-
tents of the variable hasNo and informs the pages accordingly. In particular,
it first executes the observable event decide and then executes either the event
inform.Commit (if hasNo is true), or inform.Abort (otherwise), once per each
Page in the system: |||{N}@inform.Commit or |||{N}@inform.Abort. Further on,
Cord behaves as CoordPhaseTwo wherein it simply ignores the event acknowl-
edge (the reader should note that CoordPhaseTwo corresponds only to the
points 3 and 4 in the informal specification of the second phase of 2PC, given
at the beginning of this section).

Page initially synchronizes with Coord using the event request and executes
the externally observable event execute (which models local transaction pro-
cessing). The local page’s actions may be either successful or unsuccessful,
and we model this possibility using the external choice operator [] (remem-
ber, we used [] similarly in the model of ABP in the previous section). Next,
Page sends its vote to Coord – Yes (if local processing was successful) or No
(otherwise). Further on, Page behaves as PhaseTwo (which corresponds to the
page’s side of the second phase of 2PC). It is important to notice that Page
passes the value Commit/Abort (if its vote was Yes/No) to PhaseTwo using the
process parameter decP (decision of a Page).

PhaseTwo’s actions depend on the notification from Coord. In case the notifi-
cation was inform.Commit, PhaseTwo sequentially executes the events complete
(which models successful commit), result.decP (which is in this case equal to
result.Commit), and acknowledge. Similarly, in the case that the notification
was inform.Abort, PhaseTwo sequentially executes the events undo (which models
abort), result.decP (which is, in this case, equal to result.Abort), and acknowledge.

Next, we define alphabets of Coord and Page (they are equal) by listing
the events that are used for barrier synchronization between them, namely,
request, inform.Commit, inform.Abort, and acknowledge. The complete System is
defined as a parallel composition of Coord and interleaving of Pages:

System = Coord(Abort) || (|||{N}@Page(Abort, true));

In this example, we also demonstrate usage of a refinement assertion.
Therefore, we firstly define the process Implementation as System with-
out all the events related to internal operation of System. More precisely,
Implementation inherits only the events complete, undo, vote.Yes, and vote.No
from System.

346 Communication Protocol Engineering

Second, we define the process Specification as the process PC(N), where
the process PC(i), in turn, is defined as a mutual recursion of itself and the
process PU(i). A reader may easily see that PC(i) and PU(i) are essentially
countdown processes, where PC counts down Yes votes, whereas PU counts
down both Yes and No votes starting with the first No vote. If the parameter
i during counting down of votes reaches the value i==0 within the process
PC(i), PC(i) will execute the N instances of the event complete; otherwise PU(i)
will finally execute the N instances of the event undo.

At the end of the model, we define five assertions—three of them are
related to System, one is related to Specification, and the fifth is a refinement
assertion. The System-related assertions are the following:

• System is deadlock free.
• System satisfies that always after the point when the condition has

holds (i.e., has is a macro which is defined as hasNo == 1, i.e. true), the
event undo will be eventually executed.

• System satisfies that always after the point when the event request
was executed, the event undo will be eventually executed.

When these assertions are verified by PAT, as expected, PAT reports that
the first two are valid, whereas the third is invalid. The third assertion is
invalid because after the initial execution of the event request, the resulting
event may be either undo or complete, and not always undo as claimed. Here is
the counterexample produced by PAT:

The Assertion (System() |= [](request-><> undo)) is NOT valid.
A counterexample is presented as follows.
<init -> request -> request -> execute -> vote.Yes -> τ ->
execute -> vote.Yes -> τ -> decide -> inform.2 -> inform.2 ->
complete -> result.Abort -> acknowledge -> complete ->
result.Abort -> acknowledge -> terminate>

The Implementation-related assertion claims that it is deadlock free. The
fifth, and the last assertion in this example claims that Implementation refines
Specification. When these two assertions are verified by PAT, as expected, PAT
reports that both are valid.

5.3.2.3.3 Leader Election in Complete Graphs

Generally, leader election is a fundamental problem in distributed systems,
because many hard-distributed problems are easy to solve once a central
coordinator is available. An attractive approach to solve the leader election is
by using self-stabilizing algorithms, which do not require initialization in
order to operate correctly, and which can recover from transient faults that
may destroy the system state information. Also, among many models, a net-
work of finite-state anonymous agents is a rather interesting one, because it
models many distributed systems of identical, simple computational nodes,

347Test and Verification

such as wireless sensor networks, etc. It is well-known that the self-
stabilizing leader election is impossible without a failure detector, which is
a kind of oracle that provides some information to the system that it is unable
to compute on its own.

Therefore, Fischer and Jiang (2006) introduced the eventual leader detec-
tor Ω?. We may imagine Ω? as a black box that provides global status infor-
mation about the protocol, in particular, whether or not there is a leader
in the system. This detector is weak in the sense that it does not respond
to status changes immediately, but with some indeterminate delay, and it
does not report its findings to all the processes (agents) simultaneously. (So
some agents may discover status changes sooner than the other processes.)
Formally, Ω? provides a Boolean input to each process at each step, such that
the following conditions are satisfied by every execution E:

• If all, except finitely many, configurations of E lack a leader, then all
processes receive false in all, except finitely many, steps.

• If all, except finitely many, configurations of E have one or more lead-
ers, then all processes receive true in all, except finitely many, steps.

Thanks to its weakness, Ω? may be simply implemented using timeouts.
Each leader periodically sends a keep-alive message, whereas each agent
restarts its timer after receiving such a message, and sets the leader detector
flag to true (indicating that leader is present). On timeout, the process sets
the leader detector flag to false (indicating that leader is absent). Of course,
in an adverse environment, Ω? may temporarily produce incorrect informa-
tion. However, eventually after the environment stabilizes, Ω? will produce
correct information.

Further on in this section, we introduce, model, and analyze the self-
stabilizing leader election algorithm for complete graphs (see the example
of the complete graph with five nodes in the Figure 5.8) using Ω? (Fischer,
2006), which works under either local or global fairness condition. According
to this algorithm, each node has a memory slot that can hold either a leader
mark “x” or nothing “-” for a total of two states. Each node receives its cur-
rent input true (T) or false (F) from Ω?. A nonleader becomes a leader, when
Ω? signals the absence of a leader, and the responder is not a leader. When
two leaders interact, the responder becomes a nonleader. Otherwise, no state
change occurs.

The algorithm can be formally described by the three pattern rules, which
are matched against the state and the input of the initiator and the responder,
respectively. If the match succeeds, the states of the two interacting nodes
are replaced by the respective states on the right-hand side of the rule.
According to the star convention, “*” is a symbol that always matches the
slot or the input. On the rule’s right-hand side, “*” specifies that the contents
of the corresponding slot do not change. If no explicit rules match, neither
node changes state (i.e., a null transition takes place).

348 Communication Protocol Engineering

The three pattern rules are as follows:

Rule 1: ((x, *), (x, *)) –> ((x), (-))
Rule 2: ((-, F), (-, *)) –> ((x), (-))
Rule 3: ((-, T), (-, *)) –> ((-), (-))

The parametrized model of a leader election algorithm for complete graphs
in CSP# was created by the PAT Team. The following is the particular model
for the parameter Number of Processes set to 3 (in the model that is the con-
stant N):

#define N 3;
var dok = 0; // detector correct (ok)
var detector = false;
var leader[N];

/*Rule 1*/
Rule1(i, r) =
[leader[i] == 1 && leader[r] == 1]
 (rule1.i.r{leader[r] = 0;} -> Rule1(i, r));

/*Rule 2*/
Rule2(i, r) =
[leader[i] == 0 && leader[r] == 0 && !((dok == 0 && detector) ||
(dok != 0 && (leader[0] + leader[1] + leader[2] > 0)))]
 (rule2.i.r{leader[i] = 1;} -> Rule2(i, r));

N2

N1 N3

N5 N4

FIGURE 5.8
Example of the complete graph with five nodes.

349Test and Verification

/*Rule 3*/
Rule3(i, r) =
[leader[i] == 0 && leader[r] == 0 && ((dok == 0 && detector) ||
(dok != 0 && (leader[0] + leader[1] + leader[2] > 0)))]
 (rule3.i.r -> Rule3(i, r));

// eventual leader detector
DetectorCorrect() =
[dok == 0]
 (progress{dok = 1;} -> DetectorCorrect());
// detector
RandomDetector() =
[dok == 0]
 ((random1{detector = false;} -> RandomDetector()) []
 (random2{detector = true;} -> RandomDetector()));

Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));

LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||

Rule1(0,1)|||Rule1(1,0)|||Rule1(0,2)|||Rule1(2,0)|||
Rule1(1,2)|||Rule1(2,1)|||

Rule2(0,1)|||Rule2(1,0)|||Rule2(0,2)|||Rule2(2,0)|||
Rule2(1,2)|||Rule2(2,1)|||

Rule3(0,1)|||Rule3(1,0)|||Rule3(0,2)|||Rule3(2,0)|||
Rule3(1,2)|||Rule3(2,1));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

In the model above, we modeled the three rules: Rule 1, Rule 2, and Rule 3,
by the processes Rule1, Rule2, and Rule3, respectively. Each of these processes
has two parameters, namely i and r, where i is the index of the initiator node
and r is the index of the responder node. Next, we model the eventual leader
detector by the processes DetectorCorrect and RandomDetector, the random
setup of the node’s initial states by the process Initialization, and the complete
system by the process LeaderElection.

At the beginning of the model, we define global constants and variables.
The global constant N is equal to the number of processes (i.e., 3). The value
of the global integer variable dok determines whether the information pro-
vided by the leader detector is correct (value 1) or not (value 0). Initially, dok
is set to 0, indicating the presence of transient errors in the environment,
and later on it is set to 1, indicating that the environment becomes stable
and well-behaved. The value of the Boolean variable detector represents the
output of the leader detector (true if there is a leader in the system), which
may be erroneous. The integer array leader (of size N) corresponds to mem-
ory slots at each node, which hold the current state of the node (the value 0

350 Communication Protocol Engineering

means that the node is not a leader, whereas the value 1 means that the node
is a leader).

According to Rule 1, the process Rule1 checks if both leader[i] and leader[r]
are set to 1 (i.e., if both initiator and responder are leaders), and if they are, it
then sets leader[r] to 0 (i.e., the responder becomes a nonleader). Further on,
it behaves again as Rule1. Obviously, the process Rule1 is a straightforward
encoding of Rule 1.

Similarly, Rule2 and Rule3 are rather straightforward encodings of Rule 2
and Rule 3, respectively. However, there is one important difference; unlike
the process Rule1, the processes Rule2 and Rule3 behave differently in the first
phase of the system evolution, when the environment is unstable (i.e., when
the value of the variable dok is 0), and in the second phase when the environ-
ment becomes stable (i.e., when dok is set to 1). In the first phase, the processes
Rule2 and Rule3 behave as specified by the rules (i.e., Rule 2 and Rule 3, respec-
tively), whereas in the second phase (when dok is not equal to 0), Rule2 and
Rule3 execute if there is at least one leader in the system (when the sum of the
elements of the array leader is greater than 0).

The process DetectorCorrect models the system transition from an unstable
to a stable state. Initially, the variable dok is set to 0 (indicating an unstable
environment). Once the process DetectorCorrect sees that the variable dok is
set to 0, it simply sets it to 1 (indicating a stable environment). Similarly, the
process RandomDetector models possibly erroneous readings from the leader
detector. As long as the variable dok is set to 0 (indicating an unstable envi-
ronment), the process RandomDetector randomly sets the variable detector to
either true or false, but once dok is set to 1, it stops writing to the variable
detector (so its value stabilizes).

The process Initialization is a sequence of three sub processes, where each
of the sub processes randomly sets the initial state of the corresponding node
(i.e., the corresponding element of the array leader) to either 0 (nonleader) or
1 (leader), and then terminates (Skip). So, the system may start from any pos-
sible combination of node states.

The process LeaderElection is the sequential composition of the pro-
cess Initialization and the process that is the interleaving of the processes
DetectorCorrect, RandomDetector, and the process instances of the pro-
cesses Rule1, Rule2, and Rule3, for all possible combinations of values of
their parameters i and r, i.e., (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), and (2, 1).

At the end of the model, we define the macro oneLeader and the one
LeaderElection-related assertion. The macro oneLeader is defined as the equa-
tion of the sum of the elements of the array leader (which corresponds to
the number of leaders currently present in the system) and the constant 1.
Of course, the goal of any leader election protocol is that this number of
leaders is finally equal to 1, which means that there is exactly one leader in
the system. Therefore, the assertion at the end of the model claims that the
process LeaderElection eventually always satisfies the goal (i.e., the equation)
oneLeader.

351Test and Verification

PAT verification reports are as expected. If we select the admissible behav-
ior to be Global Fair Only or Event-level Strong/Weak Fair Only, the asser-
tion is found to be valid. Alternatively, if we select the admissible behavior
option All, the assertion is found to be invalid. Here is the counterexample
produced by PAT:

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> rule1.2.1 -> rule1.2.0 -> (rule2.1.0 ->
rule1.2.1 -> rule2.1.0)*>

5.3.2.3.4 Leader Election in Rings

In this section we introduce, model, and analyze the uniform, self-stabilizing
leader election algorithm for rings using Ω? (Fischer, 2006), which requires
global fairness (and under local fairness is not feasible). See the example of
the ring graph with five nodes in the Figure 5.9.

The algorithm is based on the following assumptions: The ring is directed
such that each node has a sense of forward (clockwise) and backward (coun-
terclockwise) directions and every interaction takes place between the initia-
tor and its forward neighbor. Each node can store zero or one of each of three
kinds of tokens: a bullet “o”, a leader mark “x”, and a shield “|”, for a total of
eight possible states. Corresponding to each kind of token is a slot which is
empty if the corresponding token is not present, and full if it is present. An
empty slot is denoted by “-” whereas a full slot is denoted by the token. The
slots in each node are ordered with the bullet first, leader mark second, and
shield third. Extending this to a clockwise ordering of all slots in the ring,

N2

N1 N3

N5 N4

FIGURE 5.9
Example of the ring graph with five nodes.

352 Communication Protocol Engineering

the shield slot of one node is followed by the bullet slot of the next node in
the clockwise order.

The algorithm can be formally described by the five pattern rules:

Rule 1. ((* * *, F), (* * *, *)) –> ((o x |), (* * *))
Rule 2. ((* - |, T), (* * *, *)) –> ((* - -), (- * |))
Rule 3. ((* x |, T), (* * *, *)) –> ((o x -), (- * |))
Rule 4. ((* x -, T), (- * *, *)) –> ((o x -), (- * *))
Rule 5. ((* * -, T), (o * *, *)) –> ((o - -), (- * *))

When two nodes interact and the initiator’s input is false (F), a leader and
shield are created, and at the same time, a bullet is fired (Rule 1). This is the
only way for leaders and shields to be created. When the initiator’s input is
true (T), the following rules apply: Shields move forward around the ring
(Rules 2 and 3), and bullets move backward (Rule 5). Bullets are absorbed by
any shield they encounter (Rules 2 and 3) but kill any leaders along the way
(Rule 5). If a bullet moves into a node already containing a bullet, the two
bullets merge into one. Similarly, when two shields meet, they merge into
one. A leader fires a bullet whenever it is the initiator of an interaction (Rules
3 and 4).

In a configuration in which the node i has a leader mark, the node j has a
shield, and all of the slots between i’s leader mark and j’s shield in clockwise
order are empty, the node i is called the protected leader, and the node j is
called its protecting shield. A node can be both a protected leader and its
own protecting shield. The algorithm solves the leader election such that
eventually there is exactly one protected leader, one protecting shield, and
no unprotected leader.

The parametrized model of the leader election algorithm for rings in CSP#
was created by PAT Team. The following is the particular model for the
parameter Number of Processes set to 3 (in the model that is the constant N):

#define N 3;
var dok = 0;
var detector = false;
var leader[N];
var bullet[N];
var shield[N];

// Processes
Process(i) =
[!((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
 rule1.i.(i+1)%N{bullet[i]=1; leader[i]=1; shield[i]=1;} ->
 Process(i)
[]
[leader[i] == 0 && shield[i] == 1 && ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
 rule2.i.(i+1)%N{leader[i]=0; shield[i]=0; bullet[(i+1)%N] = 0;
 shield[(i+1)%N] = 1;} -> Process(i)

353Test and Verification

[]
[leader[i] == 1 && shield[i] == 1 && ((dok ==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
 rule3.i.(i+1)%N{ bullet[i] = 1; leader[i] = 1; shield[i] = 0;
 bullet[(i+1)%N] = 0; shield[(i+1)%N] = 1;} -> Process(i)
[]
[leader[i] == 1 && shield[i] == 0 && bullet[(i + 1) % N] == 0
&& ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
 rule4.i.(i+1)%N{ bullet[i] = 1; leader[i] = 1; shield[i]=0;
 bullet[(i+1) % N] = 0;} -> Process(i)
[]
[shield[i] == 0 && bullet[(i+1)% N] == 1 && ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
 rule5.i.(i+1)%N{bullet[i] = 1; leader[i] = 0; shield[i] = 0;
 bullet[(i+1)%N] = 0;} -> Process(i);

// eventual leader detector
DetectorCorrect() =
[dok == 0](progress{ dok = 1;} -> DetectorCorrect());
//detector
RandomDetector() =
[dok == 0]
 ((guess1{detector = false;} -> RandomDetector())
 []
 (guess2{detector = true;} -> RandomDetector()));

Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));
((tau{bullet[0] = 0;} -> Skip) [] (tau{bullet[0] = 1;} -> Skip));
((tau{bullet[1] = 0;} -> Skip) [] (tau{bullet[1] = 1;} -> Skip));
((tau{bullet[2] = 0;} -> Skip) [] (tau{bullet[2] = 1;} -> Skip));
((tau{shield[0] = 0;} -> Skip) [] (tau{shield[0] = 1;} -> Skip));
((tau{shield[1] = 0;} -> Skip) [] (tau{shield[1] = 1;} -> Skip));
((tau{shield[2] = 0;} -> Skip) [] (tau{shield[2] = 1;} -> Skip));

LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||
 Process(0)|||Process(1)|||Process(2));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

This model is rather similar to the model in the previous section. Actually,
some processes are identical or almost identical. The main differences are as
follows: In this model, the integer arrays leader, bullet, and shield (each of size
N), correspond to memory slots at each node, which hold the current state of
the node (the element value 1 means that the node holds the corresponding
token, whereas the element value 0 means that the node does not hold the
corresponding token). All the five pattern rules are encoded within a single
process, namely Process, rather than being defined as separate processes (as
was done in the model in Section 3.2.3.2). Process corresponds to a single
node within a ring, and its parameter i is simply the index of the node in the
ring. This index is used to access the corresponding elements of arrays leader,
bullet, and shield. Obviously, in order to define the process LeaderElection in

354 Communication Protocol Engineering

this model, we need to make the three Process’s instances, namely Process(0),
Process(1), and Process(2). Apart from these differences, the models are analo-
gous, and thus the reader should have no difficulties in analyzing the model
above, and so we leave it as an individual reader’s exercise.

The PAT verification reports are as expected. If we select the admissible
behavior option All, the assertion is found to be valid. Alternatively, if we select
the admissible behavior to be Global Fair Only or Event-level Strong/Weak Fair
Only, the assertion is found to be invalid. Here is the counterexample produced
by the PAT for the option Global Fair Only (the other two counterexamples are
longer, so we skip them, and leave the reader to reproduce them as an exercise):

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> guess2 -> rule3.0.1 ->
rule3.2.0 -> guess1 -> rule1.1.2 -> rule1.0.1 -> guess2 -> rule5.2.0 ->
rule3.1.2 -> rule3.0.1 -> rule2.2.0 -> guess1 -> rule1.1.2 -> progress ->
rule3.0.1 -> (rule5.2.0 -> rule4.0.1 -> rule5.2.0)*>

5.3.2.3.5 Leader Election in Trees

In this section, we introduce, model, and analyze the deterministic, uni-
form, and self-stabilizing leader election algorithm for rooted directed trees
using Ω? (Canepa, 2008), which requires global fairness (like the algorithm
in the previous example). See the example of the tree graph with five nodes
in Figure 5.10. This algorithm is space optimal because it requires only one
memory bit per agent.

N2

N1

N3

N4 N5

FIGURE 5.10
Example of the tree graph with five nodes.

355Test and Verification

The algorithm is based on the following assumptions: The root of a rooted
directed tree is the only node of in-degree 0, and for each node in the tree,
there is a directed path from the root to that node. Each node has a memory
slot that can hold either a leader mark “x” or nothing “-”, for a total of two
states per node, and each node receives its current input true (T) or false (F)
from Ω?.

The algorithm can be formally described by the three pattern rules:

Rule 1. ((x, *), (x, *)) –> ((x), (-))
Rule 2. ((-, F), (-, *)) –> ((x), (-))
Rule 3. ((-, *), (x, *)) –> ((x), (-))

Intuitively the algorithm works as follows: A clean agent (i.e., an agent
without a leader mark) becomes leader mark holder, when Ω? signals the
absence of leader marks, and the responder does not hold a leader mark
(Rule 2). When two agents holding a leader mark each interact, the responder
becomes clean (Rule 1). If the responder has a leader mark and the initia-
tor is a clean agent, the latter becomes a leader mark holder and the former
becomes clean (Rule 3). Otherwise, no state change occurs.

The parametrized model of the leader election algorithm for rings in CSP#
was created by the PAT Team. The following is the particular model for the
parameter Number of Processes set to 3 (in the model that is the constant N):

#define N 3;
var dok = 0;
var detector = false;
var leader[N];

/*Rule 1*/
Rule1(i, r) =
[leader[i] == 1 && leader[r] == 1]
 (rule1.i.r{leader[r] = 0;} -> Rule1(i, r));

/*Rule 2*/
Rule2(i, r) =
[leader[i] == 0 && leader[r] == 0 && !((dok == 0 && detector) ||
(dok != 0 && (leader[0] + leader[1] + leader[2] > 0)))]
 (rule2.i.r{leader[i] = 1;} -> Rule2(i, r));

/*Rule 3*/
Rule3(i, r) =
[leader[i] == 0 && leader[r] == 1]
 (rule3.i.r{leader[i] = 1; leader[r] = 0;} -> Rule3(i, r));

// eventual leader detector
DetectorCorrect() =
[dok == 0]
 (progress{dok = 1;} -> DetectorCorrect());
// detector
RandomDetector() =
[detectorcorrect == 0]
 ((random1{detector = false;} -> RandomDetector()) []
 (random2{detector = true;} -> RandomDetector()));

356 Communication Protocol Engineering

Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));

// The topology is a rooted tree
LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||

Rule1(0,1)|||Rule1(0,2)|||
Rule2(0,1)|||Rule2(0,2)|||
Rule3(0,1)|||Rule3(0,2));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

This CSP# code is completely analogous to the CSP# code given in Section
5.3.2.3.3 (Leader Election in Complete Graphs), so the reader should have no
difficulties understanding it. Actually, it uses the same variables and conven-
tions for encoding the pattern rules. Moreover, this example and the exam-
ple in Section 5.3.2.3.3 use the processes DetectorCorrect, RandomDetector, and
Initialization.

The main difference between these two examples is the way how their
respective LeaderElection processes instantiate the processes Rule1, Rule2, and
Rule3. In this section, we introduce the convention that the node with index
0 is the root of the tree, whereas nodes with indexes 1 and 2 are the leaves
of the tree. We also assume that the first parameter (i) of the processes Rule1,
Rule2, and Rule3 is the index of the root, whereas the second parameter (r)
is the index of a leaf. Thus, we create two process instances of each of the
processes Rule1, Rule2, and Rule3, for two possible combinations of values for
their parameters i and r, i.e., (0, 1), and (0, 2).

The PAT verification reports are as expected. If we select the admissible
behavior to be Global Fair Only or Event-level Strong/Weak Fair Only,
the assertion is found to be valid. Alternatively, if we select the admissible
behavior option All, the assertion is found to be invalid. Here is the counter-
example produced by PAT:

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> rule1.0.2 -> random2 -> (random2 -> random2)*>

5.3.2.3.6 Telecomm Service System

The Telecomm Service System (TSS) presented in this section is a simpli-
fied model of a telephone exchange (a.k.a., Private Branch eXchange, PBX)
that supports local calls only. The main PBX call-processing functions are as
follows:

• Establishing connections (circuits) between the telephone sets of the
two users

357Test and Verification

• Maintaining such connections as long as the users require them
• Disconnecting those connections as per the user’s request
• Providing information for accounting purposes, i.e., metering calls

(not modeled in TSS)

Besides these basic functions, PBXs offer many other calling features and
capabilities, also known as supplementary services or add-ons. Modeling all
of them would result in a rather complex model, thus TSS supports only some
of the most frequently used supplementary services, namely the following:

• Call Forward Unconditional (CFU)
• Call Forward when Busy (CFB)
• Originating Call Screening (OCS)
• Originating Dial Screening (ODS)
• Terminating Call Screening (TCS)
• Ring Back When Free (RBWF)

Normally, systems like TSS are designed (and implemented) incrementally.
We start with the basic functions, and then add individual, supplementary ser-
vices incrementally. However, the complex interaction between users and incre-
mental system extensions may lead to unpredictable and undesirable results.
Some new features may conflict with each other, or hinder the basic services.
Thus, the model of TSS must reflect the high-level design of the system, both
the interaction between the users and the compatibility of new services. We
also need a comprehensive set of properties covering basic call-processing and
the new services in order to verify if all the system requirements are satisfied.

Since the model of TSS is rather complex and there are many properties to
verify, we first analyze only the model, and then we introduce and discuss
the system properties separately. The parametrized model of TSS in CSP# was
created by the PAT Team. The following is the particular model for the param-
eter Number of Users, set to 2 (in the model that is the constant NoOfUsers):

#define NoOfUsers 2;
#define NoOfChannels 4; // = NoOfUsers+2
#define NIL 3; // = NoOfUsers+1
#define INVALID_USER 2; // = NoOfUsers

// Model variables
var partner=[NIL(NoOfChannels)];
var chan=[NIL(NoOfChannels)];
var connect=[0(NoOfChannels)];
var dev=[1(NoOfChannels)];
var CFU:{0..NIL}=[NIL(NoOfChannels)];
var CFB:{0..NIL}=[NIL(NoOfChannels)];
var RBWF:{0..NIL}=[0(NoOfChannels)];
var lastCall:{0..NIL}=[NIL(NoOfChannels)];
var OCS:{0..NIL}=[NIL(NoOfChannels)];

358 Communication Protocol Engineering

var ODS:{0..NIL}=[NIL(NoOfChannels)];
var TCS:{0..NIL}=[NIL(NoOfChannels)];

// Verification variables
var dialNum=[NIL(NoOfUsers)];
var justDial=[0(NoOfUsers)];

System() = (User());
// All users start from Idle
User() = ||id:{0..NoOfUsers-1}@(Idle(id));
#alphabet Idle
 {keepTalking.0.1,stopTalking.0.1,keepTalking.1.0,stopTalking.1.0};

// Processes corresponding to individual call-processing states
Idle(id) =
 idle.id{chan[id]=NIL; partner[id]=NIL; dev[id]=1; connect[id]=0;
 dialNum[id]=NIL; } ->
 ([chan[id]== NIL] dialing.id{dev[id]=0;} -> Dialing(id)
 []
 [chan[id]>= 0 && chan[id] != NIL]
 answerCall.id{partner[id]=chan[id]; dev[id]=0;} -> Answer(id)
 []
 [RBWF[id]==1 && lastCall[id]!=NIL]
 // RBWF feature, reply last call
 if (lastCall[id]!=ODS[id]) {
 ringback.id.lastCall[id]{partner[id]=lastCall[id];
 lastCall[id]=NIL;} -> Calling(id)
 } else {forbidCall.id -> Idle(id)}
);

Answer(id) =
case{
 partner[id]==TCS[id]:
 ignoreCall.id{if (chan[partner[id]]==id) chan[partner[id]]=NIL;}
 -> Idle(id)

 chan[partner[id]]==id:
 //partner[id] is waiting
 t_alert.id.partner[id] -> T_Alert(id)

 default:
 //chan[partner[id]]!= id -> partner[id] has changed dial number
 partnerChanged.id.partner[id] -> Idle(id)
};

Dialing(id) =
noCall.id -> Idle(id)
[]
([] callId:{0..NoOfUsers}@(
 if (callId!=ODS[id]) {
 dial.id.callId{justDial[id]=1;} ->
 makeCall.id{partner[id]=callId; dialNum[id]=callId;} ->
 Calling(id)
 } else {
 forbidCall.id -> Idle(id)
 }
));

Calling(id) =
if (partner[id]!=OCS[id]) {
 doCall.id.partner[id]{justDial[id]=0;} ->
 case {
 partner[id]==id:
 //id call to itself

359Test and Verification

 selfCall.id -> CallBusy(id)

 partner[id]==INVALID_USER:
 //id call to unobtainable user
 invalidCall.id -> CallUnobtainable(id)

CFU[partner[id]] != NIL:
 //partner[id] has CFU add-on
 forwardCall.partner[id].CFU[partner[id]]{
 partner[id]=CFU[partner[id]];} -> Calling(id)

chan[partner[id]]==NIL:
 //partner channel is free
 ringPartner.id{
 chan[partner[id]]=id; chan[id]=partner[id];} -> O_Alert(id)

 chan[partner[id]]!=NIL && CFB[partner[id]]==NIL:
 //partner channel is busy, no CFB add-on
 if (RBWF[partner[id]]==0) {
 //partner does not have RBWF add-on
 busyPartner.id -> CallBusy(id)
 } else { //partner has RBWF add-on
 busyPartner.id{lastCall[partner[id]]=id;} -> CallBusy(id)
 }

 chan[partner[id]]!=NIL && CFB[partner[id]]!=NIL:
 //partner channel is busy, has CFB add-on
 forwardCall.partner[id].CFB[partner[id]]{
 partner[id]=CFB[partner[id]];} -> Calling(id)

 default:
 errorCall.id -> ErrorState(id)
 }
} else {
 forbidCall.id{justDial[id]=0;} -> Idle(id)
};

CallBusy(id) =
//id receives busy signal
soundBusy.id -> Idle(id);

CallUnobtainable(id) =
//id calls to unobtainable user
soundInvalid.id -> Idle(id);

O_Alert(id) =
[chan[id]==partner[id] && connect[id]==1]
 callConnect.id.partner[id] -> O_Connected(id)
[]
[chan[id]==partner[id] && connect[id]==0]
 ringOut.id{if (chan[partner[id]]==id) chan[partner[id]]=NIL;
 chan[id]=NIL;} -> Idle(id)
[]
[chan[id]!= partner[id]]
 callStopped.id.partner[id] -> Idle(id)
[]
[chan[id]==partner[id] && connect[id]!= 1 && connect[id] != 0]
 alertError.id -> ErrorState(id);

O_Connected(id) =
[connect[id]==1 && connect[partner[id]]==1]
 keepTalking.id.partner[id] -> O_Connected(id)
[]
tau{connect[id]=0;connect[partner[id]]=0;} ->

360 Communication Protocol Engineering

 stopTalking.id.partner[id] -> Idle(id)
[]
stopTalking.id.partner[id] -> Idle(id);

T_Alert(id) =
case {
 chan[partner[id]]!=id:
 //partner calls others before id can establish connection
 partnerBusy.id.partner[id] -> Idle(id)

 chan[partner[id]]==id:
 //partner is still calling id -> pickup
 partnerReady.id.partner[id] -> T_Pickup(id)

 default:
 // errors
 errorT_Alert.id -> ErrorState(id)
};

T_Pickup(id) =
[chan[partner[id]]==id]
 pickup.id.partner[id]{
 dev[id]=0; connect[partner[id]]=1; connect[id]=1;
 } -> T_Connected(id)
[]
[chan[partner[id]]==NIL || chan[partner[id]]!=id]
 Idle(id);

T_Connected(id) =
[connect[id]==1 && connect[partner[id]]==1]
 keepTalking.partner[id].id -> T_Connected(id)
[]
stopTalking.partner[id].id -> Idle(id)
[]
tau{connect[id]=0;connect[partner[id]]=0;} ->
 stopTalking.partner[id].id -> Idle(id);

ErrorState(id) =
error -> Stop; // an error happened

At the beginning of the model, we define global constants and variables.
The global constant NoOfChannels is equal to the number of users plus 2 (i.e.,
4), so that each user has its own local channel and there are two additional
channels, which are left for future work on this model (e.g., one outgoing
trunk and one incoming trunk). The constant NIL is equal to the number of
users plus 1 (i.e., 3), and it designates the inactive channel. When an element
of the array chan (a shorthand for channel) is assigned the value NIL, it means
that the corresponding channel is inactive. The constant INVALID_USER is
equal to the number of users (i.e., 2), and it represents the upper bound on the
variable id, which holds an index of a user (id must be less than this constant).

Next, we define global variables, which we classify as the model variables
and the verification variables. The model variables include the arrays partner,
chan, connect, dev, CFU, CFB, RBWF, lastCall, OCS, ODS, and TCS, which are
of size NoOfChannels. The verification variables are the arrays dailNum and
justDail, which are of size NoOfUsers. The conventions for the possible values
of these variables are as follows:

361Test and Verification

The value partner[i] = k means that the user i is connecting with the user
k, whereas the value partner[i] = NIL means that the user i is free (i.e.,
in the state Idle). The value chan[i] = NIL means no incoming call for
the user i, whereas the value chan[i] = k means the user k is calling
the user i. The value connect[i] = 1 means that the user i is connected
to other side, whereas the value connect[i] = 0 means that it is not con-
nected. The value dev[i] = 0 means that a device of the user i is busy,
whereas the value dev[i] = 1 means that this device is ready.

The value CFU[i] = NIL means that the user i not subscribed to the CFU
service, whereas the value CFU[i] = k means that a call to the user i
shall be unconditionally forwarded to the user k. The value CFB[i] =
NIL means that the user i has not subscribed to the CFB service,
whereas the value CFB[i] = k means that a call to the user i shall be
forwarded to the user k, if the user i is busy. The value RBWF[i] = 0
means that the user i has not subscribed to RBWF service, whereas
the value RBWF[i] = 1 means that the user i shall ring back the user
lastCall[i] when the user i becomes free. The value lastCall[i] = NIL
means there is no last call for the user i, whereas the value lastCall[i] =
k means the last call to the user i (when the user i was busy) was from
the user k.

Generally, a screen (block) list can be implemented using a hash table.
For simplicity, here we use a list of size one, i.e., just one screened (blocked)
number per user, which is quite sufficient for modeling and verification pur-
poses. Thus, the arrays OCS, ODS, and TCS, contain these minimal one-
element lists for each user. The value OCS[i] = NIL means that the user i is
not subscribed to the OCS service, whereas the value OCS[i] = k means that
the user k is screened. The conventions for ODS[i] and TCS[i] are the same as
for OCS[i]. The difference between these three services is the moment when
the screening takes place (i.e., in which call-processing state).

The conventions for the verification variables are as follows: The value
dialNum[i] = k means that the user i dialed the number k (originally), whereas
the value dialNum[i] = NIL means there is no such number. The value
justDial[i] = 0 means that the user i did not just dial a number, whereas the
value justDial[i] = 1 means the user i did just dial a number.

Next, we define the processes in the model. The process System behaves
as the process User, which, in turn, is defined as a concurrent execution of
NoOfUser (i.e., 2) instances of the process Idle. In fact, the process Idle models
the initial state of each user. Further on in the model, we define an individual
process for each possible call-processing state of the user. Besides Idle these
processes are Answer, Dialing, Calling, Callbusy, CallUnobtainable, O_Alert,
O_Connected, T_Alert, T_Pickup, T_Connected, and ErrorState. The single
parameter of all these processes is the user identification (id), where id is an
element of the set {0..NoOfUsers–1}, i.e., {0, 1}. In the following text, we briefly
describe each process in turn.

362 Communication Protocol Engineering

The process Idle first initializes model variables according to the conven-
tions introduced above, in particular it sets chan[id] to NIL, partner[id] to NIL,
dev[id] to 1, connect[id] to 0, and dialNum[id] to NIL. Further on, Idle nondeter-
ministically selects one of the three possible activities (by using the external
choice operator []). The guard for the first activity is that there is no incoming
call to the user id (chan[id] == NIL), and in this case, Idle initiates the outgo-
ing call (by setting dev[id] to 0), and transforms into the process Dialing. The
guard for the second activity is that there is an incoming call to the user
id, and, in this case, Idle accepts this incoming call (by setting partner[id] to
chan[id] and dev[id] to 0), and transforms into the process Alert. The guard for
the third activity is that the user id is subscribed to RBWF service and that
there was an incoming call to the user id while it was busy (RBWF[id] == 1
&& lastCall[id] != NIL), and, in this case, Idle checks whether the initiator of
that incoming call is in the ODS screen list. If that initiator is not in the ODS
list (lastCall[id] != ODS[id]), Idle initiates the ring back (by setting partner[id]
to lastCall[id] and lastCall[id] to NIL) and transforms into the process Calling;
otherwise it ignores this situation and continues to behave as the same pro-
cess Idle.

The process Answer performs one of three possible cases. If the calling user
(partner[id]) is in the TCS list of the user id (partner[id] == TCS[id]), Answer
ignores this incoming call, and if the element chan[partner[id]] is set to id, it
resets it to NIL, and ultimately transforms into the process Idle. Otherwise, if
the calling user is still waiting for the user id to answer (chan[partner[id]] ==
id), Answer transforms into the process T_Alert. Otherwise (in the third case),
Answer transforms into the process Idle.

The process Dialing nondeterministically selects one of the two possible
activities. In the first activity, Dialing stops the outgoing call of the user id and
transforms into the process Idle (this activity corresponds to the case when
the user id, for some reason, quits the call). In the second activity, Dialing
nondeterministically selects the called user (the variable callId). If this user
is in the ODS list of the user id (callId == ODS[id]), Dialing forbids the call
and transforms it to the process Idle. Otherwise (if the call is not screened),
Dialing sets partner[id] to callId and dialNum[id] to callId, and transforms into
the process Calling.

The process Calling first checks whether the called user (partner[id]) is in
the ODS list of the user id, and if it is in this list, then it forbids the call
and transforms into the process Idle. Otherwise (if the call is not screened),
Calling performs one of the seven possible cases. The first case is when the
user id calls itself, then Calling ignores the call and transforms into the pro-
cess CallBusy. The second case is when the called user is invalid, then Calling
ignores the call and transforms into the process CallUnobtainable. The third
case is when the called user is subscribed to CFU service, then Calling sets
partner[id] to CFU[partner[id]] and continues to behave as the process Calling.
The fourth case is when the channel of the called user is free, then Calling
sets chan[partner[id]] to id and chan[id] to partner[id], and transforms into the

363Test and Verification

process O_Alert. The fifth case is when the called user is busy and is not
subscribed to CFB service, then if the called user is subscribed to RBWF
service, Calling sets lastCall[partner[id]] to id and transforms into the process
CallBusy, else (if the called user is not subscribed to RBWF service), Calling
just transforms into the process CallBusy. The sixth case is when the called
user is busy and it is subscribed to CFB service, then Calling sets partner[id] to
CFB[partner[id]] and continues to behave as the process Calling. The seventh
case is the default case (none of the previous cases, i.e., some error occurred),
then Calling transforms into the process ErrorState.

The process CallBusy notifies the user id that called user is busy (by the
event soundBusy.id) and transforms into the process Idle. Similarly, the pro-
cess CallUnobtainable notifies the user id that the called user is invalid (by the
event soundInvalid.id) and transforms into the process Idle.

The process O_Alert nondeterministically selects one of the four possible
activities. The guard for the first activity is that the user id was still calling
the same partner (chan[id] == partner[id]) and that partner answered the call
(connect[id] == 1), and in this case O_Alert connects the call (by the event
callConnect.id.partner[id]) and transforms into the process O_Connected. The
guard for the second activity is that the user id was still calling the same
partner (chan[id] == partner[id]), and that the partner did not answer the call
(connect[id] == 0); in this case O_Alert quits the call (by the event ringOut.id),
sets chan[partner[id]] to NIL and chan[id] to NIL, and transforms into the pro-
cess Idle. The guard for the third activity is that the user id quit the call (chan[id]
!= partner[id]), and in this case O_Alert indicates that the call was stopped and
transformed into the process Idle. The guard for the fourth case is that error
occurred (connect[id] is neither 0 nor 1), and in this case O_Alert indicates that an
error occurred and transformed the call into the process ErrorState.

The process O_Connected nondeterministically selects one of the three
possible activities. The guard for the first activity is that both calling and
called users are still connected, and in this case O_Connected indicates that
the conversation phase is ongoing (keepTalking.id.partner[id]), and continues
to behave as the process O_Connected. In the second activity, O_Connected
disconnects both users (by setting connect[id] to 0 and connect[partner[id]] to
0), indicates the end of the conversation phase (stopTalking.id.partner[id]) and
transforms into the process Idle—this activity corresponds to the case when
the calling user id ends the call first. The guard for the third activity is at
the end of the conversation phase (stopTalking.id.partner[id]), which has been
indicated by the called user, and, in this case, O_Connected transforms into
the process Idle.

The process T_Alert performs one of three possible cases. The first case is
when the called user is busy, then T_Alert indicates that partner is busy (part-
nerBusy.id.partner[id]) and transforms into the process Idle. The second case is
when the user id is still calling the same partner[id] and the called user is not
busy, then T_Alert indicates that partner is ready (partnerReady.id.partner[id])
and transforms into the process T_Pickup. The third case is the default case

364 Communication Protocol Engineering

when some error occurs, then T_Alert indicates the error and transforms into
the process ErrorState.

The process T_Pickup nondeterministically selects one of the two possible
activities. The guard for the first activity is that the user id is still calling the
same partner[id], and in this case T_Pickup indicates the partner’s answer, sets
dev[id] to 0, connect[partner[id]] to 1, and connect[id] to 1, and transforms into
the process T_Connected. The guard for the second activity is that either no
incoming call is present at the called side (chan[partner[id]] == NIL) or that the
incoming call at the called side is not from the user id (chan[partner[id]] != id),
and, in this case, T_Pickup transforms into the process Idle.

The process T_Connected nondeterministically selects one of the three
possible activities. The guard for the first activity is that both users are still
connected, then T_Connected indicates that the conversation phase is still
ongoing (keepTalking.partner[id].id), and continues to behave as the process
T_Connected. The guard for the second activity is the calling user id has dis-
connected the call (stopTalking.partner[id].id), then T_Connected transforms
into the process Idle. The third activity is when the called user decides to dis-
connect the call, then T_Connected sets connect[id] to 0 and connect[partner[id]]
to 0, indicates the end of the conversation phase (stopTalking.partner[id].id),
and transforms into the process Idle.

The process ErrorSate just indicates that an error occurred and stops execu-
tion by transforming into the process Stop. Next, we define various system
properties.

Property no. 1 states that a connection between two users is possible. We
use the event pickup.1.0 (user 1 picks up the phone dialed by user 0) to check
this property. The assertion below claims that user 1 will never pick up the
phone dialed by user 0. PAT finds this assertion to be invalid and produces
a lengthy witness trace, demonstrating that user 1 will pick up the phone
dialed by user 0, i.e., that connection between 0 and 1 is possible.

#assert System |= [](!pickup.1.0);

Property no. 2 states that if a user dials itself, then it will receive the engaged
tone before it returns to the idle state. We use the events dial.0.0 (the user 0
dials themselves), soundBusy.0 (user 0 hears a busy tone, i.e., is engaged), and
idle.0 (user 0 goes back to the Idle state) to check this property. The assertion
below claims that if user 0 dials itself, then they must hear an engaged tone
before returning to idle. As expected, the PAT finds this assertion to be valid.

#assert System |= [](dial.0.0 -> (soundBusy.0 R (!idle.0))) ;

Property no. 3 states that either a busy tone or a ringing tone will directly
follow calling. We use the events makeCall.0 (user 0 makes an outgoing call),
soundBusy.0 (user 0 hears busy tone), ringPartner.0 (user 0 waits for a partner
to answer the call, thus hearing the ringing tone), and soundInvalid.0 (user 0
dials an invalid number) to check this property. The assertion below claims

365Test and Verification

that if user 0 makes a call, it must hear either a busy or ringing tone before
any next major event (idle.0, callConnect.0, ringOut.0). Note that the attribute
directly in the property specification is not equal to X (next) in LTL logic,
because there are other events in between. Thus, we encode the attribute
directly as before any next major event. As expected, the PAT finds this
assertion to be valid.

#assert System |= [](makeCall.0 -> (soundBusy.0 || ringPartner.0 ||
soundInvalid.0) R (!idle.0 && !callConnect.0 && !ringOut.0));

Property no. 4 states that the dialed number is the same as the number
of the connection attempt. We use the condition dialed01 (user 0 has dialed
user 1) and the event doCall.0.1 (user 0 attempts to call user 1) to check this
property. The assertion below claims that in all traces, if user 0 attempts to
call user 1, then user 0 must have dialed user 1. As expected, the PAT finds
this assertion to be valid.

#define dialed01 (dialNum[0]==1);
#assert System |= [](doCall.0.1 -> dialed01);

Property no. 5 states that if the user dials a busy number, then either
the busy line is cleared before a call is attempted, or the user will hear the
engaged (busy) tone before returning to the idle state.

We use the event dial.0.1 (user 0 dials user 1) and the condition rcvReady
(user 1 is ready to receive a call), as well as the events makeCall.0 (user 0 starts
a call), soundBusy.0 (user 0 hears the busy tone), and idle.0 (user 0 goes back
to Idle state) to check this property. The assertion below claims that if user
0 dials user 1, then either user 1 is ready to receive a call before user 0 starts
making a call, or user 0 will hear busy signal before it goes back to Idle state.
As expected, the PAT finds this assertion to be valid.

#define rcvReady (chan[partner[0]] == NIL);
#assert System |= [] (dial.0.1 -> ((rcvReady R (!makeCall.0))
 || (soundBusy.0 R (!idle.0))));

Property no. 6 states that a user cannot make a call without having just
dialed a number. Recall that the flag justDial[id] is set to 1 immediately after
event dial.id.*, and is cleared just after the next makeCall.id event. We use the
conditions justDialed0 (user 0 just dialed a number) and justDialed1 (user 1
just dialed a number), as well as the events makeCall.0 and makeCall.1 to check
this property. The assertion below claims that if user 0 starts making a call,
then the event dial.0.* has just happened, as indicated by the condition just-
Dialed0, and the same holds for the user 1. As expected, the PAT finds this
assertion to be valid.

#define justDialed0 justDial[0]==1;
#define justDialed1 justDial[1]==1;
#assert System |= []((makeCall.0 -> justDialed0) &&
 (makeCall.1 -> justDialed1));

366 Communication Protocol Engineering

Property no. 7 describes the CFU (Call Forward Unconditional) service. To
verify this property, we initialize systemCFU by setting CFU[1]=2 and per-
form verification on that system.

The first assertion below claims that if CFU[1]==2, then in all traces, if
user 0 dials user 1 (the event dial.0.1), then user 0 will call user 2 (the event
docall.0.2) before user 0 can go back to the state Idle (the event idle.0), see the
sequence diagram in the Figure 5.11. The second assertion below claims that
in all the traces, user 0 will not connect to user 1. As expected, the PAT finds
both assertions to be valid.

SystemCFU = initCFU{CFU[1]=2;} -> System();
#assert SystemCFU |= [] (dial.0.1 -> (doCall.0.2 R (!idle.0)));
#assert SystemCFU |= ([] !callConnect.0.1);

Property no. 8 describes the CFB (Call Forward when Busy) service. To ver-
ify this property, we initialize a system with CFB[1]=2. The assertion below
claims that in all the traces, if user 0 dials user 1 (the event dial.0.1) and user
1 is busy (the condition Busy1) then user 0 will not go back to the state idle
before it has dialed user 2. Since the system is symmetric, similar assertions
hold for other users. As expected, the PAT finds this assertion to be valid.

T0 TSS T2

Hook off

Dial tone

Dial(1)

RingRinging tone

Answer

Hook on

Hook on

dail.0.1

doCall.0.2

Talk
phase

idle.0

FIGURE 5.11
Sequence diagram for property no. 7.

367Test and Verification

SystemCFB = initCFB{CFB[1]=2;} -> System();
#define Busy1 chan[1]!=NIL && chan[1]!=0;
#assert SystemCFB |= []((dial.0.1 && Busy1)->
 (doCall.0.2 R (!idle.0)));

Property no. 9 describes the OCS (Originating Call Screening) service.
To verify this property, we initialize a system with OCS[0]=1. The assertion
below claims that, in such a system, the event doCall.0.1 (user 0 calls user 1)
will never happen, see the sequence diagram in the Figure 5.12. Since the
system is symmetric, similar assertions hold for other users. As expected,
the PAT finds this assertion to be valid.

SystemOCS = initOCS{OCS[0]=1;} -> System();
#assert SystemOCS |= []!doCall.0.1;

Property no. 10 describes the ODS (Originating Dial Screening) service.
To verify this property, we initialize a system with ODS[0]=1. The assertion
below claims that, in such a system, the event dial.0.1 (user 0 dials user 1) will
never happen. As expected, the PAT finds this assertion to be valid.

SystemODS = initODS{ODS[0]=1;} -> System();
#assert SystemODS |= []!dial.0.1;

Property no. 11 describes the TCS (Terminating Call Screening) service. To
verify this property, we initialize a system with TCS[0]=1. The assertion below
claims that in such a system, the event t_alert.0.1 (user 0 responses to a call

T0 TSS T1

Hook off

Dial tone

Dial (1)

OCS[0]=1

forbidCall.0

idle.0

Dook off

FIGURE 5.12
Sequence diagram for property no. 9.

368 Communication Protocol Engineering

from user 1) will never happen. Since the system is symmetric, similar asser-
tions hold for other users. As expected, the PAT finds this assertion to be valid.

SystemTCS = initTCS{TCS[0]=1;} -> System();
#assert SystemTCS |= []!t_alert.0.1;

Property no. 12 describes the RBWF (Ring Back When Free) service. To
verify this property, we initialize a system with RBWF[1]=1. Next, we define
the supplementary condition dial10, meaning that user 1 must have dialed
user 0. The first assertion below claims that, in such a system, the event ring-
back.1.0 (user 1 rings back user 0) will never happen. As expected, the PAT
finds that this assertion is not valid, and produces a lengthy counterexam-
ple. The second assertion below claims that whenever dial.0.1 happens, if
user 1 calls user 0, then user 1 must have dialed user 0 (the condition dial10).
As expected, the PAT finds that this assertion is not valid, and produces a
lengthy counterexample. The second assertion is invalid because user 1 may
make a simple call to user 0 (the event dial.0.1) and not because user 1 is using
the ring back service (the event ringback.1.0).

SystemRBWF = initRBWF{RBWF[1]=1;} -> System();
#define dialed10 dialNum[1]==0;
#assert SystemRBWF |= [] !ringback.1.0;
#assert SystemRBWF |= [](dial.0.1 -> [](callConnect.1.0 -> dialed10));

5.4 Statistical Usage Testing

Statistical usage testing, also referred to as statistical testing or behavioral test-
ing, is the main industry standard for quality assessment of embedded sys-
tems today. As its name suggests, the goal of statistical usage testing is to test
the product under conditions that it is expected to face in its real exploitation.
The description of these conditions is given with a set of the product’s opera-
tional profiles. Two key ideas are behind the concept of statistical usage test-
ing. The first addresses the focus of testing, whereas the second addresses
the quality of the final product.

We start with the genesis of the first of these two ideas. That any nontrivial
product requires a vast amount of test cases for its verification should be
obvious by now. The order of this amount can very easily go up to hundreds
of thousands of test cases or more. Because some of the product’s work-
ing modes (also referred to as states) are more frequently used than others,
selecting a number of associated test cases accordingly makes sense, espe-
cially if we want to limit the size of the test suite.

This reasoning led to the concept of the operational profile. Remember
that the motivation for its introduction was to respect the usage frequencies
of individual operational states. Actually, because product state transitions

369Test and Verification

are triggered by corresponding events (signals, messages), the state usage
frequencies are equal to the frequencies of these events. Furthermore, if we
want to make our considerations independent of the total number of usages
(tests), introducing the probabilities of events is convenient. (In this context,
we define probability as the number of real occurrences of the event divided
by the total number of its possible occurrences.)

Mathematically, the operational profile is a Markov process. It can be mod-
eled as a special kind of graph whose vertices are product states, and whose
arcs are state transitions triggered by the corresponding events of the given
probability. The operational profile is essentially an FSM with given prob-
abilities of its state transitions. Of course, the sum of probabilities of all out-
going state transitions for a single state must be equal to 1 (100%).

The second idea behind the concept of statistical usage testing is to use the
product’s reliability as the main measure of its quality. The genesis of this
idea is that the traditional software engineering measures of product quality
are the number of remaining bugs and the test coverage of the implementation
under test that was achieved through its testing. However, achieving good
results with respect to these two measures is not sufficient for assuring the
high quality of the product.

For example, consider the following paradox: Imagine a software product
that has a single bug that causes a system crash every time the software is
started. Although the product has the excellent value of the metric number of
remaining bugs (only 1 bug remaining), it is completely unreliable and there-
fore practically unusable. In real life, we are not interested in how good the
product is with respect to the number of remaining bugs and test coverage.
Rather, we are primarily interested in its reliability.

Of course, we cannot measure the product reliability directly, but we can
estimate this from the number of test cases that it has successfully passed.
More precisely, in real engineering practice we have the opposite problem.
We want to calculate the number of test cases needed for the desired product
reliability, and for the given level of risk we are ready to accept. We can do
this by solving the following equation:

 B RN=

where
B is an upper bound on the probability that the model assertions are

erroneous.
R is a lower bound on the estimate of product reliability.
N is the number of random test cases that the product must successfully

pass.

For example, achieving even moderate reliability of R = 0.999 with B = 0.007
would require the successful pass of N = 5,000 random test cases. Similarly,

370 Communication Protocol Engineering

achieving R = 0.9999 with B = 0.007 requires N = 50,000 random test cases,
and achieving R = 0.99999 with B = 0.007 requires N = 500,000 random test
cases. Alternatively, we can run a smaller number of test cases on more prod-
uct samples in parallel. For example, instead of running N = 500,000 random
test cases on a single sample, we can run N = 50,000 random test cases on 10
product samples simultaneously.

By considering these examples, we can deduce two conclusions. The first
is that conducting statistical usage testing of the final product may require a
significant amount of time. The order of magnitude of this amount is calendar
weeks or even months, depending on the characteristics of the concrete prod-
uct. The second conclusion is that we definitely need tools that automatically
generate and execute test suites of that size. We simply cannot do this by hand.

An example of the automated working environment for generating sta-
tistical test suites is described by Popovic and Velikic (2005). This working
environment consists of two parts, namely, the front-end and the back-end
(Figure 5.13). The front-end is the Generic Modeling Environment (GME)
developed at the Institute for Software Integrated Systems at Vanderbilt
University. GME is a configurable toolkit for creating domain-specific mod-
eling and program synthesis environments.

Generally, we configure GME by creating metamodels that specify the mod-
eling language, and therefore the modeling paradigm, of the application domain.
Once we create a metamodel, we must interpret and register it by GME to
create a new working environment for making domain-specific models.
We normally use such working environments for building domain-specific
models and for storing them in a model database. The domain-specific mod-
els are essentially graphs, and we render them by dragging and dropping
the graphical symbols on the working sheet that is maintained by the GME
graphical user interface (GUI). The symbols in GME have their attributes,
preferences, and properties.

The particular metamodel that specifies the language (and the para-
digm) for modeling operational profiles is represented with the metaclass
OperationalProfile in Figure 5.13. Each concrete operational profile model
(represented with the class OpProfile in Figure 5.13) is created by using the
operational profile modeling paradigm (the class OpProfile is derived from
the class OperationalProfile). Creating operational profile models by using this
paradigm is quite easy.

The modeling language for rendering operational profile models has a sin-
gle symbol, State. This symbol has a single attribute, which is the name of the
state. Normally, we just drag and drop the state symbol icon to the working
sheet, click on the name field, and type in its name. Each of the state symbols
we place on the working sheet represents a single working state (mode) of the
product that we want to test.

Rendering state transitions requires a little more work. To render a state
transition, we select a connecting tool (symbolized by the operator “+”),
click on the source state, and click on the destination state. When the state

371Test and Verification

transition is in place, we enter the particular data for its attributes. A state
transition has the following three attributes:

• EventClass specifies the class of events that trigger the state transition.
• Output specifies the expected output of the state transition.
• Probability specifies the probability of the state transition (in percent).

The most frequently used format of the attribute EventClass definition is
as follows:

E(a,b,c...);->a := A1/A2/...; b := B1/B2/...; c := C1/C2/...

The event class definition above consists of two parts. The first one is on
the left-hand side of the substring “->” and is referred to as the event class.
The event class E(a,b,c…); is a string with an arbitrary number of parameters
(substrings), labeled here as a, b, c, and so on. The second part of the defini-
tion is on the right-hand side of the substring “->”. It provides definitions of
possible replacements (which are also strings) for each event class parameter.
As indicated above, the parameter a may be replaced with the string A1 or
A2 and so on.

A particular event (also referred to as the constant event) is an event class
without parameters. We may also think about it as the event class with a
single member. Particular events are generated from the event class by sub-
stituting each event class parameter with the randomly selected replacement
from the list of possible replacements. All replacements have equal selec-
tion probabilities. Examples of particular events for the event class definition
given above are E(A1,B1,C1…), E(A1,B1,C2…), E(A1, B2, C1…), E(A2, B1, C1…), and
so on.

The event class format shown above is feasible as far as the number of the
possible values of event class parameters is relatively small. But when the
number of the possible values is large, writing them explicitly becomes
impractical, if not impossible. For example, consider the integer parameter
whose possible values are from the interval [0,10000). Writing all 10,000 of its
possible values would be really annoying. To make it easier for the user, the
working environment supports the following two intrinsic functions:

• randInt<i,j> randomly selects an integer number from the interval
[i,j).

• randFloat<x,y> randomly selects a float number from the interval
[x,y).

When we place and name all state symbols, interconnect them with state
transitions, and enter the data for attributes of all state transitions, the opera-
tional profile model is finished, and we can store it in a file (or a database).

372 Communication Protocol Engineering

This is exactly the main purpose of the working environment front-end
(Figure 5.13). Of course, later we may modify the model by adding or delet-
ing states or state transitions, as well as by changing the data for attributes
of state transitions, and store it again. All these manipulations are supported
by the GME’s GUI.

The working environment back-end consists of two parts. The first is the
operational profile model interpreter (represented by the class ModelInterpreter
in Figure 5.13), which is registered to GME. The second part of the back-end
is a separate program written in Java, which is named Generic Test Case
Generator (GTCG). The main task of the model interpreter is to transform
the operational profile model to the operational profile specification, a simple
text file of the well-defined format (represented with the class OpProfileSpec
in Figure 5.13). Alternately, the main task of GTCG is to automatically gener-
ate the test suite to be used for statistical usage testing and the correspond-
ing statistical report (represented with the classes TestSuite and Statistics in
Figure 5.13).

The operational profile model interpreter is a Java package that is regis-
tered to GME with the program JavaCompRegister. The package comprises
the following three classes:

• OPBONComponent: the interface between GME and the model
interpreter

• OPState: the state interpreter
• OPTransition: the state transition interpreter

The model interpreter behaves similarly to traditional plug-in components
of GUIs. We activate it by a click on the corresponding model interpreter
icon. As the result of this activation, GME calls the model interpreter inter-
face function invokeEx, which, in turn, creates temporary container objects
for state names, event classes, state transition probabilities, event class defini-
tions, and next state definitions.

Next, the model interpretation is performed by traversing the multigraph
architecture of the model in focus. While visiting individual states and state
transitions, GME calls the function traverseChildren of the classes OPState
and OPTransition, respectively. These two functions effectively interpret the
model by reading the data of the attributes and filling the above-mentioned
container objects. At the end of the interpretation, the content of these con-
tainer objects is saved into the operational profile specification file named
opspec.txt.

373Test and Verification

«f
ra

m
ew

or
k»

G
M

E

«m
et

ac
la

ss
»

O
pe

ra
tio

na
lP

ro
fil

e
M

od
el

In
te

rp
re

te
rO

pP
ro

fil
eS

pe
c

G
T

C
G

T
es

tS
ui

te

St
at

ist
ic

s

O
pP

ro
fil

e

1

1

1

1

*
1

1
*

Fr
on

t-
En

d

Ba
ck

-E
nd

*
1

1

*

1

*

FI
G

U
R

E
5.

13
W

or
ki

ng
 e

nv
ir

on
m

en
t f

or
 g

en
er

at
in

g
st

at
is

ti
ca

l t
es

t s
u

it
es

.

374 Communication Protocol Engineering

The automatic test case generator GTCG uses the following input items:

• The operational profile data from the file opspec.txt.
• The initial operational profile state: Most frequently, the initial state

is fixed, but sometimes it may be selectable.
• The number of test cases to be generated: This item determines the

size of the test suite. As mentioned earlier, it depends on the product
reliability we want to guarantee.

• The test case length, defined as the number of test steps in a test case.
A test step is the particular event that is randomly selected from the
given event class.

The operational profile specification file opspec.txt consists of the following
four parts:

• Part I defines the number of states (M) and the number of event
classes (N).

• Part II is a matrix of state transition probabilities. The matrix ele-
ment Pij defines the probability of the event class number j in the
operational profile state number i.

• Part III is a matrix of event class definitions. The matrix element Eij
defines the event class number j in the operational profile state num-
ber i. Most frequently, Eij is the same in all states (Ei1 = Ei2 = …EiM).

• Part IV is a matrix of next states. The matrix element Tij defines the
next state number (index) for the event class number j in the opera-
tional profile state number i.

GTCG provides the following two files at its output:

• testcases.txt contains the test suite to be used for statistical usage
testing.

• statistics.txt contains the corresponding statistical report, which is
the important measure of the generated test suite quality.

The file testcases.txt contains the series of test cases. Each test case starts
with its number followed by the column character ‘:’ (e.g., 0:, 1:, 2:). The
next line contains the test bed setup command TestBox.initialize(), which
essentially initializes the hardware connected to product inputs and out-
puts for the purpose of automatic testing. The test bed setup command
is followed by the series of lines that contain particular events randomly
selected from the associated event classes (the number of these lines is
determined by the given test case length). The event class itself is selected

375Test and Verification

randomly from the distribution defined by the operational profile data
(opspec.txt, Part II).

The file statistics.txt consists of two parts. The first part contains a series
of lines, one per operational profile state. Each of these lines indicates the
number of occurrences of the corresponding operational profile state (ci), the
discrepancy between the observed and expected frequency of state occur-
rence (di), and the significance level (SLi). The significance level is actually the
probability that the discrepancies as large as those observed would occur
with random variation. The second part of the statistical report shows the
mean value of the discrepancy and the mean value of the significance value.

A detailed explanation of the statistical measures mentioned above is
outside the scope of this book but can be found elsewhere (e.g., Woit, 1994).
Practically, it is enough to remember the following guides:

• A significance level greater than or equal to 20% is considered large.
This result means that the test suite is of sufficient quality and we
may use it for statistical usage testing.

• A significance level less than or equal to 1% is considered small. This
result means that the test suite quality is poor and it should not be
used for statistical usage testing.

The statistical usage testing methodology governs the usage of tools that
create the working environment. This methodology subsumes the following
steps:

• Make the operational profile model of the product (implementation
under test).

• Interpret the model.
• Determine the desired level of reliability.
• Calculate the required size of the test suite (the number of test cases).
• Generate the test suite.
• Check the test suite quality. If the quality is not acceptable, return to

the previous step.
• Execute the test suite. If all test cases successfully pass, the final ver-

dict is pass. In that case, we can claim that product reliability is at
least at the level of the desired reliability. If at least one test case fails,
the final verdict is fail and the product is considered not usable, at
least not at the desired level of reliability.

This methodology can be used for testing both parts of the products and
their complete forms. We will illustrate such applications by the following
two examples. The implementation under test in the first example is the SIP

376 Communication Protocol Engineering

invite client transaction. We start with modeling its operational profile in
accordance with the methodology outlined above (Figure 5.14).

The operational profile shown in Figure 5.14 has five working states,
namely, Initial, Calling, Proceeding, Completed, and Terminated. At the same
time, it has nine event classes that are intentionally labeled with names that
resemble the original specification (see RFC 3261, Figure 5). The definitions
of the event classes (not shown in Figure 5.14) are the following:

• The event class labeled INVITE is defined as INVITE (this class has
a single member).

• The event class labeled 300–699 is defined as
M3->M3:=randInt<300,700>;

• The event class labeled TA is defined as TA (original RFC 3261 label:
Timer A fires).

• The event class labeled 1XX is defined as M1->M1:=
randInt<100,200>;

• The event class labeled TB or TransportERR is defined as E->E:=TB/
TransportERR;

• The event class labeled 2XX is defined as M2->M2:=
randInt<200,300>;

• The event class labeled TD is defined as TD (original RFC 3261 label:
Timer D fires).

• The event class labeled TransportERR is defined as TransportERR
(constant event).

• The event class labeled End is defined as End (added because the
sum of outgoing state transition probabilities for each state must be
equal to 100%).

The probabilities of individual state transitions are shown in Figure 5.14.
Note that outgoing state transition probabilities add up to 100% for each
state (an essential request for a Markov process). Generally, we set the state
transition probabilities according to what we expect the product will face in
its real exploitation. Of course, we should use statistical data available for
some similar product or the previous version of the same product whenever
we can.

Next, we start the model interpreter, which transforms the model into the
operational profile specification file opspec.txt. When writing GME model
interpreters, we should make no assumptions about the order in which the
model is traversed. For example, assuming that individual states and state
transitions are going to be visited in the same order in which they were origi-
nally entered would be a mistake because this is not going to happen. The
best assumption we can make in this respect is to assume a completely ran-
dom visiting order.

377Test and Verification

Based on this assumption, the model interpreter simply assigns identifica-
tions to states and state transitions according to the order they are visited.
The particular assignment of identifications to operational profile states in
this example is the following:

• The state Terminated is assigned the identification 0.
• The state Calling is assigned the identification 1.

Initial

Calling

Proceeding

Completed

Terminated

1XX, P=20%

300–699, P=34%

TD, P=34%

INVITE, P=100%

TA, P=20%

1XX, P=33%

300–699, P=33%

300–699, P=20%

End, P=100%

2XX, P=33%

TB or TransportERR, P=20%
2XX, P=20%

TransportERR, P=33%

FIGURE 5.14
SIP INVITE client transaction operational profile.

378 Communication Protocol Engineering

• The state Proceeding is assigned the identification 2.
• The state Completed is assigned the identification 3.
• The state Initial is assigned the identification 4.

The particular assignment of identifications to operational profile event
classes is the following:

• The event class E is assigned the identification 0.
• The event class M1 is assigned the identification 1.
• The event class TA is assigned the identification 2.
• The event class INVITE is assigned the identification 3.
• The event class TransportERR is assigned the identification 4.
• The event class M2 is assigned the identification 5.
• The event class M3 is assigned the identification 6.
• The event class TD is assigned the identification 7.
• The event class End is assigned the identification 8.

The content of the file opspec.txt is the following:

5 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.2 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0

0.0 0.33 0.0 0.0 0.0 0.33 0.34 0.0 0.0

0.0 0.0 0.0 0.0 0.33 0.0 0.33 0.34 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

null null null null null null null null End
E->E:=TB/TransportERR; M1->M1:=randInt<100,200>; TA null null
 M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null
null M1->M1:=randInt<100,200>; null null null
 M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null
null null null null TransportERR null M3->M3:=randInt<300,700>; TD null
null null null INVITE null null null null null

0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 3 0 0
0 2 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0 0
0 0 0 1 0 0 0 0 0

NOT E: The specifications of event classes for the states 1, 2, and 3 (Calling,
Proceeding, and Completed) were too long to fit into a single line. Therefore,
definitions of event classes for each of these states spans across two lines (the
second starts at the next level of indentation).

379Test and Verification

Next, we activate GTCG with the script that specifies the starting state
identification 4 (Initial), the number of test cases that is equal to 1,000,
and the test case length that is equal to 4 (this means 4 steps, i.e., par-
ticular events, per test case). Selection of this particular test case length
requires a short comment. This value is exactly the length of the short-
est path across all five states, starting from the state Initial (path Initial–
Calling–Proceeding–Completed–Terminated, with five states and four state
transitions). Of course, other paths of length 4 are possible and will be
generated.

As already mentioned, the GTCG creates two output files, testcases.txt and
statistics.txt. According to the methodology outlined above, we first check
the quality of the generated test suite by inspecting the file statistics.txt. Its
content is the following:

Calculating statistics

i=0 ci=1104 di=0.0 SLi=1.0
i=1 ci=1237 di=2.470493128536783 SLi=0.0
i=2 ci=291 di=0.7498208280500565 SLi=0.7014229616104999
i=3 ci=368 di=0.1864198248469353 SLi=0.910066579962014
i=4 ci=1000 di=0.0 SLi=1.0
Mean d=0.6813467562867549
Mean SL=0.7222979083145027

The average significance level SL is equal to 72% (0.72). Because this number
is greater than the required 20%, we conclude that the quality of the gener-
ated test suite is sufficient, and that we can use it for statistical usage testing.

Next, we look more closely at a couple of test cases from the beginning of
the file testcases.txt to get a better feeling of the nature of statistical test cases.
The relevant comments are interleaved with the test cases:

0:
TestBox.initialize();
INVITE
443
TransportERR
End

Test case number 0: After the initial INVITE, GTCG randomly selects the
event class labeled 300–699 and the particular event 443 from that class. This
action causes the state to transition to the state Completed (Figure 5.14). Next,
GTCG randomly selects the event TransportERR, thus causing the state to
transition to the state Terminated. End is the only possible event in that state.

1:
TestBox.initialize();
INVITE
TA
586
TD

380 Communication Protocol Engineering

Test case number 1: After the initial INVITE, GTCG randomly selects the
event class TA (Timer A fires). The current state remains in the state Calling
(Figure 5.14). Next, GTCG randomly selects the event 586, thus causing the state
transition to the state Completed. Finally, GTCG randomly selects the event TD
(Timer D fires), which causes the state transition to the state Terminated.

2:
TestBox.initialize();
INVITE
190
267
End

Test case number 2: After the initial INVITE, GTCG randomly selects the
event class 1XX and the particular event 190. This causes the state transition
to the state Proceeding (Figure 5.14). Next, GTCG randomly selects the event 267,
thus causing the state transition to the state Terminated. The next event must be
the event End.

3:
TestBox.initialize();
INVITE
494
TD
End

Test case number 3: After the initial INVITE, GTCG randomly selects the
event class 300–699 and the particular event 494. This causes the state tran-
sition to the state Completed (Figure 5.14). Next, GTCG randomly selects the
event TD, thus causing the state transition to the state Terminated. The next
event must be the event End.

In the short descriptions of the generated test cases given above, we used
the construct, “GTCG randomly selects the event class X and the particular
event Y,” for brevity. One should remember that the selection of the event
class is always in accordance with the given operational profile probability
distribution, whereas the selection of the particular event from the given
class is really random.

The previous example shows how we can use statistical usage testing for
testing a part of the product. As already mentioned, we can employ statisti-
cal usage testing for testing whole products, too. The next example shows
such an application—statistical usage testing of the simple SIP softphone.

The operational profile of the SIP softphone is shown in Figure 5.15.
It has 8 states and 13 event classes. The states are Connecting, Terminating,
Disconnecting, Connected, Calling, Initial, Proceeding, and Ringing (listed here in
the ascending order of their identification). The event classes are RELEASE,
200, ACK, 180, ERR, END, ANSWER, 100, INVITE, SETUP, BYE, TH, and TB
(also listed in the ascending order of their identification).

All event classes have just one member, and their definition is equal to
the label shown in Figure 5.15, with the exception of the event class that is
labeled ERR, which is defined as follows:

381Test and Verification

M3->M3:=randInt<300,381>/randInt<400,494>/randInt<500,514>/randInt<600,607>;

This definition is a good example of how we can specify a random value that
may be selected from more disjointed intervals of values. Next, we generate
1,000 test cases with five test steps each. The content of the file statistics.txt is
the following:

Initial

Calling Ringing

Proceeding Connecting

Connected

Disconnecting

Terminated

SETUP, P=50% INVITE, P=50%

100, P=40% ANSWER, P=70%

200, P=40% ACK, P=80%

200, P=30%

RELEASE, P=50%

200, P=100%

End, P=100%

BYE, P=50%

180, P=30%

ERR, P=30%

ERR, P=30%

TH, P=20%

TB, P=30%

FIGURE 5.15
SIP softphone operational profile.

382 Communication Protocol Engineering

Calculating statistics

i=0 ci=360 di=0.625 SLi=0.4686783191616166
i=1 ci=1564 di=0.0 SLi=1.0
i=2 ci=244 di=0.0 SLi=1.0
i=3 ci=546 di=1.6483516483516483 SLi=0.21453651135488572
i=4 ci=496 di=0.5843413978494628 SLi=0.7503695231083775
i=5 ci=1000 di=0.064 SLi=0.8248262531456066
i=6 ci=286 di=3.0879953379953404 SLi=0.21451818049555796
i=7 ci=504 di=0.4897959183673477 SLi=0.4966702889206116
Mean d=0.8124355378204748
Mean SL=0.6211998845233321

Because the average significance level is 62% (greater than 20%), we can
conclude that the test suite quality is acceptable. A couple of typical test cases
are taken from the file testcases.txt and are shown here without comment (the
reader should study them for their own exercise):

15:
TestBox.initialize();
SETUP
100
180
200
BYE

16:
TestBox.initialize();
INVITE
ANSWER
ACK
BYE
END

17:
TestBox.initialize();
SETUP
100
200
BYE
END

18:
TestBox.initialize();
INVITE
ANSWER
ACK
RELEASE
200

5.5 Examples

This section includes two examples and two related problems. The first exam-
ple demonstrates unit testing of the FSM Library–based implementations. The
second example illustrates integration testing of FSM Library–based products.

383Test and Verification

5.5.1 Example 1

This example demonstrates unit testing of the SIP invite client transac-
tion implementation, which is described in Section 4.5.2 (Example 2). The
SIP invite client transaction implementation is based on the requirements
and analysis made in Section 2.3.3 (Figure 2.16) and the design presented in
Section 3.10.5 (Example 5).

Because the implementation under test (SIP invite client transaction) is
implemented in C++, we use CppUnit implementation of the unit testing
framework, introduced in Section 5.1. In this simple example, we will con-
struct just one test case to keep it short enough. Also, we will skip some
SIP message-specific message handling, which is really not essential for this
example.

We start this example by constructing two classes: ExampleTestCase and
ExampleMessageFactory. The former is the tester class, which comprises
one sample test case, whereas the latter is the supplementary class, which
provides the functions for message management. The content of the class
ExampleTestCase declaration file, named ExampleTestCase.h, is the following:

#ifndef CPP_UNIT_EXAMPLETESTCASE_H
#define CPP_UNIT_EXAMPLETESTCASE_H
// CppUnit helper macros
#include <cppunit/extensions/HelperMacros.h>
// Problem specific headers
#include "../kernel/fsmsystem.h"
#include "../kernel/logfile.h"
#include "../NewSIP/InvClientTE.h"
#include "ExampleMessageFactory.h"
/*
 * A sample test case
 *
 */
class ExampleTestCase : public CPPUNIT_NS::TestFixture {
 CPPUNIT_TEST_SUITE(ExampleTestCase);
 CPPUNIT_TEST(example);
 CPPUNIT_TEST_SUITE_END();

protected:
 FSMSystemWithTCP *pSys;
 LogFile *lf;
 InviteClientTE* pInviteCltTE[NUMBER_OF_TES];
 ExampleMessageFactory* pEMF;
 uint8 *msg;
 uint16 msgcode;
public:
 void setUp();
protected:
 void example();
};
#endif

The declaration file above includes the CppUnit helper macros header file
(HelperMacros.h) and the problem-specific header files (fsmsystem.h, logfile.h,
InvClientTE.h, and ExampleMessageFactory.h). The class ExampleTestCase
is derived from the class that is defined by the macro instruction

384 Communication Protocol Engineering

CPPUNIT_NS::TestFixture. The definition of the test suite starts with the
macro instruction CPPUNIT_TEST_SUITE() and ends with the macro
instruction CPPUNIT_TEST_SUITE_END(). The parameter of the former
macro instruction is the name of the test suite (ExampleTestCase, in this
example).

Generally, we use the macro instruction CPPUNIT_TEST() to define indi-
vidual test cases inside the body of test suite definition. The parameter of
this macro instruction is the name of the test case function that is defined
within the tester class and that we want to add to the test suite. In this par-
ticular example, we add a single test case function, named example(), with
a single macro instruction, CPPUNIT_TEST(), whose real parameter is the
string “example”.

Next, we define the test case fixture. In this example, it comprises the
following:

• The pointer to the instance of the class FSMSystemWithTCP (see
Section 6.8.9)

• The pointer to the instance of the class LogFile (which is the interface
to the log file)

• The array of pointers to the instances of the class InviteClientTE
(which is actually the implementation under test)

• The pointer to the instance of the class ExampleMessageFactory
(which is the supplementary tester class)

• The pointer to the message
• The code of the message

At the end of this file we declare the function setUp() and the test case func-
tion example(). The content of the class ExampleTestCase definition file, named
ExampleTestCase.cpp, is as follows:

#include "ExampleTestCase.h"
#include "../kernel/fsmsystem.h"
#include "../kernel/logfile.h"
#include "../NewSIP/InvClientTE.h"
#include "ExampleMessageFactory.h"

CPPUNIT_TES_SUITE_REGISTRATION(ExampleTestCase);
void ExampleTestCase::setUp() {
 pSys = new FSMSystemWithTCP(11,11);
 pEMF = new ExampleMessageFactory();
 for (int i = 0; i < NUMBER_OF_TES; i++) {
 pInviteCltTE[i] = new InviteClientTE();
 }

 uint8 buffClassNo = 4;
 uint32 buffsCount[4] = {50, 50, 50, 50};
 uint32 buffsLength[4] = {1025, 1025, 1025, 1025};
 pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);

385Test and Verification

 lf = new LogFile("log.log", "log.ini");
 LogAutomateNew::SetLogInterface(lf);

 pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);
 for (i = 1; i < NUMBER_OF_TES; i++){
 pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);
 }
}

void ExampleTestCase::example() {
 msg = pEMF->MakeInviteToTALMsg();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(TLI_Test_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)INVITE);

 msg = pEMF->Make1XXToTAL();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_1XX);

 msg = pEMF->Make2XXToTAL();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_2XX);
}

At the beginning of this file, we register the test suite with the macro
instruction CPPUNIT_TEST_SUITE_REGISTRATION(). The real parameter
of this macro instruction is the name of the test suite. Next, we define the
function setup() and the test case function example().

The function setup() starts by creating an instance of the class
FSMSystemWithTCP, an instance of the class ExampleMessageFactory, and
the given number (NUMBER_OF_TES) of instances of the implementa-
tion under test (the class InviteClientTE). After that, it defines the types
of buffers to be used by the FSM Library kernel, initializes the kernel
by calling the function InitKernel() (see Section 6.8.4), creates the log file
by calling the function LogFile(), and sets the log interface by calling the
function SetLogInterface() (see Section 6.8.105). At the end, it adds the given
number (NUMBER_OF_TES) of instances of the implementation under
test to the FSM system by calling its function Add() (see Section 6.8.2 and
Section 6.8.3).

The function example() performs the test case by checking state transitions
of the implementation under test in the following three steps:

• Check the state transition from the state STATE_IDLE (see Section
4.5.2) to the state STATE_CALLING, driven by the message INVITE.

• Check the state transition from the state STATE_CALLING to the
state STATE_PROCEEDING, driven by the message 1XX.

• Check the state transition from the state STATE_PROCEEDING to
the state STATE_INITIAL, driven by the message 2XX.

386 Communication Protocol Engineering

Each of these three steps consists of the following four substeps:

• Create the message (INVITE, 1XX, or 2XX).
• Send the message to the implementation under test by calling its

function member Process() (see Section 6.8.82).
• Get the message code of the output message by calling the function

member GetMsgCodeFromMBX() of the class ExampleMessageFactory.
The output message is retrieved from the destination FSM Library
mailbox. The destination mailbox is either the mailbox of the trans-
port layer (TPL) or the mailbox of the transaction user (TU).

• Check the retrieved message code against the expected one (mes-
sage code of the message INVITE, 1XX, or 2XX) by calling the macro
CPPUNIT_ASSERT_EQUAL().

The particular substeps of the first step are the following:

• Create the message INVITE by calling the function member
MakeInviteToTALMsg() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TPL

mailbox.
• Check it against the code of the message INVITE.

The particular substeps of the second step are the following:

• Create the message 1XX by calling the function member
Make1XXToTAL() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TU

mailbox.
• Check the message code against the code of the message 1XX.

The particular substeps of the third step are the following:

• Create the message 2XX by calling the function member
Make2XXToTAL() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TU

mailbox.
• Check the message code against the code of the message 2XX.

387Test and Verification

Next, we construct the supplementary class ExampleMessageFactory. The
content of its declaration file, named ExampleMessageFactory.h, is as follows:

#ifndef _ExampleMessageFactory_FSM_
#define _ExampleMessageFactory_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"
class ExampleMessageFactory : public FiniteStateMachine {
 int cseq_number;
 Message SIPMsg;
 sip_t *mes;
 stringresponseBody;
public:
 uint8* MakeInviteToTALMsg();
 uint16 GetMsgCodeFromMBX(uint8 mbx);
 uint8* Make1XXToTAL();
 uint8* Make2XXToTAL();

 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:
 ExampleMessageFactory();
 ~ExampleMessageFactory();
 void Initialize();
};
#endif

The content of the class ExampleMessageFactory definition file, named
ExampleMessageFactory.cpp, is as follows (the parts that are not essential for
this example are omitted to keep the example short):

#include "ExampleMessageFactory.h"
#include "../parser/smsgtypes.h"
#include "../parser/smsg.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);

ExampleMessageFactory::ExampleMessageFactory() : FiniteStateMachine(16, 2, 3) {}

ExampleMessageFactory::~ExampleMessageFactory() {}

void ExampleMessageFactory::Initialize() {}

uint8* ExampleMessageFactory::MakeInviteToTALMsg(){
 char temp[10];
 char szHostName[255];
 hostent* HostData;
 uint8* recmsg;
 uint8* msg;
 ...
 PrepareNewMessage(0x00,INVITE);

388 Communication Protocol Engineering

 SetMsgToAutomate(InviteClientTE_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParam(SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),
 (uint8*) SIPMsg.getLastMessage().c_str());
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}
uint16 ExampleMessageFactory::GetMsgCodeFromMBX(uint8 mbx) {
 uint8* msg;
 uint16 msgCode;
 msg = GetMsg(mbx);
 msgCode = GetUint16((uint8*)(msg+MSG_CODE));
 return msgCode;
}

uint8* ExampleMessageFactory::Make1XXToTAL(){
 uint8* msg;
 ...
 PrepareNewMessage(0x00,RESPONSE_1XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}

uint8* ExampleMessageFactory::Make2XXToTAL(){
 uint8* msg;
 SIPMsg.makeResponse("200","OK",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_2XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}
...

The main reason we must introduce the supplementary class
ExampleMessageFactory is because most of the functions defined in the FSM
Library API are protected, which means that they cannot be used in the tes-
ter class directly. Alternately, as defined at the moment, CppUnit does not
allow us to use multiple inheritance when we are defining tester classes.
Rather, a tester class may be derived only from the class that is defined by the
macro instruction CPPUNIT_NS::TestFixture.

The source code from the file ExampleMessageFactory.cpp should be
obvious by now. The only detail that deserves a short explanation is the
method by which we create messages. We use typical snippets of code,
which start with the PrepareNewMessage() function call and are followed
with the series of SetXX() and AddParamXX() function calls. The way we
end these code snippets may seem odd. First, we send a new message by

389Test and Verification

calling the function SendMessage() and, immediately after that, we read
that message from the same destination mailbox by calling the function
GetMsg(). Although it may seem odd, this is the most effective method of
creating the complete message in the format that is expected by the func-
tion Process().

Finally, we write the main module, named Main.cpp. This module creates
the collaboration of objects necessary to automatically execute the test suite
and report the results of its execution (Figure 5.16). The function main() per-
forms the following steps:

• Create the event manager and the test controller.
• Add a listener that collects test results.
• Add a listener that prints dots as test cases are executed (one dot per

test case).
• Add the top suite to the test runner.
• Print the test results in a compiler-compatible format.

The source code of the module Main.cpp follows:

#include <cppunit/BriefTestProgressListener.h>
#include <cppunit/CompilerOutputter.h>
#include <cppunit/extensions/TestFactoryRegistry.h>
#include <cppunit/TestResult.h>
#include <cppunit/TestResultCollector.h>
#include <cppunit/TestRunner.h>

int main(int argc,char* argv[]) {
 CPPUNIT_NS::TestResult controller;
 CPPUNIT_NS::TestResultCollector result;
 controller.addListener(&result);
 CPPUNIT_NS::BriefTestProgressListener progress;

Controller

Progress

Result Outputter

Runner

FIGURE 5.16
Collaboration of objects necessary for the automatic execution of the CppUnit test suite.

390 Communication Protocol Engineering

 controller.addListener(&progress);
 CPPUNIT_NS::TestRunner runner;
 runner.addTest(CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest());
 runner.run(controller);
 CPPUNIT_NS::CompilerOutputter outputter(&result,std::cerr);
 outputter.write();
 return result.wasSuccessful() ? 0 : 1;
}

As a result of automatic test suite execution, we get the following report on
the monitor:

ExampleTestCase::example : OK
OK(1)
Press any key to continue...

Additionally, we will get the log file with the following content:

Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x0000), Length: 502 Coding type: 0
0f cd 02 ff | 00 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 f6 |
...
Start Timer: (2)
State: 0 -> 1

Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x0029), Length: 9 Coding type: 0
0f cd 06 ff | 29 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00
04 00 | 50 9c 4c 00 | 00
Stop Timer: (2)
State: 1 -> 2

Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x002a), Length: 9 Coding type: 0
0f cd 06 ff | 2a 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00
04 00 | 50 9c 4c 00 | 00
State: 2 -> 0

Each record of the log file indicates date and time, message source and des-
tination, message type, message length, message coding type, the content of
the message (in hexadecimal code), timer operations, and the state transition
information (e.g., “0 -> 1” means a transition from the state S0 to the state S1).
By looking at this particular log file, we see that the implementation under
test behaves as expected. But normally we do not look at the log file if all test
cases pass. The real value of the log file is that it is of great help in localizing
bugs if a test case fails. Additionally, we could use the log file to check the
internal operation of the implementation under test automatically by the tes-
ter class. We skipped that step to keep the example simple enough.

391Test and Verification

5.5.2 Example 2

This example illustrates one of the steps in integration testing of an SIP-based
softphone. Imagine that the SIP invite client transaction and the transaction
layer dispatcher have undergone complete unit testing. The next normal step
would be to integrate them into the final product. Furthermore, imagine that
TU and TPL are not yet developed. The only thing we can do is to replace
TU and TPL with their imitator classes, named UA_Test and TLI_Test (TLI
stands for Transport Layer Interface), respectively (see the collaboration dia-
gram in Figure 5.17).

The aim of this simple example is to check one particular interaction,
illustrated with the collaboration diagram in Figure 5.17. To achieve that
goal, we construct the class UA_Test that acts as a simple test driver, and
the class TLI_Test that acts as a simple test stub. Both classes are derived
from the class FiniteStateMachine. The former class has a single state and
a single state transition, whereas the latter has two states and two state
transitions.

pUA : UA_Test

: InviteClientTEpTALDisp : TAL_Disp

pTLI : TLI_Test

5: rsp(1XXX)

8: rsp(200)

3: rsp(1XX)

6: rsp(200)

1: req(INVITE)
4: rsp(1XX)
7: rsp(200)

0: re
q(IN

VITE)

2: re
q(IN

VIT
E)

Test Driver

Test Stub

FIGURE 5.17
Example of integration testing collaboration.

392 Communication Protocol Engineering

The class UA_Test declaration file, named UA_Test.h, has the following
content:

#ifndef _UA_Test_FSM_
#define _UA_Test_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"

class UA_Test : public FiniteStateMachine {
 int cseq_number;
 Message SIPMsg;
 void SendInviteToTAL();
public:
 enum States { STATE_INITIAL };
 void Evt_Init_TIMER_TINV_EXP();
 void Event_UNEXPECTED();
 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:
 UA_Test();
 ~UA_Test();
 void Initialize();
};
#endif

As mentioned above, the class UA_Test has a single state, named STATE_
INITIAL, and a single state transition function, named Evt_Init_TIMER_
TINV_EXP(). The class UA_Test definition file, named UA_Test.cpp, has the
following content (the parts that are not essential are omitted):

#include "UA_Test.h"
#include "../parser/smsgtypes.h"
#include "../parser/smsg.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);

UA_Test::UA_Test() : FiniteStateMachine(16, 2, 3) {}
UA_Test::~UA_Test() {}

void UA_Test::Initialize() {
 SetState(STATE_INITIAL);
 InitTimerBlock(TIMER_TINV,1,TIMER_TINV_EXPIRED);
 InitEventProc(STATE_INITIAL,TIMER_TINV_EXPIRED,
 (PROC_FUN_PTR)&UA_Test::Evt_Init_TIME_TINV_EXP);
 InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&UA_Test::Event_UNEXPECTED);
 StartTimer(TIMER_TINV);
}

void UA_Test::Evt_Ini_TIMER_TINV_EXP() {
 SendInviteToTAL();
}

393Test and Verification

void UA_Test::SendInviteToTAL(){
 char temp[10];
 char szHostName[255];
 hostent* HostData;
 uint8* recmsg;
 sip_t *mes;
 ...
 PrepareNewMessage(0x00,INVITE);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParam((SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),
 (uint8*) SIPMsg.getLastMessage().c_str());
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}
...

The function Initialize() sets the FSM initial state, initializes the timer
TIMER_TINV to a 1-s delay, sets the state transition functions, and starts
the timer TIMER_TINV. When the timer expires, the state transition func-
tion Evt_Init_TIMER_TINV_EXP() is called. This function sends the INVITE
message to the transaction layer dispatcher (TAL_Disp) by calling the func-
tion SendInviteToTAL(), which is very similar to the one given in the Example
1 (see Section 5.5.1). Further on, the INVITE message is routed toward the test
stub class TLI_Test.

The class TLI_Test declaration file, named TLI_Test.h, has the following
content (the parts that are not essential are omitted):

#ifndef _TLI_Test_FSM_
#define _TLI_Test_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"

class TLI_Test : public FiniteStateMachine {
 ...
 Message SIPMsg;
 sip_t *mes;
 // Message management functions
 void Send1XXToTAL();
 void Send2XXToTAL();
public:
 enum States {
 STATE_INITIAL,
 STATE_1XX_SENT
};
 void Evt_Init_INVITE_T();
 void Evt_1XXSent_TIMER_T2XX_EXP();
 void Event_UNEXPECTED();
// FiniteStateMachine abstract functions
 ...
public:
 TLI_Test();
 ~TLI_Test();
 void Initialize();
};
#endif

394 Communication Protocol Engineering

As mentioned above, the class TLI_Test has two states, named STATE_
INITIAL and STATE_1XX_SENT, and two state transition functions, named
Evt_Init_INVITE_T() and Evt_1XXSent_TIMER_T2XX_EXP(). The class
TLI_Test definition file, named TLI_Test.cpp, has the following content (the
parts that are not essential are omitted):

#include "TLI_Test.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);
TLI_Test::TLI_Test() : FiniteStateMachine(16, 2, 3) {}
TLI_Test::~TLI_Test() {}

void TLI_Test::Initialize() {
 char szHostName[255];
 hostent* HostData;
 SetState(STATE_INITIAL);
 InitTimerBlock(TIMER_T2XX,2,TIMER_T2XX_EXPIRED);
 InitEventProc(STATE_INITIAL,INVITE,
 (PROC_FUN_PTR)&TLI_Test::Evt_Init_INVITE_T);
 InitEventProc(STATE_1XX_SENT,TIMER_T2XX_EXPIRED,

(PROC_FUN_PTR)&TLI_Test::Evt_1XXSent_TIME_T2XX_EXP);
 InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&TLI_Test::Event_UNEXPECTED);
 // Problem specific part
 ...
}

void TLI_Test::Evt_Init_INVITE_T() {
 Send1XXToTAL();
 StartTimer(TIMER_T2XX);
 SetState(STATE_1XX_SENT);
}

void TLI_Test::Evt_1XXSent_TIMER_T2XX_EXP() {
 Send2XXToTAL();
}

void TLI_Test::Send1XXToTAL(){
 uint8* recmsg;
 recmsg = GetParam(SIP_RAW_MESSAGE);
 ...
 SIPMsg.makeResponse("100","Trying",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_1XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}

void TLI_Test::Send2XXToTAL(){
 SIPMsg.makeResponse("200","OK",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_2XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}
...

395Test and Verification

The function Initialize() sets the initial state, initializes the timer TIMER_
T2XX to a 2-s delay, sets the state transition functions, and finishes with
some problem-specific initializations. The state transition function Evt_Init_
INVITE_T(), triggered by the reception of the message INVITE, sends the
preliminary response 100 (Trying) by calling the function Send1XXToTAL(),
starts the timer TIMER_T2XX, and changes its state to STATE_1XX_SENT.
The state transition function Evt_1XXSent_TIMER_T2XX_EXP(), triggered
with the expiration of the timer TIMER_T2XX, sends the final response 200
(OK) by calling the function Send2XXToTAL().

The content of the main module, named test_main.cpp, is as follows (the
parts that are not essential are omitted):

#include <conio.h>
#include "kernel/fsmsystem.h"
#include "kernel/logfile.h"
#include "NewSIP/TAL_Disp.h"
#include "Test/UA_Test.h"
#include "Test/TLI_Test.h"
#include "NewSIP/InvClientTE.h"
 FSMSystemWithTCP *pSys;
 LogFile *lf;
 TAL_Disp* pTALDisp;
 TLI_Test* pTLI;
 UA_Test* pUA;
 InviteClientTE* pInviteCltTE[NUMBER_OF_TES];
 DWORD thread_id;
 HANDLE thread_handle;
 ...
DWORD WINAPI SystemThread(void *data){
 FSMSystem *sysAutomate = (FSMSystem *)data;
 sysAutomate->Start();
 return 0;
}
int init(){
 pSys = new FSMSystemWithTCP(11,11);
 pTALDisp = new TAL_Disp();
 pTLI = new TLI_Test();
 pUA = new UA_Test();
 for (int i = 0; i < NUMBER_OF_TES; i++){
 pInviteCltTE[i]= new InviteClientTE();
 }
 uint8 buffClassNo = 4;
 uint32 buffsCount[4] = { 50, 50, 50, 50 };
 uint32 buffsLength[4] = { 1025, 1025, 1025, 1025};
 pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);
 lf = new LogFile("log.log", "log.ini");
 LogAutomateNew::SetLogInterface(lf);
 pSys->Add(pTALDisp, TAL_Disp_FSM, 1, false);
 pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);
 pSys->Add(pTLI, TLI_Test_FSM, 1, false);
 pSys->Add(pUA, UA_Test_FSM, 1, false);
 for (i = 1; i < NUMBER_OF_TES; i++){
 pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);
 }
 thread_handle = CreateThread(NULL, 0, SystemThread, pSys,
 THREAD_PRIORITY_ABOVE_NORMAL, &thread_id);
 return 1;
}
...

396 Communication Protocol Engineering

void main (void){
 parser_init();
 init();
while(!kbhit());
 exit_app();
}

As a result of the execution of the main module, we get the log file with
nine records that correspond to the messages that are exchanged between
implementations under test (the transaction layer dispatcher and SIP invite
client transaction), test driver (UA_Test), and test stub (TLI_Test). This file is
very similar to the one given in Example 1 (see Section 5.5.1) but three times
longer, and hence is not included here.

Test automation of integration tests based on log files is possible for sim-
ple collaborations like the one shown in this example, although it may be
cumbersome. However, if we must deal with more complex collaborations
that evolve concurrently, this approach is hardly applicable. Using log files
in such situations would normally require human intervention for checking
the results of the integration tests. Generally, we should try to use the style of
unit testing based on the automatic checking of results (see Section 5.1), even
for the integration of the parts of the system.

5.6 Further Reading

The reader can find more information related to this chapter in the refer-
ences. The research by Berard et al. (2001) contains comprehensive coverage
of the state-of-the-art model-checking techniques and tools. Newborn (2001)
provides detailed information on the theorem prover THEO used in Section
5.3. Hoare (1985) wrote the famous book on CSP (nowadays, it is also avail-
able online for free as a PDF). The study of Sun (2009) is about PAT. Fischer
et al. (2006) and Canepa et al. (2008) are the original papers on leader elec-
tion algorithms, which appeared in the examples in Sections 5.3.2.3.3, 5.3.2.3.4,
and 5.3.2.3.5. Popovic et al. (2001) provide a software maintenance case study
in the area of communication protocol engineering. The research by Popovic
and Velikic (2005) contains more information on the generic test case generator
used in Section 5.5. Woit (1994; Chapter 3 and Section 3.1.1, in particular) pro-
vides more information on the reliability estimation model used in Section 5.5.

References

Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, Ph.,
and McKenzie, P., Systems and Software Verification: Model-Checking Techniques
and Tools, Springer-Verlag, Berlin, 2001.

397Test and Verification

Canepa, D. and Gradinariu Potop-Butucaru, M., Stabilizing token schemes for popu-
lation protocols, arXiv:0806.3471v1 [cs.DC], 2008. Available online at https://
arxiv.org/abs/0806.3471v1 (accessed June 28, 2017).

Fischer, M.J. and Jiang, H., “Self-stabilizing leader election in networks of finite-state
anonymous agents,” Proceedings of the 10th Conference on Principles of Distributed
Systems, Vol. 4305 of LNCS, Springer, pp. 395–409, 2006.

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985. Available
online at http://usingcsp.com/cspbook.pdf (accessed June 28, 2017).

Newborn, M., Automated Theorem Proving, Springer-Verlag, New York, 2001.
Popovic, M., Atlagic., B., and Kovacevic, V., “Case study: A maintenance practice used

with real-time telecommunication software,” Journal of Software Maintenance and
Evolution: Research and Practice, John Wiley & Sons, West Sussex, No. 13, pp. 97, 2001.

Popovic, M. and Velikic, I., “A generic model-based test case generator,” Proc. IEEE
International Conference and Workshop on Engineering of Computer Based Systems,
Greenbelt, MD, April 4–7, 2005.

Sun, J., Liu, Y., Dong, J.S., Pang, J., “PAT: Towards Flexible Verification under Fairness,”
Proceedings of the 21th International Conference on Computer Aided Verification
(CAV’09), Vol. 5643 of LNCS, Springer, pp. 709–714, 2009.

Woit, D.M., “Operational profile specification, test case generation, and reliability
estimation for modules,” Ph.D. thesis, Queens University Kingstone, Ontario,
Canada, February 1994.

https://arxiv.org
https://arxiv.org
http://usingcsp.com

http://taylorandfrancis.com

http://taylorandfrancis.com

399

6
FSM Library

The purpose of this chapter is to familiarize the reader with an example
of a real-world library for making families of communication protocols.
Although it is not perfect, it is in use and evolving. The main argument
against it may be that there are too few C++ classes with too many function
members. Alternately, this disadvantage is a tradeoff for a rather simple API,
which is quite easy to learn and use.

6.1 Introduction

The FSM Library described in this book was created to be used as a work-
ing environment for the implementation of groups of communication proto-
cols. The programmer has two basic classes at his or her disposal, namely,
FSMSystem and FiniteStateMachine. The class FSMSystem models a plat-
form for a group of communication processes (otherwise called finite state
machines or automata). An instance of this class interconnects individual
communication processes by handling all of the resources needed for the
operation of individual finite state machines.

The class FiniteStateMachine models a generic communication process
(i.e., communication protocol). Each individual communication protocol is
represented by an instance of this class. The implementation of a particular
communication protocol is narrowed down to writing state transition func-
tions in C++. The transition function comprises procedures that process the
message received in a given FSM state. This processing results in a transi-
tion to a new FSM state and the optional generation of corresponding outgo-
ing messages. All state transition functions must be defined for all the finite
state machines registered to a single FSM system (an instance of the class
FSMSystem). Additionally, all the FSM system run-time elements must be ini-
tialized properly before they can be successfully started.

The relationship between the classes FSMSystem and FiniteStateMachine is
symbiosis—one cannot operate without the other. The FSM system clearly
represents an infrastructure, or an unused platform. In reality, an FSM sys-
tem is always used so that at least a couple of finite state machines are reg-
istered to it, together representing a group of finite state machines. Because
of this, and in order to achieve simplicity and brevity, we frequently use

400 Communication Protocol Engineering

the term “FSM system” as a synonym for the group of automata, assuming
that some individual automata are actually registered to it, and vice versa.
Although an instance of the class FiniteStateMachine cannot operate on its
own, we simply refer to it as a “finite state machine.”

6.2 Basic FSM System Components

The FSMSystem Library is written in C++ using an object-oriented approach.
The basic components are written as C++ classes that provide functionality
of both individual finite state machines and a group of finite state machines.
These classes are the following:

• FiniteStateMachine

• FSMSystem

A class can inherit the functionality of a single finite state machine by spe-
cializing the base class FiniteStateMachine. The programmer implements this
class by writing the real functions for those declared as virtual, by adding new
problem-specific functions (e.g., state transition functions), and by optionally
overriding the inherited functions to redefine the functionality of the base class.

A class can inherit the functionality of a group of finite state machines by
specializing the class FSMSystem. Normally, this class is simply instantiated
as an oracle of a group of finite state machines.

6.2.1 Class FSMSystem

An instance of the class FSMSystem is an object representing a finite state
machine system, i.e., a group of finite state machines (a group of automata).
The protected attributes of this class represent the resources available for all
the automata included in a group of automata. The basic task of this class
is the initialization and management of FSMs, buffers (memory zones),
messages, and timers. During a normal lifecycle of an instance of the class
FSMSystem, its user typically performs the following steps or operations:

• Create FSM system
• Initialize FSM system
• Start FSM system
• Stop FSM system

In the list above, the idiom “FSM system” represents an instance of the class
FSMSystem.

401FSM Library

6.2.1.1 FSM System Initialization

The initialization of the FSM system consists of the following steps:

• Create the FSM system—see the constructor FSMSystem().
• Create and initialize individual finite state machines—see the con-

structor FiniteStateMachine().
• Add individual finite state machines to the FSM system.
• Initialize the FSM system.
• Start FSM system logging.

The constructor FSMSystem() requires two parameters:

• The number of types of finite state machines
• The number of mailboxes

Individual instances of the class FiniteStateMachine can be added to the
FSM system by using one of two the possible functions:

void Add(ptrFiniteStateMachine object, // Automata instance address
 uint8 automataType, // Automata type
 uint32 numOfObjects, // Number of instances
 bool useFreeList = false); // List of free automata

void Add(ptrFiniteStateMachine object, // Automata instance address
 uint8 automataType); // Automata type

The first of the overloaded functions above is used to add the first finite
state machine of each type. The other instances of the same type are added
using the second function.

The initialization of the FSM system kernel is performed by calling the
following function:

void InitKernel(uint8 buffClassNo, // Number of different types
 uint32 *buffersCount, // Number of buffers per type
 uint32 *buffersLength, // Buffer lengths per type
 uint8 numOfMbxs=0, // Number of mailboxes
 TimerResolutionEnum timerRes = Timer1s); // Timer resolution in ms

The parameters of the function InitKernel specify the number of buffer
types, the numbers of the instances of different types, their sizes, the num-
ber of mailboxes to be used by the automata in a group, and the basic timer
resolution. The default number of mailboxes is 0. The default basic timer
resolution is 1 sec (just as an example, it can be much smaller, e.g., 10 ms).

The FSM system logging functionality provides message content record-
ing in a sequence resulting from the evolution of the FSM system. These mes-
sages are recorded automatically into a file created at the FSM system startup.
The file log.ini is optional and is used to define textual titles (names) of the

402 Communication Protocol Engineering

messages exchanged among the finite state machines included in the corre-
sponding FSM system. If log.ini file is defined, the message binary codes are
substituted by the corresponding message names, thus making the log files
human readable. On Windows® machines, the log.ini file must be placed in
the system folder (c:\winnt or c:\windows). The format of this file is as follows:

[AUTOMATA]
1=AUTOMATA1_FSM
2=AUTOMATA2_FSM
SequenceNumber=AUTOMATA_TYPE
[MESSAGES]
0=0xe000,MSG_1,0
1=0xe002,MSG_2,0
SequenceNumber=MSG_CODE,TEXT_TITLE,0

A typical example is as follows:

#define NO_BUFFERS 3
#define NO_AUTOMATA_1 5
#define NO_AUTOMATA_2 9
...

// Definition of buffers: three types, where number of buffers per type
// is 50, 30, and 20, and their lengths are 128, 256, and 512 bytes,
// respectively.
uint8 buffClassNo = NO_BUFFERS;
uint32 buffersCount[NO_BUFFERS] = {50,30,20};
uint32 buffersLength[NO_BUFFERS] = {128,256,512};

// Create FSM system that has two automata types and uses
// two mailboxes (one mailbox per each automata type)
FSMSystem *fsmSystem = new FSMSystem(2,2);

// Create individual automata
Automata1 *automata1 = new Automata1[NO_AUTOMATA_1];
Automata2 *automata2 = new Automata2[NO_AUTOMATA_2];

// Add individual automata to FSM system and implicitly initialize each
// automata instance by calling its function Initialize(). This call is
// made from the function Add.
fsmSystem->Add(&automata1[0],AUTOMATA1_FSM,NO_AUTOMATA_1,false);
for((i=1; i<NO_AUTOMATA_1; i++))
 fsmSystem->Add(&automata1[i],AUTOMATA1_FSM);

fsmSystem->Add(&automata2[0],AUTOMATA2_FSM,NO_AUTOMATA_2,true);
for((i=1; i<NO_AUTOMATA_2; i++))
 fsmSystem->Add((&automata2[i],AUTOMATA2_FSM);

// Initialize kernel
fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,2);
// Create and set logging system (log file name, message definition file)
lf = new LogFile("log.log", "log.ini");
LogAutomataNew::SetLogInterface(lf);
...

The example above starts with the definition of the number of buffer types.
In this example, three buffer types are defined (i.e., small, medium, and large
buffers) by setting the symbolic constant NO_BUFFERS value to 3. Next, we

403FSM Library

define the number of instances of two automata types by setting the values of
symbolic constants NO_AUTOMATA_1 to 5 and NO_AUTOMATA_2 to 9. This
means that five instances of the first automata type and nine instances of the
second automata type will exist in the group of automata we are going to create.

Next, the program paragraph defines the number of buffers, as well as
their size, for each buffer type. Fifty small buffers of size 128 bytes, thirty
medium buffers of size 256 bytes, and twenty large buffers of size 512 bytes
would be used. The number of buffer types is stored in the variable buff-
ClassNo. The number of buffers of each type and their lengths are stored in
the arrays buffersCount and buffersLength.

We then create the FSM system by calling the constructor of the class
FSMSystem. This constructor has two parameters: the number of automata
types and the number of mailboxes to be used by the system for its own pur-
poses. Next, we create two groups of automata of two different types. In this
program, these groups are represented as arrays of instances of classes, namely,
the classes Automata1 and Automata2. In this example, we assume that these
classes have already been defined by extending the base class FiniteStateMachine.

After creating two groups of automata of different types, all the autom-
ata are added to the already created FSM system. The first instance of each
automata type is added by calling the overloaded function Add with the first
type of signature, which specifies the instance address, the instance type, the
total number of instances of this type, and the indicator specifying if a list of
free automata of this type exists or not. The rest of the instances are added
by calling the overloaded function Add with the second type of signature,
specifying just the instance address and its type.

The first automata type in this example does not have a list of free autom-
ata, whereas the second type does have a list of free automata. This means
that the instance of the second automata type can be viewed as a pool of
resources of the same type. They may be dynamically allocated to be engaged
in a certain communication scenario. When a programmer decides to use
this opportunity, they must provide the function NoFreeInstance, which is
called when the dynamic allocation request cannot be satisfied, because no
more free automata instances of that type are found.

The FSM system is initialized by simply calling its function InitKernel. The
parameters of this function specify the number of buffer types, the number
of buffers of each type, their sizes, and the number of mailboxes to be used
for FSMs. Normally, we use one mailbox per automata type. This is not a
restriction imposed by the class FSMSystem, it is simply a convention. Other
arrangements are also allowed; for example, we can create more mailboxes
for messages of different priorities, or we can create additional mailboxes
dedicated to communication between the given groups of automata types.
Most generally, we can use mailboxes as queues of any kinds of messages.
Because the last parameter of the function InitKernel is omitted, the timer
resolution is set to its default value (1 sec, in this example).

404 Communication Protocol Engineering

At the end of this example, we create and set the logging system by call-
ing its constructor LogFile and the function SetLogInterface, respectively. The
parameters of the constructor specify the name of the log file (log.log) as well
as the name of the file containing the textual names of the messages (log.ini).
The parameter of the function SetLogInterface specifies the logging system
interface, which generally is a file. In this example, the disk file is named
log.log but it could be any file, including special files representing devices
handled by the corresponding device drivers, such as /dev/lpt or /dev/com1.

6.2.1.2 FSM System Startup

The FSM system is started by calling its function Start. Most frequently,
this function is called by the thread assigned to the FSM system. Here is an
example:

DWORD WINAPI FsmSystemThreadFunc((void* param)){
 try {
 fsmSystem->Start();
 }
 catch(...){
 OutputDebugString('Exception — terminating FSM system\n');
 return 0;
 }
 OutputDebugString('FSM system terminated\n');
 return 0;
}
...

// Somewhere in the main function
DWORD fsmSystemThreadId;
CreateThread(NULL,0,FsmSystemThreadFunc,0,0,fsmSystemThreadId);
...

In the example above, we start the FSM system by calling its function Start
from the thread function FsmSystemThreadFunction. We assume that thread
has already been created and that its identification is stored in the variable
fsmSystemThreadId.

6.2.2 Class FiniteStateMachine

All the automata added to the FSM system are implemented by extending
the base class FiniteStateMachine. This class defines a set of virtual functions
that must be defined by the programmer. These functions are as follows:

MessageInterface *GetMessageInterface(uint32 id);
void SetDefaultHeader(uint8 infoCoding);
uint8 GetMbxId();
uint8 GetAutomata();
void SetDefaultFSMData();
void NoFreeInstances();
void Initialize();

405FSM Library

The following example illustrates the most frequently used definitions of
FiniteStateMachine functions. A detailed description of all the functions is
given in Section 6.8.

// This function returns the message interface for the given interface ID.
// It is assumed that standardMsgCoding is defined as:
// StandardMessage standardMsgCoding;
MessageInterface *Automata::GetMessageInterface(uint32 id){
 switch(id){
 case 0x00:
 return &standardMsgCoding;

 // Other definitions
 // case 0x01:
 // case 0x02:
 }
 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}

// This function fills in the message header.
void Automata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();

}
// This function defines the mailbox number (ID) to be used as default
// by the automata of the type defined by this class.
uint8 Automata::GetMbxId(){
 return AUTOMATA_MB_ID;
}

// This function returns the number (ID) which identifies the automata
// type defined by this class.
uint8 Automata::GetAutomate(){
 return AUTOMATA_TYPE_ID;
}

// This function sets the values of the instance attributes.
void Automata::SetDefaultFSMData(){
 attribut1 = VALUE_1;
 attribut2 = VALUE_2;
}

// This function is called if there are no more free automata of this
// type. It may be used if the instances of this class have been added to
// the FSM system with the parameter useFreeList set to value true.
void Automata::NoFreeInstances(){
 // The activity if there are no free automata of this type.
}

 // This function defines state transition functions and timers to be used
 // by the automata of this type. It is called by the function Add, which
 // is used to add an automata instance to the given FSM system.
 // It is assumed that state transition functions are declared and defined
 // elsewhere.
void Automata::Initialize(){
 // Here we place a series of initializations:
 // InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);

406 Communication Protocol Engineering

 InitEventProc(IDLE, MSG_SEND, (PROC_FUN_PTR) &Automata::Idle_MsgSend);
 InitEventProc(IDLE, MSG_RCV, (PROC_FUN_PTR) &Automata::Idle_MsgReceive);

 InitEventProc(SEND, MSG_NEW, (PROC_FUN_PTR) &Automata::Send_MsgNew);
 InitEventProc(SEND, MSG_END, (PROC_FUN_PTR) &Automata::Send_MsgEnd);
 InitEventProc(IDLE, T200_CODE,(PROC_FUN_PTR) &Automata::T200Expired);

 InitUnexpectedEventProc(IDLE, (PROC_FUN_PTR) &Automata::Idle_Unexpected);
 InitUnexpectedEventProc(SEND, (PROC_FUN_PTR) &Automata::Send_Unexpected);

 InitTimerBlock(T200,T200_VALUE,T200_CODE);
}

In the example above, we would like to create the class Automata that mod-
els one type of finite state machines (automata). The definition of the class
comprises the definitions of its function members. The function member
GetMessageInterface returns the object that embodies the coding of messages
to be used by the instances of the class Automata. In this example, it is an
instance of the class StandardMessage.

The member function SetDefaultHeader is used to automatically fill in the mes-
sage header defaults. Normally, these are the data about the automata instance
that has created the message to send to some other automata instance. In this
example, it uses the function SetMsgInfoCoding to specify the type of coding to be
applied. It also uses the function SetMessageFromData to specify the type of origi-
nating automata instance, the identification of the group to which the automata
instance belongs, and the identification of the originating automata instance.

The member function GetMbxId returns the identification of the mailbox
used by the automata instance of this type. In this example, it is the value
of the symbolic constant AUTOMATA_MBX_ID. The member function
GetAutomata returns the identification of the automata type. It is the value
of the symbolic constant AUTOMATA_TYPE_ID. The member function
SetDefaultFSMData is used by the automata instance to set its specific data
before it commences its normal operation. In this example, attribute1 is set to
the value VALUE_1 and attribute2 is set to the value VALUE_2.

The member function NoFreeInstances can be used to specify the action to
be performed, if no more free automata instances of this type are found, e.g.,
to make a small system restart, allocate some additional automata instances,
and so on. This mechanism is available to the programmer if the instances
of automata have been added (function Add) to the FSM system with the
parameter useFreeList, set to the value true.

The member function Initialize is used to define automata state transition
 functions and timers (referred to as timer blocks throughout the FSM Library
documentation) to be used by the automata. The FSM Library distinguishes
two types of events, expected and unexpected, and allows the program-
mer to specify the corresponding event handlers, which are just specialized
C++ functions. These handlers are defined by calling the registration func-
tions, namely, the function InitEventProc for expected events and the func-
tion InitUnexpectedEventProc for unexpected events. The parameters of both

407FSM Library

of these functions specify the state code, the event (message) code, and the
pointer to the event handler.

In this example, we have defined seven automata state transition functions
altogether, five of them triggered by expected events and two triggered by unex-
pected events. The part of the automata shown in the example has two states,
IDLE and SEND. The expected events in the state IDLE are MSG_SEND, MSG_
RCV, and T200_CODE. The corresponding event handlers are Idle_MsgSend,
Idle_MsgReceive, and T200Expired, respectively. Two legible events exist in the
state SEND, MSG_NEW and MSG_END. The corresponding handlers are
Send_MsgNew and Send_MsgEnd. The unexpected event handler for the state
IDLE is Idle_Unexpected whereas for the state SEND it is Send_Unexpected. The
corresponding state transition table is shown in Table 6.1.

The timers are initialized by calling the function InitTimerBlock. The param-
eters of this function specify the unique timer identification, its duration (as
the number of basic timer resolution units), and the code of the message sent
when the timer expires. In the example above, these are the symbolic con-
stants T200, T200_VALUE, and T200_CODE.

To sum, automata states and attributes are defined in accordance with
the problem at hand. The state transition function, referred to as the event
handler, is called upon the reception of a given message in a given state, as
defined by the function Initialize. Each event handler is defined as a class
member function responsible for handling a given event.

The timers to be used by the automata are also defined by the function
Initialize. This is done by calling the function InitTimerBlock, which, in turn,
creates the internal kernel timer block (essentially a program object) and fills
in its identification, duration, and corresponding timer message code.

6.3 Time Management

In Section 6.2, automata timers are initialized during the FSM system startup
by the function Initialize. The automata type that uses timers in its regu-
lar operation manages them through the corresponding FSM Library API

TABLE 6.1

Example of a State Transition Table

MSG_RCV
MSG_
SEND T200_CODE

MSG_
NEW

MSG_
END ?

Idle Idle_
MsgReceive

Idle_
MsgSend

T200Expired Idle_
Unexpected

Send Send_
MsgNew

Send_
MsgEnd

Send_
Unexpected

408 Communication Protocol Engineering

functions, which maintain the internal kernel object behind the scenes. The
API functions are the following:

void InitTimerBlock(uint16 tmrId,uint32 count,uint16 signalId);
void StartTimer(uint16 tmrId);
void StopTimer(uint16 tmrId);
void RestartTimer(uint16 tmrId)
bool IsTimerRunning(uint16 tmrId);

The function InitTimerBlock is used to define (initialize) the timer. Its
parameters specify the unique timer identification, its duration as a multiple
of the basic timer resolution unit, and the code of the message sent to the
automata mailbox when the timer expires. This is explained in the previous
section. Notice that each timer has the unique identification tmrId used as a
parameter of all the API functions to identify the timer.

Each API function represents a primitive timer operation. The function
StartTimer is used to start the timer, the function StopTimer stops the timer,
the function RestartTimer restarts the timer, and the function IsTimerRunning
is used to check if the timer is running or not.

The following example illustrates the usage of these primitives:

if(!IsTimerRunning(T200)){
 StartTimer(T200);
}
else
 StopTimer(T200);
...

A normal timer life cycle has the following phases:

• Define, i.e., initialize, the timer.
• Use the timer by alternative application of the following primitives:

• Start (applicable if the timer is not running, meaning it was either
newly defined or previously stopped)

• Stop (applicable if the timer is running)
• Restart (logically equivalent to Stop plus Start)
• IsTimerRunning (returns true if it does; otherwise, it returns false)

6.4 Memory Management

Because the main application of the FSM Library is in real-time systems, effi-
cient memory allocation must be provided. The FSM Library does not rely
on a hosting operating system because some of the operating systems suffer
from a memory fragmentation problem. Furthermore, in some applications

409FSM Library

on bare machines, the operating system may not even be available. Because of
that, memory management is one of the main functions of the FSM Library.

The working memory is partitioned into certain zones referred to as buf-
fers. The programmer defines the number of different buffer types, the num-
ber of buffers of each type, and their sizes. The programmer specifies this
data as parameters of the function InitKernel (see Section 6.8.4) and the FSM
Library kernel, in turn, creates them as its own internal objects.

The buffers are most frequently used indirectly through message man-
agement (message create, send, receive, and similar operations) and timer
operations (timer definition and usage operations). Besides this indirect buf-
fer usage, the buffers can be managed directly, if needed, through the follow-
ing API functions:

uint8 *GetBuffer(uint32 length);
void RetBuffer(uint8 *buff);
bool IsBufferSmall(uint8 *buff,uint32 length);
uint32 GetBufferLength(uint8 *buff);

The programmer requests a buffer by calling the function GetBuffer. The
parameter of this function is the minimal size of the desired buffer. All the buf-
fers provided by the kernel must be returned by calling the function RetBuffer.
Untidy memory management can cause buffer loss, commonly referred to as
memory leak, which may cause irregular kernel operation and a system crash.

Besides memory allocation (malloc) and free primitives, two additional primi-
tives provide the information about the buffer already allocated to the finite state
machine. The function IsBufferSmall checks if the buffer size is smaller than the
value of its parameter. If yes, it returns true, otherwise, it returns false. Another
function, named GetBufferLength, returns the buffer size in octets (bytes).

The following example illustrates the usage of the buffer management
primitives:

// We define two buffer types, small and large.
// There are ten small buffers and fifteen large buffers.
// The small buffer size is 128 bytes. The large buffer size is
// 256 bytes.
uint8 buffClassNo = 2;
uint32 buffersCount[2] = {10,15};
uint32 buffersLength[2] = {128,256};
...

// Kernel initialization (noMBX is irrelevant in this example)
fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,noMBX);
...

uint32 bufferLength;
uint8 *pointer = GetBuffer(100);
if((IsBufferSmall(pointer,129)){
 RetBuffer(pointer);
 pointer = GetBuffer(129);
}
if((pointer != NULL))
 bufferLength = GetBufferLength(pointer);
...

410 Communication Protocol Engineering

In the example above, we first define two buffer types—small and large—
by calling the function InitKernel. Its fourth parameter (noMBX, the number
of the mailboxes) is not relevant for this example. The rest of the program
illustrates the usage of the FSM Library’s buffer management functions.
First, the program asks for a buffer not smaller than 100 bytes, then it checks
if this buffer is smaller than 129 bytes. If yes, it returns the allocated buffer
and requests a new one not smaller than 129 bytes (in this example, it will
get one large buffer of size 256 bytes). At the end, the program checks if the
pointer is defined, which also means that it points to a certain buffer. If it is
defined, the program asks for its size by calling the function GetBufferLength.

6.5 Message Management

The main communication among individual automata included in the FSM
system is achieved through the messages exchanged through the mail-
boxes typically assigned to individual automata. The message sent from the
originating automata instance towards the destination automata instance
is placed temporarily in the mailbox assigned to the destination automata
instance. There, it waits to be taken over and subsequently processed by the
destination automata instance (process).

As already mentioned, a mailbox is a message queue that can contain mes-
sages for any automata type, thus it does not need to be assigned to some
particular automata type. In contrast to a typical paradigm, it can be used as
a general message queue shared by more destination automata. Essentially,
in such a paradigm, the source automata instance can put the message in any
mailbox hosted by the FSM system, and it will eventually be delivered to its
proper destination.

This message routing and delivery is performed automatically by the
FSM system and is hidden from the automata, which are just service users.
The FSM system has an abstraction of the mailbox from which it takes mes-
sages, one at a time (mailbox abstraction provides buffering functionality
by employing the FIFO memory type). Upon the reception of each individ-
ual message, the FSM system consults the message header to determine the
destination automata instance and passes the message to it. The destination
automata instance looks up the message code and, based on the current
automata state, calls the appropriate automata state transition function.

Message reception is completely transparent for the programmer writing
the program code for the finite state machine. The above mechanism is abso-
lutely hidden from them. The programmer must simply accept that the mes-
sage reception and its classification are done automatically by the system.
They just write the message processing functions that are called automati-
cally by the system upon the reception of the corresponding message.

411FSM Library

The API functions can be partitioned into two groups:

• The functions that work with the received message.
• The functions that work with the new message that must be pre-

pared and sent.

The functions in the first group are used to provide the information about
the originating automata instance. The source of this information is the mes-
sage header and the values of the message parameters. The functions in the
second group provide primitives needed to make and send a message:

• Buffer allocation (indirect call to GetBuffer primitive)
• Filling the message header with the data about the originating

automata instance
• Adding the message parameters and setting them to the given values
• Sending the message to the mailbox assigned to the destination

automata instance

The messages may be sent only from a finite state machine or a FSM sys-
tem. Note that during normal system operation, a FSM system does not send
any messages. In this context, a finite state machine is an instance of the
class FiniteStateMachine, or a class derived from it, and an FSM system is an
instance of the class FSMSystem.

Example 1:

// Get parameter of type PARAM_1 from the received message.
// The size of PARAM_1 is WORD.
WORD word;
GetParamWord(PARAM_1,word);

// Get parameter of arbitrary size. Maximum size for StandardMessage is
// 256 bytes. If that is not sufficient, a programmer must derive a new
// class and redefine its functions.
uint8 *pointer;
uint8 text[300];
uint8 msgLength;

pointer = GetParam(TEXT);
if(pointer != NULL){
 // StandardMessage format: bytes 1 and 2 contain parameter name,
 // byte 3 contains parameter length in bytes,
 // byte 4 and further contain the parameter itself.
 memcpy(text,pointer+3,*((pointer+2)));

 // Make a string by placing null at the end of character array.
 memset(text+(*((pointer+2))),0x00,1);
}

The example above shows how the programmer can get a parameter from
the current message. A current message is the last message received by the

412 Communication Protocol Engineering

automata instance, i.e., it is the last message taken from the mailbox and
assigned to the automata instance for processing. The parameter size is
WORD (2 bytes). First, the programmer declares the variable word in which
he wants to store the parameter value.

The message can contain many parameters, and therefore the programmer
must specify the unique identifier of the parameter they want to get. In this
example, the identifier is the value of the symbolic constant PARAM_1. Finally, a
copy of the desired parameter is provided by calling the API function GetParam.
The first parameter of this function is the parameter identifier (PARAM_1) and
the second is the variable (word) in which the desired parameter is to be copied.

The second part of the example above demonstrates how the program-
mer may handle textual parameters of arbitrary size. The StandardMessage
format prescribes that the first 2 bytes of such a parameter are reserved for
the parameter name, the next byte is used for the parameter length (in bytes),
and the rest of the bytes in the parameter represent its value. The example
shows how a copy of such a parameter can be provided and how a null ter-
minated string can be constructed by adding the NULL character at its end.

Example 2:

...
// PrepareNewMessage parameters: buffer size and message type.
PrepareNewMessage(0xAA,MSG_NAME);

// Fill in the message header:
// destination automata type, its ID, and optionally its group ID.
SetMsgToAutomata(AUTOMATA_TYPE);
SetMsgObjectNumberTo(automataId);
SetMsgToGroup(INVALID_08);

// Add parameters: see also other AddParam functions.
AddParamByte(PARAM_1,byte);
AddParamWord(PARAM_2,word);
AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to the specified mailbox.
SendMessage(AUTOMATA_MBX_ID);

The example above shows a common way to construct and send a mes-
sage. The first step is to call the function PrepareNewMessage. The parameters
of this function specify the expected buffer size (0xAA in this example) and
the message name, which also specifies the message type (MSG_NAME).

Next, we fill in the message header by calling the following functions:

• SetMsgToAutomata: set the destination automata instance type
(AUTOMATA_TYPE)

• SetMsgObjectNumberTo: set the destination automata instance identi-
fication (automataId)

• SetMsgToGroup: set the automata instance group identification
(INVALID_08)

413FSM Library

We then add three message parameters by calling members of the AddParam
family of functions. The first function shown in the example is AddParamByte.
Its parameters specify the unique parameter identifier (PARAM_1) and the
variable containing the value of the parameter to be copied to the corre-
sponding field of the message (byte). The second function is AddParamWord.
Similarly, its parameters specify the parameter identification (PARAM_2)
and the variable holding its value (word). The last function is AddParam. The
parameters of this function specify the parameter identification (PARAM_3),
its length (parameterLength), and a pointer to it (parameterPointer).

At the end of the example above, we send the message by calling the func-
tion SendMessage. The parameter of this function specifies the destination
mailbox identification (AUTOMATA_MBX_ID).

Example 3:

// Send a message from the FSM system.
uint8 *msg = GetBuffer(messageInfoLength+MSG_HEADER_LENGTH);

// infoBuffer must be properly formatted.
memcpy(msg+MSG_HEADER_LENGTH,infoBuffer,infoBufferLength);

SetMsgFromAutomata(AUTOMATA_TYPE_FROM_ID,msg);
SetMsgFromGroup(INVALID_08,msg);
SetMsgObjectNumberFrom(automataFromId,msg);

SetMsgToAutomata(AUTOMATA_TYPE_TO_ID,msg);
SetMsgToGroup(INVALID_08,msg);
SetMsgObjectNumberTo(automataToId,msg);

SetMsgInfoCoding(0,msg); // 0 = StandardMessage
SetMsgCode(MSG_FROM_SYSTEM_AUTOMATA,msg);
SetMsgInfoLength(infoBufferLength,msg);
SendMessage(AUTOMATA_TO_MBX_ID,msg);
...

The example above shows how a message can be created and sent within
the FSM system. This process is done through the following steps:

• Allocate a buffer by calling the function GetBuffer.
• Copy the information payload.
• Fill in the data about the originating automata instance by calling

the function SetMsgFromAutomata fill in the originating automata
instance type identification (AUTOMATA_TYPE_FROM_ID); by
calling the function SetMsgFromGroup, fill in the originating autom-
ata instance group identification (INVALID_08); and by calling the
function SetMsgObjectNumberFrom, fill in the automata instance
identification (automataFromId).

• Fill in the data about the destination automata instance. The func-
tion SetMsgToAutomata sets the destination automata instance
type identification (AUTOMATA_TYPE_TO_ID), the function

414 Communication Protocol Engineering

SetMsgToGroup sets the destination automata instance group iden-
tification (INVALID_08), and the function SetMsgObjectNumberTo
sets the destination automata instance identification (automataToId).

• Finalize the message. The function SetMsgInfoCoding sets the type
of coding (StandardMessage), the function SetMsgCode sets the mes-
sage code (MSG_FROM_SYSTEM_AUTOMATA), and the function
SetMsgInfoLength sets the payload length (infoBufferLength).

• Send message by calling the function SendMessage with the second
type of the signature. The parameters of this function specify the
destination mailbox identification (AUTOMATA_TO_MBX_ID) and
the pointer to the message to be sent (msg).

6.6 TCP/IP Support

One of the primary design goals of creating the FSM Library was to sup-
port the design of scalable applications based on distributed processing. The
FSM Library enables both single-processor and multiprocessor applications.
In the former case, all groups of automata execute in a single processor. They
share processor resources, such as its processing unit, operating memory,
flash, and so on. The automata communicate over the mailboxes placed in
the common operating memory.

In the latter case, various groups of automata are deployed on more proces-
sors, which can be logically viewed as a multiprocessor system. The groups
of automata execute on different processors in parallel and use the mailboxes
physically located in separate operating memories. The FSM Library trans-
parently uses the network infrastructure to pass messages among the com-
municating automata. Most frequently, the communication infrastructure is
the TCP/IP technology.

In both cases, the communicating automata are unaware of the real physi-
cal infrastructure because the physical details are hidden from them. This is
accomplished by providing a unique API. An individual automata instance
manages just its timers, buffers, and messages (new and current, i.e., last
received). The rest is handled by the FSM Library kernel behind the scenes.
This means that the FSM Library inherently provides implicit support for
TCP/IP. For example, if an automata instance wishes to send a message to
some other automata instance physically located on a different machine, it
just prepares the message and calls the API function SendMessage. The class
FSMSystem takes care of transporting the message over the TCP/IP network
and placing it in the local mailbox assigned to the destination automata.

Since individual automata based on the FSM Library only need to com-
municate among themselves, implicit TCP/IP support is sufficient. The need
to communicate with other program components that are not based on the

415FSM Library

FSM Library, and that use TCP/IP sockets, directly leads to the requirement
for explicit TCP/IP support. To fulfill that requirement, the FSM Library also
provides explicit (in addition to implicit) TCP/IP support in a form of tradi-
tional TCP/IP socket abstraction. Of course, the automata instance that uses
these additional API features must be aware and capable of handling details
of TCP/IP communication (IP addresses and port numbers).

Explicit TCP/IP support is provided by two additional classes, namely,
FSMSystemWithTCP and NetFSM. These two classes enable the FSM Library–
based automata to directly communicate over the TCP/IP protocol stack with
other FSM Library–based automata, or with other TCP/IP program com-
ponents, e.g., a Web server or SIP client. As their names suggest, the class
FSMSystemWithTCP is used instead of the class FSMSystem, and the class
NetFSM is a logical counterpart of the class FiniteStateMachine.

6.6.1 Class FSMSystemWithTCP

The class FSMSystemWithTCP is derived from the class FSMSystem by extend-
ing it with support for communication over the TCP/IP family of protocols.
It inherits the basic functionality of the base class, which has been described
previously (see Section 6.2.1 describing the class FSMSystem).

In contrast to single-processor applications, distributed applications com-
prise parts (i.e., groups of automata) that are started independently. Because
of this, two groups of automata executing on different processors must estab-
lish a TCP/IP connection at their startup. The connection establishing proce-
dure is symmetric: This means that either side of the party—or both—must
start their local TCP servers by calling the function InitTCPServer. The oppo-
site side establishes the connection by calling the function establishConnection.

Example:

// In processor 1 (server)
//
// Initialize kernel.
fsmSystem1->InitKernel(buffClassNo,buffersCount,buffersLength,2);

// Initialize TCP/IP server on port number 5000.
// NetFSM_Automata1 is derived from NetFSM.
fsmSystem1->InitTCPServer(5000,NetFSM_Automata1);

// In processor 2 (client)
//
// Set server TCP/IP parameters (port, IP address).
// Establish the connection.
fsmSystem2.setPort(5000);
fsmSystem2.setIP("192.168.77.77");
fsmSystem2.establishConnection();
...

This example shows the code excerpts for the TCP/IP server and client
machines, named processor 1 and processor 2. At startup, the server initializes

416 Communication Protocol Engineering

the FSM Library kernel by calling the function InitKernel (its parameters are
the number of buffer types, their count, length, and the number of the mail-
boxes to be used). Next, it calls the function InitTCPServer to start the TCP/
IP server. We assumed in this example that the class NetFSM_Automata1 is
derived from the class NetFSM.

Alternately, the client sets the TCP port number (5000) by calling the func-
tion setPort and the IP address of the TCP server (192.168.77.77) by calling the
function setIP, and establishes the connection with the server by calling the
function establishConnection.

6.6.2 Class NetFSM

The class NetFSM is derived from the base class FiniteStateMachine by extend-
ing its basic functionality with support for the communication over the TCP/
IP infrastructure. The inherited basic functionality has been described pre-
viously (see Section 6.2.2 describing the class FiniteStateMachine). The basic
functionality is extended with the abstraction enabling TCP/IP communi-
cation by adding three new function members. The new functions are the
following:

virtual void convertFSMToNetMessage()=0;
virtual uint16 convertNetToFSMMessage()=0;
virtual uint8 getProtocolInfoCoding()=0;

These functions are used to convert the internal message format (abbrevi-
ated as FSM) into an external, or network message format (abbreviated as
Net), and vice versa. Normally, automata executing in the same processor
exchange internal messages coded in internal message format. However, this
message format is not suitable for transmission over the network. Most com-
monly, the message must be serialized, i.e., transformed from the data object
and structure form into an external message in accordance with a given
external message format. This is a series of bits, sometimes grouped in octets
or words, that are transmitted over the communication line.

The functions listed above are virtual functions and therefore the pro-
grammer must define them while they write a class that is derived from
the class NetFSM. The message format conversion functions naturally read
a message from some input buffer, convert it into a requested format, and
write the output to an output buffer.

The function convertFSMToNetMessage is not intended to be used directly
by the communicating automata, but rather to be called internally by the
FSM Library kernel to convert an internal message into the external one
before it can be sent over the network. Therefore, the input of this function
is the internal message, and its output is the corresponding output message.
The parameters of this function specify the pointer to the internal mes-
sage fsmMessageS, its length fsmMessageLength, the pointer to the output, the

417FSM Library

external message protocolMessageS, and its length sendMsgLength. The pro-
grammer must specify the mapping algorithm by writing this function.

Symmetrically, the function convertNetToFSM is intended to be used by
the FSM library kernel to convert an external message received over the net-
work into an internal message representation, which must be delivered to
the local mailbox and processed further by the corresponding local autom-
ata. The input of this function is the external message and the output is
the internal message. The parameters of this function specify the pointer
to the external message protocolMessageR, its length receivedMessageLength,
the pointer to the output, internal message fsmMessageR, and its length
fsmMessageRLength.

The function getProtocolInfoCoding returns the code of the type of exter-
nal information coding. An instance of the class NetFSM, referred to as net
automata, initiates the transmission of the message across the TCP/IP net-
work by calling the function sentToTCP. This function may throw an excep-
tion in the case of an error, e.g., when net automata wants to send a message
after the TCP connection has been closed.

Example:

// PrepareNewMessage parameters: buffer size and message type
PrepareNewMessage(0xAA,MESSAGE_NAME);

// Fill in message header:
// destination automata type, its ID, and its group ID (if relevant)
SetMsgToAutomata(AUTOMATA_TYPE);
SetMsgObjectNumberTo(automataId);
SetMsgToGroup(INVALID_08);
// Add parameters.
AddParamByte(PARAM_1,byte);
AddParamWord(PARAM_2,word);
AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to local mailbox:
// SendMessage(AUTOMATA_MBX_ID);
// or send it over TCP/IP network:
sendToTCP();

The example above demonstrates how automata can prepare a message
and send it over a TCP/IP network. The message is prepared like any other
message. The function PrepareNewMessage is used to allocate a buffer for the
message and to specify a message name. A series of already described func-
tions is then used to fill in the message header and add the message parame-
ters (see the second example in Section 6.5 describing message management).
At the end, instead of sending the message to the local mailbox by calling the
function SendMessage, the message is sent over the TCP/IP network by call-
ing the function sendToTCP.

A net finite state machine receives the messages equally as simple automata
(instances of the class FiniteStateMachine) do, just by reading its local mailbox.

418 Communication Protocol Engineering

6.7 Global Constants, Types, and Functions

The file kernelConsts.h defines the global constants, types, and functions used
by the FSM Library kernel. The constants and their values are as follows:

MSG_FROM_AUTOMATA = 0; // Source automata ID (BYTE)
MSG_FROM_GROUP = 1; // Source automata group ID (BYTE)
MSG_TO_AUTOMATA = 2; // Destination automata ID (BYTE)
MSG_TO_GROUP = 3; // Destination automata group ID (BYTE)
MSG_CODE = 4; // Message code(WORD)
MSG_OBJECT_ID_FROM = 6; // Source automata instance ID (DWORD)
MSG_OBJECT_ID_TO = 10; // Destination automata ID (DWORD)
CALL_ID = 14; // Call (process) ID
MSG_INFO_CODING = 18; // Info coding type, 0 = StandardMessage
MSG_LENGTH = 19; // Message payload length
MSG_INFO = 21; // Message payload offset
MSG_HEADER_END = MSG_INFO; // End of message header

INVALID_08 = 0xff; // Mask for 8 bits
INVALID_16 = 0xfff; // Mask for 16 bits
INVALID_32 = 0xffffffff; // Mask for 32 bits

The global data types are as follows:

int8, uint8 // BYTE
int16, uint16 // WORD
int32, uint32 // DWORD

The utility functions provided for the load-store manipulation with vari-
ous data types are as follows:

void SetUint16(uint8 *addr,uint16 value);
void SetUint32(uint8 *addr,uint32 value);
uint16 GetUint16(uint8 *addr);
uint32 GetUint32(uint8 *addr);

The utility functions are provided to avoid cast operators in C/C++ pro-
grams because some microcontrollers do not allow word or double-word
memory access to odd memory addresses.

6.8 API Functions

The FSM Library API functions are grouped into the following eight groups:

• FSMSystem constructor (Table 6.2)
• FSMSystem member functions (Table 6.3)
• FSMSystemWithTCP constructor (Table 6.4)

419FSM Library

TABLE 6.2

FSMSystem Constructor Summary

FSMSystem(uint8 numOfAutomata, uint8 numberOfMbx)
The constructor initializes the object that represents the FSM system, along with the data
structures needed for its proper operation.

TABLE 6.3

FSMSystem Member Functions Summary

Type Member Function

Void Add (ptrFiniteStateMachine object, uint8
automataType, uint32 numOfObjects, bool
useFreeList=false)

This function adds the first instance of each automata type to
the FSM system.

Void Add(ptrFiniteStateMachine object, uint8
automataType)

This function adds all the automata instances of the given
type to the FSM system, except for the first instance.

Void InitKernel(uint8 buffClassNo, uint32
*buffersCount, uint32 *buffersLength, uint8
numOfMbxs=0, TimerResolutionEnum
timerRes=Timer1s)

This function initializes the elements of the kernel respon-
sible for time, buffer, and message management.

Void Remove(uint8 automataType)
This function removes all the instances of the given automata
type from the FSM system.

ptrFiniteStateMachine Remove(uint8 automataType, uint32 object)
This function removes the given instance of the given
automata type.

Virtual void Start()
This function starts the FSM system.

Void StopSystem()
This function stops the FSM system.

TABLE 6.4

FSMSystemWithTCP Constructor Summary

FSMSystemWithTCP(uint8 numOfAutomata, uint8 numberOfMbx)
The constructor initializes the object that represents the FSM system supporting communi-
cation over the TCP/IP network, along with the data structures needed for its proper
operation.

420 Communication Protocol Engineering

• FSMSystemWithTCP member functions (Table 6.5)
• FiniteStateMachine constructor (Table 6.6)
• FiniteStateMachine member functions (Table 6.7)
• NetFSM constructor (Table 6.8)
• NetFSM member functions (Table 6.9)

The following sections contain a detailed description of FSMSystem library
API functions.

TABLE 6.5

FSMSystemWithTCP Member Functions Summary

Type Member Function

int InitTCPServer(uint16 port, uint8 automataType, char
*ipAddress=0, unsigned char *parm=0, int length=0)

This function initializes the TCP server. Once initialized, the server waits for a
request to establish the TCP connection with a remote client.

TABLE 6.6

FiniteStateMachine Constructor Summary

FiniteStateMachine(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16
numOfState=DEFAULT_STATE_NO, uint16 maxNumOfProceduresPerState=DEFA
ULT_PROCEDURE_NO_PE_STATE, bool getMemory=true)

This constructor initializes the object that represents the instance of a given automata type,
along with the data structures needed for its proper operation.

TABLE 6.7

FiniteStateMachine Member Functions Summary

Type Member Function

uint8* AddParam(uint16 paramCode, uint32 paramLength,
uint8 *param)

This function is used to add a given parameter of the given
length to the new message.

uint8* AddParamByte(uint16 paramCode, BYTE param)
This function is used to add the given parameter of length
1 byte to the new message.

uint8* AddParamDWord(uint16 paramCode, DWORD param)
This function is used to add the given parameter of length
4 bytes to the new message.

uint8* AddParamWord(uint16 paramCode, WORD param)
This function is used to add the given parameter of length
2 bytes to the new message.

virtual void CheckBufferSize(uint32 paramLength)
This function provides a new message buffer with a size suf-
ficient enough to accept a parameter of the given length.

(Continued)

421FSM Library

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual void ClearMessage()
This function returns the buffer allocated for the current mes-
sage to the kernel and assigns value NULL to the internal
pointer to the current message. The current message is the last
message received by the automata instance.

virtual void CopyMessage()
This function makes a copy of the current message and
assigns that copy to the new message.

virtual void CopyMessage(uint8 *msg)
This function makes a copy of the given message and assigns
that copy to the new message.

virtual void CopyMessageInfo(uint8 infoCoding, uint16
lengthCorrection=0)

This function copies the part of the message containing useful
information, referred to as a payload (a message without its
header), from the current to the new message.

virtual void Discard(uint8* buff)
This function deletes the message placed in the given buffer
and returns the buffer to the kernel.

void DoNothing()
This function performs no operation. It is called when the
 automata receives an unexpected message, unless a new func-
tion is provided to handle unexpected messages.

void Free FSM()
This function reports to the FSM system that the automata
instance has finished its current assignment and is free for
further assignments.

virtual uint8 GetAutomata()=0
This function returns the identification of the automata type
for this automata instance.

uint8 GetBitParamByteBasic(uint32 offset, uint32
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 1 byte masked with the given mask.

uint16 GetBitParamWordBasic(uint32 offset, uint32
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 2 bytes masked with the given mask.

uint32 GetBitParamDWordBasic(uint32 offset, uint32
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 4 bytes masked with the given mask.

virtual uint8* GetBuffer(uint32 length)
This function returns the buffer whose size is not less than the
size given by the value of its parameter.

uint32 GetBufferLength(uint8 *buff)
This function returns the size of the given buffer in bytes.

(Continued)

422 Communication Protocol Engineering

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual inline uint32 GetCallId()
This function returns the identification of the communication
process in which this instance is currently involved, e.g., the
call ID.

uint32 GetCount(uint8 mbx)
This function returns the current number of messages in the
given mailbox.

virtual uint8 GetGroup()
This function returns the identification of the group of autom-
ata to which this instance belongs.

virtual uint8 GetInitialState()
This function returns the identification of the initial state of
this automata type.

virtual inline uint8 GetLeftMbx()
This function returns the identification of the mailbox
assigned to the automata instance that is logically to the left
of this automata instance.

virtual inline uint8 GetLeftAutomata()
This function returns the identification of the automata type
that is logically to the left of this automata instance.

virtual inline uint8 GetLeftGroup()
This function returns the identification of the group of
 automata that is logically to the left of this automata instance.

virtual inline uint32 GetLeftObjectId()
This function returns the identification of the automata
instance that is logically to the left of this automata instance.

virtual uint8 GetMbxId()
This function returns the identification of the mailbox
assigned to this automata instance.

virtual
MessageInterface*

GetMessageInterface(uint32 id)
This function returns the object that governs the coding
of messages used by this automata instance. The returned
object is an instance of the class derived from the class Message
Interface.

uint8* GetMsg()
This function returns the first unread message from the mail-
box assigned to this automata instance.

static uint8* GetMsg(uint8 mbx)
This function returns the first unread message from the mail-
box identified by the value of its parameter.

inline uint32 GetMsgCallId()
This function returns the identification of the communication
process (e.g., call ID) from the current message.

inline uint16 GetMsgCode()
This function returns the message code from the current mes-
sage header.

(Continued)

423FSM Library

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline uint8 GetMsgFromAutomata()
This function returns the identification of the originating
automata type from the current message.

inline uint8 GetMsgFromGroup()
This function returns the identification of the group of the
originating automata instance for the current message.

inline uint8 GetMsgInfoCoding()
This function returns the identification of the information
coding scheme used for the current message.

inline uint16 GetMsgInfoLength()
This function returns the payload length of the current mes-
sage in bytes.

inline uint16 GetMsgInfoLength(uint8 *msg)
This function returns the payload length of the given message
in bytes. The message is specified by its pointer.

inline uint32 GetMsgObjectNumberFrom()
This function returns the identification of the originating
automata instance from the current message.

inline uint32 GetMsgObjectNumberTo()
This function returns the identification of the destination
automata instance from the current message.

inline uint8 GetMsgToAutomata()
This function returns the identification of the destination
automata type from the current message.

inline uint8 GetMsgToGroup()
This function returns the identification of the type of group of
the destination automata from the current message.

inline uint8* GetNewMessage()
This function returns the address of the buffer that contains
the new message.

inline uint8 GetNewMsgInfoCoding()
This function returns the identification of the information
coding scheme used for the new message.

inline uint16 GetNewMsgInfoLength()
This function returns the payload length of the new message
in bytes.

uint8* GetNextParam(uint16 paramCode)
This function returns the address of the next instance of the
given type of message parameter within the current message.

bool GetNextParamByte(uint16 paramCode, BYTE ¶m)
This function searches for the next instance of the given type
of the single-byte parameter in the current message. If the
instance is found, the function copies it into its parameter
specified by the reference and returns the value true; other-
wise, it returns the value false.

(Continued)

424 Communication Protocol Engineering

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

bool GetNextParamDWord(uint16 paramCode, DWORD
¶m)

This function searches for the next instance of the given type
of the 4-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified by
the reference and returns the value true; otherwise, it returns
the value false.

bool GetNextParamWord(uint16 paramCode, WORD ¶m)
This function searches for the next instance of the given type
of the 2-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified by
the reference and returns the value true; otherwise, it returns
the value false.

virtual uint32 GetObjectId()
This function returns the unique identification of this autom-
ata instance.

uint8* GetParam(uint16 paramCode)
This function returns the address of the first instance of the
given type of the message parameter within the current mes-
sage.

bool GetParamByte(uint16 paramCode, BYTE ¶m)
This function searches for the first instance of the given type of
single-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified by
the reference and returns the value true; otherwise, it returns
the value false.

bool GetParamDWord(uint16 paramCode, DWORD ¶m)
This function searches for the first instance of the given type
of 4-byte parameter in the current message. If the instance is
found, the function copies it into its parameter specified by the
reference and returns the value true; otherwise, it returns the
value false.

bool GetParamWord(uint16 paramCode, WORD ¶m)
This function searches for the first instance of the given type
of 2-byte parameter in the current message. If the instance is
found, the function copies it into its parameter specified by
the reference and returns the value true; otherwise, it returns
the value false.

PROC_FUN_PTR GetProcedure(uint16 event)
This function returns the pointer to the event handler for the
given event identifier and the current state of automata.

virtual inline uint8 GetRightMbx()
This function returns the identification of the mailbox
 assigned to the automata instance that is logically to the
right of this automata instance.

virtual inline uint8 GetRightAutomata()
This function returns the identification of the automata type
that is logically to the right of this automata instance.

(Continued)

425FSM Library

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual inline uint8 GetRightGroup()
This function returns the identification of the type of the
group of automata that is logically to the right of this autom-
ata instance.

virtual inline uint32 GetRightObjectId();
This function returns the identification of the automata instance
that is logically to the right of this automata instance.

virtual inline uint8 GetState()
This function returns the identification of the current state of
this automata instance.

virtual bool IsBufferSmall(uint8 *buff, uint32 length)
This function returns the value true if the size of the given
buffer is not greater than the given size specified as the value
of its second parameter; otherwise, it returns the value false.

virtual void Initialize()
This function defines the automata state transition event han-
dlers and timers used by this automata type.

void InitEventProc(uint8 state, uint16 event,
PROC_FUN_PTR fun)

This function defines the given state transition event handler for
the given automata state and the given event (message code).

void InitTimerBlock(uint16 tmrId, uint32 count,
uint16 signalId)

This function initializes the given timer by the given duration
and the timer expiration message code.

void InitUnexpectedEventProc(uint8 state, PROC_FUN_
PTR fun)

This function defines the given state transition event handler
for unexpected events in the given automata state.

bool IsTimerRunning(uint16 id)
This function returns the value true if the given timer is active
(running); otherwise, it returns the value false.

void NoFreeObjectProcedure(uint8 *msg)
This function defines the behavior of this automata type if the
list of free automata of this type is used and if it is empty at
the moment when a free instance is requested.

virtual void NoFreeInstances()
This function defines the behavior of the FSM system if a list
of free automata is used and if it is empty at the moment when
a free instance is requested.

virtual bool ParseMessage(uint8 *msg)
This function checks if the given message is coded properly
and, if it is, it becomes the current message (its pointer is
 assigned to the internal variable CurrentMessage).

(Continued)

426 Communication Protocol Engineering

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual void PrepareNewMessage(uint8 *msg)
This function defines the given buffer as the new message
buffer by assigning the given pointer to the internal variable
NewMessage. The buffer is used as a working area for the con-
struction of the new message.

virtual void PrepareNewMessage(uint32 length, uint16 code,
uint8 infoCode = LOCAL_PARAM_CODING)

This function creates a new message of the given length with
the given message code and the given type of information
coding.

virtual void Process(uint8 *msg)
This function performs the preparations for the message pro-
cessing and selects the state transition event handler based on
the message code and current state of this automata instance.

void PurgeMailBox()
This function purges all the messages from the mailbox
 assigned to this automata type and releases all the buffers
 assigned to the messages.

bool RemoveParam(uint16 paramCode)
This function removes the given type of message parameter
from the new message.

virtual void Reset()
This function resets this automata instance by returning it to
its initial state and by stopping all its active timers.

void ResetTimer(uint16 id)
This function resets the internal timer block object and returns
the buffer allocated by the StartTimer primitive to the FSM
 Library kernel.

void RestartTimer(uint16 tmrId)
This function restarts the given timer. It is logically equivalent
to a sequence of StopTimer and StartTimer primitives.

virtual void RetBuffer(uint8 *buff)
This function returns the given buffer to the FSM Library ker-
nel. Normally, each memory buffer is returned at the end of
its life cycle. Failure to do so leads to a memory leak problem.

void ReturnMsg(uint8 mbxId)
This function makes a copy of the current message and sends
it to the given mailbox. This primitive is used frequently for
message forwarding. On many occasions, the communication
process must react in this simple way.

void SetBitParamByteBasic(BYTE param, uint32
offset, uint32 mask=MASK_32_BIT)

This function sets the given single byte parameter of the new
message to the result of the bit-wise inclusive OR operation
applied to the given parameter and its previous value masked
(bit-wise AND operation) with the given bit-mask.

(Continued)

427FSM Library

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

void SetBitParamDWordBasic(DWORD param, uint32
offset, uint32 mask=MASK_32_BIT)

This function sets the given 4-byte parameter of the new
message to the result of the bit-wise inclusive OR operation
 applied to the given parameter and its previous value masked
(bit-wise AND operation) with the given bit-mask.

void SetBitParamWord(WORD param, uint32 offset,
uint32 mask=MASK_32_BIT)

This function sets the given 2-byte parameter of the new
message to the result of the bit-wise inclusive OR operation
 applied to the given parameter and its previous value masked
(bit-wise AND operation) with the given bit-mask.

inline void SetCallId()
This function sets the default value of the attribute CallId of
this automata instance.

inline void SetCallId(uint32 id)
This function sets the given value of the attribute CallId of this
automata instance.

inline void SetCallIdFromMsg()
This function sets the attribute CallId of this automata instance
to the value of the parameter CallId of the current message.
This primitive is used to store the reference number specific
to the communication protocol.

virtual void SetDefaultFSMData()
This function sets the automata-specific data to their default
values. It is typically used before the normal operation phase.

virtual void SetDefaultHeader(uint8 infoCoding)
This function sets the default header field values for the given
type of the message information coding.

inline void SetGroup(uint8 id)
This function sets the identification of the group of automata
for this automata type to the given value. This primitive is
used to declare the group membership.

virtual void SetInitialState()
This function sets the current state of this automata instance
to its initial state.

static void SetKernelObjects(TPostOffice *postOffice,
TBuffers *buffers, CTimer *timer)

This function sets the FSMSystem library kernel objects (post
office, buffers, and timers), which are common for all of the
automata in the FSM system.

inline void SetLeftMbx(uint8 mbx)
This function sets the identification of the mailbox assigned
to the automata instance that is logically to the left of this
automata instance.

inline void SetLeftAutomata(uint8 automata)
This function sets the identification of the automata type that
is logically to the left of this automata instance.

(Continued)

428 Communication Protocol Engineering

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetLeftObject(uint8 group)
This function sets the identification of the type of the group of
automata that is logically to the left of this automata instance.

inline void SetLeftObjectId(uint32 id)
This function sets the identification of the automata instance
that is logically to the left of this automata instance.

static void SetLogInterface(LogInterface *logingObject)
This function defines the object responsible for message log-
ging. The object is an instance of a class derived from the class
LogInterface.

inline void SendMessage(uint8 mbxId)
This function sends a new message to the given mailbox. The
mailbox is specified by its identification.

inline void SendMessage(uint8 mbxId, uint8 *msg)
This function sends the given message to the given mailbox.

void SetMessageFromData()
This function sets the header fields of the new message relat-
ed to the originating automata instance to the values specific
to this automata instance.

inline void SetMsgCallId(uint32 id)
This function sets the call ID parameter of the new message
to the given value.

inline void SetMsgCallId(uint32 id, uint8 *msg)
This function sets the call ID parameter of the given message
to the given value.

inline void SetMsgCode(uint16 code)
This function sets the message code parameter of the new
message to the given value.

inline void SetMsgCode(uint16 code, uint8 *msg)
This function sets the message code parameter of the given
message to the given value.

inline void SetMsgFromAutomata(uint8 from)
This function sets the type of the originating automata param-
eter of the new message to the given value.

inline void SetMsgFromAutomata(uint8 from, uint8 *msg)
This function sets the type of the originating automata param-
eter of the given message to the given value.

inline void SetMsgFromGroup(uint8 from)
This function sets the type of the originating group of autom-
ata parameters of the new message to the given value.

inline void SetMsgFromGroup(uint8 from, uint8 *msg)
This function sets the type of the originating group of autom-
ata parameters of the given message to the given value.

inline void SetMsgInfoCoding(uint8 codingType)
This function sets the message information coding parameter
of the new message to the given value.

(Continued)

429FSM Library

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetMsgInfoCoding(uint8 codingType, uint8 *msg)
This function sets the message information coding parameter
of the given message to the given value.

inline void SetMsgInfoLength(uint16 length)
This function sets the message payload (useful information)
length parameter of the new message.

inline void SetMsgInfoLength(uint16 length, uint8 *msg)
This function sets the message payload (useful information)
length parameter of the given message.

inline void SetMsgObjectNumberFrom(uint32 from)
This function sets the originating automata instance identifi-
cation parameter of the new message to the given value.

inline void SetMsgObjectNumberFrom(uint32 from, uint8 *msg)
This function sets the originating automata instance identi-
fication parameter of the given message to the given value.

inline void SetMsgObjectNumberTo(uint32 to)
This function sets the destination automata instance identifi-
cation parameter of the new message to the given value.

inline void SetMsgObjectNumberTo(uint32 to, uint8 *msg)
This function sets the destination automata instance identi-
fication parameter of the given message to the given value.

inline void SetMsgToAutomata(uint8 to)
This function sets the destination automata type identification
parameter of the new message to the given value.

inline void SetMsgToAutomata(uint8 to, uint8 *msg)
This function sets the destination automata type identification
parameter of the given message to the given value.

inline void SetMsgToGroup(uint8 to)
This function sets the destination automata group identifica-
tion parameter of the new message to the given value.

inline void SetMsgToGroup(uint8 to, uint8 *msg)
This function sets the destination automata group identifica-
tion parameter of the given message to the given value.

void SendMessageLeft()
This function sends the new message to the mailbox assigned
to the automata instance that is logically to the left of this
 automata instance.

void SendMessageRight()
This function sends the new message to the mailbox assigned
to the automata instance that is logically to the right of this
automata instance.

inline void SetNewMessage(uint8 *msg)
This function sets the new message to the given message by
assigning the given message pointer to the internal pointer to
the new message.

inline void SetObjectId(uint32 id)
This function sets the identification of this automata instance
to the given value.

(Continued)

430 Communication Protocol Engineering

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetRightMbx(uint8 mbx)
This function sets the identification of the mailbox assigned
to the automata instance that is logically to the right of this
automata instance.

inline void SetRightAutomata(uint8 automata)
This function sets the identification of the automata type that
is logically to the right of this automata instance.

inline void SetRightObject(uint8 group)
This function sets the identification of the type of the group of
automata that is logically to the right of this automata instance.

inline void SetRightObjectId(uint32 id)
This function sets the identification of the automata instance
that is logically to the right of this automata instance.

inline void SetState(uint8 state)
This function sets the identification of the current state of this
automata instance.

void StartTimer(uint16 tmrId)
This function starts the given timer. The timer is specified by
its identification.

void StopTimer(uint16 tmrId)
This function stops the given timer. The timer is specified by
its identification.

static void SysClearLogFlag()
This function stops the logging of the messages exchanged by
the automata.

static void SysStartAll()
This function starts the logging of the messages exchanged
by the automata.

TABLE 6.8

NetFSM Constructor Summary

NetFSM(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16
numOfState=DEFAULT_STATE_NO, uint16 maxNumOfProceduresPerState=DEFA
ULT_PROCEDURE_NO_PER_STATE, bool getMemory=true)

The constructor initializes the object that represents an instance of the given automata type,
along with the data structures needed for its proper operation.

431FSM Library

6.8.1 FSMSystem

Function prototype:

FSMSystem(
 uint8 numOfAutomata,
 uint8 numberOfMbx)

Function description: This constructor initializes the object that repre-
sents the FSM system together with the data structures needed for its proper
operation.

Parameters:
numOfAutomata: the number of various automata types to be added to

the FSM system
numberOfMbx: the number of mailboxes to be used by the FSM system

Note: Typically, a single mailbox is assigned to each automata type, but
other arrangements are also allowed. Normally, an automata type corre-
sponds to a protocol. For example, the IP protocol may be implemented as
one automata type, and the TCP protocol may be implemented as another
automata type. A typical arrangement would be to assign one mailbox to IP
and one to TCP. Another arrangement would be to assign two mailboxes to
each protocol. For example, in this arrangement, IP would use the first mail-
box to receive the messages from network interfaces (drivers) and the second
mailbox to receive the messages from TCP. Yet another arrangement would

TABLE 6.9

NetFSM Member Functions Summary

Type Member Function

virtual void convertFSMToNetMessage()
This function converts the internal message format into the external
message format appropriate for the transmission over the TCP/IP
network.

virtual uint16 convertNetToFSMMessage()
This function converts the external message format into the internal
message format appropriate for communication within the FSM system.

void establishConnection()
This function establishes the TCP connection between two geographi-
cally distributed FSM systems.

virtual uint8 getProtocolInfoCoding()
This function returns the identification of the type of the external mes-
sage coding.

void sendToTCP()
This function sends the new message to the remote FSM system over
the previously established TCP connection.

432 Communication Protocol Engineering

be to assign a single mailbox to all the protocols. Finally, a set of mailboxes
can be used to prioritize the messages. For example, three mailboxes may be
used to distinguish high, middle, and low priority messages.

6.8.2 Add(ptrFiniteStateMachine, uint8, uint32, bool)

Function prototype:

void Add(
 ptrFiniteStateMachine object,
 uint8 automataType,
 uint32 numberOfObjects,
 bool useFreeList = false)

Function description: This function adds the first instance of each autom-
ata type to the FSM system. At the same time, this function defines the
unique identification of this automata type and the number of instances of
this automata type that will be subsequently added to the FSM system. It
also declares a group of instances of this automata type as either a set of
resources to be used individually or as a pool of resources of the same type
available for dynamic allocation.

Function parameters:
object: the pointer to the first instance of this automata type to be added

to the FSM system
automataType: the unique identification of this type of automata
numberOfObjects: the total number of instances of this type to be added

to the FSM system
useFreeList: the indicator selecting the mode of usage of individual

instances of this type

Note: Typically, the FSM system is created at system startup, and then
groups of various automata types are added to it. As a rule, the first instance
of the given automata type is added by this function. Its parameters specify,
in order from left to right, the pointer to the first object of this type, the
identification of this automata type, the total number of instances that will
be added to the FSM system, and the mode of individual instance alloca-
tion. This last parameter has a default value false, which means that each
automata instance represents an individual resource. If this default is over-
ridden by the value true, the group of instances of this automata type rep-
resents a pool of resources of the same type. The individual instances from
this pool are allocated dynamically and on-demand, based on the use of the
internal FSMSystem library kernel list of resources of the given type. (This
is the origin of the name of the last parameter of this function, useFreeList.)
This dynamic allocation is requested by sending a message to an unknown

433FSM Library

automata, which is identified by the instance identification set to the value –1
(see function SetMsgObjectNumberTo).

6.8.3 Add(ptrFiniteStateMachine, uint8)

Function prototype:

void Add(
 ptrFiniteStateMachine object,
 uint8 automataType)

Function description: This function adds all the automata instances except
the first instance of the given type to the FSM system. It assumes that the first
instance of this automata type has been added previously to the FSM system
by calling the overloaded function Add with four parameters in its signature.

Function parameters:
object: the pointer to the instance of this automata type to be added to

the FSM system
automataType: the unique identification of this automata type

Note: As already mentioned, after the FSM system is created at system
startup, the groups of various automata types are added to it. As a rule, the
first instance of the given automata type is added by the overloaded function
Add with four parameters in its signature (see the previous section for more
details on its parameters). All the other instances of the given automata type
are added to the FSM system by this overloaded function Add. An advantage
of differentiating these two functions becomes obvious in a dynamic envi-
ronment where objects are created on-demand and added to the FSM sys-
tem. If the given automata type already exists, and a need arises for another
instance of it, this overloaded Add function is sufficient.

6.8.4 InitKernel

Function prototype:

void InitKernel(
 uint8 buffClassNo,
 uint32 *buffersCount,
 uint32 *buffersLength,
 uint8 numOfMbxs=0,
 TimerResolutionEnum timerRes = Timer1s)

Function description: This function initializes the elements of the kernel
responsible for time, buffer, and message management. The parameters of
this function specify the number of buffer types, the number of instances
per buffer type and their lengths, the number of mailboxes to be used by

434 Communication Protocol Engineering

the automata added to the FSM system, and the basic timer resolution. The
default value of the basic timer resolution is 1 sec, which is defined by the
symbolic constant Timer1s.

Function parameters:
buffClassNo: the number of buffer types
buffersCount: the pointer to the array of the numbers of instances of the

corresponding buffer types
buffersLength: the pointer to the array of the sizes of the corresponding

buffer types
numOfMbxs: the number of the mailboxes
timerRes: the basic timer resolution

Note: This function essentially initializes the FSMSystem library kernel. It
must be called after the FSM system has been created and before it can be
started. It also assumes that the arrays of the cardinal numbers and the sizes
of individual buffer types were already created and filled by the program-
mer. Because the specification of the buffers to be provided by the kernel
may look cumbersome, we provide the following example. Suppose that a
need arises for three buffer types, namely, small, medium, and large. The
programmer should set the first parameter of this function to the number
3. Next, suppose that the programmer needs 300 small buffers, 200 medium
buffers, and 100 large buffers, and that their sizes should be 64, 128, and 256
bytes, respectively. Before calling this function, the programmer should cre-
ate the following two arrays:

• Array of cardinal numbers = [300, 200, 100]
• Array of sizes = [64, 128, 256]

Finally, the programmer should specify the pointers to these two arrays as
the second and the third parameter of this function.

6.8.5 Remove(uint8)

Function prototype:

void Remove(unit8 automataType)

Function description: This function removes all instances of the given
automata type from the FSM system.

Function parameters:
automataType: the type of automata to be removed from the system

435FSM Library

Note: First, the FSM system removes all instances of the given automata
type from the FSM system. Next, the kernel frees all the memory zones occu-
pied by the internal data structures used by the automata of this type.

6.8.6 Remove(uint8, uint32)

Function prototype:

ptrFiniteStateMachine Remove(
 uint8 automataType
 uint32 object)

Function description: This function removes the given instance of the
given automata type. The parameters of this function specify the identifica-
tion of the automata type and the identification of the automata instance.

Function parameters:
automataType: the identification of the automata type
object: the identification of the instance of the given automata type

Function returns: This function returns the pointer to the automata
instance removed from the FSM system.

6.8.7 Start

Function prototype:

virtual void Start()

Function description: This function starts the FSM system and is the main
function of the FSM system. In this function, the FSM system thread enters a
loop in which it reads the kernel mailboxes and distributes the messages to
the destination automata.

Note: The FSM system thread remains in the loop while the internal attri-
bute SystemWorking is set to the value true. A typical implementation of the
FSM system thread is shown in the example in Section 6.2.1.2.

6.8.8 StopSystem

Function prototype:

void StopSystem()

Function description: This function stops the FSM system. It sets the inter-
nal attribute SystemWorking to the value false, thus causing the FSM system
thread to exit its loop and stop the FSM system.

436 Communication Protocol Engineering

Note: If the function Start has been called from the separate operating sys-
tem thread, the call to the function StopSystem will cause the termination of
that thread.

6.8.9 FSMSystemWithTCP

Function prototype:

FSMSystemWithTCP(
 uint8 numOfAutomata,
 uint8 numberOfMbx)

Function description: This constructor initializes the object that represents
the FSM system supporting communication over TCP/IP network, along
with the data structures needed for its proper operation. Its parameters
specify the number of automata types to be added to the FSM system and
the number of mailboxes.

Function parameters:
numOfAutomata: the number of automata types that will be added to

the FSM system
numberOfMbx: the number of mailboxes that will be used by the autom-

ata added to the FSM system

Note: Typically, a single mailbox is assigned to each automata type included
in the FSM system, but other arrangements are also allowed. For example, a
single mailbox may be assigned to all the automata types included in the
FSM system. Also allowed is to assign an arbitrary number of mailboxes to
each automata type, e.g., to enable message prioritization.

6.8.10 InitTCPServer

Function prototype:

int InitTCPServer(
 uint16 port,
 unit8 automataType,
 char *ipAddress = 0,
 unsigned char *parm = 0,
 int length = 0)

Function description: This function initializes the TCP server. Once ini-
tialized, the server waits for a request to establish the TCP connection
with a remote client. The parameters of this function specify the number
of the TCP port on which the server awaits the connection request, the
automata type included in the FSM system engaged in the communica-
tion, the server IP address, the pointer to the area where the connection

437FSM Library

parameters should be passed to the specified automata type, and the
parameter lengths in bytes. After reception of the request, the server allo-
cates an instance of the given automata type and passes the connection
together with the received parameters to the allocated automata instance.
Further communication continues directly between the remote client
and the allocated automata instance, i.e., the server is completely isolated
from it.

Function parameters:
Port: the number of the TCP port on which the server awaits a connec-

tion request
automataType: the automata type included in the FSM system that is

engaged in the communication. This automata type must be derived
from the class NetFSM. After the connection has been initially estab-
lished, the server transfers it to the allocated instance of this autom-
ata type.

ipAddress: the pointer to the server IP address
parm: the pointer to the area where the parameters received while estab-

lishing the connection should be passed and subsequently taken by
to the specified automata type

length: the parameter lengths specified by the previous pointer, in bytes

Function returns: If the TCP server awaiting a request from a remote client
is successfully started, this function returns the value 0. Otherwise, it returns
the value –1.

Note: This function should be called only once, just initially to start the
TCP server.

6.8.11 FiniteStateMachine

Function prototype:

FiniteStateMachine(
 unit16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,
 bool getMemory = true)

Function description: This constructor initializes the object that repre-
sents the instance of a given automata type together with the data structures
needed for its proper operation. Its parameters specify the number of timers
to be used by this automata type, the number of the states that this automata
type has, the maximal number of state transitions per state, and the indica-
tor specifying whether this constructor should reserve the memory for the
objects that represent the states and state transitions of this automata type

438 Communication Protocol Engineering

or not. The default value of this indicator is true, which means that this con-
structor is responsible for memory allocation.

Function parameters:
numOfTimers: the number of the timers to be used by this automata

type
numOfState: the number of the states that this automata type has
maxNumOfProceduresPerState: the maximal number of state transitions

per state
getMemory: the memory allocation indicator (by default, its value is true)

Note: This constructor may be called either with some or without any of
the parameters. If the parameter is not specified, the constructor will use its
default value. The indicator getMemory may be set to the value false when
the programmer wants to do manual memory allocation to optimize overall
memory consumption.

6.8.12 AddParam

Function prototype:

uint8 *AddParam(
 uint16 paramCode,
 uint32 paramLength,
 uint8 *param)

Function description: This function is used to add a given parameter of a
given length to the new message. The parameters of this function specify the
unique identification of the parameter type, the parameter length in bytes,
and the pointer to the parameter itself. If the parameter to be added to the
message is too large to fit in the buffer that is assigned to the new message,
this function will get a bigger buffer, copy the new message into it, add the
parameter, and release the old buffer.

Function parameters:
paramCode: the parameter type
paramLength: the parameter length, in bytes
param: the pointer to the parameter

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: This function enables the programmer to add a parameter of an arbi-
trary size to the new message with the limitation that it must not exceed the
maximal parameter length specified for the given type of message coding

439FSM Library

(e.g., for the type StandardMessage, the maximal parameter length is 256
bytes). The message parameters in StandardMessage are sorted by ascending
order of their corresponding type identifiers.

6.8.13 AddParamByte

Function prototype:

uint8 *AddParamByte(
 uint16 paramCode,
 BYTE param)

Function description: This function is used to add the given parameter of
length 1 byte to the new message. The parameters of this function specify the
unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.14 AddParamDWord

Function prototype:

uint8 *AddParamDWord(
 uint16 paramCode,
 DWORD param)

Function description: This function is used to add the given parameter of
length 4 bytes to the new message. The parameters of this function specify
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 232 bytes.

440 Communication Protocol Engineering

6.8.15 AddParamWord

Function prototype:

uint8 *AddParamDWord(
 uint16 paramCode,
 WORD param)

Function description: This function is used to add the given parameter of
length 2 bytes to the new message. The parameters of this function specify
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.16 CheckBufferSize

Function prototype:

uint8 *CheckBufferSize(uint32 paramLength)

Function description: This function provides a new message buffer with
the size sufficient enough to accept the parameter of the given length. The
parameter of this function specifies the parameter length in bytes.

Function parameters:
paramLength: the parameter length

Function returns: This function returns the pointer to the new message.
Note: This function is obsolete. In the previous version of the FSM Library,

this function ensured the new message buffer management was transpar-
ent for the programmer. Typically, the programmer would call this function
before calling some of the AddParam functions to ensure that the new mes-
sage is stored in a buffer of sufficient size. This means that the buffer is large
enough to accept a new parameter of the given size, in addition to the current
content of the new message. Behind the scenes, this function checked the
current size of the new message. If it was not sufficient, the function allo-
cated a new, larger buffer; copied the current new message into it; released

441FSM Library

the old buffer; and returned the pointer to the newly allocated buffer con-
taining the new message. In the current version of the FSM Library, all the
AddParam functions call this function internally at their very beginning, and
the programmer no longer needs to call it explicitly.

6.8.17 ClearMessage

Function prototype:

virtual void ClearMessage()

Function description: This function returns the buffer allocated for the
current message to the kernel and assigns the value NULL to the internal
pointer to the current message. The current message is the last message
received by the automata instance.

Note: If the FSMSystem library has been compiled for the debug mode, this
function will additionally verify that the return value of the function is NULL.

6.8.18 CopyMessage()

Function prototype:

virtual void CopyMessage()

Function description: This function makes a copy of the current message
and assigns that copy to the new message. By definition, a current message is
the last received message, and a new message is the message under construc-
tion to be subsequently sent. The value of the pointer to the current message
copy is assigned to the internal pointer to the new message.

Note: This function first checks if the new message already exists by check-
ing the internal pointer to the new message. If the new message has already
been defined or is under construction (the internal pointer is not equal to
the value NULL), the function releases the buffer that contains the new mes-
sage and assigns the value NULL to the internal pointer. Next, the function
makes a copy of the current message and assigns its address to the pointer
to the new message. This function is typically used for message forwarding.
The protocol A sends a message to the protocol B, which, in turn, forwards
the copy of the same message to the protocol C.

6.8.19 CopyMessage(uint*)

Function prototype:

virtual void CopyMessage(uint8 *msg)

442 Communication Protocol Engineering

Function description: This function makes a copy of the given message
and assigns that copy to the new message. The parameter of this function
specifies the pointer to the original message.

Function parameters:
msg: the pointer to the original message

Note: This function assumes that the new message does not exist, i.e., the
internal pointer to the new message should contain the value NULL before
this function is called. However, if the new message already exists, this func-
tion will return its buffer and get a fresh buffer for the new message before
copying the given message into it.

6.8.20 CopyMessageInfo

Function prototype:

virtual void CopyMessageInfo(
 uint8 infoCoding,
 uint16 lengthCorrection = 0)

Function description: This function copies the part of the message con-
taining the useful information, referred to as a payload (message without
its header), from the current message into the new message stored in a
newly allocated buffer. The parameters of this function specify the type of
information coding that governs the formatting and length correction of
the message.

Function parameters:
infoCoding: the identification of the type of information coding
lengthCorrection: the message length correction

Note: The message length correction depends on the type of applied infor-
mation coding. If the new message buffer does not exist, this function will
get a buffer, assign it to the new message, and make the required copy.

6.8.21 Discard

Function prototype:

virtual void Discard(uint8* buff)

Function description: This function deletes the message placed in the
given buffer and returns the buffer to the kernel. The parameter of this func-
tion specifies the buffer to be cleared and released.

443FSM Library

Function parameters:
buff: the pointer to the buffer

6.8.22 DoNothing

Function prototype:

void DoNothing()

Function description: This function performs no operation. It is called
when the automata receives an unexpected message, unless a new function
to handle unexpected messages is defined. By definition, an unexpected
message is any type of message that has not been defined as a legal type of
message in the current automata state.

Note: This function may be redefined by calling the function Init
UnexpectedEventProc, if a need exists for concrete functionality handling
unexpected messages.

6.8.23 FreeFSM

Function prototype:

void FreeFSM()

Function description: This function reports to the FSM system that an
automata instance has finished its current assignment and is free for further
assignments. If the first instance of this automata type has been added to the
FSM system with the parameter useFreeList set to the value true, the group of
instances of this automata type is viewed as a pool of resources. In that case,
this function returns the resource to the corresponding pool by queuing it to
the internal list of the resources of the same type.

Note: If a group of instances of this automata type is used as a set of indi-
vidual resources, rather than as a pool of resources (the parameter useFree
List has been set to the value false when the first automata instance has been
added to the FSM system), this function has no effect.

6.8.24 GetAutomata

Function prototype:

virtual uint8 GetAutomata() = 0

Function description: This function returns the identification of the autom-
ata type for this automata instance.

Function returns: This function returns the unique ID of the automata type.

444 Communication Protocol Engineering

Note: This function is a pure virtual function, which means that it must be
defined in the class that models some concrete automata type. Typically, this
function returns the constant value that represents the required identification.
It finds this constant by looking up the table of identifications created by read-
ing the file of all the known automata types at the FSM system startup time.

6.8.25 GetBitParamByteBasic

Function prototype:

unit8 GetBitParamByteBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 1 byte masked with the given mask. The parameters
of this function specify the offset of the original parameter of the message
and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing the
value of a single bit, or of a group of bits simultaneously, is possible in the param-
eter of size 1 byte that is at a given distance from the beginning of the message.

6.8.26 GetBitParamWordBasic

Function prototype:

unit8 GetBitParamWordBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 2 bytes masked with the given mask. The param-
eters of this function specify the offset of the original parameter of the
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

445FSM Library

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing
the value of a single bit, or a group of bits simultaneously, is possible in the
parameter of size 2 bytes that is at a given distance from the beginning of
the message.

6.8.27 GetBitParamDWordBasic

Function prototype:

unit8 GetBitParamDWordBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 4 bytes masked with the given mask. The param-
eters of this function specify the offset of the original parameter of the
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing
the value of a single bit, or of a group of bits simultaneously, is possible in
the parameter of size 4 bytes that is at a given distance from the beginning
of the message.

6.8.28 GetBuffer

Function prototype:

virtual uint8 *GetBuffer(uint32 length)

Function description: This function returns a buffer whose size is not less
than the size given by the value of its parameter. The parameter of this mes-
sage specifies the minimal buffer length in bytes.

Function parameters:
length: the buffer length

446 Communication Protocol Engineering

Function returns: This function returns the pointer to a newly allocated
buffer.

Note: The FSMSystem library kernel handles a limited number of buffer
types with a limited number of instances per each type defined during the
kernel initialization by calling the function InitKernel. By definition, this
function first searches for the buffer types of the size that ideally match the
desired buffer. If such a type does not exist, the function searches for the next
size buffer type (in the increasing order of size). This allocation policy may
yield a buffer of a size much bigger than needed, and the frequent occurrence
of this type of allocation may lead to inefficient memory usage. For example,
suppose that the programmer has mistakenly defined only two buffer sizes,
small and large, such that not a single protocol message can fit into the small
buffer. In this case, only the large buffers will be consumed, and the small
buffers will not be used at all. Therefore, special care must be taken when
defining the buffers before calling the function InitKernel.

Now, let us go back to the buffer allocation algorithm. When this function
finds a buffer type of a sufficient size, it checks for a free buffer of that type.
If no such type is found, the system is badly designed and a new buffer type
must be added to the system. If such a buffer type exists, but no free buffers
of that type are available, the function will look for the next size buffer. If
all the buffers of the sufficient size are already allocated, the FSM system
experiences a memory exhaustion problem. In the academic examples, the
system is allowed to crash under these circumstances. However, industrial-
strength applications require implementation of additional mechanisms,
such as overload protection and intelligent automatic restarts.

6.8.29 GetBufferLength

Function prototype:

uint32 GetBufferLength(uint8 *buff)

Function description: This function returns the size of the given buffer in
bytes. The parameter of this function specifies the pointer to the buffer.

Function parameters:
buff: the address of the buffer

Function returns: This function returns the specified buffer length in bytes.

6.8.30 GetCallId

Function prototype:

virtual inline uint32 GetCallId()

447FSM Library

Function description: This function returns the identification of the com-
munication process that this instance is currently involved in, e.g., the call
ID. The actual meaning of this identification is application specific.

Function returns: This function returns the value of the attribute CallId.
Note: Historically, the attribute CallId is tied to call processing (e.g., Q.71)

and signaling (e.g., SS7, DSS1) protocols, but it has also proved to be useful in
modern multimedia protocols (e.g., H.323 and SIP). Generally, this attribute
may be used as an identification of the process or transaction that engages
more cooperative automata. If a single attribute is not sufficient, the pro-
grammer may introduce additional attributes in classes derived from the
base class FiniteStateMachine.

6.8.31 GetCount

Function prototype:

uint32 GetCount(uint8 mbx)

Function description: This function returns the current number of mes-
sages in the given mailbox. The parameter of this message specifies the iden-
tification of the mailbox.

Function parameters:
mbx: the mailbox identification

Function returns: This function returns the number of unread messages
contained in the mailbox of interest.

6.8.32 GetGroup

Function prototype:

virtual uint8 GetGroup()

Function description: This function returns the identification of the group
of automata to which this instance belongs.

Function returns: This function returns a number that uniquely identifies
the group of automata which, besides other members, includes this automata
instance.

6.8.33 GetInitialState

Function prototype:

virtual uint8 GetInitialState()

448 Communication Protocol Engineering

Function description: This function returns the identification of the initial
state of this automata type.

Function returns: This function returns the number that uniquely identi-
fies the initial state of this automata type.

Note: The default value of the initial state is 0.

6.8.34 GetLeftMbx

Function prototype:

virtual inline uint8 GetLeftMbx()

Function description: This function returns the identification of the default
mailbox assigned to the automata instance that is logically to the left of this
automata instance.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox assigned to the left automata instance.

Note: Historically, the terms left and right automata instance originate from
SDL, where an automata instance typically communicates with its left and
right neighbors. These neighbors might have their own mailboxes, some-
times briefly called left and right mailboxes.

6.8.35 GetLeftAutomata

Function prototype:

virtual inline uint8 GetLeftAutomata()

Function description: This function returns the identification of the autom-
ata type that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left automata type.

Note: By definition, left automata are logically placed to the left of the cur-
rently observed automata instance.

6.8.36 GetLeftGroup

Function prototype:

virtual linline uint8 GetLeftGroup()

Function description: This function returns the identification of the group
of automata that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left group of automata.

Note: By definition, a left group of automata is a group that contains left
automata.

449FSM Library

6.8.37 GetLeftObjectId

Function prototype:

virtual inline uint32 GetLeftObjectId()

Function description: This function returns the identification of the autom-
ata instance that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left automata instance.

Note: By definition, left automata are logically placed to the left of the cur-
rently observed automata instance. This function returns the identification
of the particular left automata instance with which the currently observed
automata instance communicates.

6.8.38 GetMbxId

Function prototype:

virtual uint8 GetMbxId()

Function description: This function returns the identification of the default
mailbox assigned to this automata type. Note that an instance of a given
automata type may receive its messages through any mailbox, i.e., through
the default mailbox as well as through other mailboxes. Alternately, a single
mailbox may be assigned to more than one automata type.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox assigned to this automata instance.

Note: This function is a pure virtual function, which means that it must
be defined by the programmer when they write a class derived from the
class FiniteStateMachine. Typically, this function returns the constant value
that represents the required mailbox identification (the content of the cor-
responding class field). This constant can be initially determined by looking
up the table of identifications, and set by calling the function SetMbxId. The
table of identifications can be created by reading the file containing all the
known automata types at the FSM system startup time. A mailbox ID is typi-
cally a record field that describes a single automata type.

6.8.39 GetMessageInterface

Function prototype:

virtual MessageInterface *GetMessageInterface(uint32 id) = 0

Function description: This function returns the object that governs the cod-
ing of messages used by this automata instance. The parameter of this func-
tion specifies the identification of the information coding scheme. The returned
object is an instance of the class derived from the class MessageInterface.

450 Communication Protocol Engineering

Function parameters:
id: the information coding scheme

Function returns: This function returns the pointer to the object respon-
sible for parsing and coding the messages used by this automata instance.

Note: This function is a virtual function, which means that it must
be defined when the programmer writes a class derived from the class
FiniteStateMachine. The identification with the value 0 is reserved for the
information coding used by the format of the class StandardMessage, which is
a basic type of message supported by the FSMSystem library.

6.8.40 GetMsg()

Function prototype:

uint8* GetMsg()

Function description: This function returns the first unread message from
the mailbox assigned to this automata instance.

Function returns: This function returns a pointer to the buffer that has
been removed from the head of the list, which is hidden by the abstraction of
the mailbox assigned to this automata instance. If no such buffer exists, i.e.,
if the list is empty, the function returns the value NULL.

6.8.41 GetMsg(uint8)

Function prototype:

static uint8* GetMsg(uint8 mbx)

Function description: This function returns the first unread message from
the given mailbox. The parameter of this function specifies the identification
of the mailbox.

Function parameters:
mbx: the mailbox ID

Function returns: This function returns the pointer to the buffer that has
been removed from the head of the list, which is hidden by the abstraction of
the given mailbox. If no such buffer exists, i.e., if the list is empty, the func-
tion returns the value NULL.

Note: Although this function is defined as a static function, a call to this func-
tion is not allowed before the kernel initialization and the FSM system startup.
The call to this function made before that may cause unpredictable behavior.

451FSM Library

6.8.42 GetMsgCallId

Function prototype:

inline uint32 GetMsgCallId()

Function description: This function returns the identification of the com-
munication process (e.g., call ID) from the current message.

Function returns: This function returns the value of the attribute CallId.
Note: The attribute CallId is application specific. It can be used to indicate

a process or a transaction in which more cooperating automata are involved.
The size of CallId is 32 bits. It is considered large enough for most of the appli-
cations. To increase the size of CallId, the programmer would need to modify
the base class FiniteStateMachine.

6.8.43 GetMsgCode

Function prototype:

inline uint16 GetMsgCode()

Function description: This function returns the message code from the
current message header.

Function returns: This function returns the value of the message code
from the header of the current (last received) message.

6.8.44 GetMsgFromAutomata

Function prototype:

inline uint8 GetMsgFromAutomata()

Function description: This function returns the identification of the origi-
nating automata type from the current message. This value is provided from
the header of the current message.

Function returns: This function returns the value of the identification
of the automata type that has created and sent the current message to this
automata instance.

6.8.45 GetMsgFromGroup

Function prototype:

inline uint8 GetMsgFromGroup()

452 Communication Protocol Engineering

Function description: This function returns the identification of the group
of the originating automata instance for the current message. This value is
provided from the header of the current message.

Function returns: This function returns the value of the identification of
the group of automata instance that has created and sent the current mes-
sage to this automata instance.

6.8.46 GetMsgInfoCoding

Function prototype:

inline uint8 GetMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the current message.

Function returns: This function returns the value that identifies the type of
information coding that has been used to create the current message.

Note: This information is provided from the header of the current
message.

6.8.47 GetMsgInfoLength()

Function prototype:

inline uint16 GetMsgInfoLength()

Function description: This function returns the payload length of the cur-
rent message in bytes.

Function returns: This function returns the value of the current message
payload size in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the
sum of the length of the message header and the length of the message
payload.

6.8.48 GetMsgInfoLength(uint8*)

Function prototype:

inline uint16 GetMsgInfoLength(uint8 *msg)

Function description: This function returns the payload length of the
given message in bytes. The parameter of this function specifies the pointer
to the message.

453FSM Library

Function parameters:
msg: the pointer to the message

Function returns: This function returns the value of the size of the given
message payload in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the sum
of the length of the message header and the length of the message payload.

6.8.49 GetMsgObjectNumberFrom

Function prototype:

inline uint32 GetMsgObjectNumberFrom()

Function description: This function returns the identification of the origi-
nating automata instance from the current message.

Function returns: This function returns the value that identifies the autom-
ata instance that has created and sent the message.

Note: This value is provided from the header of the current (last received)
message.

6.8.50 GetMsgObjectNumberTo

Function prototype:

inline uint32 GetMsgObjectNumberTo()

Function description: This function returns the identification of the des-
tination automata instance from the current message. This value is actually
this automata instance.

Function returns: This function returns the value that identifies the autom-
ata instance that has received the message and that must process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.51 GetMsgToAutomata

Function prototype:

inline uint8 GetMsgToAutomata()

Function description: This function returns the identification of the desti-
nation automata type from the current message. This value is actually this
automata type.

454 Communication Protocol Engineering

Function returns: This function returns the value that identifies the autom-
ata type that should receive the message and that should process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.52 GetMsgToGroup

Function prototype:

inline uint8 GetMsgToGroup()

Function description: This function returns the identification of the type of
the group of the destination automata from the current message. This value
is actually the group to which this automata type belongs.

Function returns: This function returns the value that identifies the group
of automata that has received the message and that must process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.53 GetNewMessage

Function prototype:

inline uint8 *GetNewMessage()

Function description: This function returns the address of the buffer that
contains the new message.

Function returns: This function returns the pointer to the already defined
new message or the message under construction.

Note: If the new message does not exist, this function returns the
value NULL. This function assumes that the programmer has already allo-
cated a buffer for the new message by previously calling the function
PrepareNewMessage or calling the function GetBuffer.

6.8.54 GetNewMsgInfoCoding

Function prototype:

inline uint8 GetNewMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the new message.

Function returns: This function returns the value that uniquely identifies
the type of information coding.

Note: This value is provided from the header of the new message.

455FSM Library

6.8.55 GetNewMsgInfoLength

Function prototype:

inline uint16 GetNewMsgInfoLength()

Function description: This function returns the payload length of the new
message in bytes.

Function returns: This function returns the value of the new message pay-
load size in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the sum
of the length of the message header and the length of the message payload.

6.8.56 GetNextParam

Function prototype:

uint8 *GetNextParam(uint16 paramCode)

Function description: This function returns the address of the next instance
of the given parameter type within the current message. The parameter of
this function specifies the type of message parameter.

Function parameters:
paramCode: the identification of the type of message parameter

Function returns: The function returns the pointer to the next instance of the
message parameter. If it does not exist, the function returns the value NULL.

Note: This function cannot be used by the programmer to get the first
instance of the message parameter of a given type. It assumes that the
first instance has already been provided by calling the function GetParam.
Typically, the function GetParam is called once to provide the first instance
of the parameter and then called iteratively to provide the next instances of
the parameter.

6.8.57 GetNextParamByte

Function prototype:

bool GetNextParamByte(
 uint16 paramCode,
 BYTE ¶m)

Function description: This function searches for the next instance of
the given type of the single-byte parameter in the current message. If the
instance is found, the function copies it into its parameter specified by the

456 Communication Protocol Engineering

reference and returns the value true; otherwise, it returns the value false. The
parameters of this function specify the identification of the type of message
parameter and the pointer to the memory area, where this function should
store the next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of the message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by calling the function GetParamByte.
Typically, the function GetParamByte is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.58 GetNextParamDWord

Function prototype:

bool GetNextParamDWord(
 uint16 paramCode,
 DWORD ¶m)

Function description: This function searches for the next instance of the
given type of parameter 4 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference and
returns the value true; otherwise, it returns the value false. The parameters of
this function specify the identification of the type of the message parameter
and the pointer to the memory area, where this function should store the
next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

457FSM Library

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by calling the function GetParamDWord.
Typically, the function GetParamDWord is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.59 GetNextParamWord

Function prototype:

bool GetNextParamWord(
 uint16 paramCode,
 WORD ¶m)

Function description: This function searches for the next instance of the
given type of parameter 2 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference and
returns the value true; otherwise, it returns the value false. The parameters of
this function specify the identification of the type of the message parameter
and the pointer to the memory area, where this function should store the
next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by the call to the function GetParamWord.
Typically, the function GetParamWord is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.60 GetObjectId

Function prototype:

virtual uint32 GetObjectId()

Function description: This function returns the unique identification of
this automata instance.

458 Communication Protocol Engineering

Function returns: This function returns the value that uniquely identifies
this particular automata instance.

Note: This value has been automatically assigned to this automata instance by
the function Add, which is called to add this automata instance to the FSM system.

6.8.61 GetParam

Function prototype:

uint8 *GetParam(uint16 paramCode)

Function description: This function returns the address of the first instance
of the given type of message parameter within the current message. The
parameter of this function specifies the identification of the parameter type.

Function parameters:
paramCode: the identification of the parameter type

Function returns: This function returns the pointer to the first instance of
the message parameter within the current message. If no message param-
eters of the given type are found, this function returns the value NULL.

Note: This function returns the pointer to the beginning of the message
parameter. The format of the message parameter is governed by the selected
type of message information coding. For example, the parameter of the mes-
sage StandardMessage consists of three fields. These fields are the parameter
type (stored in 2 bytes), the parameter length (stored in 1 byte), and the infor-
mation part of the parameter (stored in the number of bytes determined by
the content of the previous field of the parameter).

6.8.62 GetParamByte

Function prototype:

bool GetParamByte(
 uint16 paramCode,
 BYTE ¶m)

Function description: This function searches for the first instance of the
given type of single-byte parameter in the current message. If the instance is
found, the function copies it into its parameter specified by the reference and
returns the value true; otherwise, it returns the value false. The parameters of
this function specify the identification of the type of message parameter and
the pointer to the memory area, where this function should store the first
instance of the message parameter.

459FSM Library

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter, and then the function
GetNextParamByte is called iteratively to provide the next instances of the
parameter.

6.8.63 GetParamDWord

Function prototype:

bool GetParamDWord(
 uint16 paramCode,
 DWORD ¶m)

Function description: This function searches for the first instance of the
given type of parameter 4 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference and
returns the value true; otherwise, it returns the value false. The parameters of
this function specify the identification of the type of message parameter and
the pointer to the memory area, where this function should store the first
instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter, and then the function
GetNextParamDWord is called iteratively to provide the next instances of the
parameter.

460 Communication Protocol Engineering

6.8.64 GetParamWord

Function prototype:

bool GetParamWord(
 uint16 paramCode,
 BYTE ¶m)

Function description: This function searches for the first instance of the
given type of parameter 2 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference and
returns the value true; otherwise, it returns the value false. The parameters of
this function specify the identification of the type of message parameter and
the pointer to the memory area, where this function should store the first
instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter, and then the function
GetNextParamWord is called iteratively to provide the next instances of the
parameter.

6.8.65 GetProcedure

Function prototype:

PROC_FUN_PTR GetProcedure(uint16 event)

Function description: This function returns the pointer to the event han-
dler for the given event identifier and the current state of automata. The
parameter of this function specifies the identification of the event type.

Function parameters:
event: the identification of the event type (message code)

Function returns: This function returns the pointer to the event handler.
Essentially, the event handler is a C++ class function member that handles
the given event type in the current state.

461FSM Library

Note: The FSM system internal data structures contain all the necessary
information about the automata states, the sets of recognizable events (mes-
sages) for all automata states, and the corresponding event handlers. This
information must be defined for each automata type after it has been added
to the FSM system by the function Add. The programmer specifies this infor-
mation in the parameters of the function Initialize. If the event handler has
not been specified by the function Initialize for the given event type in the
current automata state, this function returns the pointer to the function
DoNothing, which performs the default processing of the unexpected events
(messages).

6.8.66 GetRightMbx

Function prototype:

virtual inline uint8 GetRightMbx()

Function description: This function returns the identification of the default
mailbox assigned to the automata instance that is logically to the right of this
automata instance.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox for the right automata instance.

Note: Historically, the terms left and right automata instance originate
from SDL, where an automata instance typically communicates with its left
and right neighbors. These neighbors have their own mailboxes, sometimes
briefly called left and right mailboxes.

6.8.67 GetRightAutomata

Function prototype:

virtual inline uint8 GetRightAutomata()

Function description: This function returns the identification of the autom-
ata type that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right automata type.

Note: By definition, right automata are logically placed to the right of the
currently observed automata instance.

6.8.68 GetRightGroup

Function prototype:

virtual linline uint8 GetRightGroup()

462 Communication Protocol Engineering

Function description: This function returns the identification of the group
of automata that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right group of automata.

Note: By definition, a right group of automata is a group that contains right
automata.

6.8.69 GetRightObjectId

Function prototype:

virtual inline uint32 GetRightObjectId()

Function description: This function returns the identification of the autom-
ata instance that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right automata instance.

Note: By definition, right automata are logically placed to the right of the
currently observed automata instance. This function returns the identifi-
cation of the particular right automata instance with which the currently
observed automata instance communicates.

6.8.70 GetState

Function prototype:

virtual inline uint8 GetState()

Function description: This function returns the identification of the cur-
rent state of this automata instance.

Function returns: This function returns the value that uniquely identifies
the current state of this automata instance.

6.8.71 IsBufferSmall

Function prototype:

virtual bool IsBuferSmall(
 uint8 *buff,
 uint32 length)

Function description: This function returns the value true if the size of the
given buffer is not greater than the given size specified as the value of its
second parameter; otherwise, it returns the value false. The parameters of this
function specify the buffer whose size is to be checked and the size to be used
as a measuring unit.

463FSM Library

Function parameters:
buff: the pointer to the buffer whose size is to be checked
length: the value of the measuring unit

Function returns: This function returns the value true if the size of the
given buffer is less than or equal to the given size. If the buffer size is greater
than the given size, the function returns the value false.

6.8.72 Initialize

Function prototype:

virtual void Initialize() = 0

Function description: This function defines the automata state transi-
tion event handlers and timers used by this automata type. State tran-
sition event handlers are essentially the C++ functions defined by the
programmer, which process events (messages). Timers are primitive
time mechanisms used to restrict the duration of certain communication
phases.

Note: While writing the function Initialize, the programmer normally
defines the functions that process the expected events (messages) by calling
the function InitEventProc, the functions that process the unexpected events
by calling the function InitUnexpectedEventProc, and the timers by calling the
function InitTimerBlock.

6.8.73 InitEventProc

Function prototype:

void InitEventProc(
 uint8 state,
 uint16 event,
 PROC_FUN_PTR fun)

Function description: This function defines the given state transition event
handler for the given automata state and the given event (message code).
The parameters of this function specify the identification of the state of this
automata type, the identification of the event type, and the pointer to the
event handler.

Function parameters:
state: the identification of the state of this automata type
event: the identification of the event type
fun: the pointer to the event handler

464 Communication Protocol Engineering

Note: This function may be used only within the definition of the func-
tion Initialize. A sequence of calls to this function fills in the internal state
table for this automata type. This table is used by the FSM system and this
automata type during its normal operation to locate the event handler that
corresponds to the given pair (state, event).

6.8.74 InitTimerBlock

Function prototype:

void InitTimerBlock (
 uint16 tmrId,
 uint32 count,
 uint16 signalId)

Function description: This function initializes the given timer by the given
duration and the timer expiration message code. The parameters of this function
specify the timer identification, the timer duration, and the identification of the
message to be sent to this automata type when the specified timer expires.

Function parameters:
tmrId: the timer identification
count: the timer duration (in timer ticks)
signalId: the identification of the message (signal) to be sent by the spec-

ified timer

Note: The timer identification is a value selected by the programmer. This
value uniquely identifies the timer to the automata type that uses it in all
the timer-related primitives, namely, InitTimerBlock, ResetTimer, RestartTimer,
StartTimer, and StopTimer. Uniqueness of identifiers is limited to the scope
of a single automata type. If the timer expires, it sends a special message
(referred to as a signal) to the automata instance that has started that timer.
The code of this message is set to the value of the parameter SignalId. The
kernel calculates the absolute timer duration in seconds by dividing the time
resolution specified for automata type with the time resolution of the FSM
system and by multiplying this result with the basic timer resolution speci-
fied as the parameter of the function InitKernel.

6.8.75 InitUnexpectedEventProc

Function prototype:

void InitUnexpectedEventProc(
 uint8 state,
 PROC_FUN_PTR fun)

465FSM Library

Function description: This function defines the given state transition event
handler for unexpected events in the given automata state. The parameters
of the function specify the automata state and the unexpected event han-
dler, which is essentially a C++ function that handles unexpected events
(messages).

Function parameters:
state: the value that uniquely identifies the automata state
fun: the pointer to the unexpected event handler

Note: If the unexpected event (message) handler does not exist because
it has not been defined by this function, the FSM system and this automata
type will use the function DoNothing to handle unexpected messages for all
the states in which the unexpected message is not defined.

6.8.76 IsTimerRunning

Function prototype:

bool IsTimerRunning(uint16 id)

Function description: This function returns the value true if a given timer
is active (running); otherwise, it returns the value false. The parameter of this
function specifies the timer identification.

Function parameters:
id: the timer identification

Function returns: This function returns the value true if the timer is run-
ning. If the timer is not active, this function returns the value false.

Note: The timer may not be active because it has not been started at all, or
it has been started but has expired in the meantime.

6.8.77 NoFreeObjectProcedure

Function prototype:

void NoFreeObjectProcedure(uint8 *msg)

Function description: This function defines the behavior of this automata
type if the list of free automata of this type is used, and if it is empty at the
moment when a free instance is requested. The parameter of this function
specifies the pending event (message).

466 Communication Protocol Engineering

Function parameters:
msg: the pointer to the pending message

Note: This function is used if a group of automata of this type is used as a
pool of resources of the same type. This function is called if the message related
to this automata type appears and no available automata instances (resources)
of this type are available. The programmer should write their own function to
handle this situation in an application-specific way. This situation is addition-
ally handled at the level of the FSM system by the function NoFreeInstances.

6.8.78 NoFreeInstances

Function prototype:

virtual void NoFreeInstances() = 0

Function description: This function defines the behavior of the FSM sys-
tem if a list of free automata is used, and if it is empty at the moment when a
free instance is requested.

Note: This function is used if a group of automata of this type is used as a
pool of resources of the same type within the FSM system. This function is
called if the message related to this automata type appears and no available
automata instances (resources) of this type are available. The programmer
should write their own function to handle this situation in an application-
specific way. This situation is additionally handled at the level of this autom-
ata type by the function NoFreeObjectProcedure.

6.8.79 ParseMessage

Function prototype:

virtual bool ParseMessage(uint8 *msg)

Function description: This function checks if the given message is coded
properly and, if it is, it becomes the current message (its pointer is assigned to
the internal variable CurrentMessage). The parameter of this function speci-
fies the message to be parsed.

Function parameters:
msg: the pointer to the message to be parsed

Function returns: This function returns the value true if the message syn-
tax is correct; otherwise, it returns the value false.

Note: This function is called internally for each received message.
Normally, this function is called after the reception of the message to check

467FSM Library

its syntax. If the message syntax is correct, further message processing func-
tions are called. Otherwise, the FSM system reports an error and discards
the syntactically incorrect message.

6.8.80 PrepareNewMessage(uint8*)

Function prototype:

virtual void PrepareNewMessage(uint8 *msg)

Function description: This function defines the given buffer as the new
message buffer by assigning the given pointer to the internal variable
NewMessage. The buffer is used by this automata instance as a working area
for the construction of the new message. The parameter of this function
specifies the buffer.

Function parameters:
msg: the pointer to the buffer

Note: If the programmer wants to create a new message, they would nor-
mally call the function GetBuffer to obtain the buffer for the construction of
the message. Next, the programmer would call this function to declare the
buffer provided by the kernel as the buffer that will contain the new mes-
sage. After this declaration, the programmer may use all the functions from
the family of functions that operate on the new message to construct the new
message. Basically, these are the AddParamX functions.

6.8.81 PrepareNewMessage(uint32, uint16, uint8)

Function prototype:

virtual void PrepareNewMessage(
 uint32 length,
 uint16 code,
 uint8 infoCode = LOCAL_PARAM_CODING)

Function description: This function creates the new message of the given
length with the given message code and the given type of information cod-
ing. The parameters of this function specify the message length, the message
code, and the identification of the type of message information coding.

Function parameters:
length: the message length
code: the value of the message code
infoCode: the identification of the type of message information coding

468 Communication Protocol Engineering

Note: Dealing with static messages of fixed and known sizes is easy. In
this case, the programmer normally knows the size of the message they
must create. The programmer creates the new message by calling this func-
tion and specifying the size as the value of the function parameter length.
However, dealing with dynamic messages is more complicated, because the
message length might not be known in advance. In this case, the program-
mer may specify the value 0 as the value of the parameter length. This func-
tion, in turn, will create the empty message that has its header, but has no
payload. Further on, the programmer typically uses functions AddParamX
to dynamically add new parameters to the message. Whenever not enough
room exists for the new parameter in the existing new message buffer, the
function AddParamX transparently allocates a bigger buffer, moves the con-
tent of the new message into it, and releases the smaller buffer. Of course,
the price paid for this flexibility is the processing overhead for transparent
buffer management.

6.8.82 Process

Function prototype:

virtual void Process(uint8 *msg)

Function description: This function performs the preparations for the
message processing and selects the state transition event handler based on
the message code and current state of this automata instance. After com-
pletion of the message processing, this function releases the buffer used
by the message. The parameter of this function specifies the message to be
processed.

Function parameters:
msg: the pointer to the message to be processed

Note: This function is called internally by this automata type. Because this
function is virtual, the programmer may define the message handling proce-
dure in accordance with the application-specific requirements.

6.8.83 PurgeMailBox

Function prototype:

void PurgeMailBox()

Function description: This function purges all the messages from the mail-
box assigned to this automata type and releases all the buffers assigned to
the messages.

469FSM Library

Note: Notice that the mailbox is assigned to an automata type rather than
to an individual instance of this type. This means that the mailbox may con-
tain the messages addressed to different instances of this type. This function
does not differentiate the messages. Instead, it simply purges all of them.

6.8.84 RemoveParam

Function prototype:

bool RemoveParam(uint16 paramCode)

Function description: This function removes the given type of message
parameter from the new message. The parameter of this function specifies
the identification of the type of message parameter.

Function parameters:
paramCode: the value that uniquely identifies the type of message

parameter

Function returns: This function returns the value true if the given type of
message parameter is successfully found and removed. If the new message
does not contain the given type, this function returns the value false.

Note: Removing the type of message parameter with identification 0 is not
recommended because it marks the end of the parameters in the message.
The FSMSystem library debug version will report an error in that case and
stop the program execution.

6.8.85 Reset

Function prototype:

virtual void Reset()

Function description: This function resets this automata instance by
returning it to its initial state and stopping all its active timers.

Note: If the programmer wants to specify some additional actions to be
undertaken during the restart operation, they may redefine this default
behavior by writing the corresponding function member of a class derived
from the class FiniteStateMachine.

6.8.86 ResetTimer

Function prototype:

void ResetTimer(uint16 id)

470 Communication Protocol Engineering

Function description: This function resets the internal timer block object
and returns the buffer allocated by the StartTimer primitive to the FSM
Library kernel. The parameter of this function specifies the identification of
the timer.

Function parameters:
id: the value that uniquely identifies the timer

6.8.87 RestartTimer

Function prototype:

void RestartTimer(uint16 tmrId)

Function description: This function restarts the given timer. It is logically
equivalent to a sequence of StopTimer and StartTimer primitives. The param-
eter of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the timer

6.8.88 RetBuffer

Function prototype:

virtual void RetBuffer(uint8 *buff)

Function description: This function returns the given buffer to the FSM
Library kernel. Normally, each memory buffer is returned at the end of its
life cycle. Failure to do so leads to a memory leak problem. The parameter of
this function specifies the buffer to be released.

Function parameters:
buff: the pointer to the buffer to be released

Note: The programmer must pay special attention to releasing the buffers
when they are not needed anymore because the FSMSystem library does not
include a garbage collector. Memory outage causes the exception that will
stop the program execution.

6.8.89 ReturnMsg

Function prototype:

void ReturnMsg(uint8 mbxId)

471FSM Library

Function description: This function makes a copy of the current message
and sends it to the given mailbox. This primitive is used frequently for mes-
sage forwarding. On many occasions, the communication process must react
in this simple way. The parameter of this function specifies the identification
of the mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox

6.8.90 SetBitParamByteBasic

Function prototype:

void SetBitParamByteBasic(
 BYTE param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given single-byte parameter of
the new message to the result of the bit-wise inclusive OR operation applied
to the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the
value of the single-byte parameter, the offset of the target parameter of the
new message, and the value of the bit-mask.

Function parameters:
param: the value of the single-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.91 SetBitParamDWordBasic

Function prototype:

void SetBitParamDWordBasic(
 DWORD param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given 4-byte parameter of the
new message to the result of the bit-wise inclusive OR operation applied to
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the
value of the 4-byte parameter, the offset of the target parameter of the new
message, and the value of the bit-mask.

472 Communication Protocol Engineering

Function parameters:
param: the value of the 4-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.92 SetBitParamWordBasic

Function prototype:

void SetBitParamWordBasic(
 WORD param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given 2-byte parameter of the
new message to the result of the bit-wise inclusive OR operation applied to
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the
value of the 2-byte parameter, the offset of the target parameter of the new
message, and the value of the bit-mask.

Function parameters:
param: the value of the 2-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.93 SetCallId()

Function prototype:

inline void SetCallId()

Function description: This function sets the default value of the attribute
CallId of this automata instance.

Note: This function automatically allocates the first available identification
and assigns it to the protected class attribute CallId, completely transparent
to the programmer.

6.8.94 SetCallId(uint32)

Function prototype:

inline void SetCallId(uint32 id)

473FSM Library

Function description: This function sets the given value of the attribute
CallId of this automata instance. The parameter of this function specifies the
value to be assigned to the attribute CallId.

Function parameters:
id: the value to be assigned to the attribute CallId

Note: In contrast to an overloaded function without any parameters in
its signature, this function enables the programmer to manually assign the
value to the attribute CallId. However, this value must be unique. The pro-
grammer must pay special attention to the assignment of these numbers,
especially if they mix this function call with function calls to the overloaded
function that assigns the default values.

6.8.95 SetCallIdFromMsg

Function prototype:

inline void SetCallIdFromMsg()

Function description: This function sets the attribute CallId of this automata
instance to the value of the parameter CallId of the current message. This primi-
tive is used to store the reference number specific to the communication protocol.

6.8.96 SetDefaultFSMData

Function prototype:

virtual void SetDefaultFSMData() = 0

Function description: This function sets the automata-specific data to their
default values. It is typically used before the normal operation phase.

Note: The programmer must define this virtual function for a class derived
from the class FiniteStateMachine. They do so by writing a C++ function that
initializes the problem-specific data.

6.8.97 SetDefaultHeader

Function prototype:

virtual void SetDefaultHeader(uint8 infoCoding = 0)

Function description: This function sets the default header field values for
the given type of message information coding. The parameter of this func-
tion specifies the identification of the type of message information coding.

474 Communication Protocol Engineering

Function parameters:
infoCoding: the type of message information coding

Note: The programmer must define this virtual function for a class derived
from the class FiniteStateMachine. They do so by writing a C++ function that
fills in the protocol-specific data in the new message header.

6.8.98 SetGroup

Function prototype:

inline void SetGroup(uint8 id)

Function description: This function sets the identification of the group of
automata for this automata type to the given value. This primitive is used
to declare group membership. The parameter of this function specifies the
value to be assigned to the corresponding class attribute.

Function parameters:
id: the value that uniquely identifies the group of automata

6.8.99 SetInitialState

Function prototype:

virtual void SetInitialState()

Function description: This function sets the current state of this automata
instance to its initial state.

Note: The programmer must obey the rule that the value of the identifica-
tion of the initial automata state is 0.

6.8.100 SetKernelObjects

Function prototype:

static void SetKernelObjects(
 TPostOffice *postOffice,
 TBuffers *buffers,
 CTimer *timer)

Function description: This function sets the FSMSystem library kernel
objects (post office, buffers, and timers), which are common for all the autom-
ata in the FSM system. The parameters of this function specify the post office
object, the buffers object, and the timers object.

475FSM Library

Function parameters:
postOffice: the pointer to the post office object
buffers: the pointer to the buffers object
timer: the pointer to the timers object

Note: This function is called internally by the function InitKernel.
Remember that this function defines the kernel objects that are common for
all automata types and all their instances. An accidental call to this function
may cause unpredictable behavior in the FSM system.

6.8.101 SetLeftMbx

Function prototype:

inline void SetLeftMbx(uint8 mbx)

Function description: This function sets the default identification of the
mailbox assigned to the automata instance that is logically to the left of this
automata instance. The parameter of this function specifies the identification
of the mailbox.

Function parameters:
mbx: the value that uniquely identifies the mailbox

6.8.102 SetLeftAutomata

Function prototype:

inline void SetLeftAutomata(uint8 automata)

Function description: This function sets the identification of the automata
type that is logically to the left of this automata instance. The parameter of
this function specifies the identification of the automata type.

Function parameters:
automata: the value that uniquely identifies the automata type

6.8.103 SetLeftObject

Function prototype:

inline void SetLeftObject(uint8 group)

Function description: This function sets the identification of the type of the
group of automata that is logically to the left of this automata instance. The
parameter of this function specifies the identification of the group of automata.

476 Communication Protocol Engineering

Function parameters:
group: the value that uniquely identifies the group of automata

6.8.104 SetLeftObjectId

Function prototype:

inline void SetLeftObjectId(uint32 id)

Function description: This function sets the identification of the automata
instance that is logically to the left of this automata instance. The parameter
of this function specifies the identification of the automata instance.

Function parameters:
id: the identification of the automata instance

6.8.105 SetLogInterface

Function prototype:

static void SetLogInterface(LogInterface *logingObject)

Function description: This function defines the object responsible for
message logging. The object is an instance of a class derived from the class
LogInterface. The parameter of this function specifies the message logging
object.

Function parameters:
logingObject: the pointer to the message logging object

Note: The programmer must not call this function before the initialization
of all the automata included in the FSM system has been finished. The log-
ging object may log data to the file on the local mass memory unit (e.g., flash
memory) or to the network file server. The log file is essential for debugging
and test and verification purposes.

6.8.106 SendMessage(uint8)

Function prototype:

inline void SendMessage(uint8 mbxId)

Function description: This function sends the new message to the given mail-
box. The parameter of this function specifies the identification of the mailbox.

477FSM Library

Function parameters:
mbxId: th e value that uniquely specifies the mailbox

Note: By definition, the internal pointer NewMessage points to the buffer
that contains the new message. The programmer initializes this pointer by
calling the function PrepareNewMessage.

6.8.107 SendMessage(uint8, uint8*)

Function prototype:

inline void SendMessage(
 uint8 mbxId,
 uint8 *msg)

Function description: This function sends the given message to the given
mailbox. The parameters of this function specify the identification of the
mailbox and the message to be sent to that mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox
msg: the pointer to the message

6.8.108 SetMessageFromData

Function prototype:

void SetMessageFromData()

Function description: This function sets the header fields of the new mes-
sage related to the originating automata instance to the values specific to this
automata instance. The data specifying the originating automata instance
are its type, group, and identification.

Note: This function is automatically called from the function SendMessage.

6.8.109 SetMsgCallId(uint32)

Function prototype:

inline void SetMsgCallId(uint32 id)

Function description: This function sets the call ID parameter of the new
message to the given value. The parameter of this function specifies the
value of the call ID.

478 Communication Protocol Engineering

Function parameters:
id: the value of the call ID

Note: The call ID parameter has been traditionally used to identify a single
telephone call. In general, it may be used to uniquely identify a communica-
tion process or a transaction that engages a group of automata that partici-
pates in its processing.

6.8.110 SetMsgCallId(unit32, unit8*)

Function prototype:

inline void SetMsgCallId(
 uint32 id,
 uint8 *msg)

Function description: This function sets the call ID parameter of the given
message to the given value. The parameters of this function specify the value
of the call ID and the target message.

Function parameters:
id: the value of the call ID
msg: the pointer to the buffer that contains the target message

Note: The value of the call ID parameter is the same for all the messages
involved in a transaction or a process, e.g., a single telephone call.

6.8.111 SetMsgCode(uint16)

Function prototype:

inline void SetMsgCode(uint16 code)

Function description: This function sets the message code parameter of the
new message to the given value. The parameter of this message specifies the
message code.

Function parameters:
code: the message code

6.8.112 SetMsgCode(uint16, uint8*)

Function prototype:

inline void SetMsgCode(
 uint16 code,
 uint8 *msg)

479FSM Library

Function description: This function sets the message code parameter of
the given message to the given value. The parameters of this function spec-
ify the message code and the target message.

Function parameters:
code: the message code
msg: the pointer to the buffer that contains the target message

6.8.113 SetMsgFromAutomata(uint8)

Function prototype:

inline void SetMsgFromAutomata(uint8 from)

Function description: This function sets the type of the originating automata
parameter of the new message to the given value. The parameter of this func-
tion specifies the identification of the automata type that is the message source.

Function parameters:
from: the identification of the automata type

Note: This function is automatically called by the function SetMessage
FromData.

6.8.114 SetMsgFromAutomata(uint8, uint8*)

Function prototype:

inline void SetMsgFromAutomata(
 uint8 from,
 uint8 *msg)

Function description: This function sets the type of the originating autom-
ata parameter of the given message to the given value. The parameters of
this function specify the type of automata that is the message source and the
target message.

Function parameters:
from: the a utomata type that is the message source
msg: the pointer to the buffer that contains the target message

6.8.115 SetMsgFromGroup(uint8)

Function prototype:

inline void SetMsgFromGroup(uint8 from)

480 Communication Protocol Engineering

Function description: This function sets the type of the originating group
of automata parameter of the new message to the given value. The parameter
of this message specifies the identification of the group of automata that is
the message source.

Function parameters:
from: the identification of the group of automata that is the message

source

Note: This function is automatically called by the function SetMessage
FromData.

6.8.116 SetMsgFromGroup(uint8, uint8*)

Function prototype:

inline void SetMsgFromGroup(
 uint8 from,
 uint8 *msg)

Function description: This function sets the type of the originating group
of automata parameter of the given message to the given value. The param-
eters of this function specify the identification of the group of automata that
is the message source and the target message.

Function parameters:
from: the identification of the group of automata that is the message source
msg: the pointer to the buffer that contains the target message

6.8.117 SetMsgInfoCoding(uint8)

Function prototype:

inline void SetMsgInfoCoding(uint8 codingType)

Function description: This function sets the message information coding
parameter of the new message to the given value. The parameter of this mes-
sage specifies the identification of the information coding scheme.

Function parameters:
codingType: the value that uniquely specifies the information coding

scheme

Note: This function is automatically called by the function Prepare NewMessage.

481FSM Library

6.8.118 SetMsgInfoCoding(uint8, uint8*)

Function prototype:

inline void SetMsgInfoCoding(
 uint8 codingType,
 uint8 *msg)

Function description: This function sets the message information coding
parameter of the given message to the given value. The parameters of this
function specify the identification of the information coding scheme and the
target message.

Function parameters:
codingType: the identification of the information coding scheme
msg: the pointer to the target message

6.8.119 SetMsgInfoLength(uint16)

Function prototype:

inline void SetMsgInfoLength(uint16 length)

Function description: This function sets the message payload (useful infor-
mation) length parameter of the new message. The parameter of this func-
tion specifies the value of the payload length.

Function parameters:
length: the payload length in octets (bytes)

Note: All the AddParamX functions—which are responsible for adding
parameters to the new message—call this function automatically to update
the length of the message payload.

6.8.120 SetMsgInfoLength(uint16, uint8*)

Function prototype:

inline void SetMsgInfoLength(
 uint16 length,
 uint8 *msg)

Function description: This function sets the message payload (useful
information) length parameter of the given message. The parameters
of this function specify the value of the payload length and the target
message.

482 Communication Protocol Engineering

Function parameters:
length: the payload length in octets (bytes)
msg: the pointer to the buffer that contains the target message

6.8.121 SetMsgObjectNumberFrom(uint32)

Function prototype:

inline void SetMsgObjectNumberFrom(uint32 from)

Function description: This function sets the originating automata instance
identification parameter of the new message to the given value. The param-
eter of this function specifies the identification of the automata instance that
is the message source.

Function parameters:
from: the identification of the automata instance that is the message source

Note: This function is automatically called by the function SetMessage
FromData.

6.8.122 SetMsgObjectNumberFrom(uint32, uint8*)

Function prototype:

inline void SetMsgObjectNumberFrom(
 uint32 from,
 uint8 *msg)

Function description: This function sets the originating automata instance
identification parameter of the given message to the given value. The param-
eters of this message specify the identification of the automata instance that
is the message source and the target message.

Function parameters:
from: the identification of the automata instance that is the message source
msg: the pointer to the buffer that contains the target message

6.8.123 SetMsgObjectNumberTo(uint32)

Function prototype:

inline void SetMsgObjectNumberTo(uint32 to)

Function description: This function sets the destination automata instance
identification parameter of the new message to the given value. The

483FSM Library

parameter of this function specifies the automata instance that is the message
destination.

Function parameters:
to: the automata instance that is the message destination

6.8.124 SetMsgObjectNumberTo(uint32, uint8*)

Function prototype:

inline void SetMsgObjectNumberTo(uint32 to,uint8 *msg)

Function description: This function sets the destination automata instance
identification parameter of the given message to the given value. The param-
eters of this function specify the automata instance that is the message des-
tination and the target message.

Function parameters:
to: the automata instance that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.125 SetMsgToAutomata(uint8)

Function prototype:

inline void SetMsgToAutomata(uint8 to)

Function description: This function sets the destination automata type
identification parameter of the new message to the given value. The
parameter of this function specifies the automata type that is the message
destination.

Function parameters:
to: the automata type that is the message destination

6.8.126 SetMsgToAutomata(uint8, uint8*)

Function prototype:

inline void SetMsgToAutomata(
 uint8 to,
 uint8 *msg)

Function description: This function sets the destination automata type
identification parameter of the given message to the given value. The

484 Communication Protocol Engineering

parameters of this function specify the identification of the automata type
that is the message destination and the target message.

Function parameters:
to: the identification of the automata type that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.127 SetMsgToGroup(uint8)

Function prototype:

inline void SetMsgToGroup(uint8 to)

Function description: This function sets the destination automata group
identification parameter of the new message to the given value. The param-
eter of this function specifies the identification of the group of automata that
is the message destination.

Function parameters:
to: the identification of the group of automata that is the message destination

6.8.128 SetMsgToGroup(uint8, uint8*)

Function prototype:

inline void SetMsgToGroup(
 uint8 to,
 uint8 *msg)

Function description: This function sets the destination automata group
identification parameter of the given message to the given value. The param-
eters of this function specify the identification of the group of automata that
is the message destination and the target message.

Function parameters:
to: the identification of the group of automata that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.129 SendMessageLeft

Function prototype:

void SendMessageLeft()

Function description: This function sends the new message to the mailbox
assigned to the automata instance that is logically to the left of this automata
instance.

485FSM Library

Note: The programmer may use this function if they have already defined
the left automata instance for the currently observed automata instance. This
definition includes the definition of the mailbox assigned to the left automata
instance. If the left automata instance and its mailbox are defined, this func-
tion automatically fills in all the data related to both the source (originating)
and destination automata instances within the new message and sends the
new message to the left mailbox.

6.8.130 SendMessageRight

Function prototype:

void SendMessageLeft()

Function description: This function sends the new message to the mail-
box assigned to the automata instance that is logically to the right of this
automata instance.

Note: The programmer may use this function if they have already defined
the right automata instance for the currently observed automata instance.
This definition includes the definition of the mailbox assigned to the right
automata instance. If the right automata instance and its mailbox are defined,
this function automatically fills in all the data related to both the source
(originating) and destination automata instances within the new message
and sends the new message to the right mailbox.

6.8.131 SetNewMessage

Function prototype:

inline void SetNewMessage(uint8 *msg)

Function description: This function sets the new message to the given
message by assigning the given message pointer to the internal pointer to the
new message. The parameter of this function specifies the target message.

Function parameters:
msg: the pointer to the buffer that contains the target message

6.8.132 SetObjectId

Function prototype:

inline void SetObjectId(uint32 id)

Function description: This function sets the identification of this automata
instance to the given value. The parameter of this function specifies the iden-
tification of this automata instance.

486 Communication Protocol Engineering

Function parameters:
id: the value that uniquely identifies this automata instance

6.8.133 SetRightMbx

Function prototype:

inline void SetRightMbx(uint8 mbx)

Function description: This function sets the identification of the mailbox
assigned to the automata instance that is logically to the right of this autom-
ata instance. The parameter of this message specifies the identification of the
right mailbox for this automata instance.

Function parameters:
mbx: the identification of the right mailbox for this automata instance

6.8.134 SetRightAutomata

Function prototype:

inline void SetRightAutomata(uint8 automata)

Function description: This function sets the identification of the automata
type that is logically to the right of this automata instance. The parameter of
this function specifies the automata type that is to the right of this automata
instance.

Function parameters:
automata: the identification of the automata type

6.8.135 SetRightObject

Function prototype:

inline void SetRightObject(uint8 group)

Function description: This function sets the identification of the type of the
group of automata that is logically to the right of this automata instance. The
parameter of this function specifies the type of the group of automata that is
to the right of this automata instance.

Function parameters:
group: the identification of the group of automata

487FSM Library

6.8.136 SetRightObjectId

Function prototype:

inline void SetRightObjectId(uint32 id)

Function description: This function sets the identification of the automata
instance that is logically to the right of this automata instance. The param-
eter of this function specifies the identification of the automata instance that
is to the right of this automata instance.

Function parameters:
id: the identification of the automata instance

6.8.137 SetState

Function prototype:

inline void SetState(uint8 state)

Function description: This function sets the identification of the current
state of this automata instance. The parameter of this function specifies the
identification of the state.

Function parameters:
state: the value that uniquely identifies the particular state of automata

6.8.138 StartTimer

Function prototype:

void StartTimer(uint16 tmrId)

Function description: This function starts the given timer. The parameter
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single
automata type that uses it.

6.8.139 StopTimer

Function prototype:

void StopTimer(uint16 tmrId)

488 Communication Protocol Engineering

Function description: This function stops the given timer. The parameter
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single
automata type that uses it.

6.8.140 SysClearLogFlag

Function prototype:

static void SysClearLogFlag()

Function description: This function stops the logging of the messages
exchanged by the automata.

6.8.141 SysStartAll

Function prototype:

Static void SysStartAll()

Function description: This function starts the logging of the messages
exchanged by the automata.

Note: Normally, the programmer should start the logging of messages
before they start the individual automata included in the FSM system.

6.8.142 NetFSM

Function prototype:

NetFSM(
 uint16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,
 bool getMemory = true)

Function description: This constructor initializes the object that represents
an instance of the given automata type together with the data structures
needed for its proper operation. The parameters of this function specify the
number of timers to be used by this automata type, the total number of states
for this automata type, the maximal number of state transitions per state for
this automata type, and the memory allocation indicator. All the parameters
have their default values as shown in the function prototype declaration
above.

489FSM Library

Function parameters:
numOfTimers: the number of timers to be used by this automata type
numOfState: the total number of states for this automata type
maxNumOfProceduresPerState: the maximal number of state transitions

per state
getMemory: the memory allocation indicator

Note: The programmer may call this a constructor without parameters.
In this case, the parameters will be set to their corresponding default val-
ues. The value of the fourth parameter getMemory regulates memory allo-
cation. By default, this indicator is set to the value true, which means that
the constructor will take care of memory allocation. Default memory alloca-
tion is not optimal because it is based on the maximal number of transitions
per state. This compromise has been made intentionally because it leads
to a very simple FSM definition API. If the programmer wants to optimize
memory allocation, they may build the data structure describing the FSM by
allocating necessary memory blocks from the memory heap, linking them
together, and storing the pointer to this data structure in the protected class
field member States before this function is called. In that case, the program-
mer would set the fourth parameter getMemory to the value false.

6.8.143 convertFSMToNetMessage

Function prototype:

virtual void convertFSMToNetMessage() = 0

Function description: This function converts the internal message format
into the external message format appropriate for the transmission over the
TCP/IP network.

Note: The programmer must define this virtual function by writing the
corresponding function member of a class derived from the class NetFSM.

6.8.144 convertNetToFSMMessage

Function prototype:

virtual uint16 convertNetToFSMMessage() = 0

Function description: This function converts the external message format
into the internal message format appropriate for the communication within
the FSM system.

Function returns: This function returns the code of the received message.

490 Communication Protocol Engineering

Note: The programmer must define this virtual function by writing
the corresponding function member of a class derived from the class
NetFSM.

6.8.145 establishConnection

Function prototype:

void establishConnection()

Function description: This function establishes the TCP connection
between two geographically distributed FSM systems.

Note: The programmer must call this function before they can call the
function sendToTCP to send the message to the remote FSM system.

6.8.146 getProtocolInfoCoding

Function prototype:

virtual uint8 getProtocolInfoCoding() = 0

Function description: This function returns the identification of the type of
external message coding.

Function returns: This function returns the value that uniquely identifies
the type of coding of the external message.

6.8.147 sendToTCP

Function prototype:

void sendToTCP()

Function description: This function sends the new message to the remote
FSM system over the previously established TCP connection.

Note: The programmer must call the function establishConnection before
they can call this function.

6.9 A Simple Example with Three Automata Instances

This section shows how the programmer can construct the FSM system and
how they can add individual automata instances to it. To keep the example
simple, we include only one use case, Show Simple Demo (Figure 6.1). The
realization of this use case is a simple collaboration that comprises three
instances (instance_1, instance_2, and instance_3) of the same automata type

491FSM Library

(Automata), which are added to the FSM system (Figure 6.2). These three
automata instances have the trivial task of exchanging the given number of
messages in a “round robin” fashion.

At the beginning, the main thread calls the function StartDemo of instance_1,
which, in turn, asynchronously sends itself the message IDLE_START. Upon
reception of this message, instance_1 sends the message IDLE_MSG to
instance_2, which increments the message sequence number and forwards
the message to instance_3; the latter translates it to the message MSG_MSG
and sends it back to instance_1. This message then makes two full circles
around the collaborating objects. Finally, instance_1 translates it to the mes-
sage MSG_STOP and sends it to instance_2, which, in turn, forwards it to
instance_3. The corresponding sequence diagram is shown in Figure 6.3. The
conditions A, B, and C regulate the already mentioned translations of the
messages.

The statechart diagram that describes the behavior of a single autom-
ata instance is organized into two hierarchical levels. The top level com-
prises two simple states (IDLE and MESSAGE) and four composite states
(Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG,
and Automata_MSG_STOP) (Figure 6.4). The symbolic constant MAX_
MSG_NUM is defined to have the value 10 in this example. The variable
msgno is the message sequence number, whose values are shown in paren-
theses in Figures 6.2 and 6.3. Later in the program text, this short vari-
able name suitable for figures is replaced with the longer self-documenting
name msgNumber.

The individual composite states Automata_IDLE_START, Automata_
IDLE_MSG, Automata_MSG_MSG, and Automata_MSG_STOP are shown in

Demonstrator

Show simple demo

System

«uses»

FIGURE 6.1
Simple use case diagram for the example with three automata instances.

492 Communication Protocol Engineering

in
st

an
ce

_3
 :

A
ut

om
at

a

in
st

an
ce

_2
 :

A
ut

om
at

a

in
st

an
ce

_1
 :

A
ut

om
at

a
m

ai
n

: �
re

ad

1
: S

ta
rt

D
em

o(
)

3
: I

DLE
_M

SG
(1

)

6
: M

SG
_M

SG
(4

)

9
: M

SG
_M

SG
(7

)

12
 :

M
SG

_S
TOP(

2)

4 : IDLE_MSG(2)
7 : MSG_MSG(5)

10 : MSG_MSG(8)
13 : MSG_STOP(1)

5:
M

SG
_M

SG
(3)

8:
M

SG
_M

SG
(6)

11
: M

SG
_M

SG
(9)

2
: I

D
LE

_S
T

A
RT «self »

FI
G

U
R

E
6.

2
C

ol
la

bo
ra

ti
on

 d
ia

gr
am

 fo
r

th
e

ex
am

pl
e

w
it

h
th

re
e

au
to

m
at

a
in

st
an

ce
s.

493FSM Library
m

ai
n:

�
re

ad
in

st
an

ce
_1

:A
ut

om
at

a
In

st
an

ce
_2

:A
ut

om
at

a
in

st
an

ce
_3

:A
ut

om
at

a

St
ar

tD
em

o(
);

ID
LE

_S
T

A
RT

ID
LE

_M
SG

(1
)

ID
LE

_M
SG

(2
)

M
SG

_M
SG

(3
)

M
SG

_M
SG

(4
)

M
SG

_M
SG

(5
)

M
SG

_M
SG

(6
)

M
SG

_M
SG

(7
)

M
SG

_M
SG

(8
)

M
SG

_M
SG

(9
)

M
SG

_S
T

O
P(

2)

M
SG

_S
T

O
P(

1)

C
on

di
tio

n
C

C
on

di
tio

n
B

C
on

di
tio

n
A

FI
G

U
R

E
6.

3
Se

qu
en

ce
 d

ia
gr

am
 fo

r
th

e
ex

am
pl

e
w

it
h

th
re

e
au

to
m

at
a

in
st

an
ce

s.

494 Communication Protocol Engineering

ID
LE

A
ut

om
at

a_
ID

LE
_M

SG

A
ut

om
at

a_
ID

LE
_S

T
A

RT
A

ut
om

at
a_

M
SG

_M
SG

A
ut

om
at

a_
M

SG
_S

T
O

P

M
es

sa
ge

U
nk

no
w

n

U
nk

no
w

n

ID
LE

_S
T

A
RT

ID
LE

_M
SG

M
SG

_M
SG

[m
sg

no
<M

A
X

_M
SG

_N
U

M
]

[e
lse

]

M
SG

_S
T

O
P

FI
G

U
R

E
6.

4
St

at
ec

ha
rt

 d
ia

gr
am

 fo
r

th
e

ex
am

pl
e

w
it

h
th

re
e

au
to

m
at

a
in

st
an

ce
s.

495FSM Library

Figures 6.5 through 6.8, respectively. These have been made rather detailed to
show how to provide the mapping from the UML model to the correspond-
ing program code by the application of forward engineering. Essentially, the
state transition actions are sequences of calls to functions provided by the FSM
Library, such as PrepareNewMessage, AddParamDWord, SendMessage, and so on.

Each of the composite states can be modeled as an operation by the
corresponding activity diagram. The activity diagrams for the opera-
tions Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_
MSG, and Automata_MSG_STOP are shown in Figures 6.9 through
6.12, respectively. Again, these diagrams have been made by applying
forward engineering, but on a slightly higher abstraction level, using
informal text statements instead of explicit functions calls. Essentially,
composite statechart and activity diagrams have the same semantics in
this example.

Initial

Preparing

Sending

/PrepareNewMessage(0×00,IDLE_MSG); AddParamDWord(COUNT,msgno);

/SendMessage(MBX_AUTOMATA_ID);

/msgno=1

Automata_IDLE_START

FIGURE 6.5
Statechart diagram for the composite state Automata_IDLE_START.

496 Communication Protocol Engineering

A
ut

om
at

a_
ID

LE
_M

SG

In
iti

al

Pr
ep

ar
in

g

SE
N

D
IN

G
_M

SG

SE
N

D
IN

G
_I

D
LE

/ G
et

Pa
ra

m
D

W
or

d(
C

O
U

N
T

,m
sg

no
);

m
sg

no
++

[m
sg

no
<N

U
M

_A
U

T
O

M
A

T
A

] /
 P

re
pa

re
N

ew
M

es
sa

ge
(0

×0
0,

ID
LE

_M
SG

);
A

dd
Pa

ra
m

D
W

or
d(

C
O

U
N

T
,m

sg
no

);

[e
lse

] /
 P

re
pa

re
N

ew
M

es
sa

ge
(0

×0
0,

M
SG

_M
SG

);
A

dd
Pa

ra
m

D
W

or
d(

C
O

U
N

T
,m

sg
no

);

/S
en

dM
es

sa
ge

(M
BX

_A
U

T
O

M
A

T
A

_I
D

);

/S
en

dM
es

sa
ge

(M
BX

_A
U

T
O

M
A

T
A

_I
D

);

FI
G

U
R

E
6.

6
St

at
ec

ha
rt

 d
ia

gr
am

 fo
r

th
e

co
m

p
os

it
e

st
at

e
A

ut
om

at
a_

ID
LE

_M
SG

.

497FSM Library

A
ut

om
at

a_
M

SG
_M

SG

In
iti

al

Pr
ep

ar
in

g

SE
N

D
IN

G
_S

T
O

P

SE
N

D
IN

G
_M

SG

/G
et

Pa
ra

m
D

W
or

d(
C

O
U

N
T

,m
sg

no
);

m
sg

no
++

[m
sg

no
<M

A
X

_M
SG

_N
U

M
]/

Pr
ep

ar
eN

ew
M

es
sa

ge
(0

×0
0,

M
SG

_M
SG

);
A

dd
Pa

ra
m

D
W

or
d(

C
O

U
N

T
,m

sg
no

);

[e
lse

]/
Pr

ep
ar

eN
ew

M
es

sa
ge

(0
×0

0,
M

SG
_S

T
O

P)
; A

dd
Pa

ra
m

D
W

or
d(

C
O

U
N

T
,m

sg
no

);

/S
en

dM
es

sa
ge

(M
BX

_A
U

T
O

M
A

T
A

_I
D

);

/S
en

dM
es

sa
ge

(M
BX

_A
U

T
O

M
A

T
A

_I
D

);

FI
G

U
R

E
6.

7
St

at
ec

ha
rt

 d
ia

gr
am

 fo
r

th
e

co
m

p
os

it
e

st
at

e
A

ut
om

at
a_

M
SG

_M
SG

.

498 Communication Protocol Engineering

The third and semantically equivalent method of modeling the behav-
ior of individual automata instances is by using the domain-specific SDL
model. This model comprises state transitions triggered by the recep-
tion of the corresponding messages. The same names are used again so
that the reader can easily follow the correspondence between the SDL
state transitions and the UML composite states and activity diagrams.
The SDL state transitions Automata_IDLE_START, Automata_IDLE_MSG,
Automata_MSG_MSG, and Automata_MSG_STOP are shown in Figures
6.13 through 6.16, respectively.

As already mentioned, all three automata instances in this example are
of the same type, i.e., class. The class Automata is a specialization of the
FSM Library class FiniteStateMachine and is used by the FSM Library class
FSMSystem (see the corresponding UML class diagram in Figure 6.17). The

Automata_MSG_STOP

Initial

Preparing

SENDING_STOP

/ GetParamDWord(COUNT,msgno); msgno––

[msgno>0]/PrepareNewMessage(0×00,MSG_STOP); AddParamDWord(COUNT,msgno);

[else]

/SendMessage(MBX_AUTOMATA_ID);

FIGURE 6.8
Statechart diagram for the composite state Automata_MSG_STOP.

499FSM Library

class Automata inherits all the members from its parent class and adds some
field members (such as msgno) and function members (such as Automata_
IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, Automata_
MSG_STOP, Initialize, and StartDemo). The first four correspond to composite
states from the previous UML statechart model.

An object diagram, such as the one shown in Figure 6.18, helps us to
better understand the structural relationships among objects. A collabora-
tion diagram (Figure 6.2) shows the logical communication of automata
instances over their virtual, peer-to-peer connections. On a more detailed
level of abstraction, we see that the real communication is governed by the
FSM system, which is the owner of the mailboxes (not shown in the figure)
used for storing the messages, e.g., StandardMessage (shown in Figure 6.18).
This particular message shown in one snapshot of object collaboration is
the first message sent from instance_1 to instance_2. The message code is
IDLE_MSG, and the value of the message sequence parameter is 1.

msgno=1

Prepare IDL_MSG

Send to next instance

Set state message

tAu omata_ IDLE _ START

FIGURE 6.9
Activity diagram for the operation Automata_IDLE_START.

500 Communication Protocol Engineering

Get msgno

Increment msgno

PREPARE IDLE_MSG

Send to next instance

Set state message

Prepare MSG_MSG

Send to next instance

Set state message

[msgno<NUM_AUTOMATA][else]

Automata_IDLE_MSG

FIGURE 6.10
Activity diagram for the operation Automata_IDLE_MSG.

501FSM Library

Get msgno

Increment msgno

Prepare MSG_MSG
Set msgno to

NUM_AUTOMATA - 1

[msgno<MAX_MSG_NUM][else]

Send to next instancePrepare MSG_STOP

Set state messageSend to next instance

Set state IDLE

Automata_MSG_MSG

FIGURE 6.11
Activity diagram for the operation Automata_MSG_MSG.

502 Communication Protocol Engineering

Get msgno

Decrement msgno

Set state IDLE Prepare MSG_STOP

Send to next instance

[msgno>0][else]

Set state IDLE

Automata_MSG_STOP

FIGURE 6.12
Activity diagram for the operation Automata_MSG_STOP.

503FSM Library

IDLE

IDLE_START

Set msgno
to 1

Prepare
IDLE_MAG

Send to
next

instance

Message

Automata_IDLE_START

FIGURE 6.13
SDL diagram for the transition Automata_IDLE_START.

504 Communication Protocol Engineering

IDLE

IDLE_MSG

Get msgno

Increment
msgno

msgo<
NUM_AU
TOMATA

Prepare
IDLE_MSG

Prepare
MSG_MSG

YesNo

Send to
next

instance

Send to
next

instance

Message

Automata_IDLE_MSG

FIGURE 6.14
SDL diagram for the transition Automata_IDLE_MSG.

505FSM Library

Message

MSG_MSG

Get msgno

Increment
msgno

msgno<
MAX_MSG

_NUM

Prepare
MSG_MSG

Set msgno
to

NUM_AUTO
MATA-1

Prepare
MSG_STOP

Send to
next

instance

Send to
next

instance

IDLE

Message

Automata_MSG_MSG

FIGURE 6.15
SDL diagram for the transition Automata_MSG_MSG.

506 Communication Protocol Engineering

Message

MSG_STOP

Get msgno

Decrement
msgno

msgno>0

Prepare
MSG_STOP

Send
to

next
instance

IDLE

IDLE

Automata_MSG_STOP

FIGURE 6.16
SDL diagram for the transition Automata_MSG_STOP.

507FSM Library

-Automata_IDLE_START()
-Automata_IDLE_MSG()
-Automata_MSG_MSG()
+Automata_MSG_STOP()
+Initialize()
+StartDemo()

-msgno
Automata

Here and in other UML
diagrams we use the
abbrevation msgno.
�e full name of this
filed is msgNumber.

#GetLeftMbx()
#GetLeftAutomate()
#GetLeftGroup()
#GetLeftObjectId()
#SetLeftMbx()
#SetLeftAutomate()
#SetLeftObject()
#SetLeftObjectId()
#Initialize()
#InitEventProc()
#InitUnexpectedEventProc()
+FiniteStateMachine()
+~FiniteStateMachine()
+Process()

-NumOfStates
-Nu
-MaxNumOfProcPerState
-States
-Connection Id
-Group Id
-Call Id
-LeftMbx
-LeftAutomate
-LeftGroup
-LeftObjectId
-RightMbx
-RightAutomate
-RightGroup
-RightObjectId
-State

FiniteStateMachine
�is is not the complete
specification of the
class FiniteStateMachine.
It’s just a snippet that
should give you an idea
of it’s complexity.

#GetBuffer()
#GetMsg()
#GetMsgToAutomate()
#GetMsgToGroup()
#GetMsgInfoLength()
#GetMsgObjectNumberTo()
#SendToMbx()
+FSMSystem()
+~FSMSystem()
+Add()
+Delete()
+InitKernel()
+Start()
+StopSystem()

-Post office
-Buffers
-Timer
#Automates
#Number of Mbx
#Number of automates
-Number of objects
-Free kernel memory : bool
-System working : bool

FSMSystem

«uses»

�is is not the complete
specification of the
class FSMSystem.

FIGURE 6.17
Class diagram for the example with three automata instances.

508 Communication Protocol Engineering

in
st

an
ce

_3
 :

A
ut

om
at

a

fs
m

Sy
st

em
 :

FS
M

Sy
st

em
in

st
an

ce
_1

 :
A

ut
om

at
a

M
es

sa
ge

C
od

e=
ID

LE
_M

SG
M

es
sa

ge
N

um
be

rP
ar

am
et

er
=1

 :
St

an
da

rd
M

es
sa

ge

in
st

an
ce

_2
 :

A
ut

om
at

a

V
irt

ua
l

�
is

in
st

an
ce

_1
 a

nd
 in

st
an

ce
_2

pe
er

-t
o-

pe
er

 c
on

ne
ct

io
n

is
vi

rt
ua

l.
�

e
re

al
 c

om
m

un
ic

at
io

n
in

vo
lv

es
th

ei
r i

nt
er

ac
tio

n
w

ith
 th

e
fs

m
Sy

st
em

.

FI
G

U
R

E
6.

18
O

bj
ec

t d
ia

gr
am

 fo
r

th
e

ex
am

pl
e

w
it

h
th

re
e

au
to

m
at

a
in

st
an

ce
s.

509FSM Library

The program project in this example comprises the files Automata.h,
Automata.cpp, Constants.h, Main.cpp, and the FSM Library (see the cor-
responding component diagram in Figure 6.19). Building this project in
Microsoft® Visual Studio 6.0 yields a single executable, which is executed
on a single PC machine (see the corresponding deployment diagram in
Figure 6.20).

The rest of this section is devoted to the program implementation of
the previous models. The content of the corresponding program files is as
follows.

«framework»
FSM Library

«executable»
Main.exe

«file»
Main.dsw

«file»
Main.cpp

«file»
Automata.cpp

«file»
Constants.h

«file»
Automata.h

FIGURE 6.19
Component diagram for the example with three automata instances.

PC

«executable»
Main.exe

FIGURE 6.20
Deployment diagram for the example with three automata instances.

510 Communication Protocol Engineering

File Automata.h:

#ifndef __AUTOMATA__
#define __AUTOMATA__
#include <stdio.h>
#include "stdlib.h"
#include "kernel\fsm.h"
#include "kernel\errorObject.h"
#include "Constants.h"

class Automata: public FiniteStateMachine {
 private:
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);

 void SetDefaultHeader(uint8 infoCoding);
 uint8 GetMbxId();
 uint8 GetAutomata();
 void SetDefaultFSMData();
 void NoFreeInstances();

 uint8 text[20];
 uint32 msgNumber;
 uint32 idToMsg;

 // State transition functions for the state IDLE
 void Automata_IDLE_START();
 void Automata_IDLE_MSG();
 // State transition functions for the state MSG
 void Automata_MSG_MSG();
 void Automata_MSG_STOP();
 // Unexpected event handlers for the states IDLE and MSG
 void Automata_UNEXPECTED_IDLE();
 void Automata_UNEXPECTED_MSG();

 public:
 Automata();
 ~Automata(){};

 void Initialize();
 void StartDemo();
};
#endif

The file Automata.h contains a declaration of the class Automata derived from
the class FiniteStateMachine. This declaration has its private and public parts. The
private field members are the message interface object StandardMsgCoding, the
text work area text, the message sequence number msgNumber, and the identifica-
tion of the message destination automata idToMsg.

The common private function members are the following functions:

• GetMessageInterface: returns the message interface object
• SetDefaultHeader: sets the message header in accordance with the

specified information coding
• GetMbxId: returns the identification of the mailbox assigned to this

automata type

511FSM Library

• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type

(msgNumber and idToMsg)
• NoFreeInstances: handles the situation when no more free instances

of this type are found

The application-specific private function members are the following state
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the
state MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in
the state MESSAGE

The public function members are the class constructor, the class destruc-
tor, the initialization function Initialize, and the startup function StartDemo.

File Automata.cpp:

#include "kernel/LogFile.h"
#include "Automata.h"

Automata::Automata() : FiniteStateMachine(
 0, // uint16 numOfTimers = DEFAULT_TIMER_NO,
 2, // uint16 numOfState = DEFAULT_STATE_NO,
 3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE
 {
 SetDefaultFSMData();
 }

// This function returns the pointer to the object that governs the
// message information coding (the pointer to the message interface).
// This automata instance works only with the standard messages
// (ID 0x00). If the caller specifies another type of coding,
// this function throws the exception TErrorObject. The message
// interface is defined in Automata.h
MessageInterface *Automata::GetMessageInterface(uint32 id){
 switch(id){
 case 0x00:
 return &StandardMsgCoding;
 }

512 Communication Protocol Engineering

 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}

// This function fills in the message header.
void Automata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

// This function returns the identification of the mailbox that is
// assigned to this automata type.
uint8 Automata::GetMbxId(){
 return MBX_AUTOMATA_ID;
}

// This function returns the identification of this automata type.
uint8 Automata::GetAutomata(){
 return FSM_TYPE_AUTOMATA;
}

// This function initializes the data specific to individual
// instance of this automata type.
void Automata::SetDefaultFSMData(){
 msgNumber = 0;
 idToMsg = INVALID_32;
}
// This function is called if there are no free instances of this
// automata type. If the programmer wants to use this option, they must
// add the first automata instance of this type to the parameter
// useFreeList of the function Add set to true. In this example, it
// is empty. In real applications, the programmer should provide
// some recovery mechanism, such as overload protection or restart.
void Automata::NoFreeInstances(){
}

// This function initializes the state transition functions and the
// timers that are used by this automata type. This function is
// called implicitly by the function Add, which is responsible for
// adding individual automata instances to the FSM system.
// Each state transition function is separately declared and defined.
void Automata::Initialize(){
 // Here the programmer does the following initializations:
 // InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);
 InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)
 &Automata::Automata_IDLE_START);
 InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)
 &Automata::Automata_IDLE_MSG);

 InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)
 &Automata::Automata_MSG_MSG);
 InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)
 &Automata::Automata_MSG_STOP);

 InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)
 &Automata::Automata_UNEXPECTED_IDLE);
 InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)
 &Automata::Automata_UNEXPECTED_MSG);
}

// State transition functions for the state IDLE.
void Automata::Automata_IDLE_START(){
 msgNumber = 1;

513FSM Library

 idToMsg = GetObjectId()+1;

 // Round Robin message transfer among automata instances 0-2
 if(idToMsg == 3)
 idToMsg = 0;

 // The automata instance prepares and sends the message,
 // and changes its state to MESSAGE.
 PrepareNewMessage(0x00,IDLE_MSG);

 char text[] = "THIS IS THE FIRST MESSAGE";
 AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);
 AddParamDWord(COUNT,msgNumber);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 SetState(MESSAGE);
}

void Automata::Automata_IDLE_MSG(){
 idToMsg = GetObjectId()+1;

 // Round Robin message transfer among automata instances 0-2
 if((idToMsg == 3)
 idToMsg = 0;
 // Get parameters from the message
 unsigned char *tmp;
 tmp = GetParam(PARAM_TEXT);
 assert(tmp);
 memcpy(text,tmp+2,*(tmp+1));
 memset(text+(*(tmp+1)),0x00,1); // make the string
 GetParamDWord(COUNT,msgNumber);

 // Round Robin – this instance receives the message from the previous one
 uint32 idFromMsg = GetObjectId()-1;
 if(idFromMsg == -1)
 idFromMsg = 2;

 printf("Text received: %s\n from automata:%u \n",text,idFromMsg);

 // If the message sequence number is less than NUM_AUTOMATA,
 // send IDLE_MSG. If not, send MSG_MSG.
 msgNumber++;
 if(msgNumber < NUM_AUTOMATA){
 // Prepare and send the message.
 // Change automata state to MESSAGE.
 PrepareNewMessage(0x00,IDLE_MSG);

 char text[] = "THIS IS THE SECOND MESSAGE";
 AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);
 AddParamDWord(COUNT,msgNumber);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 }
 else {
 // Prepare and send the message.
 // Change automata state to MESSAGE.
 PrepareNewMessage(0x00,MSG_MSG);
 AddParamDWord(COUNT,msgNumber);

514 Communication Protocol Engineering

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 }
 SetState(MESSAGE);
}

void Automata::Automata_MSG_MSG(){
 GetParamDWord(COUNT,msgNumber);
 msgNumber++;
 if(msgNumber < MAX_MSG_NUM){
 // Forward the message to the next automata instance.
 PrepareNewMessage(0x00,MSG_MSG);
 AddParamDWord(COUNT,msgNumber);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMAT_ID);
 }
 else {
 printf("Stop automata:%with message:%u\n",GetObjectId(),msgNumber);

 // Prepare and send the message.
 // Change automata state to IDLE.
 PrepareNewMessage(0x00,MSG_STOP);
 AddParamDWord(COUNT,NUM_AUTOMATA-1);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 SetState(IDLE);
 }
}

void Automata::Automata_MSG_STOP(){
 printf("Stop automata instance: %u\n",GetObjectId());

 GetParamDWord(COUNT,msgNumber);
 msgNumber——;
 if(msgNumber > 0){
 // Prepare and send the message.
 // Change automata state to IDLE.
 PrepareNewMessage(0x00,MSG_STOP);
 AddParamDWord(COUNT,msgNumber);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 }
 SetState(IDLE);
}

void Automata::Automata_UNEXPECTED_IDLE(){
 printf("Unexpected message in the state IDLE \n");
}

void Automata::Automata_UNEXPECTED_MSG(){
 printf("Unexpected message in the state MESSAGE \n");
}

void Automata::StartDemo(){
 uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);

515FSM Library

 SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgFromGroup(INVALID_08,msg);
 SetMsgObjectNumberFrom(0,msg);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgToGroup(INVALID_08,msg);
 SetMsgObjectNumberTo(0,msg);

 SetMsgInfoCoding(0,msg); // 0 = StandardMessage
 SetMsgCode(IDLE_START,msg);
 SetMsgInfoLength(0,msg);
 SendMessage(MBX_AUTOMATA_ID,msg);
}

The file Automata.cpp contains the definition of the class Automata. This defi-
nition starts with the class constructor that first calls the base class constructor
specifying no timers, two states, and the maximum of three state transitions
per state for this automata type. After that, the constructor calls the function
SetDefaultFSMData, which sets the data specific for this automata type.

The function GetMessageInterface returns the pointer to the message interface
object for the given type of information coding. This class operates with only
standard messages (the corresponding ID is 0x00). If the caller of this function
specifies the identification of the standard message as its parameter, the function
returns the pointer to the object StandardMsgCoding. If the caller specifies some
other message type, this function throws the exception TErrorObject.

The function SetDefaultHeader sets the message information coding by call-
ing the function SetMsgInfoCoding and the automata specific data by calling the
function SetMessageFromData. The function GetMbxId returns the value MBX_
AUTOMATA_ID as the identification of the mailbox assigned to this automata
type. The function GetAutomata returns the value FSM_TYPE_AUTOMATA as
the identification of this automata type. The function SetDefaultFSMData sets the
field msgNumber to the value 0 and the field idToMsg to the value INVALID_32. The
function NoFreeInstances is empty in this simple example. In real-world projects,
it would be used to trigger some higher-level protection or recovery mechanism.

The function Initialize defines the event handlers by calling the function
InitEventProc and the unexpected event handlers by calling the function
InitUnexpectedEventProc. More precisely, this function defines the event han-
dlers for the messages IDLE_START and IDLE_MSG in the state IDLE, and
for the messages MSG_MSG and MSG_STOP in the state MESSAGE. It also
defines the handlers for unexpected messages in both states.

The function Automata_IDLE_START handles the message IDLE_START
in the state IDLE. First, it sets the message sequence number msgNumber to
the value 1. It then determines the identification of the destination automata
instance by incrementing its own identification by modulo 3. (This means that
the destination of the messages created and sent by instance_0 is instance_1,
the destination for instance_1 is instance_2, and the destination for instance_2
is instance_0.) Next, this function prepares and sends the message, “THIS
IS THE FIRST MESSAGE”. At the end, it performs the state transition from

516 Communication Protocol Engineering

IDLE to MESSAGE by calling the function SetState and specifying the value
MESSAGE as its parameter.

The function Automata_IDLE_MSG handles the message IDLE_MSG in
the state IDLE. First, it determines the identifications of the source and des-
tination automata instances for the received message and prints them to the
monitor. It then increments the message sequence numbers and checks if
they are less than the number of communicating automata instances NUM_
AUTOMATA (value 3). If yes, the function prepares and sends the message
IDLE_MSG with the text, “THIS IS THE SECOND MESSAGE”. If not, the
function prepares and sends the message MSG_MSG without any text. In
both cases, it sets the current state of the automata instance to the value
MESSAGE.

The function Automata_MSG_MSG handles the message MSG_MSG in the
state MESSAGE. First, it gets the message sequence number from the received
message and increments that number. It then checks if the new value of the
message sequence number has reached the given limit. If not, this function
prepares and sends the message MSG_MSG to the next automata instance in
the chain. If it has, this function prepares and sends the message MSG_STOP
to the next automata instance in the chain, and sets the current state of this
automata instance to IDLE.

The function Automata_MSG_STOP handles the message MSG_STOP in
the state MESSAGE. First, it decrements the message sequence number and
checks its new value. If the value is positive, the function prepares and sends
the message MSG_STOP to the next automata instance in the chain, and sets
the current state of this automata instance to IDLE.

The unexpected event handlers in this example just print the warning mes-
sages. In real applications, these functions would trigger some higher-level
recovery mechanisms. The function StartDemo creates the first message in
the system. It fills in its header as if the automata instance with the identifica-
tion 0 had sent that message to itself, and sends the message to the mailbox
assigned to this automata type.

File Constants.h:

// FSM
#define FSM_TYPE_AUTOMATA 0

// MBX
#define MBX_AUTOMATA_ID 0

#define MAX_MSG_NUM 10
#define NUM_AUTOMATA 3
#define COUNT 1
#define PARAM_TEXT 2

enum AutomataStates{
 IDLE = 0,
 MESSAGE,
};

517FSM Library

enum Messages{
 IDLE_START = 0,
 IDLE_MSG,
 MSG_MSG,
 MSG_STOP
};

The file Constants.h first defines general symbolic constants. The iden-
tification of the automata type FSM_TYPE_AUTOMATA is assigned the
value 0, the identification of the mailbox related to the automata type
MBX_AUTOMATA_ID is assigned the value 0, the maximal message
sequence number MAX_MSG_NUM is assigned the value 10, the num-
ber of automata instances of this type NUM_AUTOMATA is assigned the
value 3, the identification of the message parameter that contains the mes-
sages sequence number COUNT is assigned the value 1, and the identifi-
cation of the message parameter that contains the text PARAM_TEXT is
assigned the value 2.

Next, the identifications of the individual states of this automata type are
enumerated. The identification of the state IDLE is assigned the value 0 and
the identification of the state MESSAGES is assigned the value 1. Finally,
the identifications of various message types (message codes) are enumer-
ated. The message types are named as IDLE_START, IDLE_MSG, MSG_
MSG, and MSG_STOP. These symbols are assigned the values 0, 1, 2, and 3,
respectively.

File Main.cpp:

#include "conio.h"
#include "Kernel/fsmsystem.h"
#include "Kernel/LogFile.h"
#include "Automata.h"

// Assume the following.
// The FSM system hosts a single automata type.
// The FSM system uses a single mailbox for the message exchange.
// Create the FSM system.
FSMSystem fsmSystem(1,1);

// Create three instances of the class Automata.
Automata instance_1, instance_2, instance_3;

// FSM system thread
DWORD WINAPI ThreadFunction(void* dummy){
 uint32 buffersCount[3] = {5,3,2};
 uint32 buffersLength[3] = {128,256,512};
 uint8 buffClassNo = 3;
 // Initialize the FSM system.
 printf("Initialize the FSM system... \n");
 fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,3,false);
 fsmSystem.Add(&instance_2,FSM_TYPE_AUTOMATA);
 fsmSystem.Add(&instance_3,FSM_TYPE_AUTOMATA);

 fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);

518 Communication Protocol Engineering

 LogFile lf("log.log", "log.ini");
 LogAutomataNew::SetLogInterface(&lf);

 // Start the FSM system.
 printf("Start the FSM system... \n");
 try {
 fsmSystem.Start();
 }
 catch(...) {
 OutputDebugString("Exception — stop the FSM system...\n");
 return 0;
 }
 OutputDebugString("The end of the operation.\n");
 return 0;
}

void main(int argc,char* argv[]){
 DWORD threadID;
 bool end = false;
 char ret;

 // Start the FSM system thread.
 HANDLE hTemp = CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);
 Sleep(100);

 // Program works until the character 'Q' or 'q' is pressed.
 while(!end) {
 if(_kbhit()) {
 ret = _getch();
 switch(ret) {
 case 'Q':
 case 'q':
 fsmSystem.StopSystem();
 end = true;
 Sleep(100);
 break;
 case 'S':
 case 's':
 instance_1.StartDemo();
 break;
 default:
 break;
 }
 }
 }
 CloseHandle(hTemp);
 printf("The end. \n");
}

The file Main.cpp starts with the instantiation of the class FSMSystem
by calling its constructor. The parameters used in this call specify that an
instance of the FSMSystem, named fsmSystem, will include a single automata
type, and this automata type will use a single mailbox. Next, three instances
of the class Automata are made, namely, instance_1, instance_2, and instance_3.
Additionally, this file contains the definitions of the FSM system thread
function ThreadFunction and the function main.

The function ThreadFunction first prepares the data needed to define
three buffer types. The sizes and quantities of these buffers are five at
128 bytes, three at 256 bytes, and two at 512 bytes. Next, three automata

519FSM Library

instances are added to fsmSystem. Note that the fourth parameter of the
first call to the function Add is set to the value false, which means that these
three instances are to be used as three distinctive instances, rather than
as a pool of instances of the same type. After that, this function initializes
the kernel by calling the function InitKernel, defines and sets the logging
interface by calling the function SetLogInterface, and starts the fsmSystem by
calling its function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After that, it just waits
for the character ‘Q’ or ‘q’ to be pressed and to subsequently terminate the
program.

6.10 A Simple Example with Network-Aware
Automata Instances

This section shows how the programmer can construct FSM systems with
TCP support that is able to communicate over the TCP/IP network, and how
they can add individual, network-aware automata instances to it. Normally,
the programmer creates the FSM system with TCP support by instantiating
the class FSMSystemWithTCP. Alternately, network-aware automata types
are normally derived from the base class NetFSM. Of course, network-aware
automata instances of a given type are then created simply by instantiating
that automata type.

This example is very similar to the previous one. Actually, it has been cre-
ated from it with a few rather simple modifications. Only one instance of the
given automata type is added to the FSM system (now with TCP/IP support).
This automata instance has a trivial task of exchanging the given number of
messages with its peers in the remote FSM system. The main difference is
that the whole program is instantiated twice. These program instances run
as two separate processes that communicate over the TCP/IP protocol stack
(see the corresponding collaboration diagram in Figure 6.21).

At the beginning, as in the previous example, the main thread calls the
function StartDemo of instance_1, which, in turn, sends itself asynchronously
the message IDLE_START. Upon reception of this message, instance_1 sends
the message IDLE_MSG to its peer instance_1 that resides at the remote FSM
system. These two automata instances, local and remote, then exchange nine
MSG_MSG messages (the last MSG_MSG message is not shown in the fig-
ure). At the end of the communication, the local instance sends the message
MSG_STOP to the remote instance (not shown in the figure). The corre-
sponding sequence diagram is shown in Figure 6.22. This diagram shows
all the messages.

520 Communication Protocol Engineering

in
st

an
ce

_1
 :

N
et

A
ut

om
at

a
in

st
an

ce
_1

 :
N

et
A

ut
om

at
a

m
ai

n
: �

re
ad

1
: S

ta
rt

D
em

o(
)

3
: I

D
LE

_M
SG

(1
)

4
: M

SG
_M

SG
(2

)
5

: M
SG

_M
SG

(3
)

6
: M

SG
_M

SG
(4

)
7

: M
SG

_M
SG

(5
)

8
: M

SG
_M

SG
(6

)
9

: M
SG

_M
SG

(7
)

10
 :

M
SG

_M
SG

(8
)

2
: I

D
LE

_S
T

A
RT «self »

�
is

ob
je

ct
 re

sid
es

 in
a

lo
ca

l F
SM

 sy
st

em
.

�
is

ob
je

ct
 re

sid
es

 in
a

re
m

ot
e

FS
M

 sy
st

em
.

FI
G

U
R

E
6.

21
C

ol
la

bo
ra

ti
on

 d
ia

gr
am

 fo
r

th
e

ex
am

pl
e

w
it

h
ne

tw
or

k-
aw

ar
e

au
to

m
at

a.

521FSM Library

The statechart diagram that describes the behavior of an individual
automata instance is again organized into two hierarchical levels. The top
level is exactly the same as the one shown in Figure 6.4. The composite states
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and
Automata_MSG_STOP are a little simpler in this example and are shown in
Figures 6.23 through 6.26, respectively.

The program code given in this example assumes that both processes run
on the same machine whose IP address is 192.168.0.57. To get this code run-
ning on another machine, the reader should change this parameter accord-
ingly. If the reader wants to experiment on two different machines, they
must set this parameter to the IP addresses of those machines (see the cor-
responding deployment diagram shown in Figure 6.27).

main:�read Object2 Object3

StartDemo();
IDLE_START

IDLE_MSG (1)

MSG_MSG (2)

MSG_MSG (3)

MSG_MSG (4)

MSG_MSG (5)

MSG_MSG (6)

MSG_MSG (7)

MSG_MSG (8)

�is object resides in
a remote FSM system.

�is object resides in
a local FSM system.

MSG_MSG (9)

MSG_MSG (10)

MSG_STOP

FIGURE 6.22
Sequence diagram for the example with network-aware automata.

522 Communication Protocol Engineering

Initial

Preparing

Sending

/ PrepareNewMessage(0×00,IDLE_MSG); AddParamDWord(COUNT,msgno);

/sendToTCP();

/msgno=1

Automata_IDLE_START

FIGURE 6.23
Composite state Automata_IDLE_START.

523FSM Library

Automata_IDLE_MSG

Initial

Preparing

SENDING_MSG

/ GetParamDWord(COUNT,msgno); msgno++

/ PrepareNewMessage(0×00,MSG_MSG); AddParamDWord(COUNT,msgno);

/ sendToTCP();

FIGURE 6.24
Composite state Automata_IDLE_MSG.

524 Communication Protocol Engineering

A
ut

om
at

a_
M

SG
_M

SG

In
iti

al

Pr
ep

ar
in

g

SE
N

D
IN

G
_S

T
O

P

SE
N

D
IN

G
_M

SG

/G
et

Pa
ra

m
D

W
or

d(
C

O
U

N
T

,m
sg

no
);

m
sg

no
++

[m
sg

no
<M

A
X

_M
SG

_N
U

M
] /

 P
re

pa
re

N
ew

M
es

sa
ge

(0
×0

0,
M

SG
_M

SG
);

A
dd

Pa
ra

m
D

W
or

d
(C

O
U

N
T

,m
sg

no
);

[e
lse

] /
 P

re
pa

re
N

ew
M

es
sa

ge
(0

×0
0,

M
SG

_S
T

O
P)

; A
dd

Pa
ra

m
D

W
or

d(
C

O
U

N
T

,m
sg

no
);

/ s
en

dT
oT

C
P(

);

/s
en

dT
oT

C
P(

);

FI
G

U
R

E
6.

25
C

om
p

os
it

e
st

at
e

A
ut

om
at

a_
M

SG
_M

SG
.

525FSM Library

Before proceeding further, studying the previous example first is strongly
recommended. The content of the program files are as follows:

File NetAutomata.h:

#ifndef __NET_AUTOMATA__
#define __NET_AUTOMATA__
#include <stdio.h>
#include "stdlib.h"
#include "kernel\NetFSM.h"
#include "kernel\errorObject.h"
#include "Constants.h"

class NetAutomata: public NetFSM {
 private:
 // NetFSM
 uint16 convertNetToFSMMessage();

Automata_MSG_STOP

Initial

/PrintStopMessage();

FIGURE 6.26
Composite state Automata_MSG_STOP.

Machine1 : PC Network : Internet Machine2 : PC

1 1 1 1

«executable»
i1 : Example21

«executable»
i1 : Example22

FIGURE 6.27
Deployment diagram for the example with network-aware automata.

526 Communication Protocol Engineering

 void convertFSMToNetMessage();
 uint8 getProtocolInfoCoding();
 // FSM
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 uint8 GetMbxId();
 uint8 GetAutomata();
 void SetDefaultFSMData();
 void NoFreeInstances();

 uint8 text[20];
 uint32 msgNumber;
 uint32 idToMsg;

 // State transition functions for the state IDLE
 void NetAutomata_IDLE_START();
 void NetAutomata_IDLE_MSG();
 // State MSG
 void NetAutomata_MSG_MSG();
 void NetAutomata_MSG_STOP();
 // Unexpected messages in states IDLE and MSG
 void NetAutomata_UNEXPECTED_IDLE();
 void NetAutomata_UNEXPECTED_MSG();

 public:
 NetAutomata();
 ~NetAutomata(){};
 void Initialize();
 void StartDemo();
 };
#endif

The file NetAutomata.h contains the declaration of the class NetAutomata
derived from the class NetFSM. This declaration has its private and public parts.
The private field members are the message interface object StandardMsgCoding,
the text work area text, the message sequence number msgNumber, and the iden-
tification of the automata instance idToMsg, which is the message destination.

The private function members specific to the class NetFSM are the follow-
ing functions:

• convertNetToFSMMessage: converts the external message format into
the internal message format appropriate for communication within
the FSM system

• convertFSMToNetMessage: converts the internal message format into
the external message format appropriate for the transmission over
the TCP/IP network

• getProtocolInfoCoding: returns the identification of the type of the
external message coding

The private function members specific to the class FinteStateMachine are
the following functions:

• GetMessageInterface: returns the message interface object

527FSM Library

• SetDefaultHeader: sets the message header according to the specified
information coding

• GetMbxId: returns the identification of the mailbox that is assigned
to this automata type

• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type

(msgNumber and idToMsg)
• NoFreeInstances: handles the situation when no more free instances

of this type are found

The application-specific private function members are the following state
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the state
MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in
the state MESSAGE

The public function members are the class constructor, the class destruc-
tor, the initialization function Initialize, and the startup function StartDemo.

File NetAutomata.cpp:

#include "kernel/LogFile.h"
#include "NetAutomata.h"

NetAutomata::NetAutomata() : NetFSM(
 0, // uint16 numOfTimers = DEFAULT_TIMER_NO,
 2, // uint16 numOfState = DEFAULT_STATE_NO,
 3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE
{
 SetDefaultFSMData();
}

// This function returns the pointer to the object that governs the
// message information coding (the pointer to the message interface).
// This automata instance works only with the standard messages
// (ID 0x00). If the caller specifies another type of coding,
// this function throws the exception TErrorObject.
// The message interface is defined in NetAutomata.h
MessageInterface *NetAutomata::GetMessageInterface(uint32 id){

528 Communication Protocol Engineering

 switch(id) {
 case 0x00:
 return &StandardMsgCoding;
 }
 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}
// This function fills in the message header.
void NetAutomata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

// This function returns the identification of the mailbox that is
// assigned to this automata type.
uint8 NetAutomata::GetMbxId(){
 return MBX_AUTOMATA_ID;
}

// This function returns the identification of this automata type.
uint8 NetAutomata::GetAutomata(){
 return FSM_TYPE_AUTOMATA;
}

// This function initializes the data specific for individual
// instance of this automata type.
void NetAutomata::SetDefaultFSMData(){
 msgNumber = 0;
 idToMsg = INVALID_32;
}

// This function is called if there are no free instances of this
// automata type. If the programmer wants to use this option they must
// add the first automata instance of this type with the parameter
// useFreeList of the function Add set to true. In this example it is
// empty. In real applications the programmer should provide some
// recovery mechanism, such as overload protection or restart.
void NetAutomata::NoFreeInstances(){}

// This function initializes the state transition functions and the
// timers that are used by this automata type. This function is called
// implicitly by the function Add responsible for adding individual
// automata instances to the FSM system.
// Each state transition function is separately declared and defined.
void NetAutomata::Initialize(){
 // Here the programmer does the following initializations:
 // InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);

 InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_IDLE_START);
 InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_IDLE_MSG);

 InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_MSG_MSG);
 InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_MSG_STOP);

 InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_UNEXPECTED_IDLE);
 InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)
 &NetAutomata::NetAutomata_UNEXPECTED_MSG);
}

529FSM Library

// State transition functions for the state IDLE.
void NetAutomata::NetAutomata_IDLE_START(){
 msgNumber = 1;
 idToMsg = 0;

 // The automata instance prepares and sends the message,
 // and changes its state to MESSAGE.
 PrepareNewMessage(0x00,IDLE_MSG);

 char text[] = "THIS IS THE FIRST MESSAGE";
 AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);
 AddParamDWord(COUNT,msgNumber);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 SetState(MESSAGE);
}

void NetAutomata::NetAutomata_IDLE_MSG(){
 idToMsg = 0;

 // Get parameters from the message
 unsigned char *tmp;
 tmp = GetParam(PARAM_TEXT);
 assert(tmp);
 memcpy(text,tmp+2,*(tmp+1));
 memset(text+(*(tmp+1)),0x00,1); // make the string

 GetParamDWord(COUNT,msgNumber);
 printf("Text received: %s\n",text);

 // If the message sequence number is less than given limit,
 // continue message counting. If not stop the program.
 msgNumber++;

 // Prepare and send the message.
 // Change automata state to MESSAGE.
 PrepareNewMessage(0x00,MSG_MSG);
 AddParamDWord(COUNT,msgNumber);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 SetState(MESSAGE);
}

void NetAutomata::NetAutomata_MSG_MSG(){
 GetParamDWord(COUNT,msgNumber);
 msgNumber++;
 if(msgNumber < MAX_MSG_NUM){
 // Forward the message.
 PrepareNewMessage(0x00,MSG_MSG);
 AddParamDWord(COUNT,msgNumber);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 }
 else {
 printf("Stop automata: %u\n",GetObjectId());

530 Communication Protocol Engineering

 // Prepare and send the message.
 // Change automata state to IDLE.
 PrepareNewMessage(0x00,MSG_STOP);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 SetState(IDLE);
 }
}

void NetAutomata::NetAutomata_MSG_STOP(){
 printf("Stop automata: %u\n",GetObjectId());
 SetState(IDLE);
}
void NetAutomata::NetAutomata_UNEXPECTED_IDLE(){
 printf("Unexpected message in the state IDLE \n");
}

void NetAutomata::NetAutomata_UNEXPECTED_MSG(){
 printf("Unexpected message in the state MESSAGE \n");
}

void NetAutomata::StartDemo(){
 uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);
 SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgFromGroup(INVALID_08,msg);
 SetMsgObjectNumberFrom(0,msg);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgToGroup(INVALID_08,msg);
 SetMsgObjectNumberTo(0,msg);

 SetMsgInfoCoding(0,msg); // 0 = StandardMessage
 SetMsgCode(IDLE_START,msg);
 SetMsgInfoLength(0,msg);
 SendMessage(MBX_AUTOMATA_ID,msg);
}

uint16 NetAutomata::convertNetToFSMMessage(){
 // Manipulate only data because automata sends the new
 // message to itself.
 int length = receivedMessageLength-MSG_HEADER_LENGTH;
 memcpy(fsmMessageR, protocolMessageR+MSG_HEADER_LENGTH, length);
 fsmMessageRLength=length; // mandatory – used by workWhenReceive()

 // Rotate bytes
 uint16 msgCode = GetUint16((uint8*)(protocolMessageR+MSG_CODE));

 switch((msgCode)){
 case IDLE_START:
 msgCode = IDLE_START;
 break;
 case IDLE_MSG:
 msgCode = IDLE_MSG;
 break;
 case MSG_MSG:
 msgCode = MSG_MSG;
 break;
 case MSG_STOP:
 msgCode = MSG_STOP;
 break;
 default:
 msgCode = 0xffff;

531FSM Library

 }
 return msgCode;
}

void NetAutomata::convertFSMToNetMessage(){
 // Here we send the whole message.
 memcpy(protocolMessageS,fsmMessageS,fsmMessageSLength);
 sendMsgLength = fsmMessageSLength;
}

uint8 NetAutomata::getProtocolInfoCoding(){
 // Standard msg info coding
 return 0;
}

The file NetAutomata.cpp contains the definition of the class NetAutomata.
This definition starts with the class constructor that first calls the base class
constructor specifying no timers, two states, and the maximum of three state
transitions per state for this automata type. After this, the constructor calls the
function SetDefaultFSMData, which sets the data specific for this automata type.

The functions GetMessageInterface, SetDefaultHeader, GetMbxId, GetAutomata,
SetDefaultFSMData, NoFreeInstances, and Initialize are the same as in the pre-
vious example. The only difference is that the name of the class Automata has
been renamed to NetAutomata.

The function NetAutomata_IDLE_START handles the message IDLE_
START in the state IDLE. First, it sets the message sequence number msgNum-
ber to the value 1 and the identification of the destination automata instance
idToMsg to the value 0. Next, this function prepares and sends the message,
“THIS IS THE FIRST MESSAGE,” to its peer in the remote FSM system by
calling the function SendToTCP. At the end, it performs the state transition
from IDLE to MESSAGE by calling the function SetState and specifying the
value MESSAGE as its parameter.

The function NetAutomata_IDLE_MSG handles the message IDLE_MSG
in the state IDLE. First, it prints the received message to the monitor. It then
prepares and sends the message with the code MSG_MSG to its peer by
calling the function SendToTCP, and sets the current state of this automata
instance to the value MESSAGE.

The function NetAutomata_MSG_MSG handles the message MSG_MSG
in the state MESSAGE. First, it gets the message sequence number from the
received message and increments this value. It then checks if the new value
of the message sequence number has reached the given limit. If not, this func-
tion prepares and sends the message MSG_MSG to its peer at the remote
FSM system by calling the function SendToTCP. If it has reached the limit, this
function prepares and sends the message MSG_STOP to its peer at the remote
FSM system, and sets the current state of this automata instance to IDLE.

The function NetAutomata_MSG_STOP handles the message MSG_STOP
in the state MESSAGE. It is fairly simple and just sets the current state of
this automata instance to IDLE. The unexpected event handlers in this
example just print the warning messages. In real-world applications, these

532 Communication Protocol Engineering

functions would trigger some higher-level recovery mechanisms. The func-
tion StartDemo creates the first message in the system. It fills in its header as
if the automata instance with the identification 0 had sent that message to
itself and sends this message to the mailbox assigned to this automata type.

The function convertNetToFSMMessage just copies the payload of the exter-
nal message received from the remote FSM system to the current FSM system
internal message (the last received message), because in this simple example,
the two communicating instances have the same IDs and no need exists for
any mappings between them. The pointer fsmMessageR points to the current
internal message, the pointer protocolMessageR points to the current external
message, and the variable fsmMessageRLength is equal to the payload size of
the current external message. At the end, this function determines the mes-
sage code and returns it as its return value.

The function convertFSMToNetMessage copies the whole new internal mes-
sage to the new external message and sets the value of its length. The pointer
fsmMessageS points to the new internal message, the pointer protocolMessageS
points to the new external message, and the variables fsmMessageSLength and
sendMsgLength contain their lengths.

The function getProtocolInfoCoding returns the code of the standard message
coding (code 0x00) used for coding external messages. Note that in this simple
example, both internal and external messages are actually standard messages.

File Constants.h:

// FSM
#define FSM_TYPE_AUTOMATA 0

// MBX
#define MBX_AUTOMATA_ID 0
#define MAX_MSG_NUM 10
#define COUNT 1
#define PARAM_TEXT 2
#define IP_ADDRESS "192.168.0.57"
#define PORT_1 7000
#define PORT_2 8000

enum AutomataStates {
 IDLE = 0,
 MESSAGE,
};

enum Messages {
 IDLE_START = 0,
 IDLE_MSG,
 MSG_MSG,
 MSG_STOP
};

The file Constants.h first defines general symbolic constants. It is very
similar to the file with the same name in the previous example. The iden-
tification of this automata type FSM_TYPE_AUTOMATA is assigned the
value 0, the identification of the mailbox related to this automata type

533FSM Library

MBX_AUTOMATA_ID is assigned the value 0, the maximal message
sequence number MAX_MSG_NUM is assigned the value 10, the iden-
tification of the message parameter that contains the message sequence
number COUNT is assigned the value 1, and the identification of the
message parameter that contains the text PARAM_TEXT is assigned the
value 2.

The main difference with the previous example is the definition of the sym-
bolic constants related to the communication over the TCP/IP infrastructure.
The IP address IP_ADDRESS is assigned the value 192.168.0.57, the TCP port
number for the first server PORT_1 is assigned the value 7000, and the TCP
port number for the second server PORT_2 is assigned the value 8000. Next,
the identifications of the individual states of this automata type, as well as
possible message codes, are enumerated. This part of the file is the same as
in the previous example.

File Main.cpp:

#include "conio.h"
#include "Kernel/fsmsystem.h"
#include "Kernel/LogFile.h"
#include "NetAutomata.h"

// If the following line is not commented out we get the code for the
// server listening to the port number PORT_1.
// If the following line is commented out we get the code for the
// server listening to the port number PORT_2.
#define AUTOMATA1

// Assume the following.
// The FSM system hosts a single automata type.
// The FSM system uses a single mailbox for the message exchange.
// Create the FSM system.
FSMSystemWithTCP fsmSystem(1,1);

// Create the instance of the class NetAutomata.
NetAutomata instance_1;

DWORD WINAPI ThreadFunction(void* dummy){
 uint32 buffersCount[3] = {5,3,2};
 uint32 buffersLength[3] = {128,256,512};
 uint8 buffClassNo = 3;

 // Initialize the FSM system.
 printf("Initialize the FSMSystemWithTCP... \n");
 fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,1,true);
 fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);
 LogFile lf("log.log", "log.ini");
 LogAutomataNew::SetLogInterface(&lf);

 // Server in machine number 1 will listen to the port number PORT_1.
 // Server in machine number 2 will listen to the port number PORT_2.
 // It does not matter which instance will establish the TCP
 // connection by calling the function establishConection().
#ifdef AUTOMATA1
 printf("Start server...on port:%u\n",PORT_1);
 fsmSystem.InitTCPServer(PORT_1,FSM_TYPE_AUTOMATA);
#else

534 Communication Protocol Engineering

 printf("Start server...on port:%u\n",PORT_2);
 fsmSystem.InitTCPServer(PORT_2,FSM_TYPE_AUTOMATA);

#endif
 // Start the FSM system.
 printf("Start the FSM system...\n");
 try {
 fsmSystem.Start();
 }
 catch(...) {
 OutputDebugString("Exception - stop the FSM system...\n");
 return 0;
 }
 OutputDebugString("The end of the operation.\n");
 return 0;
}

void main(int argc,char* argv[]){
 DWORD threadID;
 bool end = false;
 char ret;

 // Start the FSM system thread.
 HANDLE hTemp = CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);
 Sleep(100);

 // Program works until the character 'Q' or 'q' is pressed.
 while((!end)) {
 if(_kbhit()) {
 ret = _getch();
 switch((ret)) {
 case 'Q':
 case 'q':
 fsmSystem.StopSystem();
 end = true;
 Sleep(100);
 break;
 case 'S':
 case 's':
 instance_1.StartDemo();
 break;
 case 'E':
 case 'e':
// Press 'e' to establish the connection with the remote server.
// This will enable the communication with the remote system.
#ifdef AUTOMATA1
 instance_1.setPort(PORT_2);
 instance_1.setIP((IP_ADDRESS));
 printf("establishConection on port:%u",PORT_2);
 instance_1.establishConnection();
#else
 instance_1.setPort(PORT_1);
 instance_1.setIP(IP_ADDRESS);
 printf("establishConection on port:%u",PORT_1);
 instance_1.establishConnection();
#endif
 default:
 break;
 }
 }
 }
 CloseHandle(hTemp);
 printf("The end. \n");
}

535FSM Library

The file Main.cpp starts with a list of the necessary included files and the
definition of the symbolic constant AUTOMATA1. This constant should be
defined for the local process and not for the remote process (this is done by
commenting out the source code line that defines the symbol AUTOMATA1).

Next, the instantiation of the class FSMSystemWithTCP is performed by a
call to its constructor. The parameters used in this call specify that an instance
of the FSMSystemWithTCP, named fsmSystem, will include a single automata
type and this automata type will use a single mailbox. After that, a single
instance of the class NetAutomata is made, instance_1. Additionally, this file
contains the definitions of the FSM system thread function ThreadFunction
and the function main.

The function ThreadFunction first prepares the data needed to define three
buffer types. The sizes and quantities of these buffers are five at 128 bytes,
three at 256 bytes, and two at 512 bytes. Next, the three automata instances
are added to fsmSystem. Note that the fourth parameter of the first call to
the function Add is set to the value true, which means that the instances are
to be used as a pool of instances of the same type. After that, this function
initializes the kernel by calling the function InitKernel, defines and sets the
logging interface by calling the function SetLogInterface, starts the TCP server
by calling the function InitTCPServer, and starts the fsmSystem by calling its
function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After this, it waits for the
user command. If the user presses the character ‘E’ or ‘e’, it establishes the
TCP connection with the remote TCP server by calling the function estab-
lishConnection. If the user presses the character ‘Q’ or ‘q’, it terminates the
program.

http://taylorandfrancis.com

http://taylorandfrancis.com

537

Index

A

ABP, see Alternating Bit Protocol
ACP, see Algebra of Communicating

Processes
Activity diagrams, 73–89

action state, 74
activity states, 75, 76
Boolean expressions, 79
communication, 81
control flow transition, 76
description, 74
Domain Name System client

request, 83
graphical symbols, 76, 82
loop, 80
multiprocessor system, 80
object flow transition, 82
problems, 73
retransmission timer, 77
scenarios, 73
single-processor system, 80
SMTP scenario, 87, 88
TCP events, 85, 86
workflow models, 84

Address Resolution Protocol (ARP)
server, 146

Algebra of Communicating Processes
(ACP), 321

Alternating Bit Protocol (ABP), 337–341
API functions (FSM Library), 418–490

AddParam, 438–439
AddParamByte, 439
AddParamDWord, 439
AddParamWord, 440
Add(ptrFiniteStateMachine, uint8),

433
Add(ptrFiniteStateMachine, uint8,

uint32, bool), 432–433
CheckBufferSize, 440–441
ClearMessage, 441
constructor summary, 419, 430
convertFSMToNetMessage, 489
convertNetToFSMMessage, 489–490

CopyMessage(), 441
CopyMessageInfo, 442
CopyMessage(uint*), 441–442
Discard, 442–443
DoNothing, 443
establishConnection, 490
FiniteStateMachine, 437–438
FreeFSM, 443
FSMSystem, 431–432
FSMSystemWithTCP, 436
GetAutomata, 443–444
GetBitParamByteBasic, 444
GetBitParamDWordBasic, 445
GetBitParamWordBasic, 444–445
GetBuffer, 445–446
GetBufferLength, 446
GetCallId, 446–447
GetCount, 447
GetGroup, 447
GetInitialState, 447–448
GetLeftAutomata, 448
GetLeftGroup, 448
GetLeftMbx, 448
GetLeftObjectId, 449
GetMbxId, 449
GetMessageInterface, 449–450
GetMsg(), 450
GetMsgCallId, 451
GetMsgCode, 451
GetMsgFromAutomata, 451
GetMsgFromGroup, 451–452
GetMsgInfoCoding, 452
GetMsgInfoLength(), 452
GetMsgInfoLength(uint8*), 452–453
GetMsgObjectNumberFrom, 453
GetMsgObjectNumberTo, 453
GetMsgToAutomata, 453–454
GetMsgToGroup, 454
GetMsg(uint8), 450
GetNewMessage, 454
GetNewMsgInfoCoding, 454
GetNewMsgInfoLength, 455
GetNextParam, 455
GetNextParamByte, 455–456

538 Index

GetNextParamDWord, 456–457
GetNextParamWord, 457
GetObjectId, 457–458
GetParam, 458
GetParamByte, 458–459
GetParamDWord, 459
GetParamWord, 460
GetProcedure, 460–461
getProtocolInfoCoding, 490
GetRightAutomata, 461
GetRightGroup, 461–462
GetRightMbx, 461
GetRightObjectId, 462
GetState, 462
groups, 418–420
InitEventProc, 463–464
Initialize, 463
InitKernel, 433–434
InitTCPServer, 436–437
InitTimerBlock, 464
InitUnexpectedEventProc, 464–465
IsBufferSmall, 462–463
IsTimerRunning, 465
member functions summary, 419,

420–430
NetFSM, 488–489
NoFreeInstances, 466
NoFreeObjectProcedure, 465–466
ParseMessage, 466–467
PrepareNewMessage(uint8*), 467
PrepareNewMessage(uint32, uint16,

uint8), 467–468
Process, 468
PurgeMailBox, 468–469
RemoveParam, 469
Remove(uint8), 434–435
Remove(uint8, uint32), 435
Reset, 469
ResetTimer, 469–470
RestartTimer, 470
RetBuffer, 470
ReturnMsg, 470–471
SendMessageLeft, 484–485
SendMessageRight, 485
SendMessage(uint8), 476–477
SendMessage(uint8, uint8*), 477
sendToTCP, 490
SetBitParamByteBasic, 471
SetBitParamDWordBasic, 471–472

SetBitParamWordBasic, 472
SetCallId(), 472
SetCallIdFromMsg, 473
SetCallId(uint32), 472–473
SetDefaultFSMData, 473
SetDefaultHeader, 473–474
SetGroup, 474
SetInitialState, 474
SetKernelObjects, 474–475
SetLeftAutomata, 475
SetLeftMbx, 475
SetLeftObject, 475–476
SetLeftObjectId, 476
SetLogInterface, 476
SetMessageFromData, 477
SetMsgCallId(uint32), 477–478
SetMsgCallId(unit32, unit8*), 478
SetMsgCode(uint16), 478
SetMsgCode(uint16, uint8*),

478–479
SetMsgFromAutomata(uint8), 479
SetMsgFromAutomata(uint8, uint8*),

479
SetMsgFromGroup(uint8), 479–480
SetMsgFromGroup(uint8, uint8*), 480
SetMsgInfoCoding(uint8), 480
SetMsgInfoCoding(uint8, uint8*), 481
SetMsgInfoLength(uint16), 481
SetMsgInfoLength(uint16, uint8*),

481–482
SetMsgObjectNumberFrom(uint32),

482
SetMsgObjectNumberFrom(uint32,

uint8*), 482
SetMsgObjectNumberTo(uint32),

482–483
SetMsgObjectNumberTo(uint32,

uint8*), 483
SetMsgToAutomata(uint8), 483
SetMsgToAutomata(uint8, uint8*),

483–484
SetMsgToGroup(uint8), 484
SetMsgToGroup(uint8, uint8*), 484
SetNewMessage, 485
SetObjectId, 485–486
SetRightAutomata, 486
SetRightMbx, 486
SetRightObject, 486
SetRightObjectId, 487

539Index

SetState, 487
Start, 435
StartTimer, 487
StopSystem, 435–436
StopTimer, 487–488
SysClearLogFlag, 488
SysStartAll, 488

Application Programming Interface
(API), 5, 29, 213

ARP server, see Address Resolution
Protocol server

Assert, 333
Automata, 8
Automatic Repeat Question (ARQ), 77

B

Backward engineering, 209, 247
Barrier synchronization, 331
Behavior testing, 11
Bluetooth Host Controller Interface, 48

C

Calculus of Communicating Systems
(CCS), 321

Channel
arrays, 326
operations, 329

Class diagrams, 50–61
association class, 53
association relation, 53
class properties, 52
communication protocol, 59
dependency relation, 53
graphical symbols, 51
Internet network layer, 55
object link, 53
object properties, 52
package properties, 52
rendering, 51
signal and exception symbols, 57
state transition, 56
state transition links, 56
TCP/IP protocol stack, 53
utility, 57
vertices, 50
vocabulary, 50

Coddec (CD), 138

Collaboration diagrams, 21–31
Application Programming Interfaces,

29
definition, 21
e-mail and DNS server, 26
graphical symbols, 22
links, properties of, 23
rendering, 22
system under development, 25
virtual collaboration, 30

Commit request phase, 341
Communicating Sequential Processes

(CSP), formal verification
based on, 320–368

Alternating Bit Protocol, 337–341
assert, 333
atomic process, 332
barrier synchronization, 331
channel input/output, 328
channel operations, 329
channels and channel arrays, 326
commit phase, 342
commit request phase, 341
consensus protocol, 341
constants, 326
deadlock-freeness assertion, 334
default alphabet, 331
deterministic process, 334
even prefixing, 327
event name, 328
eventual leader detector, 347
examples of formal verification based

on CSP# and PAT, 337–368
external choice, 329
failure detector, 347
general choice, 329
generalized parallel composition, 332
guarded process, 330
important notions, 321–322
interleaving, 330
internal choice, 330
invisible events, 328
language syntax, 323
leader election in complete graphs,

346–351
leader election in rings, 351–354
leader election in trees, 354–356
lock-step synchronization, 331
macros, 326

540 Index

model inclusion, 326
model names, 326
network of finite-state anonymous

agents, 346
nonoptimized reachability, 335
nonstarvation property, 336
normal operation, 341
overview of CSP, 320–324
overview of PAT and CSP#, 324–337
parallel composition, 331
process algebra, 320
Process Analysis Toolkit, 320
processes, 327
protected leader, 352
protecting shield, 352
query to commit, 343
recoverable resources, 342
recursion, 333
rollback message, 342
self-stabilizing algorithms, 346
sequence number, 337
sequential composition, 329
skip process, 327
star convention, 347
statement blocks inside events, 328
stop process, 327
Telecomm Service System, 356–368
traditional conditional choices, 330
two-phase commit protocol,

341–346
used-defined type, 326
variables and arrays, 326
voting phase, 341

Communication protocol engineering,
introduction to, 1–8

Application Programming Interface, 5
automata, 8
cleanroom engineering methodology, 3
definitions of communication

protocol, 5–6
error reaction, 7
finite state machine, 8
FSM Library, 4
informal specification, 7
JUnit, 5
message format, 6
message-processing procedure, 7
notion of the communication

protocol, 5–8

payload, 6
phases, 2
POP3 communication protocol, 4
primitive operations, 7
process, definition of, 6
Session Initiation Protocol, 4
SIP INVITE client transaction, 4
TCP/IP Internet protocol, 4
Unified Modeling Language, 1
unit testing methodology, 3

Compliance testing, 126
Component diagrams, 211–216

application programming interfaces, 213
complex projects, 215
component types, 212
differences between components and

classes, 211
dynamically linkable libraries, 211
executables and libraries, modeling

of, 214
simple project, 216
symbols, 212

Component handling (CH), 138
Conditional statements, 143
Conformance testing, 303–307

documents, 304
functional subgroups, 305
IETF SIP torture tests, 307
implementation under test, 303
international standardization

institutions, 304
open source test suites, 306
SIP conformance test suite, 305
SIP softphone, 303

Coroutines, 81
CSP, see Communicating Sequential

Processes, formal verification
based on

D

Default alphabet, 331
Default behavior, 136
Deployment diagrams, 102–107

component properties, 105
network configuration, 106
network nodes, 103
node examples, 103
node properties, 105

541Index

package forms, 103
purposes, 103
software architecture, 103
symbols, 104
TCP/IP, 106

Deployment model, 45
Design, 45–207

activity diagrams, 47, 73–89
Bluetooth Host Controller Interface,

48
class diagrams, 46, 50–61
connection establishment and

release, 175–181
coroutines, 81
deployment design, 45
deployment diagrams, 102–107
deployment model, 45
design model, 45
examples, 175–207
generic design mechanisms, 49
hypothetical star network, 181–188
Message Sequence Charts, 125–129
object diagrams, 46, 61–65
reliable packet delivery, 188–190
sequence diagrams, 46, 65–73
SIP INVITE client transaction,

198–207
sliding window concept, 190–197
Specification and Description

Language, 107–125
statechart diagrams, 47, 89–102
static structure, 45
successful session establishment

sequence diagram, 201
system behavior, 45
system structure, 45
test design, 45
Testing and Test Control Notation

Version 3, 129–174
test model, 45
unsuccessful session establishment

collaboration diagram, 200
unsuccessful session establishment

sequence diagram, 202
Diagrams, see Design
Domain Name System (DNS) client

request, 83
Dynamically linkable libraries (DLLs),

211

E

E-mail
and DNS server, 26
password processing scenario,

invalid, 263
Error reaction, 7
Event interpreter, 224, 225
Event name, 328
External signal, 110

F

FIFO (First-In-First-Out)
buffer, 344
memory, 410
queue, 112

Finite state machine (FSM), 4, 8, 217;
see also FSM implementations,
spectrum of; FSM Library;
FSM Library, implementation
based on

modeling of, 108
object diagram, 63

First-Order Logic (FOL), 320
Formal verification, 308–368

Communicating Sequential
Processes, 320–368

theorem proving, 308–320
Forward engineering, 209, 247
FSM implementations, spectrum of,

217–237
abstract automata, 217
approaches, 217
class hierarchy, 231
class models, 227
code, 226–227
definitions of classes, 229
demo program, 221
diametrical approach, 223
event interpreter, 224, 225
Java module, 232–233
Java programming language, 217
maps, 235
object-oriented approach, 228
polymorphism, 231
stable state classes, 234
static structure, 230
switch–case statement, 219, 222, 237

542 Index

FSM Library, 4, 399; see also API
functions (FSM Library)

API functions, 418–490
–based implementations, integration

testing of, 391–396
–based implementations, unit testing

of, 383–390
basic FSM system components,

400–407
buffers, 409
class FiniteStateMachine, 404–407
class FSMSystem, 400–404
class FSMSystemWithTCP, 415–416
class NetFSM, 416–417
example with network-aware

automata instances, 519–535
example with three automata

instances, 490–519
FSM system initialization, 401–404
FSM system startup, 404
global constants, types, and

functions, 418
memory leak, 409
memory management, 408
message management, 410–414
TCP/IP support, 414–417
time management, 407–408

FSM Library, implementation based on,
241–260

class diagram, 247
design decision, 243
FiniteStateMachine internals,

250–257
FSM Library internals, 248–260
FSMSystem internals, 249–250
kernel internals, 257–260
key concept, 241
logging subsystem, 245
mailboxes, 244
message buffer reallocation, 246
message handling, 242, 244, 246
specifics, 242
timers, 245
translation, 242
using the FSM Library, 246–247
writing FSM Library–based

implementations, 260
Functional requirements, 9

G

Generic Modeling Environment (GME),
370

Generic Test Case Generator (GTCG),
372

Goto statements, 145
Graphically oriented languages,

advantages of, 109
Graphical user interface (GUI), 35, 370

H

Hook-off event, 108
Host Controller Interface (HCI), 48
HTTP (Hyper Text Transport Protocol),

31

I

IETF SIP torture tests, 307
Implementation, 209–287

backward engineering, 209
component diagrams, 211–216
correct implementation, 209
examples, 260–287
forward engineering, 209
FSM Library, implementation based

on, 241–260
implementation as a phase, 209
Model-Driven Architecture, 210
reading Internet electronic mail,

application for, 261–278
SIP invite client transaction design,

278–287
spectrum of FSM implementations,

217–237
State design pattern, 237–241
virtual finite state machines, 210

Implementation under test (IUT), 129, 303
Informal specification, 7
Integration test collaborations, 290
Interaction, definition of, 65
Internal signal, 110
International standardization

institutions, 304
Internet electronic mail, reading

(application for), 261–278

543Index

Invisible events, 328
ITU-T recommendation Z.100e, 110
IUT, see Implementation under test

J

JavaCompRegister, 372
Java programming language, 217
JUnit, 5, 296, 297

L

Labeled Transition Systems (LTS), 320
Labels, 145
Leader election

in complete graphs, 346–351
in rings, 351–354
in trees, 354–356

Linear Temporal Logic (LTL), 320
Load generator, 291
Lock-step synchronization, 331
Log statements, 145

M

MAC address, see Media Access Control
address

Macros, 326
Main Test Component (MTC), 136
Maximal Transfer Unit (MTU), 79
MDA, see Model-Driven Architecture
Media Access Control (MAC) address, 147
MEGACO (Media Gateway Control

Protocol), 31
Message format, 6
Message-processing procedure, 7
Message Sequence Charts (MSC),

125–129
advantage, 129
basis of, 125
compliance testing, 126
disadvantage, 126
example, 127, 128
graphical symbols, 127
language forms, 127
new connection establishment

procedure, 182
questions, 126

scenarios, 126
stable state, 125
successful connection establishment

and release, 179
successful message delivery, 186
unsuccessful message delivery, 186

Model-Driven Architecture (MDA),
210

Model inclusion, 326
Model integrated computing (MIC), 111
MSC, see Message Sequence Charts
MTC, see Main Test Component
MTU, see Maximal Transfer Unit

N

NesC module, 320
Nonfunctional requirements, 9

O

Object diagrams, 46, 61–65
benefits of, 64
classifiers, 62
examples, 62, 64
graphical symbols, 61
TCP/IP protocol stack, 62
transition objects, 64

OCS (Originating Call Screening)
service, 367

ODS (Originating Dial Screening)
service, 367

Optimized reachability, 335
Orc module, 320

P

Parallel composition, 331
PAT, see Process Analysis Toolkit
Payload, 6
POP3 protocol, 4, 261
Preprocessing macros, 146
Primitive operations, 7
Private Branch eXchange (PBX), 356
Probability RTS (PRTS), 320
Process

algebra, 320
atomic, 332

544 Index

definition of, 6, 110
deterministic, 334
with stable states, 109

Process Analysis Toolkit (PAT), 320

Q

Query to commit, 343

R

Real-Time Systems (RTS), 320
Recursion, 333
Regression testing, 294
Requirements and analysis, 9–44

collaboration diagrams, 21–31
example, 31–43
mapping, 40–41
protocol stack, 32
server types, 32
SIP domain specifics, 31–35
SIP softphone analysis model, 40–43
SIP softphone requirements model,

35–40
status code types, 33
transaction types, 32
transaction user, 35, 36
transport layer interface, 35, 36
use case diagrams, 13–21, 37
user agent client, 32
user agent server, 32

Requirements, engineer, 10
RTP (Real-Time Transfer Protocol), 31
RTS, see Real-Time Systems
RTSP (Real-Time Streaming Protocol), 31

S

SDL, see Specification and Description
Language

Self-stabilizing algorithms, 346
Sequence diagrams, 65–73

example, 68, 69
features, 66
flow of events, 70–71
focus of control, 66
graphical symbols, 66, 67
interaction, definition of, 65
message properties, 66

message types, 67
mutation of objects, modeling of, 66
object lifeline, 66
virtual interaction, 72–73

Sequence number, 337
Session initiation protocol (SIP), 4, 13,

31–35
flow of events, 38–40, 41–43
mapping, 40–41
protocol stack, 32
server types, 32
softphone analysis model, 40–43
softphone requirements model,

35–40
status code types, 33
transaction types, 32
transaction user, 35, 36
transport layer interface, 35, 36
use case diagram, 37
user agent client, 32
user agent server, 32

Simple mail transfer protocol (SMTP),
62, 87, 88

SIP, see Session initiation protocol
SIP INVITE client transaction, 4
SIP softphone

analysis model, 40–43
conformance testing, 303
operational profile, 380, 381
requirements model, 35–40

SIP User Agent, 306
Sliding window concept, 190–197
SMTP, see Simple mail transfer protocol
Software Development Tools (SDTs), 111
Specification and Description Language

(SDL), 107–125
channels, definition of, 112
diagram, 177, 178, 184, 191
dilemma, 108
external signal, 110
family of protocols, 111
flowchart, 108
forms, 111
functional blocks, 109, 115
game, 112
graphically oriented languages,

advantages of, 109
graphical symbols, 116
hook-off event, 108

545Index

internal signal, 110
ITU-T recommendation Z.100e, 110
model integrated computing, 111
nesting, 120
process, definition of, 110
process declaration, 119
process with stable states, 109
protocol stack, 111
stable state, 120
state events, 108–109
tasks, 109
telephone call processing example,

121–125
unstable states, 110

Star convention, 347
Statechart diagrams, 89–102, 175, 176, 183

action, 89
action types, 91
activity, 89
advanced abstractions, 95
attributes, 90
composite state, 95
DNS client, 99
event types, 91
example, 97, 99
graphical symbols, 92
history state, 96
purpose, 89
state machine, 89
state properties, 90
symbols, 90
TCP, 101
transition, 90
transition properties, 92
triggerless transition, 94

State design pattern, 237–241
context, 238
FSM behavior, 238
Java code, 239–241
original motivation, 238
static structure, 239

Statement blocks, 328
Statistical usage testing, 11, 368–382

Generic Modeling Environment, 370
Generic Test Case Generator, 372
graphical user interface, 370
methodology, 375
modeling paradigm, 370
model interpreter, 376

number of remaining bugs, 369
operational profile, 376, 377
SIP softphone operational profile,

380, 381
test coverage, 369

Switch–case statement, 219, 222, 237
System under test (SUT), 129

T

TA, see Timed Automata
TAL, see Transaction layer
TCI, see TTCN-3 Control Interface
TCP/IP

Internet protocol, 4
support, FSM Library, 414–417

TCS (Terminating Call Screening)
service, 367

Telecomm Service System (TSS),
356–368

Telelogic® Software Development Tools,
111

Testing and Test Control Notation
Version 3 (TTCN-3), 129–174

abstract test suites, 136
alt (statement), 135, 163
any port (keyword), 160, 161
assignments, 143
basic constructs and statements,

138–146
basic data types, 140
Boolean data, 140
Boolean guards, 164
charstring, 131, 140, 153
check (operation), 160
coddec, 138
comments, 140
communication ports, 132
components, 138, 151
conditional statements, 143
conformance testing, 129
constants, 139
control (keyword), 135
control part (module), 146
deactivate (operation), 170
default altsteps, 167, 170
default behavior, 136
enumerated, 131
error (verdict), 134, 154

546 Index

execute (keyword), 135
execute (statement), 153
expressions, 143
external (keyword), 142
fail (verdict), 134, 150
float, 151
functions, 141, 172
Generated Code, 138
goto statements, 145
identifiers, 138
implementation under test, 129
inout parameters, 154, 170, 173
integer, 131
integer data, 140
labels, 145
language, test suite, and test systems,

130–138
log statements, 145, 152
Main Test Component, 136
Media Access Control address, 147
message-based communication, 156
message codecs, 136
modules, 131, 139
operators, 143
parameters with default values, 142
pass (verdict), 135, 150
Platform Adapter, 137, 138
ports, 150
predefined functions, 142
preprocessing macros, 146
receive (method), 133, 135
receive (operation), 156, 157, 158
record, 131
repeat (statement), 166
return (statement), 168
runs on, 174
Runtime System, 138
scopes, 139
send (operation), 157
setverdict (keyword), 134
single component test suites,

146–174
snapshot, 164
subtypes, 140
SUT Adapter, 137, 138
system under test, 129
templates, 132, 155
term instantiating a function, 142
test cases, 152

test components, 132
test logging, 138
test management, 137, 138
test system interface, 136, 152
timeout (operation), 162, 163
timers, 161
TTCN-3 Control Interface, 137
TTCN-3 Executable, 138
TTCN-3 Runtime Interface, 137
variables, 140

Test logging (TL), 138
Test management (TM), 138
Test system interface (TSI), 136, 152
Test and verification, 289–397; see also

Communicating Sequential
Processes, formal verification
based on

activities, 289
bug detection, 292
cleanroom engineering, 292
Communicating Sequential

Processes, 320–368
conformance testing, 303–307
drivers, 290
examples, 382–396
formal verification, 308–368
FSM Library–based implementations,

383–396
Generic Modeling Environment,

370
Generic Test Case Generator, 372
integration test collaborations, 290
load generator, 291
open source test suites, 306
regression testing, 294
SIP softphone operational profile,

380, 381
statistical usage testing, 368–382
theorem proving, formal verification

based on, 308–320
unit testing, 293–303

Timed Automata (TA), 320
TL, see Test logging
TM, see Test management
Transaction layer (TAL), 35
Transaction user (TU), 35, 201
Transport layer interface (TLI), 35
Transport Layer Security (TLS), 33
TSI, see Test system interface

547Index

TTCN-3, see Testing and Test Control
Notation Version 3

TTCN-3 Control Interface (TCI), 137
TTCN-3 Executable (TE), 138
TTCN-3 Runtime Interface (TRI), 137
Two-phase commit protocol (2PC),

341–346

U

UAC, see User agent client
UAS, see User agent server
UML (Unified Modeling Language), 1

history, 96
interaction diagrams, 65
tool vendors, 210

Unit testing, 293–303
aim, 293
controlled execution, 296
framework example, 296
framework functions, 294
hidden bugs, 300
hierarchy of test suites, 302
JUnit, 296, 297
purpose, 293
regression testing, 294
roles, 293
test case results, checking of, 295

Unstable states, 110
Use case diagrams, 13–21

actors, 13, 14
flow of events, 19–21
graphical symbols, 16
package properties, 17
rendering, 15
SIP softphone, 37
use cases, 13

User Agent (UA), 306
User agent client (UAC), 32, 35
User agent server (UAS), 32
User-defined type, 326

V

Variables, 326
Verification, see Test and verification
Virtual collaboration, 30
Virtual finite state machines (VFSMs),

210
Voting phase, 341

W

Web Services (WS) module, 320
World Wide Web (WWW), 54

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface to the First Edition
	Preface to the Second Edition
	Author
	Chapter 1: Introduction
	1.1 The Notion of the Communication Protocol
	References

	Chapter 2: Requirements and Analysis
	2.1 Use Case Diagrams
	2.2 Collaboration Diagrams
	2.3 Requirements and Analysis Example
	2.3.1 SIP Domain Specifics
	2.3.2 SIP Softphone Requirements Model
	2.3.3 SIP Softphone Analysis Model

	References

	Chapter 3: Design
	3.1 Class Diagrams
	3.2 Object Diagrams
	3.3 Sequence Diagrams
	3.4 Activity Diagrams
	3.5 Statechart Diagrams
	3.6 Deployment Diagrams
	3.7 Specification and Description Language
	3.7.1 Telephone Call Processing Example

	3.8 Message Sequence Charts
	3.9 Tree and Tabular Combined Notation Version 3
	3.9.1 TTCN-3 Language, Test Suite, and Test Systems
	3.9.2 Basic TTCN-3 Constructs and Statements
	3.9.3 Single Component TTCN-3 Test Suites

	3.10 Examples
	3.10.1 Example 1
	3.10.2 Example 2
	3.10.3 Example 3
	3.10.4 Example 4
	3.10.5 Example 5

	References

	Chapter 4: Implementation
	4.1 Component Diagrams
	4.2 Spectrum of FSM Implementations
	4.3 State Design Pattern
	4.4 Implementation Based on the FSM Library
	4.4.1 Using the FSM Library
	4.4.2 FSM Library Internals
	4.4.2.1 FSMSystem Internals
	4.4.2.2 FiniteStateMachine Internals
	4.4.2.3 Kernel Internals

	4.4.3 Writing FSM Library–Based Implementations

	4.5 Examples
	4.5.1 Example 1
	4.5.2 Example 2

	References

	Chapter 5: Test and Verification
	5.1 Unit Testing
	5.2 Conformance Testing
	5.3 Formal Verification
	5.3.1 Formal Verification Based on Theorem Proving
	5.3.2 Formal Verification Based on Communicating Sequential Processes
	5.3.2.1 Brief Overview of CSP
	5.3.2.2 Brief Overview of PAT and CSP#
	5.3.2.2.1 CSP# Global Definitions
	5.3.2.2.2 CSP# Process Definitions
	5.3.2.2.3 CSP# Assertions

	5.3.2.3 Examples of Formal Verification Based on CSP# and PAT
	5.3.2.3.1 Alternating Bit Protocol
	5.3.2.3.2 Two-Phase Commit Protocol
	5.3.2.3.3 Leader Election in Complete Graphs
	5.3.2.3.4 Leader Election in Rings
	5.3.2.3.5 Leader Election in Trees
	5.3.2.3.6 Telecomm Service System

	5.4 Statistical Usage Testing
	5.5 Examples
	5.5.1 Example 1
	5.5.2 Example 2

	5.6 Further Reading
	References

	Chapter 6: FSM Library
	6.1 Introduction
	6.2 Basic FSM System Components
	6.2.1 Class FSMSystem
	6.2.1.1 FSM System Initialization
	6.2.1.2 FSM System Startup

	6.2.2 Class FiniteStateMachine

	6.3 Time Management
	6.4 Memory Management
	6.5 Message Management
	6.6 TCP/IP Support
	6.6.1 Class FSMSystemWithTCP
	6.6.2 Class NetFSM

	6.7 Global Constants, Types, and Functions
	6.8 API Functions
	6.8.1 FSMSystem
	6.8.2 Add(ptrFiniteStateMachine, uint8, uint32, bool)
	6.8.3 Add(ptrFiniteStateMachine, uint8)
	6.8.4 InitKernel
	6.8.5 Remove(uint8)
	6.8.6 Remove(uint8, uint32)
	6.8.7 Start
	6.8.8 StopSystem
	6.8.9 FSMSystemWithTCP
	6.8.10 InitTCPServer
	6.8.11 FiniteStateMachine
	6.8.12 AddParam
	6.8.13 AddParamByte
	6.8.14 AddParamDWord
	6.8.15 AddParamWord
	6.8.16 CheckBufferSize
	6.8.17 ClearMessage
	6.8.18 CopyMessage()
	6.8.19 CopyMessage(uint*)
	6.8.20 CopyMessageInfo
	6.8.21 Discard
	6.8.22 DoNothing
	6.8.23 FreeFSM
	6.8.24 GetAutomata
	6.8.25 GetBitParamByteBasic
	6.8.26 GetBitParamWordBasic
	6.8.27 GetBitParamDWordBasic
	6.8.28 GetBuffer
	6.8.29 GetBufferLength
	6.8.30 GetCallId
	6.8.31 GetCount
	6.8.32 GetGroup
	6.8.33 GetInitialState
	6.8.34 GetLeftMbx
	6.8.35 GetLeftAutomata
	6.8.36 GetLeftGroup
	6.8.37 GetLeftObjectId
	6.8.38 GetMbxId
	6.8.39 GetMessageInterface
	6.8.40 GetMsg()
	6.8.41 GetMsg(uint8)
	6.8.42 GetMsgCallId
	6.8.43 GetMsgCode
	6.8.44 GetMsgFromAutomata
	6.8.45 GetMsgFromGroup
	6.8.46 GetMsgInfoCoding
	6.8.47 GetMsgInfoLength()
	6.8.48 GetMsgInfoLength(uint8*)
	6.8.49 GetMsgObjectNumberFrom
	6.8.50 GetMsgObjectNumberTo
	6.8.51 GetMsgToAutomata
	6.8.52 GetMsgToGroup
	6.8.53 GetNewMessage
	6.8.54 GetNewMsgInfoCoding
	6.8.55 GetNewMsgInfoLength
	6.8.56 GetNextParam
	6.8.57 GetNextParamByte
	6.8.58 GetNextParamDWord
	6.8.59 GetNextParamWord
	6.8.60 GetObjectId
	6.8.61 GetParam
	6.8.62 GetParamByte
	6.8.63 GetParamDWord
	6.8.64 GetParamWord
	6.8.65 GetProcedure
	6.8.66 GetRightMbx
	6.8.67 GetRightAutomata
	6.8.68 GetRightGroup
	6.8.69 GetRightObjectId
	6.8.70 GetState
	6.8.71 IsBufferSmall
	6.8.72 Initialize
	6.8.73 InitEventProc
	6.8.74 InitTimerBlock
	6.8.75 InitUnexpectedEventProc
	6.8.76 IsTimerRunning
	6.8.77 NoFreeObjectProcedure
	6.8.78 NoFreeInstances
	6.8.79 ParseMessage
	6.8.80 PrepareNewMessage(uint8*)
	6.8.81 PrepareNewMessage(uint32, uint16, uint8)
	6.8.82 Process
	6.8.83 PurgeMailBox
	6.8.84 RemoveParam
	6.8.85 Reset
	6.8.86 ResetTimer
	6.8.87 RestartTimer
	6.8.88 RetBuffer
	6.8.89 ReturnMsg
	6.8.90 SetBitParamByteBasic
	6.8.91 SetBitParamDWordBasic
	6.8.92 SetBitParamWordBasic
	6.8.93 SetCallId()
	6.8.94 SetCallId(uint32)
	6.8.95 SetCallIdFromMsg
	6.8.96 SetDefaultFSMData
	6.8.97 SetDefaultHeader
	6.8.98 SetGroup
	6.8.99 SetInitialState
	6.8.100 SetKernelObjects
	6.8.101 SetLeftMbx
	6.8.102 SetLeftAutomata
	6.8.103 SetLeftObject
	6.8.104 SetLeftObjectId
	6.8.105 SetLogInterface
	6.8.106 SendMessage(uint8)
	6.8.107 SendMessage(uint8, uint8*)
	6.8.108 SetMessageFromData
	6.8.109 SetMsgCallId(uint32)
	6.8.110 SetMsgCallId(unit32, unit8*)
	6.8.111 SetMsgCode(uint16)
	6.8.112 SetMsgCode(uint16, uint8*)
	6.8.113 SetMsgFromAutomata(uint8)
	6.8.114 SetMsgFromAutomata(uint8, uint8*)
	6.8.115 SetMsgFromGroup(uint8)
	6.8.116 SetMsgFromGroup(uint8, uint8*)
	6.8.117 SetMsgInfoCoding(uint8)
	6.8.118 SetMsgInfoCoding(uint8, uint8*)
	6.8.119 SetMsgInfoLength(uint16)
	6.8.120 SetMsgInfoLength(uint16, uint8*)
	6.8.121 SetMsgObjectNumberFrom(uint32)
	6.8.122 SetMsgObjectNumberFrom(uint32, uint8*)
	6.8.123 SetMsgObjectNumberTo(uint32)
	6.8.124 SetMsgObjectNumberTo(uint32, uint8*)
	6.8.125 SetMsgToAutomata(uint8)
	6.8.126 SetMsgToAutomata(uint8, uint8*)
	6.8.127 SetMsgToGroup(uint8)
	6.8.128 SetMsgToGroup(uint8, uint8*)
	6.8.129 SendMessageLeft
	6.8.130 SendMessageRight
	6.8.131 SetNewMessage
	6.8.132 SetObjectId
	6.8.133 SetRightMbx
	6.8.134 SetRightAutomata
	6.8.135 SetRightObject
	6.8.136 SetRightObjectId
	6.8.137 SetState
	6.8.138 StartTimer
	6.8.139 StopTimer
	6.8.140 SysClearLogFlag
	6.8.141 SysStartAll
	6.8.142 NetFSM
	6.8.143 convertFSMToNetMessage
	6.8.144 convertNetToFSMMessage
	6.8.145 establishConnection
	6.8.146 getProtocolInfoCoding
	6.8.147 sendToTCP

	6.9 A Simple Example with Three Automata Instances
	6.10 A Simple Example with Network-Aware Automata Instances

	Index

