


Communication Protocol 
Engineering

Second Edition



http://taylorandfrancis.com

http://taylorandfrancis.com


Communication Protocol 
Engineering

Second Edition

Miroslav Popovic



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-55812-0 (Hardback)
International Standard Book Number-13: 978-1-315-15124-3 (eBook)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize 
to copyright holders if permission to publish in this form has not been obtained. If any copyright material 
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter 
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval 
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright 
.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the 
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Popovic, Miroslav, 1961- author.
Title: Communication protocol engineering / Miroslav Popovic.
Description: Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.
Identifiers: LCCN 2017043058| ISBN 9781138558120 (hardback : alk. paper) | 
ISBN 9781315151243 (ebook)
Subjects: LCSH: Computer network protocols. | Computer networks--Standards.
Classification: LCC TK5101.55 .P67 2006 | DDC 621.382/12--dc23
LC record available at https://lccn.loc.gov/2017043058

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
https://lccn.loc.gov
http://www.taylorandfrancis.com
http://www.crcpress.com


To my wife, Vlasta, and our sons Marko and Andrej



http://taylorandfrancis.com

http://taylorandfrancis.com


vii

Contents

Preface to the First Edition ................................................................................. xiii
Preface to the Second Edition ..............................................................................xv
Author .................................................................................................................. xvii

 1. Introduction .....................................................................................................1
1.1 The Notion of the Communication Protocol .....................................5
References .........................................................................................................8

 2. Requirements and Analysis .........................................................................9
2.1 Use Case Diagrams ............................................................................. 13
2.2 Collaboration Diagrams ..................................................................... 21
2.3 Requirements and Analysis Example .............................................. 31

2.3.1 SIP Domain Specifics ............................................................. 31
2.3.2 SIP Softphone Requirements Model ...................................35
2.3.3 SIP Softphone Analysis Model ............................................40

References .......................................................................................................44

 3. Design .............................................................................................................45
3.1 Class Diagrams ....................................................................................50
3.2 Object Diagrams .................................................................................. 61
3.3 Sequence Diagrams ............................................................................65
3.4 Activity Diagrams ............................................................................... 73
3.5 Statechart Diagrams ........................................................................... 89
3.6 Deployment Diagrams ..................................................................... 102
3.7 Specification and Description Language ....................................... 107

3.7.1 Telephone Call Processing Example ................................. 121
3.8 Message Sequence Charts ................................................................ 125
3.9 Tree and Tabular Combined Notation Version 3 .......................... 129

3.9.1 TTCN-3 Language, Test Suite, and Test Systems ............ 130
3.9.2 Basic TTCN-3 Constructs and Statements........................ 138
3.9.3 Single Component TTCN-3 Test Suites ............................. 146

3.10 Examples ............................................................................................ 175
3.10.1 Example 1 .............................................................................. 175
3.10.2 Example 2 .............................................................................. 181
3.10.3 Example 3 .............................................................................. 188
3.10.4 Example 4 .............................................................................. 190
3.10.5 Example 5 .............................................................................. 198

References ..................................................................................................... 207



viii Contents

 4. Implementation ........................................................................................... 209
4.1 Component Diagrams ...................................................................... 211
4.2 Spectrum of FSM Implementations ................................................ 217
4.3 State Design Pattern .......................................................................... 237
4.4 Implementation Based on the FSM Library .................................. 241

4.4.1 Using the FSM Library ........................................................ 246
4.4.2 FSM Library Internals ......................................................... 248

4.4.2.1 FSMSystem Internals ............................................ 249
4.4.2.2 FiniteStateMachine Internals ................................250
4.4.2.3 Kernel Internals .................................................... 257

4.4.3 Writing FSM Library–Based Implementations ................ 260
4.5 Examples ............................................................................................ 260

4.5.1 Example 1 .............................................................................. 261
4.5.2 Example 2 .............................................................................. 278

References ..................................................................................................... 287

 5. Test and Verification .................................................................................. 289
5.1 Unit Testing ........................................................................................ 293
5.2 Conformance Testing .......................................................................303
5.3 Formal Verification ...........................................................................308

5.3.1 Formal Verification Based on Theorem Proving .............308
5.3.2 Formal Verification Based on Communicating 

Sequential Processes ............................................................ 320
5.3.2.1 Brief Overview of CSP ......................................... 320
5.3.2.2 Brief Overview of PAT and CSP# ....................... 324
5.3.2.3 Examples of Formal Verification Based 

on CSP# and PAT ................................................... 337
5.4 Statistical Usage Testing ...................................................................368
5.5 Examples ............................................................................................ 382

5.5.1 Example 1 ..............................................................................383
5.5.2 Example 2 .............................................................................. 391

5.6 Further Reading ................................................................................ 396
References ..................................................................................................... 396

 6. FSM Library ................................................................................................. 399
6.1  Introduction ....................................................................................... 399
6.2  Basic FSM System Components ......................................................400

6.2.1  Class FSMSystem ..................................................................400
6.2.1.1  FSM System Initialization ................................... 401
6.2.1.2  FSM System Startup .............................................404

6.2.2  Class FiniteStateMachine .......................................................404
6.3  Time Management ............................................................................ 407
6.4  Memory Management ......................................................................408
6.5  Message Management ...................................................................... 410
6.6  TCP/IP Support ................................................................................. 414



ixContents

6.6.1  Class FSMSystemWithTCP ................................................... 415
6.6.2  Class NetFSM ........................................................................ 416

6.7  Global Constants, Types, and Functions ....................................... 418
6.8  API Functions .................................................................................... 418

6.8.1  FSMSystem............................................................................. 431
6.8.2  Add(ptrFiniteStateMachine, uint8, uint32, bool) .................. 432
6.8.3  Add(ptrFiniteStateMachine, uint8) .......................................433
6.8.4  InitKernel ................................................................................433
6.8.5  Remove(uint8) ........................................................................434
6.8.6  Remove(uint8, uint32) ............................................................435
6.8.7  Start ........................................................................................435
6.8.8  StopSystem .............................................................................435
6.8.9  FSMSystemWithTCP .............................................................436
6.8.10  InitTCPServer .........................................................................436
6.8.11  FiniteStateMachine ................................................................. 437
6.8.12  AddParam ...............................................................................438
6.8.13  AddParamByte ........................................................................ 439
6.8.14  AddParamDWord ................................................................... 439
6.8.15  AddParamWord ......................................................................440
6.8.16  CheckBufferSize ......................................................................440
6.8.17  ClearMessage .......................................................................... 441
6.8.18  CopyMessage( ) ...................................................................... 441
6.8.19  CopyMessage(uint*) ............................................................... 441
6.8.20  CopyMessageInfo ....................................................................442
6.8.21  Discard ....................................................................................442
6.8.22  DoNothing ..............................................................................443
6.8.23  FreeFSM..................................................................................443
6.8.24  GetAutomata ..........................................................................443
6.8.25  GetBitParamByteBasic ............................................................444
6.8.26  GetBitParamWordBasic ..........................................................444
6.8.27  GetBitParamDWordBasic .......................................................445
6.8.28  GetBuffer .................................................................................445
6.8.29  GetBufferLength .....................................................................446
6.8.30  GetCallId .................................................................................446
6.8.31  GetCount ................................................................................447
6.8.32  GetGroup ................................................................................447
6.8.33  GetInitialState .........................................................................447
6.8.34  GetLeftMbx .............................................................................448
6.8.35  GetLeftAutomata ....................................................................448
6.8.36  GetLeftGroup ..........................................................................448
6.8.37  GetLeftObjectId ......................................................................449
6.8.38  GetMbxId ................................................................................449
6.8.39  GetMessageInterface ...............................................................449
6.8.40  GetMsg() .................................................................................450
6.8.41  GetMsg(uint8) ........................................................................450



x Contents

6.8.42  GetMsgCallId ....................................................................... 451
6.8.43  GetMsgCode ......................................................................... 451
6.8.44  GetMsgFromAutomata ......................................................... 451
6.8.45  GetMsgFromGroup .............................................................. 451
6.8.46  GetMsgInfoCoding ............................................................... 452
6.8.47  GetMsgInfoLength() ............................................................. 452
6.8.48  GetMsgInfoLength(uint8*)  .................................................. 452
6.8.49  GetMsgObjectNumberFrom .................................................453
6.8.50  GetMsgObjectNumberTo ......................................................453
6.8.51  GetMsgToAutomata ..............................................................453
6.8.52  GetMsgToGroup ...................................................................454
6.8.53  GetNewMessage ...................................................................454
6.8.54  GetNewMsgInfoCoding ........................................................454
6.8.55  GetNewMsgInfoLength ........................................................455
6.8.56  GetNextParam ......................................................................455
6.8.57  GetNextParamByte ...............................................................455
6.8.58  GetNextParamDWord ..........................................................456
6.8.59  GetNextParamWord ............................................................. 457
6.8.60  GetObjectId ........................................................................... 457
6.8.61  GetParam .............................................................................. 458
6.8.62  GetParamByte ....................................................................... 458
6.8.63  GetParamDWord .................................................................. 459
6.8.64  GetParamWord .....................................................................460
6.8.65  GetProcedure ........................................................................460
6.8.66  GetRightMbx ........................................................................ 461
6.8.67  GetRightAutomata ................................................................ 461
6.8.68  GetRightGroup ..................................................................... 461
6.8.69  GetRightObjectId .................................................................. 462
6.8.70  GetState................................................................................. 462
6.8.71  IsBufferSmall ........................................................................ 462
6.8.72  Initialize ................................................................................463
6.8.73  InitEventProc ........................................................................463
6.8.74  InitTimerBlock ......................................................................464
6.8.75  InitUnexpectedEventProc .....................................................464
6.8.76  IsTimerRunning ....................................................................465
6.8.77  NoFreeObjectProcedure ........................................................465
6.8.78  NoFreeInstances ....................................................................466
6.8.79  ParseMessage ........................................................................466
6.8.80  PrepareNewMessage(uint8*) ................................................ 467
6.8.81  PrepareNewMessage(uint32, uint16, uint8) ......................... 467
6.8.82  Process ..................................................................................468
6.8.83  PurgeMailBox .......................................................................468
6.8.84  RemoveParam .......................................................................469
6.8.85  Reset ...................................................................................... 469
6.8.86  ResetTimer ............................................................................ 469



xiContents

6.8.87  RestartTimer .........................................................................470
6.8.88  RetBuffer ...............................................................................470
6.8.89  ReturnMsg ...........................................................................470
6.8.90  SetBitParamByteBasic ..........................................................471
6.8.91  SetBitParamDWordBasic .....................................................471
6.8.92  SetBitParamWordBasic ........................................................472
6.8.93  SetCallId() .............................................................................472
6.8.94  SetCallId(uint32)  .................................................................472
6.8.95  SetCallIdFromMsg ...............................................................473
6.8.96  SetDefaultFSMData .............................................................473
6.8.97  SetDefaultHeader .................................................................473
6.8.98  SetGroup ...............................................................................474
6.8.99  SetInitialState .......................................................................474
6.8.100  SetKernelObjects ..................................................................474
6.8.101  SetLeftMbx ...........................................................................475
6.8.102  SetLeftAutomata ...................................................................475
6.8.103  SetLeftObject ........................................................................475
6.8.104  SetLeftObjectId .....................................................................476
6.8.105  SetLogInterface .....................................................................476
6.8.106  SendMessage(uint8) .............................................................476
6.8.107  SendMessage(uint8, uint8*) .................................................477
6.8.108  SetMessageFromData ...........................................................477
6.8.109  SetMsgCallId(uint32) ..........................................................477
6.8.110  SetMsgCallId(unit32, unit8*) ..............................................478
6.8.111  SetMsgCode(uint16) ............................................................478
6.8.112  SetMsgCode(uint16, uint8*) ................................................478
6.8.113  SetMsgFromAutomata(uint8)..............................................479
6.8.114  SetMsgFromAutomata(uint8, uint8*) .................................479
6.8.115  SetMsgFromGroup(uint8) ...................................................479
6.8.116  SetMsgFromGroup(uint8, uint8*) .......................................480
6.8.117  SetMsgInfoCoding(uint8) ....................................................480
6.8.118  SetMsgInfoCoding(uint8, uint8*) ........................................481
6.8.119  SetMsgInfoLength(uint16) ...................................................481
6.8.120  SetMsgInfoLength(uint16, uint8*) ......................................481
6.8.121  SetMsgObjectNumberFrom(uint32) ....................................482
6.8.122  SetMsgObjectNumberFrom(uint32, uint8*) .......................482
6.8.123  SetMsgObjectNumberTo(uint32) .........................................482
6.8.124  SetMsgObjectNumberTo(uint32, uint8*) ............................483
6.8.125  SetMsgToAutomata(uint8) ..................................................483
6.8.126  SetMsgToAutomata(uint8, uint8*) ......................................483
6.8.127  SetMsgToGroup(uint8) ........................................................484
6.8.128  SetMsgToGroup(uint8, uint8*) ............................................484
6.8.129  SendMessageLeft ..................................................................484
6.8.130  SendMessageRight ...............................................................485
6.8.131  SetNewMessage ....................................................................485



xii Contents

6.8.132  SetObjectId ...........................................................................485
6.8.133  SetRightMbx .........................................................................486
6.8.134  SetRightAutomata ................................................................486
6.8.135  SetRightObject ......................................................................486
6.8.136  SetRightObjectId ................................................................... 487
6.8.137  SetState ................................................................................. 487
6.8.138  StartTimer ............................................................................. 487
6.8.139  StopTimer .............................................................................. 487
6.8.140  SysClearLogFlag ...................................................................488
6.8.141  SysStartAll ...........................................................................488
6.8.142  NetFSM ................................................................................488
6.8.143  convertFSMToNetMessage ................................................... 489
6.8.144  convertNetToFSMMessage ................................................... 489
6.8.145  establishConnection .............................................................. 490
6.8.146  getProtocolInfoCoding .......................................................... 490
6.8.147  sendToTCP ............................................................................ 490

6.9  A Simple Example with Three Automata Instances .................... 490
6.10  A Simple Example with Network-Aware Automata Instances ... 519

Index ..................................................................................................................... 537



xiii

Preface to the First Edition

I wrote this book as a textbook for postgraduate students, but it might also 
be used by people in the industry to update specific knowledge in their life-
long learning processes. The book partly covers the actual postgraduate 
course on computer communications and networks undertaken during the 
first semester of studies for the M.Sc. degree in computer engineering. Since 
nowadays we are witnessing the convergence of the Internet and the public 
telephone network, this book might also be useful to engineers with B.Sc. 
degrees in telecommunications.

The prerequisite for this book is knowledge of first order logic (predicate 
calculus), operating systems, and computer network fundamentals. The 
reader should also be familiar with C++ and Java programming languages.

My approach in writing this book was to provide all the details that the 
reader may need. I assumed that nothing is obvious. However, if you, the 
reader, find something obvious while reading the book, you are encouraged 
to skip ahead. If something is not clear later on, you may always return to 
what you skipped. Communication protocol engineering is a very interest-
ing combination of abstraction and practice that requires a lot of details. It 
starts from a vision that gradually materializes in real-world artifacts. This 
happens through a typical engineering process. This book covers all aspects 
of  communication protocol engineering, including requirements and analy-
sis, design, implementation, and test and verification.

Many people helped me in writing this book. My gratitude goes to all 
of them. I thank my family for their continuous support; my niece Silvia 
Likavec for her valuable text corrections; and B.J. Clark, Nora Konopka, and 
Helena Redshaw, of Taylor & Francis, for their professional support. Special 
thanks go to my colleagues from the University of Novi Sad; Prof. Vladimir 
Kovacevic for giving his blessing for this book; Ph.D. student Ivan Velikic 
for the excellent cooperation (in his M.Sc. thesis we actually developed the 
FSM Library, one of the anchors of this book); Ph.D. student Ilija Basicevic 
(for helping me with the preparation of the examples in Sections 3.10.5, 
4.5.2, and 5.5.2); Sonja Vukobrat (for helping me with the preparation of the 
example in Section 3.7); Laslo Benarik and Aleksander Stojicevic (for helping 
me with the preparation of Chapter 6); Milan Savic; Aleksander Stojicevic; 
and Cedomir Rebic (for helping me with the preparation of the examples in 
Sections 3.10.1 and 3.10.2); and Nenad Cetic (for helping me with the prepara-
tion of the example in Section 4.5.1). Thank you all!

Miroslav Popovic
Novi Sad
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Preface to the Second Edition

The first edition of this book was well accepted by the readers, right from the 
beginning, back in 2006 when it was printed. Barnes & Noble bestselling rat-
ing reports indicated this fact rather well, e.g., the book was the bestseller on 
Oct. 4th, 2006, in the section “Networking, Telecommunications Protocols, & 
Standards.” From that time to today, Communication Protocol Engineering has 
been a subject on a number of graduate level (M.Sc.) courses at universities 
worldwide—from the United States (The City College of New York, New 
York; University Heights Newark, New Jersey; etc.), over Europe (University 
of Novi Sad, Serbia; Lippe and Hoexter University of Applied Sciences, 
Germany), to far-east Australia (La Trobe University, Australia), to name 
just few of the more established points. Nowadays, Communication Protocol 
Engineering sounds like evergreen, similar to its much older predecessors 
Internet, C, and Linux, which are with us from the 1970s, and it seems that 
Communication Protocol Engineering is here to stay for many years to come, 
similar to its famous predecessors.

Twelve years after I wrote the first edition, I was glad to see that it was 
still aligned with the state of the art very well. Still, the book needed to be 
improved in two important areas, namely, compliance testing based on the 
standard Testing and Test Control Notation (known as TTCN-3), and model 
checking based on famous C.A.R. Hoare’s process algebra Communicating 
Sequential Processes (CSP) and its accompanying tool named Process 
Analysis Toolkit (PAT). Hence, I made this new edition.

Technically, I made appropriate changes in Chapters 3 and 5. In Chapter 3, 
I have rewritten Sections 3.9 and 3.10 (Examples 1 and 2), and I adapted the 
TTCN references throughout the book in order to introduce the current stan-
dard TTCN-3 instead of the previous standard TTCN-2 (this decision was 
driven by the fact that TTCN-3 is a superset of the TTCN-2).

In Chapter 5, I revised Section 5.3. The new title of Section 5.3 is “Formal 
Verification,” and it comprises the following two subsections: (i) 5.3.1. Formal 
Verification Based on Theorem Proving (this is the original Section 5.3), and 
(ii) 5.3.2 Formal Verification Based on Communicating Sequential Processes 
(this is the new section based on C.A.R. Hoare’s process algebra CSP and the 
accompanying modeling, simulation, and automatic verification tool PAT).

Many people assisted me during the writing of this second edition. My 
gratitude goes to all of them. I thank Nora Konopka and Kyra Lindholm, 
of Taylor & Francis, for their professional support. Thanks again to my 
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family, and my colleagues from the University of Novi Sad for their support 
throughout all these years.

I would also like to express my special gratitude to Dr. Sun Jun and the 
PAT Team for providing their PAT Examples in the public domain. I used 
some of their CSP# models to create the examples in Section 5.3.2.3.

Miroslav Popovic
Novi Sad



xvii

Author

Miroslav Popovic, Ph.D., earned all his degrees 
from the University of Novi Sad, Serbia. He defended 
his diploma thesis, “An Intelligent System Restart,” 
in 1984; his M.Sc. thesis, “An Efficient Virtual 
Machine System,” in 1988; and his Ph.D. thesis, 
“A Contribution to Standardization of ISO OSI 
Presentation Layer,” in 1990. He became a full-time 
professor at the University of Novi Sad in 2002. 
Currently, he is teaching courses on software tools 
and real-time systems programming, as well as on 

intercomputer communications and computer networks. He is a member of 
IEEE (both the Computer and the Communications Societies) and ACM. He 
has published approximately 120 papers, and he has supervised many real-
world projects for the industry, including telephone exchanges and call cen-
ters for Russian, German, Czech, and Serbian telecommunication networks. 
Taylor & Francis published his book, Communication Protocol Engineering, 
in 2006. He served as Serbian MC Member in EU COST 297 High Altitude 
Platforms of wireless communications, EU COST IC0703 Traffic Monitoring 
and Analysis, and EU COST Action IC1001 Transactional Memories 
(Euro-TM). His current research interests are engineering of computer-based 
systems, parallel programming, distributed systems, and security.



http://taylorandfrancis.com

http://taylorandfrancis.com


1

1
Introduction

Originally, the term protocol was related to the customs and regulations 
dealing with diplomatic formality, precedence, and etiquette. A protocol is 
actually the original draft, minutes, or record from which a document, espe-
cially a treaty, is prepared, e.g., an agreement between states. Today, in the 
context of computer networks, the term protocol is interpreted as a set of rules 
governing the format of messages that are exchanged between computers. 
Sometimes, especially if we want to be more specific, we use the term com-
munication protocol instead.

The title of this book, Communication Protocol Engineering, is used to 
emphasize the process of developing communication protocols. Like other 
engineering disciplines, communication protocol engineering typically 
comprises the following phases (Figure 1.1):

• Requirements and analysis
• Design
• Implementation
• Test and verification

The process described in this book is the union of the UML (Unified 
Modeling Language)–driven unified development process (Booch et al., 
1998) and, Cleanroom engineering (formal system design verification and 
statistical usage testing), with some elements of Agile programming (par-
ticularly unit testing based on JUnit). Of course, each organization should 
adapt and tune the process to its own needs and goals. For example, one 
organization may stick to the UML-driven unified development process, 
another may prefer Cleanroom engineering, yet another may use the combi-
nation of both, and so forth.

Because this book is written for the process in which all the existing state-
of-the-art methods and techniques in the area are applied, it is independent 
of any particular engineering process. Therefore, this is as far as we will go 
in discussions on processes in this book. This book is not about managing 
processes. Rather, this book is intended for engineers. It provides the knowl-
edge that an engineer needs to work in a modern organization involved in 
communication protocol engineering.



2 Communication Protocol Engineering

The chapters are named by typical process phases: requirements and anal-
ysis, design, implementation, and test and verification. These chapters are 
actually used to classify various methods and techniques, and their accom-
panying tools. As previously stated, the approach taken in this book was to 
select the best methods and techniques from various methodologies rather 
than to stick just to a single methodology. The methods and techniques 
introduced here originate from the following methodologies:

• UML methodology
• ITU-T system specification and description methodology
• Agile unit testing methodology
• Cleanroom engineering methodology

UML methodology is based on various kinds of graphs, also referred to as 
diagrams. This book covers all of them, namely:

• Use case diagrams (Section 2.1)
• Collaboration diagrams (Section 2.2)

Requirements
and

analysis

Design

Implementation

Test
and

verification

FIGURE 1.1
Typical communication protocol engineering phases.
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• Class diagrams (Section 3.1)
• Object diagrams (Section 3.2)
• Sequence diagrams (Section 3.3)
• Activity diagrams (Section 3.4)
• Statechart diagrams (Section 3.5)
• Deployment diagrams (Section 3.6)
• Component diagrams (Section 4.1)

ITU-T system specification and description methodology is based on three 
domain-specific languages, which this book also covers. These languages 
are

• Specification and description language (SDL) (Section 3.7)
• Message sequence charts (MSC) (Section 3.8)
• Testing and test control notation, ver. 3 (TTCN-3) (Section 3.9)

Agile unit testing methodology assumes writing the test cases before the 
code. Today, it is supported by the following two open-source packages (both 
covered in this book):

• JUnit, a package for automated unit testing of Java packages 
(Section 5.1)

• CppUnit, a library for automated unit testing of C++ modules 
(Section 5.5.1)

Cleanroom engineering methodology is based heavily on two main meth-
ods, both covered in this book. These methods are

• Formal system design verification. Today, more approaches exist to 
formal system design verification. This book covers formal verifica-
tion based on automated theorem proving (Section 5.3).

• Statistical usage testing (Section 5.4).

The text of the book is organized as follows. At the end of this chapter, 
in Section 1.1, we introduce the notion of the communication protocol and 
related definitions.

Chapter 2 is devoted to the requirements and analysis phase of communi-
cation protocol engineering. The first part of that chapter introduces UML use 
case and collaboration diagrams (Section 2.1 and Section 2.2, respectively). 
The former is used for capturing both functional and nonfunctional system 
requirements, whereas the latter is used for making system analysis models. 
The second part of that chapter presents a real-world example—requirements 
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and analysis of an SIP (Session Initiation Protocol, RFC 3261) Softphone. 
The example starts with the presentation of the domain-specific informa-
tion related to SIP, continues with the SIP Softphone requirements model 
(in the form of the corresponding use case diagram), and ends with the SIP 
Softphone analysis model (in the form of the corresponding collaboration 
diagram).

Chapter 3 covers the design phase of communication protocol engineering. 
In this chapter, we will see that communication protocols are actually mod-
eled as finite state machines (FSMs). The first part of the chapter introduces 
UML diagrams related to the design phase: class, object, sequence, activ-
ity, statechart, and deployment diagrams (Section 3.1, Section 3.2, Section 
3.3, Section 3.4, Section 3.5, and Section 3.6, respectively). The second part 
of Chapter 3 covers domain-specific languages, which originated at ITU-
T, namely SDL, MSC, and TTCN-3 (Section 3.7, Section 3.8, and Section 3.9, 
respectively). The third part consists of design examples. The first three 
examples are rather academic, while the fourth example shows the design 
of the sliding window concept. The fifth example is a real-world design 
 example—the design of the SIP INVITE client transaction, which is a part of 
the SIP protocol stack.

Chapter 4 is devoted to the implementation phase of communication pro-
tocol engineering. At the beginning of this chapter, we introduce the UML 
component diagrams (Section 4.1). The second part of Chapter 4 presents 
various implementation approaches. Section 4.2 presents three examples of 
approaches that can be used. The main goal of this study is to provoke dilem-
mas by studying three different concepts of implementation and to promote 
creative thinking about a spectrum of possible implementation paradigms 
before restricting ourselves to a single one. This short overview includes 
the implementations as nested switch-case statements, the implementation 
based on the interpretation of protocol messages using a protocol definition 
data structure, and the implementation based on a class hierarchy and state 
transition map. The second part of Chapter 4 ends with the introduction of 
the state design pattern (Section 4.3), with a catalogued FSM implementation 
approach.

The third part of Chapter 4 (Section 4.4) introduces one concrete, 
 industrial- strength implementation paradigm based on the FSM Library, 
a library of C++ classes used for modeling communication protocols as 
FSM. This paradigm has been successfully used on a series of real-world 
projects, such as SS7, DSS1, V5.2, H.323, SIP, and so on. This part of the 
book covers FSM Library features and internals as well as the rules for 
writing FSM Library–based implementations. The last part of Chapter 4 
contains two real-world examples of the FSM Library–based implementa-
tions. The first is the implementation of the POP3 communication pro-
tocol, the TCP/IP Internet protocol for receiving e-mail messages. The 
second is the SIP INVITE client transaction, a part of the SIP protocol 
stack.
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Chapter 5 deals with the testing and verification phase of communication 
protocol engineering. The first part starts with the introduction of unit test-
ing based on JUnit, the open-source testing framework for unit testing Java 
programs, originally developed by Erich Gamma and Kent Beck (Section 5.1). 
Next, we introduce conformance testing (Section 5.2), actually the first stage 
of communication protocol acceptance testing. Conformance testing is typi-
cally based on the TTCN test suite specification. We then introduce formal 
verification of both system design and implementation (Section 5.3) based 
on: (i) automated theorem proving (Section 5.3.1) and (ii) the C.A.R Hoare’s 
process algebra CSP (Section 5.3.2). In this book, we use the theorem prover 
Theo (in Section 5.3.1) and the modeling, simulation, and automatic verifica-
tion tool PAT (in Section 5.3.2) as the accompanying tools for this purpose. 

The first part of Chapter 5 ends with the introduction of statistical usage 
testing (Section 5.4) based on product operational profiles. The second part 
of Chapter 5 consists of two real-world examples. The first example shows 
the unit testing of the SIP INVITE client transaction based on the usage of 
the CppUint, the library for unit testing C++ modules. The second example 
demonstrates the integration testing of the SIP INVITE client transaction.

Chapter 6 is written as a programmer’s reference manual for the FSM 
Library. The first part starts with the introduction of two main classes, 
FSMSystem and FiniteStateMachine (Section 6.2). Next, we introduce three 
main groups of basic functions supported by the FSM Library: time, memory, 
and message management functions (Section 6.3, Section 6.4, and Section 
6.5, respectively). We then introduce two classes that support the commu-
nication of FSMs over the TCP/IP Internet (Section 6.6), namely the classes 
FSMSystemWithTCP and NetFSM. The first part of Chapter 6 ends with the 
introduction of global constants, types, and functions (Section 6.7).

The second part of Chapter 6 contains detailed descriptions of the indi-
vidual FSM Library Application Programming Interface (API) functions 
(Section 6.8). The third part of Chapter 6 consists of two examples. The first is 
a simple example with three automata (FSM) instances (Section 6.9), and the 
second is a simple example with TCP/IP network-aware automata instances 
(Section 6.10).

1.1  The Notion of the Communication Protocol

What is a communication protocol? A wide range of definitions are avail-
able in the literature today, for example: “An established set of conventions 
by which two computers or communication devices validate the format and 
content of the messages exchanged;” “A set of defined interfaces that per-
mits the computers to communicate with each other;” “A method by which 
two computers coordinate their communication;” “Common agreed rules 
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followed in order to interconnect and communicate between computers;” 
“The rules governing the exchange of information between devices on a data 
link;” “The set of rules governing how information is exchanged on a net-
work;” and so on.

In this book, we begin with a wider informal definition. A protocol is a 
set of conventions and rules governing their use that regulates the commu-
nication of an entity under observation with its environment. Such a defini-
tion enables the study of any communication, e.g., an agenda for a technical 
meeting of representatives of two companies. The subject of this book is one 
special class of protocols, referred to as communication protocols, that regu-
late the communication of geographically distributed program objects. The 
communicating program objects are deployed on different processors in the 
network. We will sometimes use the term protocol as an abbreviated form of 
the phrase communication protocol to save space.

A process, as generally defined in the theory of operating systems, is a 
program in execution or prepared for execution. A process may be special-
ized for data processing, communication, or some other special task (e.g., I/O 
control or time management). Traditionally, a data processing algorithm is 
specified by the flowchart. What the flowchart means for the data processing 
process, the protocol means for the communication process.

The flowchart specifies the program control flow by the use of graphic 
symbols related to the series of sequential calculations, selection, iteration, 
procedure/function call, and input/output operations needed to read input 
data or write output data. On the other hand, the formal specification of a 
communication protocol is based on messages and consists of the following 
three parts:

• The message format specification
• The message-processing procedures specification, which is essen-

tially a formal description of process reactions to input stimuli (i.e., 
messages)

• The error processing specification, which is the formal description 
of process reactions to exceptional events (i.e., corrupted data or 
timeouts)

The message format completely defines the structure of the message, i.e., it 
defines the set of fields that constitute the message by defining the width of 
individual fields (most commonly in bits, bytes, or words), the applied cod-
ing scheme (e.g., binary, ASCII, Unicode, ASN.1), and optionally legal values 
(e.g., constants in binary or some symbolic form or value intervals).

Therefore, a message is a series of bits logically divided into various fields. 
Typically, a message consists of a message header, which most commonly 
comprises more subfields, and useful data referred to as a payload. The 
payload contains data interpreted by the communicating program objects. 
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The message header contains data added for supervision and control pur-
poses in accordance with the established conventions.

The message-processing procedure (i.e., the process reaction) begins with 
the message reception and is described as a series of primitive operations 
that define the rules of the communication, which are the essential parts of a 
protocol. Typical primitive operations include timer-start operations, timer-
stop operations, message-send operations, message-receive operations, and 
message-data processing operations (e.g., cyclic redundancy checking of 
message data, calculating the expected order number of the next message to 
be received).

In terms of software implementation, message processing is performed by 
a message processing routine. Depending on the selected working environ-
ment, this routine can be a subroutine that consists of a series of machine 
instructions in a symbolic form (assembly language) or a function compris-
ing a series of statements in a higher-level programming language, such as 
C/C++ or Java.

The error-processing specification defines a set of error reactions. An error 
reaction is a special protocol reaction to exceptional events or, in other words, 
a reaction to unexpected situations, i.e., conditions. Typical examples of unex-
pected events are the reception of a message that contains corrupted data, the 
reception of a message that is out of the original order (e.g., after receiving the 
messages numbered 1, 2, and 3, we receive the message numbered 7 instead of 
the message numbered 4), timer expiration (e.g., the receiver has not acknowl-
edged the reception of a message to its sender within a certain interval of 
time, determined by the value of the corresponding timer), and so on.

Note that a protocol can be described informally or formally. The informal 
description of a protocol is referred to as its informal specification and has 
the following characteristics:

• It frequently has the form of a combination of textual and graphical 
descriptions of the most common scenarios of communication.

• It may state nothing about the order of the activities to be conducted 
in the course of the communication.

• It is always incomplete. Most frequently, missing parts are specifica-
tions of timers, which determine time limits over individual phases 
of communication.

Let us forget communication protocols for a moment and use the old 
example of informal specification of a group of tasks to get a sense of the 
issues stated above. While leaving the house, a mother says to her daughter:

“Do not forget to finish your homework.”
“Have your breakfast when you get hungry.”
“Before you go to school, throw the garbage out.”
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Obviously, this specification does not say anything about the order of the 
individual tasks. For example, the daughter may complete the tasks in any 
order without interrupting the individual tasks (e.g., task order may be 1, 2, 
3, or 1, 3, 2), or she may complete them in any order and switch between them 
(e.g., she starts with task 1; then, she switches to task 2 before completing task 
1; she completes tasks 2 and 3; and, at the end she finishes task 1). An essen-
tial question here is how to organize the task executions within the allocated 
time. Clearly, a need exists to limit or control the task execution time. What 
happens if the daughter gets preoccupied with her homework and forgets to 
have breakfast before it is time to go to school?

The example above might appear to be an exaggeration of the problems 
we face in reality, but its purpose is to show that informal systems specifica-
tion alone is insufficient, and that we need a formal systems specification 
to make a precise and correct system implementation. Formal specification 
in the area of communication protocols is based on modeling a protocol as 
a finite state machine (FSM). A single FSM is often referred to by the term 
automata, and we will use these two terms interchangeably in this book.

The formal specification of an FSM defines all its states and state transi-
tions, including transitions initiated by expiration of timers, in a unique and 
detailed way. Today, we may make formal protocol specifications in either 
UML or ITU-T domain-specific languages. Once we have a formal protocol 
specification, we can implement it in Java or C++. Finally, we must test and 
verify it. This procedure is basically what this book is all about.
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2
Requirements and Analysis

At the beginning of any project, engineers face the fundamental question, 
“What must be done and how do we verify (deliver) the solution (system, 
device, products, service, hardware or software)?” Answering this question 
leads to what are called requirements. To simplify the matter, the process 
of answering this question—i.e., the corresponding engineering phase—is 
also commonly called requirements. Although both the working phase and 
the resulting documents have the same name, the meaning is easily deduced 
from the context.

The previous question actually consists of the following two questions:

 1. What must be done?
 2. How can the solution be verified?

Answering the former question leads to a set of functional requirements, 
most frequently adorned by nonfunctional requirements. Functional 
requirements describe the desired system behavior, while nonfunctional 
requirements can be imagined as the additional attributes to the behavior 
related to time restrictions, performance, and so on. To answer the lat-
ter question, we must quantify the behavior of the system. Normally, we 
would say, “For this input, the system should produce this output.” Such 
thinking implies the existence of a test setup that enables automated (most 
preferably automatic) testing, referred to as a test bed. A test bed provides 
a test harness by generating the input to the system and capturing its 
output.

The ordered pair of the given input and the expected output informally 
stated in the text above is called a test case. To verify complex systems, 
we need many test cases. A set of test cases packed in a suitable form is 
referred to as a test suite. Ideally, we would like the test suite to completely 
cover the systems behavior (i.e., the functional requirements), which are 
adorned with their nonfunctional requirements. Typically, one or more test 
cases will be derived from each functional requirement. Clearly for any 
nontrivial system, the number of test cases needed to verify the system 
may be huge.



10 Communication Protocol Engineering

However, while thinking about the desired behavior of the system and its 
verification, we inevitably think about the question, “How can we make it?” 
Actually, we are trying to make a concept of the system or, more precisely, 
its architecture. This engineering phase is called an analysis. Obviously, it 
is tightly coupled with the requirements. These two phases have a highly 
interactive relation.

Typically, work on the definition of the system architecture yields the 
refinement of system functional requirements, and vice versa. This is espe-
cially true for communication protocol engineering. Therefore, we think of 
these two phases, the requirements and the analysis, as one indivisible front-
end phase of communication protocol engineering. This is the reason they 
are covered together in this chapter.

As previously mentioned, the area of communication protocol engineering 
is very well founded; many standards, recommendations, and well-known 
experiences exist—hence, this chapter is rather short compared to the others. 
Unlike other areas of engineering, a vast majority of engineers here will be 
faced with the task of implementing some already defined standards, such as 
IETF RFC or ITU-T/ETSI recommendations, and so on.  Very few engineers 
will be in a position to create a completely new protocol, and even then they 
will have many existing protocols for reference or starting points.

Many existing standards actually represent very detailed designs accom-
panied by the corresponding test suites, but others are rather informal, bring-
ing nothing more than the message syntax and encoding together with some 
textual explanations of the message handling procedures. However, most 
of the standards can be viewed at least as rather good starting functional 
requirements that must be further formalized and analyzed. This chapter 
tries to help the reader exactly in this direction. It tries to answer the ques-
tion, “How can we deal with the requirements in a systematic way?” Or, in 
other words, “How do we capture the requirements and how do we proceed 
with forward engineering from there?”

The overall consensus, in both academia and industry today, is that the 
UML paradigm can help in this respect (Booch et al. 1998). The behavior 
of the system is described with a set of use cases. Each use case captures 
one functional requirement adorned with its corresponding nonfunctional 
requirements. The requirements engineer models the system are by speci-
fying the individual actors and the corresponding use cases of the system. 
The result is referred to as a requirements model of the system. The means 
for making such models are use case diagrams, which will be introduced in 
Section 2.1.

The next step in the UML paradigm is to transform the requirements model 
into the analysis model. Typically, a use case is viewed as a collaboration of 
classifiers. In the analysis model, three different stereotypes of classes are 
used: <<boundary class>>, <<control class>>, and <<entity class>>. The means 
of specifying the collaborations in UML are collaboration diagrams, which 
will be introduced in a following section.
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Sometimes the analysts describe the static structure of the system—in 
addition to its behavior—with class diagrams. This practice can be helpful 
in really complex systems. In this chapter, we will present the collaboration 
diagrams sufficient for the examples at hand, therefore the introduction to 
class diagrams is postponed until the next chapter. Chapter 3 deals with the 
communication protocol design phase in which class diagrams are essential 
to show the static relations among classes.

Further on, in accordance with the UML paradigm, the requirements 
model should be transformed into the test model to facilitate the system 
verification (the test model is actually the test suite needed for the system 
verification). Essentially, the use cases should be translated into the corre-
sponding test cases described by test scripts of some kind. UML is not spe-
cific in that respect. Of course, a few scripting languages are popular today, 
such as TCL/TK, Perl, and Payton, but being general purpose languages, 
these might be inappropriate for some of the projects.

To close this gap, we will introduce a domain-specific language known as 
testing and test control notation, ver. 3 (TTCN-3). The TTCN-3 language 
is used for specifying the test suites for communication protocols once the 
software architecture is rather well known. Therefore, we will postpone 
the introduction to the TTCN-3 language until Chapter 3, which deals with 
the design phase of communication protocol engineering.

A general problem when transforming use cases to test cases is that the 
transformation is typically done manually, i.e., it is semiautomatic. Such an 
approach is both time consuming and prone to error. However, the main 
conceptual problem is the test coverage of the system behavior. In practice, 
the number of possible scenarios and all possible combinations of message 
parameters can be impossible to cover manually. Therefore, testing at least 
the most frequently used system scenarios and message parameter combina-
tions should somehow be possible.

Clearly, more detailed UML models made during the system design phase 
(e.g., statecharts, to be introduced in the next chapter) can be used later for the 
automatic generation of test cases. However, the problem with this approach 
is that if an error exists in the UML model, it will be propagated into the 
test suite and the test suite will not be able to detect the error. A well-known 
principle from mathematical logic is that negation of negation leads to affir-
mation, so the bug will remain undiscovered. No matter how large test suite 
we generate, it will not be able to detect the bug.

The former problem can be solved by the application of statistical usage 
testing, also referred to as behavior testing. This paradigm is based on the 
operational profile model of the system, which describes the statistics of the 
system usage. It enables the practitioners to thoroughly test the system and 
even estimate the system or software reliability. This practice is recognized 
as a de facto standard by the industry (Broekman and Notenboom, 2003), and 
it will be covered in detail in Chapter 5 (test and verification phase of com-
munication protocol engineering).
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The latter problem can be solved by using one model as a source for the 
software implementation generated with forward engineering and a com-
pletely different model for the system test suite generation. What is also 
highly desirable is that these two models are made by two separate indi-
viduals or teams. For example, the well-known Cleanroom engineering par-
adigm is conducted by three completely separate teams. The design team 
makes the design and does its formal verification, the implementation team 
just does the coding, and the test team makes the operational profile of the 
system and conducts the statistical usage testing. Cleanroom engineering 
will be described together with statistical usage testing in Chapter 5.

Before proceeding further to the introduction of the mainstream approach 
to requirements and analysis, which is based on UML, it is worth mention-
ing that, until recently, many opponents to this paradigm existed. Some 
ongoing doubts still exist as to whether this is the correct choice. For exam-
ple, in his article, “Use-Cases Are Not Requirements,” Meyer argues that 
a better approach to requirements and analysis is transforming the func-
tional requirements into the behavior model that takes the form of a finite 
state machine (FSM) (Meyer and Apfelbaum 1999). He sees use cases as just 
walks across the FSM and claims it is possible to generate them automati-
cally rather than writing them manually.

According to the methodology proposed by Meyer, after creating the 
behavior model, two parallel streams of activities are started. The first 
stream covers the analysis, the design, and the implementation, and yields 
the implementation. The second stream covers the operational profile and 
the performance analysis, as well as the automatic test suite generation. 
These two streams merge at the automated testing phase.

This approach is very similar to the one used in this book. A slight differ-
ence is that the latter promotes separation of concerns between design and 
implementation and promotes test teams, including the models they make, 
very much like the Cleanroom engineering model does. Also, it gives more 
credit to the UML use cases. If we go back to the original ideas of the UML 
authors (Booch et al., 1998) and try to think of a single use case as a family 
of closely related collaborations among the same set of objects, clearly a use 
case really captures a part of the traditional list of functional requirements. 
Use cases help us group simple and closely related functional requirements, 
as will be illustrated by the examples in this chapter.

As already mentioned, use cases are the starting point of the software devel-
opment in the unified software development process (Booch et al., 1998). The 
requirements model, essentially a set of use cases, is used to develop all the 
models that correspond to the engineering phases of the process, namely, 
the analysis model (result of the analysis phase), the design and deployment 
models (results of the design phase), the implementation model (result of 
the implementation phase), and the test model (result of the test preparation 
phase). The focus of this chapter is on requirements and analysis modeling.
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The rest of the chapter is organized as follows: the use case and collabora-
tion diagrams are introduced in the next two sections. The last section of this 
chapter illustrates the requirements and analysis phases of communication 
protocol engineering by presenting the case of the session initiation protocol 
(SIP), RFC 3261 (Rosenberg et al., 2002). That last section is divided into three 
subsections: SIP domain specifics, the SIP requirements model, and the SIP 
analysis model.

2.1  Use Case Diagrams

Use case diagrams are special kinds of graphs whose vertices are connected 
with arcs. Two types of vertices are found in use case diagrams, namely, 
actors and use cases (Figure 2.1). The actors represent humans, machines, or 
software components that are the users of the software under development. 
They are rendered as stick figures. Use cases represent possible uses of the 
software under development and are rendered as ellipses. As already men-
tioned, we think of use cases as collaborations between the corresponding 
objects that constitute the part of the software under development. Clearly, 
they have different roles in the requirements and the analysis phases.

In the requirements phase, we concentrate on the functional requirements 
and use the use cases to capture them (“What must be done?”). At that time, 
how these requirements will be fulfilled does not matter. The only important 
concern is to build a vision of the future system together with the customer. 
This vision is expressed as a desirable behavior of the system and modeled 
by drawing the use case diagram and writing down the descriptions of the 
individual use cases as they are added to the diagram.

In other words, we concentrate on the client’s perspective of the system. 
The requirements engineer tries to define the services that the system under 
development should provide. They also try to define an interface to these 
services. Later, the main problems that the requirements engineer must face 
are

• Structuring the set of use cases by establishing the relationships 
among them

• Prioritizing the set of use cases by assigning different priorities to the 
individual use cases (especially important for the evolving systems)

Use cases have another role in the analysis phase. The job of the analyst is 
to realize the use cases by the corresponding collaborations between objects. 
The analyst reads the descriptions of the use cases and uses domain-specific 
knowledge to identify the individual objects (horizontal structuring) and to 
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establish a hierarchy among them (vertical structuring). This process will be 
described in the next section.

Both actors and use cases are classifiers and, normally, they are connected 
by associations. The association between the actor and the use case shows 
the communication between the user and the part of the system modeled by 
the use case. Using associations enables us to indicate explicitly the points of 
connection between the users and the system.

Because both actors and use cases are classifiers, we can define general 
actors and general use cases and then specialize them using the generaliza-
tion relationship. For example, we may specify the general actor Client and 
its specializations SIP Client and H.323 Client (Figure 2.2). Or, we can specify 
the general use case Make a connection and its specializations Make a local con-
nection and Make a long distance connection (Figure 2.3).

Actor

Use case

-Communicates

1 1

«extends»«uses»

System

FIGURE 2.1
Basic set of graphical symbols available for rendering use case diagrams.

SIP client Client H.323 client

FIGURE 2.2
Example of the generalization and specialization of actors.
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Furthermore, while capturing the individual use cases, it may become 
obvious that a certain use case extends another use case or that a cer-
tain use case includes some other use cases. In such circumstances, the 
requirements engineer may structure the use cases using <<extends>> 
and <<includes>> stereotyped relationships. Especially important things 
can be indicated by using the sticky notes. Invariants, preconditions, 
and postconditions can be specified by the corresponding constraints. In 
more complex use case diagrams, we may need to indicate the packages 
and the interfaces.

Use case diagrams are normally rendered using the appropriate graphi-
cal tools, e.g., Microsoft® Visio. This tool provides the set of graphical sym-
bols that are placed on the working sheet by the drag-and-drop paradigm. 
The basic set of graphical symbols is shown in Figure 2.1. The requirements 
engineer must specify the properties for each instance of a symbol in the 
drawing. 

Five categories of actor properties are found: general information, table of 
attributes, table of operations, table of constraints, and tagged values. The 
general information includes name, full path, stereotype, visibility (private, 
protected, or public), and the indicators for Root, Leaf, and Abstract types of 
actors. The table of attributes includes columns for the attribute name, type, 
visibility, multiplicity (1, *, 0..1, 0..*, 1..1, or 1..*), and its initial value. The table 
of operations comprises columns for the operation name, return type, vis-
ibility, scope (classifier or instance), and the indicator for the polymorphic 
operations. The table of constraints consists of four columns: the constraint 
name, stereotype (precondition, postcondition, or invariant), language type 
(OCL, text, pseudocode, or code), and body of the constraint. The tagged val-
ues include notes for the documentation, location, persistence, responsibility, 
and semantics. 

A use case—being a classifier like an actor—has the same five categories 
of properties as the actor, as well as the additional sixth category. The sixth 
category of the use case properties contains the notes about the extension 
points that are used to describe the <<extends>> stereotyped relations.

Make a connection

Make a local
connection

Make a long
distance connection

FIGURE 2.3
Example of structuring use cases.
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An association between an actor and a use case has three categories of 
properties: general information about the association, a table of constraints, 
and tagged values. The general information includes the association name, 
full path, stereotype, direction (none, forward, and backward), association 
end count (default 2), and the attributes for each end of the association. The 
attributes of the association end are its name, aggregation (none, compos-
ite, or shared), visibility, multiplicity, and navigability indicator (navigable 
or not). The graphical symbol System is used to show the system boundaries, 
i.e., to group the use cases that constitute the system under development. It 
has no properties. 

All the relations between the use cases have three categories of prop-
erties: general information, table of constraints, and tagged values. The 
general information includes the relation name, full path, stereotype 
(extends, inherits, private, protected, subclass, subtype, or uses), and 
discriminator. The table of constraints is the same as the table of con-
straints for the actors and use cases. The tagged values are notes for the 
documentation.

The additional graphical symbols available for drawing use case dia-
grams are shown in Figure 2.4. These symbols include notes, general 
constraints, two-element constraints, OR constraints, packages, and 
interfaces. The notes have two categories of properties: general proper-
ties and tagged values. The general properties include the note name and 
its stereotype (none or requirement). The tagged values are notes for the 
documentation.

{Constraint}Note

{Constraint} {OR}

Package
Interface

FIGURE 2.4
Additional graphical symbols available for rendering use case diagrams.
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All the constraints, including general, two-element, and OR constraints, 
have the same categories of properties: general properties and tagged val-
ues. The general properties include the constraint name, full path, stereo-
type (precondition, postcondition, or invariant), language type (OCL, code, 
pseudocode, or text), and constraint body.

Four categories of package properties exist, including general proper-
ties, table of events, table of constraints, and tagged values. The general 
properties are the package name, full path, stereotype (facade, framework, 
stub, or system), visibility (private, protected, or public), and the indicators 
for Root, Leaf, and Abstract types of packages. The table of events contains 
an entry for each event. The attributes of individual events are the event 
name and event type (call event, signal event, change event, or time event). 
The table of constraints has the same format as the table of constraints for 
the actors, and the use cases and tagged values are just the notes for the 
documentation.

The interface has four categories of properties, actually a subset of the 
actor properties. These are general properties, table of operations, table of 
constraints, and tagged values. All of them are the same as the correspond-
ing actor properties.

The requirements engineer renders the use case diagram along as they 
talk to the customer about the desired behavior of the system to be devel-
oped. The use case diagram is intended as a medium to communicate the 
requirements between the customer and the system provider. Drawing use 
case diagrams is simple: the right graphical symbol is selected, dragged-and-
dropped to the working sheet, the corresponding properties are filled in, and 
they are connected to the other symbols in the sheet.

As an illustration of a use case diagram, consider a simple program for 
sending and receiving electronic mail messages over the Internet. The use 
case diagram for such a program might look like the one shown in Figure 2.5. 
A single actor is found in this diagram, who is the user of the program 
(named User). On the highest level of abstraction, this program has two main 
use cases, Send e-mail and Receive e-mail.

Both of these highest-level use cases make use of the use cases Use DNS 
(Domain Name System) and Use TCP (Transmission Control Protocol). 
The DNS service provides the mapping of the e-mail server domain 
name into its IP (Internet Protocol) address. The TCP provides reliable 
data delivery service. Other than that, the use case Send e-mail uses the 
use case Use SMTP (Simple Mail Transfer Protocol) and the use case 
Receive e-mail uses the use case Use POP3 (Post Office Protocol, Version 3). 
Normally, an e-mail client uses SMTP to send an e-mail message to the 
e-mail server. Similarly, a user uses POP3 to read the e-mail messages 
from their mailbox.

The use case Use DNS uses the use case Use IP to send a DNS request to 
the DNS server and to receive DNS responses from it. The use case Use TCP 
uses the use case Use IP to send and receive segments of data and control 
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information over the Internet. The use case Use IP uses the use case Use ARP 
(Address Resolution Protocol) to map the IP address of the destination host 
to its physical (e.g., Ethernet) address. Alternatively, the use case Use IP uses 
the use case Use NIC (Network Interface Controller) to send and receive IP 
datagrams over the Internet. Finally, the use case Use ARP uses the use case 
Use NIC to send an ARP request to the ARP server and to receive an ARP 
response from it.

User
Send e-mail

*

*

Use DNSUse SMTP

Use TCP

Use IP

Use ARP

Use NIC

«uses»«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Receive e-mail

*

*

Use POP3

«uses» «uses»

«uses»

«uses»

FIGURE 2.5
Use case diagram of the simple program for sending and receiving e-mails.
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This hierarchy of use cases actually follows the hierarchy of protocols 
in the TCP/IP protocol stack. As already mentioned, the concept of lay-
ered software architecture, which is traditionally explained by the ISO 
OSI, was actually invented to enable the separation of functions and the 
corresponding functional requests, which are referred to as use cases in 
UML.

After creating the skeleton of the use case model, the requirements engi-
neer must fill in the descriptions of the individual use cases. The descrip-
tions in this example are simplified for the sake of clarity. The description of 
the use case Send e-mail in plain text is the following:

Precondition:

The user has issued the send mail command.

Main flow of events:

Extract the recipient’s e-mail address from the e-mail message header (defined 
by the RFC 822).
Extract the e-mail server domain name from the recipient’s e-mail address 
(string after the character "@").
Use the use case Use DNS to map the server domain name into its IP address.
Use the use case Use TCP to open the TCP connection.
Use the use case Use SMTP to send the e-mail message to the e-mail server.
Use the use case Use TCP to close the TCP connection.
Prompt the user for the next command.

Exceptional flow of events:

The user may cancel the use case at any time by issuing the cancel command.

Exceptional flow of events:

If the use case Use SMTP indicates the problem in the mail delivery, this use 
case should report it to the actor User.

The use case Receive e-mail is identical to the use case Send e-mail with 
the difference being that the former uses the use case Use POP3 instead 
of the use case Use SMTP. The following description of the use case Use 
DNS is rather simple (actually, this is the description of the behavior of 
the DNS client):

Main flow of events:

Send the recursive DNS request by using Use IP.
Receive the DNS response by using Use IP.

The use case Use TCP is the active (initiator’s) side of the TCP. It is defined 
as follows:
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Main flow of events:

The procedure to open the TCP connection:
  Send SYN data segment.
  Receive SYN + ACK data segment.
  Send ACK data segment.
  Indicate that the connection is established.
The data transmission procedure:
  Send and receive the data segments using the sliding window.
The procedure to close the TCP connection:
  Send FIN data segment.
  Receive ACK data segment.
  Receive FIN + ACK data segment.
  Send ACK data segment.
  Indicate that the connection is closed both ways.

Exceptional flow of events:

The use case Send e-mail may close the TCP connection at any time.

The use case Use SMTP is actually the client side of the SMTP (defined by 
IETF RFC 821 and RFC 788) and can be described as follows (for simplicity, 
only one exceptional flow of events is given):

Main flow of events:

Receive the message 220 READY FOR MAIL.
Send the message HELLO.
Receive the message 250 OK.
Send the message MAIL FROM: <recipient’s e-mail address>.
Receive the message 250 OK.
Send the message RCPT TO: <sender’s e-mail address>.
Receive the message 250 OK.
Send the message DATA.
Receive the message 354 START MAIL INPUT.
Send the body of the e-mail message terminated with <CR><LF>.<CR><LF>.
Receive the message 250 OK.
Send the message QUIT.
Receive the message 221.

Exceptional flow of events:

If a use case receives the message 550 NO SUCH USER HERE, as a reply to its RCPT 
TO: message, it indicates the problem to the use case Send e-mail.

The use case Use POP3 is the client side of the POP3 protocol, similar to the 
use case Use SMTP. The use case Use IP is actually the IP protocol, which is 
described as follows:

Main flow of events:

The procedure that is used to receive the datagrams:
  Receive a datagram by using the Use NIC.
  Send the received datagram to the use case Use TCP.
The procedure that is used to send the datagrams:
  Decrement the contents of the time-to-live field of the IP datagram.
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  Extract the destination IP address from the datagram header.
  Extract the destination network id from the destination IP address.
  If the destination network is local the network:
    Use the use case Use ARP to determine the physical address.
    Deliver the datagram by using the Use NIC.
  Else, route the datagram.

Exceptional flow of events:

If the datagram has been corrupted during the transmission, drop it.

Exceptional flow of events:

If the time-to-live field of the datagram counts down to 0, drop it.

The use case Use ARP is an ARP client and the use case Use NIC is a net-
work card driver. The former is defined as follows:

Main flow of events:

Send an ARP request by using the use case Use NIC.
Receive the ARP response by using the use case Use NIC.

The example above, especially the use cases Use TCP and Use SMTP, 
should help the reader understand that a use case is a set of event sequences, 
not just a single sequence. To keep use cases simple, separating the main and 
the alternative flows of events is always desirable. Usually, we start by just 
writing the main flow of events for each use case and refine them later by 
adding the exceptional flow of events.

After this example, it should be clear that a use case captures the intended 
behavior of the part of the system (subsystem, class, or interface). Of course, 
after specifying the intended behavior, we must create a set of classes that 
work together to implement that behavior. The means of modeling both 
static and dynamic structures of the society of objects in UML are the col-
laboration diagrams.

2.2  Collaboration Diagrams

As already mentioned, we think of use cases as collaborations between 
objects. Actually, in UML we realize a use case as a collaboration of a set 
of objects. This concept can be explicitly shown in UML by connecting 
the use case with the corresponding collaboration using the realization 
relationship.

A collaboration diagram is a special kind of graph consisting of a set 
of vertices interconnected by a set of arcs. Basically, the vertices are the 
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objects and the arcs are the links that carry the messages between the 
interconnected objects. Additional vertices and arcs are the notes and 
the constraints (general constraints, two-element constraints, and OR 
constraints).

Collaboration diagrams are normally rendered using the appropriate 
graphical tools, e.g., Microsoft® Visio. This tool provides the set of graphical 
symbols that are placed on the working sheet by the drag-and-drop para-
digm. The basic set of graphical symbols is shown in Figure 2.6. The engi-
neer that renders the diagram must specify the properties for each instance 
of a symbol in the drawing.

Three categories of object properties exist: general properties, table of con-
straints, and tagged values. The general properties include the object name, 
full path, classifier name, and multiplicity. The table of constraints and the 
tagged values contain the same properties as the corresponding categories 
for the use cases (see the previous section of this chapter).

While adding objects to the collaboration diagram, we are forced to intro-
duce the corresponding classifiers and to specify their properties (at least the 
classifiers’ names, for a start). The classifiers have eight categories of proper-
ties, including general properties, table of attributes, table of operations, table 
of receptions, table of template parameters, list of the components, table of 
constraints, and tagged values. The general properties, the table of attributes, 
the table of operations, the table of constraints and tagged values contain the 
same properties as the corresponding categories for the use cases (see the 
previous section of this chapter).

The table of receptions has five columns, which contain the reception name, 
signal name, visibility (private, protected, or public), polymorphic indicator 

Object : Class

1: Message1
2: Message2

Note {Constraint}

{Constraint} {OR}

FIGURE 2.6
Set of graphical symbols available for rendering collaboration diagrams.
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(false or true), and scope (classifier or instance). The table of template param-
eters includes the columns for the parameter name and its type. The list of 
components is just a list of components that implement this class.

The links in collaboration diagrams have four categories of properties, 
including general properties, table of messages, table of constraints, and 
tagged values. The general properties are the link name, its full path, and the 
table of link ends roles, which has two columns, the end name and its stereo-
type (none, association, global, local, parameter, self). The table of link mes-
sages has four columns, including the message name, its direction (forward 
or backward), flow kind (procedure call, flat, or asynchronous), and sequence 
expression. The table of constraints contains the same properties as the cor-
responding category of object (and classifier) properties. The tagged values 
are just the notes for the documentation. The notes and the constraints have 
the same properties as in the use case diagrams (see the previous section of 
this chapter).

Most frequently, we model sequential flow of control with collaboration 
diagrams. In this case, a message sequence expression takes the simple form 
of a message sequence number. However, collaboration diagrams allow 
modeling of more complex flows, such as iteration and branching. Iteration 
is modeled by prefixing the message sequence number with the iteration 
expression 

*[<control variable> := <start value>..<end value>]
e.g., *[j := 1..m].

Branching is modeled by prefixing the message sequence number with the 
condition clause [<condition>], e.g., [i > 10]. Alternate paths of the branch have 
the same message sequence number prefixed by the unique non-overlapping 
condition, where the set of conditions must cover all the possibilities.

Next, we illustrate the use of collaboration diagrams in the example of a 
simple program for sending and receiving electronic mail messages over 
the Internet, which was introduced and modeled in the previous section 
of this chapter. The use case diagram for this program is shown in Figure 
2.5. We start by making the real collaboration between objects that is a 
realization of the use case model, and continue with the study of virtual 
collaborations, which correspond to the peer-to-peer protocols present in 
this example. 

To start, imagine that we are provided with the classifier FSM for modeling 
finite state machines. Clearly a single object of this class could be a realiza-
tion of a single use case, as shown in Figure 2.5. The assumption that each 
use case is materialized by a single FSM object leads to a real collaboration 
between objects, shown in Figure 2.7.

In this class diagram, the object mailc (abbreviation for a mail client) is 
the <<boundary class>> object. All other objects are the <<control class>> 
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objects. The e-mail message itself would be the <<entity object>>, but it is 
not shown in Figure 2.7. Obviously, the realization of the individual use 
cases is as follows:

• The object sender is a realization of the use case Send e-mail.
• The object receiver is a realization of the use case Receive e-mail.
• The object dnsc (abbreviation for a DNS Client) is a realization of the 

use case Use DNS.
• The object tcpc (abbreviation for a TCP Client, i.e., the side that initi-

ates the establishment of the TCP connection) is a realization of the 
use case Use TCP.

mailc : FSM

sender : FSM receiver : FSM

smtpc : FSM dnsc : FSM pop3c : FSM

tcpc : FSM

ip : FSM

arpc : FSM

nic : FSM

FIGURE 2.7
Collaboration diagram of the simple program for sending and receiving e-mails.
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• The object smtpc (abbreviation for an SMTP Client) is a realization of 
the use case Use SMTP.

• The object pop3c (abbreviation for a POP3 Client) is a realization of 
the use case Use POP3.

• The object ip is a realization of the use case Use IP.
• The object arpc (abbreviation for an ARP Client) is a realization of the 

use case Use ARP.
• The object nic is a realization of the use case Use NIC.

Figure 2.7 shows general collaboration among the relevant objects, i.e., 
it just shows the links between objects. Essentially, it shows the software 
architecture. We may think of it as a family of particular collaborations. 
For example, the user of the program might select the use case Send e-mail 
and this would lead to a particular collaboration, or the user might select 
the use case Receive e-mail and that would lead to another particular 
collaboration.

Another important thing to notice and remember is that Figure 2.7 shows 
only the objects of the system under development. In this case, it is a pro-
gram that runs on a computer connected to the Internet over its network 
interface card. If we want the overall picture, we can also add the models 
of the systems with which our system under development would normally 
communicate. By adding the models of these external systems, we are mod-
eling end-to-end collaborations.

The system under development communicates with external servers, 
including the ARP server, the DNS server, and the e-mail server. If we 
assume that all of these servers run on the same computer, the model of 
the external environment of the system under development is rather simple 
(Figure 2.8). The external objects are as follows:

• The object smtps is the SMTP server.
• The object pop3s is the POP3 server.
• The object tcps is the TCP server, i.e., the side that accepts the estab-

lishment of the TCP connection.
• The object dnss is the DNS server.
• The object arps is the ARP server.
• The object ips is an instance of IP.
• The object nics is an instance of NIC.

The overall collaboration that corresponds to the main flow of events of 
the use case Send e-mail, up to the point when the SMTP client receives the 
message 220 READY FOR MAIL, is shown in Figure 2.9. The flow of events 
is as follows:
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 1: The object mailc sends the signal sendMail(msg) to the object sender. 
The signal parameter msg is the e-mail message itself.

 2: The object sender sends the signal domainToIP(domain) to the object 
dnsc. The signal parameter domain is the domain name of the e-mail 
server.

 3: The object dnsc sends the signal dnsReq(domain) to the object ip. The 
signal dnsReq is actually the DNS service request message.

 4: The object ip sends the signal data(dnsReq) to the object nic. The 
general signal data is an IP datagram. Together with the parameter 
dnsReq, it represents the datagram carrying the DNS service request 
message.

 5: The object nic sends the signal frame(dnsReq) to the object nics. The 
general signal frame is a data frame from the underlying physical 
network (e.g., Ethernet). The signal frame(dnsReq) is the data frame 
carrying the datagram that encapsulates the DNS service request 
message.

 6: The object nics sends the signal data(dnsReq) to the object ips.
 7: The object ips sends the signal dnsReq(domain) to the object dnss.
 8: The object dnss sends the signal dnsRsp(ip) to the object ips. The sig-

nal dnsRsp is the DNS service response message and its parameter ip 
is the IP address of the target e-mail server.

smtps : FSM

dnss : FSM

pop3s : FSM

tcps : FSM

ips : FSM

arps : FSM

nics : FSM

FIGURE 2.8
Collaboration diagram of the e-mail and DNS server.
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 9: The object ips sends the signal data(dnsRsp) to the object nics.
 10: The object nics sends the signal frame(dnsRsp) to the object nic.
 11: The object nic sends the signal data(dnsRsp) to the object ip.
 12: The object ip sends the signal dnsRsp(ip) to the object dnsc.
 13: The object dnsc sends the signal ipaddr(ip) to the object sender.
 14: The object sender sends the signal open(ip,25) to the object tcpc. The 

signal open is an active open request to TCP (TCP should send the 
SYN segment to initiate the TCP connection establishment proce-
dure). Its parameters, ip and 25, are the IP addresses of the target 
email sever and the well-known TCP port number reserved for the 
SMTP, respectively.

 15: The object tcpc sends the signal seg(syn) to the object ip. The general 
signal seg is a TCP segment. The signal seg(syn) is a SYN (synchro-
nization) TCP segment (i.e., it has the SYN bit set in the code field).

smtps : FSM

dnss : FSMpop3s : FSM

tcps : FSM

ips : FSM

arps : FSM

nics : FSM
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FIGURE 2.9
Overall real collaboration of the simple program for sending and receiving e-mails and its 
environment.
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 16: The object ip sends the signal data(syn) to the object nic.
 17: The object nic sends the signal frame(syn) to the object nics.
 18: The object nics sends the signal data(syn) to the object ips.
 19: The object ips sends the signal seg(syn) to the object tcps.
 20: The object tcps sends the signal seg(syn+ack) to the object ips. The 

signal seg(syn+ack) is a SYN+ACK (synchronization and acknowl-
edgment) TCP segment (i.e., it has both SYN and ACK bits set in the 
code field).

 21: The object ips sends the signal data(syn+ack) to the object nics. The sig-
nal data(syn+ack) is the IP datagram that encapsulates the SYN+ACK 
TCP segment.

 22: The object nics sends the signal frame(syn+ack) to the object nic. The 
signal frame(syn+ack) is the data frame carrying the IP datagram that 
encapsulates the SYN+ACK TCP segment.

 23: The object nic sends the signal data(syn+ack) to the object ip.
 24: The object ip sends the signal seg(syn+ack) to the object tcpc. (The 

event flow now forks into two parallel flows.)
 24.1: The object tcpc sends the signal openAck to the object sender. 

(The first flow begins here.)
 24.1.1: The object sender sends the signal openAck to the object 

smtpc (The first flow ends here.)
 24.2: The object tcpc sends the signal seg(ack) to the object ip. (The 

second flow begins here.)
 24.2.1: The object ip sends the signal data(ack) to the object nic.
 24.2.2: The object nic sends the signal frame(ack) to the object 

nics.
 24.2.3: The object nics sends the signal data(ack) to the object ips.
 24.2.4: The object ips sends the signal seg(ack) to the object tcps.
 24.2.5: The object tcps sends the signal openAck to the object 

smtps.
 25: The object smtps sends the signal mail(220) to the object tcps. The 

general signal mail is the SMTP message. The particular signal 
mail(220) is actually the message 220 READY FOR MAIL, where 
the first three digits are mandatory and the rest of the message is 
a human-readable comment. (Note: We have restarted the message 
numbering here for brevity.)

 26: The object tcps sends the signal seg(220) to the object ips.
 27: The object ips sends the signal data(220) to the object nics.
 28: The object nics sends the signal frame(220) to the object nic.
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 29: The object nic sends the signal data(220) to the object ip.
 30: The object ip sends the signal seg(220) to the object tcpc.
 31: The object tcpc sends the signal mail(220) to the object smtpc. (The 

example ends here.)

What we have just described is the real collaboration between objects within 
the system under development as well as with the relevant objects in its sur-
roundings. The real collaboration for any nontrivial system could be rather 
complex. This behavior should be clear from the previous example, where we 
intentionally stopped at the certain point of the event flow, which was selected 
as a compromise between showing enough complexity and maintaining clarity.

The complete list of events for the use case Send e-mail is much longer than 
the one given above. For modeling the transfer of the rest of the SMTP mes-
sages (12 of them), we would need additional 84 (12 × 7) UML events, almost 
three times more than already in the list above. This complexity is why we 
try to break the system down into its parts and analyze them in detail later.

One important aspect of the simplification is the definition of the 
Application Programming Interfaces (API). For example, we may define 
the API between the sender and the hierarchically lower level objects (dnsc, 
smtpc, and tcpc), or the API between tcpc and ip, and so on. Other impor-
tant items are the virtual collaborations that are governed by the peer-to-
peer protocols. Consider for example the virtual collaboration between dnsc 
and dnss (Figure 2.10). The corresponding flow comprises only two events, 
dnsReq(domain) and dnsRsp(ip).

The virtual collaboration between tcpc and tcps is governed by the TCP. 
It is slightly more complex and comprises the following flow of events 
(Figure 2.11):

 1: The object tcpc sends the signal seg(syn) to the object tcps.
 2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
 3: The object tcpc sends the signal seg(ack) to the object tcps.
 4: The object tcpc sends the signal seg(data) to the object tcps. (Data 

transmission phase) 
 5: The object tcpc sends the signal seg(fin) to the object tcps.
 6: The object tcps sends the signal seg(ack) to the object tcpc.

dnsc : FSM dnss : FSM

1: dnsReq(domain)
2: dnsRsp(ip)

FIGURE 2.10
Virtual collaboration between the DNS client and the DNS server.
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 7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
 8: The object tcpc sends the signal seg(ack) to the object tcps. 

Finally, the virtual collaboration between smtpc and smtps (in accordance 
with SMTP) is of the same order of complexity (Figure 2.12; note that only the 
first eight events are shown in the figure). The corresponding flow of events 
is the following:

 1: The object smtps sends the signal mail(220) to the object smtpc.
 2: The object smtpc sends the signal mail(HELO) to the object smtps.
 3: The object smtps sends the signal mail(250_OK) to the object smtpc.
 4: The object smtpc sends the signal mail(MAIL_FROM:) to the object 

smtps.
 5: The object smtps sends the signal mail(250_OK) to the object smtpc.
 6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
 7: The object smtps sends the signal mail(250_OK) to the object smtpc.
 8: The object smtpc sends the signal mail(DATA) to the object smtps.
 9: The object smtps sends the signal mail(354_START_MAIL_INPUT) 

to the object smtpc. 

tcpc : FSM tcps : FSM

1: seg(syn)
2: seg(syn+ack)

3: seg(ack)
4: seg(data)
5: seg(fin)

6: seg(ack)
7: seg(fin+ack)

8: seg(ack)

FIGURE 2.11
Virtual collaboration between two TCP entities.

smtpc : FSM smtps : FSM

1: mail(220)
2: mail(HELO)

3: mail(250_OK)
4: mail(MAIL_FROM:)

5: mail(250_OK)
6: mail(RCPT_TO:)

7: mail(250_OK)
8: mail(DATA)

FIGURE 2.12
Virtual collaboration between the SMTP client and the SMTP server.
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 10: The object smtpc sends the signal mail(MAIL_BODY) to the object 
smtps.

 11: The object smtps sends the signal mail(250_OK) to the object smtpc.
 12: The object smtpc sends the signal mail(QUIT) to the object smtps.
 13: The object smtps sends the signal mail(221) to the object smtpc.

2.3  Requirements and Analysis Example

This section of this chapter illustrates the requirements and analysis phases 
of communication protocol engineering with the example of a simple SIP 
softphone. Normally, the requirements phase starts by acquiring the relevant 
domain-specific knowledge and continues by the construction of the corre-
sponding requirements model, which is the input for the analysis phase. As 
already mentioned, the output of the analysis phase is the corresponding 
analysis model. Sections 2.3.1 through 2.3.3 cover a short overview of the 
domain-specific information, the requirements, and the analysis models of a 
simple SIP softphone.

2.3.1  SIP Domain Specifics

SIP is the application layer protocol used for creating, modifying, and termi-
nating sessions, such as Internet telephone calls and multimedia distribution 
and conferences, with one or more participants. It has been standardized by 
the IETF RFC 3261 (Rosenberg et al., 2002) and related series of RFCs (RFC 
3262, RFC 3263, RFC 3264, RFC 3265, RFC 3372, RFC 3428, RFC 3485, RFC 
3487, and others). In contrast to the ITU-T H.323 family of protocols—which 
provide the whole protocol stack for multimedia communications—SIP 
is just the control and signaling component on the top of the multimedia 
architecture.

Aside from SIP, the multimedia architecture will typically include RTP 
(Real-Time Transfer Protocol, RFC 1889), RTSP (Real-Time Streaming Protocol, 
RFC 2326), MEGACO (Media Gateway Control Protocol, RFC 3015), and SDP 
(Session Description Protocol, RFC 2327). SIP does not provide any service on 
its own. Instead of full services, it provides primitives for the services that 
are implemented in the overall architecture. These primitives are based on 
an HTTP-like (Hyper Text Transport Protocol) request and response transac-
tion model.

The main SIP abstractions are the session, the dialog, and the transaction. 
A multimedia session is a set of multimedia senders and receivers, as well 
as data streams flowing from senders to receivers. A dialog is a peer-to-peer 
relationship between two user agents (end points in the communication) that 
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persists for some time. A transaction is the collaboration between the client 
and the server, which comprises all the messages from the first request sent 
from the client to the server up to the final response sent from the server to 
the client. The requests are processed automatically, meaning that either all 
requested actions are conducted, if the request has been accepted, or none of 
the actions are conducted, if the request has not been accepted.

Two main transaction types exist, referred to as invite (officially written in 
capital letters, i.e., INVITE) and non-invite (or, more formally, non-INVITE) 
transactions. An invite transaction is a three-way handshake comprising 
the request, the response, and the acknowledgment. In contrast, a non-invite 
transaction is the two-way handshake starting with the request and ending 
with the corresponding response.

Notice that the roles of the user agents (communication end points) are 
not fixed, and they change on the transaction by transaction bases. The user 
agent that creates a new request becomes a user agent client (UAC), whereas 
the user agent that receives the request becomes the user agent server (UAS). 
Another important detail is that a new transaction (either invite or non-invite) 
may not be started while an invite transaction is in progress. Alternatively, 
a new invite transaction may be started while a non-invite transaction is in 
progress.

Besides user agents, the SIP standard defines three types of SIP servers, 
namely, the proxy server (stateful or stateless), the registrar, and the redirect 
server. A proxy server is the mediator that helps end points set up the session. 
Officially, it is an intermediary entity that acts as both a server and a client 
for the purpose of making requests on behalf of other clients. A registrar is 
a server that supports the registration of the user agents by maintaining the 
corresponding database for the domain it handles. This database is referred 
to as a location service. These two types of servers are most frequently col-
located in the same physical machine. A redirect server can be viewed as 
a proxy server with limited capabilities. It is only capable of directing the 
client to contact an alternate set of Uniform Resource Identifications (URI).

Requests and responses between a server and a client are sent as SIP mes-
sages. The SIP message comprises the start line, one or more header fields, 
empty lines (carriage-return line-feed sequences, CRLF), and an optional 
message body. The start line is different in requests and in responses. In the 
former case, it is referred to as a request line, and in the latter as a status line. 
The request line comprises the method name (according to the RFC 3261, six 
methods are available in SIP: REGISTER, INVITE, ACK, CANCEL, BYE, and 
OPTIONS), the request URI, and the SIP version (currently “SIP/2.0”). The 
status line comprises the SIP version, the status code (a three-digit integer 
result code), and the reason phrase (textual status description).

The SIP protocol stack comprises four layers. Starting from the top and 
going down the hierarchy, these are the transaction user (TU) layer, the 
transaction layer, the transport layer, and the syntax and encoding of SIP 
messages. A transaction user is any SIP entity (client or server) except for the 
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stateless proxy. The transaction layer supports transactions, which are the 
key component of SIP. The transport layer provides for the transfer of SIP 
messages across the Internet. SIP may use three types of transport services, 
including unreliable (UDP), reliable (TCP), and encrypted (Transport Layer 
Security, TLS) transport service. Most of the SIP message and header field 
syntax is identical to HTTP/1.1. Although SIP is close to the HTTP philoso-
phy, it is not an extension of HTTP.

As mentioned above, the SIP standard specifies six methods, including 
REGISTER for registering contact information, INVITE, ACK, CANCEL for 
setting up sessions, BYE for terminating sessions, and OPTIONS for query-
ing servers regarding their capabilities. Any INVITE after the initial invite 
to the same destination is called re-INVITE and is used for modifying the 
session and dialog parameters. The method INVITE starts the invite trans-
action; all other methods start non-invite transactions. Interestingly enough, 
six status code types are also found, depending on the value of status code 
first digit, as follows:

1xx: Provisional (the request has been received and its processing has 
been started)

2xx: Success (the request has been successfully processed)
3xx: Redirection (further action by the client is needed)
4xx: Client error (the request contains an error or it may not have been 

fulfilled on this server)
5xx: Server error (the request is valid, but the server failed to fulfill it)
6xx: Global failure (the request cannot be fulfilled on any server)

As an example, consider the typical scenario of the SIP session setup in 
Figure 2.13. (Note: This figure is actually a UML sequence diagram. Sequence 
diagrams are intentionally introduced later in Chapter 3. For the moment, it 
is enough to assume that the rectangular symbols are the communicating 
entities and that the arrows are the messages they exchange. Time advances 
downwards.) Two user agents ua1 and ua2, together with their correspond-
ing proxy servers p1 and p2, constitute the SIP trapezoid (imagine the trap-
ezoid by “drawing“ the lines that connect ua1, p1, p2, and ua2).

Suppose that ua1 wants to set up a session with ua2. It starts by sending an 
invite request to the proxy server that is responsible for its domain, and that 
is p1. Proxy p1 locates the proxy server responsible for the destination ua2, 
namely p2, and forwards the invite request to it. At the same time, p1 sends 
back the response 100 TRYING to ua1. Proxy p2 locates the destination user 
agent, ua2, forwards the invite request to it, and sends back the response 100 
TRYING to the proxy p1. ua2 receives the invite request and sends back the 
response 180 RINGING, which is forwarded by the proxies p2 and p1 to ua1.

At this point, ua2 indicates the incoming invite request to its user. The 
user accepts the request and ua2 sends back the response 200 OK, which is 
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forwarded by the proxies p2 and p1 to ua1. The dialog between ua1 and ua2 
is successfully established. Further on, ua1 sends the ACK request to ua2 
directly (the end of the three-way handshake). The session is successfully 
established at this point. The communicating user agents may now exchange 
the media. In reality, the media is exchanged in the full-duplex mode, i.e., 
both sides may send data to the other side simultaneously. Unfortunately, in 
UML sequence diagrams we cannot model the full-duplex communication, 
because only unidirectional messages may be used. Therefore, we represent 
the media exchange by the two separate messages, namely by the message 
Media (ua1 to ua2) and the message Media (ua2 to ua1).

ua1 : UserAgent

p1 : Proxy p2 : Proxy

ua2 : UserAgent

Invite

Invite

Invite100 TRYING

100 TRYING

180 RINGING

180 RINGING

180 RINGING 200 OK

200 OK

200 OK
ACK

Media (ua1 to ua2)

BYE

200 OK

Media (ua2 to ua1)

FIGURE 2.13
Example of SIP session setup (with SIP trapezoid).
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The session may be terminated by either ua1 or ua2. Suppose that ua2 wants 
to terminate the session. It sends the BYE request to ua1 directly, which in its 
turn sends back the response 200 OK. The session is successfully closed. This 
is an example of the non-invite transaction.

This simplified explanation hides one rather important aspect of the invite 
three-way handshake, and that is the application of the offer-answer pro-
cedure. This procedure is used by ua1 and ua2 to determine the session 
parameters in accordance with SDP. The first offer must be carried either 
by the invite request or by the response 200 OK. If the offer is carried by the 
invite request (ua1 makes the first offer), the answer must be included in the 
response 200 OK. If the offer is carried by the response 200 OK (ua2 makes 
the first offer), the answer must be included in the ACK request (the last 
message in the three-way handshake). The session is successfully established 
only after the offer-answer procedure is successfully ended.

2.3.2  SIP Softphone Requirements Model

SIP softphone is the application that normally runs on some computer—for 
example, a desktop PC—and enables its user to set up multimedia sessions 
and to communicate with other SIP users or entities over the Internet. Such 
an application would typically use some type of graphical user interface 
(GUI) and device drivers for the sound card and the web camera, typically 
provided by the local operating system (out of scope for this book) and, of 
course, the SIP protocol stack.

This section shows how to construct the requirements model for the SIP 
protocol stack in a simple SIP softphone. As mentioned previously, the SIP 
protocol stack comprises the transaction user layer, the transaction layer, and 
the transport layer. In terms of use cases, the user uses the application (soft-
phone), which in turn uses both the transaction layer and the transport layer. 
The transaction layer also uses the transport layer. The use case diagram 
shown in Figure 2.14 is a simple requirements model that captures these 
relations.

We can refine this simple model by taking into account the details of the 
individual layers of the SIP protocol stack. To start, the transaction user (TU) 
layer dynamically creates and uses the user agent clients (UAC) and the 
user agent servers (UAS) entities to support outgoing and incoming invite 
requests. Both UAC and UAS use the transaction layer (TAL), as well as the 
transport layer, which is accessible through the transport layer interface 
(TLI). TAL and TLI are abbreviations introduced here (they have not been 
taken from the RFC 3261).

Similar to TU, TAL dynamically creates and uses invite client transac-
tions (INVITE CT), non-invite client transactions (non-INVITE CT), invite 
server transactions (INVITE ST), and non-invite server transactions (non-
INVITE ST). TAL and all transactions use TLI, but they are all also used by 
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TU. Finally, TLI uses UDP, TCP, or TLS. The detailed use case diagram of the 
simple SIP softphone is shown in Figure 2.15.

Before proceeding further, two important points must be emphasized. The 
first is that the direct relations between TU and TLI are strictly in accordance 
with the RFC 3261, although this may seem to be an error because it violates 
the ISO OSI ideal of a strictly layered architecture (no direct communica-
tion between layer i + 1 and layer i). The second point is that the relations 
between TU and transactions, and transactions and TLI, are not prescribed 
by the RFC 3261 but they are also not forbidden. These relations are intro-
duced to minimize the message paths at the expense of the increased rela-
tions complexity.

User

Use transaction
user layer

Use transaction
layer

Use transport layer

Use application

*

*

«uses»

«uses»

«uses»

«uses»

FIGURE 2.14
Use case diagram of the simple SIP softphone.
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To complete the requirements model, we need to describe the individual 
use cases. The use case Use application is actually the main program that 
interacts with the user and makes use of the SIP protocol stack and is out of 
the scope of this book. The use case Use TU is responsible for dispatching TU 
messages (coming from the application and the lower layers and going to the 
user agent clients and servers and to the application), as well as for dynamic 
creation of user agent clients and servers.

The use case Use UAC provides a set of procedures for the client side of the 
transactions. The high-level description of these procedures follows:

User

Use TU

Use TAL

Use
non-INVITE CT

Use
INVITE CT

Use
INVITE ST

Use
non-INVITE ST

Use TLI

Use UAC Use UAS

Use TCPUse UDP Use TLS

Use application

*

*

«uses»

«uses»

«uses»

«uses» «uses»«uses»

«uses»

«uses»«uses» «uses» «uses»

«uses» «uses» «uses» «uses»

«uses» «uses» «uses» «uses»

«uses» «uses»

«uses» «uses»

«uses» «uses»

FIGURE 2.15
Detailed use case diagram of the simple SIP softphone.
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Main flow of events:

Receive the request from the application.
Dispatch it to the corresponding procedure.
Registration procedure:
  Create and send REGISTER request.
  Receive the response.
  Indicate the response to the application.
Session setup procedure:
  Create and send INVITE request.
  Receive provisional responses (1xx), if any.
  Receive the final response (not 1xx).
  Indicate the final response to the application.
  If the final response is 2xx,
    Send ACK request.
Cancel session setup procedure:
  If the final response has not been received,
    Create and send CANCEL request.
    Receive the response.
    Indicate the response to the application.
Modify session/dialog procedure:
  Perform session setup procedure.
Query server capabilities procedure:
  Create and send OPTIONS request.
  Receive the response.
  Indicate the response to the application.
Terminate session procedure:
  Create and send BYE request.
  Receive the response.
  Indicate the response to the application.

The use case above includes only the main flow of events. A more detailed 
version would also include the exceptional flow of events that would describe 
the time management and the retransmissions of the unacknowledged SIP 
messages. These are skipped here for brevity (in reality, we also start from a 
very simple version of use cases and refine them later). The same is true for 
all the other use cases given in this subsection.

The use case Use UAS provides the set of procedures for the server side 
of the transactions. The high-level description of these procedures is as fol-
lows (the implementation is rather simple and takes the passive, goodwill 
approach).

Main flow of events:

Receive the request from the TU dispatcher (i.e., remote SIP entity).
Dispatch it to the corresponding procedure.
Session setup service procedure:
  Receive the incoming INVITE request.
  Indicate INVITE request to the application.
  Send the provisional response, e.g., 180 RINGING.
  If the user accepts the call,
    Send the final response 200 OK.
    Receive ACK request.
Cancel session setup service procedure:
  Receive CANCEL request.
  Send the final response 200 OK.
  Report the outcome to the application.
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Modify session/dialog service procedure:
  Receive INVITE request.
  Send the final response 200 OK.
  Report the outcome to the application.
Query server capabilities service procedure:
  Receive OPTIONS request.
  Send the final response 200 OK.
  Report the outcome to the application.
Terminate session service procedure:
  Receive BYE request.
  Send the final response 200 OK.
  Report the outcome to the application.

The use case Use TAL is responsible for dispatching TAL messages (com-
ing from TU, UAC, UAS, and TLI and going to the TAL transactions), as well 
as for dynamic creation of TAL transactions. The use case Use INVITE CT is 
an invite client transaction. Its description is as follows:

Main flow of events:

Receive INVITE request from TAL.
Forward INVITE request to TLI.
Receive 1xx response from TAL.
Forward 1xx response to TU.
Receive the final response from TAL.
Forward the final response to TU.
If the final response is 3xx-6xx,
  Send ACK request to TLI.

The use case Use INVITE ST is an invite server transaction. Its description 
is as follows:

Main flow of events:

Receive INVITE request from TAL.
Forward INVITE request to TU.
Receive 1xx response from TAL.
Forward 1xx response to TLI.
Receive the final response from TAL.
Forward the final response to TLI.

The use case Use non-INVITE CT is a non-invite client transaction. Its 
description is as follows:

Main flow of events:

Receive the request from TAL.
Forward the request to TLI.
Receive the response from TAL.
Forward the response to TU.

The use case Use non-INVITE ST is a non-invite server transaction, which 
is defined as follows:
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Main flow of events:

Receive the request from TAL.
Forward the request to TU.
Receive the response from TAL.
Forward the response to TLI.

The use case Use TLI is responsible for dispatching transport messages. It 
routes the requests from upper layers toward its remote peer in a forward 
direction, and routes the responses received from its remote peer toward the 
upper layers in a backward direction (non-ACK responses are sent to TAL, 
whereas ACK responses are sent to TU). It may use UDP, TCP, or TLS for the 
communication with its peers over the Internet. The description of this use 
case is as follows:

Main flow of events:

Receive a request from upper layers.
Send the request to the remote peer.
Receive the response from the remote peer.
If the response is ACK,
  Send it to TU,
Else,
  Send it to TAL.

Now that we have completed the use case diagram, we can proceed to the 
next engineering phase. This phase is the analysis, whose main goal is the 
definition of the software architecture.

2.3.3  SIP Softphone Analysis Model

Generally, the analysis model is constructed by defining the collaboration in 
a set of objects for each use case in the source requirements model. This pro-
cess becomes obvious when considering the rough use case diagram shown 
in Figure 2.14. However, by refining the use cases, we may reach a point 
when a single class can realize a single use case. Figure 2.15 is an example of 
exactly such a use case diagram. Each use case is rather simple, so that a sin-
gle class can realize it. Along this approach, assume the following mapping:

• The instance of the class FSM named app realizes the use case Use 
application.

• The instance of the class TUDisp named tud realizes the use case 
Use TU.

• An unnamed instance of the class UAClient realizes the use case Use 
UAC.

• An unnamed instance of the class UAServer realizes the use case 
Use UAS.
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• The instance of the class TALDisp named tald realizes the use case 
Use TAL.

• An unnamed instance of the class InClientT realizes the use case Use 
INVITE CT.

• An unnamed instance of the class NIClientT realizes the use case Use 
non-INVITE CT.

• An unnamed instance of the class InServerT realizes the use case Use 
INVITE ST. 

• An unnamed instance of the class NIServerT realizes the use case 
Use non-INVITE ST.

• The instance of the class TLIDisp named tlid realizes the use case 
Use TLI. 

• The instance of the class FSM named udp realizes the use case Use 
UDP.

• The instance of the class FSM named tcp realizes the use case Use 
TCP.

• The instance of the class FSM named tls realizes the use case Use 
TLS. 

The mapping above translates the use case diagram (shown in Figure 2.15) 
into the general collaboration diagram (shown in Figure 2.16). This diagram 
actually shows the software architecture, which defines the software objects 
that constitute the software system or product and the associations among 
them. 

The software architecture can be used for the further study of particular 
object collaborations to check if the architecture is feasible and, if not, to 
refine the use case or collaboration diagram. An example of a particular col-
laboration is shown in Figure 2.17. This diagram shows the handling of the 
invite request initiated by the softphone user. The flow of events is as follows:

 1: The object app sends the event inviteReq(adr) to the object tud.
 2: The object tud sends the event inviteReq(adr) to an unnamed instance 

of the class UAClient.
 3: The unnamed instance of the class UAClient sends the event 

req(INVITE) to the object tald.
 4: The object tald sends the event req(INVITE) to an unnamed instance 

of the class IClientT.
 5: The unnamed instance of the class IClientT sends the event 

req(INVITE) to the object tlid.
 6: The object tlid sends the event req(INVITE) to its peer over the object 

tcp.
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 7: The object tlid receives the event rsp(1xx) from its peer over the object 
tcp.

 8: The object tlid sends the event rsp(1xx) to the object tald.
 9: The object tald sends the event rsp(1xx) to an unnamed instance of 

the class IClientT.
 10: The unnamed instance of the class IClientT sends the even rsp(1xx) to 

the object tud.
 11: The object tud sends the event rsp(1xx) to an unnamed instance of 

the class UAClient.
 12: The object tlid receives the event rsp(200) from its peer over the object 

tcp.
 13: The object tlid sends the event rsp(200) to the object tald.
 14: The object tald sends the event rsp(200) to an unnamed instance of 

the class IClientT.

app : FSM

tud : TUDisp

: UAClient : UAServer

: InClientT

tald : TALDisp

tlid : TLIDisp

tls : FSMtcp : FSMudp : FSM

: NIClientT : InServerT : NIServerT

FIGURE 2.16
General collaboration diagram of the simple SIP softphone.
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 15: The unnamed instance of the class IClientT sends the event rsp(200) 
to the object tud.

 16: The object tud sends the event rsp(200) to an unnamed instance of 
the class UAClient.

 17: The unnamed instance of the class UAClient sends the event 
inviteRsp(adr) to the object tud.

 18: The object tud sends the event inviteRsp(adr) to the object app.

Generally, req() and rsp() designate SIP requests and SIP responses in the 
flow of events shown above. For example, req(INVITE) is the SIP invite 
request, rsp(1xx) is the SIP provisional response, and rsp(200) is the SIP final 
response.

app : FSM

tud : TUDisp

: UAClient : UAServer

: InClientT

tald : TALDisp

tlid : TLIDisp

tls : FSMtcp : FSM

2: inviteReq(adr)

11: rsp(1xx) 

16: rsp(200)
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FIGURE 2.17
Collaboration diagram showing the part of the SIP session setup.
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3
Design

System design is a phase in engineering work that follows the system 
requirements and analysis phases. Its main goal is to synthesize a complete 
solution based on the result of the analysis phase (obtaining the analysis 
model of the system), which is actually a rough architecture—a skeleton— 
of the system. We can imagine the system synthesis as a process of creating 
the body of the system. This body is a reflection of the details related to the 
system structure and its behavior.

Note that the complete solution of the system mentioned above is not the 
system itself, but rather a detailed vision of the system that comprises all 
the details sufficient to construct the system. Technically, we refer to this 
vision as a design model. Therefore, the system synthesis is a process that 
takes an analysis model as its input and produces the design model as its 
output.

The design model defines the two most important system aspects:

• System structure
• System behavior

The system structure defines the elements of the system and their associa-
tions. Sometimes it is referred to as the static structure because it defines 
the static view of the system, i.e., a view without any respect to time. The 
system behavior defines the outputs of the systems as functions of time or 
their inputs. In the case of a family of communication protocols, which are 
most frequently modeled as groups of finite state machines (automata), the 
static structure defines the automata and the links between them whereas 
the system behavior defines the state transitions for the individual automata 
and the external messages.

Besides system synthesis, or system design, the communication protocol 
design phase described in this book includes two additional designs, namely 
deployment design and test design, which result in a deployment model 
and a test model, respectively. The main goals of the deployment design are 
identifying network nodes and configurations as well as identifying design 
subsystems and interfaces. The deployment model is especially important 
for the complex communication systems comprising many distributed com-
ponents. For less complex systems, it is not as important, and for very simple 
systems it may not even be necessary.
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Although the system design and deployment models make the complete 
vision of the system, they do not specify how the system can be verified. 
Therefore, the engineers conduct the test design by taking the requirements 
and design models and creating a test model. The test model actually defines 
the behavior of the testers, who emulate the environment of the system. As 
already mentioned in the previous chapter, the test model is most frequently 
referred to as a test suite, which comprises a set of test cases. Each test case 
specifies a series of test input values (events and messages) to the system and 
the corresponding output values (events and messages) that are expected 
at the system output as the results of correct system reactions to the given 
series.

To summarize, a communication protocol design is a process that takes the 
requirements and analysis as its input and provides the following models as 
its output:

• System design model
• System deployment model
• System test model

The means of making these models today are UML diagrams or some 
domain-specific languages, which are introduced in this chapter. The 
design engineer starts from the analysis model, essentially a collabora-
tion of <<boundary>>, <<control>>, and <<entity>> classes, described in the 
corresponding collaboration diagram. The development model is made 
by mapping each class from the analysis model to a set of new classes in 
the development model. If the analysis model is well refined, this might 
even be a one-to-one mapping or close to it. For example, the analysis 
model of the SIP softphone given at the end of the previous chapter is 
detailed enough, and the corresponding collaboration diagram is a good 
base for the refinements that must be made during the system design 
phase.

The means of defining the static structure of the system in UML are class 
diagrams and object diagrams. A class diagram shows the design classes 
and the static relations (dependencies, associations, and generalizations) 
among them without any respect to time. It shows important details about 
classes, such as their members, fields and functions, types, visibility, and so 
on. The object diagram is similar to the class diagram except that it shows 
the system frozen at a certain moment of time. Typically, the object diagram 
will show system objects (class instances) with the characteristic and impor-
tant values of certain field members.

The means of gathering and refining details about the system behavior 
are the UML interaction diagrams. Two types of interaction diagrams are 
found, namely collaboration diagrams (introduced in the previous chap-
ter) and sequence diagrams. Collaboration diagrams show the interaction 
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organized by the architecture, meaning that their focus is an architectural 
view of the system. The architecture is adorned by the flow of events. The 
sequence of events is shown by adding sequence numbers as prefix labels 
to the events.

Alternately, sequence diagrams show system interactions from a time 
progress perspective. The top of the sequence diagram shows the objects of 
the system without static relations among them. Each object is represented 
further by a vertical line rendered from its bottom toward the bottom of 
the diagram. Time advances in the same direction. The interaction itself is 
shown by the series of events and messages sent among the objects, which 
are rendered by horizontal arrows from the source object’s line to the desti-
nation object’s line.

The means of specifying complete system behavior are activity diagrams 
and statechart diagrams or, more briefly, statecharts. An activity diagram 
shows the action or activity states, starting from the initial and ending in 
the final state. State transitions can be sequential, branching, or concurrent 
(through forking and joining). The activity diagram is essentially a flowchart 
that emphasizes the activity that takes place over time, similar to PERT 
charts.

Statecharts are the means of specifying finite state machines in UML. They 
are a type of advanced state transition graphs. A statechart shows simple 
and composite states starting from the initial and ending in the final state. 
The composite states are a means to organize states hierarchically. The state 
transitions can be guarded by conditions and they can indicate firing events 
and the corresponding actions.

The main goal of the deployment design is the decomposition of the sys-
tem in two dimensions. Horizontally, the system is partitioned into parts 
that are deployed onto different network nodes. The term used for nodes 
by ISO OSI is open systems. Vertically, the system is partitioned into layers. 
Typical layers recognized by the USDP are the following:

• Application-specific layer
• Application-general layer (e.g., packages common for a set of 

applications)
• Middleware layer (e.g., Java VM and Java packages)
• System-software layer (e.g., TCP/IP protocol stack)

Furthermore, the system-software layer is generically partitioned by ISO OSI 
into the following seven layers:

• Application layer
• Presentation layer
• Session layer
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• Transport layer
• Network layer
• Data link layer
• Physical layer

Another way to vertically partition is in accordance with the TCP/IP Internet 
layers, as follows:

• Application layer
• Transport layer
• Network layer
• Network interface layer

In the context of operating systems, we can think of layers as processes. 
Logically, each process has its own program and the processor that exe-
cutes it but, in reality, some of the processes may share the program or 
the processor. The processes sharing the same program are referred to as 
threads. The processes sharing the same processor constitute the multipro-
gramming set.

The layers do not exist for themselves—rather, they are typically created to 
service the requests issued by the upper layers. When the number of requests 
increases, the engineers face the scalability problem, which can be solved by 
deploying the same layer on more processors. If the layers are the instances 
of the same class, we refer to them as replicas. Alternately, on multiprocessor 
systems with common memory, it might be possible for these layers to share 
the same program.

The deployment of horizontal system partitions onto different proces-
sors or computers is used rather frequently by system designers. Examples 
include the client–server architecture, the multitier architecture, and others. 
This convenience is why most engineers think of it in the first place when 
deployment issues are raised. However, the deployment of a vertical system 
that partitions onto various processors is also possible. A typical example is 
the Bluetooth Host Controller Interface (HCI), which is a demarcation line 
between the host processor that executes the upper layers and the Bluetooth 
link controller (a microprocessor, a microcontroller, or a digital signal pro-
cessor) that executes the lower layers.

Horizontal and vertical system partitioning are typically conducted as 
two interactive activities. The designer typically partitions the horizontal 
system by rendering the deployment diagram, which shows the network 
nodes, links between them, and the subsystems deployed on individual 
nodes. Alternately, vertical partitioning—sometimes referred to as subsys-
tem modeling—results in a class diagram that shows just the subsystems 
(packages) hierarchically organized in layers, and the dependencies among 
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the subsystems. These two diagrams can be combined in the overall deploy-
ment diagram, which shows both the hierarchy and the deployment.

Another important design goal is identifying and providing generic 
design mechanisms that handle common requirements. The generic design 
mechanisms can be provided as design classes, collaborations, or subsys-
tems. Examples of the generic design mechanisms in communication proto-
col engineering are:

• Protocol (finite state machine or automata) state transition management
• Buffer management
• Timer management
• Message management

These mechanisms are common for all communication protocols. Typically, 
they are designed and implemented once as a separate subsystem that com-
prises the set of classes, which is then used and refined on a series of proj-
ects. In this book, we will use one such subsystem, entitled the FSM library 
(see Chapter 6). The design and the implementation of such a library is rather 
specific and rests more in the domain of operating systems. Additionally, 
such a library frequently already exists and the designers would just use the 
mechanisms that it provides. Because of these two reasons, we intentionally 
postpone presenting the FSM library details for Chapter 4.

By accepting this approach, we keep the focus on the activities that are 
normally conducted during the design phase. We just assume that somebody 
has written the FSM library that provides all the necessary mechanisms (state 
transition, buffer, timer, and message management) and concentrate on the 
design based on these mechanisms. Therefore, for a moment we should sim-
ply think of the FSM library as an infrastructure that facilitates the design 
and implementation of communication protocols.

Going back to the system design itself, this chapter will cover two addi-
tional domain-specific languages that have been in use much before UML 
and are still rather popular today, namely SDL and MSC. The SDL diagrams 
are semantically equivalent to the UML activity diagrams and statecharts. 
In principle, establishing a one-to-one mapping between them should not be 
a problem. The SDL diagram, like the UML activity diagram and statechart, 
specifies the complete system behavior.

The SDL diagram shows states and state transitions starting from the ini-
tial state and ending in the final state. The state transitions are rendered in 
a style of flowcharts. Each state transition starts with an input message that 
causes the transition. Typically, a state transition processes the received mes-
sage and optionally sends the consequent messages.

The MSC chart is semantically equivalent to the UML interaction dia-
grams, i.e., to both collaboration and sequence diagrams. In fact, the MSC 
chart can be one-to-one translated into the UML sequence diagram, but the 
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opposite is not the case. By looking at both of them, they make the same impres-
sion. Most engineers have the impression that they are almost the same, with 
the MSC being a little less expressive. Like the UML sequence diagrams, the 
MSC chart shows the objects that communicate—together with their corre-
sponding vertical lines—and the messages they exchange, which are rendered 
as horizontal arrows connecting the source and the destination vertical lines.

Finally, this chapter covers the third domain-specific language, TTCN, 
which is used for making test models more formal than in UML. In con-
trast to the UML test model, which is rather descriptive and more like a gen-
eral framework, TTCN is a well-defined language for defining test suites. 
As already mentioned, it originates from the ISO and has been traditionally 
used for the conformance testing of communication protocols.

TTCN, much like the higher-level programming language, has built-in 
types and allows a user to define new types (simple and structured) of vari-
ables, constraints, and functions in specialized tables. The essence of the 
TTCN test case specification is an indented tree of events that is filled in a 
table, which specifies the behavior of the testers that run the test case and the 
outcomes of the test case (pass, fail, or inconclusive).

The next sections describe the class diagrams (Section 3.1), the object diagrams 
(Section 3.2), the sequence diagrams (Section 3.3), the activity diagrams (Section 
3.4), the statechart diagrams (Section 3.5), the deployment diagrams (Section 3.6), 
the SDL diagrams (Section 3.7), the MSC charts (Section 3.8), and the TTCN-3 
test suits (Section 3.9). Chapter 3 ends with a series of design examples.

3.1  Class Diagrams

A class diagram is a special type of graph that consists of a set of vertices 
interconnected by arcs. They are so popular and widely used that most of the 
newcomers to UML equate the UML and the class diagrams. Normally, we 
use the class diagrams to model the static design view of the system. More 
precisely, we typically use them to model the vocabulary of the system, col-
laborations, or database schemas.

A vocabulary of the system is a set of abstractions that are parts of the 
system. A collaboration is a group of classes, interfaces, and other elements 
that cooperate to provide a more complex functionality. A schema is a blue-
print that is used for the conceptual design of a database. In communication 
protocol engineering, we rarely deal with real databases, but we frequently 
need to design at least a couple of persistent objects that hold the system 
configuration or similar information.

The basic class diagram vertices are classes, interfaces, and collaborations. 
These are interconnected with three types of arcs, with dependency, gener-
alization, and association relations. To keep the size of the class diagrams 
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manageable, we typically render smaller collaborations that describe cer-
tain aspects of the system. If we want to put those collaborations in a larger 
context, we can render the surrounding packages or subsystems. Both pack-
ages and subsystems enable hierarchical organization of class diagrams. For 
example, we will render the FSM library as a package that is used by the 
protocols that are the subjects of design and implementation.

We use packages and subsystems to manage complexity. Alternately, we 
render class instances (objects) in class diagrams to manage ambiguity, espe-
cially when we want to explicitly show the dynamic type of an instance or 
some other hidden details of the system. A special type of class diagrams are 
object diagrams, which will be described in the next section of this chapter.

Like use case and collaboration diagrams described in the previous chap-
ter, class diagrams are normally also rendered using some of the commer-
cially available graphical tools, e.g., Microsoft Visio®. The same is true for 
other UML diagrams described in this chapter. The basic set of graphical 
symbols available for rendering class diagrams is shown in Figure 3.1. The 
design engineer must specify properties for each instance of a symbol in the 
drawing.

Class

Interface

«interface»
Interface

Package «subsystem»
Subsystem

Object : Class

**

1*

AssociationClass

**

FIGURE 3.1
The basic set of graphical symbols available for rendering class diagrams.
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The most frequently used symbol in class diagrams is the class symbol. 
Eight categories of class properties exist: the general information, the table of 
attributes, the table of receptions, the table of parameters, the list of compo-
nents, the table of constraints, and the tagged values. The general information 
includes the name; the full path; the stereotype (delegate, implementation 
class, metaclass, structure, type, union, or utility); the visibility (private, pro-
tected, or public); and the indicators for the Root, Leaf, Abstract, and Active 
types of classes. The table of attributes comprises columns for the attribute 
name, the type, the visibility, the multiplicity (1, *, 0..1, 0..*, 1..1, or 1..*), and 
its initial value. The table of operations comprises columns for the opera-
tion name, the return type, the visibility, the scope (classifier or instance), 
and the indicator for the polymorphic operations. The table of receptions 
includes columns for the reception name, the corresponding signal name, 
the visibility, the scope, and the indicator for the polymorphic operations. 
The table of template parameters stores parameter names and types. The 
list of components comprises names of the components that implement this 
class. The table of constraints consists of four columns: the constraint name, 
the stereotype (precondition, postcondition, or invariant), the language type 
(OCL, text, pseudocode, or code), and the body of the constraint. The tagged 
values include the notes for the documentation, the location, the persistence, 
the responsibility, and the semantics.

Two graphical symbols are available for rendering interfaces. The first 
shows just the name of the interface, whereas the second also shows the 
available operations. Being the specialized classifier, the interface proper-
ties are a subset of class properties. More precisely, the interface has four 
categories of properties: the general information, the table of operations, the 
table of constraints, and the tagged values. Those properties are the same 
as the corresponding class properties with a single exception. The interface 
is passive in its nature, hence the general information might not include the 
indicator of Active type.

The package has four categories of properties: the general information, the 
table of events, the table of constraints, and the tagged values. The general 
information includes the name; the full path; the stereotype (facade, frame-
work, stub, or system); the visibility (private, protected, or public); and the 
indicators for the Root, Leaf, and Abstract types of packages. The table of 
events stores the event names and the types.

The subsystem has four categories of properties: the general information, 
the table of operations, the table of constraints, and the tagged values. The 
general information includes the name; the full path; the visibility; and the 
indicators for the Root, Leaf, Abstract, and Instantiable types of subsystems.

The object has four categories of properties: the general information, the 
table of attributes, the table of constraints, and the tagged values. The general 
information about the object includes the object name and the correspond-
ing class name. The tagged values are just documentation notes and the tag 
persistent value.
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The dependency relation has three categories of properties: the general 
information, the table of constraints, and the tagged values. The general 
information includes the name, the stereotype (becomes, call, copy, derived, 
friend, import, instance, metaclass, power type, or send), and the descrip-
tion. The tagged values are the notes for the documentation.

The generalization relation has three categories of properties: the gen-
eral information, the table of constraints, and the tagged values. The gen-
eral information comprises the name, the full path, the stereotype (extends, 
inherits, private, protected, subclass, subtype, or uses), and the discrimina-
tor. The tagged values are documentation notes.

The association relation has three categories of properties: the general 
information, the table of constraints, and the tagged values (documentation 
notes). The general information comprises the name, the full path, the name 
reading direction (forward or backward), and the information about the 
association ends, which includes the name, the aggregation (none, compos-
ite, or shared), the visibility, the multiplicity, and the indicator Navigable. If 
the end is navigable, it is shown with an arrow symbol, and if not, it is shown 
without an arrow symbol. Because the composition relation is a specializa-
tion of the association relation, it has the same categories of properties (the 
general information, the table of constraints, and the tagged values), with the 
exception that the default values for the aggregation and multiplicity (of one 
of the ends) are composite and 1, respectively.

The association class is a class that models the complex relation; there-
fore, its set of properties is a union of properties of classes and associations. 
More precisely, the association class has five categories of properties: the 
general information, the table of attributes, the table of operations, the table 
of constraints, and the tagged values. The general information comprises 
the name, the full path, the information about the association ends (name, 
aggregation, visibility, multiplicity, and navigability), and the associa-
tion class details (visibility information and Root, Leaf, Abstract, and Active 
indicators).

The object link has three categories of properties: the general information, 
the table of constraints, and the tagged values (just documentation notes). 
The general information includes the name and the information about each 
of the two link ends. The link end information comprises the name and the 
stereotype (none, association, global, local, parameter, or self).

This concludes the description of the basic graphical symbols available 
for rendering class diagrams. The usage of these symbols is illustrated by 
two examples, as shown in Figures 3.2 and 3.3. The first example is a sim-
ple model of the TCP/IP protocol stack, and the second example is a simple 
model of a finite state machine (automata).

The TCP/IP protocol stack is modeled by the classes that represent its lay-
ers: Application, Transport, Network, and Interface. The transport layer has a 
number of ports, which are modeled by the interface Port. The application 
depends on the transport (this fact is modeled by the dependency relation) 
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and it gets the service it needs through the interface Port. Further down, the 
transport layer depends on the network layer, which in turn is in association 
with a number of interfaces.

The left side of Figure 3.2 shows the models of the host computers that are 
connected to the Internet and the routers that interconnect the physical net-
works that constitute the Internet. The host computer is modeled by the class 
Host. Each host comprises all TCP/IP protocol stack layers. This fact is mod-
eled by the composition relations between the class Host and the classes that 
model the individual layers (Application, Transport, Network, and Interface). 
The router is modeled by the class Router. Each router comprises the net-
work and the interface layer. This is modeled by the composition relations 
between the class Router and the classes that model the individual layers.

The right side of Figure 3.2 shows some of the applications and protocols 
available in the TCP/IP family of protocols. The electronic mail and World 
Wide Web (WWW) applications—and their corresponding protocols—are 
modeled by the class Email and WWW, respectively. These two applications 
are the examples of particular applications, and this fact is modeled by the 
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FIGURE 3.2
Example of a simple model of the TCP/IP protocol stack.
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generalization and specialization relations between the class that models 
a generic application (Application) and the classes that model the particu-
lar applications (Email and WWW). Similarly, TCP and UDP are particular 
transport protocols (modeled by the classes TCP and UDP), and this is mod-
eled by the generalization and specialization relations between the class that 
models a generic transport protocol and the class that models TCP and UDP.

Further down the hierarchy, the Internet network layer comprises the IP 
and ICMP protocols (modeled as the classes IP and ICMP). This is modeled 
by the composition relations between the classes that model the network 
layer and the IP and ICMP protocols. At the bottom of the hierarchy, we 
show that various types of interfaces exist, e.g., Ethernet and serial, by gen-
eralization and specialization relations between the class Interface and the 
classes Ethernet and Serial, which model these particular interfaces.

+entry()
+do()
+exit()

State
Transition
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-FromSourceState

0. .*

-ToDestinationState

0..*

1

EventCondition Action

1

0..1

1

0..1

1
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ConditionX EventY ActionZ

Automata

1

*

FIGURE 3.3
Example of a simple automata model.
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The second example of simple class diagrams is a simple model of a finite 
state machine (automata). The aim of this example is as an easy exercise. We 
will return to the topic of modeling automata more comprehensively at the 
beginning of the next chapter. The key abstractions in this example are a 
finite state machine, a state, and a state transition; which are modeled by the 
classes Automata, State, and Transition, respectively (Figure 3.3).

The finite state machine comprises a number of states. This fact is mod-
eled by the composition relation between the class Automata and the class 
State. The multiplicity from the side of the class Automata is 1 and from 
the side of class State is *. (This notation means that a finite state machine 
must comprise at least one state, which technically sounds like a reasonable 
requirement.)

The state transition links the source and the destination states, and this is 
modeled by two association relations between the classes State and Transition. 
The ends of these association relations from the side of the class Transition 
are named FromSourceState and ToDestinationState, respectively. The multi-
plicity from the side of the class State is set to 1 (because each state transition 
must have exactly one source and one destination state), and from the side 
of the class Transition to 0..* (because a state may have zero or more outgoing 
and zero or more incoming state transitions). The navigability of these two 
association relations is set such that the relation FromSourceState points from 
the class State to the class Transition, whereas the relation ToDestinationState 
points in the opposite direction.

The main problem with this model is ambiguity. The source and the desti-
nation states may seem to be always the same (because both FromSourceState 
and ToDestinationState association relations are connected to the same class, 
namely the class State). However, source and destination states can be, and 
most frequently are, different states. We will come back to this point shortly, 
after introducing additional nodes and relations available for rendering class 
diagrams, to resolve this problem in a less ambiguous way.

The key abstractions related to the transition are the condition that guards 
the transition, the event that fires the transition, and the action that is taken 
by the transition, which are modeled by the classes Condition, Event, and 
Action. Each transition is characterized by these three optional elements, and 
that is modeled by the composition relations between the class Transition 
and the classes Condition, Event, and Action. The fact that these elements are 
optional is modeled by setting the multiplicity to 0..1 from the side of the 
corresponding classes.

Besides actions that are taken during the transitions, we can define state 
bound actions, such as the action that is taken at the entrance to a certain 
state, the action that is performed while the system is in a certain state, and 
the action that is taken at the exit from a certain state (we will encounter 
these and more in the UML statecharts later in this chapter). These action 
types are modeled as the state operations entry(), do(), and exit(), which are 
defined in the table of operations for the class State.
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Until now, we were modeling a generic finite state machine. To make this 
model useful for the implementation of a particular finite state machine, 
first we need to define the concrete conditions, events, and actions. We do 
so through the specialization of the base classes Condition, Event, and Action. 
Figure 3.3 shows the examples of the particular condition, event, and action, 
which are modeled by the classes ConditionX, EventY, and ActionZ, respec-
tively. Finally, to build the particular finite state machine, we need to instan-
tiate the classes.

This concludes the presentation of two simple examples of class diagrams. 
To make this graphical language more expressive and to reduce the ambigu-
ity of the class diagrams, the graphical tool provides the additional set of 
graphical symbols, which are shown in Figure 3.4. The first of them is the 
metaclass, whose instances are classes that are added to the class diagram. 
We can resolve the problem of ambiguity in the previous example exactly by 
using the metaclass instead of the class symbol because it is then clear that 
the source and the destination state may both be the same state or two com-
pletely different states. Again, as for the basic set of symbols, the additional 
symbols have similar categories of properties. The metaclass has the same 
properties as the class, with the exception that its stereotype (in the general 
information section) is fixed to metaclass.

Both the signal and the exception symbols have the same four categories 
of properties, namely, the general information, the table of parameters, the 
table of constraints, and the tagged values. The general information is the 
same as for the interfaces (the name, the full path, the visibility, and the indi-
cators Root, Leaf, and Abstract). The table of parameters stores the information 
about the parameters, which comprise the parameter name, the type, the 
kind (in, out, or in–out), and the default value.

The data type has five categories of properties. These are the general infor-
mation, the table of enumeration literals, the table of operations, the table 
of constraints, and the tagged values. The general information includes the 
name, the full path, the stereotype (none or enumeration), the visibility, and 
the indicators Root, Leaf, and Abstract. If the data type is an enumeration, the 
table of enumeration literals holds the information about the literal names 
and the corresponding values.

A utility is a special class, therefore it has the same properties as the 
class with the exception that its stereotype is fixed to utility. Similarly, 
a parameterized class is a special class that has one or more unbound 
formal parameters, therefore it has the same categories of properties as 
the class. Related to the parameterized class is a bind relation, that binds 
(connects) the designated arguments to the template formal parameters. It 
has four categories of properties: the general information (just the name 
and the description), the list of bound arguments, the table of constraints, 
and the tagged values. The bound element adds the result of binding 
between the template parameters and their actual values. It has the same 
categories of properties as the class.
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FIGURE 3.4
Additional graphical symbols available for rendering class diagrams.
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The next three symbols are the traces, refines, and uses relations. We can 
think of them as specialized dependency relations. The traces relation con-
nects two model elements from two different models. The refines relation 
connects a more detailed model element to its previous version. The uses 
relation indicates the dependency relationship between two model elements 
where one requires another to fully operate. All these relations have the 
same categories of information as the dependency relation, with the excep-
tion that their stereotype is fixed.

The next four symbols are the note, the constraint note, the constraint 
shown as arrow, and the OR constraint, which we have already encountered 
in both use case and collaboration diagrams (described in Chapter 2). The 
last three symbols are used to describe the relations among more than two 
model elements. The first is the N-ary association, which models the associa-
tion among more than two classifiers. Its properties are the same as for the 
binary association with the additional properties for each association end 
(the name, the aggregation, the visibility, the multiplicity, and the navigabil-
ity indicator).

The second symbol is the N-ary association class, which models more com-
plex associations among more than two classifiers. Again, its properties are 
the same as for the binary association class with additional properties for 
each association end. The third and the last symbol is the N-ary object link, 
which interconnects more than two objects. Its properties are the same as the 
binary object link with additional properties for each end (the name and the 
stereotype).

At the end of this section, we focus on the domain-specific class diagrams. 
As already mentioned, the reader should assume and accept that somebody 
has already prepared the infrastructure for the design and implementation 
of communication protocols. There is no need to start modeling generic 
automata every time we start a new project, but rather we do it once and 
then use it on a number of projects. This practice is what in UML is called 
providing generic design mechanisms.

In this book, we design and implement communication protocols based 
on the FSM library. A typical class diagram is shown in Figure 3.5. The FSM 
library is shown as the package FSMLibrary in the diagram and, on most 
occasions, such representation would be sufficient. It actually comprises 
a rather ramified hierarchy of C++ classes (we will go into more details in 
the next chapter). The two most important classes are the FiniteStateMachine 
and FSMSystem. The fact that the FSM library contains these classes is mod-
eled by the composition relations between the package FSMLibrary and the 
classes FiniteStateMachine and FSMSystem. The multiplicity is set to 1 on both 
sides (one library contains one such class).

The communication protocol is modeled by the class Automata. The fact 
that it is a specific type of finite state machine is modeled by the general-
ization and specialization relation between the class Automata and the class 
FiniteStateMachine. The former inherits all the attributes and operations from 
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the latter. The list given in Figure 3.5 is not exhaustive, and its purpose is 
merely to provide the preliminary information about the basic functionality 
provided by the class FiniteStateMachine, and that it is the full set of generic 
design mechanisms that are needed. Once we have this class, designing a 
protocol essentially means defining its states and state transitions, and this is 
basically what we do in this chapter. After the design is finished, implement-
ing the design (in this context) actually means writing the corresponding 
state transition routines (functions) in C++.

Another important class is the class FSMSystem. It actually provides a run-
time system for all communication protocols. At the system startup, the main 
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FIGURE 3.5
Typical communication protocol class diagram.
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program, here referred to as utility class (not shown in Figure 3.5), registers 
the given communication protocol by calling the method Add() of the class 
FSMSystem, and by giving the reference to the class that models the protocol 
(Automata in this example) as its parameter. Once registered, the protocol 
can receive, process, and generate events (messages) through the mailboxes 
provided by the FSMSystem.

As we will see in the next chapter, the FSMSystem manages all events. It 
analyzes the event source and destination to locate the destination proto-
col. Once it is found, the FSMSystem looks up its current state, determines 
the state transition routine based on the event code (type), and calls it. This 
mechanism is modeled by the Uses relation between the class FSMSystem 
and the class Automata.

As we can see, the class Automata is a specialization of the class 
FiniteStateMachine and is used by the class FSMSystem during the system 
run-time. More briefly stated, the class Automata depends on the package 
FSMLibrary. This fact is also modeled in Figure 3.5 by the corresponding 
dependency relation between the class and the package.

3.2  Object Diagrams

Object diagrams are a special type of class diagrams that typically show a 
set of objects (instances of classifiers) and their links. Pure object diagrams 
contain only objects and their links. However, sometimes we may put some 
classifiers in the object diagram, especially to clarify the relations between 
the classes and the objects. We may also use packages or subsystems to deal 
with complexity.

Object diagrams, like class diagrams, are used to show the static design 
view of the system. As already mentioned in the previous chapter, the col-
laboration diagram is used to model the behavior of the system. It also shows 
the architecture of the system; hence, we say that the collaboration diagram 
is organized by the architecture. We can think of the object diagram as one 
snapshot of the collaboration diagram. Imagine that time is frozen. Whatever 
we can see in the collaboration diagram at that single moment of time is an 
object diagram.

Later in this chapter, we will introduce deployment diagrams, and in 
Chapter 4 we will introduce component diagrams. Both deployment and 
component diagrams can contain only objects and their links. In such cases, 
they are actually pure object diagrams.

Clearly, the graphical symbols available for rendering object diagrams are 
the same as the symbols used for class diagrams (sometimes referred to as 
a static structure). In practice, we use only a very limited subset of those 
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symbols, most frequently only two of them (object and object link). The prop-
erties of these symbols are described in Section 3.1.

The usage of object diagrams can reduce the ambiguity of the static struc-
ture twofold. First, by rendering instances of classifiers, we can better under-
stand the relations among them. For example, rendering just the classes in 
the TCP/IP protocol stack model may not give a clear indication of what the 
network really looks like. Second, by showing the values of the key class 
attributes, we can recognize reality more easily. For example, by showing 
the status of the individual protocols, we can comprehend their expectations 
from other cooperating protocols.

These ideas are illustrated by the following two examples. The first is an 
object diagram that shows the snapshot from a simple mail transfer protocol 
(Figure 3.6). The second is an example of a simple finite state machine object 
diagram (Figure 3.7).

Figure 3.6 shows the software running on two host computers that are 
connected to two different local area networks, which are interconnected by 
a router. The host computers clearly require full protocol stacks whereas the 
router requires only the two lowest level layers (IP and network interface). 

status=AWAITING_220
client : SMTPClient

port25c : Port

port25status=opened
tcpc : TCP

ipc : IP

status=active
ic : Ethernet

net1 : LAN

status=active
ir1 : Ethernet

status=active
ir2 : Ethernet

ipr : IP

net2 : LAN

status=active
is : Ethernet

ips : IP

port25status=opened
tcps : TCP

port25s : Port

status=INITIAL
server : SMTPServer

code=220
text=READY FOR MAIL

msg : SMTPMsg

FIGURE 3.6
Snapshot from the simple mail transfer protocol (SMTP).
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One host computer, shown on the left side of the figure, runs the SMTP cli-
ent on top of the TCP/IP protocol. The other host computer hosts the SMTP 
server.

The first benefit of this object diagram is that it really makes clear which 
layers are required by the hosts and which are required by the routers. 
Graphically, we see the network, which was rather difficult to visualize just 
by looking at the class diagram shown in Figure 3.3. Enough order is found 
in this object diagram, too. More symbols are used than in the class diagram, 
but only five per host and two per router. Of course, if we try to model a large 
network there would be a flood of objects; therefore, we should always try to 
restrict our modeling to a certain aspect of a system.

The second benefit is that we can peacefully study all the details of a cer-
tain moment in the life of a protocol, in this case SMTP. It is like looking at 
the photograph of a certain party. This one shows the moment when the 
SMTP server has prepared the message 220 READY FOR MAIL and its inten-
tion was to send it at the moment when the time has been frozen. We can 
imagine what the sensation of looking at a series of such object diagrams 
would be, like watching a replica of an important event in a game in slow 
motion. After receiving the message 220 READY FOR MAIL, the SMTP client 
would prepare the message HELO, and so forth.

Besides current messages, other details are also important. For example, 
Figure 3.6 shows that the TCP port number 25 is opened from both sides, and 
from there we can deduce that the SMTP client and server had to establish 
the TCP connection in the first place, before they could proceed any further. 
Some details may seem obvious (for example, that all Ethernet cards and 
their drivers must be active), but they also help in making the complete pic-
ture of the selected moment. In a series of object diagrams, the changes of 
values of certain attributes, such as status, are the most interesting and most 
informative parts.

The second example of object diagrams is a simple finite state machine 
object diagram, which is shown in Figure 3.7. A simple finite state machine 
object, named aut, is an instance of the class Automata (Figure 3.4). It com-
prises a set of two state objects, namely s0 and s1, which are the instances of 
the class State. Their identifications are S0 and S1, respectively. The current 
state of the automata is the state with the identification S0.

The state object s0 contains a set of two transition objects, namely t00 and 
t01, which are the instances of the class Transition (Figure 3.4). Similarly, the 
state object s1 contains a set with one transition object, named t10. The tran-
sition objects t00, t01, and t10 model the automata state transitions from the 
state with the identification S0 to the state with the identification S0, or more 
briefly from S0 to S0, next from S0 to S1, and last from S1 to S0, respectively.

The attributes of the transition objects are the transition identification, the 
condition that guards the transition, the event that fires the transition, the 
action that is taken by the transition, and the next state identification. Their 
identifiers are id, condition, event, action, and nextSate, respectively. id and 
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nextState would typically be strings or integers. condition, event, and action 
are the instances of the class Condition, Event, and Action.

An important detail is that the values of these attributes are the instances 
of classes that are specialized from the classes Condition, Event, and Action. 
For example, the values of the attribute condition (namely con00, con01, and 
con10), are the instances of the classes (e.g., Condition00, Condition01, and 
Condition10), which are actually specializations of the class Condition. Such 
modeling allows us to use polymorphism, the most powerful abstraction of 
object-oriented design and programming.

3.3  Sequence Diagrams

Two types of UML interaction diagrams are used, namely, sequence diagrams 
and collaboration diagrams. We have already introduced collaboration dia-
grams in the previous chapter. They can be used in both the analysis and 
design phases of communication protocol engineering. Sequence diagrams 
are just another type of interaction diagrams and are semantically equiva-
lent to collaboration diagrams. This means that a one-to-one mapping exists 
between these two formalisms that are used for specifying interactions.

An interaction is basically a set of objects and their relationships, together 
with the messages that are exchanged among the objects. Both sequence and 
collaboration diagrams show interactions. The major difference between 
them is that the sequence diagrams emphasize time ordering of messages 
whereas the collaboration diagrams emphasize the structural organization 
of a set of objects. The sequence diagrams are particularly useful for visual-
izing dynamic behavior in the context of the use case scenario. Generally, 
they are better suited for modeling sequences of events, simple iterations, 
and branching. Alternately, collaboration diagrams are more useful for mod-
eling complex iterations and branching and for visualizing multiple concur-
rent flows of control.

Sequence and collaboration diagrams also differ in appearance. As we 
have already seen in the previous chapter, a collaboration diagram looks like 
a graph. It consists of objects that are linked together in a certain arrange-
ment. A sequence diagram appears more like a table whose columns are 
related to individual objects and whose rows are related to the messages 
that are exchanged among the objects. We can imagine the horizontal axis 
x, at the top of the diagram, pointing from left to right, and the vertical axis 
y that points from top to bottom. The objects that participate in the interac-
tion are arranged across the x-axis, starting on the left with the objects that 
are initiating the interaction and proceeding to the right with more subordi-
nate objects. The messages that are exchanged among the objects are ordered 
in increasing time along the y-axis. (Actually, we have already informally 
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encountered sequence diagrams in Chapter 2. See the example of the SIP 
session setup in Figure 2.13.)

The sequence diagrams have two key features that distinguish them 
among other diagrams:

• Object lifeline
• Focus of control

An object lifeline is a dashed vertical line that represents the existence of 
an object over a period of time. The object lifeline starts with the reception 
of the message stereotyped as <<create>> and ends with the reception of the 
message stereotyped as <<destroy>>. The end of the life of an object is indi-
cated by the mark “X.” However, most of the objects will exist throughout the 
interaction. Such objects are normally placed at the top of the diagram and 
their lifeline typically goes to the end of the diagram.

The focus of control represents the period of time during which the object 
executes. It is rendered as a long, thin rectangle. We can model recursion, a 
call to self-operation, or call-back by placing a new focus of control symbol 
on top of the current focus of control symbol and slightly to the right, so that 
both of the symbols are visible. We can explicitly show the part of the focus 
of control where the actual computation takes place by shading the corre-
sponding region.

We can model the mutation of objects in their state, role, or attribute values 
in sequence diagrams. Two methods to do this exist: The first is by placing 
a new copy of the object in the sequence diagram and showing the change 
by connecting the existing and the new object copy with the transition 
<<become>>. This procedure can be repeated if we want to show a sequence 
of changes. The second method is by placing a new copy of the object directly 
on the object’s lifeline and showing the change of state, role, or attribute val-
ues then and there.

The set of graphical symbols available for rendering sequence diagrams 
is shown in Figure 3.8. Similar to the diagrams that were previously intro-
duced, each of the symbols has its own properties with the exception of the 
focus of control, which has no properties on its own (it is a symbol that can 
exist only on top of the object’s lifeline). The designer must fill in the proper-
ties after adding the symbol to the diagram.

The object and its lifeline have three categories of properties: the general 
information, the table of constraints, and the tagged values. The general 
information includes the name, the full path, the classifier, and the multi-
plicity. Other categories of properties are already explained in the previous 
sections.

The message has four categories of properties: These are the general infor-
mation, the table of arguments, the table of constraints, and the tagged val-
ues (documentation notes). The general information includes the name, the 
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direction (forward or backward), the operation, and the sequence expression. 
The table of arguments holds information about the arguments, such as the 
name, the type, the language, and the value.

The following four types of messages are used:

• Flat
• Call
• Return
• Asynchronous

The flat message models the communication between the objects that con-
vey information, which should result in an action. The call message models 
a synchronous procedure call that should result in some action. The return 
message models returns from the procedure, which conveys the return 
value that will cause an action. The asynchronous message models the 

Object : Class

Message (flat) Message (call)

Message (return) Message (asynchronous)

Note {Constraint}

{Constraint} {OR}

FIGURE 3.8
Set of graphical symbols available for rendering sequence diagrams.
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asynchronous communication between two objects, which also carries some 
information that will trigger an action. The note, the constraint note, the con-
straint, and the OR constraint are symbols that we have already encountered 
and explained in Sections 3.1 and 3.2.

Next, we illustrate the use of sequence diagrams by four examples 
shown in Figures 3.9 through 3.12, which are semantically equivalent to the 

sender dnsc smtpc tcpc tcps dnsssmtps
1: sendMail(msg)

2: domainToIP(domain)

3: dnsReq(domain)

4: dnsRsp(ip)

5: ipadr(ip)
6: open(ip,25)

7: seg(syn)

8: seg(syn+ack)

8.1: openAck
8.2: seg(ack)8.1.1: openAck

8.2.1: openAck

9: mail(220)

10: seg(220)

11: mail(220)
12: mail(HELO)

13: seg(HELO)

14: mail(HELO)

15: mail(250_OK)

16: seg(250_OK)

17: mail(250_OK)
18: mail(MAIL_FROM:)

19: seg(MAIL_FROM:)

20: mail(MAIL_FROM:)

21: mail(250_OK)

22: seg(250_OK)

23: mail(250_OK)
24: mail(RCPT_TO:)

25: seg(RCPT_TO:)

26: mail(RCPT_TO:)

27: mail(250_OK)

28: seg(250_OK)

29: mail(250_OK)

30: mail(DATA)

FIGURE 3.9
Sequence diagram showing the interaction between a simple program for sending and receiv-
ing e-mails and its environment.
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collaboration diagrams shown in Figure 2.9 through 2.12, with one excep-
tion. Figures 3.9 and 2.9 do relate to the same interaction, but they are not 
exactly semantically equivalent because of two reasons. First, the former 
shows fewer objects than the latter, mainly because of the limited diagram 
width. Second, the latter shows only a part of the interaction shown by the 
former. Interestingly enough, this seems to be a general rule. The sequence 
diagrams typically show fewer objects and more messages than collabora-
tion diagrams.

The example shown in Figure 3.9 generally illustrates the same use case 
Send e-mail as the collaboration diagram shown in Figure 2.9. Figure 3.9 
shows only the most important subset of objects but, at the same time, it illus-
trates the interaction long enough to show the moment when the SMTP client 
sends the SMTP message DATA toward the SMTP server. The collaboration 

dnsc dnss

1: dnsReq(domain)

2: dnsRsp(ip)

FIGURE 3.10
Sequence diagram showing the interaction between the DNS client and the DNS server.

tcpc tcps

1: seg(syn)

2: seg(syn+ack)

3: seg(ack)

4: seg(data)

5: seg(fin)

6: seg(ack)

7: seg(fin+ack)

8: seg(ack)

FIGURE 3.11
Sequence diagram showing the interaction between two TCP entities.
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diagram shown in Figure 2.9 shows the situation only up to the point when 
the SMTP client receives the message 220 READY FOR MAIL, which is actu-
ally the very beginning of the SMTP protocol. The names of the objects, mes-
sages (signals), and message arguments used in both figures are explained in 
Chapter 2. The exact flow of events shown in Figure 3.9 is as follows:

 1: The object mailc (not shown in the diagram) sends the signal 
sendMail(msg) to the object sender.

 2: The object sender sends the signal domainToIP(domain) to the object 
dnsc.

 3: The object dnsc sends the signal dnsReq(domain) to the object dnss.
 4: The object dnss sends the signal dnsRsp(ip) to the object dnsc.
 5: The object dnsc sends the signal ipadr(ip) to the object sender.
 6: The object sender sends the signal open(ip,25) to the object tcpc.
 7: The object tcpc sends the signal seg(syn) to the object tcps.

smtpc smtps

1: mail(220)

2: mail(HELO)

3: mail(250_OK)

4: mail(MAIL_FROM:)

5: mail(250_OK)

6: mail(RCPT_TO:)

7: mail(250_OK)

8: mail(DATA)

9: mail(354_START_MAIL_INPUT)

10: mail(MAIL_BODY)

11: mail(250_OK)

12: mail(QUIT)

13: mail(221)

FIGURE 3.12
Sequence diagram showing the interaction between the SMTP client and the SMTP server.
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 8: The object tcps sends the signal seg(syn+ack) to the object tcpc. (The 
event flow now forks into two parallel flows.)

 8.1: The object tcpc sends the signal openAck to the object sender. (The 
first flow begins here.)

 8.1.1: The object sender sends the signal openAck to the object 
smtpc. (The first flow ends here.)

 8.2: The object tcpc sends the signal seg(ack) to the object tcps. (The 
second flow begins here.)

 8.2.1: The object tcps sends the signal openAck to the object smtps.
 9: The object smtps sends the signal mail(220) to the object tcps. (Note: 

We have restarted the message numbering here for brevity. We pro-
moted 8.2.2 to 9.)

 10: The object tcps sends the signal seg(220) to the object tcpc.
 11: The object tcpc sends the signal mail(220) to the object smtpc.
 12: The object smtpc sends the signal mail(HELO) to the object tcpc.
 13: The object tcpc sends the signal seg(HELO) to the object tcps.
 14: The object tcps sends the signal mail(HELO) to the object smtps.
 15: The object smtps sends the signal mail(250_OK) to the object tcps.
 16: The object tcps sends the signal seg(250_OK) to the object tcpc.
 17: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 18: The object smtpc sends the signal mail(MAIL_FROM:) to the object 

tcpc.
 19: The object tcpc sends the signal seg(MAIL_FROM:) to the object tcps.
 20: The object tcps sends the signal mail(MAIL_FROM:) to the object 

smtps.
 21: The object smtps sends the signal mail(250_OK) to the object tcps.
 22: The object tcps sends the signal seg(250_OK) to the object tcpc.
 23: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 24: The object smtpc sends the signal mail(RCPT_TO:) to the object tcpc.
 25: The object tcpc sends the signal seg(RCPT_TO:) to the object tcps.
 26: The object tcps sends the signal mail(RCPT_TO:) to the object smtps.
 27: The object smtps sends the signal mail(250_OK) to the object tcps.
 28: The object tcps sends the signal seg(250_OK) to the object tcpc.
 29: The object tcpc sends the signal mail(250_OK) to the object smtpc.
 30: The object smtpc sends the signal mail(DATA) to the object tcpc.

Another practical detail about sequence diagrams is that not only their 
width but also their height is limited. Because of this, we are normally forced 
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to break the flow of events at a certain point. In the previous example, it 
was after the object smtpc has sent the signal mail(DATA) to the object tcpc. 
Typically, we would continue that flow on another sequence diagram. A good 
practice is to pick the breaking points logically, for example, at the beginning 
or at the end of certain communication phases.

It is also important to emphasize that the sequence diagram in Figure 3.9 
shows only main flows of events. It does not show what happens in the case 
of errors. The error handling is typically shown in separate sequence diagrams. 
We can use packages to wrap together all the related sequence diagrams.

Figure 3.9 shows also that the real overall interaction can be fairly complex. 
To deal with the complexity, we can focus on the individual virtual interac-
tions instead. For example, the sequence diagram showing the interaction 
between the DNS client and server is a trivial one (Figure 3.10). The overall 
flow of events is then reduced to only the following two events:

 1: The object dnsc sends the signal dnsReq(domain) to the object dnss.
 2: The object dnss sends the signal dnsRsp(ip) to the object dnsc.

Similarly, the virtual interaction between two TCP entities, modeled by the 
objects tcpc and tcps, is governed by the TCP protocol. It is slightly more com-
plex and comprises the following flow of events (Figure 3.11):

 1: The object tcpc sends the signal seg(syn) to the object tcps.
 2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
 3: The object tcpc sends the signal seg(ack) to the object tcps.
 4: The object tcpc sends the signal seg(data) to the object tcps. (This is the 

data transmission phase.)
 5: The object tcpc sends the signal seg(fin) to the object tcps.
 6: The object tcps sends the signal seg(ack) to the object tcpc.
 7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
 8: The object tcpc sends the signal seg(ack) to the object tcps.

Finally, the virtual interaction between the SMTP client and server, modeled 
by the objects smtpc and smtps, is of the same order of complexity (Figure 3.12). 
The interaction is governed by the SMTP protocol. The corresponding flow 
of events is the following:

 1: The object smtps sends the signal mail(220) to the object smtpc.
 2: The object smtpc sends the signal mail(HELO) to the object smtps.
 3: The object smtps sends the signal mail(250_OK) to the object smtpc.
 4: The object smtpc sends the signal mail(MAIL_FROM:) to the object 

smtps.
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 5: The object smtps sends the signal mail(250_OK) to the object smtpc.
 6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
 7: The object smtps sends the signal mail(250_OK) to the object smtpc.
 8: The object smtpc sends the signal mail(DATA) to the object smtps.
 9: The object smtps sends the signal mail(354_START_MAIL_INPUT) 

to the object smtpc.
 10: The object smtpc sends the signal mail(MAIL_BODY) to the object 

smtps.
 11: The object smtps sends the signal mail(250_OK) to the object smtpc.
 12: The object smtpc sends the signal mail(QUIT) to the object smtps.
 13: The object smtps sends the signal mail(221) to the object smtpc.

3.4  Activity Diagrams

Up to now, we have introduced three types of diagrams that are used for 
modeling dynamic aspects of systems. These are the use case, the collabora-
tion, and the sequence diagrams. The use case diagrams are used first for 
capturing the requirements of the system. Next, they are translated into col-
laboration diagrams that model the architecture of the system. Then, at the 
beginning of the design phase, both collaboration and sequence diagrams 
are used for building up the storyboards of scenarios.

These scenarios describe the interaction among the most interesting 
objects; hence, we refer to them as interaction diagrams. The interaction itself 
is shown by the messages that are dispatched among the objects. Generally, 
interaction (collaboration and sequence) diagrams are similar to Gantt charts. 
The main difference between the collaboration and sequence diagrams is 
that the former emphasizes structural relations whereas the latter empha-
sizes the time ordering of messages.

The storyboards of scenarios are a good place to start the design— therefore, 
they are a type of design front-end. Although the interaction diagrams make 
a perfect start of the design, they are seldom used as the final artifacts of the 
design phase because of two problems:

• The interaction diagrams are most frequently incomplete.
• The interaction diagrams specify the external behavior of individual 

objects, leaving their internal behavior unknown.

As already mentioned, the interaction diagrams typically cover the main 
flow of events and, because of the limited space in the diagrams, even the 
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main flow must be partitioned into logical communication phases. Other, 
less frequent flows (including error handling) are modeled in additional 
interaction diagrams. All these diagrams can be sorted into packages for 
easier manipulation. However, no matter how pedantic the engineer is, the 
set of interaction diagrams remains incomplete by an unwritten rule. Some 
scenarios are always missing. In the area that is of primary interest for this 
book, the packages of interaction diagrams are especially vulnerable to the 
specification of timers and complex, unforeseen error scenarios.

Another problem we encounter while trying to make the packages of inter-
action diagrams complete is that they become voluminous and, as a result, 
hard to comprehend. This behavior is what we should expect when we try 
to enumerate and describe the cases instead of trying to create the rules that 
generate these cases. Even a simple program performing some simple arith-
metic calculations can produce enormous numbers of execution cases when 
we take into account the cardinal numbers of sets of values that the com-
mon variable types can have. Because of the coverage problems, an implicit 
engineering rule is that a design based solely on the interaction diagrams is 
considered as incomplete. This may not be true in the case of simple systems, 
but generally it is. Therefore, we need the design back-end: the means to end 
the design.

The secret of how to finish the design is found by turning our attention 
to the internal behavior of the objects and trying to specify it. This attitude 
is like turning the interaction diagrams inside out. We want to specify the 
activities that should take place to provide the desired external behavior and 
what should be the order (flow) of the activities in the scope of a single object 
or in the scope of a set of objects that are involved in the interaction. The 
means to do this in UML are the activity diagrams, which are similar to 
PERT network charts. The alternative means to specify the behavior of single 
objects in UML are statecharts, which will be introduced in the next section.

An activity diagram is essentially a flowchart that shows the flow of con-
trol from activity to activity. If we model the behavior of a single object, we 
render the flow of control within that single object. The activity diagrams are 
even more powerful and they allow us to model the behavior of a group of 
objects by rendering the flow of control in that larger scope. Additionally, we 
can model a single flow of control or more concurrent flows of control within 
both a single object and a group of objects.

In the context of a single object, we typically partition its behavior into a set 
of its operations and then model the flow of control of these operations indi-
vidually. Therefore, the most elementary level of modeling by using activity 
diagrams is the level of the object’s operation. On the opposite side of the 
scope scale, we can model the workflow of a group of cooperating objects. 
We will return to that point shortly.

The most elementary activity is an action state. It is defined as an atomic 
(i.e., uninterruptible) program computation. Examples of action sates are the 
following:
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• Create another object
• Destroy another object
• Call an operation on an object
• Return a value
• Send a signal to an object
• Receive a signal from an object
• Evaluate an expression
• Execute a single statement

The action states can be specified in informal text, pseudocode, or a higher-
level programming language. Although it is generally assumed that the 
action state takes a small amount of execution time, that finite amount of 
time must be taken into account, especially in the models of hard, real-time 
systems.

By combining more action states, we are building more complex activities, 
which are referred to as activity states. We can think of the activity state as 
a composite state that is made of other activity states and action states. The 
activity state can also comprise some special actions, such as entry and exit 
actions. The former is taken at the entrance to the activity state, and the latter 
is taken at its exit.

The state transitions in activity diagrams normally take place after comple-
tion of the last activity in the originating state. A transition without a guard 
(condition) immediately passes control to the destination state. Such a transi-
tion is referred to as a triggerless, or completion, transition. A transition can 
branch into two or more guarded transitions, or it can fork into more concur-
rent transitions. More concurrent transitions can join into a single transition, 
as we will explain shortly with some simple examples.

An activity diagram is a special type of a graph that comprises a set of 
vertices that are interconnected by arcs. The basic set of graphical symbols 
available for rendering activity diagrams is shown in Figure 3.13. Each sym-
bol has a set of properties that must be set by the designer once they add a 
symbol to the diagram.

The initial state has three categories of properties. These are the general 
information, the table of constraints, and the tagged values (documentation 
notes). The general information is just the name and the type (initial). Each 
activity diagram must start with this symbol.

The final state has the same categories of properties as the initial state sym-
bol, with the exception that its type is final. If the activities specified by the 
activity diagram go on forever, the diagram will not contain this symbol. 
Alternately, it can contain one or more such symbols.

The action state has five categories of properties, namely, the general infor-
mation, the call action, the list of deferred events, the table of constraints, and 
the tagged values (documentation notes). The general information comprises 



76 Communication Protocol Engineering

the name, the stereotype, and the partition. The call action specifies the 
name of the operation and the table of its arguments, which holds informa-
tion about the argument name, type, language, and value.

The activity state has six categories of properties. These include the gen-
eral information, the table of entry actions, the table of exit actions, the table 
of internal transitions, the table of constraints, and the tagged values. The 
general information is just the name and the stereotype. Both the table of 
entry and the table of exit actions store the corresponding action names and 
their types. The table of internal transitions comprises their properties. Each 
internal transition is characterized by its name, its stereotype, and the event 
that triggers the transition.

The control flow transition has four categories of properties, including the 
general information, the table of actions, the table of constraints, and the 
tagged values (documentation notes). The general information comprises 
the name and, optionally, the corresponding event and the guard expres-
sion. The table of actions holds action names and their types. The decisions, 
as well as the fork and join transitions, have three categories of properties, 
namely, the general information (just the name), the table of constraints, and 
the tagged values.

We illustrate the usage of these basic symbols by the following four sim-
ple examples shown in Figures 3.14 through 3.17. The example in Figure 3.14 
shows a simple sequence of interruptible activities (i.e., activity states), 
namely, openPort(p), sendData(seg), and closePort(p). Normally, these activity 
states would be modeled by the activity diagrams themselves on the sub-
ordinated level of the hierarchy. The control flow transitions between the 
individual activity states in this example are triggerless, or completion 

ActionState

State

FIGURE 3.13
The basic set of graphical symbols available for rendering activity diagrams.
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transitions, which means that they are not triggered by other events. They 
also may not be guarded because their sources are not decisions.

The exact semantics of the states in this example are not really important; 
for example, we can interpret it as open the given port, send the given seg-
ment of data, and close the port at the end. Generally, we should think of 
the activity state as an operation (i.e., procedure or function) which consists 
of executable statements or calls to other operations, including calls to itself 
(recursion). Thinking about forward engineering helps make useful activity 
diagrams. Try to imagine how the model would map to the code. It really 
does not make any difference how the mapping is made, either automatically 
with a tool or by hand.

The example in Figure 3.15 is an illustration of activity flow with branch-
ing. Actually, it is a simplified implementation of the reliable transport mech-
anism known as Automatic Repeat Question (ARQ). The whole operation 
begins by starting the retransmission timer T1. This beginning is modeled 
by the activity state startTimer(T1). The operation then sends the datagram 
and waits for the answer. These two activities are modeled by the activity 
state sendPacket(d) and a=waitAnswer(), respectively.

If the retransmission timer expires, the packet is retransmitted. This mech-
anism is modeled by the transition guarded by the expression [T1 expired], 
the activity state restartTimer(T1), and the completion transition back to the 
activity state sendPacket(d). The reception of the answer is modeled by the 

openPort(p)

sendData(seg)

closePort(p)

FIGURE 3.14
An example of a simple sequence of activity states.
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startTimer(T1);

sendPacket(d);

a=waitAnswer();

[T1 expired]
restartTimer(T1);

stopTimer(T1);

[else]

return true;

return false;
[ELSE]

[a==ACK]

FIGURE 3.15
Example of a simple flow of activities with branching.
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transition that covers all the other cases (guard expression [ELSE]). The oper-
ation proceeds by stopping the retransmission timer, and this action is mod-
eled by the activity state stopTimer(T1). If the answer is the acknowledgment 
(ACK), the operation returns the value true; otherwise, it returns the value 
false.

The previous example uses two branches. Each branch has one incom-
ing and two or more outgoing transitions. The outgoing transitions are 
guarded by the Boolean expressions that are evaluated at the entrance to 
the branch. The set of guards has two important features:

• The guards must not overlap—this makes the flow of control 
unambiguous.

• The guards must cover all possibilities—this ensures that the flow 
of control is not going to freeze.

Precisely these two features force us to make complete models and speci-
fications of activities that describe the behavior of the system. When we 
render interaction (collaboration and sequence) diagrams, no such enforce-
ments are present. As a result, they remain unfinished. Of course, at the 
time when we render interaction diagrams, we really do not want to make 
them final; rather, we want to check the most important aspects and sce-
narios, and to make our analysis more comprehensive and useful for the 
finalization later. Therefore, when we start rendering the activity diagram, 
we already have a good overall vision, but non-overlapping and complete 
coverage features are the driving forces of the design finalization.

One safe way to provide both of these features is to use only the decisions 
with two outgoing transitions and to guard one of them by the keyword 
ELSE, as in the example in Figure 3.15. Special attention should be paid to 
the decisions with more outgoing transitions, which are guarded by explicit 
expressions (i.e., without the keyword ELSE). However, the price that we 
may pay for safety is ambiguity. For example, if the operation in the previ-
ous example returns the value false, it might do so because the correct not 
acknowledge answer (NAK) has been received. However, the operation will 
return the same value if any other message (including corrupted ACK or 
NAK) has been received.

The example in Figure 3.16 illustrates the usage of loops in activity dia-
grams. Imagine that the IP protocol must route a datagram over a physical 
network, which has the Maximal Transfer Unit (MTU) smaller than the data-
gram size. Normally, the IP protocol partitions the datagram into fragments 
(that fit MTU) and routes the resulting fragments individually in such cases. 
The standard means to model repetitive activities in activity diagrams are 
loops.

The example in Figure 3.16 starts by setting the control variable i to the 
value 0. It continues with no operation activity state, followed by the decision 
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that checks the loop continuation condition (i < n). If the condition is satis-
fied, the flow enters the loop body (sendFragment(i)). The loop body is fol-
lowed by the activity state that updates the control variable (i = i + 1). The 
example terminates when the loop continuation condition becomes false.

The example in Figure 3.17 shows the usage of concurrent control flows. 
Imagine that we want to model a simple communication over the TCP con-
nection. First, we must establish the TCP connection by opening a particular 
TCP port. We model this by the activity state openPort(p). Once the connec-
tion is established, the TCP protocol provides simultaneous transfer of data 
in both directions (full-duplex). To model that, we need to fork a single flow 
of control into two parallel (concurrent) flows of control. One of them enters 
the activity state sendData(), which models the activity of sending the data to 
the remote site. The other control flow enters the activity state receiveData(), 
which models the activity of receiving the data from the remote site.

These two activities logically evolve in parallel over time. On a multipro-
cessor system, they can be deployed on two different processors to maximize 
the system throughput. In such a case, these two activities would also be par-
allel in reality. Alternately, single-processor systems create quasi-parallelism 
using the time-sharing operating system. The activities are then not paral-
lel in reality, but they are still concurrent because they can compete for the 
same resources. Additionally, the activities can communicate using signals. 

i = 0;

sendFragment(i);
[i < n]

i = i + 1;

[ELSE]

no operation

FIGURE 3.16
Example of a loop in an activity diagram.
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Traditionally, such communicating sequential processes are referred to as 
coroutines.

Although the model shown in Figure 3.17 is fairly simple, it may reflect a 
realistic communication, such as a Telnet session. Imagine that the activity 
state sendData() is a composite state that reads the user keystrokes and sends 
them to the Telnet server over the TCP connection, in a loop, until the end-
of-file key combination is detected. The activity state receiveData() in this sce-
nario would be also a composite activity state, which receives the responses 
from the Telnet server and displays them on the monitor in a loop, until the 
end-of-communication signal is detected (typically, it would be sent when 
the end-of-file key combination is detected).

Once one of the parallel activities finishes, it proceeds to the control flow 
joint synchronization point where it waits for the other parallel activity to 
finish. When both of the activities are finished, the corresponding parallel 
control flow joins into a single control flow, which enters the activity state 
closePort(p); after finishing that activity, it terminates.

openPort(p);

sendData(); receiveData();

closePort(p);

FIGURE 3.17
Example of a simple set of concurrent flows.
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As we have seen from the previous example, fork and join synchronization 
points are rendered as either thick horizontal or vertical lines. It is impor-
tant to remember that they must be balanced. Similar to the subexpression—
which must begin with the opening parenthesis and end with the closing 
one—each nesting level of the concurrent control flows must begin with the 
fork symbol and end with the corresponding join symbol. Apart from that, 
no restrictions are placed on the number of nesting levels, at least not in the-
ory. Of course, in practice we should not go beyond a manageable number.

The set of additional symbols that are available for rendering activity dia-
grams is shown in Figure 3.18. These are the object in state, the object in flow, 
and the swim lane symbols, as well as the symbols common for all diagrams, 
namely, the note, the constraint note, the two-element constraint, and the OR 
constraint.

The object flow transition enables us to show how the object state changes 
in the activity diagrams. Typically, we render the objects showing the cur-
rent and the new states and we connect them by the object flow transition. 
The objects themselves may be results of activity states and can be used by 
other activity states. The object flow symbol has the same four categories of 
properties as the control flow symbol (described previously in this section).

The swim lane has no strict semantics. It is normally used to show indi-
vidual parties in the workflows. The swim lane is typically implemented as 
a class or a set of classes. It is better suited for modeling business processes, 
but it can also be used for modeling communication protocols. The swim 
lane has three categories of properties: general information (essentially, its 
name), the table of constraints, and the tagged values.

Swimlane
Object : Class

Note {Constraint}

{Constraint} {OR}

FIGURE 3.18
Additional graphical symbols available for rendering activity diagrams.
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The example in Figure 3.19 illustrates the usage of objects, data flow transi-
tions, and swim lanes, with the example of activities initiated by the Domain 
Name System (DNS) client request for mapping a given domain name onto 
the corresponding IP address. Figure 3.19 is a type of a workflow conducted 
by the DNS client and server in their cooperative work of translating a 
domain name into the IP address. The DNS client is represented by the first 
swim lane and the DNS server is represented by the second. This activity 

DNS serverDNS client

m1=createDNSmsg();

m1.setDomain(D);

send(m1); m2=receive();

m2.setIP(ip);

ip=map(domain);

send(m2);m3=receive();

return m3;

domain=?
ip=?

m1 : DNSmsg

domain=D
ip=?

m1 : DNSmsg

domain=D
ip=?

m2 : DNSmsg

domain=D
ip=?

m2 : DNSmsg

domain=D
ip=IP

m2 : DNSmsg
domain=D
ip=IP

m3 : DNSmsg

ip=IP
domain=D

m3 : DNSmsg

domain=D
ip=IP

m3 : DNSmsg

Input param: D
D is the given
domain name.

FIGURE 3.19
Workflow between the DNS client and server with the message flow. 
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diagram shows both the control flow among individual activity states and 
data flow, which are created by a series of objects that are consumed and 
produced by the activity states of both DNS client and server.

The given domain name is the input parameter of the DNS client opera-
tion that translates the domain name into the corresponding IP address. 
This operation starts by the activity state createDNSmsg(), which creates an 
empty DNS message. This action is modeled by placing the object m1 that 
represents the DNS message in the activity diagram and by connecting it to 
the activity state createDNSmsg(), with the arrow pointing toward the object 
m1. This means that the object m1 is produced by the activity state creat-
eDNSmsg(). The fact that the message is empty is indicated by the unknown 
values of both attributes domain and ip (the unknown value is denoted by the 
question mark character, “?”).

Next, the activity state sets the attribute domain to the value of the input 
parameter D, thus creating a new state of the object m1. This action is mod-
eled by placing a new copy of the object m1 in the activity diagram and by 
adding two object flow arcs. The first connects the previous object copy and 
the activity state m1.setDomain(D). The arrow points toward the activity state, 
which means that the state consumes the object. The second object flow arc 
connects the activity state and the new copy of the object m1, thus implying 
that the activity state produces it.

The control flow then forks into two independent flows. One is conducted 
by the DNS client and the other is conducted by the DNS server. The DNS 
client continues by sending the DNS message as a DNS request to the DNS 
server. The corresponding activity state creates a new object, named m2, and 
places it in the second swim lane, because we assume that the DNS server 
runs on a different machine, or at least in a different address space. The DNS 
server, in turn, receives the DNS message. A common mechanism for copy-
ing the message from an internal operating system buffer to the buffer that 
is located within the address space of the DNS server is modeled by placing 
two different copies of the object m2.

The DNS server continues by translating the given domain name into 
the corresponding IP address and by setting the attribute ip to the value IP, 
which denotes the result of that translation. This fact is shown in the third 
copy of the object m2. The DNS server proceeds by sending the completed 
DNS message, which models the DNS response message, to the DNS client, 
which, in turn, receives it and creates the copy of the object m3 in its address 
space. Finally, two independent control flows join together and the DNS cli-
ent returns the completed DNS message to its user, thus creating the final 
copy of the object m3.

As this example shows, the models of the workflows are useful because 
they show and specify the external behavior, i.e., the interface and protocol 
between the objects in the form of the corresponding sequence of messages 
exchanged by the objects, as well as the internal behavior of objects in the 
form of the series of activity states visited by them. The first is created by 
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modeling the data and object flow, and the second is created by modeling 
the control flow across the objects. Again, by taking care of the complete 
coverage of possibilities, without any overlaps, we ensure that the model is 
complete. (This was not the main goal of the last example, at least not to the 
extent of the previous one, but we should keep that in mind.)

Figure 3.20 shows the activity diagram for one real protocol, TCP, and fol-
lows the conventions introduced by the corresponding IETF RFC 793. The 
user requests are written in capital letters. The user requests are OPEN, 
SEND, and CLOSE. Two types of OPEN requests are used, namely active 
OPEN and passive OPEN. The difference between the two depends on which 
one is taking the initiative in the connection establishment procedure.

The next convention is that the names of the events and actions are written 
in lowercase letters, with the following abbreviations:

• TCB (Transmission Control Block)
• snd (send)
• rcv (receive)
• SYN (indicates that the synchronization bit of the TCP segment is 

set)
• ACK (indicates that the acknowledgment bit of the TCP segment is 

set)
• SYN, ACK (both SYN and ACK bits are set)
• FIN (indicates that the final bit of the TCP segment is set)
• ACK of SYN (denotes the acknowledgment of the SYN segment)
• ACK of FIN (denotes the acknowledgment of the FIN segment)
• MSL (Maximum Segment Lifetime)

The TCP events are actually modeled as guard expressions whereas the 
TCP activities are modeled as UML action states (a relatively short and unin-
terruptible series of executable statements). Notice that we could model the 
TCP activities either by action or by activity states because these activities 
are essentially interruptible. However, because they can be implemented 
as rather short routines—which do not involve reception of any signals— 
modeling them as action states makes more sense than as activity states.

The TCP protocol spends most of the time in one of its stable states wait-
ing for a certain event to occur. The TCP stable states are modeled by the 
UML activity states. While being in one of its stable states, the TCP protocol 
just waits for an event (it does not execute any statements). The process that 
executes the TCP protocol is blocked and it does not compete for the pro-
cessor’s execution time. Therefore, the activity corresponding to the stable 
state is more than interruptible—it is blocked. Because such an abstraction 
is missing in the UML activity diagrams, we are forced to model it with an 
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[active OPEN]

[passive OPEN]

create TCB

CLOSED

LISTEN

create TCB

snd SYN

SYN SENT

[CLOSE]

delete TCB

SYN RCVD
[rcv SYN]

snd ACK

snd SYN
[SEND][rcv SYN]

snd SYN, ACK

snd ACK

[rcv SYN, ACK]

ESTAB
[rcv ACK of SYN]

snd FIN

[CLOSE]

FIN WAIT 1

[CLOSE]
snd ACK

[rcv FIN]
CLOSE WAIT

snd FIN

[CLOSE]

LAST ACK

CLOSED

[rcv ACK of FIN]FIN WAIT 2

snd ACK
[rcv FIN]

CLOSING

[rcv ACK of FIN]

snd ACK

[rcv FIN]

TIME WAIT delete TCB
[Timeout=2MSL]

[rcv ACK of FIN]

FIGURE 3.20
TCP activity diagram.
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abstraction that is the closest to it, and that is the activity state. The model 
of the TCP protocol shown in Figure 3.20 comprises the following activity 
states (the names of the states are taken from the RFC 793):

• CLOSED (no connection exists)
• LISTEN (wait for a connection request from any remote TCP and 

port)
• SYN SENT (wait for a matching connection request after having sent 

a connection request)
• SYN RCVD (wait for a confirming connection request acknowledg-

ment after having both received and sent a connection request)
• ESTAB (the connection is established, i.e., open)
• FIN WAIT 1 (wait for a connection termination request from the 

remote TCP, or an acknowledgment of the connection termination 
request that was previously sent)

• CLOSING (wait for a connection termination request acknowledg-
ment from the remote TCP)

• FIN WAIT 2 (wait for a connection termination request from the 
remote TCP)

• TIME WAIT (wait for enough time to pass to be sure that the remote 
TCP has received the acknowledgment of its connection termination 
request)

• CLOSE WAIT (wait for a connection termination request from the 
local user)

• LAST ACK (wait for an acknowledgment of the connection termina-
tion request previously sent to the remote TCP, which includes an 
acknowledgment of its connection termination request)

The activity diagram shown in Figure 3.20 is fully compliant with the orig-
inal TCP standard. Interested readers can refer to IETF RFC 793 for more 
details.

The last example in this section shows a model of a simplified send e-mail 
operation. The corresponding activity diagram (Figure 3.21) is a straight-
forward implementation of a typical SMTP scenario (client side), which 
has already been introduced in this chapter (Figure 3.12) and in Chapter 2 
(Figure 2.12). Although simplified, in the sense that it just follows the suc-
cessful path of the SMTP scenario, it is a complete specification of a desired 
behavior because it covers all possibilities in a non-overlapping manner.

Again, like the previous example, the events associated with the reception 
of the corresponding messages are modeled as guard expressions, while the 
actions taken by the SMTP client are modeled by the corresponding action 
states. Additional similarity with the previous example is that the SMTP 
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WAIT 220

snd HELO

[rcv 220]

WAIT  250

snd MAIL FROM:

[rcv 250]

WAIT 250

snd RCPT TO:

[rcv 250]

WAIT 250

snd DATA

[rcv 250]

WAIT 354

return false
[ELSE]

snd BODY

[rcv 354]

WAIT 250

snd QUIT

[rcv 250]

WAIT 221

return true

[rcv 221]

return false
[ELSE]

return fa lse
[ELSE]

return false
[ELSE]

return false
[ELSE]

return false
[ELSE]

return false
[ELSE]

FIGURE 3.21
Simple send e-mail operation activity diagram (SMTP client side).
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client, like the TCP protocol, spends most of its time in its stable states, wait-
ing for a message from the SMTP server. If the received message is the one 
expected, the SMTP client sends the next message, prescribed by the ideal 
SMTP scenario, and proceeds to the next stable state. If the received message 
is not the one expected, the SMTP client returns the value false and the opera-
tion terminates.

The e-mail is successfully sent if all of the prescribed messages between 
the SMTP client and server are successfully exchanged. In this case, the send 
e-mail operation returns the value true and terminates.

3.5  Statechart Diagrams

In contrast to activity diagrams—which can be used for modeling activities 
both inside the individual objects and across the workflow of objects—the 
statechart diagrams are normally used for modeling the lifetime of a single 
object, typically, an instance of a class or a use case. The activity diagrams 
emphasize the flow of the action and the activity states, whereas the stat-
echarts emphasize the event-ordered behavior of an object, which is espe-
cially suitable for modeling reactive systems.

The common feature of both activity diagrams and statechart diagrams 
is that they aim at making complete models of behavior, i.e., for use in the 
design back-end. The driving forces for providing complete behavior speci-
fications are the same, namely, the complete coverage of possibilities without 
overlaps. The styles differ a bit. By an unwritten rule, the decision symbols 
are extensively used in activity diagrams and seldom used in statechart dia-
grams. Therefore, the coverage of possibilities is shown explicitly in activity 
diagrams and more implicitly in statechart diagrams.

That the activity and statechart diagrams are semantically equivalent is 
also important to emphasize, i.e., we can use both of them for modeling the 
same behavior on a comparable level of details. They merely provide two dif-
ferent views of the same behavior. The activity diagrams are better suited for 
modeling individual operations, whereas the statechart diagrams are better 
for modeling the behavior of entire stateful objects, especially if the behavior 
is driven by events (messages).

Statecharts were originally invented for modeling state machines, which 
makes them a perfect tool for modeling communication protocols because the 
protocols are essentially state machines. According to the UML terminology, 
a state machine is a sequence of states an object goes through in its lifetime. 
A state is a situation during which an object satisfies a certain condition, per-
forms an activity, or waits for an event. An event is an occurrence of a stimulus 
that triggers the state transition. An action is an atomic executable statement 
(computation). An activity is a non-atomic execution composed of actions and 
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other activities. A transition is a relation between the source and the target 
states (these can be different states or the same state) that specifies the actions to 
be taken when the given event occurs and the given guard condition is satisfied.

The key abstractions in the context of state machines are the object state 
and the state transition. We can think of the object state as a period of an 
object’s lifetime (it can be just a moment characterized by a certain condi-
tion, a period of a certain activity, or an interval of time in which the object 
waits for a certain event). Alternately, we can think of the state transition as a 
rather short interval of object’s lifetime, which is related to actions caused by 
a certain event, and is defined by the following five attributes:

• The source state
• The event trigger
• The guard condition
• The actions
• The target state

A statechart diagram is a special type of graph that comprises a set of 
vertices that are interconnected by arcs. The basic set of graphical symbols 
available for rendering statechart diagrams is shown in Figure 3.22. Each 
symbol has a set of properties that must be set by the designer once they add 
the symbol to a diagram.

The initial state has three categories of properties. These are the general 
information, the table of constraints, and the tagged values (documentation 
notes). The general information is just the name and the type (initial). Each 
statechart diagram must start with this symbol.

The final state has the same categories of properties as the initial state 
symbol, with the exception that its type is final. If the lifetime specified by 
the statechart diagram is infinite, the diagram will not contain this symbol. 
Alternately, it can contain one or more such symbols.

The state has six categories of properties. These include the general infor-
mation, the table of entry actions, the table of exit actions, the table of inter-
nal transitions, the table of constraints, and the tagged values. The general 

State

FIGURE 3.22
Basic set of symbols available for rendering statecharts.
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information is just the name and the stereotype. Both the table of entry and 
the table of exit actions store the corresponding action names and their 
types. The table of internal transitions comprises their properties. Each inter-
nal transition is characterized by its name, its stereotype, and the event that 
triggers the transition.

The following eight common types of actions are used:

• Create an object
• Destroy an object
• Call an operation on another object
• Call an operation on this object (local invocation)
• Send a signal (message) to another (or this) object
• Return a value
• Terminate execution
• Uninterrupted action (other unclassified types of actions)

Four common types of events are also used:

• Signal event: This object has caught (received) the signal (message) 
that was thrown (sent) by another (or this) object. In UML, we model 
the signal by the class stereotyped as <<signal>>. We can also use a 
dependency relation, stereotyped as <<send>>, between the opera-
tion of the class that sends the signal and the class that defines the 
signal to explicitly show the source of the signal. A signal is an asyn-
chronous event.

• Call event: The object’s operation is called by another (or this) 
object. A call event is a synchronous event. The event name and the 
parameters are the names and the parameters of the corresponding 
operations, respectively.

• Change event: The given condition is satisfied. Generally, the condi-
tion is related to the state of this object (value of its attributes) or to 
absolute time. We use the keyword when to specify the condition, 
e.g., when((time == 17:00), or when(key == pressed). A change event is 
an asynchronous event.

• Time event: The given interval of time has expired. We use the key-
word after to specify the expression that evaluates to a period of 
time, e.g., after(10s), or more symbolically after(T1), which means that 
the timer T1 has expired. By default, the starting time of such an 
expression is the time since entering the current state. If we want the 
starting time to be other than that, we must specify it explicitly. We 
should note that time events enable implicit timer management, as 
will be illustrated shortly.
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The transition has four categories of properties. These are the general 
information, the table of actions, the table of constraints, and the tagged 
values (documentation notes). The general information comprises the name 
and optionally the corresponding event and the guard expression. The table 
of actions holds action names and their types. The decision has three cat-
egories of properties, namely, the general information (just the name), the 
table of constraints, and the tagged values (same as the decision in activity 
diagrams).

Simple examples that illustrate the usage of the basic set of graphical sym-
bols for rendering statechart diagrams seem to be appropriate at this point. The 
following two examples, shown in Figures 3.23 and 3.24, are semantically 
equivalent to the simple examples of activity diagrams shown in Figures 
3.14 and 3.15, respectively. The activity diagram shown in Figure 3.14 illus-
trates a sequence of three activity states, namely, openPort(p), sendData(seg), 
and closePort(p). Figure 3.23 shows three versions of statechart diagrams that 
model the same behavior. These are the versions A, B, and C. 

Version A models the behavior by a sequence of three transient states, 
namely, Opening, Sending, and Closing. By selecting appropriate names, we 
can indicate what type of activity is taking place in each of the states. The 
original activities openPort(p), sendData(seg), and closePort(p) are modeled 
as internal transitions of the states Opening, Sending, and Closing, respec-
tively. We could also use entry or exit actions instead of internal transitions. 
Alternately, we could model this simple behavior by only one transient 
state with three internal transitions. Generally, by compressing models we 
decrease their clarity, and we should seek the compromise appropriate for 
the project at hand. Of course, defining clarity is tricky because it is essen-
tially a matter of taste.

Version B is the model of the same behavior that employs another way of 
modeling activities in the statechart diagrams, and that is by actions taken by 
state transitions. This version of the model comprises three transient states, 
namely, Initial, Ready, and Finished, which are connected by triggerless transi-
tions. Such transitions take place immediately after their source state is left 
(finished). The original activities openPort(p), sendData(seg), and closePort(p) 
are modeled here by the actions of the corresponding state transitions.

Finally, version C is the most compressed form of the model with the 
equivalent semantics. It comprises only one state transition, from the ini-
tial to the final state, which conducts a series of actions, namely, openPort(p), 
sendData(seg), and closePort(p). This extreme shows the power of statechart 
diagrams. Generally, statecharts are more expressive than activity diagrams 
when it comes to modeling state machines, therefore we can model the same 
behavior in less space.

The activity diagram shown in Figure 3.15 is a model of a reliable packet 
delivery operation, which starts the timer T1, sends a packet, and waits for 
the answer from the remote site. If the timer T1 expires before the answer is 
received, the packet is sent again. If the answer is ACK, the operation returns 
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the value true. Otherwise, it returns the value false. Figure 3.24 shows two ver-
sions of statechart diagrams that are models of the same behavior, namely, 
versions A and B.

Version A models the given behavior by explicit, rather than implicit, timer 
management. The triggerless transition from the initial state to the Waiting 
starts the retransmission timer T1 and sends the packet by conducting 
the actions startTimer(T1) and sendPacket(d). The expiration of the timer T1 
is modeled here by the signal event T1 expired. The corresponding transi-
tion restarts the timer T1 and sends the packet again. The reception of the 
answer from the remote site is modeled by the signal answer received. The 
corresponding transition stops the timer T1 and leads to the decision with 

Waiting
/ startTimer(T1), sendPacket(d)

T1 expired/restartTimer(T1), sendPacket(d)

answer received/stopTimer(T1)

[answer==ACK]/return true

[ELSE]/return false

Waiting
/ sendPacket(d)

after: T1/sendPacket(d)

answer received

[answer==ACK]/return true

[ELSE]/return false

Version A

Version B.

FIGURE 3.24
An example of a simple state machine with alternative paths and loops of evolution.



95Design

two outgoing transitions. The first is taken if the answer is ACK; otherwise, 
the second is taken. Those who prefer not to use decision symbols in their 
statechart diagrams should delete it along with the previous transition, and 
add the event answer received to both transitions that lead to the final state.

Version B, in contrast to version A, models the given behavior by implicit 
timer management. Here the triggerless state transition from the initial 
state to the Waiting state just sends the packet by conducting the action 
sendPacket(d). The existence of the state transition triggered by the time event 
after: T1 implicitly implies that the timer T1 has started at the entrance of the 
Waiting state. If the timer T1 expires, the packet is sent again by the action 
sendPacket(d) and the timer T1 is restarted at the new entrance to the Waiting 
state. The event answer received occurs when this object receives the answer 
from the remote side. This event triggers the transition that leads to the deci-
sion and, later, to the final state. The timer T1 is implicitly stopped at the 
exit from the Waiting state. The result is a more compressed form of a model 
with more implicit details, which may not be seen at first glance. We can use 
either one of these two styles, but we should be consistent and stick to one 
on a certain project.

Now that we have covered the basics of statechart diagrams, we proceed 
to their more advanced abstractions. First, besides entry and exit actions and 
internal transitions, a state can perform an ongoing activity that we can spec-
ify by using the keyword do. Most of the states are stable states, which means 
that the object is blocked while waiting for an event. Some of the states are 
transient, which means that they perform certain computations and then fin-
ish. Sometimes we need to also model active states, which perform some 
activities while simultaneously waiting for an event to occur; we do these by 
using the keyword do. Generally, the special do transition can name another 
state machine or a sequence of actions.

Deferred events are the next important abstraction in the context of states. 
Until now, we were not interested in the events that occur during the state 
that does not react to them. What happens to these events? They are simply 
lost. If we want to save them so that they can be processed later in some 
other states, we must specify that they are to be deferred by using the special 
action named defer. Each event that is associated with this special action will 
be saved for further processing by the states that explicitly name that event 
in one of their transitions.

We have already shown how to manage complexity by using hierarchical 
organization. Statechart diagrams allow us to use that powerful concept in 
the context of states. Until now, we have dealt with simple states. Actually, a 
state in UML can also be a composite state, which means that it can comprise 
simple states and other composite states. This nesting of states can go to an 
unlimited depth, at least in theory.

A composite state can contain either sequential or concurrent substates. 
The sequential substates are disjoint, i.e., an object can be in only one of 
them at a certain point in time. The concurrent substates are orthogonal, 
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which means that an object at a certain point in time is in all of the concur-
rent substates that are active at that point. We can think of a concurrent state 
as one aspect (orthogonal axis) of the object’s lifetime.

The state transitions until now were transitions between simple states. 
After the introduction of composite states, the situation becomes more com-
plex in this respect. Besides the transitions between simple states, there exist 
the transitions between simple states and composite states, as well as the 
transitions from substates to external states. The transitions from external 
states to substates of a composite state are not allowed. This asymmetrical 
relation raises the following question: What happens to the flow of states 
inside a composite state if a transition from that composite state to another 
state is triggered?

The answer is that the information about the point of interruption inside 
the composite state is lost by default. This means that the processing will be 
restarted from the very beginning when that composite state is reentered 
once again later. This means that the composite state operates without con-
text saving, which is referred to as a history in the UML.

If we want the composite state to operate with the history—which means it 
is able to restart from the point of interruption at its reentrance—we can use 
the special history state. The history state is a special type of an initial state 
that is the target for the transitions from the external states. Once activated, 
it restarts the operation at the point of interruption. The following two types 
of history states are used:

• The shallow history state (marked with the symbol H)
• The deep history state (marked with the symbol H*)

The shallow history state ensures context-saving only on the first level 
of nesting of composite states. Alternately, the deep history state provides 
context-saving on the innermost state at any depth. If there are more nesting 
levels, the shallow history remembers the outermost nested state and the 
deep history remembers the innermost nested state.

Like activity diagrams, statechart diagrams also support modeling con-
currency. We model concurrent activities in statechart diagrams by using 
concurrent sequences of substates inside a certain composite state. Typically, 
each such sequence begins with the initial state and ends with the final state. 
The transition from the external state to this composite state forks to concur-
rent substates, which at the end joins in the transition from this composite 
state to the external state. The usage of concurrent substates is advisable 
only if the behavior of one of these concurrent flows is affected by the state 
of another. Alternately, if the behavior of the concurrent flows is driven 
by the signals (messages) they exchange, partitioning the object into more 
active objects is preferable.
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The set of additional symbols that are available for rendering statechart 
diagrams is shown in Figure 3.25. These are the composite state, the shal-
low history state, the deep history state, the fork or join synchronization 
point, the note, the constraint note, the constraint, and the OR constraint. 
These symbols, like others, have their properties. The composite state has the 
same categories of properties as a simple state, plus two additional indicators 
(Concurrent and Region) which determine whether the composite state is con-
current or not and if it is a region or not. Both shallow and deep history states 
have the same three categories of properties. These are the name, the table 
of constraints, and the tagged values. The rest of the symbols have already 
been introduced.

Figure 3.26 shows the simple example of a statechart diagram that uses the 
shallow history state. Imagine a simple state machine that starts from the 
state Idle. The event sendCharacter(ch) triggers its transition to the composite 
state Sending Segment, which starts with the shallow history state to ensure 
context saving. Because this state comprises only simple states, the applica-
tion of the deep history state, instead of the shallow history state, would have 
the same effect because only one level of nesting of composite states is found.

The state machine remains in the substate Buffering while it is filling the 
corresponding buffer with new incoming characters. This status means that 
the state machine will wait for the additional event sendCharacter(ch) until the 
buffer becomes full, when the state machine will proceed to the state Sending. 
After it sends all the characters from the buffer, the state machine leaves the 
compound state Sending Segment and triggerlessly transits to the state Idle.

If the event break occurs while the state machine is in the compound state 
Sending Segment, its context will be saved and the state machine will leave it 
and move to the state Break. It will remain in this state until the event continue 

Composite state H H*

Note {Constraint}

{Constraint} {OR}

FIGURE 3.25
Additional graphical symbols available for rendering statecharts.
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occurs. Then the state machine will reenter the compound state Sending 
Segment, the context will be restored, and the state machine will resume the 
processing from the point of interruption.

The example in Figure 3.27 shows simplified DNS client and server state-
chart diagrams. Both of them have just a single state. Being simple enough, 
these diagrams make very clear how statechart diagrams are used to make 
complete designs of communication protocols. Typically, a job performed by 
the communication protocol is to receive a message, process it, and send one 
or more messages as the result of this processing. Both DNS client and server 
go along this simple scheme.

The DNS client starts from the initial state by receiving a call to map the 
given domain name into the corresponding IP address. This action is mod-
eled by the call event map(d) in Figure 3.27. This event triggers the transi-
tion of the DNS client from the initial state to the state Wait DNS Response. 
During the course of this transition, the DNS client sends the signal (mes-
sage) DNSrequest(d), which causes the signal event receive DNSrequest(d) at the 
DNS server side.

The DNS client is simply blocked in the state Wait DNS Response while wait-
ing for the signal DNSresponse(d,ip). The signal event receive DNSresponse(d,ip) 
triggers the DNS client transition to its final state. During this transition, the 
DNS client extracts the IP address from the received signal and returns it as 
its return value. This is modeled by the return action return(ip).

The DNS server starts with the triggerless transition from its initial state to 
the state Wait DNS Request, where it is blocked while waiting for the signal 
DNSrequest(d). The signal event receive DNSrequest(d) causes the DNS server 

Wait DNS response

map(d)/send DNSrequest(d)

receive DNSresponse(d,ip)/return(ip)

Wait DNS request

DNS client DNS server

receive DNSrequest(d)/send DNSresponse(d,ip)

FIGURE 3.27
DNS client and server statechart diagrams.
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to map the given domain name to the corresponding IP address, to create the 
signal (message) DNSresponse(d,ip), and to send it to the DNS client. The DNS 
server performs all these actions during the transition to the same state, i.e., 
Wait DNS Request. This ensures that after servicing the current request, the 
DNS server remains available for servicing the next DNS request.

The example in Figure 3.28 shows the statechart diagram for one real pro-
tocol, namely TCP. It starts with the triggerless transition from the initial 
state to the state CLOSED, in which it awaits one of the two possible call 
events. The call event passive OPEN causes TCP to create TCB (modeled with 
the action create TCB) and to move to the state LISTEN. Alternately, the call 

CLOSED

LISTEN

passive OPEN/create TCB

SYN SENT

active OPEN/create TCB, snd SYN

SEND/snd SYN

CLOSE/delete TCB

SYN RCVD
rcv SYN/snd SYN, ACK

EST AB

rcv ACK of SYN rcv SYN, ACK/snd ACK

rcv SYN/snd ACK

CLOSE WAIT

rcv FIN/snd ACK

FIN WAIT 1

FIN WAIT 2

CLOSING

TIME WAIT

LAST ACK

CLOSED

CLOSE /snd FIN

CLOSE/snd FIN

rcv ACK of FIN

CLOSE/snd FIN

rcv FIN/snd ACK

rcv ACK of FIN

rcv ACK of FIN

rcv FIN/snd ACK after: 2MSL/delete TCB

FIGURE 3.28
TCP statechart diagram.
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event active OPEN causes TCP to additionally send the signal SYN (TCP seg-
ment with the bit SYN set in the header) to the remote TCP entity. This is 
modeled with the actions create TCB and snd SYN.

TCP is blocked in the state LISTEN while waiting for one of the two pos-
sible events. The signal event rcv SYN triggers it to send the signal SYN, ACK 
(TCP segment with both bits SYN and ACK set) to the remote TCP entity and 
to move to the state SYN RCVD. The call signal SEND causes TCP to send 
the signal SYN to the remote TCP entity, and to move to the state SYN SENT.

While blocked in the state SYN SENT, TCP can be triggered by one of 
three possible events. If the call event CLOSE occurs, TCP deletes TCB (mod-
eled with the action delete TCB) and returns to the initial state. If the signal 
event rcv SYN occurs, TCP sends the signal ACK and moves to the state SYN 
RCVD. If the signal event rcv SYN, ACK occurs, TCP sends the signal ACK to 
the remote TCP entity and moves to the state ESTAB.

After reaching the state SYN RCVD, TCP can react to one of the two pos-
sible events. If the call event CLOSE occurs, TCP sends the signal FIN to the 
remote TCP entity and moves to the state FIN WAIT 1. If the signal event rcv 
ACK of SYN, occurs, TCP moves to the state ESTAB.

Two events are recognizable in the state ESTAB. If the call event CLOSE 
occurs, TCP sends the signal FIN to the remote TCP entity and moves to the 
state FIN WAIT 1. If the signal event rcv FIN occurs, TCP sends the signal 
ACK and moves to the state CLOSE WAIT.

In the state FIN WAIT 1, TCP may receive either FIN or ACK of FIN signals. 
In the former case, it sends the signal ACK and moves to the state CLOSING, 
whereas in the latter case it just moves to the state FIN WAIT 2, where it 
waits for the signal FIN to send the signal ACK and move to the state TIME 
WAIT. On the alternative path, TCP moves from the state CLOSING to the 
state TIME WAIT after it receives the signal ACK of FIN.

Upon the entrance to the state TIME WAIT, a timer with the period 2MSL 
is started. When this period expires, TCP deletes TCB and moves back to its 
initial state CLOSED. After reaching the state CLOSE WAIT, TCP waits for the 
call event CLOSE to send the signal FIN and move to the state LAST ACK, and 
from there to the initial state CLOSED after it receives the signal ACK of FIN.

The example in Figure 3.29 shows the statechart diagram of a simple send 
e-mail operation (SMTP client side). It starts with the triggerless transition 
from its initial state to the state WAIT 220, where it waits for the signal (mes-
sage) 220 from the SMTP server. When the signal event rcv 220 occurs, the 
SMTP client sends the signal HELO to the SMTP server and moves to the state 
WAIT 250 1. After receiving the signal 250, the SMTP client sends the message 
MAIL FROM: to the SMTP server and moves to the state WAIT 250 2.

Next, two signals of 250 in succession cause the SMTP client first to send 
the signal RCPT TO:, then to send the signal DATA to the SMTP server, and 
finally to reach the state WAIT 354. Upon reception of the signal 354, the 
SMTP client sends the body of the e-mail message and moves to the state 
WAIT 250 4. After receiving the signal 250, it sends the signal QUIT to the 
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SMTP server, and finally, after receiving the signal 250 again, it returns the 
value true and moves to its final state.

The main problem in this oversimplified version of the SMTP client is that it 
can block indefinitely while waiting for a signal from the SMTP server. The first 
thing that would be added in a more realistic design is a time limit on waiting 
for signals, which would be modeled with timers (keyword after:). The reaction 
to the expiration of a timer could be as simple as returning the value false and 
moving to the final state, or it can include some type of a recovery mechanism.

3.6  Deployment Diagrams

Deployment diagrams are used to model the deployment of the compo-
nents, the component instances, objects, and packages on nodes and node 

WAIT 220

WAIT 250 1

rcv 220/snd HELO

WAIT 250 2

WAIT 250 3

rcv 250/snd MAIL FROM:

rcv 250/snd RCPT TO:

rcv 250/snd DATA

WAIT 354

WAIT 250 4

rcv 354/snd BODY

WAIT 221

rcv 250/snd QUIT

rcv 221/return(true)

FIGURE 3.29
Simple send e-mail operation statechart diagram (SMTP client side).
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instances. A component is a part of the system that implements a set of 
interfaces. It typically models a physical package of logical elements, such 
as classes, interfaces, and collaborations. The common forms of packages 
are the following:

• Executables
• Libraries
• Tables
• Files
• Documents

A node is a physical element that models a computational platform, which 
comprises a set of resources, such as memory banks, buses, I/O channels, 
controllers, processors, and so on. The examples of nodes are the following:

• Personal computers
• Mainframes
• Embedded controllers
• Mobile or cellular phones
• Network routers

We use deployment diagrams in the design phase of communication pro-
tocol engineering for the following two main purposes:

• To identify network nodes and configurations
• To identify design subsystems and interfaces

The software architecture is closely related to the structure of the physical 
network. Sometimes the latter can be fixed and, in such a case, it governs the 
distribution of functionality across the network nodes as well as the selec-
tion of active classes. Alternately, both software architecture and network 
structure can be subjects of design and, in that case, some particular net-
work structures can yield more appropriate software architecture and sys-
tem solutions.

While trying to identify network nodes and configurations, we typically 
render network nodes as cubes, interconnect them with association relations, 
and think how to deploy individual components on these nodes. We show 
the deployment in the deployment diagrams by adding the component sym-
bols (rectangles with tabs) and by connecting the related nodes and compo-
nents with the dependency relations. Another way to do this is to adorn the 
node instances by the names of the components that are deployed on them.

Similarly, while trying to identify the subsystems and interfaces, we typi-
cally render the packages with their corresponding interfaces. We try to 
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organize them into hierarchical layers (e.g., application-specific, application-
general, middleware, and system-software). Finally, we show which inter-
faces (services) are provided by which packages or components and also 
which packages or components are users of the services provided through 
those interfaces.

Deployment diagrams are a special type of graph that comprise the set 
of vertices that are interconnected with the corresponding arcs. Figure 3.30 
shows the basic set of graphical symbols available for rendering deployment 
diagrams. These are the node, the node instance, the component, the compo-
nent instance, the object, the package, the interface, the association relation, 
the aggregation relation, the dependency relation, the note, the constraint 

Node Node instance

Component Component instance

Object : Class Package
Interface

** 1*

Note {Constraint}

{Constraint}

{OR}

FIGURE 3.30
Basic set of symbols available for deployment diagrams.
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note, the two-element constraint, and the OR constraint. Each symbol has a 
set of properties, which must be set by the designer once they add the symbol 
to the diagram. The new symbols are the symbols representing the nodes, 
the components, and their instances. The rest of the symbols are already 
introduced in the previous sections about class and object diagrams (called 
together a static structure).

The node has six categories of properties. These are the general informa-
tion, the table of attributes, the table of operations, the list of components, the 
table of constraints, and the tagged values. The general information includes 
the name, the full path, the stereotype, the visibility, and the indicators Root, 
Leaf, and Abstract. The list of the components comprises the names of the 
components that are deployed by this node.

The component has seven categories of properties, including the general 
information, the table of attributes, the table of operations, the list of nodes, 
the list of classes, the table of constraints, and the tagged values. The general 
information comprises the name, the full path, the stereotype, the visibility, 
and the indicators Root, Leaf, and Abstract. The list of nodes holds the names 
of the nodes that deploy this component. The list of classes stores the names 
of the classes that are implemented in this component.

The node instance has four categories of properties: These are the gen-
eral information, the table of attribute values, the table of constraints, and 
the tagged values (documentation and persistent). The general information 
comprises the node instance name and the node name. The table of attribute 
values stores the name, the stereotype, the type, and the value for each attri-
bute. The component instance has the same categories of properties as the 
node instance, with the exception that its general information differs and it 
comprises the name of the component instance and the component name.

The deployment diagram in Figure 3.31 shows an example of a network 
configuration comprised of three personal computers that are connected to 
the Internet. A personal computer is modeled as the node PC. Individual PCs 
are modeled as node instances, namely Machine1, Machine2, and Machine3. 
The Internet is modeled as the node instance, named Network, of the node 
type named Internet. The real links that connect PCs to the Internet are mod-
eled with the association relations between the node instances Machine1, 
Machine2, and Machine3, and the node instance Internet. The one-to-one 
nature of these links is modeled by setting the multiplicities on both sides of 
the associations to 1.

This diagram is what the physical infrastructure of this example looks like. 
The software components are deployed as follows: The e-mail client execut-
able is deployed to the first PC, the DNS server executable is deployed to 
the second PC, and the SMTP server is deployed to the third PC. We model 
the e-mail client executable with the component EMailClient, which is ste-
reotyped as the <<executable>>, and its particular instance is deployed to the 
first PC with the component instance client.exe. Similarly, the DNS server 
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executable is modeled with the component DNSServer and its particular 
instance is deployed to the second PC with the component instance dnss.exe. 
Finally, the SMTP server is modeled with the component SMTPServer and its 
particular instance is deployed to the third PC with the component instance 
smtps.exe.

The deployment diagram in Figure 3.32 shows the example of subsystems 
and interfaces. While thinking about the system shown in the previous 
example (Figure 3.31), we can identify three application layer packages, two 
system-software layer packages, and three interfaces. The application layer 
packages are the packages EMailClient, SMTPServer, and DNSServer, whereas 
the system-software packages are the packages TCP/IP and OS.

The package TCP/IP provides two service types through the interface 
TCPport and IPint, respectively. The services provided through the former 
interface are used by the package EMailClient and SMTPServer, whereas 
the services provided through the latter interface are used by the package 
EMailClient and DNSServer. Similarly, the package OS provides services 
through its interface OSapi. These services are used by the package TCP/IP.

Interested readers can find more information about the UML diagrams in 
the original books by Booch, Rumbaugh, and Jacobson (Booch et al. 1998). 
This section concludes the part of this chapter based on UML. The second 
part of the chapter will be based on domain-specific languages.

Machine 1 : PC

Network : Internet

Machine 3 : PC

1

1 1

1

«executable»
client.exe : EMailClient

«executable»
smtps.exe : SMTPServer

Machine 2 : PC

1

1

«executable»
dnss.exe : DNSServer

FIGURE 3.31
Example of a network configuration.
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3.7  Specification and Description Language

Software for real communication systems and devices (concentrators, packet 
switches, gateways, routers, and so on) is very complex and, therefore, hard 
to understand. Proving that this type of software is correct is very difficult; 
thus, special attention is paid to its design. Software of this type can be mod-
eled in the form of an individual or a group of finite state machines. Japanese 
designers were the first to apply this method of specification and description 
of communication protocols in the 1970s. Not long after its initiation, the 
CCITT (predecessor of ITU-T) has standardized it in the form of the so-called 
Specification and Description Language (SDL).

EMailClient

TCP/IP

OS

DNS serverSMTP server

IPint

TCP port

OSapi

Application layer
packages

System-software
layer packages

FIGURE 3.32
Example of subsystems and interfaces.
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SDL creators have been facing the following dilemma. Traditionally, a 
finite state machine (FSM) has been modeled by a state transition graph. 
Typically, a state transition graph is graphically illustrated by circular sym-
bols representing states and arrows representing state transitions. State 
labels are state names, whereas state transition labels indicate FSM input 
that causes the corresponding state transition and FSM output produced 
by the same transition. An advantage of this type of FSM representation 
is that all the stable FSM states are clearly indicated and can be easily 
noticed. Alternately, a disadvantage of this type of FSM representation is 
that  message-processing procedures are not defined formally. Informally 
written state transition labels, placed close to the corresponding arrows, 
indicate only the FSM input causing the transition and the output that the 
FSM must produce. This information is far from being sufficient for writing 
the software that implements the given FSM—it only provides some hints 
to programmers.

Another approach would be to use a flowchart, a traditional way of speci-
fying data-processing algorithms. An advantage of this type of FSM rep-
resentation is that message-processing procedures are clearly and precisely 
defined. A disadvantage is that stable FSM states are not clearly indicated, 
therefore they can hardly be noticed. The FSM states can be marked as cer-
tain points in a flowchart by using informal annotations, and that is simply 
not comprehensible enough.

The creators of the SDL language have found a solution to this dilemma 
by combining the abovementioned approaches, namely, the state transition 
graph-based approach and the flowchart approach. This combination has 
been cleverly made by simple extension of the set of graphical symbols avail-
able for drawing flowcharts. The key new graphical symbols introduced are 
the symbols corresponding to an FSM stable state and the symbols that rep-
resent FSM inputs and outputs (input and output messages). We will fully 
describe all the SDL graphical symbols later in this chapter.

The protocol designer uses SDL language to specify and describe the cor-
responding automata instance by listing all its states and state transitions. 
Although the number of states can be very large, this task is simplified by 
the fact that in a given state, only a limited number of events can occur. This 
means that the automata instance can evolve from a given state only for a 
limited number of new states. For example, consider a telephone call autom-
ata instance waiting for the first digit to be dialed (the automata instance 
enters this state immediately after the user has initiated an outgoing call, i.e., 
after the so-called “hook-off” event). The telephone call automata instance 
cannot evolve from this state to any other arbitrary state. More precisely, in 
this state only the following three events are possible:

• The user ends the call (hook-on event), which causes the automata 
instance to evolve to its initial idle state.
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• The user dials a digit (digit event). This event triggers the state tran-
sition from the current state to the state of waiting for the second 
digit.

• The user does nothing during a certain interval of time. This will 
cause the expiration of the corresponding timer and a state transi-
tion to the state in which the telephone line is blocked.

Communication protocol is by nature a reactive system. Normally, it is 
blocked in its current state while waiting for one of a few recognizable events 
to occur. Statistically, it is inactive most of the time. A recognizable event 
triggers the corresponding state transition to a new state, where the proto-
col is again blocked while waiting for further events. The state transitions 
comprise a finite number of primitive operations that are statistically rather 
short.

An important characteristic of program implementations of the proto-
cols is that they are not trying to monopolize the CPU. This implies that 
the execution of this type of a program should be organized as a process 
with stable states. In contrast to the conventional time-slicing system, where 
the task switching is driven by timer interrupts, the switching of processes 
with stable states is performed at the moment at which the running process 
reaches its new stable state. Whereas conventional tasks can be interrupted 
in an arbitrary point of time (determined by the asynchronous occurrence of 
a timer interrupt signal), a process with stable states is normally not subject 
to preemption because, unlike conventional tasks, they are not monopoliz-
ing the processor. Of course, a process with stable states can be interruptible 
so that the whole system can react to the urgent events handled by the higher 
priority tasks.

Enumeration of the possible states and state transitions, as described 
above, is a logical process that seems to be straightforward for the experts. 
However, graphical language, such as SDL, is needed to make it possible for 
design engineers to easily make complete formal specifications of the proto-
cols. The main advantages of graphically oriented languages are as follows:

• Graphical language is easy to read and, because of that, it is easy to 
check specification completeness and correctness.

• The specification can be easily extended.
• The specification can be directly implemented in software. This 

means that if the specification is correct, a high probability exists 
that the software implementation is also correct.

According to ITU-T, the complete software (system) is decomposed into a 
set of functional blocks. Each functional block consists of a set of processes 
and each process comprises a number of tasks (Figure 3.33).
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A process is essentially an execution of a logical function, which consists 
of a series of operations applied to message information elements (referred to 
as tasks) in discrete points of time. Either it is in some of its stable states or it 
makes its transition from the current to the next state. (In Chapter 4, we refer 
to the state transition as unstable states).

A signal is defined as a data stream that delivers information to the receiv-
ing process. A data stream among the processes inside the same functional 
block represents the internal signal, whereas a data stream between the pro-
cesses that are parts of different functional blocks represents the external 
signal to the receiving process. Therefore, from the receiving process point 
of view, the signal can be classified as internal or external, depending on 
whether it originates from the same or from a different functional block.

Today, SDL is a standard design language that can be used to specify and 
describe any system implemented in hardware or software, particularly real-
time systems. In this book, we are especially interested in one type of the 
real-time systems—communications systems.

The basic set of SDL rules is given in ITU-T recommendation Z.100e. 
Additional explanations are given in a series of subsequent ITU-T recom-
mendations, namely Z.100d1e, Z.100nce, Z.100nfe, Z.100p1e, and Z.100s1e. 
The main characteristics of the SDL language are as follows:

System

Functional block
1

Functional block
2

Functional block
3

Process 1 Process 3Process 2

Task 1 Task 2 Task 3

FIGURE 3.33
Structure of the communication software according to ITU-T.



111Design

• It is easy to learn.
• It is easy to extend the specification in case of the new requirements.
• In principle, it can support various methodologies for making the 

system specifications.

Two forms of SDL language exist, graphical (SDL-GR) and program 
(SDL-PR). The graphical form has been widely accepted for two reasons. 
First, it is closer to human understanding because it is easier to under-
stand and follow. Second, in principle, it does not require the support by 
special, and frequently very expensive, software tools. Of course, a piece 
of paper and a pencil is hardly sufficient for a professional work. At least a 
modern graphical editor that supports the SDL set of graphical symbols is 
needed to enable the making of decent specifications. In this book, we use 
Microsoft Visio® for that purpose.

The second SDL form, SDL-PR, is practically a higher-level programming 
language of textual type (similar to C/C++ and Java programming languages). 
Clearly, this programming language is less synoptic and is harder to follow 
than the graphical form. It is intended to be used mainly by the accompa-
nying software tools, such as Telelogic® Software Development Tools (SDTs). 
The goal of using such software tools is not just to make isolated specifica-
tion and description documents, but rather to make electronic specifications, 
essentially models of protocols. The software tools can then be used to inter-
pret the models and generate the corresponding program code.

In addition to the tools provided by Telelogic®, other tools exist based on 
this philosophy that is, as already mentioned, referred to as model integrated 
computing (MIC). One of them is also already mentioned, GME.

The main SDL applications are the following:

• Call processing in switching systems
• Error supervision and management in telecommunication systems
• Supervision, control, and data acquisition systems
• Telecommunication services
• Data transfer protocols
• Protocols in computer communications

The SDL language basics are as follows: SDL is based on a set of special 
symbols and the rules for their application. The graphical form (SDL-GR) is 
based on special graphical symbols whereas the program form (SDL-PR) is 
based on a set of special keywords. Both SDL forms use the same set of key-
words specialized for data representation.

Later, we assume that a system consists of a number of protocols. Also, we 
refer to a set of hierarchically organized protocols as a family of protocols or 
a protocol stack. Typically, each protocol that is a part of the family performs 
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its well-defined task. The family of protocols conducts rather complex tasks 
by cooperation of its members.

A system is described as a set of interconnected functional blocks. Channels 
are defined as communication links that are used for the interblock com-
munication and for the communication between the blocks and the envi-
ronment. Each block comprises a number of processes that communicate by 
exchanging signals. A channel is typically implemented as a FIFO (First-
In-First-Out) queue that stores the signals (i.e., messages) to be transferred 
through the channel. A process is defined as a finite state machine (automata 
instance) that is described by the given set of states and state transitions.

The next simple example illustrates the notions and terms introduced 
above. Both graphical and program SDL forms are presented. The only goal 
of presenting the program form is to provide the intuition for the reader 
that will help them understand the main differences between the graphical 
and program forms of the SDL language. The aim of this book is not to fully 
cover the program form of the SDL language.

The example is a simple game called Daemongame. The core of the game is a 
simple FSM that has only two states, even and odd. Timing is controlled with 
a single timer. The expiration of the timer (this event is labeled none) causes 
the FSM to switch from an even state to an odd state. The player presses a 
button when they wish (this event is labeled Probe), i.e., at arbitrary points of 
time. If the FSM is in an even state, the player gets one negative point (Lose). 
If the FSM is in an odd state, the player gets one positive point (Win). If the 
player scores more Win than Lose points, they win the game.

The first step in describing this simple system is to define input and output 
signals. Input signals are as follows:

• Newgame: The player wants to start the game.
• Probe: The player has pressed a button.
• Result: The player wants to see the current score.
• Endgame: The player wants to quit the game.

Output signals are the following:

• Gameid: current game identification
• Win: positive point
• Lose: negative point
• Score: total amount of points (number of Win points minus number 

of Lose points)

The specification of the game Daemongame in the graphical form of SDL 
is shown in Figure 3.34. It contains a single functional block labeled Game. 
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Input signals are Newgame, Probe, Result, and Endgame. Output signals are 
Gameid, Win, Lose, and Score. Signal declarations are shown in the upper left 
corner of the figure.

The Daemongame system specification in the program form of SDL is as 
follows:

system Daemongame
  signal Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score(Integer);
  channel Gameserver.in
    from env to Game
    with Newgame, Probe, Result, Endgame;
  endchannel Gameserver.in;
  channel Gameserver.out
    from Game to env
    with Gameid, Win, Lose, Score;
  endchannel Gameserver.out;
block Game referenced;
endsystem Daemongame;

Generally, any system SDL program specification starts with the key-
word system and ends with the keyword endsystem. This particular program 
defines all the required signals (Newgame, Probe, Result, Endgame, Gameid, 
Win, Lose, and Score), the input channel Gameserver.in, and the output chan-
nel Gameserver.out.

  system Daemon game

signal
Newgame, Probe, Result,
Endgame, Gameid, Win, Lose,
Score (Integer)

Game

Newgame,
Probe,
Result,

Endgame

Gameid,
Win,
Lose,
Score

FIGURE 3.34
Structure of the system Daemongame.
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In contrast with the graphical form, which is easy to understand, the pro-
gram form represents a lower-level specification, closer to the machine and 
with more details. For example, in the graphical form a channel is simply 
represented by an arrow pointing to or from the functional block. The chan-
nel declaration in the program form is much more detailed: It comprises the 
channel name (e.g., Gameserver.in), its direction (e.g., from the environment 
toward the functional block Game), and a list of signals that must be trans-
ferred over the channel (e.g., Newgame, Probe, Result, and Endgame).

The next lower hierarchical level of detail describes a single functional 
block of this simple system, namely, the block Game. Its specification is given 
in both forms of SDL. The graphical form of the specification is given in 
Figure 3.35. The program form of the specification is given immediately after 
a short explanation of Figure 3.35.

Figure 3.35 shows that the block Game consists of two processes, namely 
Monitor and Game. The processes are connected to the environment and to 
each other by signaling paths. It also shows that the input channel Gameserver.
in consists of two signaling paths, the signaling path R1 (which is used to 
carry Newgame signal) and the signaling path R2 (which is used to carry the 
signals Probe, Result, and Endgame). The output channel Gameserver.out com-
prises the single signaling path R3. A single internal signaling path exists 
inside the block Game, the path R4, which is used to carry the internal signal 

  block Game

signal
Gameover (Pid)

Monitor (1,1)

R1

Newgame

R3

Gameid,

Win,

Lose,
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FIGURE 3.35
Structure of the functional block Game.
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Gameover from the process Game to the process Monitor. This new signal is 
declared in the upper left corner of the graphical specification.

The specification of the block Game in SDL-PR is as follows:

block Game;
  signal Gameover(Pid);
  connect Gameserver.in and R1, R2;
  connect Gameserver.out and R3;
  signalroute R1 from env to Monitor with Newgame;
  signalroute R2 from env to Game with Probe,Result,Endgame;
  signalroute R3 from Game to env with Gameid,Win,Lose,Score;
  signalroute R4 from Game to Monitor with Gameover;
  process Monitor(1,1) referenced;
  process Game(0,) referenced;

endblock Game;

The specification given above starts with the keyword block and ends with 
endblock. Inside the body of the definition of the block Game, we start with the 
declaration of the internal signal Gameover by declaring its name, followed 
by the list of its parameters enclosed in parenthesis. The signal Gameover has 
a single parameter, the identification of a process (Pid) that is sending this 
signal.

Further on, we connect the channel Gameserver.in with the signaling paths 
R1 and R2. We also connect the channel Gameserver.out with the signaling 
path R3. We proceed with the declarations of signaling paths (keyword sig-
nalroute). Each declaration indicates the signaling path name, its direction 
(by using the keywords from and to), the names of the processes it connects 
(note that env is the special process which represents the environment), and 
a list of signals it carries (by using the keyword with). For example, the first 
signal path declaration shown in SDL-PR above declares the signaling path 
R1, which carries the signal Newgame from the process env (environment) to 
the process Monitor.

We end the definition of the functional block Game by declaring the processes 
it contains. A process in general is declared by the keyword process. A process 
declaration indicates the name of the process followed by the initial and maxi-
mal number of process instances that can appear in the system. The maximal 
number of process instances is an optional parameter, i.e., it can be omitted.

The process Monitor is declared as Monitor(1,1), which means that the block 
Game should initially create one instance of this process and, at the same 
time, it is also the maximal number of Monitor instances that can be created 
in this block. Alternately, the process Game is declared as Game(0,), which 
means that initially there are no Game instances, but also that the maximal 
number of Game instances is not limited, i.e., in theory it is allowed to cre-
ate an infinite number of process Game instances inside the functional block 
Game. Of course, in reality this number is always limited to the available 
hardware resources.

In this particular example, we have declared two processes, Monitor and 
Game, that operate inside the functional block Game. The process Monitor 
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handles the interaction with a player. It is a mediator between the player and 
the process Game, which is essentially a model of the win–lose game. Due to 
the fact that the process Monitor is trivial and actually insignificant for this 
example, we will define only the process Game on the next hierarchically 
lower level of abstraction. On this level of detail, the process Game is mod-
eled as a finite state machine (automata instance).

As already mentioned, the creators of SDL-GR (the graphical form of SDL) 
have extended the basic set of traditional flowchart symbols with a set of 
graphical symbols specialized for modeling finite state machines. The com-
plete set of graphical symbols available for describing processes in SDL-GR 
is shown in Figure 3.36.

The meaning of the individual graphical symbols shown in Figure 3.36 is 
as follows:

• State: Specifies a stable state in which a process is blocked while 
waiting for one of the recognizable signals (referred to as input).

• Input: Specifies the reception of a given input signal (i.e., the occur-
rence of a certain event).

State
Internal
output
signal

Internal
input
signal

External
output
signal

External
input
signal

Decision

Task Save
signal

FIGURE 3.36
Set of graphical symbols available in SDL-GR.
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• Output: Specifies the transmission of a given output signal (normally 
the output signal generated by a certain process represents an input 
signal for a process that receives it).

• Decision: Specifies an operation that checks if a given condition is 
true or false and, based on the outcome, selects one of the two pos-
sible paths in the current state transition.

• Task: Specifies an action in the course of current state transition that 
is neither decision nor output.

• Save signal: Specifies that recognition (processing) of a given signal 
should be postponed until it reaches a state where it is recognizable 
This symbol is used in specifications of signaling systems (e.g., SS7). 
It is seldom used in other applications, such as call processing.

The specification of a process in SDL-GR is generally made as a combina-
tion of the instances of the graphical symbols shown and explained above. 
An example of this type of specification is shown in Figure 3.37. It specifies 
and describes the process Game, the core of the win–lose game.

The evolution of the process starts from an unnamed state in the upper 
right corner of the graphical presentation (Figure 3.37). Starting from this 
state, the process unconditionally transits to its next stable state even. During 
this transition, the process Game sends the signal Gameid to the player.

While the process Game is in its stable state even, it awaits one of two pos-
sible events: the reception of the signal Probe or the expiration of the timer 
labeled none. If the timer expires, the process Game receives the correspond-
ing signal none, and this causes the process to evolve into the next stable state 
odd. If the process receives the signal Probe, it sends the signal Lose to the 
player and updates the player’s score, which is stored in the variable count, 
by adding one negative point. The process does not change its stable state, 
i.e., it remains in its current state (which is denoted with the character “–”), 
and that is the state even.

In its stable state odd, the process Game recognizes two same possible events, 
the reception of the signal Probe or the expiration of the timer labeled none. 
Actually, the timer none determines the time interval the process will spend 
in either the even or odd state before switching to the other one. Hence, if the 
timer none expires, the process evolves into the stable state even. Alternatively, 
if the process receives the signal Probe, it sends the signal Win to the player 
and updates the player’s score (value of the variable count) by adding one posi-
tive point. The process remains in its current state (i.e., the state odd).

The upper left corner of the graphical representation of the process Game 
(Figure 3.37) shows one important example of simplifying SDL-GR dia-
grams. Because the reception of the input signals Result and Endgame is 
possible in both even and odd states, a straightforward solution would be to 
mechanically add these inputs and their processing to both states. The result 
would be a diagram that is much more complex and harder to understand 
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and follow. A more elegant solution is to draw the description of the process-
ing of the inputs Result and Endgame in both states as a separate drawing in 
the diagram, as shown in Figure 3.37.

Generally, it is always useful to try to find identical processing of input 
signals (state transitions) that repeat in a number of stable states and to 
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FIGURE 3.37
Process Game specification in SDL-GR.
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simplify the specification by drawing these parts separately in the diagram. 
This type of a model reduction is really easy. We just draw an oval state 
symbol and write a list of the states (the list comprises the state names sepa-
rated by commas) that share the common inputs inside the state symbol. 
Then we can copy and paste common state transitions. At the end, we can 
just remove the redundant state transitions. Of course, in the simple dia-
grams such as in the example at hand, we can see this in advance and draw 
accordingly, as we did for the processing of the inputs Result and Endgame 
in the states even and odd.

If the process Game receives the signal Result, which comes from the envi-
ronment, i.e., from the player, the process sends the signal Score(count) to the 
environment (actually to the player) and it remains in its current state (even 
or odd). Alternately, if the process Game receives the signal Endgame, it sends 
the signal Gameover to the process Monitor and the game ends, i.e., the func-
tional block deletes the process Game.

The specification of the process Game in SDL-PR (SDL program form) is as 
follows:

process Game(0,); fpar player Pid;
 dcl count Integer := 0; /* the counter that contains the result */
 start;
  output Gameid to player;
    nextstate even;
 state even;
  input none;
    nextstate odd;
  input Probe;
    output Lose to player;
    task count:=count-1;
    nextstate -;
 state odd;
  input Probe;
    output Win to player;
    task count:=count+1;
    nextstate -;
  input none;
    nextstate even;
 state even,odd;
  input Result;
    output Score(count) to player;
    nextstate -;
  input Endgame;
    output Gameover(player);
    stop;

endprocess Game;

The definition of the process starts with the keyword process and ends 
with the keyword endprocess. As already mentioned, initially no instances 
of the process Game are used, and the maximal number of its instances is 
unlimited. The process declaration is followed by the construct fpar player 
Pid, which defines the formal process parameter player that is assigned the 
value Pid. At the beginning of the game, the run-time environment creates 
an instance of the process, and assigns a unique Pid number to it.
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Next, we declare the integer variable count (using the keyword Integer), 
which contains the current total value of points that the player has scored 
so far. After the label start, we define a series of statements that are executed 
by the process at its startup. In this example, the process Game at its startup 
sends the signal Gameid to the player and enters its initial stable state even 
(next state of the process is defined by the keyword nextstate).

For each stable state (keyword state) of the process, we define all the rec-
ognizable input signals (using the keyword input) and on the next level of 
indentation, we define the corresponding state transition as a series of state-
ments that ends with the nextstate statement. For example, the recognizable 
input signals in the stable state even are the signal none, which relates to the 
expiration of the corresponding timer, and the signal Probe, generated by the 
player’s stroke of the pushbutton. In the case the timer none expires, the pro-
cess evolves to its next stable state odd. Alternatively, if the process receives 
the signal Probe, it sends the signal Lose to the player (using the keyword 
output), performs the task of decrementing the score by 1 (using the keyword 
task), and remains in its current state (the statement nextstate -;).

The stable state odd is defined in a similar manner. The input signals recog-
nized by the process in its stable state odd are the signal Probe and the expi-
ration of the timer none. If the process receives the signal Probe, it sends the 
signal Win to the player, increments the score by 1, and remains in its current 
stable state as odd. Alternatively, if the timer none expires, the process evolves 
into its stable state even. Finally, we define the state transitions initiated by 
the reception of the input signals Result and Endgame in either the state even 
or odd.

Understanding the principals of SDL-PR helps in more easily understand-
ing the communications protocol software implementation in the state-
of-the-art, higher-level programming languages such as C/C++ or Java. 
Although SDL-PR can resemble a pseudolanguage when compared to these 
programming languages, in reality it is a specialized language of higher 
level abstraction and it is feasible to construct a compiler for it. However, 
the study of the compilers is out of the scope of this book. The primary goal 
of this book in this respect is to provide an insight into the manual coding 
of SDL graphical diagrams in some of the abovementioned programming 
languages (C/C++ or Java).

The example under study can help in this respect. Obviously, two levels of 
nesting are included in it. The first level of nesting corresponds to the current 
stable state, in which the process is blocked while waiting for the next input 
signal, i.e., start, even, and odd. The second level of nesting corresponds to the 
type of input signal, i.e., Probe, none, Result, or Endgame.

The simplest method to implement this selection construction with two 
levels of nesting in the C/C++ or Java programming language is to use 
nested switch-case statements. The first switch-case statement is used to locate 
the current state. Then in each case clause of the first switch-case statement, 
another switch-case statement is used to locate the state transition statements 
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that correspond to the given input signal. This type of protocol implementa-
tion will be covered in detail in the next chapter.

3.7.1  Telephone Call Processing Example

The second example of the system specification made in SDL-GR is the speci-
fication of the telephone call processing system. The description of this sys-
tem is given in the separate ITU-T recommendation Q.71. The Q.71 compliant 
program system consists of six mutually interconnected functional entities 
(referred to as functional blocks), namely FE1, FE2, FE3, FE4, FE5, and FE6 
(Figure 3.38). The aim of this example is just to illustrate SDL-GR applicabil-
ity, and the details of the recommendation Q.71 (such as the concrete names 
of the entities, their types and links, i.e., relations) are not really significant 
for the comprehension of the usage of SDL-GR. The reader that is more inter-
ested in Q.71 details can refer to the corresponding ITU-T recommendation.
We use the hypothetical telephone call processing system CallProcessor to 
make further illustrations more concrete, without diving into the bulk of 
details of Q.71 recommendation. Comparing it to the real Q.71-compliant 
system, the CallProcessor is a very simplified academic example that consists 
of a single functional block, namely TelephoneLine (Figure 3.39). This func-
tional block is linked with the environment by one input channel, named 
input, and one output channel, named output. So far, this example is very 
similar to the previous example Daemongame, which also comprises the sin-
gle functional block Game that is interconnected with the environment with 
one input and one output channel.

The functional block TelephoneLine is shown in Figure 3.40. This simple 
functional block consists of the single process FE1. Two lists of signals are 

FE 1 : A FE 2 : B FE 3 : B FE 4 : B FE 5 : A

FE 6 : D

rk rj rj rk

rl

rlrl

Where:
A, B, and D are the types of functional entities
FE1, FE2, FE3, FE4, FE5, and FE6 are the names of the functional entities
rk, rj, and rl are the relations between the functional entity types

FIGURE 3.38
Functional model of the telephone call processing system.



122 Communication Protocol Engineering

declared (using the keyword signallist) in the upper left corner of Figure 3.39, 
namely, input and output. The process FE1 is connected both to the telephone 
user (shown by the arrows placed at the right of FE1) and to the telephone 
exchange (indicated by the arrows placed at the bottom of FE1). It can receive 
one of the three possible input signals (hookOff, dialDigit, and hookOn) from 
the telephone user’s side. Alternately, it can send the output signal initiate-
OutgoingCall to the telephone exchange or it can receive the input signal asn-
werReceived from the exchange.

The process FE1 is specified in the graphical form of SDL, SDL-GR, in 
Figure 3.41. This process resides in the telephone exchange and it commu-
nicates with the human that uses the telephone to establish a call, talk to 
the called party, and release the call at the end of the conversation. In real-
ity, such a process must handle many scenarios, e.g., the user picks up the 
receiver but does not dial the number, or stops after dialing an insufficient 
number of digits.

The process specified in Figure 3.41 is rather simplified but it still captures 
the most significant part of the telephone line functionality on the calling 
party side. The telephone line in this context is a processor that hosts FE1, 
together with the interfacing hardware that connects it to both the calling 
party user’s telephone and switching unit of the telephone exchange. For 
brevity, we refer to the former simply as a user and to the latter as a tele-
phone exchange, or just an exchange.

system CallProcessor

signallist
input, output

TelephoneLineInput Output

FIGURE 3.39
Hypothetical system CallProcessor.
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The process FE1 has four stable states, namely, IDLE, WAIT_DIGIT, WAIT_
ANSWER, and CONVERSATION. The evolution of the process starts from 
the state IDLE. The single recognizable input signal in this state is the signal 
hookOff. If the process FE1 receives the signal hookOff, it performs the task 
prepareForDialing and moves to its next stable state WAIT_DIGIT. While per-
forming the task prepareForDialing, the process connects the free-to-dial tone 
to the calling party user. This tone serves as the indication to the user that 
they can start dialing the number of another user to which they wish to talk.

Two recognizable input signals are used in the stable state WAIT_DIGIT, 
i.e., the process can either receive the input signal hookOn or the input signal 
dialDigit. In this simplified example, we assume that the telephone number 
of the called party consists of a single digit. However, in real ISDN telephone 
networks, a so-called enblock dialing mode exists in which the ISDN terminal 
sends the complete telephone number to the telephone exchange in a single 
SETUP message. Therefore, this simplified example is not so far from reality. 
If the process FE1 receives the input signal hookOn, it evolves into its initial 
state IDLE. If it receives the input signal dialDigit, it sends the output signal 
initiateOutgoingCall to the telephone exchange and it moves to the stable state 
WAIT_ANSWER.

In the stable state WAIT_ANSWER, two events are again possible—the 
reception of the input signal hookOn or the reception of the input signal answer-
Received. In the former case, the process goes back to its initial state IDLE, 
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FIGURE 3.40
Structure of the functional block TelephoneLine.
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whereas in the latter it evolves into its next stable state CONVERSATION. 
The input signal asnwerReceived is actually the result of the series of events 
that start with the input signal hookOff at the called party side. The telephone 
line entity at the called party translates it to the signal answerIncomingCall 
and sends it to the exchange at the called party side, which in turn sends it 
to the exchange at the calling party side. Finally, the exchange at the calling 
party side translates it to answerReceived and sends it to FE1.

In the final stable state CONVERSATION, only a single event is possible. 
The process FE1 can receive the input signal hookOff, and if it does, that is the 
end of the conversation phase of the call and the process will return to its ini-
tial stable state IDLE. This closes the circle and the process is ready to process 
a new call originating from the same telephone line. Clearly, an instance of 
the process FE1 is assigned to each telephone line in the telephone exchange.

Idle

hookOff

prepareFor-
Dialing

WAIT_DIGIT

hookOn dialDigit

Idle
initiateOutgoing

Call

WAIT_ANSWER

WAIT_ANSWER

answerReceived hookOn

IdleConversation

hookOn

Idle

FIGURE 3.41
Simplified model of the Q.71 FE1 in SDL-GR.
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In this example, we described the process FE1 that is assigned to the call-
ing party telephone line without going into a detailed specification of the 
operations performed by the telephone exchanges and the called party tele-
phone line involved in the call. Obvious from this example should be that 
SDL diagrams are self-documented formal specifications and that no need 
really exists for any additional textual descriptions.

The SDL diagram shows the possible evolution paths of a process (a call 
processing in the example above). It defines unambiguously all telephone 
stable states, as well as all possible input signals for each state. The func-
tional specification is based on the logical advance of a call, expressed in 
terms of telephony events. This makes it completely independent of both the 
hardware structure of the hosting system and the selected programming 
language and framework.

The SDL diagram is drawn based on the observations of a single telephone 
call without thinking about other calls, which are processed simultaneously 
(quasi-parallel by a single CPU or genuinely parallel by a multi-CPU system). 
This approach greatly simplifies software design. Finally, the existing SDL 
diagram can be easily extended by adding new states and input signals with-
out the need to start drawing a new diagram from the very beginning. This 
possibility also enables the easy removal of revealed design errors.

3.8  Message Sequence Charts

An alternative method of specifying communication systems is by draw-
ing message sequence charts that show the sequences of messages (signals) 
exchanged by the communicating entities. The ITU-T has developed a special 
language for this purpose, briefly referred to as MSC (Message Sequence Charts), 
and has standardized it in the Z.120 series of ITU-T recommendations.

MSC is based on the idea of following a single evolution path of a process. 
We start from a certain, most frequently initial, state of the process (e.g., the 
state IDLE in the previous example). After that, we select one of the possible 
input signals and follow the evolution path to which it points. In the previ-
ous example, a single input signal can be received in the state IDLE: signal 
hookOff, which causes the transition to the state WAIT_DIGIT.

In the newly reached stable state, we select again one of the recognizable 
events (the input signals that may be received in the stable state WAIT_DIGIT 
are hookOff or dialDigit; let us assume that we have selected dialDigit) and we 
follow the process evolution along the corresponding path (in the case of 
the input signal dialDigit, the process moves to the state WAIT_ANSWER). 
At the same time, as we mentally follow the evolution path of the process, 
we draw the messages that are exchanged between the process and its envi-
ronment on the paper or, even better, the corresponding graphical editor. 
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The  messages  are represented by the graphical arrow symbols that are 
labeled by the message names. This is how we get the MSC charts.

Clearly, an MSC chart represents a single trace over the corresponding 
path, through the SDL diagram, or some other form of specifying finite state 
machines. We can see intuitively that for the real automata that we come 
across in practical applications, a finite number of paths exist that cover the 
SDL diagram. The set of the MSC charts that are obtained by visiting these 
paths represents the specification that is in a logical sense equivalent to the 
SDL diagram.

However, an obvious disadvantage of this type of a specification, in a form 
of a set of the MSC charts, is that it is much less evident than the SDL dia-
gram. Therefore, when communication protocol designers refer to the for-
mal specification, they really assume the SDL diagram. This disadvantage 
becomes obvious if, instead of dealing with a single automaton, we try to 
follow the evolution of a group of automata, which communicate between 
themselves, as well as with the environment, e.g., the group of automata 
defined in the abovementioned recommendation Q.71. The number of evolu-
tion traces of such systems can be extraordinarily large.

Not only must we select the initial state of a single automata, we must do it for 
all the automata from the group we want to analyze. Furthermore, in the case 
of simple and loosely coupled automata, an increase in the number of possible 
path combinations is not so high, but in the case of complex or tightly coupled 
automata, it is clear that the number of evolutions of the system can be huge.

The discussion above naturally raises the following questions: For what 
purpose are MSC charts useful? Do we need them at all? Practical expe-
rience shows that making the MSC charts can be useful at the beginning 
of the design process, when the designers talk rather freely about possible 
communication scenarios. These scenarios of message exchange most fre-
quently represent the so-called main branches, i.e., main paths, through the 
protocol. Typically, they go from the beginning (the initial state) to the end 
(logically, the last state in the chain of states), e.g., from the state IDLE to the 
state CONVERSATION, such as in the previous example, without any errors 
or other exceptional events. Later, after finishing the analysis of the main 
paths, the paths of minor importance are analyzed. These are related to vari-
ous less frequent cases, such as handling timer expirations, error recovery 
procedures, and so on.

All these scenarios, in the form of MSC charts, would be very useful in 
the later stages. Actually, these charts will be used as individual test cases 
during the implementation phase to partially check the functionality of the 
individual software modules (this is the so-called unit testing). They are also 
used during the final phase of the software verification as test cases for the 
compliance testing. The goal of compliance testing is to check if the software 
is compliant with the specification.

In most cases, the number of manually written MSC charts is finite and not 
too large (on the order of a few hundred at most). Later, during the testing 
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and verification phase, automatically generating a much larger number of 
test cases would be an ideal way (logically equivalent to MSC charts) to 
check the system much more thoroughly. This testing most frequently takes 
the form of statistical usage testing, which enables quality engineers to esti-
mate the software reliability without any previous knowledge about the sys-
tem under examination.

As already mentioned, the MSC language—similar to the SDL language—
has both the graphical and program form. The graphical form of the MSC 
language is more interesting than the program form for developing com-
munications software. The next example illustrates the message exchange 
among the functional entities FE1, FE2, FE3, FE4, and FE5, in the case of 
the successful establishment and successful release of the ISDN connection 
between two subscribers. From this example, MSC is obviously useful for 
tracing the message exchange between more processes, which is not so easy 
and clear by looking at the set of corresponding SDL diagrams.

We start drawing the MSC chart by placing the rectangle graphical sym-
bols that represent the communicating entities (i.e., processes) at the top of 
the chart sheet. The names of the entities are used to label these rectangular 
symbols. Next, we draw a vertical line from each rectangular symbol to the 
bottom of the sheet. After that, we enter a series of messages exchanged by 
the processes shown on the top of the chart. Each message (i.e., signal) is 
represented by the arrow symbol labeled with the message name. The arrow 
starts from the vertical line that represents the process sending the message 
and ends at the vertical line that represents the process receiving the mes-
sage. The time advances in the direction from top to bottom of the sheet, i.e., 
the messages that appear on the top of the chart are exchanged before the 
messages that appear at the bottom of the chart.

An example of the MSC chart is shown in Figure 3.42. This example illus-
trates the scenario of successful establishment and release of the ISDN con-
nection. The functional entities FE1 and FE5 are assigned to the calling and 
called party user, respectively. Initially, the functional entity FE1 receives 
the signal SETUP_req from the environment (in reality, this signal is gener-
ated by the signaling system DSS1). After receiving the signal SETUP_req, 
FE1 translates it to the signal SETUP_req_ind and sends this new signal to 
FE2. FE2 forwards this signal to FE3, FE3 forwards it to FE4, and finally FE4 
forwards it to FE5.

After receiving the signal SETUP_req_ind, the functional entity FE5 imme-
diately sends two signals, the signal SETUP_ind to its environment and the 
signal REPORT_req_ind back to FE4. The latter signal is forwarded from FE4 
to FE3, then from FE3 to FE2, and finally from FE2 to FE1. FE1 translates this 
signal to REPORT_ind and sends the latter to its environment.

The acceptance of the call by the calling party is signaled to FE5 by the sig-
nal SETUP_resp. FE5 translates this signal to the signal SETUP_resp_conf and 
sends the latter over the chain of FEs back to FE1. FE1 in its turn translates it 
to SETUP_conf and sends the latter to its environment. This is the final step 
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of the connection establishment procedure. The next communication phase 
is a conversation.

At the end of the conversation, the calling party user initiates the call release 
procedure by sending the signal DISC_req to the functional entity FE1, which 
in  turn translates it to DISC_req_ind and sends the latter to FE2. The func-
tional entity FE2 translates this signal to the signal RELEASE_req_ind and 
sends the latter to both FE1 and FE3. From there, we have two parallel flows of 
messages. FE1 replies to the signal RELEASE_req_ind by the signal RELEASE_
req_conf. Alternately, FE3 forwards the signal RELEASE_req_ind to FE4, which 
translates it to DISC_req_ind and sends the latter to FE5. FE5 indicates the 
reception of that signal by sending the signal DISC_ind to its environment.

FE1 FE2 FE3 FE4 FE5

SETUP_req
SETUP_req_ind

SETUP_req_indPROCEEDING_req_ind
SETUP_req_ind

SETUP_req_ind
SETUP_indREPORT_req_ind

REPORT_req_ind
REPORT_req_ind

REPORT_req_ind
REPORT_ind

REPORT_ind

SETUP_resp
SETUP_resp_conf

SETUP_resp_conf
SETUP_resp_conf

SETUP_resp_conf
SETUP_conf CONNECT_req_ind

DISC_req
DISC_req_ind

RELEASE_req_ind
RELEASE_req_ind

DISC_req_ind
DISC_ind

RELEASE_req_ind

RELEASE_resp_conf

DISC_resp
RELEASE_req_ind

RELEASE_resp_conf

RELEASE_resp_conf
RELEASE_resp_conf

FIGURE 3.42
Example of the MSC chart: Successful ISDN call establishment and release.
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The environment answers with the signal DISC_resp, which is then trans-
lated to RELEASE_req_ind and sent to FE4. The functional entity FE4 trans-
lates that to the signal RELEASE_resp_conf and sends the latter to both FE3 
and FE5. Finally, FE3 forwards that final signal to FE2. This is the final step 
of the call release procedure.

This real-world example shows the main advantage of using MSC charts—
instead of speculatively analyzing the parallel work of five finite state 
machines (FE1, FE2, FE3, FE4, and FE5) by looking at their SDL diagrams, 
here on a single chart we see how the system evolves through the procedures 
of call establishment and release. At this level of abstraction, we are not inter-
ested in the individual work of the individual automata. We just follow the 
interaction based on the message exchange between the automata in a given 
group.

3.9  Tree and Tabular Combined Notation Version 3

In this section, we cover the Testing and Test Control Notation Version 3 
(TTCN-3), a language that was originally standardized by the European 
Telecommunication Standardization Institute (ETSI) by extending the previ-
ous language Version 2 (TTCN-2). A group of designers may employ TTCN-3 
to make a formal specification of test procedures that are used to check if 
the implementation behaves in conformance with the system’s formal speci-
fication. The type of testing that is conducted in accordance with such test 
procedures is referred to as conformance testing. The object of the testing is 
typically called an implementation under test (IUT) or a system under test 
(SUT). Since an IUT might be a part of a SUT, in this section we use the term 
SUT as a more general term. The system that is used to test a SUT is called 
the test system (TS), see Figure 3.43.

Test
system

(TS)

System
under

test
(SUT)

FIGURE 3.43
Standard test configuration.
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Since TTCN-3 is a rather complex standard, here we cover the TTCN-3 
basic features, which are sufficient for making simple test suites, and we 
leave the more advanced TTCN-3 features (such as multicomponent TTCN-3 
and procedure-based communication) to the reader as an option for further 
study (see Willock, 2011). Therefore, this section is organized in the following 
subsections:

• TTCN-3 Language, Test Suite, and Test Systems
• Basic TTCN-3 Constructs and Statements
• Single Component TTCN-3 Test Suites

3.9.1  TTCN-3 Language, Test Suite, and Test Systems

TTCN-3 is an internationally standardized language specially designed for 
testing. Besides reusing many basic constructs and statements from conven-
tional programming languages, TTCN-3 introduces testing-oriented exten-
sions and more advanced concepts, including (1) the type system with native 
types for lists, test verdicts, and test components; (2) direct support for tim-
ers, message-based and procedure-based communication; and (3) built-in 
data matching, distributed test system architecture, and test components 
concurrent execution.

TTCN-3 standards provide clear and precise language definitions, so 
test cases written in TTCN-3 are unambiguous, and their execution on 
any TTCN-3 compliant testing system must have the same behavior. This 
independence from testing tool vendors enables easy test suite migration to 
other testing tools and their reuse. Although in this book, we primarily use 
TTCN-3 for conformance testing, actually TTCN-3 may be used across the 
whole product development cycle.

The TTCN-3 core notation is an intuitive textual format for defining 
test cases that is quite similar to conventional programming languages. 
Additionally, TTCN-3 supports specifying test cases using other presenta-
tion formats. These presentation formats may be converted into the core 
notation with the same semantics. Initially, two presentation formats have 
been standardized, namely the tabular presentation format and the graphi-
cal presentation format. The former was designed to further the support 
of the existing TTCN-2 tabular format, and enable migration of existing 
TTCN-2 legacy artifacts into the TTCN-3 tools. The latter uses an extended 
version of the MSC notation for specifying test cases. Since neither of these 
two presentation formats were accepted by the TTCN-3 community, they are 
not described further in this book.

When comparing TTCN-3 with TTCN-2, we need to consider the four major 
areas of improvement, namely the productivity, the expressiveness, the flex-
ibility, and the extensibility. The core TTCN-3 notation has been developed 
as a textual language resembling conventional programming languages, 
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with the intention to enable productivity. TTCN-3’s better expressiveness 
and flexibility is based on various language extensions, such as (1) support 
for the testing IP based systems and text based protocols like HTTP and 
SIP, and (2) support for testing systems based on remote procedure calls, 
like CORBA and web services. In order to support extensibility, TTCN-3 has 
explicit hooks and mechanisms that allow new language features and nota-
tions to be easily integrated.

Generally, there are two kinds of new features: the self-contained and 
the multifaceted features. Some examples of self-contained features are the 
integration of IDL and XML type definitions and the definition of a com-
mon set of documentation tags, whereas some examples of multifaceted 
features are behavior types, type parameterization, and test deployment 
support. The self-contained features have been defined by the new parts 
in the TTCN-3 standards, whereas the multifaceted features have been 
defined by separate extension packages, including the necessary modifica-
tions to the core language, the operational semantics, and the parts of the 
TTCN-3 standards.

Next, we introduce the TTCN-3 Test Suite. The TTCN-3 test suite is a col-
lection of modules. A module comprises definitions of data types, values, 
and test cases, as well as a control part that specifies how different test cases 
are to be executed. A module may import necessary definitions from other 
modules, which is key for test suite modularization.

Obviously, a test case running on a test system must be able to communi-
cate with a SUT in order to test it. Generally, TTCN-3 supports two types of 
communication among test cases and SUTs, namely message-based commu-
nication and procedure-based communication. Since message-based com-
munication is still dominantly used, we focus on it in this book. Normally, 
we use the TTCN-3 type record to define needed message types. A record is 
an ordered structured type, which is a collection of basic type elements (such 
as integer and charstring) and other structured type elements that corre-
spond to individual message fields. Many message types comprise a field 
that defines the kind of the message, and such a field is typically defined 
using the TTCN-3 type enumerated.

To define a message type, we normally first define the types of individual 
message fields, and then we define the message type itself. For example, let’s 
define the message type Msg, which comprises the four fields, namely ID, 
Kind, Question, and Answer. Assume that the types of these fields are 16-bit 
integer, enumerated, charstring, and charstring, respectively. We would then 
use the following definitions to define the message type Msg:

type integer ID (0..65535);
type enumerated Kind (e_Question, e_Answer);
type charstring Question;
type charstring Answer;
type record Msg {
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  ID id;
  Kind kind;
  Question question;
  Answer answer;
}

The communication messages are the actual instances of message types, 
and these instances are called templates. In TTCN-3, templates are used to 
send particular messages or to test whether received messages are in the 
set of expected messages. We may specify a set of expected messages using 
ranges, lists, and matching attributes (we will illustrate this later on). It is 
important to remember that a template for a type must specify a value or a 
matching expression for each field of this type. If the value of some field type 
is unknown, i.e., it may contain any value, we encode such a value with the 
character “?.” Furthermore, if some field of a message type is optional, and if 
this field should not be the part of the template we are creating, then we have 
to assign the special value omit to this field.

The template definition resembles the definition of a function. We spec-
ify the type (template), the name, and the list of its formal parameters. 
Instantiating a template (i.e., creating the concrete message) resembles a 
function call—we specify the template name and the list of its real param-
eters, which are used to replace the formal parameters.

For example, using the message type Msg, we may define the parametrized 
template t_request as follows:

template Msg t_request( ID p_id, Question p_question) := {
  id := p_id,
  kind := e_Question,
  question := p_question,
  answer := omit
}

Similarly, we may define the parametrized template t_response:

template Msg t_response( ID p_id, Answer p_answer) := {
  id := p_id,
  kind := e_Answer,
  question := ?,
  answer := p_answer
}

Next, we introduce test components and communication ports. Each test 
case runs on the test component it has been assigned to. A test suite may use 
a single or multiple test components, which may communicate with each 
other, and/or with the SUT over communication ports. A port is theoretically 
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an infinite first-in-first-out (FIFO) queue oriented in the receive direction, 
which stores messages in message-based communication (or calls in proce-
dure-based communication) until they are processed by the test component 
that is the owner of that port. Many simple test suites use a single test com-
ponent to execute test cases, and a single communication port to commu-
nicate with the SUT. Here is an example definition of the test component 
named ComponentS, which uses the single port pt of the type PortS:

type component ComponentS {
  port PortS pt
}

Each port has a type, which defines the type of the communication 
 (message-based or procedure-based) and the types of messages that may be 
communicated over that port. Within the definition of a port, each message 
type is given the attribute in/out/inout that determines whether a message of 
that type may be received (in), sent (out), or received and sent (inout) from the 
test component owning that port. For example, the port type PortS that may 
be used to both send and receive the message type Msg is defined as follows:

type port PortS {
  inout Msg
}

A test case may send and receive messages (i.e., templates) on a port using 
the method send and the method receive, respectively. For example, a test 
case sends the message t_requestMsg on the out/inout port pt using the fol-
lowing statement:

pt.send( t_requestMsg(12345, "SUT what is your name?") );

Similarly, a test case receives the message t_responseMsg on the in/inout 
port pt using the following statement:

pt.receive( t_responseMsg(12345, "My name is SUT XY.") );

Although the syntax of statements for sending and receiving messages is 
very similar (only the method name is different), there is a fundamental dif-
ference in their semantics, i.e., in the way they operate. The method send is 
a nonblocking method and it always successfully sends the outgoing mes-
sage, whereas the method receive is a blocking method and returns when 
the specified incoming message appears at the head of the input FIFO queue. 
More precisely, if the input FIFO queue is empty, the method receive blocks 
until the specified message arrives into the input FIFO queue. If some other 
message is at the head of the input FIFO queue, the method receive remains 
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blocked forever (we normally use timers to recover from such situations, as 
will be shown later).

A typical test case resembles a single- or multiphase interview. In each 
phase, the test case asks a question by sending a request message to the SUT, 
and then it checks the SUT’s answer by matching the SUT’s response mes-
sage with the expected message (i.e., particular template). If the response 
matches the expected message, SUT passed that phase, and the test case pro-
ceeds to the next phase. If SUT passes all the phases, the test case sets the 
final verdict by using the keyword setverdict to the value pass. An example 
of the body of a simple single-phase test case is the following:

pt.send( t_requestMsg(12345, "SUT what is your name?") );
pt.receive( t_responseMsg(12345, "My name is SUT XY.") );
setverdict(pass);
stop;

In this simple example above, the test case sends the messages t_request-
Msg over the port pt, matches the SUT’s response form the same port pt to 
the message t_replyMsg, and if the test case receives that message, it sets the 
verdict to pass, and stops its execution using the keyword stop.

Besides the verdict pass, the test verdict may be none, inconc (i.e., incon-
clusive), fail, or error. The meaning of these verdicts are as follows (we will 
return to more detailed technical treatment of test verdicts later in the text 
that follows):

• The verdict none is the default verdict and it is implicitly set by the 
test system before the test case starts executing.

• The verdict pass means that the test case has been completed 
successfully.

• The verdict inconc means that there is not enough evidence to pro-
claim that the SUT is conformant to the specification.

• The verdict fail indicates that the SUT is not compliant with the 
specification.

• The verdict error indicates that the test case terminated with a run-
time error, e.g., divide by zero.

In order to complete the simple test case above, we have to give it a name 
and define the test component that will execute it. If we give it the name 
tc_simple1 and if we assume that it will run on the component ComponentS, 
the complete test case would be the following:

testcase tc_simple1() runs on ComponentS {
  pt.send( t_requestMsg(12345, "SUT what is your name?") );
  pt.receive( t_responseMsg(12345, "My name is SUT XY.") );
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  setverdict(pass);
  stop;
}

If we want to activate this test case, we have to declare that it should exe-
cute, by using the keyword execute, within the control part of the test mod-
ule, which is declared by the keyword control, as follows:

control {
 execute( tc_simple1() )
}

Although our test case above looks simple and elegant, it will be blocked 
forever in two cases. The first case is when the SUT sends the unexpected 
response message, i.e., when it sends any other message not equal to t_response 
Msg(12345, “My name is SUT XY.”). The second case is when the SUT, for 
some reason, does not send any response message at all. So, besides the suc-
cessful case when the SUT returns the expected response message within 
some reasonable amount of time, we have two failure cases.

Generally, in TTCN-3 we use the statement alt to specify alternative SUT 
behaviors at a given point of a test case. The statement alt blocks until any of 
its alternatives matches. The alternatives are checked, starting from the first 
and towards the last, until the first matching alternative is found. The way to 
receive any message is to use the method receive without parameters, which 
will match with any message at the head of the input FIFO queue.

We may fix the initial test case above by introducing the statement alt with 
three alternatives, which correspond to three possible SUT behaviors (i.e., the 
one successful and the two failure cases). Additionally, we must introduce a 
timer that will limit the time interval for awaiting a response message from 
SUT. Let’s give this timer the name responseTimer. This timer should be started 
before the statement alt, and it should be stopped when any response message 
from SUT is received. Of course, there is no need to stop the expired timer.

The fixed test case operates as follows. It sends the request message to the 
SUT, starts the timer responseTimer, and checks the alternatives. If the response 
message is the expected one, it sets the verdict to pass. If the response mes-
sage is any other (unexpected) message, it stops the time responseTimer, and 
sets the verdict to fail. If the timer responseTimer expires, it just sets the ver-
dict to fail. The complete code of the fixed test case is as follows:

testcase tc_simple1() runs on ComponentS {
  timer responseTimer;
  pt.send(t_requestMsg(12345, "SUT what is your name?"));
  responseTimer.start(5.0);
  alt {
    []pt.receive(t_responseMsg(12345, "My name is SUT XY.")){
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      responseTimer.stop;
      setverdict(pass);
    }
 []pt.receive {
    responseTimer.stop;
    setverdict(fail);
   }
 []responseTimer.timeout {
    setverdict(fail);
   }
 }
 stop;
}

Obviously, dealing with unexpected or untimely SUT behavior may lead 
to considerable code duplication. If we needed to add two additional cases 
for every receive statement in order to catch incorrect or missing responses, 
then our test cases would become very long and verbose, thus hard to com-
prehend and maintain. Because of this, TTCN-3 offers a so-called default 
behavior construct, which allows us to handle unexpected situations implic-
itly. Instead of writing code to handle unexpected situations explicitly, we 
write the default behavior handler in a single place and define that this han-
dler should be used implicitly when none of the explicitly available alterna-
tives match (we will come to this later in this section).

Sometimes, test cases that require access to more than one interface can 
be better structured by having one dedicated test component per interface. 
These interfaces need to be described within the so-called test system inter-
face (TSI), which defines the common interface towards the SUT that differ-
ent test components share in order to test the SUT. One of these components 
is called the Main Test Component (MTC), which is typically responsible 
for creating other test components, collecting their individual verdicts, and 
calculating the final verdict for the whole test case.

Next, we introduce TTCN-3 Test Systems. So far, we learned the TTCN-3 
language elements for writing the so-called abstract test suites, which do 
not provide any system specific information, such as message encoding or 
practical communication setup. In the abstract test cases shown in this sec-
tion, we send and receive messages without being concerned with the details 
how these messages are sent in the physical world. However, in order to create 
real test suite, we have to commute from an abstract to the real world. An 
abstract test suite is not directly executable, so we have to provide a TTCN-3 
compiler or interpreter for it. Additionally, outside of an abstract test suite, 
we have to provide the following parts:

• Message Codecs, which are able to encode messages that are sent to 
the SUT and decode messages that are received from the SUT.
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• An SUT Adapter that maps the TTCN-3 port to the real port used 
by the SUT, and the TTCN-3 communication mechanism to the real 
communication mechanism used by the SUT.

• A Platform Adapter, which typically provides the real implementa-
tion of timers and the mechanism for calling external platform spe-
cific functions.

• Test Management provides support for creating test campaigns, or 
for customizing log formats and handling log records. It is especially 
important for a dynamic test environment, where test cases and/
or order of their execution are frequently changed. In this case, we 
need advanced test management support in order to avoid unneces-
sary, time-consuming test suite recompilations.

The additional parts, mentioned above, communicate with the abstract 
test suite using the two standard interfaces, namely the TTCN-3 Runtime 
Interface (TRI) and the TTCN-3 Control Interface (TCI). The TRI specifies 
operations for the SUT adapter and the platform adapter, whereas the TCI 
specifies operations for the test management, the component handling, the 
logging, and the encoders and the decoders (i.e., codecs). Figure 3.44 shows 
the block diagram of the complete TTCN-3 Test System architecture.

Component
handling

TCI-CH

Test executable

Generated code Runtime system

TRI

Test
management

Test
logging

TCI-TLTCI-TM

CoDec

TCI-CD

SUT and platform adapters

Platform adapterSUT adapter

FIGURE 3.44
Architecture of the TTCN-3 Test System.



138 Communication Protocol Engineering

The source abstract test suite is compiled into the module Generated 
Code, shown in the center of the Figure 3.44. The generated code is executed 
on the module Runtime System, which implements the TTCN-3 operational 
semantics. These two modules together are called the TTCN-3 Executable 
(TE). The test executable uses the interface TRI to call functions provided by 
the SUT Adapter and the Platform Adapter, shown in Figure 3.44. These 
adapters map common operational abstractions, like communication ports 
and timers, to real mechanisms available on particular test system platforms.

On the other hand, the interface TCI connects the test executable with the rest 
of the modules shown in Figure 3.44, namely the component handling (CH), the 
test management (TM), the test logging (TL), and the codec (CD). Since the inter-
face TCI is rather complex, it has been partitioned into the four sub-interfaces: the 
interface TCI-CH, the interface TCI-TM, the interface TCI-TL, and the interface 
TCI-CD. The roles of these four modules (and their corresponding sub-interfaces) 
are the following: The module CH is used to specify how test components are 
created and implemented when the test system is actually deployed, the module 
TM is used to control test case creation and execution, the module TL used to cre-
ate execution logs, and the module CD is used to specify external codecs.

3.9.2  Basic TTCN-3 Constructs and Statements

In this section we briefly introduce basic TTCN-3 constructs and statements. 
The TTCN-3 test suite consists of modules like programs in common program-
ming languages. Each module may have a definition part and an optional 
control part. A control part is similar to the function main in programming 
languages. In this section, we focus primarily on the module definition part.

The basic TTCN-3 constructs are the following:

• Identifiers
• Modules
• Scopes
• Constants
• Variables
• Comments
• Basic data types
• Subtypes
• Functions
• Predefined functions
• Parameters with default values

Identifiers uniquely identify named entities in the TTCN-3 code in the 
same way that identifiers in programming languages do. They consist of 
alphanumeric characters and underscores, must start with a letter, and are 
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case sensitive. TTCN-3 has its own naming convention for identifiers, which 
is rather similar to naming conventions in programming languages. So, we 
skip its formal specification here, and instead use it consistently in the code 
snippets in this section, so readers will become familiar with it.

Modules are defined using the keyword module followed by the module 
name and the module body, which is enclosed in the curly brackets. The 
module body consists of a definition part and an optional control part. The 
control part is defined using the keyword control followed by the control 
part body that is enclosed in the curly brackets. The body of the control part 
defines how the defined test cases are to be executed. The syntax for defining 
modules is the following:

module module_name {
  // Here goes the definition part, which defines data types and constants

  control {
  // Here goes the control part that executes the test cases
  }
}

Scopes are defined by code blocks enclosed in the curly brackets. The code 
blocks may contain code statements and nested code blocks. The outermost 
scope is the current module. The purpose of TTCN-3 scopes is the same as in 
programming languages, and they follow the same rules. Definitions made 
in the current scope are only visible within that scope and in the nested 
scopes. In TTCN-3, it is not possible to reuse the identifiers that were intro-
duced in the outer scopes. The following are the nine basic scope units:

• Module definitions part
• Control part of a module
• Component types
• Functions
• Altsteps
• Test cases
• Statement blocks
• Templates
• User-defined named types

All the identifiers must be declared before they are used, except the mod-
ule identifiers, which may be declared and referred to in any order.

Constants are defined using the keyword const in any scope. A constant 
is assigned the value within its declaration, which has the following syntax:

const const_type const_name := const_value;
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where const_type is the type of the constant, const_name is the identifier of 
the constant, and const_value is the value assigned to the constant. Generally, 
const_value may be an expression with constants, but references to other con-
stants must be made without creating cycles. By using constants, we create 
test suites that are easier to understand and maintain.

Variables are declared using the keyword var in any scope, except at the 
top module level, because in TTCN-3 there are no global variables. Global 
variables are not allowed in TTCN-3 because of data races that would oth-
erwise occur when distributed test components would try to update them. 
Like in programming languages, variables are used to save temporary val-
ues during program execution. A variable may be assigned the initial value 
within its declaration, or later in a separate assignment statement. However, 
using a variable before it is assigned a value results in a run-time error.

Besides simple variables, we can declare arrays the same way we do in other 
programming languages, after the array name we define its size enclosed 
by square brackets. Arrays are indexed starting from 0, and any attempt to 
access a value outside of the permitted range would lead to an error.

Comments in TTCN-3 are classified as block comments, line comments, 
or documentation comments. The block comment starts with characters 
“/*”, may span several lines, and ends with characters “*/”, whereas the 
line comment starts with characters “//” and extends to the end of the line. 
Documentation comments are defined in standard ETSI ES 201 873-10 (see 
Part 10: TTCN-3 Documentation Comment Specification). Like in some other 
programming languages, such as Java, an external documenting tool pro-
cesses these documentation comments to automatically generate the up-to-
date test suite user documentation.

Basic data types, also known as built-in data types, are a constitutive part 
of the TTCN-3 language. The TTCN-3 may be classified as a strongly typed 
language with a very rich type system. Here we will introduce only the most 
frequently used simple data types and the subtyping mechanisms for intro-
ducing user-defined types. The most frequently used basic data types are 
integer, Boolean, and charstring. Possible values of the type integer are pos-
itive and negative whole numbers, including zero, possible values of the type 
Boolean are true and false, whereas possible values of the type charstring 
are strings of ASCII characters that are enclosed by double quotes. However, 
unlike in other programming languages, nonprintable control characters, 
such as new line or tab, cannot be expressed using escape sequences.

Subtypes in TTCN-3 may be defined using two available subtyping mech-
anisms. The first subtyping mechanism restricts the set of possible values of 
a given ordered type to a particular range of values. For example, the type 
integer may be subtyped to a range of its values, by specifying a lower and 
an upper bound of that range. According to the first subtyping mechanism, 
a new subtype is defined by the type declaration of the following syntax:

type parent_type new_type new_type_range
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Here, parent_type is the parent type, new_type is the name for the newly 
defined type, and new_type_range is the new subtype’s restricted range of 
values. We already saw the following example of the first subtyping mecha-
nism in the previous section:

type integer ID (0..65535);

A constant or a variable of the given subtype must obey the subtype 
restrictions. An assignment outside of the allowed range of values would 
cause a compile time or run time error. For example, assigning the value -1 to 
a variable of the type ID would cause such an error.

The second subtyping mechanism restricts the set of possible values of 
a given ordered type to a particular list of values. According to the second 
subtyping mechanism, a new subtype is defined by the type declaration of 
the following syntax:

type parent_type new_type new_type_list

where parent_type is the parent type, new_type is the name for the newly 
defined type, and new_type_list is the new subtype’s restricted list of values. 
For example, we define the new type SomeNumbers by listing the list of its 
possible values 1, 3, 5, and 8:

type integer SomeNumbers (1, 3, 5, 8);

While introducing subtyping, we already touch upon compatibility 
restrictions. TTCN-3 enforces type compatibility of values in assignments, 
instantiations, expressions, and comparisons. We already mentioned that 
assigning the value to the given variable that is outside of its set of pos-
sible values causes a compile time or a run time error. In principle, a vari-
able can be assigned a value of another type if they have the same root 
type and the value conforms to the associated subtype constraints of that 
variable.

Functions are defined in the module definitions part by the keyword func-
tion, followed by a function name, an optional parameter list, an optional 
return value, and the function body enclosed by curly brackets. A function 
body typically contains definitions of local constants and variables, and 
statements that define dynamic behavior. Functions may be called from the 
module control part, from test cases, or from other functions.

The function’s return value may be a value like in common programming 
languages or a template. The return value is defined by the keyword return 
after the parameter list in the function header, followed by the return type. 
In this case, the function body must contain at least one return statement fol-
lowed by a value or template, which must be compatible with the specified 
type in the function header.
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Function parameters are declared with an optional passing mode, their 
type, and their name. There are the three parameter passing modes, namely 
the passing mode in (this is the default mode), the passing mode out, and 
the passing mode inout. In case of the passing mode in, function param-
eters are passed by value, i.e., the actual parameters are copied into the for-
mal parameters before the function body is executed. In cases of the passing 
modes out and inout, function parameters are passed by reference. In par-
ticular, in the case of the passing mode out, the formal parameters are cop-
ied into actual parameters, whereas in the case of the passing mode inout, 
parameter passing is performed in both directions. Obviously, an actual 
parameter cannot be a constant if it is to be passed in the modes out and 
inout.

TTCN-3 introduces a term instantiating a function, which corresponds 
to a function call in other programming languages. We may instantiate a 
function by specifying the function name and its actual parameters. There 
are two possible ways to specify the actual parameters—with or without the 
parameter names. If actual parameters are specified without their names, 
they must be specified in the same order as the corresponding formal param-
eters that are specified in the function header. If the actual parameters are 
specified by referring to the names of formal parameters, they may be speci-
fied in any order.

As in other programming languages, functions may be defined externally, 
i.e., outside of the current module. We use the keyword external in front of 
the function prototype to declare such a function.

Predefined functions are functions prepared in advance that are already 
available for use, much like built-in (or basic) data types. These functions 
enable productive work—without them the user would need to write every-
thing from scratch. The most important predefined functions are as follows:

• Value conversion functions, e.g., integer to a character
• String handling functions
• Length and size functions
• Presence checking functions
• Codec functions

Parameters with default values enable smooth evolution of test suite 
libraries by adding parameters without breaking previous releases. Once a 
formal parameter with a default value is defined in the list of formal param-
eters, it may be omitted in an actual parameter list. Obviously, an in param-
eter may have a default value, whereas out and inout parameters may not 
have a default value.

The parameter default value is used when no actual parameter is provided 
for a formal one. Typically, when the trailing formal parameters in a param-
eter list have default values, they can all be omitted in an actual parameter 
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list. In case of other parameters that follow a parameter with a default value, 
the parameter with the default value could be omitted in the actual param-
eter list by using the character dash ‘-‘ instead of a value.

The alternative convention of providing actual parameters is to assign 
actual parameters to the formal parameter names explicitly. This alternative 
convention may be used for all the parameter passing modes (in, out, and 
inout). However, it is not allowed to mix the conventional and the assign-
ment conventions. Also, the assignment convention may not be used for the 
parameter with a default value.

Here we conclude our brief introduction to basic TTCN-3 constructs, and 
we switch to basic TTCN-3 statements. The basic TTCN-3 statements are

• Operators
• Expressions
• Assignments
• Conditional statements
• Loops
• Labels and goto statements
• Log statements
• Control part
• Preprocessing macros

Operators are classified into five categories: arithmetic operators (+, -, *, /, 
mod, rem), relational operators (==, <, >, != , >=, <=), logical operators (not 
and, or, xor), binary string operators (not4b, and4b, xor4b, or4b), and string 
operators (&, <<, >>, <@, @>). Operator precedence (i.e., operator priorities) is 
defined similar to other programming languages, e.g., / has higher priority 
than +, etc.

We construct expressions by applying operators to operands, which may 
be literals, constants, and variables. Expressions are evaluated according to 
operator priorities, or from left to right when operators have the same prior-
ity. If in doubt, we may group subexpressions by parentheses. Of course, 
operands of arithmetic, logical, and string concatenation operators must 
have the same root type. In TTCN-3, all variables must be initialized before 
the expression is evaluated (unlike common programming languages where 
this is not required).

Assignments are used to update variables. The expression on the right-
hand side and the variable of the left-hand side must be of compatible types 
and the expression must evaluate to a value. If these conditions are met, the 
value of the expression is stored into the variable.

Conditional statements, like in other programming languages, are used 
to organize control flow within the dynamic parts of test suites. There are 
two kinds of conditional statements: the statement if–else and the statement 
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select–case–else. These statements may be nested and mutually nested. The 
syntax of the statement if–else is as follows:

if (condition_expression)
  statement_true
else
  statement_false

where condition_expression is a Boolean expression, statement_true is a state-
ment that is executed if the expression evaluates to the value true, and state-
ment_false is a statement that is executed otherwise. Most frequently, these 
statements are some block statements wherein some processing is performed:

if (condition_expression) {
  // Do something if the condition is true
}
else {
  // Do something else if the condition is not true
}

The syntax of the statement select–case–else is

select (control_variable) {
  case (values_1)
    statement_1
  ...
  case (values_n)
    statement_n
  ...
  else
     statement_else
}

where control_variable is the name of the control variable that governs the 
selection of possible cases, values_1 to values_n are the specifications of pos-
sible values, statement_1 to statement_n are the corresponding statements, 
and statement_else is the statement that is executed if none of the cases was 
selected. Here is a simple example:

integer v_int;
  // assume that a value has been assigned to v_int
  select (v_int) {
    case (0 .. 9) {
      log(v_int, " is a one digit positive integer");
    } case (10 .. 19) {
      log(v_int, " is a two digits positive integer");
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  }else case{
    log( v_int, " is not a one digit or a two digits positive integer" );
  }
}

Loops are used to specify repetitive behavior. There are the three kinds of 
loops in TTCN-3: the statement for, the statement do–while, and the state-
ment while. Within a loop, the statement break may be used to exit the loop, 
whereas the statement continue may be used to skip the current iteration. 
The syntax of the statement for is as follows:

for ( initial_stmt; condition_exp; next_stmt )
  body_statement

where initial_stmt is the initial statement typically used to declare a control 
variable and to assign it an initial value, condition_exp is the condition expres-
sion that is checked before the next loop iteration starts (if the expression is 
not true, the loop terminates), next_stmt is the statement that is executed after 
each iteration, and body_statement is the loop’s body. The following simple 
example, with the typical control variable i, looks familiar:

for (integer i := 0; i < n; i := i + 1 )
  // Do something that depends on the value of i

The syntax of the statement do–while is as follows:

do
  body_statement
while ( condition_exp )

The syntax of the statement while is

while ( condition_exp )
  body_statement

Labels and goto statements provide a mechanism to jump from one part 
of a program to another. Although they provide compatibility with TTCN-2, 
their usage in TTCN-3 is strongly discouraged. The statement label defines a 
label within a logical block statement (e.g., function or control part), whereas 
the statement goto is a control flow statement that transfers control to the 
specified label within the same block statement. So, it is not possible to jump 
out of (or into) the functions, test cases, and the control part; it is not possible 
to jump into both the loop and conditional statements.

Log statements are used for writing relevant information on the test sys-
tem’s logging interface. The particular format of logged values depends 
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on the logging interface implementation. We may log the variables, arrays 
(whole arrays by specifying their name), constants, function parameters, 
function instances (that have the statement return), test component refer-
ences, templates, timers, and related operations.

The control part of the module is the entry point for execution of a test 
suite, which is similar to the function main in other programing languages. 
The control part specifies the dynamic behavior of the test system. It may 
contain control statements and function calls. The main role of the control 
part is to execute test cases. The control part is not allowed to directly com-
municate with the SUT, to set a verdict, or to create dynamic configurations. 
These operations must be performed only within test cases.

Preprocessing macros are used in definition or control parts to locate the 
position of the macro call. TTCN-3 compiler replaces these macros with their 
charstring or integer values. More precisely, these values are inserted in 
the program source code instead of the macro calls. By the convention, the 
macro’s names are enclosed by underscores. Currently, TTCN-3 offers the 
following preprocessing macros: _MODULE_, _FILE_, _BFILE_, _LINE_, 
and _SCOPE_.

The value of the macro _MODULE_ is the name of TTCN-3 module in 
which the macro was called.

The value of the macro _FILE_ is the full pathname (ending with the basic 
file name) of the file in which the macro was called.

The value of the macro _BFILE_ is the basic file name (without its path) of 
the file in which the macro was called.

The value of the macro _LINE_ is the number of the source code (i.e., file) 
line in which the macro was called.

The value of the macro _SCOPE_ depends on whether the correspond-
ing scope is named or unnamed. The following basic scopes are named: the 
module, the control part (has a special name “Control”), the function, the 
component, the test case, the altstep, the template, and the user-defined type. 
If the corresponding scope is named, the value of the macro _SCOPE_ is its 
name; otherwise, the value is the name of the next higher basic scope.

3.9.3  Single Component TTCN-3 Test Suites

Although TTCN-3 resembles a common programming language, it’s a 
domain-specific language for developing test cases, which defines the inter-
action between the test system and the SUT. In this section, we study the 
message-based communication with the SUT and test cases executed on a 
single test component (i.e., nonconcurrent TTCN-3 test suites).

We introduce the concepts for message-based communication and single 
component test suites through examples for testing the Address Resolution 
Protocol (ARP) server. So, the test setup is such that test cases executing on a 
test system (also called the tester) imitate an ARP client, whereas the SUT is 
the real ARP server under testing, see Figure 3.45.



147Design

The main task of the ARP is to map a given network address, such as the 
Internet Protocol version 4 (IPv4) address, into the corresponding physical 
(or hardware) address, such as Ethernet address, which is also known as the 
Media Access Control (MAC) address. The ARP is a simple client–server 
protocol, which uses a simple message format containing one address reso-
lution request or response. The size of the ARP messages depends on the 
size of the particular network and physical addresses. For example, the 
size of the IPv4 address is 32 bits (4 bytes), the size of the MAC address is 
48 bits (6 bytes), and the size of ARP messages used to map IPv4 to the MAC 
addresses is 28 bytes.

The fields of the ARP message used for mapping IPv4 to MAC addresses 
are as follows (we refer to individual bytes, also called octets, of the message 
by using their index, which starts from 0):

• Hardware type (HTYPE), bytes 0–1, specifies the type of the physical 
address (for Ethernet, HTYPE is equal to 1).

• Protocol type (PTYPE), bytes 2–3, specifies the network protocol (for 
IPv4, PTYPE is equal to 0x0800).

• Hardware address length (HLEN), byte 4, is the length of the hard-
ware address (for Ethernet, HLEN is equal to 6).

• Protocol address length (PLEN), byte 5, is the length of the network 
address (for IPv4, PLEN is equal to 4).

• Operation (OPER), bytes 6–7, specifies the operation that the sender 
is performing (1 for request, 2 for reply).

• Sender hardware address (SHA), bytes 8–13, is the sender’s MAC. In 
the message ARP request, this field is the MAC of the host sending 
the request. In the message ARP reply, this field is the MAC of the 
host that the request was looking for, i.e., the result of the request 
mapping.

• Sender protocol address (SPA), bytes 14–17, is the sender’s IPv4 
address.

ARP
client

imitator
(TS)

ARP
server
(SUT)

FIGURE 3.45
Test configuration for testing the ARP Server.
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• Target hardware address (THA), bytes 18–23, is the receiver’s MAC. 
In the message ARP request this field is ignored. In the message 
ARP reply, this field is the MAC of the host that sent the initial mes-
sage ARP request.

• Target protocol address (TPA), bytes 24–27, is the receiver’s IPv4 
address.

We may describe the types of the fields of the ARP message by the following 
supplementary types (note that generally we may specify hexadecimal num-
bers using the construct ‘h_num’H, where h_num is a hexadecimal number):

type integer Int8 (0..'FF'H)
type integer Int16 (0..'FFFF'H)

where Int8 corresponds to a single byte field and Int16 corresponds to a dou-
ble byte field. Then we may define possible values of the field OPER using 
the following enumerated type (note that generally we may explicitly assign 
a value to an enumeration element by writing the particular value enclosed 
in the parenthesis after the particular enumeration element name):

type enumerated ARPOperation (
  e_ARPRequest(1),
  e_ARPReplay(2)
);

Using these supplementary types, we may describe the ARP message by 
the following record type:

type record ARPMessage {
  Int16 htype,
  Int16 ptype,
  Int8 hlen,
  Int8 plen,
  Int16 oper,
  charstring sha,
  charstring spa,
  charstring tha,
  charstring tpa
}

Finally, we may construct individual ARP messages using the following 
parametrized template:

template ARPMessage t_ARPMessage(
  Int16 p_oper, Int48 p_sha, Int32 p_spa, Int48 p_tha, Int32 p_tpa
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):= {
  htype := 1,
  ptype := 0x0800,
  hlen := 6,
  plen := 4,
  oper := p_oper,
  sha := p_sha,
  spa := p_spa,
  tha := p_tha,
  tpa := p_tpa
}

The ARP operates as follows: Assume that the router R has to deliver 
an IPv4 datagram to the host H, which for example has the IPv4 address 
192.168.0.48 and the MAC address 00:EB:24:B2:05:C8. First, R will have a look 
in its own local routing table for the entry corresponding to H’s IPv4 address. 
If R finds it there, then R reads the H’s MAC address from that entry and uses 
it to perform direct datagram delivery to H.

If R does not find the entry for the IPv4 address 192.168.0.48, then R broad-
casts the message ARP request for this IPv4 address by sending the Ethernet 
frame to the destination MAC address FF:FF:FF:FF:FF:FF. The ARP server S 
receives this message, finds the mapping in its local table, creates the cor-
responding message ARP reply, and sends it to R, which, in turn, performs 
direct datagram delivery to H, and updates its local routing table accordingly.

The tester (i.e., test system) may test ARP by executing a simple test case, 
which first sends the message ARP request (with SPA set to its IPv4 address, 
SHA set to its MAC address, and TPA set to the IPv4 address 192.168.0.48; 
THA is ignored), and then receives the message ARP reply with the required 
mapping (with SPA set to the IPv4 address 192.168.0.48 and SHA set to 
the MAC address 00:EB:24:B2:05:C8), see the MSC in the Figure 3.46. If the 

Tester ARP server

ARP_request

ARP_reply

FIGURE 3.46
MSC for mapping the IPv4 address into the corresponding MAC address.
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received message ARP reply contains the correct mapping, the tester would 
set the test verdict to pass; otherwise, it would set the test verdict to fail.

Here, we introduce the following concepts for message-based communica-
tion and single component test suites:

• Ports
• Components
• Test Cases
• Templates
• Message-Based Communication
• Timers
• Alt Statement
• Altsteps
• Default Altsteps
• Functions

Ports are used for exchanging messages. The messages sent to a port are 
immediately delivered to the related receiver, whereas the messages received 
from a port are stored in the unbounded FIFO queue, which is implicitly 
assigned to a port. Although the queue is theoretically unbounded, i.e., of infi-
nite length, TTCN-3 implementations may introduce some practical limits.

Directions of messages exchanged over ports are defined from the test sys-
tem point of view. There are the three possible message transfer modes for 
exchanging messages over ports, namely the mode out, the mode in, and 
the mode inout. The mode out is used for sending messages from the test 
system to the SUT, the mode in is used for receiving messages sent from the 
SUT to the test system, whereas the mode inout is used for the bidirectional 
exchange of messages between the test system and the SUT.

Generally, a single port may be used for exchanging more message types. 
Moreover, messages of different message types may be exchanged over the 
same port in the same or in the different message transfer modes. In the most 
general example, messages of the types A, B, and C may be exchanged over 
the same port in the transfer modes out, in, and inout, respectively.

Most frequently we will use a single port for the exchange of a single type 
of message in a single transfer mode. For example, we may define the mes-
sage port type ARPPort for the bidirectional exchange of messages, or the 
type ARPMessage in the message transfer mode inout, in order to test the 
target ARP server:

type port ARPPort message {
  inout ARPMessage
};
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However, sometimes we will need to define different message types to 
be exchanged over the same port type in various message transfer modes. 
For example, imagine that we want to test the Email server. Since Email 
clients use SMTP protocol for sending email messages to the Email server, 
and POP3 protocol for receiving email messages from the Email server, we 
would define one message port type with two different message types, for 
example, as follows:

type port MailPort message {
  inout SMTPMessage;
  inout POP3Message
}

Components are used for executing test cases. A component may have its 
local state that comprises its constants, variables, and timers. The compo-
nent’s interface is defined by its ports. In order to define a component type, 
we have to provide the list of particular port instances used by that compo-
nent type, where each item in that list indicates the type of the port and the 
name of the port instance. It is not necessary that all the ports have different 
types. Some of the ports may have the same type, but their names must be 
different, i.e., unique.

For example, we may define the component type ARPTester, which uses 
a single port instance of the type ARPPort with the name serverPort, as 
follows:

type component ARPTester {
  port ARPPort serverPort
}

Optionally, we may define component’s constants, variables, and timers, 
within the component’s type definition. As shown in the previous section, 
constants are defined by their type, name, and value; variables are defined 
by their type and name and optional initial value; and timers are defined by 
their name and optional default duration of the type float. It is important to 
notice that each instance of a component type has its own instances of the 
ports, variables, and timers (i.e., they are analogous to nonstatic class attri-
butes in programming languages).

For example, we may extend the previous definition of the component type 
ARPTesterS by introducing the constant c_maxRequests (the max number of 
ARP requests that an ARPTester may send in a burst, i.e., without waiting for 
a reply before issuing the next request), the variable v_noRequests (the num-
ber of requests sent to the SUT), and the timer t_inactive (that may bound the 
time interval for waiting the reply from the SUT), with the default duration 
of 0.5 s. The extended type ARPTesterS is as follows:
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type component ARPTesterS {
  const integer c_maxRequests := 1000;
  var integer v_noRequests;
  timer t_inactive := 0.5;
  port ARPPort serverPort
}

Test cases are used to describe the expected behavior of the SUT, and to set 
the test verdict depending on the real behavior of the SUT. More precisely, 
test cases define the behavior of the main test component within a given test 
configuration that may generally have more test components. As its name 
suggests, a single component TTCN-3 test suite’s test configuration has a 
single test component, which must be the main test component.

The Test System Interface (TSI) is the interface between the TS and the SUT. 
In case of a single component TTCN-3 test suite, TSI is completely defined by 
the set of ports of the main test component, thus TSI is defined implicitly and 
there is no need to define it separately.

When writing a test case, we use the clause runs on to specify the com-
ponent type that will execute that test case. Most frequently, a test case will 
not have parameters, and in such a case we simply omit the list of formal 
parameters by writing the empty pair of parenthesis after the test case name. 
For example, the following empty test case tc_nop (which does not perform 
any operation) is designed to be executed on the component type ARPTester, 
which has no parameters:

testcase tc_nop() runs on ARPTester {};

We have already introduced possible test verdicts (none, pass, inconc, fail, 
and error) without going too much into detail. Actually, each test component 
has its own local verdict, which is a variable of the type verdicttype that we 
may set or get using the test component’s operations setverdict or getver-
dict, respectively. The exception is the verdict error, which can be set only by 
the runtime execution system (within the error handling routine) and cannot 
be set by a test case. Like any other variable, we may log the local verdict cur-
rent value by the statement log.

As already mentioned, the initial value of the local verdict (i.e., its default 
value) is the verdict none. For example, since the test case tc_nop performs no 
operation, its final verdict is the verdict none, too.

Unlike simple variables, the possible values of the local verdict are not just 
elements of a conventional enumeration. Instead, verdicts are assigned different 
strengths, such that all the verdicts are ordered by their strength, from the weak-
est (none) to the strongest (error), according to the following list: <none, pass, 
inconc, fail, error>. Assignment of a value to the local verdict is governed by the 
following important rule: The current value of the local verdict can be assigned 
the next value only when the next value is stronger than the current value.
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For example, the value of the local verdict can be changed from none 
to pass or fail, but it cannot be changed, for example, from fail to pass. 
Therefore, in the test case tc_remains_fail, as shown below, the final test 
verdict remains fail, because the assignment of the verdict pass after the 
assignment of the verdict fail is not possible (and thus the runtime execution 
system just ignores it):

testcase tc_remains_fail() runs on ARPTester {
  var verdicttype current_verdict;
  setverdict(fail);
  …
  // later in the code…
  setverdict(pass);
  current_verdict = getverdict; // verdict remains fail
};

Besides the local verdict, a test component also has the implicit variable 
of the type charstring, which may be used to describe the reason for the 
particular verdict assignment. This variable is assigned by the setverdict 
operation and the reason string is passed as one or more optional parameters 
at the end of the setverdict operation’s parameter list (these parameters are 
specified the same way as those for the log statement). For example, in the 
test case tc_always_pass, we describe the reason for setting the test verdict to 
pass:

testcase tc_always_pass() runs on ARPTester {
  // Check the SUT behavior
  setverdict(pass, 'The SUT behavior was as expected.')
};

We should note that in the case of a single component TTCN-3 test suite, 
the overall test verdict is equal to the local verdict of the main test compo-
nent (whereas in the case of the multi component test suite, it is evaluated 
based on the local verdicts of individual test components).

As we have already seen, a test case is executed from the control part by 
the statement execute, which returns the overall test case’s verdict. The ver-
dict returned by the statement may be stored in the variable of the type ver-
dicttype for further processing, or it may be ignored if it is not needed. Note 
that assignments to the user-defined variable of the type verdicttype are 
not governed by the assignment rule for the test component’s local verdict, 
because it is a simple variable, so its value can be changed freely.

The second parameter of the operation execute is optional, and when it is 
supplied it defines the upper bound on the test case execution time. Under 
the hood, the runtime execution system starts the corresponding timer, and if 
the timer expires it terminates the test case with the verdict error. We should 
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note that even if some of the test cases have the overall test verdict error, 
other test cases defined within the control part will be executed as requested.

The following example illustrates the control part that executes the three 
previously introduced test cases. The execution time for all the test cases is 
bounded to the time interval of 5s and the return verdict is stored into the 
user-defined variable result for all the executions:

control {
  var verdicttype result;
  result := execute(tc_nop(), 5.0);
  result := execute(tc_remains_fail(), 5.0);
  result := execute(tc_always_pass(), 5.0);
};

Usually, a control part, such as the one shown above, is just a list of execute 
statements, but when needed, we may use conditional statements and loops 
(introduced in the previous section) within a more complex control part.

Like functions, test cases may have in, out, and inout parameters. The in 
parameters are passed by a value, whereas the out and inout parameters are 
passed by a reference. In the latter case, changes of parameters within the 
test case cause updates of real parameters in the control part. But, if the test 
case verdict is error, the values of out parameters are undefined.

The function’s restrictions of its real parameters (which we have already 
seen) apply to test case parameters, too. The real inout parameter cannot be 
uninitialized, and the real out, as well as the real inout parameter, cannot be 
a constant expression. For example, the following test case tc_counting has 
the inout parameter p_count, which may be used for counting the number of 
test case executions:

testcase tc_counting(inout p_count) runs on ARPTester {
  p_count := p_count + 1;
  setverdict(pass);
};

Within the control part, we may define the initialized inout variable v_
count in order to count the number of test case executions:

control {
  var integer v_count := 1;
  // execute tc_counting 10 times
  for ( integer i := 0; i < 10; i := i + 1 ) {
  log("v_count = ", v_count);
  execute( tc_counting(v_count) );
  }
}
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The local constants, variables, and timers of the test component which the 
test case runs on, are in the scope of this test case. These constants, variables, 
and timers may be used the same way as ordinary test case’s local variables. 
This concept is similar to the concept of inheriting attributes of a supper 
class in a subclass in programming languages.

In TTCN-3, a function may also inherit local constants, variables, and timers 
of the test component on which it runs. Note that for all the test cases and func-
tions running on the same test component, these inherited local constants, 
variables, and timers appear as global entities, and we should use them care-
fully (the same way we use global variables in other programming languages).

In the following test case tc_using_comp_vars, we set the local variable of 
test component ARPTesterS the same way as we set the test case’s local vari-
able v_current:

testcase tc_using_comp_vars() runs on ARPTesterS {
  var integer v_current := 1
  …
  v_noRequests := 10;
  v_current := 1;
  …
}

A test case implicitly terminates with its last statement. We may explic-
itly terminate a test case using the operation stop or the operation testcase.
stop. We use the operation stop to terminate an error-free test case execution 
and the operation testcase.stop to terminate an erroneous test case execu-
tion. The operation stop returns the overall test verdict to the control part 
(analogously to the statement return that returns the return value of the 
called function to the calling function in other programming languages). On 
the other hand, the operation testcase.stop sets the test verdict to error and 
terminates the test case. We may use the operation’s optional arguments to 
indicate the reason for termination (the same way as we use the optional 
arguments of the operation setverdict).

Templates are used to define messages exchanged between the test system 
and the SUT. When we want to send a particular message from the test system 
to the SUT, we use the template instance that defines a single value of the cor-
responding type, i.e., that particular message. But, when we want to receive a 
reply from the SUT, we would more frequently use matching expressions with 
template instances specifying more possible reply messages.

Generally, a template defines a set of values of a given type. This set may 
contain just a single value, more values, or even all the values of the given type 
(we specify all the values using the character ‘?’). In the example below, we 
use the nonparametrized template t_fixedARPRequest to define the fixed ARP 
request message from the test system to the SUT, with SPA set to “192.168.0.40” 
(this is the test system’s IPv4 address), SHA set to “00:EB:24:B2:05:C0” (this is 
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the test system’s MAC address), TPA set to “192.168.0.48” (this is the IPv4 
address that has to be resolved), and THA set to 0 (actually, it could be any 
value, because ARP protocol ignores THA field in the ARP request message):

template ARPMessage t_fixedARPRequest () := {
  htype := 1,
  ptype := 0x0800,
  hlen := 6,
  plen := 4,
  oper := 1,
  sha := "00:EB:24:B2:05:C0",
  spa := "192.168.0.40",
  tha := 0,
  tpa := "192.168.0.48"
}

On the other hand, the previously introduced parametrized template 
t_ARPMessage defines a subset of all the possible values of the record 
type ARPMessage, with the first four fields fixed to the values 1, 0x0800, 6, 
and 4, respectively.

Although templates are used to specify values, they are not values. Even 
a single-valued template is not a value. Thus, a template cannot be directly 
used in an expression.

However, templates can be passed as in parameters to functions and test 
cases. Such a parameter must be defined with the additional keyword tem-
plate in order to distinguish it from the simple value. For example, the fol-
lowing test case has the template as its input parameter:

testcase tc_withParam(
 in template t_ARPMessage p_msg
) runs on ARPTester {
  // some statements that depend on p_msg
};

Message-based communication between the test system and the SUT 
is conducted over TSI ports in order to effectively test the SUT. The type 
port supports the three main operations, namely send, receive, and check. 
The operation send sends the specified message to the SUT. The operation 
receive compares the received message with the specified template, and 
if they match, it receives the message from the port’s queue; otherwise it 
blocks. The operation check is similar to the operation receive, but it does 
not remove the received message from the port’s queue. Besides receiving 
a message from a single port, it is also possible to receive a message from 
any port. In the following paragraphs, we study these operations in more 
detail.
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The port’s operation send sends the particular message (single value tem-
plate instance) over the specified port. For example, the following test case 
creates the ARP request message req_msg, with SPA set to “192.168.0.40” (the 
test system’s IPv4 address), SHA set to “00:EB:24:B2:05:C0” (the test system’s 
MAC address), TPA set to “192.168.0.48” (the IPv4 address that has to be 
resolved), and THA set to 0 (actually, it could be any value), and sends this 
message over the port serverPort to the SUT:

testcase tc_resolve_part_1() runs on ARPTester {
  // create the ARP request message
  ARPMessage req_msg := t_ARPMessage(
    1,                                     // ARP operation: 1 – request
    "00:EB:24:B2:05:C0",         // test system’s MAC address
    "192.168.0.40",                 // test system’s IPv4 address
    0,                                      // this field is ignored by ARP
  "192.168.0.48"                    // target IPv4 address to be resolved
 );
  // send the ARP request message
  serverPort.send(req_msg);

  // part 2 - to be finished later
};

The state of the SUT cannot influence the execution of the operation send, 
which is executed by the test system. Once the message is delivered over the 
specified port, the operation send is finished, and the test case proceeds to 
the next statement following it, no matter whether SUT really received the 
message or not.

When we define a template using a simple type rather than a record, the 
particular template instance might not be distinguished from the ordinary 
value of the corresponding type. In such a case, the value must be pre-
ceded by a type name. For example, assume that we defined the template 
t_MyIPAddresses using the type charstring, and assume that “128.0.0.0” is a 
member of t_MyIPAddresses. In order to send the value “128.0.0.0” as one of 
the t_MyIPAddresses instances, we must explicitly write the template name 
before the particular value:

type charstring t_MyIPAddresses {"128.0.0.0", …};
somePort.send(t_MyIPAddresses: "128.0.0.0");

The port’s operation receive is generally used for receiving messages from 
the SUT. Unlike the operation send, its argument is a template that may 
specify more possible SUT replies rather than just one particular SUT reply 
(which is allowed as a special case). Also, the operation receive is a blocking 
operation, whereas the operation send is a nonblocking operation.
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The operation receive performs two steps. In the first step, it compares the 
message at the head of the port’s queue with the specified template. If this mes-
sage is a member of the set of messages specified by the template, we say that 
the message matches the template. More precisely, if the template specifies a 
single message, the message at the head of the queue must be that message. If the 
template specifies a subset of messages of the message type that may be received 
over the specified port, the message at the head of the queue must be a member 
of that subset. Finally, if the template specifies any message of the corresponding 
message type, then the message at the head of the queue must be of that type.

In the second step of the operation receive there are two possible cases. If 
the message at the head of the queue matches the template, this message is 
dequeued from the head of the queue and delivered to the receiving process, 
which proceeds to the next statement that follows the operation receive. If 
the message at the head of the queue does not match the template, and if 
there are no alternatives, then the receiving process blocks within the opera-
tion receive (we introduce alternatives later in the following text).

The message at the head of the queue may mismatch the template in two 
possible cases. The first case is when the queue is empty. No message mis-
matches any template, and consequently the receiving process blocks. The 
second case is when there is some message at the head of the queue that mis-
matches the template, so the receiving process again blocks. However, there 
is a fundamental difference between these two cases. In the latter case, the 
receiving process blocks forever (even if the right message is received later, 
because it will still not be positioned at the head of the queue), whereas in the 
former case, the receiving process blocks temporarily. If the right message is 
received later, the receiving process would be unblocked.

The following test case tc_resolve tests the whole ARP. Its first part is the 
same as in the previous test case tc_resolve_part_1. In its second part, the 
test case tc_resolve creates the expected ARP reply message rpy_msg, with 
SPA set to“192.168.0.48” (the IPv4 address that has to be resolved); SHA set to 
“00:EB:24:B2:05:C8” (the expected MAC address that should be the result of 
the ARP resolution); TPA set to“192.168.0.40” (test system’s IPv4 address); and 
THA set to “00:EB:24:B2:05:C0” (test system’s MAC address), which receives 
this message over the port serverPort, and sets the test verdict to pass.

testcase tc_resolve() runs on ARPTester {
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
  1,                                       // ARP operation: 1 - request
  "00:EB:24:B2:05:C0",        // test system’s MAC address
  "192.168.0.40",                  // test system’s IPv4 address
  0,                                       // this field is ignored by ARP
  "192.168.0.48"                   // target IPv4 address to be resolved
 );
  // send the ARP request message
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  serverPort.send(req_msg);

  // part 2 – create ARP reply, receive it, and set test verdict
  // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
  2,                                       // ARP operation: 2 - reply
  "00:EB:24:B2:05:C8",           // target MAC address – expected value
  "192.168.0.48",                  // target IPv4 address to be resolved
  "00:EB:24:B2:05:C0",            // test system’s MAC address
  "192.168.0.40"                   // test system’s IPv4 address
 );
  // receive the ARP reply message
  serverPort.receive(rpy_msg);
  // set test verdict to pass
  setverdict(pass);
};

In the previous test case, the operation receive may block the receiving pro-
cess temporarily if the test system still did not receive a reply from the SUT. 
Alternatively, the operation receive may block forever if the test system received 
the message that mismatched the expected message rpy_msg. The receiving 
process will not block, or will be unblocked, if the test system receives the 
expected message rpy_msg. Once this expected message is received, the test 
case will set the test verdict to pass and it will successfully terminate.

The operation receive also offers an option to save the received message 
into the specified variable of the corresponding type (e.g., the type that is 
used in the definition of the template). The syntax of the statement using this 
option is as follows:

port.receive(template) -> value variable

where port is the name of the port over which the message is to be received, tem-
plate is the name of the template that the received message should match, and 
variable is the name of the variable where the received message should be stored.

Alternatively, by using the operation receive without the argument, we may 
receive any message over the specified port, but we cannot save that message. 
Of course, the received message must be of the correct type. For example, the 
following statement will receive any message of the type ARPMessage:

serverPort.receive;

Like in the case of the operation send, if the type of the operation’s argument 
could not be uniquely determined, it must be specified explicitly as follows:

port.receive(type: template)
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where port is the name of the receiving port, type is the name of the message 
type, and the template is the name of the template.

The port’s operation check receives the message from the specified port, but 
it does not remove it from the port’s queue. The receiving process will block 
if the queue is empty or if the message at the head of the queue mismatches 
the specified template. Alternatively, if the message at the head of the queue 
matches the specified template, the operation check successfully finishes, and 
the receiving process proceeds to the next statement following it.

The operation check is the operation on the specified port whose argu-
ment is the operation receive with its argument. For example, the following 
statement checks any message on the port serverPort:

serverPort.check( receive );

Alternatively, the following statement checks the particular ARP reply 
rpy_msg on the port serverPort:

serverPort.check( receive(rpy_msg) );

Like the operation receive, the operation check offers the option for saving 
the checked message into the specified variable. The syntax of the statement 
for using this option is the same as for the operation receive. For example, 
the following statement saves the checked message rpy_msg into the variable 
v_msg of the type ARPMessage:

ARPMessage v_msg;
serverPort.check( receive(rpy_msg) ) -> value v_msg;

Besides receiving and checking messages on the particular port, we may 
receive or check messages on any port. We may want to do this in order to 
receive or check the unexpected messages and we may do this simply by 
using the keyword any port as the port name in the corresponding state-
ments. Of course, sending some message on any port would be an ambigu-
ous operation, thus this option is not supported.

For the sake of illustration, assume that SysTester is the test component 
with two ports, namely serverPort and serverPort2. Further assume that the 
port serverPort connects the test system with the primary ARP server, and 
the port serverPort2 connects the test system with the secondary ARP server 
(which is a backup in case of the primary ARP server failure).

Generally, we may receive any message on any port by using the operation 
receive on any port and without a template, as follows:

any port.receive;

If this statement is executed on the test component SysTester, it would 
block until there is a message in at least one of the two message queues. 
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Alternatively, if both queues contain messages, this statement would ran-
domly select one of the two queues, and it would dequeue the message from 
the head of the selected queue. However, in this case, there are no means to 
determine from which port the message was dequeued.

Alternatively, we may receive the specified message(s) on any port. For 
example, if the following statement is executed on the test component 
SysTester, it would receive the message rpy_msg either from the port serverPort 
or the port serverPort2:

any port.receive(rpy_msg);

Again, it would not be possible to determine whether the message rpy_msg 
was received from the port serverPort or the port serverPort2. In this particu-
lar example, this would mean that the system as a whole (primary plus sec-
ondary ARP servers) reacted as expected. However, in some other protocols, 
receiving excepted messages from any port might not be what we are really 
looking for. Receiving unexpected messages from any port is the intended 
usage of the keyword any port.

Like in the case of the ordinary receipt of the specified port, we may save 
the message received on any port into the specified variable. The syntax is 
the same. For example, if the following statement is executed on the test com-
ponent SysTester, it would save the received message rpy_msg (received from 
either of two available ports) into the variable v_msg:

any port.receive(rpy_msg) -> value v_msg;

Timers are used to describe the protocol’s timing properties. The 
moment in time is represented by the nonnegative floating point num-
ber (float). The type timer supports the five main operations: start, stop, 
timeout, read, and running. The operation start starts the specified timer, 
the operation stop stops the specified timer, the operation timeout waits 
for the specified timer to expire, the operation read returns the duration 
since the specified timer was started, and the operation running returns 
the Boolean indicator indicating whether the specified timer is running 
(the indicator has the value true if the timer running; otherwise it has the 
value false).

We may declare a timer within the test component, the test case, the con-
trol part of a module, the function, or the altstep. Each timer exists only 
within the scope in which it was declared. Once the timer’s scope is left, 
the timer is destroyed, and thereafter becomes unavailable. We may declare 
a timer without explicitly specifying its default duration. For example, the 
following declaration declares the timer t_T1 without the explicit default 
duration:

timer t_T1;
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Alternatively, we may declare a timer with the explicit default duration. 
For example, the following declaration declares the timer t_T2 with the 
default duration of 1s:

timer t_T2 := 1.0;

We start the specified timer by the operation start, which has the timer 
duration as an optional argument. If we use this optional argument, and if 
the timer was declared with the explicit default duration, the value of the 
optional argument will overwrite the default value. For example, the follow-
ing statement starts the timer t_T2 for the duration of 2s:

t_T2.start(2.0);

We typically use the operation timeout to simulate the desired rhythm of 
messages that are sent towards the SUT. For example, imagine that we want 
to send the ten req_msg messages towards the SUT over the port serverPort, 
with the 1s time interval between two adjacent messages. We may do this by 
the following snippet of code:

for ( integer i := 0; i < 10; i := i + 1 ) {
  serverPort.send(req_msg);
  t_T2.start;
  t_T2.timeout;
}

We may stop the running timer by the operation stop. It is important 
to remember that the timer’s states stopped and expired are two different 
states. Note that the operation timeout on the previously stopped timer 
would block forever, because this timer would remain in the state stopped 
and would never go (back) to the state expired. Another important detail to 
remember is that starting the running, or expired, timer is equivalent to first 
stopping and then restarting the timer.

The operation running and the operation read are typically combined. In 
the following example, we start the timer t_T1 with the duration of 10s and 
then while it is running, we use the timer t_T2 to report, every 1s, the time 
that elapsed from the moment when the timer t_T1 was started:

t_T1.start(10.0);
while(t_T1.running) {
  log(t_T1.read, " seconds elapsed since t_T1 was started…");
  t_T2.start(1.0);
  t_T2.timeout;
}
log("t_T1 expired.");
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We may pass timers as inout arguments to altsteps or functions, but we 
cannot pass them to test cases. A timer does not need to be in the running 
state in order to be passed as an argument.

Alt Statements are used to combine several blocking operations as pos-
sible alternatives to continue process execution, in order to avoid unbounded 
blocking of individual blocking operations. The statement alt executes the 
first blocking operation that is ready to proceed.

For example, as already mentioned, the standalone operation receive will 
block forever if no message, or some unexpected message, is received. The 
usual way to overcome this situation is to guard this blocking operation 
receive by using a timer. We do this by starting a timer and using the alt 
statement with two alternatives, namely the operation receive on the speci-
fied port, with the template specifying the expected message(s), and the 
operation timeout on the running timer.

However, this solution with these two alternatives does not eliminate pos-
sible indefinite blocking in case when some unexpected message is received 
on the specified port. Therefore, if we want to completely eliminate indefi-
nite blocking we must use the statement alt with the three alternatives in the 
order listed below:

• The operation receive on the specified port with the template speci-
fying the expected message(s)

• The operation receive on the specified port without any template, 
which is used to receive the unexpected messages.

• The operation timeout on the running timer, which is used to ter-
minate indefinite blocking in case when no messages are received in 
some reasonable interval of time (which is equal to the duration of 
the timer)

This order of alternatives in the statement alt is important, because the 
alternatives are evaluated from top to bottom, and the first one that is ready 
to proceed will be executed. So, the position of the alternative may be seen as 
its priority, because if two alternatives are ready to proceed, the one that is 
closer to the top of the list of alternatives will get executed.

So, how should we order the alternatives? Generally, we put the alterna-
tives for the expected messages on the top of the list, and then we proceed to 
various kinds of unexpected messages and errors going down the list.

The following test case uses this strategy to test the ARP:

testcase tc_resolve_guarded() runs on ARPTester {
  timer t_T1;
  // create the ARP request message
  ARPMessage req_msg := t_ARPMessage(
    1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"
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  );
  // send the ARP request message
  serverPort.send(req_msg);
  // part 2
  // create the ARP reply message
  ARPMessage rpy_msg := t_ARPMessage(
    2, "00:EB:24:B2:05:C8", "192.168.0.48",
    "00:EB:24:B2:05:C0", "192.168.0.40"
  );
  // start the timer t_T1 with duration 1s
  t_T1.start(1.0);
  // use the statement alt with 3 alternatives
  alt {
    []serverPort.receive(rpy_msg) { // rpy_msg received
      t_T1.stop;
        setverdict(pass);
      };
    []serverPort.receive { // unexpected message received
      t_T1.stop;
        setverdict(fail);
     };
    []t_T1.timeout { // timer expired
       setverdict(fail)
      }
  }
};

What happens if a message arrives on some port, or some timer expires, 
while the other alternative is evaluated? Obviously, immediate and con-
tinuous reevaluation of all the alternatives would lead to race conditions. 
Therefore, the statement alt uses the concept of the snapshot in order to keep 
the top-down order of evaluation and to avoid race conditions. More pre-
cisely, the statement alt performs the following steps in a loop until it breaks 
from it:

• Take a snapshot of the current state of the test component.
• Evaluate all the alternatives from the top to the bottom of the list.
• When the first alternative that is ready to proceed is found, break 

this loop and execute that alternative.

Furthermore, the statement alt offers the option to specify Boolean guards 
for its alternatives, which we did not use so far. Actually, the empty square 
brackets that we used to mark the beginning of an alternative are the place-
holder for an optional Boolean guard. The Boolean guard is the Boolean 
expression, which evaluates to the values true or false.
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The statement alt considers only the alternatives whose Boolean guards 
evaluate the value true, and skips the alternatives whose Boolean guards 
evaluate the value false. The special guard else is used to mark the default 
alternative at the end of the list of alternatives, which will be selected if none 
of the previous alternatives were selected.

In the following example, we use two Boolean guards to guard the recep-
tion of the corresponding messages, and we also use the default guard else:

alt {
  [select_msg == 1] pt.receive(t_msg1) { setverdict(pass); };
  [select_msg == 2] pt.receive(t_msg2) { setverdict(pass); };
  [else] { setverdict(fail); }
}

In the previous example, the test verdict would be set to pass if the first 
Boolean guard evaluates the value true and the message t_msg1 is received 
over the port pt, or if the second Boolean guard evaluates to the value true 
and the message t_msg2 is received over the port pt. Otherwise, the test ver-
dict would be set to fail.

Generally, the Boolean guards in the list of alternatives do not have to be 
orthogonal and complete, i.e., more or none of them may evaluate the value 
true. If more Boolean guards evaluate the value true, the corresponding 
alternatives are evaluated top-down until the first alternative ready to pro-
ceed is selected. If none of the Boolean guards evaluate the value true and 
we do not use the default guard else, there are two possible cases: (1) the 
Boolean guards are independent of the snapshot and (2) the Boolean guards 
are dependent on the snapshot.

If the first case, the statement alt would block forever, which is considered 
to be a test case design error. In the second case, there is a chance that the 
statement alt will not block forever, because it will continue taking snapshots 
in a loop, and for some future snapshot some Boolean guards may evaluate 
the value true. However, there is the risk that this does not happen, because 
of a design error, so we would be better off by avoiding such designs.

Motivated by these concerns, TTCN-3 standard forbids using operations in 
Boolean guards whose results may change in repeated evaluations, such as 
checking whether a timer is running or not. Also, functions that are called 
from Boolean guards must not change the current snapshot. The examples 
of forbidden operations, within such functions, are the operation receive on 
a port; the operations start, stop, and timeout on a timer; and operations that 
update the test component’s local variables.

As discussed so far, the statement alt may be seen as a selection of 
alternatives—once the alternative with the highest priority that is ready 
to proceed is selected, it is executed, and the execution continues with the 
next statement following the statement alt. But, sometimes we would like 
to repeat the whole selection from the beginning. A traditional way to do it 
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would be to introduce a loop with a break indicator around the statement alt. 
The more elegant way to do it is to use the statement repeat.

The statement repeat repeats the whole enclosing statement alt from the 
very beginning—the Boolean guards and the alternatives are evaluated 
again and the next alternative is selected. We may use the statement repeat 
only within the alternatives of the statement alt (typically, as the last state-
ment in the alternative) or within the alternatives of an altstep. The way the 
statement repeat operates is somewhat similar to the tail recursion in func-
tional programming languages.

As an example, we may use the statement repeat to construct a simple ARP 
server robustness test. Sometimes, the SUT may return the correct reply to 
the single request, but when the same request is repeated more times, the 
SUT may become overloaded or some internal synchronization error may 
lead to a failure, which may cause incorrect replies from the SUT or absence 
of replies. To test robustness of the SUT, we adapt the test case tc_resolve_
guarded such that we send the burst of the same ten ARP requests (by using 
a simple for loop) and then we expect to receive the same ten ARP replies (by 
using the statement repeat):

testcase tc_resolve_robustness() runs on ARPTester{
 timer t_T10;
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
  1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"
 );
 // send the burst of 10 ARP request messages
 for( integer i := 0; i < 10; i := i + 1 ){
  serverPort.send(req_msg);
 }
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
  2,"00:EB:24:B2:05:C8","192.168.0.48",
  "00:EB:24:B2:05:C0","192.168.0.40"
 );
 // start the timer t_T1 with duration 10s
 t_T10.start(10.0);
 // use the statement alt and repeat to receive 10 ARP replies
 alt{
  [] serverPort.receive(rpy_msg){ // rpy_msg received
      setverdict(pass);
      repeat; // repeat in order to receive the next reply
   };
  [] serverPort.receive{ // unexpected message received
      t_T10.stop;
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      setverdict(fail);
   };
  [] t_T10.timeout{ // timer expired
      setverdict(fail)
   }
 }
};

So far, we have seen only the statements alt with more alternative block-
ing operations. Since the statement alt with a single alternative behaves as 
a single alternative without the enclosing statement alt, we would naturally 
write the single alternative as a stand-alone operation (without the enclosing 
statement alt).

Interestingly enough, and for the reason that would become apparent later 
on when we introduce default altsteps, according to the TTCN-3 standard, a 
stand-alone blocking operation will be treated by implicitly wrapping it into 
the enclosing statement alt. For example, the stand-alone blocking statement:

serverPort.receive(rpy_msg);
 
 is implicitly expanded to:
alt {
 [] serverPort.receive(rpy_msg) {}
}

Altsteps are named groups of alternatives, which may be referred to within 
the statement alt. Like functions, they may have parameters, but unlike func-
tions they may use the Boolean guards and the operations receive and time-
out. The following typical altstep has the timer p_timer as its parameter, and 
it checks the timeout condition on this timer:

altstep alt_timeout(inout timer p_timer) {
 [] p_timer.timeout { setverdict(fail) }
};

We may now use the altstep alt_timeout within the statement alt, for exam-
ple, in order to bound time interval for waiting the message rpy_msg:

t_T1.start(1.0);
alt {
 [] serverPort.receive(rpy_msg){ // rpy_msg received
      t_T1.stop;
      setverdict(pass);
    };
 [] serverPort.receive{ // unexpected message received
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      t_T1.stop;
      setverdict(fail);
    };
   [] alt_timeout(t_T1) // timer expired
};

The altstep alt_timeout has the single alternative. If an altstep has more 
alternatives, they are evaluated the same way as in the statement alt. Once 
the first alternative that may proceed is selected, individual statements in 
this alternative are executed until the last statement in this alternative is 
completed, or the explicit statement return is encountered. The statement 
return cannot specify the return value, and it transfers control back to the 
statement following the altstep call within the enclosing statement alt.

An altstep may also have local variables, which are typically used for sav-
ing received messages and some intermediate results. Like a test case, an 
altstep may also use the clause runs on to inherit ports, timers, variables, 
and constants of the corresponding test component. The following altstep 
alt_receive_10 uses the variable v_count to count the number of received rpy_
msg messages, and also uses the clause runs on to inherit the port serverPort 
from the test component ARPTester:

altstep alt_receive_10(in ARPMessage rpy_msg) runs on ARPTester {
 var integer v_count := 0;
 alt{
  [] serverPort.receive(rpy_msg){ // expected message received
      v_count := v_count + 1;
      if(v_count == 10){ // expected number of replies
       setverdict(pass)
      }
      else if(v_count > 10){ // unexpected number of replies
       setverdict(fail)
      }
      else {
       repeat // repeat in order to receive the next message
      }
    };
  [] serverPort.receive{ // unexpected message received
      setverdict(fail)
    }
};

It is important to remember that an altstep must not change the current 
snapshot by the initialization of its local variables. The restrictions on opera-
tions that may be used for initializing the altstep’s local variables are actu-
ally the same as the restrictions for the Boolean guards of the statement alt, 
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which we have already discussed previously. An example of the initializa-
tion that does not change the current snapshot is the statement for saving the 
received message into the altstep’s local variable.

The altstep call has an optional block statement following it, which is exe-
cuted after the altstep if any of the alternatives within the altstep are trig-
gered. This block statement may be, for example, used to stop a running timer.

We may now use the altsteps alt_timeout and alt_receive_10 to construct the 
statement alt for receiving the ten rpy_msg messages with the guard against 
unexpected messages and within the time interval bounded by the timer t_
T10; we also use the optional statement block after the altstep alt_ receive_10 
call to stop the timer t_T10:

// create the ARP reply message
ARPMessage rpy_msg := t_ARPMessage(
 2, "00:EB:24:B2:05:C8","192.168.0.48","00:EB:24:B2:05:C0", "192.168.0.40"
);
t_T10.start(10.0);
alt {
 [] alt_receive_10(rpy_msg){ // receive 10 rpy_msg
     t_T10.stop
    };
 [] alt_timeout(t_T10) // timer expired
};

The reception of the ten rpy_msg messages is performed by the altstep 
alt_receive_10, which contains the statement repeat. Note that the inner of the 
two nested alt statements would be repeated. More precisely, the statement 
alt defined within the altstep alt_receive_10 would be repeated.

We may use the operation return to end the execution of altstep at the 
desired point. The operation return returns the control to the enclosing 
statement alt, and then the optional block statement following the altstep 
call is executed. Alternatively, we may use the operation break to end the 
execution of the altstep at some point. The operation break returns control 
to the statement following the enclosing statement alt. Note that the optional 
block statement following the altstep call would not be executed in this case.

So, we should remember that the operation return leaves the enclosing 
altstep, whereas the operation break leaves the enclosing statement alt from 
which the altstep was called.

Normally, some more simple altsteps appear in many alt statements. The 
altstep alt_timeout, which we introduced earlier, is a typical example of such 
an altstep. Another typical example is the following altstep named alt_
receive_any, which is typically used to catch unexpected messages:

altstep alt_receive_any() runs on ARPTester {
 [] any port.receive {
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 setverdict(fail);
 };
};

We may avoid adding such frequently used altstep to all the alt statements 
in our test suite by using them as default altsteps. Although they have a spe-
cial name, we define the default altsteps exactly the same way we define the 
nondefault altsteps that we have used so far, such as the altstep alt_receive_
any we have defined above.

The default altstep is an altstep that has been activated by the operation 
activate, and it remains the default altstep until it is deactivated by the opera-
tion deactivate. The operation activate adds the default altstep at the head 
of the list of default altsteps. This list of default altsteps is implicitly added 
at the end of each alt statement in the test suite. The operation deactivate 
removes the specified default altstep from the list of default altsteps.

Since the list of the default altsteps is evaluated from head to tail, the default 
altstep Y that has been activated after the default altstep X has a higher prior-
ity than the altstep X. In other words, if the altstep Z has been activated last 
and the altstep A has been activated first, Z would have the highest priority 
and A would have the lowest priority. In practice, we use this rule such that 
we activate the more general default altsteps before the more specific default 
altsteps, thus the latter would have a higher priority.

The parameter of the operation activate is the altstep together with its 
arguments, and the return value of the operation activate is the reference to 
the activated default altstep, which is of the type default. The parameter of 
the operation deactivate is the reference to the default altstep that should be 
deactivated.

There is one important rule related to the default altstep’s call by reference 
parameters, i.e., out and inout parameters. Values and templates cannot be 
out or inout parameters of default altsteps. The reason for introducing this 
rule is that a value or a template passed by a reference to the default altstep 
might not exist at the time when the default altstep has to be executed.

Another important rule is that timers and ports may be passed as inout 
parameters to the default altsteps. Alternatively, a default altstep may inherit 
timers and ports of the test component that it runs on. In other words, in 
order to provide access to timers and ports within the default altstep, we may 
either pass them as inout parameters or we may provide access to the test 
component’s timers and ports by using the clause runs on.

In the following two examples, we adapt the previously introduced test 
case tc_resolve_guraded by using the default altsteps alt_timeout and alt_
receive_any. We do the adaptation in two steps: In the first step we just intro-
duce the default altsteps and then in the second step we use the convention 
of the implicit expansion of stand-alone blocking statements into the corre-
sponding statement alt, but in the reverse order, to further shorten the final 
test case. The result of the first step of adaptation is the following test case:
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testcase tc_resolve_default1() runs on ARPTester {
 timer t_T1;
 var default v_ref1, v_ref2;
 // activate the default altsteps – more general first
 v_ref1 = activate(alt_timeout(t_T1));
 v_ref2 = activate(alt_receive_any());
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
  1,"00:EB:24:B2:05:C0","192.168.0.40",0,"192.168.0.48"
 );
 // send the ARP request message
 serverPort.send(req_msg);
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
  2,"00:EB:24:B2:05:C8","192.168.0.48",
  "00:EB:24:B2:05:C0","192.168.0.40"
 );
 // start the timer t_T1 with duration 1s
 t_T1.start(1.0);
 // use the statement alt with 3 alternatives (2 are implicit)
 alt {
  [] serverPort.receive(rpy_msg){ // rpy_msg received
      t_T1.stop;
      setverdict(pass);
  };
 // alt_receive_any is implicitly considered first
 // alt_timeout is implicitly considered second
 }
 // deactivate the default altsteps
 deactivate(v_ref1);
 deactivate(v_ref2);
};

Remember that we intentionally activate the more specific default altsteps 
later than the more general, so that the former have a higher priority. In this 
example, we activated the default altstep alt_receive_any after the default alt-
step alt_timeout, so that the unexpected message may be cached before the 
timer t_T1 expires.

Next, we transform the statement alt with a single alternative into the corre-
sponding stand-alone blocking statement. The resulting test case is the following:

testcase tc_resolve_default2() runs on ARPTester {
 timer t_T1;
 var default v_ref1, v_ref2;
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 // activate the default altsteps – more general first
 v_ref1 = activate(alt_timeout(t_T1));
 v_ref2 = activate(alt_receive_any());
 // create the ARP request message
 ARPMessage req_msg := t_ARPMessage(
  1, "00:EB:24:B2:05:C0","192.168.0.40",0,"192.168.0.48"
 );
 // send the ARP request message
 serverPort.send(req_msg);
 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
  2,"00:EB:24:B2:05:C8","192.168.0.48",
  "00:EB:24:B2:05:C0","192.168.0.40"
 );
 // start the timer t_T1 with duration 1s
 t_T1.start(1.0);
 // this stand-alone blocking statement is implicitly expanded
 // into the corresponding single-alternative alt statement
 serverPort.receive(rpy_msg){ // rpy_msg received
   t_T1.stop;
   setverdict(pass);
 };
 // deactivate the default altsteps
 deactivate(v_ref1);
 deactivate(v_ref2);
};

Obviously, by using the default altsteps we may get rather compact code. 
However, the disadvantage of using the default altsteps is that we may forget 
which default altsteps are currently active and their order of activation, espe-
cially if we often activate and deactivate them. The code using the default alt-
steps may be hard to understand and maintain, so we should use the default 
altsteps carefully.

Functions in TTCN-3 may be also used to specify communication behav-
ior, and they may contain all the kinds of statements that we have intro-
duced so far. Unlike the altsteps that must start with the statement alt at 
the topmost level, the functions may start with any statement, including, for 
example, the statement send.

In the following example, we define the function sendReqBurst whose 
parameter is the number of ARP requests to be sent (p_noReqs) and that runs 
on the test component ARPTester:

function sendReqBurst(in integer p_noReqs) runs on ARPTester {
 // create the ARP request message
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 ARPMessage req_msg := t_ARPMessage(
  1, "00:EB:24:B2:05:C0", "192.168.0.40", 0, "192.168.0.48"
 );
 for(var integer i := 0; i < p_noReqs; i++) {
  serverPort.send(req_msg)
 };
 return;
};

The function sendReqBurst has access to the port serverPort because it runs 
on the test component ARPTester, which comprises this port. Alternatively, 
we may pass the port as an inout parameter of a function. The function send-
ReqBurst does not have a return value, and we use the statement return at the 
end of the function to explicitly indicate the end of the function.

Next, we adapt the previously introduced test case tc_resolve_robustness to 
use the newly introduced function sendReqBurst:

testcase tc_resolve_robustness_fun() runs on ARPTester {
 timer t_T10;
 // call the function to send the burst of 10 requests
 sendReqBurst (10);

 // part 2
 // create the ARP reply message
 ARPMessage rpy_msg := t_ARPMessage(
  2,"00:EB:24:B2:05:C8","192.168.0.48",
  "00:EB:24:B2:05:C0","192.168.0.40"
 );
 // start the timer t_T1 with duration 10s
 t_T10.start(10.0);
 // use the statement alt and repeat to receive 10 ARP replies
 alt {
  [] serverPort.receive(rpy_msg){ // rpy_msg received
      setverdict(pass);
      repeat; // repeat in order to receive the next reply
    };
  [] serverPort.receive{ // unexpected message received
      t_T10.stop;
      setverdict(fail);
    };
  [] t_T10.timeout{ // timer expired
      setverdict(fail)
    }
  }
};
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TTCN-3 makes no distinction between the ordinary value-computing 
functions and the communication-behavioral functions. We may call the 
former functions from the latter and vice versa. Both simple and recursive 
function calls are allowed.

The function defined using the clause runs on naturally can be executed 
on the instance of the specified component type, but it can also be executed 
on the instance of the component type that is the extension of the specified 
component type. The extended component type must have all the timers, 
ports, constants, and variables of the original type and it may have addi-
tional timers, ports, constants, and variables. For example, the function send-
ReqBurst can be also executed on the test component type ARPTesterS, which 
is the extension of the component type ARPTester.

Analogously, the altstep defined using the clause runs on can be executed 
both on the instance of the specified component type and on the instance of 
the component type that is the extension of the specified component type. 
For example, the altstep alt_timeout can be executed both on the component 
types ARPTester and ARPTesterS.

The next restriction applies to both functions and altsteps. A function or 
an altstep that is defined without the clause runs on, cannot be called with 
the clause runs on.

Finally, we summarize similarities and differences between the functions and 
the altsteps. The similarities between the functions and the altsteps are as follows:

• Both may define communication behavior.
• Both may have parameters.
• Both may be defined using the clause runs on.
• Both may call functions and altsteps.

The differences between the functions and the altsteps are as follows:

• Altsteps can be used at the top level of the statement alt, whereas 
functions can only be used in the statements within alternatives or 
the Boolean guards.

• Altsteps without values and template parameters passed by a refer-
ence can be activated as the default altsteps, whereas functions can-
not be used to specify the default behavior.

• Altsteps must start with the statement alt, whereas functions may 
start with any statement.

• Altsteps cannot use initializations of local variables that change the 
current snapshot, whereas functions can use local variables without 
any restrictions.

• Altsteps cannot have return value, whereas functions can have 
return value.
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3.10  Examples

This section contains some examples that are related to the communication 
protocol design. These should help the reader to consolidate their under-
standing of the concepts and techniques introduced so far.

3.10.1  Example 1

This example demonstrates the procedures for connection establishment 
and release that are performed by two communicating processes, namely 
TE1 and TE2. The processes TE1 and TE2 are specified by their statechart 
diagrams shown in Figures 3.47 and 3.48, respectively. The semantically 
equivalent SDL diagrams are shown in Figures 3.49 and 3.50, respectively.

The process TE1 has four stable states, labeled TE1_IDLE, TE1_
CONNECTING, TE1_CONNECTED, and TE1_DISCONNECTING. While 
the process TE1 is in the state TE1_IDLE, it can receive only the message 
CONNECT_req from the user and after receiving that message, the process TE1 
sends the message CONNECT_ind to the process TE2, and evolves to its next 
stable state TE1_CONNECTING. In that state, the process may receive one 
of two possible input messages, namely CONNECT_conf or CONNECT_reject. 
In the former case, the process moves to the stable state TE1_CONNECTED, 
whereas in the latter case, it evolves to its initial stable state TE1_IDLE.

TE1_IDLE

TE1_CONNECTING

rcv CONNECT_req/snd CONNECT_ind

TE1_CONNECTED

rcv CONNECT_conf

TE1_DISCONNECTING

rcv DISCONNECT_req/snd DISCONNECT_ind

rcv DISCONNECT_conf

rcv CONNECT_reject

FIGURE 3.47
Statechart diagram of the process TE1.
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In its stable state TE1_CONNECTED, the process TE1 may receive the 
message DISCONNECT_req from the user. In that case, it sends the mes-
sage DISCONNECT_ind to the process TE2 and evolves to the stable state 
TE1_DISCONNECTING. From that stable state, it returns to its initial stable 
state TE1_IDLE after receiving the message DISCONNECT_conf from its peer 
process TE2.

The SDL diagram specification of the process TE2 is much simpler because it 
comprises only two stable states, namely, TE2_IDLE and TE2_CONNECTED. 
In the former state, the process TE2 may receive only the message CONNECT_
ind, to which it replies by the message CONNECT_conf and after that, it 
evolves to the state TE2_CONNECTED. In the latter state, the process may 
receive one of two possible messages, CONNECT_ind or DISCONNECT_ind. 
In the former case, the process TE2 replies with the message CONNECT_reject 
and remains in its current state. In the latter case, it replies with the message 
DISCONNECT_conf and goes back to its initial state TE2_IDLE.

The scenario of a successful connection establishment and release is illus-
trated by the MSC chart shown in Figure 3.51. The top of the chart shows the 
communicating entities, the human user, and the program processes TE1 and 
TE2. The vertical lines are drawn from the rectangular graphical symbols 
down to the bottom of the sheet. The time advances in the same direction.

The connection establishment procedure starts when the user sends the 
message CONNECT_req to the process TE1 (this event is noted by the arrow 
drawn from the vertical line labeled USER to the vertical line labeled TE1), 
which in turn sends the message CONNECT_ind to the process TE2. The 
process TE2, in turn, replies with the message CONNECT_conf. Upon receipt 
of the message CONNECT_conf, the process TE1 forwards it to the user. This 
completes the connection establishment procedure. The next communication 
phase is normally used for the desired data transfer. Because of that, it is 
most frequently referred to as a data transfer phase.

TE2_IDLE

TE2_CONNECTED

rcv CONNECT_ind/snd CONNECT_conf rcv DISCONNECT_ind/snd DISCONNECT_conf

rcv CONNECT_ind/snd CONNECT_reject

FIGURE 3.48
Statechart diagram of the process TE2.
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TE1_IDLE

CONNECT_req

CONNECT_ind

TE1_CONNECTING

CONNECT_conf CONNECT_reject

TE1_CONNECTING

TE1_CONNECTED TE1_IDLE

TE1_CONNECTED

DISCONNECT_req

DISCONNECT_ind

TE1_DISCONNECTING

TE1_DISCONNECTING

DISCONNECT_conf

TE1_IDLE

FIGURE 3.49
SDL diagram of the process TE1.
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The connection release procedure starts when the user sends the mes-
sage DISCONNECT_req to the process TE1, which translates it to the mes-
sage DISCONNECT_ind and sends it to the process TE2, which, in turn, 
replies by the message DISCONNECT_conf. Upon receipt of the message 
DISCONNECT_conf, the process TE1 forwards it to the user. This completes 
the connection release procedure.

Next, we develop a simple TTCN-3 test suite specification for this example, 
which comprises two test cases. We start by defining the new types Address, 
Data, and Msg:

type enumerated Code (
 CONNECT_req, CONNECT_ind,
 CONNECT_conf, CONNECT_reject,
 DISCONNECT_req, DISCONNECT_ind,
 DISCONNECT_conf, DISCONNECT_reject
);
type integer Adress;
type integer Data;
type record Msg {
 Code code;
 Address source_address;

TE2_IDLE

CONNECT_ind

TE2_CONNECTED

CONNECT_ind DISCONNECT_ind

CONNECT_conf CONNECT_reject DISCONNECT_conf

TE2_CONNECTED – TE2_IDLE

FIGURE 3.50
SDL diagram of the process TE2.
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 Address destination_address;
 Data user_data;
}
Then by using the message type Msg, we define the suitable parametrized 
templates t_request and t_indication:
template Msg t_request(Code p_code, Address p_src, Address p_dst) := {
 code := p_code,
 source_address := p_src,
 destination_address:= p_dst,
 user_data := ?
}

template Msg t_indication(Code p_code, Address p_src, Address p_dst) := {
 code := p_code,
 source_address := p_src,
 destination_address:= p_dst,
 user_data := ?
}

Let’s assume that USER, TE1, and TE2, are assigned the addresses 0, 1, and 
2, respectively. Let’s also assume that the test system plays the role of TE1, 
and that it communicates with USER and TE2 over the ports pt_user and 
pt_te2, respectively. Finally, we assume that both of these ports are of type 
PortTS, which are defined as follows:

USER TE1 TE2

CONNECT_req

CONNECT_ind

CONNECT_conf

CONNECT_conf

DISCONNECT_req

DISCONNECT_ind

DISCONNECT_conf

DISCONNECT_conf

FIGURE 3.51
Successful connection establishment and release MSC.
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type port PortTS {
 inout Msg
}

Our simple test suites use a single test component named ComponentTS to 
execute test cases, and ComponentTS, in turn, uses two previously mentioned 
communication ports to communicate with USER and TE2:

type component ComponentTS {
 port PortTS pt_user;
 port PortTS pt_te2
}

The first test case tests the connection establishment phase of the com-
munication, which correspond to the top half of the MSC chart shown in 
Figure 3.51:

testcase tc_no1() runs on ComponentTS {
 pt_user.receive( t_request(CONNECT_req, 0, 1) );
 pt_te2.send( t_indication(CONNECT_ind, 1, 2) );
 alt {
 [] pt_te2.receive( t_indication(CONNECT_conf, 2, 1) ) {
 pt_user.send( t_indication(CONNECT_conf, 1, 0) );
 setverdict( pass );
 }
 [] pt_te2.receive( t_indication(CONNECT_reject, 2, 1) ) {
 setverdict( inconc );
 }
 }
 stop;
}

The second test case tests both the connection establishment phase and 
the connection release phase of the communication, which correspond to the 
complete MSC chart shown in Figure 3.51:

testcase tc_no2() runs on ComponentTS {
 // check the connection establishment phase
 pt_user.receive( t_request(CONNECT_req,0,1) );
 pt_te2.send( t_indication(CONNECT_ind,1,2) );
 alt {
  [] pt_te2.receive( t_indication(CONNECT_conf,2,1) ) {
      pt_user.send( t_indication(CONNECT_conf,1,0) );
      // the connection is successfully established
     }
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  [] pt_te2.receive( t_indication(CONNECT_reject,2,1)) {
      setverdict(inconc);
      stop
     }
 }
 // check the connection release phase
 pt_user.receive( t_request(DISCONNECT_req, 0, 1) );
 pt_te2.send( t_indication(DISCONNECT_ind, 1, 2) );
 alt {
  [] pt_te2.receive( t_indication(DISCONNECT_conf, 2, 1) ) {
      pt_user.send( t_indication(DISCONNECT_conf, 1, 0) );
      // the connection is successfully released
      setverdict( pass );
     }
  [] pt_te2.receive {
      // receive any other message
      setverdict( fail );
     }
 }
 stop;
}

We may execute both of these test cases by using the following control 
part:

control {
 execute( tc_no1() )
 execute( tc_no2() )
}

The reader is encouraged to play more with this simple example. For exam-
ple, we can change the previous example so that before the existing connec-
tion is established, the process User checks if the process TE1 is ready for the 
communication. The MSC chart that specifies a new connection establish-
ment procedure is shown in Figure 3.52.

3.10.2  Example 2

Figure 3.53 shows a hypothetical computer network with a star topology. 
Three terminal nodes (N1, N2, and N3) are connected to one transit node 
(TN). The routing table residing in TN is shown in Figure 3.53 to the right of 
TN. Terminal nodes generate messages for other terminal nodes in the net-
work. Depending on the value of the message parameter (1, 2, or 3), a transit 
node delivers the message to its destination by sending it to the correspond-
ing port (A, B, or C).



182 Communication Protocol Engineering

USER TE1 TE2

CONNECT_req

CONNECT_ind

CONNECT_conf

CONNECT_conf

DISCONNECT_req

DISCONNECT_ind

DISCONNECT_conf

DISCONNECT_conf

READY_req

READY_conf

FIGURE 3.52
New connection establishment procedure MSC.

N2

TN

N1 N3

A

B

C

1 A
2 B
3 C

Routing table

FIGURE 3.53
Hypothetical star network with one transit and three terminal nodes.
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The communication process that resides in the terminal node of the 
network is specified by the statechart diagram shown in Figure 3.54. 
The  process that executes in the transit node is described by the stat-
echart diagram shown in Figure 3.55. The semantically equivalent SDL 
diagrams are shown in Figures 3.56 and 3.57, respectively.

The process that runs in the terminal node of the network has two stable 
states, N123_IDLE and N123_MSG_SENT. The state transition is initiated 
by the user message MSG_req. The process returns to its initial state after 
the reception of one of three possible messages, namely, MSG_conf, MSG, or 
MSG_reject. The process that resides in the transit node of the network has 
a single state, TN_IDLE. This process routes the input message toward its 
destination.

Figure 3.58 shows the scenario of a successful message delivery. The node 
N1 sends the correct message to the node N3 over the node TN. The user is 
informed about the successful delivery by the message MSG_conf. Figure 3.59 
shows the scenario of an unsuccessful message delivery. The node N1 has 

N123_IDLE

N123_MSG_SENT

rcv MSG_req/snd MSG(dest) rcv MSG/snd MSG

rcv MSG

rcv MSG_conf/snd MSG_conf
rcv MSG_reject/snd MSG_reject

FIGURE 3.54
Statechart diagram of the process that runs in a terminal node of the network.

TN_IDLE

rcv MSG(dest)/port=route(dest)
[port is invalid]/snd MSG_reject

[port is valid]/snd MSG, snd MSG_conf

FIGURE 3.55
Statechart diagram of the process that resides in the transit node of the network.
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TN_IDLE

MSG(dest)

port=route(dest)

Is port
valid?

MSG_rejectMSG

No

Yes

MSG_conf

–

–

FIGURE 3.57
SDL diagram of the process that resides in the transit node of the network.



186 Communication Protocol Engineering

sent the message to the unknown destination, which has been rejected from 
the node TN by the message MSG_reject.

Next, we develop a simple TTCN-3 test suite specification for this example, 
which comprises two test cases. We start by defining the new types Address, 
Data, and Msg:

type enumerated Code (
 MSG_req,
 MSG_conf,
 MSG_reject
);
type integer Adress;
type integer Data;
type record Msg {
 Code code;

N1 TN N3

MSG_req

MSG(dest)

MSGMSG_conf

MSG_conf

FIGURE 3.58
Successful message delivery MSC.

N1 TN N3

MSG_req

MSG(dest)

MSG_reject

MSG_reject

FIGURE 3.59
Unsuccessful message delivery MSC.
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 Address destination_address;
 Data user_data;
}

Then by using the message type Msg we define the suitable parametrized 
templates t_request and t_response:

template Msg t_request(Code p_code, Address p_dst) := {
 code := p_code,
 destination_address:= p_dst,
 user_data := ?
}

template Msg t_response(Code p_code, Address p_dst) := {
 code := p_code,
 destination_address:= p_dst,
 user_data := ?
}

Let’s assume that the test system plays the role of N1 in Figures 3.58 
and 3.59, and that it communicates with USER and TN over the ports pt_user 
and pt_tn, respectively. We assume that both of these ports are of type PortN, 
which is defined as following:

type port PortN {
 inout Msg
}

Our simple test suites use a single test component named ComponentN to 
execute test cases, and ComponentN, in turn, uses two previously mentioned 
communication ports to communicate with USER and TN:

type component ComponentTS {
 port PortN pt_user;
 port PortN pt_tn
}

The first test case tests the successful delivery of the correct message from 
N1 to N3, in accordance with the MSC chart shown in Figure 3.58:

testcase tc_no1() runs on ComponentN {
 pt_user.receive( t_request(MSG_req, 3) );
 pt_n1.send( t_request(MSG_req, 3) );
 alt {
  [] pt_n1.receive( t_response(MSG_conf, 3) ) {
      pt_user.send( t_response(MSG_conf, 3) );
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      setverdict( pass );
     }
  [] pt_n1.receive( t_response(MSG_reject, 3) ) {
      pt_user.send( t_response(MSG_reject, 3) );
      setverdict( fail );
     }
 }
 stop;
}

The second test case tests the successful drop of the incorrect message 
from N1 to non-existing N4, in accordance with the MSC chart shown in 
Figure 3.59:

testcase tc_no2() runs on ComponentN {
 pt_user.receive( t_request(MSG_req, 4));
 pt_n1.send( t_request(MSG_req, 4));
 alt {
  [] pt_n1.receive( t_response(MSG_conf, 4)) {
      pt_user.send( t_response(MSG_conf, 4));
      setverdict( fail );
     }
  [] pt_n1.receive( t_response(MSG_reject, 4) ) {
      pt_user.send( t_response(MSG_reject, 4) );
      setverdict( pass );
     }
 }
 stop;
}

We may execute both of these test cases by using the following control part:

control {
 execute( tc_no1() )
 execute( tc_no2() )
}

The reader is encouraged to play more with this example. One interesting 
direction of generalization would be to consider a more complex network, 
such as the one shown in Figure 3.60.

3.10.3  Example 3

This example illustrates reliable packet delivery based on message acknowl-
edgment. Each communication process expects the acknowledgment of the 
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message that it has previously sent. If the acknowledgment is not received 
within the limited period of time, the corresponding timer will expire, the 
process will assume that the message or its acknowledgment have been lost, 
and the process will retransmit the message once again.

The statechart diagram and the SDL diagram of the process are shown in 
Figures 3.61 and 3.62, respectively. The process has two stable states, FSM_
IDLE and FSM_MSG_SENT. In its initial state, the process starts the timer 
T1, sends the message with the sequence number SN, and evolves into its 
next stable state FSM_MSG_SENT. In that state, the process either receives 
the acknowledgment, stops the timer T1, and returns to its initial state, or the 
timer T1 expires and, in turn, the process retransmits the message.

In any state (FSM_IDLE or FSM_MSG_SENT), the process can receive a 
message from its peer process. The process acknowledges the message if the 
sequence number of the message is valid (in communication protocols, the 
process would normally maintain the counter of the next expected message 
in a sequence by incrementing its contents for each received message—a 
validity check in this context would be to compare the sequence number 
in the received message with the contents of this counter). If the sequence 
number, RN, of the message is invalid, the process throws the message away.

Figure 3.63 illustrates two scenarios of the communication between two 
peer processes. The MSC on the left in Figure 3.63 shows a successful mes-
sage delivery. The process FSM1 sends the message M1 to the process FSM2, 
which in turn sends the acknowledgment ACK to the process FSM1.

The MSC on the right in Figure 3.63 shows a more complex scenario of suc-
cessful message retransmission after the unsuccessful first message deliv-
ery attempt. The process FSM1 sends the message M1, the process FSM2 
receives it and sends its acknowledgment ACK, but gets lost. The timer T1 

N2

TN1

N1 N3

A

B

C

Routing table

TN2D

N4

A

B

1 A
2 B
3 C
4 D

1 A
2 A
3 A
4 B

Routing table

FIGURE 3.60
Topology of a more complex hypothetical network.
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expires and the process FSM1 retransmits the message M1. The process 
FSM2 receives it and sends its acknowledgment ACK, which is successfully 
received by FSM1.

3.10.4  Example 4

This example illustrates the sliding window concept, which provides a reli-
able and efficient transport service. Voluminous literature can be found that 
addresses this topic (Halsall, 1988). The design shown here is based on the 
Go-back-N retransmission mechanism. It also supports the robust frame 
acknowledgment procedure (one ACK may acknowledge more than one 
frame).

The collaboration diagram in Figure 3.64 shows two distributed applica-
tions that communicate with the help of two communication objects, which 
are deployed at the local and remote side. The application a1 sends the data 
packed into messages (M) to the object p (primary), which, in turn, encap-
sulates the messages into I (information) frames, together with its sequence 
number V(s), and sends them to the object s (secondary). The object s checks 
the frame I sequence number against the number it expects V(r), and if they 
match, it accepts the frame I and acknowledges it by sending the message 
ACK to the object p. If these numbers do not match, the object s rejects the 
received I frame and sends the corresponding message NAK. We assume 

FSM_IDLE

FSM_MSG_SENT

rcv ACK

after: T1/ snd MSG(SN)

rcv MSG(SN)

[SN is  ok] / snd ACK

[ELSE]/destroy MSG(SN)

/snd MSG(SN)

[SN is ok]/snd ACK

[ELSE]/destroy MSG(SN)

FIGURE 3.61
Statechart diagram of the communicating process that provides the reliable message delivery 
based on the retransmission scheme.
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FSM_IDLE

Start T1

MSG(SN)

FSM_MSG_SENT

FSM_MSG_SENT

ACK T1

Stop T1 Start T1

FSM_IDLE

MSG(SN)

–

FSM_IDLE,
FSM_MSG_SENT

MSG(SN)

Is SN
ok?

ACK

Yes

Destroy
MSG(SN)

No

– –

FIGURE 3.62
SDL diagram of the communicating process that provides the reliable message delivery, based 
on the retransmission scheme.
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that the numbers V(s) and V(r) are maintained in the variables vs and vr, 
respectively. The object s delivers all the correctly received messages to the 
remote application a2.

In this example, we are mainly interested in the communication proto-
col between the primary and the secondary side of the communication link, 
which is established by the corresponding communication processes, p and 
s. The process p is modeled with the activity diagram shown in Figures 3.65 
and 3.66, whereas the process s is modeled with the activity diagram shown 
in Figure 3.67.

Assume that the variable rc holds the number of the I frames that were sent 
by the process p but are still not acknowledged by the process s. The activ-
ity diagram in Figure 3.65 starts with the transition from the initial state to 
the state IDLE. During this transition, the variables vs and rc are reset. After 
receiving a message M from the application a1, p checks if the send window 
is full. If the send window is not full, p calls the procedure send(M) to encap-
sulate M into I and sends it toward s. If the send window is full, p adds M to 
the input queue (inputQueue). In both cases, it returns to the state IDLE.

a1 p s a2

M
I

ACK/NAK M

FIGURE 3.64
Example 4 collaboration diagram.

FSM1 FSM2

Start T1

Stop T1

FSM1 FSM2

Start T1

T1 expired
Start T1

Stop T1

M1

ACK

M1

M1

ACK

ACK

FIGURE 3.63
Example with two scenarios (with and without message retransmission).
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IDLE

/rc=0, vs=0 

rcv M

[else]

I=new I(vs, M)

[rc<WINDOW]

Create I
frame

Reset retransmission count, rc
reset V(S), vs

inputQueue.add(M)

Window
is full

retransmissionQueue.add(I)

T=getTimer()

Allocate and
start new
timer

mapTtoI.put(T,I)
Put new
pair (T,I)
into map T to I

vs++, rc++

IDLE

/snd I update counters and

Add I frame to
retransmission
queue

Primary
(P) side

Message from the
application received

IDLE

restartTimer(T)

T expired

I=map.get(T)

IDLE

/snd I

T expired

Get the corresponding
I frame and retransmit it

mapItoT.add(I,T) Put new
pair (I,T)
into map I to T

send(M)

send(M) definition

call send(M)

FIGURE 3.65
Example 4 activity diagram, part I.



194 Communication Protocol Engineering

The procedure send(M) first creates the frame I and encapsulates the current 
value of the variable vs and the message M in it by supplying them as argu-
ments of the corresponding constructor. It then adds the frame to the retrans-
mission queue (retransmissionQueue), allocates and starts  a  new  timer  (T), 
adds the pair (T,I) to the map mapTtoI, adds the pair (I,T) to the map mapItoT, 

IDLE

iter=retransmissionQueue.Iterator()

rcv ACK

[iter.hasNext()==true]

I=iter.next()

iter.remove()

[else]

T=map I to T(I)

stopTimer(T)

mapItoT.remove(I)

mapTtoI, remove(T)

[I.N>=ACK.N]

[rc < WINDOW]

iter=inputQueue.Iterator()

[iter.hasNext()==true]

M=iter.next()

send(M)

IDLE

[else]

[else]

IDLE

iter=retransmissionQueue.Iterator()

rcv NAK

[iter.hasNext()==true]

I=iter.next()

IDLE
[else]

Go-back-N
retransmission
procedure

[I.N>=NACK.N]

[else ]

T=mapItoT.get(I)

Robust ACK procedure
(one ACK may acknowledge
more I frames)

restartTimer(T)

/snd I

iter.remove()

FIGURE 3.66
Example 4 activity diagram, part II.
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increments vs and rc, and sends the frame I toward s. The map mapTtoI is 
used to search for the frame I that corresponds to the given timer T, whereas 
the map mapItoT is used to search for the timer T that corresponds to the 
given frame I. Notice that the procedure send(M) assigns a timer to each 
frame it sends. When the timer expires, p restarts the timer (restartTimer(T)), 
finds the corresponding frame by using the map mapTtoI, and retransmits 
the frame toward s.

When p receives the message ACK from s, it provides the iterator on the list 
retransmissionQueue and starts iterating through this list. For all the frames 
whose sequence number is smaller than the sequence number in the received 
ACK message, p finds the corresponding timer (by using the map mapItoT), 
stops it, and removes both the pair (T,I) from the map mapTtoI and the pair 
(I,T) from the map mapItoT.

Because some of the slots (or at least one of them) should be free after the 
previous iteration, p provides the iterator on the list inputQueue and starts 
iterating through it. It iterates while empty slots exist in the send window, 

IDLE

Secondary
(S) side

/vr=0

reset V(R), vr

rcv I

NAK=new NAK(vr)

IDLE

/snd NAK

vr++

ACK=new ACK(vr)

IDLE

/snd ACK

[vr==I.N]

Accept
I frame

Reject I frame and
initiate Go-back-N
retransmission
procedure at P side

FIGURE 3.67
Example 4 activity diagram, part III.
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and, while iterating, it removes the messages from the input queue and sends 
them by calling the procedure send(M), as explained previously.

If the process p receives the message NAK, it performs the Go-back-N 
retransmission procedure. Essentially, p scans the whole retransmission 
queue. For each frame whose sequence number is greater than or equal to 
the sequence number in the receive message ACK, p finds the corresponding 
timer, restarts it, and retransmits the frame toward s.

The activity diagram shown in Figure 3.67 models the process s. It starts with 
the triggerless transition from the initial state to the state IDLE. During this tran-
sition, the variable vr is reset. After receiving the frame I, s checks its sequence 
number equal to the value of the variable vr. If the values are the same, s accepts 
the frame by incrementing vs, creating the message ACK, and sending it to p. If 
the values are different, s rejects the frame by sending the message NAK to p.

Figures 3.68 through 3.70 show three typical scenarios. The sequence dia-
gram shown in Figure 3.68 illustrates a successful frame delivery scenario. 
The frames I(0) and I(1) are sent through the window and are acknowledged 
with ACK(1) and ACK(2), respectively. After some delay, I(2) is sent and it is 
also successfully acknowledged with ACK(3).

The sequence diagram shown in Figure 3.69 illustrates the Go-back-N pro-
cedure. The process p starts by sending the frames I(0) and I(1). The frame 
arrives at s side regularly but I(1) gets lost. This causes the mismatch of 

p s

I(0)

I(1)
ACK(1)

ACK(2)

I(2)

ACK(3)

FIGURE 3.68
Example 4 MSC diagram: Successful frame delivery.
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sequence numbers at the secondary side when it successfully receives I(2), 
because the value of the variable vr is 1 (which indicates that s is awaiting 
I(1) instead of I(2)). Because the sequence number of the frame and the value 
of the variable are not the same, s rejects the frame by sending the message 
NAK(1). The process p, in turn, retransmits both I(1) and I(2).

The sequence diagram shown in Figure 3.70 illustrates the frame retrans-
mission triggered by the retransmission timer. The process p starts again by 
sending I(0) and I(1) in succession. The process s in its turn acknowledges 
them by ACK(1) and ACK(2), respectively. The message ACK(1) arrives suc-
cessfully at the primary side, but the message ACK(2) gets lost. This causes 
the corresponding timer to expire after a while. Triggered by that event, p 
restarts the timer and retransmits the frame I(1). During the second time, 
both I(1) and the corresponding ACK(2) are successfully transferred over the 
communication link. After receiving ACK(2), p stops the timer and removes 
I(1) from the retransmission queue.

p s

I(0)
I(1)

I(2)

ACK(1)

NAK(1)

I(1)

I(2)

ACK(2)

ACK(3)

FIGURE 3.69
Example 4 MSC diagram: Go-back-N retransmission.
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3.10.5  Example 5

In this example, we design the SIP INVITE client transaction in accordance 
with RFC 3261, Section 17.11. First, let us return to the requirements and anal-
ysis of a SIP Softphone, introduced as an example at the end of Chapter 2. In 
that example, we constructed the use case diagram and transformed it into 
the corresponding general collaboration diagram. At the very end of that 
example, we showed the one particular collaboration related to the success-
ful session establishment.

Now, let us zoom in on the general collaboration diagram of a SIP Softphone 
with the focus on the SIP INVITE client transaction and the surrounding 
objects with which it directly communicates. The resulting general collabo-
ration diagram is shown in Figure 3.71. The SIP INVITE client transaction 
is modeled as an unnamed object of the class InClientT because this object 

p s

I(0)

I(1)
ACK(1)

ACK(2)

T(1) expired
I(1)

ACK(2)

FIGURE 3.70
Example 4 MSC diagram: I frame retransmission triggered by the retransmission timer.
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is dynamically created upon user request. It collaborates with the following 
three objects:

• tud, which represents the transaction user dispatcher
• tald, which represents the transaction layer dispatcher
• tlid, which represents the transport layer dispatcher

Similarly, we can zoom in on the particular collaboration diagram that 
illustrates a successful session establishment scenario (Figure 2.17) to pro-
vide the corresponding particular collaboration of the SIP INVITE client 
transaction with its surrounding objects (Figure 3.72). As already men-
tioned in Chapter 2, req() and rsp() designate requests and responses, respec-
tively. More precisely, req(INVITE) is the SIP invite request, rsp(1xx) is the 
SIP provisional response, and rsp(200) is the SIP final response. Note that 
the first message 1:req(INVITE) sent from the object tald to the SIP INVITE 
client transaction object in Figure 3.72 corresponds to the fourth message 
4:req(INVITE) sent from the object tald to the SIP INVITE client transaction 
object in Figure  2.17. Note also that Figure 3.72 shows only the messages 
exchanged among the objects shown in this figure, and that the sequence 
numbers of these messages are assigned accordingly.

Another particular collaboration that corresponds to an unsuccessful ses-
sion establishment scenario is shown in Figure 3.73. This scenario is the same 
as the previous one up to the step number 6, when instead of the success-
ful final response rsp(200), the unsuccessful final response rsp(300-699) is 

tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

FIGURE 3.71
SIP INVITE client transaction collaboration diagram.
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tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

5: rsp(1XXX)

8: rsp(200)

3: rsp(1XX)

6: rsp(200)
2: re

q(IN
VIT

E)
1: req(INVITE)

4: rsp(1XX)
7: rsp(200)

FIGURE 3.72
Successful session establishment collaboration diagram.

tud : TUDisp

: InClientTtald : TALDisp

tlid : TLIDisp

5: rsp(1XXX)

8: rsp(300–699)

3: rsp(1XX)

6: rsp(300–699) 2: re
q(IN

VIT
E)

9: re
q(A

CK)1: req(INVITE)
4: rsp(1XX)

7: rsp(300–699)

FIGURE 3.73
Unsuccessful session establishment collaboration diagram.
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received. In step 7, tald forwards rsp(300-699) to the SIP INVITE client trans-
action, which in accordance with RFC 3261, forwards it toward the upper 
layer and sends the message ACK to the remote site. These two actions are 
performed in steps 8 and 9, respectively. Semantically equivalent sequence 
diagrams are shown in Figures 3.74 and 3.75. Figure 3.74 illustrates a suc-
cessful session establishment, whereas Figure 3.75 shows an unsuccessful 
session establishment scenario.

Based on the SIP INVITE client transaction state transition graph (RFC 3261, 
page 127) we can construct the corresponding statechart diagram (Figure 
3.76). This statechart diagram starts with the transition from the initial state 
to the state Calling, which is triggered by the reception of the signal (message) 
req(INVITE) from the transaction user (TU). The signal req(INVITE) models 
the original request SIP INVITE. During this transition, the SIP INVITE cli-
ent transaction forwards the message req(INVITE) to the transport layer.

At the entrance to the state Calling, two timers are started, timer A (TA) and 
timer B (TB). The former corresponds to the time interval that must elapse 
before the response to the request INVITE can be received, whereas the lat-
ter limits the time interval during which the SIP INVITE client transaction 
waits for the response to the request INVITE. Initially, TA is set to the value 
T1 (estimated round-trip time, RTT, which is by default 500 ms) and TB is set 
to 64 × T1.

tud : TUDisp tald : TALDisp : InClientT tlid : TLIDisp

1: req(INVITE)

2: req(INVITE)

3: rsp(1XX)
4: rsp(1XX)

5: rsp(1XX)

6: rsp(200)
7: rsp(200)

8: rsp(200)

FIGURE 3.74
Successful session establishment sequence diagram.
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If the timer TA expires, the SIP INVITE client transaction restarts it by dou-
bling its current value (TA = TA × 2) and retransmits the signal req(INVITE). 
Initial values of TA and TB (T1 and 64 × T1, respectively) allow this proce-
dure to repeat the maximum of seven times before the timer TB expires. If 
the timer TB expires (or if a transport error is detected), the SIP INVITE client 
transaction informs TU accordingly and moves to the state Terminated, and 
from there to its final state.

Most frequently, a response to the request INVITE will be received before 
the timer B expires. In such a case, the SIP INVITE client transaction stops 
both timers and moves to the next state, which depends on the type of 
response. If the provisional response rsp(1xx) is received, the SIP INVITE 
client transaction forwards it to TU and moves to the state Proceeding. If the 
successful final response rsp(2xx) is received, the SIP INVITE client transac-
tion forwards it to TU and moves to the state Terminated. If the unsuccessful 
final response rsp(300-699) is received, the SIP INVITE client transaction for-
wards it to TU and sends the signal (message) ACK to the remote site.

While being in the state Proceeding, the SIP INVITE client transaction sim-
ply forwards all the preliminary responses rsp(1xx) to TU. Once it receives 
the successful final response rsp(2xx), it also forwards it to TU and moves 
to the state Terminated. If the SIP INVITE client transaction receives the 

tud : TUDisp tald : TALDisp : InClientT tlid : TLIDisp

1: req(INVITE)

2: req(INVITE)

3: rsp(1XX)
4: rsp(1XX)

5: rsp(1XX)

6: rsp(300–699)
7: rsp(300–699)

8: rsp(300–699)
9 req(ACK)

FIGURE 3.75
Unsuccessful session establishment sequence diagram.
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unsuccessful final response rsp(300–699) in the state Proceeding, it forwards 
that response to TU, sends the signal req(ACK) to the remote site, and moves 
to the state Completed.

At the entrance to the state Completed, the third timer, the timer D (TD), is 
started. While being in the state Completed, the SIP INVITE client transac-
tion just confirms any unsuccessful final responses rsp(300-699) by sending 
the SIP message ACK to the remote site. If the SIP INVITE client transaction 
detects a transport error, it informs TU accordingly and moves to the state 
Terminated. Finally, when the timer D expires, the SIP INVITE client transac-
tion finishes simply by moving to the state Terminated.

We finalize this example with the semantically equivalent SDL diagram, 
which, due to its size, is shown in the next four figures (in these figures, 
TPL stands for the transport layer and TU stands for the transaction user). 
Figures 3.77 through 3.80 illustrate the processing of events in the states 
Calling, Proceeding, Completed, and Terminated, respectively.

Calling

TA exp./reset TA, snd req(INVITE)

rcv req(INVITE)/snd req(INVITE)

Proceeding

rcv rsp(1xx)/snd rsp(1xx)

rcv rsp(1xx)/snd rsp(1xx)

rcv rsp(300–699)/snd rsp(300–699), snd req(ACK)

Completed

rcv rsp(300–699)/snd req(ACK)

Terminated

TD exp.

rcv rsp(300–699)/snd rsp(300–699), snd req(ACK)

rcv rsp(2xx)/snd rsp(2xx)

rcv rsp(2xx)/snd rsp(2xx)

Trans. Err/inform TU

TB exp. or Trans. Err/inform TU

FIGURE 3.76
Statechart diagram of the SIP INVITE client transaction.
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Initial

Invite

Start Timer B
Tb=64*T1

Start Timer A
Ta=T1

Calling

Unreliable

Transport

Reliable

Invite_T to
TPL

FIGURE 3.77
SDL diagram of the SIP INVITE client transaction, part I.
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1xx

Calling

Timer A 300–699 2xx Timer B

Start Timer A
Ta=2*Ta

Start Timer D
Td=0

Completed

Proceeding

1xx to TU 2xx to TU

Transport

Start Timer D
Td=64*T1

Reliable

Unreliable

Stop Timer A
Stop Timer B

Stop Timer A
Stop Timer B

Stop Timer A
Stop Timer B

Stop Timer A

–

Retransmit
INVITE to

TPL

ACK_T to
TPL

Transp. error

Inform TU

Terminated

300–699 to
TU

Stop Timer A
Stop Timer B

FIGURE 3.78
SDL diagram of the SIP INVITE client transaction, part II.
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Proceeding

300–699 2xx 1xx

2xx to TU300–699 to TU 1xx to TU

Terminated

Completed

Start Timer D
Td=0

Transport

Start Timer D
Td=64*T1

Reliable Unreliable

–
ACK_T to

TPL

FIGURE 3.79
SDL diagram of the SIP INVITE client transaction, part III.
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4
Implementation

The system implementation is a phase in engineering work that follows the 
system design phase. This phase consists of the following two steps:

• Transform a design model into the implementation model
• Transform the implementation model into a higher-level program-

ming language code

A design model is given in the form of the corresponding UML (Booch 
et al., 1998) or SDL diagrams, which are the results of the previous phases 
of communication protocol engineering, i.e., requirements, analysis, and 
design. The implementation model takes the form of the corresponding 
UML component diagram. The output of the implementation phase is 
a set of source code modules, today most frequently in C/C++ or Java, 
which is also referred to as the implementation. This may sound confus-
ing, but in reality, the correct meaning of the term is easily deduced from 
its context.

Logically, implementation as a phase of the production process is a well-
defined mapping of a design model into a higher-level programming lan-
guage source code. Implementation as a product is a result of this mapping. The 
attribute well-defined reflects the assumption that both detailed procedures 
and adequate tools are provided for transforming models into program 
source code. This well-defined mapping of a model into the program source 
code is referred to as forward engineering in UML terminology. Likewise, 
the reverse mapping of a program source code into the model is referred to 
as backward engineering.

In a mathematical sense, both the mapping of a program into the pro-
gram source code and the result of that mapping (i.e., the implementation 
in both of its meanings) are not unique. Therefore, logically, more than one 
correct implementation exists for a given model of the communication proto-
col. Under the correct implementation, we assume an implementation that 
for given input produces expected outputs within the expected time frame, 
which is defined with the corresponding timers. We say for such implemen-
tation that it is compliant (conformant) with (to) the given model. The terms 
compliant and conformant are synonyms in this context. If the model has been 
standardized (e.g., by IETF or ITU-T), we say that the implementation is com-
pliant with the standard.
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The concept of forward and backward engineering is an intriguing one. 
Proponents of the model-based software development and various initia-
tives in Model-Driven Architecture (MDA) strongly believe that forward and 
backward engineering is possible, and they are putting forth tremendous 
efforts to make it real. Quite a number of commercially available tools are 
made with this goal in mind. The agile programming community is strongly 
opposed to it because their members believe that only the program source 
code is the complete specification of the system. From their point of view, 
only the set of test cases that successfully pass are proof that the implementa-
tion is correct.

Other groups also exist between these two extremes that are trying to close 
the gap between software modeling and programming (also called coding). 
For example, the creators of the StateWORKS® tool and the corresponding 
approach claim that although UML tool vendors made serious attempts to 
generate code from models, they are facing major difficulties, and that these 
tools can so far produce only header files or code skeletons. As an alternative, 
they introduced the notion of the totally complete models in an attempt to 
completely eliminate programming. The models in StateWORKS® are sets of 
virtual finite state machines (VFSMs) that run on top of the VFSM Executor, 
which is essentially an interpreter.

This book has a similar but different approach. We try to shrink the 
gap between communication protocol modeling and programming, both 
by making detailed models and by providing the FSM library, which 
forces programmers to transform models into code in a uniform way. This 
methodology makes forward engineering well defined. As already men-
tioned in the previous chapter, the FSM library provides two main classes, 
namely FiniteStateMachine and FSMSystem. The former is used to model 
and implement individual FSMs and the latter is used as their execu-
tion platform, which comprises common services and an event (message) 
interpreter.

When it comes to programming interpreters and FSM-related libraries, 
a broad spectrum of possible implementations exists, starting with the 
traditional structural or procedural solution, continuing with a series of 
mixed solutions, and ending with the object-oriented solutions of both 
static and dynamic type. This situation is justified by the fact that the 
implementation style depends highly on the type of target architecture. 
For example, if we consider a microcontroller as the target architec-
ture, we are naturally forced to select a structural solution in the C/C++ 
programming language. If we consider more powerful architectures, 
in terms of resources, we may also take into consideration the object-
oriented approaches supported by the C++ and Java programming 
languages.

In Section 4.1, we introduce the component diagrams, which are the means 
of making implementation models. We then illustrate a spectrum of possible 
finite state machine implementations, including the catalogued state design 
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pattern (Gamma et al. 1995), which is explained in Section 4.3. After that, 
we cover the concepts and, most importantly, the design and implementation 
details of the FSM library (its reference manual is given in Chapter 6). We 
conclude this chapter with two implementation examples.

4.1  Component Diagrams

In Chapter 3 we were dealing with abstractions in the conceptual world. The 
design phase typically starts with exploration in the realm of interaction 
diagrams, where we try to get a better feeling of the system. We finish the 
design phase by defining the static structure and the complete behavior of 
the system in the corresponding class and activity, or statechart diagrams, 
respectively. At the end of the design phase, we also specify the deployment 
of individual software components by rendering the corresponding deploy-
ment diagrams.

In the implementation phase, we are materializing the design abstractions 
(such as classes, interfaces, and collaborations) into the components that live 
in the physical world. As already mentioned, a component is a physical and 
replaceable part of the system that realizes the given set of interfaces. What 
we actually do at the beginning of the implementation phase is pack the 
design abstractions into packages with well-defined interfaces, referred to as 
components. Examples of such packages are traditional binary object librar-
ies, dynamically linkable libraries (DLLs), and executables; as well as tables, 
files, and documents.

The components and classes are very much alike. Both can:

• Realize a set of interfaces
• Participate in relations (dependencies, generalizations, and associations)
• Be nested
• Have instances
• Participate in interactions

The differences between the components and the classes are as follows:

• The former represents physical entities, whereas the latter is a con-
ceptual abstraction, so they exist on different levels of abstraction.

• The former only has operations that are accessible through its inter-
faces, whereas the latter may have both operations and attributes.

The most important feature of the component is that it is replaceable. 
This means that we can substitute a component with another one without 
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any influence on the system as a whole. This replacement is completely 
transparent to the users of the replaced component. A new component 
provides the same or perhaps even better services through the exact same 
interfaces.

We distinguish the following three types of components:

• The deployment components (already introduced in the context of 
deployment diagrams) are the parts of the executable system, such 
as executables and DLLs.

• The work product components are the artifacts of the development 
process (such as project settings or the source code) and data files 
that are used to build the deployment components.

• The executable components are the parts of the run-time system, e.g., 
DCOM and CORBA components.

We make the implementation models by rendering the component dia-
grams. The set of graphical symbols that are available for rendering compo-
nent diagrams is shown in Figure 4.1. As usual, we select a symbol from the 
set of available symbols, drag and drop it onto the working sheet, and fill in 
the data related to its properties. The set of symbols available for rendering 
component diagrams is obviously a subset of the set of symbols available 
for rendering deployment diagrams. The properties of these symbols are 
explained in Chapter 3 (see Section 3.6).

Package
Component

Node

Interface

{Constraint}

Note

{Constraint} {OR}

FIGURE 4.1
Set of symbols available for rendering component diagrams.
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In communication protocol engineering, we are mainly using component 
diagrams for:

• Modeling APIs
• Modeling executables and libraries
• Modeling source code

Well-defined application programming interfaces (APIs) are some of the 
most important features of the well-structured software system. An API is 
an interface that is realized by one or more components. Being an interface, 
it actually defines a set of services. It represents a clear demarcation line 
between the service users and the service providers. The former receives the 
service without caring who is providing it. The same also holds true in the oppo-
site direction: the latter provides the service without caring who receives it.

We may think of APIs as the programmatic seams of the system. We use 
them to connect more components together to create more complex systems. 
Each component is replaceable. We can replace it with another component 
whenever there is a need. The developers of the component that use some 
APIs do not care who or how it will be provided. They only care about how 
to fulfill the requirements for the component they are working on currently. 
Alternately, the system integrator must care that all of the needed compo-
nents are provided and that they are compliant with their APIs.

Figure 4.2 illustrates the modeling of APIs by means of a very simple exam-
ple. Imagine that we have been provided with the TCP/IP protocol stack 
packed as a dynamically linkable library, named tcpipstack.dll. It defines the 
API that comprises three interfaces, namely, TCPSockets, UDPSockets, and 
IPInterface. The first provides communication services over TCP ports, the 
second over UDP ports, and the third directly over IP.

Provided with such a component, we are now able to create a new compo-
nent that uses it. For example, we can create the DLL sip.dll (Figure 4.3). This 

tcpipstack.dll

TCPSockets

UDPSockets

IPInterface

FIGURE 4.2
Example of a simple API.
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new component provides the SIP services through the interface SIPInterface. 
The fact that sip.dll uses services provided through the interface TCPSockets 
is modeled by connecting these two with the dependency relation.

Besides modeling APIs, we can use component diagrams to model execut-
ables and libraries. Generally, if the system under development comprises 
more executables and associated object libraries, it may be wise to make a 
model that illustrates their relationships. This is especially important if we 
want to keep versioning and configuration management during the system 
lifetime under control.

Modeling of executables and libraries can help in making the decision 
regarding the physical partitioning of the system. The issues that affect this 
decision-making are as follows:

• Technical issues
• Configuration management issues
• Reusability issues

Figure 4.4 shows the model of a simple executable, named softphone.exe. 
This executable uses the DLL sip.dll through the API that comprises the sin-
gle interface SIPInterface. Farther down the hierarchy, sip.dll receives the com-
munication service that is provided by the DLL tcpipstack.dll through the 
interface TCPSockets.

Each library and executable is built in the environment of a separate soft-
ware project. Generally, a software project comprises the project configura-
tion (settings) files, the source code files, and the object libraries. The source 

tcpipstack.dll

TCPSockets

UDPSockets

IPInterface

sip.dll

SIPInterface

FIGURE 4.3
Example of a simple API user.
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code files typically include the module declaration (header) and the mod-
ule definition files. The developers try to logically organize these files into 
a file system structure by placing the related files into the same directory 
(folder).

In the case of complex projects, the corresponding directory tree can get 
rather ramified, and sometimes it may not be clear where to put new soft-
ware modules. This can be especially confusing for the new members of the 
development team. Things get even worse when we must manage splitting 
and merging of groups of files as development paths fork and join.

In such cases, it is advisable to make a model of the software project, also 
referred to as the source code model. An example of such a model is shown 
in Figure 4.5. The executable Main.exe is built in accordance with the project 
definition file Main.dsw. Because the project comprises all the module head-
ers and module definition files, the file Main.dsw has a dependency relation 
with all of them. (For clarity, only some of these dependencies are shown in 
Figure 4.5.)

Farther down the hierarchy, the source code files AutomataA.cpp and 
AutomataB.cpp use the header files AutomataA.h and AutomataB.h, respec-
tively. Both of these header files use the header file Constants.h. Finally, all 
of the header and source code files, except Constants.h, use the framework 
FSMLibrary.

tcpipstack.dll

TCPSockets1

UDPSockets

IPInterface

sip.dll

SIPInterface

softphone.exe

FIGURE 4.4
Model of a simple executable.
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4.2  Spectrum of FSM Implementations

As mentioned in Chapter 3, we model communication protocols as finite 
state machines (FSMs). A broad spectrum of various solutions exists for 
the implementation of FSMs. This section contains a short overview of only 
three, perhaps the most representative approaches to the implementation of 
FSMs. The complete treatment of all methodologies and corresponding tools 
is outside the scope of this book, and as an alternative we simply want to 
develop ideas by exploring different implementations of a simple FSM (coun-
ter by modulo 2). The goal is to familiarize the reader with this subject by 
showing what the problems are and how they can be tackled.

The three approaches to FSM implementation are illustrated by simple 
implementations of modulo 2 counters in the Java programming language. 
As already mentioned, communication protocol developers today mainly 
use C/C++ and Java, and the selection of the programming languages for  
certain projects mainly depends on the target platform. By mixing examples 
in Java and C/C++, we want to show that all these languages are applicable 
in the area of communication protocol engineering, and that the selection of 
a programming language is not the highest priority issue. Actually, we start 
with Java in Sections 4.2 and 4.3, switching to C++ later.

The state design pattern is a particular FSM implementation type that is 
special because it was catalogued by Gamma et al. in 1995. Because of that, 
it receives its own separate section. However, none of these four approaches 
are used later in this book. Instead, we introduce the FSM Library-based 
implementation paradigm, which is more like the state-of-the-art paradigm. 
In other words, first we show what is possible, and perhaps what is next, and 
then we turn to the current practice in communication protocol engineering.

Let us turn our attention to the subject of the implementation, a communi-
cation protocol. As already mentioned in Chapter 1, the communication pro-
tocol is defined with the syntax of its messages, the set of procedures (actions) 
that process the messages, and the set of reactions to exceptional events 
(timer and error management). In the programming world, they are mod-
eled as finite state machines, also referred to as automata. Mathematically, 
the abstract automata are defined as

 A X Y S t o S= ( , , , , , )0

where
 X = {X1, X2, …Xn} is a set of input signals (input alphabet)
 Y = {Y1, Y2, …Ym} is a set of output signals (output alphabet)
 S = {S1, S2, …Sk} is a set of states (state alphabet)
 S0 is the initial state
 t is the transition function that maps the Cartesian product of S x X to S
 o is an output function that maps the Cartesian product of S x X to Y
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Abstract automata are typically illustrated in the form of a state transition 
graph. The example of the state transition graph in Figure 4.6 illustrates the 
counter by modulo 2, which is actually the example of a finite state machine 
we want to implement in Java. It is formally defined as follows:

 C X Y S t o S= ( , , , , , )0

where
 X = {0, 1}
 Y = {0, 1, 2}
 S = {S1, S2, S3}
 S0 = S1

The functions t and o are defined in Table 4.1.
The input and output alphabets comprise the signals {0, 1} and the sig-

nals {0, 1, 2}, respectively. The automata can take one of the three possible 
states, namely, S1, S2, and S3. The initial state of the automata (S0) is the state 

TABLE 4.1

The Counter by Modulo 2 Transition Table

Next State//Output Signal Input Signal 0 Input Signal 1

State S1 1/0 2/1
State S2 2/1 3/2
State S3 3/2 1/0

S1 S2

S3

B12
(1/1)

B23

(1/2)
B31(1/0)

B22(0/1)
B11

(0/0)

B33

(0/2)

Legend:
Bij-i is the number of the current
state, j is the number of the next state
(x,y) - x is an input signal, y is an
output signal

FIGURE 4.6
Counter by modulo 2 state transition graph.
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S1. Both transition and output functions are defined in Table 4.1. The rows 
of this table correspond to the automata states (S1, S2, and S3), whereas the 
columns correspond to the input signals (0 and 1). The elements of Table 4.1 
have the format s/y, where s corresponds to the next state number and y cor-
responds to the output signal.

The same information about the next state and the output signal is shown 
differently in the state transition graph (Figure 4.6). The arcs of the state tran-
sition graph are labeled as Bij(x/y), where i is the number of the current state, 
j is the number of the next state, x is the input signal that triggers the transi-
tion, and y is the output signal generated by the transition. The correspond-
ing statechart diagram is shown in Figure 4.7.

The simplest but perhaps still the most frequently used FSM implemen-
tation is based on the structural or procedural approach. This implemen-
tation is made in the form of nested selection statements in higher-level 
programming languages. In the programming languages C/C++ and 
Java, we typically use switch–case statements for this purpose, because 
the control flow structures made with if and else–if statements are less 
readable.

Typically, the outermost switch–case statement selects a case that corre-
sponds to the current state of automata. In the code paragraph that defines 
the processing of the current state, normally we use the second, nested 
switch–case statement, which selects the case that corresponds to the input 
signal. The program paragraph that corresponds to that input signal effec-
tively performs the transition by creating the corresponding output signals 
and evolving to the next state. This evolution is made simply by updating the 
content of a variable that holds the identification of the current state (most 
frequently, this is just the index of the state).

Actually, the structure of the resulting program code is very similar to 
the program representation of SDL (SDL-PR), which was introduced in 
Chapter 3, and this fact was also mentioned there. Generally, communication 

S1

S2

S3

1/1 1/2

1/0

0/1

0/20/0

FIGURE 4.7
Counter by modulo 2 statechart diagram.
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protocol implementation based on nested switch–case statements looks like 
the following:

switch(state) {
 case STATE_1:
  switch(message_code) {
   case MESSAGE_CODE_1:
    // processing of the message code 1 in the state 1
    break;
   case MESSAGE_CODE_2:
    // processing of the message code 2 in the state 1
    break;
   case MESSAGE_CODE_3:
    // processing of the message code 3 in the state 1
    break;
    ...
    default:
     // processing of the unexpected message in the state 1
     break;
  }
 case STATE_2:
  switch(message_code) {
   case MESSAGE_CODE_1:
    // processing of the message code 1 in the state 2
    break;
   case MESSAGE_CODE_2:
    // processing of the message code 2 in the state 2
    break;
   ase MESSAGE_CODE_3:
    // processing of the message code 3 in the state 2
    break;
   ...
   default:
    // processing of the unexpected message in the state 2
    break;
  }
 ...
 case STATE_N:
...
}

We illustrate this general scheme by applying it to the implementation of 
the counter by modulo 2 in Java. The three states of the counter are labeled as 
S1, S2, and S3 in the program code. The input signals 0 and 1 are labeled as 
M1 and M2, respectively. The demonstration program reads the actual input 
signals from the standard input file (by default, this is the keyboard). The 
generated output signal is represented by a simple printout on the standard 
output file (by default, this is the monitor). The demo program code is the 
following:

package automata;
import java.util.*;
import java.io.*;
public class Environment1 {
 public static void main(String[] args) throws IOException {
  char ch = '0';
  Automata1 a1 = new Automata1();
  System.out.println("This is the example of counter by modulo 2.");
  System.out.println("Automata evolution has started...");
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  while(true) {
   System.out.print("Enter input signal (0/1 and <ENTER>):");
   ch = (char)System.in.read();
   System.in.skip(2);
   if(((ch!='0') && (ch!='1'))) break;
   a1.processMsg(ch);
  }
 }
}

The demo program initially creates the object a1, an instance of the class 
Automata1, which is the structural and procedural implementation of the 
counter by modulo 2. After printing two welcome messages, it falls into an 
infinite while loop in which it prompts the user for the input signal and reads 
it. If the input signal is neither 0 nor 1, the demo program breaks the loop 
and terminates. Otherwise, it performs one step of the automata evolution by 
calling the procedure processMsg() of the object a1.

The Java code for the class Automata1 is the following:

package automata;
public class Automata1 {
 private static final int S1 = 0;
 private static final int S2 = 1;
 private static final int S3 = 2;
 private static final char M1 = '0';
 private static final char M2 = '1';
 private int state=S1;
 public void processMsg(char msg) {
  switch(state) {
   case S1:
    switch(msg) {
     case M1:
      System.out.println("Output signal: 0");
      break;
     case M2:
      System.out.println("Output signal: 1");
      state = S2;
      break;
     default:
      break;
   }
   break;
 case S2:
  switch(msg) {
   case M1:
    System.out.println("Output signal: 1");
    break;
   case M2:
    System.out.println("Output signal: 2");
    state = S3;
    break;
   default:
    break;
  }
  break;
 case S3:
  switch(msg) {
   case M1:
    System.out.println("Output signal: 2");
    break;
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   case M2:
    System.out.println("Output signal: 0");
    state = S1;
    break;
   default:
    break;
   }
   break;
  default:
  break;
  }
 }
}

The implementation above starts with the definition of the symbolic con-
stants that correspond to the possible automata states (namely S1, S2, and S3) 
and valid input signals M1 and M2 (input signals 0 and 1). Next, we define 
the variable state that holds the current automata state and we set it to the 
value S1 (the automata initial state).

The method processMsg starts with the switch–case statement that selects 
the further execution path depending on the content of the variable state (i.e., 
the current automata state). Three possible cases are found that are defined 
by the corresponding case clauses. Each of these clauses contains a further 
switch–case statement that distinguishes between two valid input signals, 
namely M1 and M2. The nested case clause that corresponds to the particular 
input signal prints the message, which corresponds to the output signal, and 
updates the variable state, if the current state of the automata changes.

This example demonstrates the main advantage of the structural or proce-
dural approach: simplicity, which yields greater performance in terms of execu-
tion speed. Another advantage is that we can easily construct a compiler or a 
code generator that generates such implementations (a good example that justi-
fies this claim is SDL-PR). The main disadvantage of this approach is its bad 
scalability, which becomes evident in the case of large-scale implementations, 
i.e., implementations of automata that have a large number of states and state 
transitions.

The code size for such program implementations increases linearly with 
the number of states and the number of state transitions. Another disad-
vantage of this approach is that it is monolithic which implies that it is static 
regarding the possible need to change the automata, either by adding new, or 
deleting the existing states, or by adding or deleting state transitions.

In this type of implementation, the structure of the automata (its vertex 
and arcs) is built into the machine code of the implementation (hard-coded). 
We say that the input signal processing flow is governed by the structure of 
the machine code. If we want to add or delete a state or a state transition, we 
must change the program code, recompile it, and install the new version on 
the target platform. Most frequently, the installation procedure requires the 
system to be restarted at its end. Restarting the system means that effectively 
it will not be operational for a certain short interval of time. The problem 



223Implementation

is that some types of systems, such as nonstop systems, may not tolerate 
restarts no matter how short the time interval is.

Some systems try to make restarts allowable by providing processor tan-
dem configurations. Typically, in such a system, one of the processors con-
tinues the normal operation while the other restarts after an update. In that 
case, we have a synchronization problem, which of course can be solved but 
could become rather complex. Generally, system restarts are problematic and 
should be handled with special care.

On the other end of the spectrum of FSM implementations, we have the 
diametrical approach to FSM implementation in which the structure of the 
automata is not defined by the program control flow, but rather with the cor-
responding data structure. The simple interpreter uses this data structure 
to process the incoming events (messages), therefore it is referred to as an 
event interpreter. The data structure implementations in assembler and C 
programming languages are built from lists and lookup tables. 

The automata evolution is driven by the incoming events. Each input event 
triggers one step of the evolution. The event interpreter carries out the evolution 
step by traversing the data structure to determine the current state and the state 
transition that corresponds to the input event type. In contrast to this common 
part of the message processing flow—which is directed by the data structure—
program parts that correspond to particular reaction tasks are dedicated rou-
tines that perform specific functions, which cannot be generalized.

Figure 4.8 illustrates the FSM implementation based on the event inter-
preter and the data structure that defines the FSM structure (essentially, the 
state transition graph). New, incoming events (messages) are added at the 
end of the message queue (see the top left corner of Figure 4.8). The inter-
preter takes the messages from the head of the message queue and processes 
them by using the data structure, which comprises

• An automata control table
• An automata state table
• A list of valid events (one such list exists for each automata state)

The automata control table is assigned to automata to store its current state 
and optionally some of its additional attributes. The automata state table is a 
lookup table that maps the state index onto the address of the corresponding 
list of valid events in that state. The elements of this list contain the complete 
information necessary and sufficient to perform the state transition from the 
current state to the next state, which is determined by the event type. This 
information is stored in the following fields:

• event ID: holds the event type to which this element corresponds 
• task address: contains the pointer to the corresponding routine 

(procedure)
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• next state: stores the index of the next state
• next: contains the pointer to the next element in the list

The event interpreter processes the message through the following steps:

• Get the message from the head of the message queue.
• Locate the automata control table by examining the content of the 

message header (the message destination field, in particular).
• Read the current state and locate the corresponding list of valid 

events by looking up the automata state table.
• Determine the event type by examining the content of the message 

header (the message code field, in particular) and locate the corre-
sponding element in the list of valid events (ignore the event if such 
an element does not exist).

• Perform the task by calling the corresponding task routine as a sub-
routine (procedure).
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FIGURE 4.8
Event interpreter and the data structure that defines the FSM structure.
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• Read the index of the next state from the field next state.
• Update the field current state by storing the index of the next state 

into the field current state.

The advantage of this approach is that we can construct a compiler that 
transforms the design FSM model into the corresponding data structure and 
the set of task routines. The automatic translation performed by the compiler 
increases the probability that the implementation is compliant with the design 
model and, therefore, that it is correct. Moreover, the routine performed by 
the event (described above) is fairly simple and short. The price that is paid 
for the correctness and simplicity is poor performance. The decrease in the 
processing throughput is proportional to the number of memory accesses to 
the corresponding elements of the data structure.

Two characteristics of this approach are not obvious from Figure 4.8 and 
require further explanation. The first characteristic is universality. Since the 
FSM structure is built into the corresponding data structure, the event inter-
preter routine is completely independent from it. The event interpreter always 
repeats the same routine. This is the same for all FSMs. Therefore, this routine 
is universal in contrast to the implementation with nested switch–case state-
ments, which implement just one particular FSM. This characteristic is espe-
cially important from the point of software maintenance. If we want to change 
the FSM structure by adding or deleting states or state transitions, we must 
update the data structure. There is no need to change the simple interpreter 
routine at all.

The second characteristic of the event interpreter-based approach is that it 
enables sharing of common tasks between more state transitions. In princi-
ple, this is also possible in the nested switch–case-based approach by intro-
ducing common functions, which are called from the corresponding case 
program clauses, but this is seldom used by their practitioners. In the event 
interpreter-based approach, this possibility becomes more apparent and is, 
therefore, implemented because tasks are already specified as procedures 
(subroutines) rather than case program clauses.

Because of task sharing, the number of tasks may generally be smaller 
than the number of state transitions. We can also organize tasks hierarchi-
cally, such that higher-level tasks call their subordinate tasks. This makes it 
possible to implement more complex tasks by using simple primitives. Such 
organization has the following advantages:

• Better performance in terms of code size
• Enables dynamic mutation of tasks

By exploiting these characteristics in environments with dynamic loaders, such 
as Java, we can implement dynamically reconfigurable automata. The autom-
ata in such environments change during normal system operation, and those 
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changes do not demand any system restarts. In such environments, it is desirable 
to use the object-oriented approach and to define the FSM structure with the set 
of objects rather than with a data structure, such as the one previously described. 
The event interpreters in such implementations interact with the objects that 
materialize the FSM structure instead of using the traditional data structures.

The following code illustrates FSM structure modeling with the group of 
classes written in Java:

package automata2;
import java.util.*;
import java.io.*;

class Task {
 public int id;
 public Task(int ident) {id=ident;}
 public void processMsg() {System.out.println(id);}
}

class Branch {
 private String msgcode;
 private Task task;
 private String nextstateid;

 public Branch(String msg, Task tsk, String nextsts) {
  msgcode=msg;
  task=tsk;
  nextstateid=nextsts;
 }
 public String getMsgCode() {return msgcode;}
 public Task getTask() {return task;}
 public String getNextStateId() {return nextstateid;}
}

class State {
 private String stateid;
 public Set setofbranches;

 public State(String id,Set branches) {
  stateid=id;
  setofbranches=branches;
 }
 public String getStateId() {return stateid;}
 public Set getSetOfBranches() {return setofbranches;}
}

class AStructure {
 private String automataid;
 private Set setofstates;

 public AStructure(String id,Set states) {
  automataid=id;
  setofstates=states;
 }
 public String getAutomataId() {return automataid;}
 public Set getSetOfStates() {return setofstates;}
}

class Automata {
 protected AStructure structure;
 protected String stateId;
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 protected State initial;

 public Automata(AStructure str,String id,State s) {
  structure = str;
  stateId=id;
  initial=s;
 }
 public void processMsg(String msg) {
  State currentS = initial;
  Iterator iterA =
structure.getSetOfStates().iterator(); while(iterA.hasNext()) {
   State eachS = (State)iterA.next();
   if(eachS.getStateId().equals(stateId)) {
    currentS=eachS;
    break;
   }
  }
  Iterator iterS =
currentS.getSetOfBranches().iterator(); while(iterS.hasNext()) {
   Branch eachB = (Branch)iterS.next();
   if(eachB.getMsgCode().equals(msg)) {
    Task t=eachB.getTask();
    t.processMsg();
    stateId=eachB.getNextStateId();
    break;
   }
  }
 }
}

The class Task models the task that is performed during the transition from 
the current state to the next state. The task identification is stored in the class 
field id. The user of the class Task specifies the particular task identification as 
the parameter of the class constructor. The default message processing function, 
named processMsg(), just prints the task identification to the standard output file.

The class Branch models the arc of the state transition graph. The attributes 
of the state transition are the message code that triggers the state transition, 
the task that is performed during the state transition, and the identification 
of the next stable state. The corresponding fields are named msgcode, task, 
and nextstateid, respectively. These fields are set by the class constructor. The 
current content of these fields is returned by the functions getMsgCode(), get-
Task(), and getNextStateId(), respectively.

The class State models a single FSM state. The state attributes are the state 
identification and the set of the outgoing state transitions (the target state is 
irrelevant; it can be this state or some other state). The corresponding class 
fields are named id and branches, respectively. Their content is set by the class 
constructor and returned by the functions getStateId() and getSetOfBranches(), 
respectively.

The class AStructure models the FSM structure. Its attributes are the autom-
ata identification and the corresponding set of states. The corresponding 
class fields are automataid and setofstates. The class constructor gets particular 
values for these fields through its parameters. The functions getAutomataId() 
and getSetOfStates() return the current values of these fields.
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Finally, the class Automata models the complete FSM. Its attributes are the 
FSM structure (essentially the set of sets of state transitions), the current state 
identification, and the initial state identification. The corresponding class 
fields are named structure, stateId, and initial, respectively. These fields are set 
by the class constructor.

The function processMsg(String msg) is the event interpreter. The input argu-
ment msg is the message, which triggered the state transition. The interpretation 
starts with the iteration through the set of states to locate the object that cor-
responds to the FSM current state (its identification is stored in the field stateId). 
This is a typical object-oriented approach, which avoids the unpopular switch–
case and similar selection statements. Principally, this first iteration is really not 
needed and can be easily eliminated by saving the current state object instead of 
the current state identification. However, the first iteration is intentionally kept 
to make the example more informative by showing how we can use two subse-
quent iterations to search through the set of sets of state transitions.

The second iteration searches through the set of state transitions that cor-
respond to the current state to locate the state transition that corresponds to 
the input message msg. After locating the state transition, it gets the object 
that corresponds to the state transition task and calls its processMsg() func-
tions, which, in turn, prints the task identification to the standard output file.

From the program code given above, the classes Task, Branch, AStructure, 
and Automata are obviously generic and can be used for the construction of 
any FSM. Besides that, this solution enables the design and implementation 
of dynamically reconfigurable FSMs, because sets in Java can be dynami-
cally updated with the corresponding task object dynamically loaded and 
unloaded.

We illustrate the applicability of this set of classes with the following 
implementation of the counter by modulo 2 in Java (the corresponding over-
all class architecture is shown in Figure 4.9):

class Task0 extends Task {
 public Task0(int ident) {super(ident);}
 public void processMsg() {System.out.println("0");}
}

class Task1 extends Task {
 public Task1(int ident) {super(ident);}
 public void processMsg() {System.out.println("1");}
}

class Task2 extends Task {
 public Task2(int ident) {super(ident);}
 public void processMsg() {System.out.println("2");}
}

class Automata2 {
 public static void main(String[]args) throws IOException {
  Automata a2 = makeAutomata();
  char ch;
  String msg;
  System.out.println("This is the example of counter by modulo 2.");
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  System.out.println("The automata evolution has started...");
  while(true) {
   System.out.print("Enter input signal (0/1 and <ENTER>): ");
   ch = (char)System.in.read();
   System.in.skip(2);
   if(((ch!='0') && (ch!='1'))) break;
   if(ch=='0') msg="0"; else msg="1";
   a2.processMsg(msg);
  }
 }
 private static Automata makeAutomata() {
  Branch b11 = new Branch("0",new Task0(0),"0");
  Branch b12 = new Branch("1",new Task1(1),"1");
  Set s1 = new HashSet();
  s1.add(b11); s1.add(b12);
  state S1 = new State("0",s1);

  Branch b22 = new Branch("0",new Task1(1),"1");
  Branch b23 = new Branch("1",new Task2(2),"2");
  Set s2 = new HashSet();
  s2.add(b22); s2.add(b23);
  State S2 = new State("1",s2);

  Branch b33 = new Branch("0",new Task2(2),"2");
  Branch b31 = new Branch("1",new Task0(0),"0");
  Set s3 = new HashSet();
  s3.add(b33); s3.add(b31);
  State S3 = new State("2",s3);

  Set a = new HashSet();
  a.add(S1); a.add(S2); a.add(S3);
  AStructure as = new AStructure("0",a);

  Automata au = new Automata(as,"0",S1);
  return au;
 }
}

At the beginning of this example, we define the application-specific tasks, 
namely, Task0, Task1, and Task2, which are responsible for printing the coun-
ter by modulo 2 outputs (0, 1, and 2, respectively). Note that the number of 
tasks (three) is smaller than the number of state transitions (six) in this par-
ticular example. The application-specific processMsg() functions are defined 
by overriding the default functions.

The definitions of the classes Task0, Task1, and Task2 are followed by the 
definition of the class Automata2, which comprises two public functions: 
main() and makeAutomata(). The function main() starts by calling the function 
makeAutomata(), which, in turn, returns the counter by the modulo 2 object, 
named a2. After that, it falls into an infinite while loop in which it reads the 
standard input file. If the input character is neither “0” nor “1,” it breaks the 
loop and the program terminates. Otherwise, it converts an input character 
into the corresponding string (“0” and “1,” respectively) and passes it as an 
input event to the event interpreter.

The function makeAutomata() constructs individual state transitions 
(instances of the class Branch), individual states (instances of the class State), 
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the counter by modulo 2 structure (an instance of the class AStructure), and 
the counter by modulo 2 itself (an instance of the class Automata). It first 
constructs the state transition b11, which for the input “0” moves the FSM 
from the state S1 to the same state, and during that transition it performs 
the task Task0. Similarly, it constructs the state transition b12, which for the 
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FIGURE 4.9
Static structure used in the second approach to the FSM implementation.
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input “1” moves the FSM from the state S1 to the state S2, and during that 
transition it performs the task Task1. Next, it constructs the set of state tran-
sitions s1 and the state S1.

Likewise, this function constructs the state transitions b22 and b23 and the 
state S2, as well as the state transitions b33 and b31 and the state S3. Finally, 
it constructs the structure of the counter by modulo 2, named as, and the 
counter by modulo 2, named au. 

The third approach to FSM implementation, from the broad spectrum of 
implementations, is illustrated next. In this approach, we define the FSM 
structure with the corresponding class hierarchy and the set of lookup 
tables that map FSM inputs into the corresponding state transitions. This 
approach also uses message interpretation and is therefore universal, 
like the previous one, but it yields much better performance that is com-
parable with the performance of the first approach (nested switch–case 
statements).

The first idea behind this concept is to model each FSM stable state with 
the class that is derived from the basic class State. The second idea is to con-
sider a state transition (represented with the corresponding arc of the state 
transition graph) as a transient (i.e., unstable) state. Each state transition is 
modeled with a class that is derived from the class that represents its origi-
nating stable state.

These two ideas lead to a class hierarchy with two hierarchical levels. The 
root of the class hierarchy is the basic class State. The first level of hierarchy 
defines the FSM stable states, whereas the second level of hierarchy defines 
its unstable states, i.e., state transitions. 

We illustrate this approach with the example of counter by modulo 2. The 
corresponding class hierarchy is shown in Figure 4.10. The first hierarchy level 
defines the FSM stable states S1, S2, and S3. All of these are derived from the 
basic class State. The second level defines FSM state transitions B11, B12, B22, 
B23, B33, and B31. Notice that B11 and B12 are derived from their originat-
ing state S1. Similarly, B22 and B23 are derived from S2, and B33 and B31 are 
derived from S3.

The third idea behind this approach is that FSM evolution takes place by 
traversing the class hierarchy tree and by using polymorphism, one of the 
most powerful abstractions of object-oriented programming. Concretely, the 
event interpreter performs the following steps:

• Use the FSM input message (signal) and the lookup table (map), 
which are associated with the FSM current state, to determine the 
corresponding unstable state (state transition).

• Perform the application-specific task by calling the message process-
ing function defined within the class that models the corresponding 
unstable state.

• Move the FSM into its next stable state.
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The class hierarchy for the counter by modulo 2 is defined with the following 
Java module:

package automata;
import java.util.*;

class State {
 public State msgToBranch(String msg) {return new State();}
 public State processMsg() {return new State();}
}

class S1 extends State {
 public State msgToBranch(String msg) {
  return Structure3.getBranch("0",msg);
 }
}
class S2 extends State {
 public State msgToBranch(String msg) {
  return Structure3.getBranch("1",msg);
 }
}
class S3 extends State {
 public State msgToBranch(String msg) {
  return Structure3.getBranch("2",msg);
 }
}

class B11 extends S1 {
 public State processMsg() {
  System.out.println("Output: 0");
  return new S1();
 }
}
class B12 extends S1 {

State

S1 S2 S3

B22 B23B12B11 B33 B31

FIGURE 4.10
Counter by modulo 2 state class hierarchy.
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 public State processMsg() {
  System.out.println("Output: 1");
  return new S2();
 }
}

class B22 extends S2 {
 public State processMsg() {
  System.out.println("Output: 1");
  return new S2();
 }
}
class B23 extends S2 {
 public State processMsg() {
 System.out.println("Output: 2");
 return new S3();
 }
}

class B33 extends S3 {
 public State processMsg() {
  System.out.println("Output: 2");
  return new S3();
 }
}
class B31 extends S3 {
 public State processMsg() {
  System.out.println("Output: 0");
  return new S1();
 }
}

public class Automata3 {
 private State state;

 public Automata3() {
  state = new S1();
 }
 public void processMsg (char chmsg) {
 String msg;
 if(chmsg=='0') msg="0"; else msg="1";
 state = state.msgToBranch(msg);
  state = state.processMsg();
 }
}

The basic class State has two default functions, msgToBranch() and 
 processMsg(). Both functions return an instance of the class State. The fact 
that the instance of the class derived from the class State is also considered to 
be the instance of the class State that enables the event interpreter to employ 
polymorphism. We will return to this point shortly.

The function msgToBranch() is responsible for mapping the FSM input mes-
sage into the corresponding state transition object. The input message in this 
simple example is a one-character string (“0” or “1”). The function can return 
any instance of the basic class State, but normally in this example, it should 
return the instance of the class B11, B12, B22, B23, B33, or B31.

The function processMsg() carries out the application-specific task for the 
given input message. It returns the FSM’s next stable state. The idea is that 
the FSM dynamically changes its behavior. The FSM is in a certain state, 
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either stable or unstable, at any point in time, but it is always represented by 
a single object. That object is actually returned by one of these two functions, 
which are called in the course of FSM evolution.

Next, we define the classes that model the FSM stable states, namely, S1, S2, 
and S3. Each of these classes extends the basic class State and overrides the 
default function msgToBranch() with the application-specific one. These partic-
ular functions actually delegate their responsibility to the function getBranch() 
of the class Structure3 by passing their identification (“0,” “1,” and “2” for S1, S2, 
and S3, respectively) and the input message to it. More precisely, these simple 
functions just return the unstable state object that is provided by the function 
getBranch() to their caller, and that is the event interpreter.

The stable state classes are followed by the classes that model the FSM 
unstable states, namely, B11, B12, B22, B23, B33, and B31. Each of these classes 
extends the corresponding stable state class and overrides the default func-
tion processMsg(), which each individual class inherits from the basic class 
State, with the application-specific one. These particular functions perform 
the application-specific tasks and return the corresponding next stable state 
object (S1 for B11 and B31, S2 for B12 and B22, and S3 for B23 and B33). The 
application-specific tasks in this simple example are implemented as the cor-
responding print statements to the standard output file.

The FSM is modeled with the class Automata3. This class has a single attri-
bute named state, which is set by the class constructor to the FSM initial 
stable state, namely S1. Later, during the FSM evolution, it changes and can 
become any FSM state, either stable or unstable.

The class Automata3 has a single function, named processMsg(), that is the 
FSM event interpreter. This function performs one state transition in two 
steps. In the first step, it calls the function msgToBranch() of the FSM current 
stable state object. This effectively starts the state transition by moving the 
FSM from its current stable state to the unstable state that corresponds to the 
input message. In the second step, the event interpreter calls the function 
 processMsg() of the FSM unstable state, which performs the application-specific 
task and returns the next FSM stable state object. This effectively completes 
the state transition. Interestingly, the state class hierarchy in this approach is 
completely application-specific, whereas the event interpreter is very simple 
and generic and therefore can be reused in the implementations of other FSMs.

The following utility classes support the mapping of input messages to the 
corresponding state transitions (unstable state objects):

package automata;
import java.util.*;

class MapContainer {
 private String identification;
 private Map map;

 public MapContainer(String id,Map m){
  identification = id;
  map = m;
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 }
 public String getId() {return identification;}
 public Map getMap() {return map;}
}

public class Structure3 {
 private static Set maps;

 public void setMaps(Set m) {
  maps = m;
 }
 public static State getBranch(String id,String msg) {
  Map m = new HashMap();
  Iterator iter = maps.iterator();
  while(iter.hasNext()) {
   MapContainer each = (MapContainer)iter.next();
   if(each.getId().equals(id)) {
    m = each.getMap();
    break;
   }
  }
  return (State)m.get(msg);
 }
}

The class MapContainer stores the map identification and the map itself 
in the attributes identification and map, respectively. These attributes are set 
by the class constructor. Their current content is available through the cor-
responding get functions.

The class Structure3 contains a set of maps for all FSM stable states. This 
set is established by the function setMaps() and is searched by the function 
getBranch(). The input parameters of the function getBranch() are the map (i.e., 
stable state) identification and the input message. The function getBranch() 
iterates through the set of map containers, locates the one with the given 
identification, uses the located map to get the state transition that corre-
sponds to the input message, and returns it to its caller.

An important feature of this approach is that it is based on Java sets and 
maps, which makes it an ideal environment for making dynamically recon-
figurable FSMs as Java sets and maps can be dynamically updated. For 
example, if we want to add a new state transition B21, it would be sufficient 
to write, compile, and dynamically load a new class B21 that represents it, 
and add the corresponding entry in the map that is associated to the FSM 
stable state S2.

Because the current Java version does not support a map of maps, the solu-
tion for mapping input events to the corresponding state transitions pre-
sented here is based on the usage of a set of maps. It is worth mentioning that 
an environment with a map of maps would enable top performance imple-
mentations based on two connected mappings. The key for the first mapping 
would be the FSM current stable state, whereas the key for the second map-
ping would be the input message. The performance of such implementations 
would be even better than the performance of the implementations based on 
nested switch–case statements. 



236 Communication Protocol Engineering

The class Environment3 uses the previously defined classes and demon-
strates their usability. The corresponding Java code is the following (the 
overall class architecture is shown in Figure 4.11):

package automata;
import java.util.*;
import java.io.*;

public class Environment3 {
 public static void main(String[] args) throws IOException {
  char ch = '0';
  Automata3 a3 = new Automata3();

  Map m1 = new HashMap();
  m1.put("0",new B11()); m1.put("1",new B12());
  MapContainer M1 = new MapContainer("0",m1);

  Map m2 = new HashMap();
  m2.put("0",new B22()); m2.put("1",new B23());
  MapContainer M2 = new MapContainer("1",m2);

  Map m3 = new HashMap();
  m3.put("0",new B33()); m3.put("1",new B31());
  MapContainer M3 = new MapContainer("2",m3);

  Set maps = new HashSet();
  maps.add(M1); maps.add(M2); maps.add(M3);

  Structure3 st3 = new Structure3();
  st3.setMaps(maps);

  System.out.println("This is the example of counter by modulo 2.");
  System.out.println("The automata evolution has started...");
  while(true) {
   System.out.print("Enter input signal (0/1 and <ENTER>): ");
   ch = (char)System.in.read();
   System.in.skip(2);
   if(((ch!='0') && (ch!='1'))) break;
   a3.processMsg(ch);
  }
 }
}

The function main starts by creating the object a3, an instance of the counter 
by modulo 2. It then creates all the necessary maps and map containers, the 
set of maps named maps, the object st3, and an instance of the class Structure3. 
After this, it sets the set of maps by calling the function setMaps() and falls into 
an infinite while loop in which it reads FSM input messages and calls the event 
(message) interpreter until the user enters a signal that is neither “0” nor “1.”

The keys for searching Java maps in this simple example are just simple 
strings (“0” and “1”). This Java map is a rather powerful abstraction because 
its key may be any class whose instances are comparable. This makes it pos-
sible to model real communication protocol messages with such classes and 
to build Java maps for them. Once we model the messages by the correspond-
ing objects, FSM objects can interact with them in an object-oriented fashion.

If we want to provide a full object-oriented treatment of communication pro-
tocol messages, we must provide the corresponding serialization functions. Two 
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types of these functions are actually used. The first type is used for converting 
an object into a series of octets that can be transported over the communication 
line. The second type performs the reverse operation by converting the received 
series of octets into the corresponding object. If we do not provide these seri-
alization functions, we are forced to operate directly on numbers and use 
switch–case and similar statements unpopular in the object-oriented world.

4.3  State Design Pattern

The State design pattern is one of the approaches to FSM implementation. 
As previously mentioned, the State pattern is shown in a separate sec-
tion because it was catalogued by Gamma et al., and therefore it is not just 
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FIGURE 4.11
The static structure used in the third approach to the FSM implementation.
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another example, but a well-defined and proven concept. The reader may 
find the complete description of the State pattern in the original book on 
design patterns (Gamma et al., 1995). Here we present just a brief overview 
and an example that demonstrates the State pattern applicability.

The original motivation to introduce this design pattern was to support 
objects that change their behavior as their state changes, exactly what the 
FSMs do. For example, when the counter by modulo 2 (Figure 4.6) is in its 
initial state S1, it produces the output 0 for the input 0, but when its state 
changes to S2 or S3, it produces different outputs for the same input (1 in the 
state S2, and 2 in the state S3). Similarly, the input 1 yields the output 1 in the 
state S1, the output 2 in the state S2, and the output 0 in the state S3.

The key idea of this design pattern is to separate the FSM appearance from 
its behavior. We define the FSM appearance with the FSM wrapper class, 
which is referred to as a context. The context defines the user interface (a set 
of operations accessible by the FSM users) and contains the current FSM state 
object, which is one of the concrete FSM state objects.

The FSM behavior is defined with the wrapped state hierarchy. The root of 
this hierarchy is the generic state class, which actually defines an interface for the 
concrete states of the context. Each concrete state class is derived from the generic 
state class, and it provides the state-specific behavior of the context (FSM).

The State pattern revolves around polymorphism. Essentially, context 
(FSM) delegates the state-specific requests to the current state object. More 
precisely, each operation defined within the user interface simply calls the 
corresponding operation on the current state object (these operations usually 
have the same name). The context can pass itself as a parameter to the called 
operation and thus make itself accessible to the concrete state, if needed.

Typically, clients initially configure the context with state objects. Later, 
during the normal system operation, clients do not deal with state objects 
directly. Notice that either the context class or the concrete state subclass can 
change the context current state. Therefore, the FSM transition logic can be 
centralized, distributed, or hybrid. 

According to the authors, the State pattern consequences are the following:

• It localizes state-specific behavior.
• It makes state transitions explicit.
• State objects can be shared.

At the end of this short overview of the State pattern, we illustrate its appli-
cability with the simple example of a State pattern-based implementation of 
the counter by modulo 2. The corresponding class diagram is shown in Figure 
4.12. The context in this example is the class Automata4. The attribute state holds 
the current FSM state object. The key function processMsg() delegates message 
processing to the current FSM state object by calling its function processMsg().

The generic state class State defines a simple interface, which comprises 
a single function, processMsg(). Generally, such a function would define the 
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default FSM behavior, which can then be overridden in the concrete substate 
classes. In this simple example, as we will shortly see, no such  behavior is 
allowed, and therefore the corresponding operation is simply empty.

The concrete substate classes S1, S2, and S3 are derived from the generic 
state class State. Each of these classes provides a state-specific behavior by 
overriding the function processMsg() with its own particular definition. The 
corresponding code in Java is the following:

package automata4;
import java.util.*;

public class Automata4 {
 private State state;
 public Automata4() {state = new S1();}
 public void setState(State s) {state = s;}
 public void processMsg(char msg) {
  state.processMsg(this,msg);
 }
}

class State {
 public void processMsg(Automata4 a,char ch) {
 }
}

class S1 extends State {
 public void processMsg(Automata4 a,char ch) {
  if(ch=='0') {
   System.out.println("Output 0");
   a.setState(new S1());
  } else {
   System.out.println("Output 1");
   a.setState(new S2());
  }
 }
}

class S2 extends State {

+processMsg()
–state : State

Automata4

+processMsg()

State
–state

1 1

state.processMsg()

+processMsg()

S1

+processMsg()

S2

+processMsg()

S3

FIGURE 4.12
Static structure used by the State design pattern.
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 public void processMsg(Automata4 a,char ch) {
  if(ch=='0') {
   System.out.println("Output 1");
   a.setState(new S2());
  } else {
   System.out.println("Output 2");
   a.setState(new S3());
  }
 }
}

class S3 extends State {
 public void processMsg(Automata4 a,char ch) {
  if(ch=='0') {
   System.out.println("Output 2");
   a.setState(new S3());
  } else {
   System.out.println("Output 0");
   a.setState(new S1());
  }
 }
}

The definition of the class Automat4 begins with the definition of the field 
state, which is used to store the FSM current state object. The class construc-
tor sets this field to the FSM initial state object, which is an instance of the 
class S1. The function setState() is used by the FSM concrete state objects to 
change the FSM state (an example of distributed transit logic). The function 
processMsg() simply calls the corresponding function on the FSM current 
state object.

The class State defines a simple state interface with just one function— 
processMsg( )—which is empty because this example has no default behav-
ior. The class S1 is an example of a concrete substate class. It defines the 
S1-specific FSM behavior by overriding the function processMsg() that it 
inherits from the base class State. This function checks whether the input 
signal is 0 or 1, prints the corresponding output signal, and changes the FSM 
state by calling the function setState(). We made the context accessible by 
passing it as a parameter to the function processMsg().

The following Java code creates the working environment for this example 
(given without the comments because a similar code is already explained in 
a previous section):

package automata4;
import java.util.*;
import java.io.*;

public class Environment4 {
 public static void main(String[] args) throws IOException {
  char ch = '0';
  Automata4 a4 = new Automata4();
  System.out.println("This is the example of counter by modulo 2.");
  System.out.println("The automata evolution has started...");
  while(true) {
   System.out.print("Enter input signal (0/1 and <ENTER>): ");
   ch = (char)System.in.read();
   System.in.skip(2);
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   if(((ch!='0') && (ch!='1'4))) break;
   a4.processMsg(ch);
  }
 }
}

4.4  Implementation Based on the FSM Library

In the previous two sections, we have explored various approaches to the 
FSM implementations by means of simple examples. The reader should 
be much more familiar with FSM implementation by now, but for serious 
communication protocol engineering we need much more. We need a well-
established working environment that will enable productive and repeatable 
development processes that yield maintainable products (communication 
protocols) of high quality.

The main measure (metrics) of quality in the context of communication 
protocols is their reliability, which is considered to be proportional to the 
number of remaining software bugs. Another important quality measure 
is the product performance measure with its throughput (the number of 
messages processed in the given interval of time) and hardware resources 
needed to achieve that throughput (RAM and ROM size and processor speed 
measured in MIPS or MHz). Generally, one of the key factors to successful 
software quality assurance is the quality of the software tools used in the 
development process. Communication protocol engineering is by no means 
an exception in this respect.

In this section, we present an example of the state-of-the-art working envi-
ronment for the productive development of communication protocols. The 
environment is effectively created by an integrated development environ-
ment, which includes a C++ compiler and the domain-specific C++ library, 
named FSM Library. As already mentioned, the FSM Library includes two 
fundamental classes, FSMSystem and FiniteStateMachine. The former creates 
the execution platform for a group of FSMs whereas the latter is the base 
class for implementing individual FSMs.

The FSM Library API comprises two interfaces, which are defined by the 
class FSMSystem and FiniteStateMachine. The complete FSM Library pro-
grammer reference manual is given in Chapter 6. The reference manual also 
includes two representative implementation examples. In this section, we 
focus on the FSM Library concepts and internals.

The key concept behind the FSM Library is to enable productive imple-
mentations of FSMs in a uniform way. The main task of the FSM Library 
user is to implement the FSM state transition functions. The user does this by 
translating the design artifacts (statechart diagram, activity diagram, or SDL 
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diagram) into the corresponding C++ class function members. This trans-
lation can be done manually or with a software tool (typically used if the 
product performance is not critical).

The process of translation is both productive and uniform because the 
FSM Library provides all the functions needed to effectively construct an 
FSM state transition. These functions can be classified into the following 
function groups:

• Message handling functions (both message header and message 
payload handling functions). These functions support both message 
coding and decoding (i.e., message synthesis and analysis).

• Message sending functions.
• Timer handling functions (essentially start, stop, and restart timer).

The reader may be puzzled by the fact that the list given above does not 
include any message receiving functions. The FSM Library is specific in this 
respect. The developer does not need to explicitly call a function that receives 
a message (signal). Rather, the FSM execution platform (provided by the class 
FSMSystem) routes all sent messages toward their destination automata, locates 
the state transition function that corresponds to the message type (determined 
by the content of the corresponding message header field), and calls it as its 
subroutine. We will see shortly that the function that performs the message 
routing and processing (named Start) is actually the event interpreter.

Therefore, the FSM Library completely supports the message handling 
style present in the design artifacts (statecharts, activity diagrams, and SDL 
diagrams), which just name the input event (message) without taking care 
of how that event is effectively recognized (received). The FSM Library pro-
vides the class FSMSystem to support the straightforward implementations 
of design artifacts. Once provided with the class FSMSystem, the developers 
do not care how the message is received; they simply write the C++ function 
that performs the state transition when the message is received.

Other FSM Library specifics are the following:

• The FSM implementation is independent from the underlying real-
time kernel.

• The FSM Library provides the mechanism to send messages to the 
dynamically allocated automata instances, which are referred to as 
unknown automata instances.

• The FSM Library provides public mailboxes, which can be used as 
message queues with different priorities.

• The FSM Library separates the message handling functions from the 
real-time kernel. This feature is referred to as the encapsulation of 
the message handling functions.
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• The FSM Library treats timers as special messages, which are dis-
tinguished from the communication protocol messages by the code 
that determines the message type.

• The logging system provided by the FSM Library is based on the 
test version of the real-time kernel, which is derived from the target 
(final) real-time kernel.

• The FSM implementation is independent from the concrete formats 
of the communication protocol messages.

• The FSM Library provides automatic message buffer reallocation in 
cases where current buffer capacity becomes insufficient for storing 
additional message parameters.

The following paragraphs provide short comments on each of these FSM 
Library specifics. We proceed through the list of specifics from its beginning 
toward its end.

An important design decision was to make the FSM Library independent 
from the underlying run-time kernel. This decision is important because it 
enables easy porting of the FSM implementations to various target platforms 
(bare machine, UNIX, Windows NT). The internal class KernelAPI facilitates 
this independence. It represents a clean interface between the FSM imple-
mentation and the run-time system. The kernel developer must derive a new 
class from the class KernelAPI and write its real member functions by taking 
into account the details of the particular target platform. An example of such 
implementation is shown later in this section.

The second FSM Library-specific feature is related to the beginning of 
the communication between two FSMs, namely, FSM A and FSM B, where 
the former has the active role and the latter is passive. The problem is 
simple if A always communicates with the same B, but it becomes more 
complex if B is not known in advance (B is an unknown FSM). Consider 
a pool of FSMs, where each is capable of performing the same task. FSM 
A is principally interested in engaging with any instance from the pool 
that is free.

The FSM Library facilitates the communication with the unknown autom-
ata by placing all relevant data into the header of the message that is sent to 
it. The message destination is set to the special code, named UNKNOWN_
AUTOMATA. The function member Start of the class FSMSystem recognizes 
this code and dynamically allocates an automata instance, which will be the 
message destination and therefore involved in the further communication 
with the message originator. In the case when there are no free automata 
instances available in the pool, the function Start calls the special function 
NoFreeInstances, which is responsible for the recovery procedure. Typically, 
this function informs the message originator about the automata instance 
outage by sending it an appropriate signal, such as NAK, DISCONNECT, and 
so on.
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The third FSM Library-specific feature is the provision of general purpose 
mailboxes, which can be used both as public mailboxes and private mail-
boxes. The former are actually FIFO message queues that contain messages 
for various destinations, whereas the latter contain messages for a single des-
tination, which is an FSM that owns the private mailbox. Generally, we can 
use only a single public mailbox to enable the communication between all 
FSMs present in the system. Such a solution can suffice in the case of sim-
ple systems with a small number of FSMs and soft real-time requirements. 
However, a single public mailbox may not be sufficient in the case of more 
complex systems because the FSM Library mailbox is just a FIFO message 
queue without any support for message prioritization.

The absence of message prioritization can lead to a case where an FSM pro-
cesses an outdated message instead of processing the corresponding timeout 
message, just because the outdated message is ahead of the timeout message 
in the public mailbox. Such cases can lead to dysfunctional behaviors that are 
not caused by design oversights but, rather, inappropriate implementation.

The regular method of supporting message prioritization in the FSM Library-
based implementations is to use more public mailboxes that are assigned dif-
ferent priorities. For example, we can use three public mailboxes for three 
different priorities. These three public mailboxes are effectively treated as 
three FIFO message queues with different priorities (e.g., high, medium, and 
low). We can select a strategy of using private mailboxes instead. We can also 
mix public and private mailboxes if we wish. Actually, the function Start (the 
member of the class FSMSystem) treats them equally. In its loop, it searches 
all the mailboxes for messages. The effective mailbox priority is determined 
by the order of that search (i.e., it starts from the mailbox index 0).

The fourth FSM Library–specific feature is the encapsulation of the mes-
sage handling functions. Generally, real-time kernels can store the message 
source and destination information in the message header or in the separate 
data structure. By separating the message handling functions into a group 
that handles the message header and a group that handles the message pay-
load, the FSM Library provides complete FSM implementation independence 
from the message source and destination information location.

An additional enhancement related to the message destination provided 
by the FSM Library is the support for sending messages to the left or to the 
right FSM. The abstraction of the left and right FSM originally comes from 
SDL. If the SDL symbol for sending a message points to the left, we say that 
the message is sent to the left FSM. Similarly, if the symbol points to the right, 
we say that the message is sent to the right FSM.

The internal class KernelAPI provides the functions SendMessageLeft and 
SendMessageRight, which are inherited by the class FiniteStateMachine, to sup-
port this abstraction. These two functions enable the direct coding of cor-
responding parts of SDL diagrams, and the resulting C++ code has a great 
similarity with the original SDL diagrams. For example, consider the follow-
ing snippet of C++ code that corresponds to a state transition:
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StopTimer(FE4_TIMER1);
DisconnectRingTone();
PrepareNewMessage(0x00,r2_SetupRespConf);
SendMessageLeft();
StartChargingIncoming();
Connect();
SetState(FE4_ACTIVE);

The call of the function SendMessageLeft() above is a direct encoding of the 
corresponding left-pointing SDL graphical symbol. This snippet of code is a 
typical state transition implementation based on the FSM Library, which is 
rather short and easy to read and map to the original design model. These 
are two key implementation features that ensure productivity and quality.

The fifth FSM Library–specific feature is that it treats timers as special 
messages, distinguished from the communication protocol messages by the 
code that determines the message type. Some of the message header param-
eters are meaningless for timers. The corresponding message header fields 
are used by the FSM Library API functions related to timers to store the data 
specific for individual timers, such as timer duration.

All timers used by a certain FSM type must be initialized in the FSM 
class function member Initialize() by calling the function InitTimerBlock() (see 
Section 6.8.74). The parameters of this function are the timer identification, 
the timer duration, and the identification of the message to be sent when 
the timer expires. In response to a series of InitTimerBlock() calls, the system 
creates the corresponding array of timers. The identification of a timer effec-
tively becomes the index of this array.

Once initialized, the timer can be started by the function StartTimer(), 
stopped by the function StopTimer(), restarted by the function RestartTimer(), 
or checked by the function IsTimerRunning(). All these functions have a single 
parameter, the identification of the timer. Therefore, the resulting C++ code 
resembles the original design model to a great extent. Moreover, when the 
timer expires, the corresponding message is automatically sent to the FSM 
that started it, which processes this message in the same fashion as all other 
messages. This feature also contributes to the similarity of the resulting C++ 
code and the original design model.

The sixth FSM Library–specific feature is that the logging subsystem pro-
vided by the FSM Library is based on the test version of the real-time ker-
nel, which is derived from the target (final) real-time kernel. The logging 
subsystem is important in communication protocol engineering because 
certain design oversights or implementation errors become evident only in 
complex circumstances, which can happen only after long run-time periods. 
Typically, such circumstances are difficult to repeat and therefore develop-
ers normally use log files to backtrack the sources of errors once they occur.

The FSM Library provides a complete logging subsystem that is used both 
during system testing and normal system exploitation. The internal class 
LogAutomata defines the necessary set of functions. FSM tracing is based on 
the interception of all relevant internal functions, such as FSM state updating, 
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message processing, timer management functions, and so on. Automatic log-
ging of various events makes the resulting log file outlook uniform, and thus 
easy to read by any member of the development team. All logging events are 
prioritized, which helps developers to easily define exactly which events they 
want to trace.

Traditionally, log files are located on mass storage devices such as hard 
disks or flash memory. The FSM Library introduces an enhancement in this 
respect. The internal class LogInterface defines the interface between the sys-
tem implementation and the concrete logging media, such as the conventional 
log file, the TCP/IP connection to the logging server, and so on. Logging to 
the concrete media is provided by a subclass that is derived from the base 
class LogInterface. Examples of such classes are the classes LogFile and LogTCP.

The seventh FSM Library–specific feature is that the FSM implementation is 
independent of the concrete formats of communication protocol messages. The 
feature is facilitated by the internal class MessageHandler, which provides a set of 
generic functions for manipulating message parameters. Basically, two families 
of these functions exist, namely, get and add. The former returns the value of the 
given parameter, whereas the latter adds the given message parameter to the 
message. The parameter is specified with its identification (code) and its value.

The class MessageHandler uses the class MessageInterface, which is an abstract 
class that defines the interface for the abstract message format. Normally, the 
developer derives a class from the class MessageInterface for each concrete 
message format and writes its function in accordance with the format-specific 
details. An example of such a class is the class StandardMessage, which models 
a message that comprises a sequence of octets (characters). Such an approach 
centralizes message handling functionality. This centralization eliminates 
code redundancy and increases code coverage. Additionally, development 
team productivity is increased because message handling functions and 
FSMs can be developed in parallel.

The eighth and last FSM Library-specific feature is that it provides auto-
matic message buffer reallocation in cases where the current buffer capacity 
becomes insufficient for storing additional message parameters. Although 
this functionality is rather easily implemented, it is important because it 
makes the process of message creation completely transparent. The pro-
grammer just adds parameters to the new message as needed, without hav-
ing to take care about the size of the free space in the corresponding buffer. 
This detail is completely hidden by the message handling functions.

4.4.1  Using the FSM Library

Using the FSM Library is rather easy. It helps a lot in both the design and 
implementation phases of the development process. The author’s experience 
shows that both students and engineers working in the industry can start 
using it only after a couple of days of training. Actually, it does not take more 
than writing one example based on the FSM Library to start using it. Besides 
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that, it is a well-established working environment that has been used in a 
series of the real-world projects for the industry.

When it comes to design, the FSM Library greatly simplifies matters 
by providing two fundamental classes, FSMSystem and FiniteStateMachine. 
The existence of these two classes makes the system static structure well 
known from the start (Figure 3.5). Each protocol is modeled by the subclass 
derived from the base class FiniteStateMachine. The resulting FSM is executed 
by the event interpreter, which is hidden inside the class FSMSystem. These 
two classes practically encapsulate all domain-specific design patterns 
needed for designing a communication protocol.

The overall result is that the class diagram is almost not needed at all, 
at least not for realistic communication systems that comprise less than a 
dozen communication protocols. Even for very complex communication sys-
tems based on the FSM Library, the class diagram can be used more as an 
accompanying document. The most informative part of such a class diagram 
would be the one that specifies the mailboxes present in the system, as well 
as the timers used by individual FSM types.

The real valuable design artifacts for the paradigm based on the FSM 
Library are the complete models of the system behavior in the form of 
the activity, statechart, or SDL diagrams. This is the case because the FSM 
Library de facto specifies the skeleton of the system static structure, but it 
does not (and cannot) specify the complete system behavior. It provides only 
primitive behavior from which we can build more complex behavior, in par-
ticular, the state transitions.

Once we have finalized the detailed design diagrams (activity, statechart, or 
SDL diagrams), we are ready to proceed to the implementation phase of the 
development process. The main task of implementing FSMs by using the FSM 
Library, besides writing the initialization function and a couple of simple aux-
iliary functions, is the encoding of state transitions by using the set of primi-
tives provided within the FSM Library application programming interface (see 
Section 6.8). A good thing about these primitives is that they provide mapping 
of SDL steps in almost a one-to-one manner. The names of the primitives are 
almost self-documenting, at least after the short experience you get by using 
them. The code resembles the original design artifacts (especially SDL dia-
grams). All these attributes help any member of the development team to read, 
understand, and continue the work that was done by some other member of the 
development team, especially if they have the design artifact at their disposal.

It is also worth mentioning that besides forward engineering, the FSM 
Library helps backward engineering too. This is especially true if the back-
ward engineering is done by hand. Using software tools for that purpose is 
also possible if the development team strictly obeys certain coding guide-
lines. The key for successful forward and backward engineering is a well-
defined API (see Section 6.8).

We demonstrate the usage of the FSM Library API by the examples at the 
end of this chapter, as well as with the examples at the end of Chapter 6.
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4.4.2  FSM Library Internals

This section describes the FSM Library internals. The main FSM Library 
components are the following:

• The class FSMSystem

• The class FiniteStateMachine

• The real-time kernel

The class FSMSystem provides the following functionalities:

• Initialization of the FSM objects: The result is a set of the corre-
sponding transition tables, which determine which state transitions 
are triggered by the individual events (messages).

• Routing of messages: This component locates the message destina-
tion FSM, looks up its state transition table to find the state transition 
that corresponds to the message type, and calls the corresponding 
function as its subroutine.

• Public mailbox prioritization: The public mailbox priority decreases 
as its identification increases. The identification is actually the index 
of the corresponding mailbox array. The public mailbox with the 
identification 0 has the highest priority.

• Allocation of FSMs from the pool of FSMs: If the message destina-
tion is an unknown object of a certain type, a free FSM from the cor-
responding pool is allocated to process that message.

The class FiniteStateMachine provides the following functionalities:

• Maintaining the current state variable (the field member of this class)
• Maintaining the state transition table
• FSM evolution support by providing the address of the state transi-

tion function that corresponds to the incoming message type
• Message handling (message checking, parsing, and creation)
• Message exchange (the message send operation is explicit whereas 

the message receive operation is implicit)
• Memory management (supports requesting and releasing buffers 

for messages)
• Timer management (supports starting, stopping, restarting, and 

testing timers)

The functionalities provided by the real-time kernel are inherited by the 
class FiniteStateMachine (message exchange, buffer, and timer management). 
The following subsections describe the internals of these three components.
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4.4.2.1  FSMSystem Internals

As already mentioned, the class FSMSystem provides the execution platform 
for all FSMs present in the system. The list of concrete functionalities pro-
vided by this class is already given in the previous section. The heart of the 
class FSMSystem is the function Start, which actually provides all the listed 
functionalities. Essentially, it is the event (message) interpreter. Its program 
code in C++ is as follows:

void FSMSystem::Start(){
 SystemWorking = true;
 while(SystemWorking) {
  Sleep(1);
  for(uint8 i=0; i<NumberOfMbx; i++) {
   uint8 *msg = GetMsg(i);
   if(msg == NULL){
    continue;
   }
   uint8 automataType = GetMsgToAutomata(msg);
   if(((automataType > NumberOfAutomata) ||
     (NumberOfObjects[automataType] == 0))){
    // Error handling
    DiscardMsg(msg);
    continue;
   }
   uint32 objNum = GetMsgObjectNumberTo(msg);
   if(objNum == UNKNOWN_AUTOMATA){
    ptrFiniteStateMachine object =
     FreeAutomata[automataType].Get();
    if(object != 0) object->Process(msg);
    else
     (Automata[automataType][0])->NoFreeObjectProcedure(msg);
    continue;
   }
   else if(objNum > NumberOfObjects[automataType]) {
    // Error handling
    DiscardMsg(msg);
    continue;
   }
   else {
    (Automata[automataType][objNum])->Process(msg);
   }
  }
 }
}

The function Start initially sets its field member SystemWorking to the value 
true and enters the loop, which is executed while SystemWorking has the value 
true. Once this variable is set to the value false (this is exactly what the API func-
tion StopSystem() does), the function Start exits the loop and terminates. Because 
this function is the FSM event interpreter, once it stops, the whole system stops.

Inside the while loop, this function enters the nested for loop in which it 
checks all mailboxes for messages. This for loop starts from the mailbox with 
the identification (index) 0, thus making it the highest priority mailbox. As 
it proceeds toward the identification NumberOfMbx, the priority of the cor-
responding mailboxes decreases.
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Once it finds a message in the mailbox, it exits the nested for loop and 
continues with determining the destination automata (FSM) type identi-
fication by calling the function GetMsgToAutomata(). If the identification is 
invalid (greater than the configuration parameter NumberOfAutomata) or if 
no instances of that type are found, the function discards the message by 
calling the function DiscardMsg() and continues the main loop.

If the automata type identification is valid and at least one instance of that 
type is found, the function Start determines the destination object identifi-
cation by calling the function GetMsgObjectNumberTo(). If this identification 
is equal to UNKNOWN_AUTOMATA, the function Start tries to allocate an 
object from the pool of objects of the given type by calling the function Get() 
on the object of that type.

If at least one free object is found in the pool (actually an array of objects 
of the given type), the function Get() will return the identification (array 
index) of the first one and, in turn, the function Start will call its function 
ProcessMsg(). Behind the scenes, the function ProcessMsg() locates the state 
transition that corresponds to the message type, calls it its subroutine, and 
continues the main loop. If no free objects are in the pool, the function Start 
discards the message and continues the main loop.

Finally, if the message destination is a known object (its identification 
is not equal to UNKNOWN_AUTOMATA), the function Start checks if 
its identification is valid (not greater than the configuration parameter 
NumberOfObjects[automataType]). If the object identification is valid, the func-
tion Start calls object function ProcessMsg() and continues the main loop.

4.4.2.2  FiniteStateMachine Internals

The class FiniteStateMachine is at the top of the FSM Library class hierarchy 
(Figure 4.13). It hides the details of the FSM Library internal static structure 
from its user. The class FiniteStateMachine inherits logging-related func-
tionality from the class LogAutomata (shown as the left branch of the class 
hierarchy in Figure 4.13). Alternately, the class FiniteStateMachine inherits 
the buffer, timer, and message management functionality from the class 
KernelAPI (shown as the right branch of the class hierarchy in Figure 4.13). 
Both FiniteStateMachine and KernelAPI inherit the message management 
functionality from the class MessageHandler.

The class LogAutomata conceptually uses the logging services provided 
through the interface created by the class LogInterface. The logging services 
are provided in run-time reality by the object that is an instance of a sub-
class, which is derived from the base class LogInterface. Figure 4.13 shows two 
examples of such classes, namely, LogFile and LogTCP. The former provides 
the recording of log events into the file located on some mass storage device. 
The latter uses the TCP/IP network to send log events packed into messages 
to the logging server, which, in turn, writes the log events to a file, perhaps 
located on its hard disk.
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Similarly, the class MessageHandler uses services of the abstract interface 
provided by the class MessageInterface. The real providers of the message 
handling services are subclasses derived from the base class MessageInterface. 
Figure 4.13 shows three examples of such classes, namely, StandardMessage, 
H323Message, and SS7Message. In the examples in this book, we use the class 
StandardMessage, which creates an abstraction of the message comprising a 
series of octets (characters) that can be partitioned into an arbitrary number 
of message fields (carrying message parameters) of arbitrary size (given as a 
number of octets).

In the text that follows, we cover the most important details of the 
class FiniteStateMachine, KernelAPI, and MessageHandler. The effect of this 
top-down approach is that we introduce first the functionality solely 
provided by the class FiniteStateMachine, then the functionality that the 
class FiniteStateMachine inherits from the class KernelAPI, and finally 
the functionality that the class FiniteSateMachine inherits from the class 
MessageHandler.

FSMSystem

FiniteStateMachine KernelAPI MessageHandler

LogAutomata

LogInterface

LogFile LogTCP

MessageInterface

StandardMessage H323Message SS7Message

FIGURE 4.13
Internal FSM Library static structure.
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The class FiniteStateMachine comprises all attributes and operations neces-
sary for the definition and evolution of a single FSM. The FSM state is mod-
eled with the structure SState:

struct SState {
 SState(uint16 maxNumOfProceduresPerState);
 ~SState();
 bool StateValid; // if true, data are valid
 unsigned short NumOfBranches; // number of branches in a state
 // procedure for processing unexpected message
 PROC_FUN_PTR UnexpectedEventProcPtr;
 SBranch* PBranch; // pointer on data for each branch
};

The field NumOfBranches contains the number of outgoing state transitions 
(branches) for the corresponding state. The field UnexpectedEventProcPtr is a 
pointer to the C++ function that handles the reception of unexpected mes-
sages. Finally, the field PBranch contains a pointer to the array of the SBranch 
instances, which model individual outgoing state transitions. The structure 
SBranch definition is the following:

struct SBranch {
 uint16 EventCode; // message code
 PROC_FUN_PTR ProcPtr; // message processing function
};

The field EventCode contains the code of the event (message) that triggers 
this state transition. The field ProcPtr contains the pointer to the C++ func-
tion that performs the actions during this particular state transition.

Generally, an FSM can use a number of timers. Each timer is represented 
with an instance of the structure TimerBlock:

struct TimerBlock {
 TimerBlock(uint16 v, uint16 s) :
  Count(v), SignalId(s), Valid(false), TimerBuffer(0){}
 TimerBlock() :
  Count(INVALID_32), SignalId(INVALID_16), Valid(false),
  TimerBuffer(0) {};
 uint32 Count; // in time slices
 uint16 SignalId; // message code
 bool Valid; // if true, data is valid
 ptrBuff TimerBuffer; // Ptr to timer buffer
};

The field Count defines the timer duration, the field SignalId defines the code 
of the message (signal) that is generated when the timer expires, the field Valid 
is set if the timer is running, and the field TimerBuffer contains the pointer to 
the buffer used by the timer expiration message.

The main private field members of the class FiniteStateMachine are as 
follows:

class FiniteStateMachine : public KernelAPI, LogAutomate {… 
 private:
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  uint16 NumOfStates; // Number of FSM states
  uint16 NumOfTimers; // Number of timers
  uint16 MaxNumOfProcPerState; // Max. no. of branches
  SState *States[MAX_STATE_NO]; // State data
  uint32 ConnectionId; // Current connection
  uint32 CallId; // Current call
  uint8 State; // Current state

The fields NumOfStates, NumOfTimers, and MaxNumOfProcPerState are the 
dimensions of the corresponding arrays. They define the number of FSM 
states, the number of timers it uses, and the maximum number of branches, 
respectively. The field States is an array of pointers to the instances of the 
structure SState that contains pointers to arrays of instances of the structure 
SBranch. This data structure corresponds to the FSM state transition table.

The field ConnectionId carries the domain-specific name but actually con-
tains the FSM object identification that is unique within the scope of objects 
of the same type. During the system initialization, the class FSMSystem cre-
ates the array of FSM objects of the same type. The index of the object in 
that array is written into this field at that time. This identification can be 
used as appropriate for the application at hand. The FSM Library user can 
take advantage of the fact that all message sending functions automatically 
copy the content of this field into the object identification field of the message 
header.

The field CallId carries another domain-specific name but it can be used for 
various purposes in various applications. In contrast to the field ConnectionId 
whose uniqueness is limited to the scope of a single FSM type, the value of 
the field CallId is unique in the scope of the whole system. Traditionally, it 
has been used to identify a single call, but generally it can be used to iden-
tify any communication process of interest. Like the field ConnectionId, this 
field is also copied by the message sending functions to the message header 
automatically.

Finally, the field State is the FSM current state identification, which is the 
value of the index of array defined in the field States. This field defines the 
context of the FSM.

As already mentioned, the FSM Library supports the abstraction of the left 
and right FSM. The message sending functions, namely SendLeftAutomata() 
and SendRightAutomata()—originally defined in the class KernelAPI—require 
data about the left and right FSM. Relevant FiniteStateMachine attributes are 
as follows:

// Left automata data
uint8 LeftMbx; // left mbx id
uint8 LeftAutomata; // left automata
uint8 LeftGroup; // left group
uint32 LeftObjectId; // left object
// Right automata data
uint8 RightMbx; // right mbx id
uint8 RightAutomata; // right automata
uint8 RightGroup; // right group
uint32 RightObjectId; // right object
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We finish the overview of the FiniteStateMachine internals with its initializa-
tion and control functions:

FiniteStateMachine(
 uint16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE);
virtual void Initialize(void) = 0;
void InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
void InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
PROC_FUN_PTR GetProcedure(uint16 event);
virtual void NoFreeInstances() = 0;
virtual void Process(uint8 *msg);
void FreeFSM();

The class constructor first sets the number of timers, the number of states, 
and the maximal number of branches per state. It then calls the function 
Initialize(), provided by the user. This function typically uses a series of calls 
to functions InitEventProc() and InitUnexpectedEventProc(). The former defines 
the state transition function for the given state and message type whereas 
the latter defines the unexpected message handler for the given state.

The function GetProcedure() is a control function that returns the address of 
the state transition function for the given message type in the current state. 
The function NoFreeInstances() is a recovery function that is called in cases 
where no more free objects of this type are found. The function Process() is 
the prototype of the state transition function. The function FreeFSM() releases 
the FSM object by returning it to the pool of objects of this type.

The class KernelAPI provides the following groups of functions:

• Initialization functions
• Memory management functions
• Message management functions
• Timer management functions

The initialization functions provided by the class KernelAPI are its con-
structors (see Section 6.8) and the function setKernelObjects, whose prototype 
is as follows:

void setKernelObjects(TPostOffice *o, TBuffers *b, CTimer *t);

The parameters of this function are the pointers to the objects that comprise 
the system mailboxes, buffers, and timers. These objects will be described 
in the next section.

The memory management functions provided by the class KernelAPI are 
the following:

uint8 *GetBuffer(uint32 length);
void RetBuffer(uint8 *buff);
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bool IsBufferSmall(uint8 *buff, uint32 length);
uint32 GetBufferLength(uint8 *buff);

The function GetBuffer() returns the pointer to the buffer of the sufficient 
size (not less than specified by its parameter). The function RetBuffer() releases 
the given buffer. The function IsBufferSmall() checks the size of the given buf-
fer. The function GetBufferLength() returns the size of the given buffer.

The message management functions provided by the class KernelAPI are 
the following:

void Discard(uint8* buff);
void SetMessageFromData();
void SendMessage(uint8 mbxId);
void SendMessage(uint8 mbxId, uint8 *msg);
void SendMessageLeft();
void SendMessageRight();
void ReturnMsg(uint8 mbxId);

The function Discard() releases the given message. The function 
SetMessageFromData() copies the data about this FSM (type, group, and 
instance identifications) to the corresponding fields of the new message 
header. According to the FSM Library terminology, the current message 
is the one that has been received and processed, whereas the new mes-
sage is the message that is currently under construction (and will be sub-
sequently sent).

The function SendMessage(uint8 mbxId) sends the new message to the 
given mailbox. The function SendMessage(uint8 mbxId, unit8 *msg) sends the 
given message to the given mailbox. The functions SendMessageLeft() and 
SendMessageRight() send the new message to the left and right automata, 
respectively. The function ReturnMsg() sends the current message to the 
given mailbox.

The timer management functions provided by the class KernelAPI are as 
follows:

uint8 *StartTimer(uint16 code, uint32 count, uint8 *info=0);
void StopTimer(uint8 *timer);
bool IsTimerRunning(uint8 *timer);

The function StartTimer() starts the given timer by setting its duration 
and the corresponding message buffer. The function StopTimer() stops the 
given timer. The function IsTimerRunning() checks if the given timer is 
running.

The interface defined by the class MessageHandler comprises the following 
two parts:

• Message header handling
• Message payload handling
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The message header handling part provides getting and setting functions 
for the individual message header fields. The main message header fields are 
as follows:

• MSG_FROM_AUTOMATA: the identification of the originating 
FSM type

• MSG_TO_AUTOMATA: the identification of the destination FSM type
• MSG_CODE: the identification of the message type
• MSG_OBJECT_ID_FROM: the identification of the originating FSM 

object
• MSG_OBJECT_ID_TO: the identification of the destination FSM 

object
• MSG_CALL_ID: the identification of the application-specific com-

munication process
• MSG_INFO_CODING: the identification of the message format type
• MSG_LENGTH: the message payload length in octets

The timer message is a special message. If the timer expires, it is sent to 
the same FSM that created it. Because of this, the message header fields 
MSG_FROM_AUTOMATA and MSG_OBJECT_ID_FROM are not needed, 
and thus can be used to hold information about the timer duration and the 
destination mailbox identification.

The class MessageInterface defines the set of abstract functions that handle 
the message payload. The key idea behind the abstraction introduced by the 
class MessageInterface is the generic message parameter definition, which is 
independent from the particular message format. Each message parameter is 
uniquely defined by the following data:

• The message parameter identification
• The message parameter length (size)
• The message parameter value (content)

Depending on the message format type, the first and the second items 
listed may be implicit or explicit. Some of the messages carry the message 
parameter identification and length, and some do not. However, all three 
items must be known to the message handling functions.

Another important fact related to the message format is that particular 
message formats can be disassembled to a series of primitive elements of the 
following types:

• Byte (1 byte)
• Word (2 bytes)
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• DWord (4 bytes)
• Sequence of bytes (n bytes)

Therefore, the class MessageInterface includes the functions that provide 
access to these primitive types of information. These functions can be parti-
tioned into the following two groups:

• Current message handing functions
• New message handling functions

The current message handling functions are as follows:

uint8 *GetParam(uint8 paramCode);
bool GetParamByte(uint8 paramCode, BYTE &param);
bool GetParamWord(uint8 paramCode, WORD &param);
bool GetParamDWord(uint8 paramCode, DWORD &param);

The first function returns a pointer to the parameter (sequence of octets) 
whose identification (paramCode) is given. The next three functions return 
the requested parameter of the size Byte, Word, and DWord, respectively. The 
new message handling functions are as follows:

uint8 *AddParam(uint8 paramCode, uint8 paramLength, uint8 *param);
uint8 *AddParamByte(uint8 paramCode, BYTE param);
uint8 *AddParamWord(uint8 paramCode, WORD param);
uint8 *AddParamDWord(uint8 paramCode, DWORD param);
bool RemoveParam(uint8 paramCode);

The first four functions add the given sequence of octets, Byte, Word, and 
DWord parameter, respectively, to the new message. The function RemoveParam() 
removes the parameter—whose identification is given—from the message.

Each message handling function consists of two parts, a preparation part and 
an operation part. The preparation part of the current message handling func-
tions includes preparing temporary data and message parsing. In case of mes-
sage syntax errors, message handling functions report an error by returning the 
value false. The preparation part of the new message handling functions includes 
allocation of the message buffer and initialization of the message header fields 
MSG_CODE, MSG_INFO_CODING, and MSG_LENGTH (initially set to 0).

4.4.2.3  Kernel Internals

As already mentioned, the class FiniteStateMachine is independent of the par-
ticular real-time kernel with the introduction of the API defined by the class 
KernelAPI. Generally, the class FiniteStateMachine can use services provided 
by any real-time kernel that is a subclass of the class KernelAPI. In this sec-
tion, we cover the internals of one such kernel (a default one), which is simply 
referred to as Kernel.
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Figure 4.14 shows the static structure of Kernel. The root of the structure is 
the class KernelAPI, which acts as the wrapper of Kernel. This class contains 
pointers to the following three main parts of Kernel:

• Memory manager
• Message manager
• Time manager

The interfaces to these three resource managers are defined by the classes 
TBuffers, TPostOffice, and CTimer, respectively. The memory manager com-
prises the class TBuffers and a set of instances of the class TBufferQueue. The 
message manager consists of the class TPostOffice and a set of instances of the 
class TMailBox. The time manager is implemented by the class CTimer itself.

The class TBuffers creates an abstraction of a set of buffer pools. The size of the 
buffers in the pool is the same, but these sizes are different between the pools. 

#Buffers
+PostOffice
-TimerResolution

Kernel::CTimer

#Buffers
#BuffersLength
#ClassBufferNum

Kernel::TBuffers

#BufferPtr
#BuffersInitiated
#CsBuffer
#FreeBufferCount
#Head
#Tail

Kernel::TBufferQueue

#MailBoxes
#MailBoxesNum

Kernel::TPostOffice

#Buff
#Count
#CsMailBox
#Head
#Tail

Kernel::TMailBox

-Buffers
-PostOffice
-Timer
-TimerResolution

Kernel::KernelAPI

1
1

1

*

1

1

1

1

1
*

1

1

FIGURE 4.14
Internal Kernel static structure.
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For example, we can have three pools with three different sizes, namely, small, 
medium, and large. The class TBufferQueue models one such a pool.

The constructor of the class TBufferQueue initially allocates an array of bytes 
(uint8), which is the actual memory space that accommodates the memory pool:

// calculate memory size for all buffers and get memory for them
memSize = bufferLength + BUFF_HEADER_LENGTH;
memSize *= buffersNo;
BufferPtr = new uint8[memSize];

This memory space is then partitioned into individual memory buffers 
that are added to the list of free buffers that actually represent the buffer 
pool. A buffer consists of the buffer header and the space for useful data. The 
buffer header comprises the pointers to the previous and to the next element 
in the list and the buffer code that indicates buffer size. Each buffer pool is 
defined with the pointer to the list of free buffers and the size of the buffers 
in that list. The class TBuffers holds the array of pointers to the instances of 
the class TBufferQueue (in the field member Buffers), as well as the array of the 
corresponding buffer sizes (in the field member BuffersLength).

The function GetBuffer() provided by the class KernelAPI first searches the 
field BuffersLength to find the pool of buffers of the sufficient size. It then gets 
the buffer from the head of the list of free buffers and returns the pointer to 
it. The function RetBuffer() uses buffer code from its header to return the buf-
fer by adding it to the end of the corresponding list.

The class TPostOffice stores the array of pointers to the corresponding 
mailboxes. A mailbox is implemented as an instance of the class TMailBox. 
Actually, the class TMailBox is very similar to the class TBufferQueue. The 
main difference between them is that the former provides atomic (uninter-
ruptible) access to the list of messages. This feature is needed because the list 
of messages is a resource shared by two concurrent processes, namely the 
event interpreter and the time interrupt routine.

The atomic mailbox access is ensured by two virtual functions, namely 
MbxLock() and MbxUnlock(). The former function locks the mailbox and the 
latter unlocks it. These functions ensure the FSM Library’s portability. They 
can be implemented by the use of semaphores provided by the local operat-
ing systems. (The FSM Library supports OS Linux® and Windows® NT at 
the moment.)

The class CTimer is the most target-platform-dependent part of Kernel. It 
consists of two parts, a platform-dependent part and a platform-independent 
part. The platform-dependent part comprises the time-driven routine that is 
periodically called by the local operating system and the routines that pro-
vide access to shared data. The platform-independent part consists of the list 
of running timers and routines that maintain that list. The list of running 
timers is implemented as a traditional delta list (the timer at the head of the 
list contains the absolute time interval whereas all other timers contain the 
time interval relative to the previous timer in the list).
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To simplify timer maintenance, the function StopTimer() does not analyze 
the current status of the given timer (already expired or still running)—it 
simply marks the timer as expired. If the timer was still running, it will 
remain in the list of running timers. When it expires, it is forwarded to the 
given mailbox and from there it is discarded by the function member Get() 
of the class TMailBox.

4.4.3  Writing FSM Library–Based Implementations

Normally, we start by deriving subclasses from the base class 
FiniteStateMachine. For each such subclass, we must define the following 
functions (see Section 6.8 for more details):

• GetMessageInterface(): This function returns the pointer to the par-
ticular message interface object.

• SetDefaultHeader(): This function sets the default message header 
parameters.

• GetMbxId(): This function returns the identification of the mailbox 
associated to this FSM type.

• GetAutomata(): This function returns the identification of this FSM type.
• SetDefaultFSMData(): This function sets default FSM data.
• NoFreeInstances(): This recovery function is called when the pool of 

objects is exhausted.
• Initialize(): This function initializes FSM-related data, including the 

state transition table.

We then write the main program, which typically follows these steps:

• Create an instance of the class FSMSystem.
• Initialize the real-time kernel.
• Set the system parameters.
• Register (add) all FSM objects with the instance of the class 

FSMSystem.
• Start the system by calling the function Start() (defined within the 

class FSMSystem).

4.5  Examples

This section includes two representative examples of FSM Library–based 
implementations. The first example is the implementation of an application 
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for reading Internet electronic mail. The second example shows an imple-
mentation of the SIP invite client transaction.

4.5.1  Example 1

This example demonstrates how an application for reading Internet elec-
tronic mail can be constructed. The application is actually an e-mail client 
that comprises the following three objects (see the general collaboration dia-
gram in Figure 4.15): 

• user: a user interface
• pop3: the implementation of the POP3 protocol (refer to the origi-

nal RFC 1939, freely available on the Internet at www.ietf.org/rfc 
/rfc1939.txt)

• channel: responsible for the direct communication with the e-mail 
server over the TCP protocol

As shown in Figure 4.15, the objects user, pop3, and channel are the instances 
of the classes UserAuto, ClAuto, and ChAuto, respectively. The object pop3 is 
the central object. On its left side is the object user, and on its right side is the 
object channel. The interaction between these objects is illustrated with three 
typical scenarios that are shown in Figures 4.16 through 4.18. Figure 4.16 
shows a successful session during which all pending e-mails are received 
and saved as files on a mass storage device. The flow of events from the point 
of view of the object pop3 is as follows:

• Triggered by the reception of the message User_Check_Mail from the left 
object, it sends the message Cl_Connection_Request to the right object.

• Upon the reception of the message Cl_Connection_Accept from the right 
object, it sends the message User_Connected to the left object. The con-
nection with the e-mail server is successfully established at this point.

• After receiving the username and password carried by the mes-
sage User_Name_Password from the left object, it first sends the user-
name in the message MSG(USER name) to the right object, which is 
acknowledged with the message MSG(+OK) from the right object, 
and it then sends the password in the message MSG(PASS password) 
to the right object, which is also acknowledged with the message 
MSG(+OK) from the right object. The user authentication procedure 
is successfully finished at this point.

user : UserAuto pop3 : ClAuto channel : ChAuto

FIGURE 4.15
Receive e-mail application collaboration diagram.

http://www.ietf.org
http://www.ietf.org
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FIGURE 4.16
Successful receive e-mail session establishment scenario.
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FIGURE 4.17
Invalid e-mail password processing scenario.

user pop3 channel
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User_Connection_Fail

TIMER1_EXPIRED

FIGURE 4.18
Unsuccessful receive e-mail session establishment scenario.
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• It then checks the status of the pending e-mails by sending the mes-
sage MSG(STAT) to the right object and receiving the answer in the 
message MSG(+OK nn mm), where nn is the number of messages in 
the maildrop and mm is the size of the maildrop in octets.

• While pending e-mails remain, it repeats the sequence of the e-mail 
read procedure and the e-mail delete procedure. The e-mail read 
procedure starts with the message MSG(RETR nn) to the right object 
(nn is the order number of the e-mail message to be received). The 
right object, in turn, sends an e-mail message in a series of MSG(mail) 
messages (the size of the last one is smaller than 255 octets). The 
e-mail delete procedure starts with the message MSG(DELE nn) 
sent to the right object (nn is the order number of the message to 
be deleted by the e-mail server). After reception of the acknowledg-
ment MSG(+OK) from the right object, the left object is informed 
accordingly with the message User_Save_Mail (normally, the object 
user should save the current e-mail message as a file on a mass stor-
age device at this point).

• Finally, the object pop3 starts the session closing procedure by send-
ing the message MSG(QUIT) to the right object. Then, upon recep-
tion of the message Cl_Disconnected from the right object, it sends the 
message User_Disconnected to the left object.

Figure 4.17 shows the invalid password processing scenario. It is the same 
as the previous scenario up to the point where the object pop3 sends the mes-
sage MSG(PASS password) to the right object. Because the password is invalid, 
the right object responds with the message MSG(-ERR) and the object pop3 
immediately proceeds to the session closing procedure.

Figure 4.18 shows the unsuccessful session establishment scenario. It 
starts in the same way as the scenario in Figure 4.16. Assume that the TCP 
connection with the e-mail server cannot be established for some reason. 
Therefore, the TIMER1_ID that was started by the right object expires and 
the associate message TIMER1_EXPIRED triggers the right object to send 
the message Cl_Connection_Reject. The object pop3, in turn, sends the mes-
sage User_Connection_Fail to the left object.

To keep this example simple enough, we focus further on the design and 
implementation of the key object in this application, the object pop3. The 
complete dynamic behavior of this object is specified with the SDL diagram, 
which is shown in Figures 4.19 and 4.20. The corresponding FSM is defined 
with nine states (Cl_Ready, Cl_Connecting, Cl_Authorizing, Cl_User_Check, Cl_
Pass_Check, Cl_Mail_Check, Cl_Receiving, Cl_Deleting, and Cl_Disconnecting), 
six input messages (User_Check_Mail, Cl_Connection_Reject, Cl_Connection_
Accept, User_Name_Password, MSG, and Cl_Disconnected), and seven output 
messages (Cl_Connection_Request, User_Connection_Fail, User_Connected, 
MSG, Mail, User_Save_Mail, and User_Disconnected).
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FIGURE 4.19
POP3 client SDL diagram, part I.
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FIGURE 4.20
POP3 client SDL diagram, part II.
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By convention, the names of all messages (except Mail) exchanged between 
the object pop3 and the left object begin with the prefix User_. The names 
of the control messages exchanged between the object pop3 and the right 
object begin with the prefix Cl_. The names of the POP3-related messages 
exchanged between the object pop3 and the right object are named MSG. Two 
types of MSG messages are used—commands directed to the e-mail server 
and responses received from it.

The MSG commands are as follows:

• MSG(USER name) corresponds to the original POP3 command for 
specifying the name of the user mailbox.

• MSG(PASS password) corresponds to the original POP3 command 
for specifying the password for the previously specified mailbox.

• MSG(STAT) corresponds to the original POP3 command for inquir-
ing about the mailbox status.

• MSG(RETR nn) corresponds to the original POP3 command for 
reading the pending e-mail message number nn.

• MSG(DELE nn) corresponds to the original POP3 command for 
deleting the pending e-mail message number nn.

• MSG(QUIT) corresponds to the original POP3 command for closing 
the current session.

The MSG responses are the following:

• MSG(+OK) corresponds to the original POP3 acknowledgment 
message.

• MSG(ERR) corresponds to the original POP3 error message.
• MSG(mail) corresponds to the actual e-mail message that was 

received from the e-mail server.

Figure 4.19 shows valid state transitions for the states Cl_Ready, 
Cl_Connecting, Cl_Authorizing, Cl_User_Check, and Cl_Pass_Check. The 
eight state transitions are shown in Figure 4.19, as follows:

• From Cl_Ready to Cl_Connecting, triggered by User_Check_Mail

• From Cl_Connecting to Cl_Ready, triggered by Cl_Connection_Reject

• From Cl_Connecting to Cl_Authorizing, triggered by Cl_Connection_ 
Accepted

• From Cl_Authorizing to Cl_User_Check, triggered by User_Name_ 
Password

• From Cl_User_Check to Cl_Pass_check, triggered by MSG(+OK)

• From Cl_User_Check to Cl_Disconnecting, triggered by MSG(ERR)
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• From Cl_Pass_Check to Cl_Mail_check, triggered by MSG(+OK)

• From Cl_Pass_Check to Cl_Disconnecting, triggered by the MSG(ERR)

Figure 4.20 shows valid state transitions for the states Cl_Mail_Check, 
Cl_Receiving, Cl_Deleting, and Cl_Disconnecting. The seven state transitions 
are shown in Figure 4.20, as follows:

• From Cl_Mail_Check to Cl_Receiving, triggered by MSG(+OK) and 
guarded by the condition nn > 0

• From Cl_Mail_Check to Cl_Disconnecting, triggered by MSG(+OK) 
and guarded by the condition !(nn > 0)

• From Cl_Receiving to Cl_Deleting, triggered by MSG(mail) and 
guarded by the condition mail(size) < 255

• From Cl_Receiving to Cl_Receiving, triggered by MSG(mail) and 
guarded by the condition !(mail(size) < 255)

• From Cl_Deleting to Cl_Receiving, triggered by MSG(+OK) and 
guarded by the condition nn > 0

• From Cl_Deleting to Cl_Disconnecting, triggered by MSG(+OK) and 
guarded by the condition !(nn > 0)

• From Cl_Disconnecting to Cl_Ready, triggered by Cl_Disconnected

Next, we proceed to the implementation in C++ based on the FSM Library. 
First, we define symbolic constants specific for this project in a header file, 
which is typically named const.h. The content of this file is as follows:

#ifndef _CONST_H_
#define _CONST_H_
#include <fsm.h>
const uint8 CH_AUTOMATA_TYPE_ID = 0x00;
const uint8 CL_AUTOMATA_TYPE_ID = 0x01;
const uint8 USER_AUTOMATA_TYPE_ID = 0x02;

const uint8 CH_AUTOMATA_MBX_ID = 0x00;
const uint8 CL_AUTOMATA_MBX_ID = 0x01;
const uint8 USER_AUTOMATA_MBX_ID = 0x02;

// channel messages
const uint16 MSG_Connection_Request = 0x0001;
const uint16 MSG_Sock_Connection_Reject = 0x0002;
const uint16 MSG_Sock_Connection_Accept = 0x0003;
const uint16 MSG_Cl_MSG = 0x0004;
const uint16 MSG_Sock_MSG = 0x0005;
const uint16 MSG_Disconnect_Request = 0x0006;
const uint16 MSG_Sock_Disconnected = 0x0007;
const uint16 MSG_Sock_Disconnecting_Conf = 0x0008;

// pop3 client messages
const uint16 MSG_User_Check_Mail = 0x0009;
const uint16 MSG_Cl_Connection_Reject = 0x000a;
const uint16 MSG_Cl_Connection_Accept = 0x000b;
const uint16 MSG_User_Name_Password = 0x000c;
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const uint16 MSG_MSG = 0x000d;
const uint16 MSG_Cl_Disconnected = 0x000f;

// user messages
const uint16 MSG_Set_All = 0x0010;
const uint16 MSG_User_Connected = 0x0011;
const uint16 MSG_User_Connection_Fail = 0x0012;
const uint16 MSG_Mail = 0x0013;
const uint16 MSG_User_Save_Mail = 0x0015;
const uint16 MSG_User_Disconnected = 0x0014;

#define ADRESS "krtlab8"
#define PORT 110

#define TIMER1_ID 1
#define TIMER1_COUNT 10
#define TIMER1_EXPIRED 0x20

#define PARAM_DATA 0x01
#define PARAM_Name 0x02
#define PARAM_Pass 0x03
#endif // _CONST_H_

The file const.h starts with the definitions of automata types and their 
private mailbox identifications. The identifications assigned to the classes 
ChAuto, ClAuto, and UserAuto are CH_AUTOMATA_TYPE_ID, CL_
AUTOMATA_TYPE_ID, and USER_AUTOMATA_TYPE_ID, respectively. 
The identifications of their private mailboxes are CH_AUTOMATA_MBX_
ID, CL_AUTOMATA_MBX_ID, and USER_AUTOMATA_MBX_ID, respec-
tively. Next, we define the symbols that correspond to the codes of the 
messages recognized by the classes ChAuto, ClAuto, and UserAuto, respectively. 
By convention, these symbols are provided by prefixing the names of the mes-
sages from the SDL diagram (Figures 4.19 and 4.20) with the prefix MSG_.

At the end of the file const.h, we define the domain name and the num-
ber of the port, which are used to establish the TCP connection with the 
e-mail server (symbols ADDRESS and PORT), channel timer-related con-
stants (symbols TIMER1_ID, TIMER1_COUNT, and TIMER1_EXPIRED), 
and the identifications of the message parameters (symbols PARAM_DATA, 
PARAM_Name, and PARAM_Pass).

Next, we write the header file ClAuto.h. Its content is as follows:

#ifndef _Cl_AUTO_H_
#define _Cl_AUTO_H_
#include <NetFSM.h>
#include <fsmsystem.h>
#include "const.h"
class ClAuto : public FiniteStateMachine {
 // for FSM
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
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 uint8 GetAutomata();
 uint32 GetObject();
 void ResetData();
 // FSM States
 enum ClStates {
  FSM_Cl_Ready,
  FSM_Cl_Connecting,
  FSM_Cl_Authorizing,
  FSM_Cl_User_Check,
  FSM_Cl_Pass_Check,
  FSM_Cl_Mail_Check,
  FSM_Cl_Receiving,
  FSM_Cl_Deleting,
  FSM_Cl_Disconnecting
 };
public:
 ClAuto();
 ~ClAuto();
 void Initialize();
 void FSM_Cl_Ready_User_Check_Mail();
 void FSM_Cl_Connecting_Cl_Connection_Reject();
 void FSM_Cl_Connecting_Cl_Connection_Accept();
 void FSM_Cl_Authorizing_User_Name_Password();
 void FSM_Cl_User_Check_MSG();
 void FSM_Cl_Pass_Check_MSG();
 void FSM_Cl_Mail_Check_MSG();
 void FSM_Cl_Receiving_MSG();
 void FSM_Cl_Deleting_MSG();
 void FSM_Cl_Disconnecting_Cl_Disconnected();
protected:
 int m_MessageCount;
 char m_UserName[20];
 char m_Password[20];
};
#endif /* _Cl_AUTO_H */

After listing all necessary header files, we declare the class ClAuto, which 
is derived from the base class FiniteStateMachine. The declaration of the class 
ClAuto starts with the declaration of field and function members that are 
mandatory for any class that is derived from the class FiniteStateMachine (as 
explained previously in this chapter). It continues with the declaration of 
FSM state names and state transition function prototypes.

By convention, FSM state names are the names from the SDL diagram with 
the prefix FSM_ (e.g., the initial state Cl_Ready is named FSM_Cl_Ready in 
the C++ code). The state transition function is named by concatenating the 
state name and the input message name and by prefixing this composite 
name with FSM_ (e.g., the state transition function performed when the FSM 
in state Cl_Ready receives the message User_Check_Mail is named FSM_Cl_
Ready_User_Check_Mail). As previously mentioned, ClAuto FSM has nine 
states and fourteen state transitions.

The reader may be puzzled with the fact that there are fourteen valid FSM 
state transitions and only ten state transition functions declared in the header 
file ClAuto.h. This circumstance is because some of the state transitions are 
triggered with the same message type but different message content—e.g., 
MSG(+OK) and MSG(–ERR)—or they are guarded with the complementary 
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conditions—e.g., (nn > 0) and !(nn > 0). To clearly understand these matters, 
remember that FiniteStateMachine derivatives react to various message types 
in various FSM states. This is how we calculate the number of state transitions.

If we apply the principle stated above to the class ClAuto, we have the situ-
ation where all the states react to a single message with the exception of 
the state Cl_Connecting, which reacts to two valid messages, Cl_Connection_
Reject and Cl_Connection_Accept. Because of this, we have (8 × 1) + (1 × 2) 
state transition functions, which resolves to ten state transition functions, as 
mentioned above.

Finally, we write the class ClAuto definition file, named ClAuto.cpp. 
The content of this file is as follows:

#include <stdio.h>
#include "const.h"
#include "ClAuto.h"
#define StandardMessageCoding 0x00

ClAuto::ClAuto() : FiniteStateMachine(0, 9, 2) {}
ClAuto::~ClAuto() {}

uint8 ClAuto::GetAutomate() {
 return CL_AUTOMATA_TYPE_ID;
}

uint8 ClAuto::GetMbxId() {
 return CL_AUTOMATA_MBX_ID;
}

uint32 ClAuto::GetObject() {
 return GetObjectId();
}

MessageInterface *ClAuto::GetMessageInterface(uint32 id) {
 return &StandardMsgCoding;
}

void ClAuto::SetDefaultHeader(uint8 infoCoding) {
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

void ClAuto::SetDefaultFSMData() {
 SetDefaultHeader(StandardMessageCoding);
}

void ClAuto::NoFreeInstances() {
 printf("[%d] ClAuto::NoFreeInstances()\n",  GetObjectId());
}

void ClAuto::Reset() {
 printf("[%d] ClAuto::Reset()\n", GetObjectId());
}

void ClAuto::Initialize() {
 SetState(FSM_Cl_Ready);

 // set message handlers
 InitEventProc(FSM_Cl_Ready, MSG_User_Check_Mail,
(PROC_FUN_PTR)&ClAuto::FSM_Cl_Ready_User_Check_Mail));
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 InitEventProc(FSM_Cl_Connecting,  MSG_Cl_Connection_Reject,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject));

 InitEventProc(FSM_Cl_Connecting,  MSG_Cl_Connection_Accept,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept));

 InitEventProc(FSM_Cl_Authorizing,  MSG_User_Name_Password,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Authorizing_User_Name_Password));

 InitEventProc(FSM_Cl_User_Check, MSG_MSG,
  (PROC_FUN_PTR)&ClAuto::FSM_Cl_User_Check_MSG));

 InitEventProc(FSM_Cl_Pass_Check, MSG_MSG,
  (PROC_FUN_PTR)&ClAuto::FSM_Cl_Pass_Check_MSG));

 InitEventProc(FSM_Cl_Mail_Check, MSG_MSG,
  (PROC_FUN_PTR)&ClAuto::FSM_Cl_Mail_Check_MSG));

 InitEventProc(FSM_Cl_Receiving, MSG_MSG,
  (PROC_FUN_PTR)&ClAuto::FSM_Cl_Receiving_MSG));

 InitEventProc(FSM_Cl_Deleting, MSG_MSG,
  (PROC_FUN_PTR)&ClAuto::FSM_Cl_Deleting_MSG));

 InitEventProc(FSM_Cl_Disconnecting,  MSG_Cl_Disconnected,
(PROC_FUN_PTR)&ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected));
}

void ClAuto::FSM_Cl_Ready_User_Check_Mail(){
 PrepareNewMessage(0x00, MSG_Connection_Request);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Connecting);
}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject(){
 PrepareNewMessage(0x00, MSG_User_Connection_Fail);
 SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Ready);
}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept(){
 PrepareNewMessage(0x00, MSG_User_Connected);
 SetMsgToAutomata(USER_AUTOMATE_TYPA_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Authorizing);
}

void ClAuto::FSM_Cl_Authorizing_User_Name_Password(){
 char* name = new char[20];
 char* pass = new char[20];
 uint8* buffer = GetParam(PARAM_Name);

 memcpy(m_UserName,buffer+2,buffer[1]);
 m_UserName[buffer[1]] = 0;     // terminate string
 buffer = GetParam(PARAM_Pass);



273Implementation

 memcpy(m_Password,buffer+2,buffer[1]);
 m_Password[buffer[1]] = 0;    // terminate string
 char l_Command[20] = "user";
 strcpy(l_Command+5,m_UserName);
 strcpy(l_Command+5+strlen(m_UserName),"\r\n");

 PrepareNewMessage(0x00, MSG_Cl_MSG);
 SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);
 SendMessage(CH_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_User_Check);
}

void ClAuto::FSM_Cl_User_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 data[size]=0;
 printf("%s",data);
 if((data[0] == '+')) {
  char l_Command[20] = "pass ";
  strcpy(l_Command+5,m_Password);
  strcpy(l_Command+5+strlen(m_Password),"\r\n");
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Pass_Check);
  else {
  char l_Command[20] = "quit\r\n";
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
  AddParam(PARAM_DATA,6,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Pass_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 data[size]=0;
 printf("%s",data);
 if((data[0] == '+')) {
  char l_Command[20] = "stat\r\n";
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
  AddParam(PARAM_DATA,6,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Mail_Check);
  else {
  char l_Command[20] = "quit\r\n";
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
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  AddParam(PARAM_DATA,6,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Mail_Check_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer+2,size);
 data[size]=0;
 printf("%s",data);
 int l_nDigit = 1;
 while(buffer[l_nDigit+6] != ' ') l_nDigit++;
 memcpy(data,buffer +6,l_nDigit);
 data[l_nDigit]=0;
 m_MessageCount = atoi(data);

 if((m_MessageCount == 0) {
  char l_Command[20] = "quit\r\n";
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
  AddParam(PARAM_DATA,6,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Disconnecting);
  else {
  char l_Command[20] = "retr ";
  strcpy(l_Command+5,data);
  strcpy(l_Command+5+l_nDigit,"\r\n");
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+l_nDigit+2,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Receiving);
 }
}

void ClAuto::FSM_Cl_Receiving_MSG(){
 char* data = new char[255];
 uint8* buffer = GetParam(PARAM_DATA);
 uint16 size = buffer[1];

 memcpy(data,buffer + 2,size);
 char temp[4];
 memcpy(temp,data,3); temp[3] = 0;
 if((strcmp(temp,"+OK") != 0) {
  PrepareNewMessage(0x00, MSG_Mail);
  SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
  AddParam(PARAM_DATA,size,(uint8*)data);
  SendMessage(USER_AUTOMATA_MBX_ID);
  if((size < 255) {
   char l_Command[20] = "dele ";
   itoa(m_MessageCount,data,10);
   strcpy(l_Command+5,data);
   strcpy(l_Command+5+strlen(data),"\r\n");
   PrepareNewMessage(0x00, MSG_Cl_MSG);
   SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
   SetMsgObjectNumberTo(0);
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AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);
   SendMessage(CH_AUTOMATA_MBX_ID);
   SetState(FSM_Cl_Deleting);
  }
 }
}

void ClAuto::FSM_Cl_Deleting_MSG(){
 PrepareNewMessage(0x00, MSG_User_Save_Mail); 
SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 m_MessageCount——;
 if(m_MessageCount > 0) {
  char data[5];
  char l_Command[20] = "retr ";
  itoa(m_MessageCount,data,10);
  strcpy(l_Command+5,data);
  strcpy(l_Command+5+strlen(data),"\r\n");
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Receiving);
  else {
  char l_Command[20] = "quit\r\n";
  PrepareNewMessage(0x00, MSG_Cl_MSG);
  SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);
  SetMsgObjectNumberTo(0);
  AddParam(PARAM_DATA,6,(uint8*)l_Command);
  SendMessage(CH_AUTOMATA_MBX_ID);
  SetState(FSM_Cl_Disconnecting);
 }
}

void ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected(){
 PrepareNewMessage(0x00, MSG_User_Disconnected);
 SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);
 SetMsgObjectNumberTo(0);
 SendMessage(USER_AUTOMATA_MBX_ID);
 SetState(FSM_Cl_Ready);
}

The file ClAuto.cpp starts with a list of all necessary header files (stdio.h, 
const.h, and ClAuto.h), followed by the definition of the symbolic constant 
StandardMessageCoding and the set of mandatory function definitions: class 
constructor, class destructor, and functions GetAutomata(), GetMbxId(), 
GetObject(), GetMessageInterface(), SetDefaultHeader(), SetDefaultFSMData(), 
NoFreeInstances(), Reset(), and Initialize().

The class constructor ClAuto() calls the constructor of the class 
FiniteStateMachine with a list of parameters, which specifies that the 
ClAuto FSM has no timers, nine states, and the maximum of two state 
transitions per state (see the FSM Library API specification in Section 6.8, 
particularly, Section 6.8.11). The class destructor performs no particular 
operation.

The mandatory functions provide the following functionalities:
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• The function GetAutomata() returns the ClAutomata type identification 
(the constant CL_AUTOMATA_TYPE_ID). See also Section 6.8.24.

• The function GetMbxId() returns the associated mailbox identification 
(the constant CL_AUTOMATA_MBX_ID). See also Section 6.8.38.

• The function GetObject() returns the object identification. Actually, 
it returns the value returned by the FSM Library function GetObject 
Id(). See also Section 6.8.60.

• The function GetMessageInterface() returns the pointer to the mes-
sage coding object (an instance of the class StandardMessage). See also 
Section 6.8.39.

• The function SetDefaultHeader() sets default data in the new message 
header by calling two FSM Library functions, SetMsgInfoCoding() 
and SetMessageFromData(). See also Section 6.8.97, Section 6.8.117, and 
Section 6.8.108.

• The function SetDefaultFSMData() sets the new message header 
default values by calling the function SetDefaultHeader() and speci-
fying the constant StandardMessageCoding as its parameter.

• The function NoFreeInstances() just prints the information message to 
the standard output file. See also Section 6.8.78.

• The function Reset() also just prints the information message to the 
standard output file. See also Section 6.8.85.

The most important mandatory function is the function Initialize(). It 
starts by setting the FSM initial state, Cl_Ready (denoted with the constant 
FSM_Cl_Ready). It continues by setting the state transition functions (also 
referred to as message handlers). Each message handler is set by a single 
call to the FSM Library function InitEventProc(). The first parameter of this 
function is the state name, the second is the input message name, and the 
third is the address of the corresponding ClAuto function member (see also 
Section 6.8.73).

The set of mandatory functions is followed by the set of state transi-
tion functions. As already mentioned, ten such functions are used. Each 
of these functions processes a single message type in a single state, as 
follows:

• The function FSM_Cl_Ready_User_Check_Mail() processes the mes-
sage User_Check_Mail in the state Cl_Ready.

• The function FSM_Cl_Connecting_Cl_Connection_Reject() processes 
the message Cl_Connection_Reject in the state Cl_Connecting.

• The function FSM_Cl_Connecting_Cl_Connection_Accept() processes 
the message Cl_Connection_Accept in the state Cl_Connecting.



277Implementation

• The function FSM_Cl_Authorizing_User_Name_Password() processes 
the message User_Name_Password in the state Cl_Authorizing.

• The function FSM_Cl_User_Check_MSG() processes the message 
MSG in the state Cl_User_Check.

• The function FSM_Cl_Pass_Check_MSG() processes the message 
MSG in the state Cl_Pass_Check.

• The function FSM_Cl_Mail_Check_MSG() processes the message 
MSG in the state Cl_Mail_Check.

• The function FSM_Cl_Receiving_MSG() processes the message MSG 
in the state Cl_Receiving.

• The function FSM_Cl_Deleting_MSG() processes the message MSG 
in the state Cl_Deleting.

• The function FSM_Cl_Disconnecting_Cl_Disconnected() processes the 
message Cl_Disconnected in the state Cl_Disconnecting.

The function FSM_Cl_Ready_User_Check_Mail() is a typical simple state 
transition function. First, it creates a new message by calling the function 
PrepareNewMessage(). (Its first parameter is the message length and the second is 
the message type; the third parameter is optional and is not used in this example. 
See also Section 6.8.81.) It then sets the destination FSM type and object identifi-
cation by calling the function SetMsgToAutomata() (its parameter is the FSM type 
identification; see also Section 6.8.125) and the function SetMsgObjectNumberTo() 
(its parameter is the FSM object identification; see also Section 6.8.123), respec-
tively. Next, it sends the new message to the destination mailbox by calling 
the function SendMessage() (its parameter is the mailbox identification; see also 
Section 6.8.106). Finally, it sets the new FSM state by calling the function SetState 
(its parameter is the state identification; see also Section 6.8.137).

The next two functions, FSM_Cl_Connecting_Cl_Connection_Reject() and 
FSM_Cl_Connecting_Cl_Connection_Accept(), are very similar to the one previ-
ously described (only the message type and the new state name are different). But 
the fourth state transition function, FSM_Cl_Authorizing_User_Name_Password(), 
is more complex. It demonstrates well how a state transition function can get a 
parameter from the current message and how it can add a parameter to the new 
message. This concrete state transition function gets two parameters (username 
and password) from the current message by calling the function GetParam() (its 
parameter is the identification of the parameter type; see also Section 6.8.61). It 
also adds one parameter (username) to the new message by calling the function 
AddParam() (its parameters are the message parameter type, length, and pointer; 
see also Section 6.8.12).

The fifth state transition function, FSM_Cl_User_Check_MSG(), is even 
more complex because it involves branching depending on the value of the 
current message parameter. By making a branch, the state transition function 
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actually selects one of two possible paths of the FSM evolution, which yields 
two different output (new) messages and two different destination FSM 
states. The sixth state transition function is very similar to the fifth one.

The seventh state transition function, FSM_Cl_Mail_Check_MSG(), brings 
one new important detail. It shows how a state transition function can save 
some data (in this example, the number of pending e-mail messages, which 
is stored in the class field member m_MessageCount) so that it can be shared 
or used by other state transitions—in this example, by the ninth state transi-
tion function, FSM_Cl_Deleting_MSG().

The rest of the state transition functions do not bring anything essentially 
new. However, the reader is advised to study them in detail as an additional 
exercise.

4.5.2  Example 2

The aim of this example is to implement the SIP invite client transaction 
design, which is given in Section 3.10.5 (Chapter 3, Example 5). Briefly, in that 
section we examined the general collaboration diagram of the SIP Softphone 
(see Section 2.3.3, Figure 2.16) with the focus on the invite client transac-
tion. The result is the general collaboration diagram shown in Figure 3.69. 
We then made two particular collaboration diagrams and their semantically 
equivalent sequence diagrams for the cases of successful and unsuccessful 
SIP session establishment (Figures 3.70 through 3.73). Finally, we devised the 
complete dynamic behavior specification in the form of the statechart dia-
gram (Figure 3.74) and semantically equivalent SDL diagram (Figures 3.75 
through 3.78).

We start the implementation of this design by defining the symbolic con-
stants, such as the FSM type names (e.g., the name of the invite client FSM type 
is InviteClienteTE_FSM), mailbox names (e.g., the name of the invite client mail-
box is InviteClienteTE_FSM_MBX), names of the FSM Library related message 
types, timer names (e.g., TIMER_A, TIMER_B, and TIMER_D), names of the 
SIP messages (e.g., INVITE, OPTIONS, CANCEL, ACK, BYE, and RESISTER), 
names of the response codes (e.g., _180_RINGING, _200_OK, _302_MOVED_
TEMPORARILY, _401_UNAUTHORIZED, _403_FORBIDDEN, and _404_
NOT_FOUND), and names of situations (e.g., URI_IN_TO_UNRECOGNIZED 
and NOT_TO_CURRENT_USER). Traditionally, we write definitions of all these 
constants in the file constants.h.

Next, we write the class that represents an SIP message, simply named 
Message. The most important field member of this class is the last (also 
referred to as the current) SIP message (its type is the C++ type string). Other 
field members hold the relevant SIP session related information. The func-
tion members support SIP message analysis and synthesis (parsing and cre-
ation). Actually, the class Message that is used in this example is a simple 
wrapper around the OpenSIP SIP message parser. (OpenSIP is freely avail-
able on the Internet at https://www.opensips.org/.)

https://www.opensips.org
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We skip the content of the file constants.h and the source code of the class 
Message intentionally to keep this example short enough and easily compre-
hendible, and we proceed with the introduction of the supplementary class 
TALE. The declaration of the class TALE is as follows:

#ifndef _TALE_FSM_
#define _TALE_FSM_
#include "../kernel/fsm.h"
#include "../message/message.h"
#include "../constants.h"

class TALE : public FiniteStateMachine {
 uint8 MessageCopy[MAX_LENGTH_MESSAGE];
 uint32 IndexTLI;
 BOOL IndexTLISet;
public:
 void SetIndexTLI(uint32 newIndexTLI);
 uint32 GetIndexTLI();
 BOOL IsTransportReliable();
 void SendMessageToTU();
 void SendMessageToTPL();
 void SendErrorMessageToTU();
 void MakeLocalCopyOfMsg();
 void SendCopiedMessageToTPL();

public:
 TALE(uint16 numOfTimers, uint16 numOfState, uint16 maxNumOfPrPerSt);
 ~TALE();
};

The class TALE is a good example of how we can make our implemen-
tations more compact. As we can see from the previous example, send-
ing a single message requires a series of FSM Library function calls. 
For example, forwarding the current message would require a series of 
calls to the function CopyMessage(), SetMsgToAutomata(), SetMsgToGroup(), 
SetMsgObjectNumberTo(), and function SendMessage()—five function calls. In 
the case of simple designs, we can tolerate repetition of this series of function 
calls, but in cases requiring more complex design or platforms with limited 
resources, this repetition may not be tolerated.

Consider the SIP invite client transaction FSM. It has thirteen state transi-
tions, and most of them require sending a message to either the TPL (transport 
layer) or TU (transaction user). We would need to repeat the same series of 
function calls about ten times. Consider now the whole SIP Softphone, which 
supports four types of transactions (invite, non-invite, client, and server trans-
actions). In such situations, replacing this series of function calls with a single 
function call (which, in turn, performs the original sequence of function calls) 
makes sense.

This replacement is exactly the reason why the class TALE has been intro-
duced in the first place. This class inherits all field and function members 
from the class FiniteStateMachine, from which it is derived. It also adds some 
new field and function class members. All classes that implement SIP trans-
actions are derived from the class TALE. The most important field member of 
the class TALE is the field MessageCopy, which holds the copy of the last sent 
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message. Actually, this field is the retransmission buffer (remember that SIP 
invite client in the state Calling must retransmit the message INVITE in case 
the timer A expires).

The two most important function members are the functions 
SendMessageToTU() and SendMessageToTPL(). The former sends the current 
message to TU and the latter to TPL. They are very similar; therefore, it is suf-
ficient to study just one of them. Here is the source code of the former function:

void TALE::SendMessageToTU() {
 CopyMessage();
 SetMsgToAutomata(UA_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 SendMessage(UA_Disp_FSM_MBX);
}

This is the most elegant way to forward a message in FSM Library-based 
implementations. The function CopyMessage() copies the current (last 
received) message to the new (output) message. The symbolic constant 
UA_Disp_FSM is the name of the UA (user agent) FSM type, and the con-
stant UA_Disp_FSM_MBX is the name of its mailbox. As we will shortly see, 
the use of the functions SendMessageToTU() and SendMessageToTPL() signifi-
cantly compresses the source code. They make one-to-one mapping of SDL 
diagrams to C++ code possible.

Next, we proceed to the implementation of the invite client transaction 
FSM. We implement it by writing the class InviteClientTE. Note that in 
Figures 3.69 through 3.73, we used the abbreviation InClientT for this name. 
The declaration of the class InviteClientTE is as follows:

#ifndef _InviteClientTE_FSM_
#define _InviteClientTE_FSM_
#include "TALE.h"

class InviteClientTE : public TALE {
 Message SIPMsg;
 uint32 cseq_number;
 uint32 TimerADuration;

public:
 enum States {
  STATE_INITIAL,
  STATE_CALLING,
  STATE_PROCEEDING,
  STATE_COMPLETED
 };
 // state Initial message handlers
 void Evt_Init_INVITE();
 // state Calling message handlers
 void Evt_Calng_TIMER_A_EXP();
 void Evt_Calng_RESPONSE_1XX();
 void Evt_Calng_RESPONSE_2XX();
 void Evt_Calng_TIMER_B_EXP();
 void Evt_Calng_RESPONSE_3_6XX();
 void Evt_Calng_TRANSPORT_ERR();
 // state Proceeding message handlers
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 void Evt_Proc_RESPONSE_1XX();
 void Evt_Proc_RESPONSE_2XX();
 void Evt_Proc_RESPONSE_3_6XX();
 // state Completed message handlers
 void Evt_Comptd_TIMER_D_EXP();
 void Evt_Comptd_RESPONSE_3_6XX();
 void Evt_Comptd_TRANSPORT_ERR();
 // unexpected messages message handler
 void Event_UNEXPECTED();
 // problem specific functions
 void RetransmitInvite();
 BOOL SendAckMessageToTPL();
 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:

The class InviteClientTE is derived from the class TALE. The meaning of its 
field members is as follows:

• The field SIPMsg is the SIP message parser (an instance of the class 
Message).

• The field cseq_number holds the value of the SIP message header field 
CSeq, which is used to identify and order transactions (see RFC 3261, 
Subsection 8.1.1.5).

• The field TimerADuration contains the current value of the timer A 
(remember, the value of the timer A is doubled each time it expires).

Next, we enumerate the names of the FSM states. There are altogether four 
FSM states: STATE_INITIAL, STATE_CALLING, STATE_PROCEEDING, and 
STATE_COMPLETED. A short explanation is needed at this point. According to 
the original specification (RFC 3261, Figure 5, page 128), the invite client trans-
action FSM also has four explicitly rendered states, namely, Calling, Proceeding, 
Completed, and Terminated. The initial state is omitted in the original specifica-
tion. In our implementation, we create a pool of InviteClientTE objects, which are 
dynamically allocated on demand by the TU. These objects are never really ter-
minated. Once they play their simple role, they are returned to the pool of free 
InviteClientTE objects, and from there they are dynamically assigned to play the 
same role again. Therefore, we renamed the state Terminated to Initial. We also 
made this state the source of the initial state transition (triggered with the mes-
sage INVITE from TU), thus making the FSM a never-terminating one.

We then list the state transition function prototypes for each state indi-
vidually. The naming convention is the same as in the previous example: 
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The  name of the state transition function is constructed by concatenating 
the state name and the message name and by prefixing that name with a 
certain prefix. The naming convention is applied more freely in this example 
by shortening the state names. This practice is frequently done to keep the 
name lengths acceptable (short enough, but providing code readability at the 
same time). Thirteen valid state transitions and their corresponding state 
transition functions (message handlers) are used. The fourteenth message 
handler, named Event_UNEXPECTED(), handles all unexpected messages 
in all states.

Finally, we list the function prototypes of the problem-specific functions 
and mandatory FiniteStateMachine abstract functions. These functions—
except the function RetransmitInvite()—are intentionally skipped in the text 
that follows to keep the presentation of this example short.

We finish the implementation by writing the class InviteClientTE definition 
file, named InvClientTE.cpp. The content of this file is as follows:

#include <stdio.h>
#include "InvClientTE.h"
#include "../Message/message.h"
#include "timer_values.h"
#define StandardMessageCoding 0x00

InviteClientTE::InviteClientTE() : TALE(10, 10, 10) {}
InviteClientTE::~InviteClientTE() {}

void InviteClientTE::Initialize() {
 SetState(STATE_INITIAL);
 // define timers
 InitTimerBlock(TIMER_A,1,TIMER_A_EXPIRED);
 InitTimerBlock(TIMER_B,1,TIMER_B_EXPIRED);
 InitTimerBlock(TIMER_D,1,TIMER_D_EXPIRED);
 // state STATE_INITIAL message handlers
 InitEventProc(STATE_INITIAL, INVITE,
  (PROC_FUN_PTR)&InviteClientTE::Evt_Init_INVITE);
 // state STATE_CALLING message handlers
InitEventProc(STATE_CALLING, TIMER_A_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_A_EXP);

InitEventProc(STATE_CALLING, RESPONSE_1XX_T,
 (PRO_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_1XX);

InitEventProc(STATE_CALLING, RESPONSE_2XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_2XX);

InitEventProc(STATE_CALLING, TIMER_B_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_B_EXP);

InitEventProc(STATE_CALLING, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Ev_Calng_RESPONSE_3_6XX);
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InitEventProc(STATE_CALLING, TRANSPORT_ERR,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TRANSPORT_ERR);

 // state STATE_PROCEEDING message handlers
InitEventProc(STATE_PROCEEDING, RESPONSE_1XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_1XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_2XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_2XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

 // state STATE_COMPLETED message handlers
InitEventProc(STATE_COMPLETED, TIMER_D_EXPIRED,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TIMER_D_EXP);

InitEventProc(STATE_COMPLETED, RESPONSE_3XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_4XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_5XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);
InitEventProc(STATE_COMPLETED, RESPONSE_6XX_T,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, TRANSPORT_ERR,
 (PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TRANSPORT_ERR);

 // unexpected messages message handler
InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_CALLING,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_PROCEEDING,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_COMPLETED,
 (PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);
}

void InviteClientTE::Evt_Init_INVITE() {
 SendMessageToTPL();
 if (!IsTransportReliable()){
  TimerADuration = GetT1();
  setTimerCount(TIMER_A, TimerADuration);
  StartTimer(TIMER_A);
 }
 setTimerCount(TIMER_B, 64*GetT1());
 StartTimer(TIMER_B);
 MakeLocalCopyOfMsg();
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 SetState(STATE_CALLING);
}

void InviteClientTE::Evt_Calng_TIMER_A_EXP(){
 TimerADuration = 2 * TimerADuration;
 setTimerCount(TIMER_A, TimerADuration);
 RestartTimer(TIMER_A);
 RetransmitInvite();
}

void InviteClientTE::Evt_Calng_RESPONSE_1XX(){
 uint16 val;
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 GetParamWord(INDEX_TLI_PARAM, val);
 SetIndexTLI(val);
 SetState(STATE_PROCEEDING);
}

void InviteClientTE::Evt_Calng_RESPONSE_2XX(){
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_TIMER_B_EXP(){
 StopTimer(TIMER_A);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_TRANSPORT_ERR(){
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Calng_RESPONSE_3_6XX(){
 uint16 val;
 StopTimer(TIMER_A);
 StopTimer(TIMER_B);
 SendMessageToTU();
 GetParamWord(INDEX_TLI_PARAM, val);
 SetIndexTLI(val);
 SendAckMessageToTPL();
 if (IsTransportReliable())
  setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);
 else
  setTimerCount(TIMER_D, 64*GetT1());//64T1
 StartTimer(TIMER_D);
 SetState(STATE_COMPLETED);
}

void InviteClientTE::Evt_Proc_RESPONSE_1XX(){
 SendMessageToTU();
}

void InviteClientTE::Evt_Proc_RESPONSE_2XX(){
 SendMessageToTU();
 SetState(STATE_INITIAL);
}
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void InviteClientTE::Evt_Proc_RESPONSE_3_6XX(){
 SendMessageToTU();
 SendAckMessageToTPL();
 if (IsTransportReliable())
  setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);
 else
  setTimerCount(TIMER_D, 64*GetT1()); //64T1
 StartTimer(TIMER_D);
 SetState(STATE_COMPLETED);
}

void InviteClientTE::Evt_Comptd_TIMER_D_EXP(){
 SetState(STATE_INITIAL);
}

void InviteClientTE::Evt_Comptd_RESPONSE_3_6XX(){
 SendAckMessageToTPL();
}

void InviteClientTE::Evt_Comptd_TRANSPORT_ERR(){
 StopTimer(TIMER_D);
 SendErrorMessageToTU();
 SetState(STATE_INITIAL);
}

void InviteClientTE::Event_UNEXPECTED() {
}

void InviteClientTE::RetransmitInvite(){
 SendCopiedMessageToTPL();
}

The mandatory function Initialize() starts by setting the FSM initial state 
STATE_INITIAL. It then initializes the timers A, B, and D by calling the 
FSM Library function InitTimerBlock() (its parameters are the timer identifi-
cation, the timer interval duration, and the identification of the associated 
message; see also Section 6.8.74). The function Initialize() finishes by setting 
the FSM state transition functions. These functions process various message 
types in different states, as follows:

• The function Evt_Init_INVITE() processes the message INVITE in 
the state STATE_INITIAL.

• The function Evt_Calng_TIMER_A_EXP() processes the message 
TIMER_A_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_1XX() processes the message 
RESPONSE_1XX_T in the state STATE_CALLING.

• The function Evt_Calng_ RESPONSE_2XX() processes the message 
RESPONSE_2XX_T in the state STATE_CALLING.

• The function Evt_Calng_TIMER_B_EXP() processes the message 
TIMER_B_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T, 
and RESPONSE_6XX_T in the state STATE_CALLING.
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• The function Evt_Calng_TRANSPORT_ERR() processes the message 
TRANSPORT_ERR in the state STATE_CALLING.

• The function Evt_Proc_RESPONSE_1XX() processes the message 
RESPONSE_1XX_T in the state STATE_PROCEEDING.

• The function Evt_Proc_RESPONSE_2XX() processes the message 
RESPONSE_2XX_T in the state STATE_PROCEEDING.

• The function Evt_Proc_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T, 
and RESPONSE_6XX_T in the state STATE_PROCEEDING.

• The function Evt_Comptd_TIMER_D_EXP() processes the message 
TIMER_D_EXPIRED in the state STATE_COMPLETED.

• The function Evt_Comptd_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T, 
and RESPONSE_6XX_T in the state STATE_COMPLETED.

• The function Evt_Comptd_TRANSPORT_ERR() processes the mes-
sage TRANSPORT_ERR in the state STATE_COMPLETED.

• The function Event_UNEXPECTED() processes all unexpected mes-
sages in all states.

As we can see from the source code above, the state transition functions 
(message handlers) are short and easily readable because each program state-
ment is easily traceable back to the original statechart and SDL diagrams. 
For example, consider the first state transition function Evt_Init_INVITE(). 
The original SDL specification of this state transition starts with the recep-
tion of the message INVITE (Figure 3.75). This step is provided by the class 
FSMSystem. The next step in the SDL diagram says: “Invite_T to TPL.” This 
step is implemented with a single program statement, namely, the function 
call to the function SendMessageToTPL().

The next step in the SDL diagram is the question, “Is transport reliable?” We 
implement it also with a single function call to the function IsTransportReliable(). 
We continue the SDL coding in this manner. If the transport is reliable, the 
initial value of the timer A is provided by calling the function GetT1()—a way 
to parameterize the software. Next, we set the timer A duration by calling the 
function setTimerCount()—this is the undocumented FSM Library function at 
the moment, to be included in the next official release—and start the timer A 
by calling the function StartTimer() (the parameter of this function is the timer 
identification; see also Section 6.8.138).

At the end of this function, we set the duration of the timer B and start it, make 
the local copy of the last sent message by calling the function MakeLocalCopy()—
remember that it is needed for the possible retransmission—and set the new 
state by calling the function SetState() (its parameter is the state identifica-
tion; see also Section 6.8.137).
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Next, the state transmission function EvtCalng_TIMER_A_EXP() performs 
the reaction to the timer A expiration (see the corresponding SDL specifica-
tion in Figure 3.75) with only four program statements. The first one doubles 
the timer A duration, the second sets this new duration, the third restarts 
the timer A by calling the FSM Library function RestartTimer() (see Section 
6.8.87), and the fourth retransmits the message INVITE by calling the func-
tion RetransmitInvite(). Also, all the other state transition functions are made 
in this spirit of one-to-one mapping from the original SDL diagram. The 
reader is advised to study them as an additional exercise.
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5
Test and Verification

The test and verification phase is a phase of communication protocol engi-
neering work that follows the implementation phase. The primary goal 
of this phase is to verify that the implementation in the higher-level pro-
gramming language is correct. The implementation is correct if it meets 
its original requirements, which are modeled in the form of use cases (see 
Chapter 2).

The correctness of the implementation is checked with the test suite, which 
is typically designed in TTCN-3 (see Section 3.9). The test suite itself is imple-
mented in a higher-level programming language, e.g., Java or C++. But how 
do we verify the correctness of the test suite implementation? The answer 
is that we do not check the correctness of the test suite independently. We 
always check the correctness of the implementation under the test and test 
suite simultaneously. Theoretically, a bug in a test suite can cover a bug in the 
implementation; we should be aware of this, but such cases seldom happen 
in practice.

Typical testing activities conducted in the communication protocol engi-
neering test and verification phase are the following:

• Unit testing
• Integration testing
• Conformance testing
• Load testing
• In-field testing
• Formal verification
• Statistical usage testing

The first four types of activities (unit testing, conformance testing, load 
testing, and in-field testing) stem from traditional software  engineering, 
whereas the last two (formal verification and statistical usage testing) 
originate from Cleanroom engineering. Today, communication protocol 
engineers tend to complement software engineering with Cleanroom engi-
neering testing approaches, therefore we cover all the above listed activities 
in this chapter.

As its name suggests, unit testing is used for testing individual software 
units before their integration into the product. Typically, a software unit is a 
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single class written in a separate Java compilation unit or C++ module. This 
class most commonly implements a simple communication protocol or part 
of a more complex communication protocol. In the case of the FSM Library–
based paradigm, such a unit would be a C++ module that defines the class 
derived from the class FiniteStateMachine.

Unit testing of communication protocols is relatively straightforward. 
Typically, we construct a set of test cases that check individual FSM state 
transitions, as well as more complex FSM transactions (series of FSM state 
transitions). We will use JUnit and CppUinit testing frameworks for unit 
testing of communication protocols in this book. Details of unit testing are 
given in Section 5.1 (Unit Testing) and Section 5.5.1 (Example 1).

The next phase is integration testing. The philosophy of integration test-
ing starts from the fact that some of the units have successfully undergone 
unit testing and that they are available for further testing, whereas the rest 
of them are not. For the purpose of integration testing, we introduce replace-
ments for the units that are not available, which are referred to as the imita-
tors (or simulators).

There are two kinds of imitators, namely drivers and stubs. A driver is 
an active imitator that generates input messages for the real objects (units) 
under test. A stub is a passive imitator that accepts the output messages 
generated by the objects under test. Stubs can also send replays that are 
expected from the objects they are imitating. Of course, we can construct 
more complex imitators that act as both drivers and stubs. In this book, we 
will call the collaborations of real objects, drivers, and stubs simply integra-
tion test collaborations.

Generally, communication protocols are well suited for integration testing 
because families of communication protocols are hierarchically organized in 
layers with well-defined interfaces. The communication between individual 
protocols is based on messages, which are traditionally exchanged through 
the mailboxes (as in implementations based on the FSM Library). Simulating 
the environment of a real object under test in such a situation is easy. Drivers 
and stubs simply exchange messages with objects under test. Actually, they 
act on behalf of the units that will communicate with the units under test in 
the final product.

Normally, protocol stacks are implemented in the bottom-up fashion, start-
ing from the lowest layer of the protocol stack and building the next layer on 
top of the previous one. Drivers and stubs in such an approach simulate only 
a part of the environment, the higher layer of the protocol stack in particular. 
An example of simple integration test collaboration is given in Section 5.5.2 
(Example 2).

When all software units have undergone unit and integration testing, the 
final product is integrated and ready for acceptance testing, which comprises 
conformance testing (also referred to as compliance testing), load testing, 
and in-field testing. Preliminary acceptance testing can be organized solely 
by the production organization and conducted on its premises. However, 
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final acceptance testing is organized and conducted by the organization that 
has the legal authority to issue acceptance certificates.

As suggested by its name, the aim of conformance testing is to prove 
that the product (implementation) under test conforms to the original 
requirements. In the area of communication protocol engineering, these 
requirements would normally be standards issued by the IETF, ISO, ITU-
T, ETSI, and similar organizations. The newer standards made by ITU-T 
and ETSI most frequently include the conformance test suite specification 
in TTCN-3.

Conformance testing is a kind of functional testing (also referred to as 
black box testing). The testers are not interested in the structure of the prod-
uct and its internal behavior. They only ensure that the external behavior 
of the product meets the original specification. Typically, this behavior is 
specified with the set of scenarios described in TTCN-3. We will return to 
the subject of conformance testing in Section 5.2.

The load testing typically involves exposing the implementation under 
test to the conditions of the real exploitation. Conceptually, this means 
that the implementation under test must service the requests coming 
from more independent sources simultaneously. While conformance test-
ing focuses on the correctness of services given to the minimal number 
of request sources, load testing checks the correctness of services driven 
by the requests coming from independent sources, preferably in an inter-
leaved fashion.

Normally, load testing is conducted in a laboratory-simulated environ-
ment. Typically, we would construct, purchase, or lease the specialized 
equipment referred to as a load generator. A load generator is normally a 
programmable device that offers a selection of predefined scenarios and 
their parameters (such as number of request sources, duration of individ-
ual communication phases, and so on) as well as definitions of completely 
new scenarios.

The name load generator may be misleading because it suggests that the 
device generates only the requests—which it does—but it also receives the 
responses from the implementation under test and checks if it operates cor-
rectly. For example, after the connection is successfully established, it sends 
and receives test tones to check that the connection is really usable. During 
load testing, we primarily check declared traffic capabilities of the product. 
A typical requirement would be that the number of lost requests must not 
exceed the given limit after the given number of requests has been issued in 
accordance with the given request arrival distribution.

We also normally check the behavior of the implementation under test for 
both lower and higher rates of request arrivals. With an extremely low rate 
of requests, we want to check the sustainability of long-lasting connections, 
whereas with an extremely high rate, we want to make sure that the overload 
protection mechanisms are in place and that they function correctly. After 
successful load testing, the implementation under test is integrated into the 
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target network for in-field testing. In-field testing is essentially the experi-
mental exploitation of the product for the given interval of time (e.g., three 
months).

The aim of in-field testing is to detect, locate, and eliminate bugs that are 
exposed by the real-world scenario (also referred to as a traffic case) that could 
not be simulated in the laboratory. During this last phase of acceptance test-
ing, log files always prove to be extremely useful. Today, the log files can be 
collected over the Internet and analyzed remotely. Also, installing software 
upgrades can be done by uploading new software patches over the Internet.

Detecting bugs through the analysis of the log files can be augmented by 
adding program hooks for certain, really infrequent traffic cases. Defining 
state transition preconditions, postconditions, and invariants and checking 
them at run-time is also extremely useful for detecting bugs during in-field 
testing, and later during normal system exploitation. Although communi-
cation protocol maintenance is an integral part of communication protocol 
engineering, it is out of scope of this book (see directions for further reading 
in Section 5.6).

Traditional software engineering comprises a number of development 
phases, such as requirements, analysis, design, implementation, unit test, 
integration, integration test, verification, and maintenance. These phases 
can be cascaded in the case of the waterfall process model or revisited in 
the case of the spiral-incremental process model. The number of remaining 
bugs is the main software quality metric. Another important metric used in 
software engineering is test coverage (measured as the percentage of tested 
software paths, variable usages, and so on).

Cleanroom engineering, in contrast to traditional software engineering, is 
organized as a sequence of the following development activities:

• Formal model development.
• Formal verification of the formal model.
• Handing formal model to the implementation team, which imple-

ments it in a higher-level programming language.
• Operational profile modeling.
• Automatic test suite generation, which is based on the given opera-

tional profile model.
• Statistical usage testing and software reliability estimation: If at least 

one test case from the automatically generated test suite fails, the 
implementation under test is thrown away and the complete devel-
opment cycle is repeated from the very beginning (starting with the 
formal model development).

The complete treatment of formal modeling and verification is out of the 
scope of this book (see directions for further reading in Section 5.6). As a 
means of introduction to the area of formal methods, formal modeling and 
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verification based on theorem proving and model checking is covered in 
Section 5.3, which is divided into Subsections 5.3.1 and 5.3.2. The paradigm 
described in the subsection 5.3.1 is based on the application of the theorem 
prover named THEO, whereas the paradigm described in the subsection 
5.3.2 is based on the model checker PAT.

Operational profile modeling, automatic test suite generation, statistical 
usage testing, and software reliability estimation are described in Section 5.4. 
The paradigm described in that section is based on the application of the 
software tool, which is named generic test case generator (GTCG).

5.1  Unit Testing

The aim of unit testing is to check the correctness of an individual software 
unit (Java compilation unit or C/C++ module). A generally accepted belief, 
especially among proponents of agile methods such as extreme program-
ming, is that unit testing should be conducted by the programmer who is 
implementing the target software unit, because it greatly improves program-
mer’s productivity. In principle, unit tests should be written before, or at least 
during, the implementation of the target software unit.

Of course, the programmer must clearly distinguish between the roles of 
an implementer and a tester (the author of extreme programming, Kent Beck, 
uses the metaphor: “by changing hats” to explain this paradigm). The pro-
grammer, as unit tester, concentrates on the unit interface. By thinking about 
the interface and by writing unit tests, the programmer gets a clearer picture 
about the services that the target software unit must provide. The program-
mer should also try to make test cases that cover boundary conditions, as 
well as situations that would be potentially hard to manage for the target 
software unit.

The programmer, as the unit implementer, concentrates on the implemen-
tation of the original unit design. They should forget about unit tests and 
concentrate on mapping the design to code. This should be a straightforward 
task if a proper framework (such as the FSM Library) is provided.

Unit testing helps programmers produce software units of better qual-
ity in shorter time intervals and this has been proven in practice. First, by 
creating unit tests, the programmer becomes even more familiar with the 
implementation at hand. Second, the programmer gets immediate feedback. 
If there is a bug, it is easy to detect in the scope of a particular test case. If the 
test case passes, the programmer gets immediate satisfaction that they have 
done their job well.

Unit test cases should be executed frequently during the target unit’s 
implementation. As time passes, new test cases are added and old cases are 
run again. Even if no new test cases are used, we should rerun all existing 
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unit tests every time we add new functionality. Testing that is conducted by 
running an unchanged test suite to check if the new software functionality 
has not affected existing functionalities is referred to as regression testing.

Regression testing is the key point of this paradigm. It enables a dramatic 
increase of productivity because it builds the programmer’s confidence that 
everything is in good order and under control; therefore, the programmer can 
work more relaxed. Regression testing also encourages experimenting. In sit-
uations when alternative paths may be used in the course of implementation, 
the programmer may try out a way that seems most appropriate. If one or 
more test cases fail in the regression testing that is subsequently conducted, 
the programmer may decide to reset to the starting point by retrieving the 
previous version from the installed version of the control system database.

Unit testing (including regression testing) definitively has a positive 
impact on a programmer’s psychology. It is estimated to be the key factor for 
increases in the programmer’s productivity. The next question is “to what 
extent should we go with the unit testing?” The answer is not easy. Certainly, 
any amount of unit testing is better than none. Alternately, an attempt at 
exhaustive unit testing might be counterproductive.

The right choice is somewhere between these two extremes. We do not 
need to test trivial things, such as class function members that set or get the 
value of a certain private field member. Rather, we should concentrate on 
the boundary conditions and parts of code where it becomes more complex. 
Although generally unpopular among professionals, copy–paste practice 
may be tolerated for generating a set of similar test cases.

Three principal preconditions exist for a successful unit testing practice:

• A proper unit testing framework must be provided.
• Test cases should not involve any human intervention.
• The implementation under test must not be changed.

A proper unit testing framework must provide three main functions:

• Test case registration: This function enables registering new test 
cases within the given test suite hierarchy. On each level of the hier-
archy, a set of individual test cases may be found, as well as other 
hierarchically subordinated test suites (very similar to the file sys-
tem structure).

• Test case execution: This function provides automatic execution of 
all test cases defined within the given test suite hierarchy. It must not 
require more than a single push button to be started. Otherwise, the 
framework is simply not usable.

• Test case reporting: This function must provide a general report on 
the outcome of the execution of all test cases, as well as individual 
reports for all test cases that failed or caused errors.
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The second precondition is that test suite execution should not involve any 
human intervention. This is the essential precondition to make unit testing 
completely automatic. If we want to eliminate human intervention, we must 
secure two conditions: First, the input data required by a test case must be 
defined as symbolic constants in its source code or in other external files. 
Second, the results of the test case must be automatically checked by a test 
case itself. The unit testing framework must provide adequate functions for 
this purpose.

A typical function for checking test case results is the function 
assert(condition), where condition is a Boolean expression that evaluates to 
either the value true or false. The test case continues (pass) in the former case 
and breaks ( fail) in the latter case. If the test case execution successfully 
reaches the end of the test case, it is considered successful (qualified with 
the verdict pass). Otherwise, it is considered unsuccessful (qualified with the 
verdict fail). If the test case execution breaks because of some error (most 
typically, an exception such as “divide by zero”), it is qualified with the ver-
dict error.

Another typical function for checking test case results is the function 
assertEquals(p1,p2). This function call is semantically equivalent to the func-
tion call assert(p1==p2). This means that if the parameters p1 and p2 are equal 
(of course, they must be comparable), the test case execution continues; oth-
erwise, it breaks. Typically, one of the parameters is a constant and another 
is a program variable.

Although these two functions are semantically equivalent, the function 
assertEquals() is advantageous when it comes to test case reporting. If the 
function assert() breaks the test case execution, the unit testing framework 
reports only that the condition evaluated to the value false, which is not a 
very informative report. Alternately, if the function assertEquals() breaks, the 
framework provides the report “expected C but was V,” where C is the value 
of the constant (e.g., p1) and V is the real value of the variable (e.g., p2).

We can further improve the readability of the test case execution reports 
by using the optional text string parameter of the function assertEquals(). 
Generally, the function call format for this function is assertEquals(text, condi-
tion), where text is the text string that explains the meaning of this assertion 
point in more detail. The string text is used as a prefix of the test report 
shown above. For example, if the value of the variable ch should be ‘A’ but it 
turns out to be ‘B’ instead, the function call assertEquals(“Check ch:,” ‘A’, ch) 
would produce the report, “Check ch: expected ‘A’ but was ‘B.’”

Besides the functions assert() and assertEquals(), unit testing framework 
typically provides two additional functions for writing test cases: setUp() and 
tearDown(). The former sets up the test fixture whereas the latter destroys it. 
A test fixture is a set of objects that act as samples for testing. Normally, the 
test fixture comprises the instance of the unit under test (e.g., the instance 
of the class that is derived from the class FiniteStateMachine) and also other 
supplementary objects, which are required for effective unit testing.



296 Communication Protocol Engineering

Typically, the unit testing framework offers the base class for writing test 
cases, which provides the functions assert(), assertEquals(), setUp(), and tear-
Down(). The programmer normally derives his tester class from this base 
class, fills in setUp() and tearDown() functions, and starts writing individual 
test cases. Each function member of the tester class—whose name follows 
the given naming convention—is a single test case.

Remember that concrete setUp() and tearDown() implementations are 
shared by all test cases defined within a single tester class. Actually, these 
two functions are implemented as null (empty) methods on test cases. The 
execution of each test case starts with the call to the function setUp(), pro-
ceeds with a call to the user-defined function that implements a single test 
case, and ends with the call to the function tearDown(). Normally, we put the 
test case initialization and cleanup code in the functions setUp() and tear-
Down(), respectively.

The third unit testing postulate is that the unit under test must not be 
touched at all. We are only allowed to write new classes that are derived from 
the base class, which is provided by the unit testing framework. Changing 
the source code of the unit under test for the purpose of its testing is strictly 
forbidden, even by adding a simple print statement to the standard output 
file. Because of that, the only proper way to do the unit testing is to drive the 
unit under test with various messages, capture its responses, and check the 
correctness of the unit’s external behavior.

This kind of controlled execution of the implementation under test is 
referred to as the test harness. The key request is that it must be fully auto-
matic. The programmer should provide the mechanisms that support the 
test harness while he plays the role of the implementer (what we refer to as 
the design for testability). Otherwise, providing a test harness can be a very 
hard task. For example, consider a simple program that reads its input from 
the keyboard and writes its output to the monitor by using the operating 
system services, which cannot be replaced. Because we are not allowed to 
change the source code of the implementation under test, providing a test 
harness in this case is hardly achievable.

An example of the unit testing framework is JUnit, an open-source test-
ing framework for unit testing Java programs that was originally developed 
by Erich Gamma and Kent Beck. Based on this framework, the open-source 
community came up with CppUnit, a semantically equivalent testing frame-
work for unit testing C++ modules. These frameworks are very simple but 
powerful enough to enable industrial-strength unit testing of individual 
software units. Because JUnit and CppUnit are semantically equivalent, we 
will treat them as two implementations of the same framework.

The framework comprises the interface Test and two fundamental classes, 
the classes TestSuite and TestCase, as in Figure 5.1. As shown in the figure, the 
test suite (an instance of the class TestSuite) can contain an arbitrary number 
of test cases (instances of the class TestCase), as well as an arbitrary number 
of other hierarchically subordinated test suites. This arrangement allows 
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programmers (playing the role of unit testers) to organize test cases into a 
hierarchy of test suites to their convenience.

Any concrete tester class (such as the class MyTester in Figure 5.1) must be 
derived from the base class TestCase, which, among others, provides the four 
fundamental functions described above, namely, setUp(), tearDown(), assert(), 
and assertEquals(). By convention, an individual test case is written as the 
function member of the tester class, whose name starts with the word “test,” 
for example, test1, test2, and so on.

Next, we illustrate JUnit’s usability on a concrete example. In the example 
that follows, we demonstrate the unit testing paradigm for the case where 
the implementation under test is counter by modulo 2. The particular imple-
mentation we are interested in is the one based on the State design pattern. 
This implementation was presented in Section 4.3.

As already mentioned in Section 4.3, the function processMsg(), which pro-
cesses FSM input (message), prints its results by calling the function member 
println() of the class MyIO, rather than by calling the standard I/O function 
System.out.println(). This is a good example of how we can provide support 
for the test harness in our design and implementation. Here is the source 
code of the class MyIO:

package automata4;
import java.util.*;

public class MyIO {
private static String lastOutput;

* «interface»
Test

TestSuite TestCase

MyTester

1

FIGURE 5.1
Structure of the JUnit testing framework.
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 public static String getLastOutput() { return lastOutput; }
 public static void println(String s) {
 lastOutput = s;
 System.out.println(s);
 }
}

The field member lastOutput is used to store the last output generated by 
the FSM. The function getLastOutput() returns this last output generated by 
the FSM to its caller. It is used by the test case function to retrieve the last FSM 
output to compare it with the expected output (also referred to as the “golden 
output”). The function println() is simple enough—it just stores the output 
of the FSM and prints it by calling the standard function System.out.println().

Although we do not need it in this example, we can generally use an analo-
gous approach for capturing the FSM inputs also. Instead of calling the stan-
dard function System.in.read() directly, we can construct and call the function 
member read() of the class MyIO. This function would, in its own turn, read 
the input by calling the standard input functions and store that input into 
the corresponding field member of the class MyIO (e.g., lastInput). The last 
FSM input would be available through the function member getLastInput().

After providing test harness support, we continue with the definition of 
the tester class, which is named Automata4Tester in this example. The source 
code of this class is as follows:

/*
* Automata4 tester
*
*/

package automata4;
import junit.framework.*;

public class Automata4Tester extends TestCase {
 protected Automata4 a4;
 public Automata4Tester(String name) {
 super(name);
 }

 protected void setUp() {
 // setup code
 a4 = new Automata4();
 }

 protected void tearDown() {
 // cleanup code
 }

 // test case 1
 public void test1() {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 a4.processMsg('0');
 assertTrue(MyIO.getLastOutput() == "Output 0");
 }
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 // test case 2
 public void test2() {
 for(int i=0;i<100;i++) {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }
 }

 // test case 3
 public void test3() {
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('0');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }
 // test case 4
 public void test4() {
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 1");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 2");
 a4.processMsg('1');
 assertEquals(MyIO.getLastOutput(),"Output 0");
 }

 // test case 5
 public void test5() {
 for(int i=0;i<1000;i++) {
 test3();
 test4();
 }
 }
 public static TestSuite suite() {
 return new TestSuite(Automata4Tester.class);
 }

 public static void main(String[] args) {
 junit.textui.TestRunner.run(suite());
 }
}

The tester class Automata4Tester is derived from the class TestCase. Its field 
member a4 is an instance of the implementation under test, namely, the class 
Automata4. The constructor of the class Automata4 simply calls the construc-
tor of its super class (the class TestCase) and passes its input parameter (String 
name).

The function setUp() creates an instance of implementation under test 
by instantiating the class Automata4, and storing its instance into the field 
member a4. The function tearDown() is empty in this example because the 
Java garbage collector takes care of unused objects. The garbage collector 
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destroys the object that is stored in the field member a4 at the end of the test 
case.

The function test1() is the first test case defined within the tester class 
Automata4Tester. Basically, it tests the FSM state transition from the state S0 to 
the state S0, which is driven by the input value 0. It does the same operation 
twice. It supplies input 0 to the implementation under test (stored in the field 
member a4) each time by calling its function processMsg() and passing it the 
parameter, ‘0’.

Assuming that the implementation under test was in its initial state and 
that it reacted correctly to the given input, its last output should be the text, 
“Output 0”. The test case function test1() checks that assumption by calling 
the function assertEquals(). The first real parameter of that function call is the 
value of the last output, which is returned by the function member getLast 
Output() of the class MyIO, whereas the second parameter is the expected 
string, “Output 0”.

Second, the test case function test1() again supplies input 0 to the imple-
mentation under test (stored in the field member a4) by calling its function 
processMsg() and passing the parameter ‘0’ to it. Assuming that the imple-
mentation under test has reacted properly in the first place, it would be 
in the initial state at the time the second call to the function processMsg() 
happens. Driven with the input ‘0’, it should again produce the output 
string “Output 0”. The test case function test1() checks this assumption 
again, only this time it does so by calling the function assert(). The real 
parameter of this function call is the condition MyIO.getLastOutput() == 
“Output 0”.

The function test2() is the second test case defined within the tester class 
Automata4Tester. This test case is slightly more complex than the previous 
one. The previous test case checks if the implementation under test reacts 
correctly when it is driven twice with the same input value ‘0’ in the same 
current state (S0). We did this on purpose—first, to demonstrate the usage 
of both assert() and assertEquals(), and second, the implementation under test 
may not always react correctly if it is driven with a certain input value in the 
given state, at least not in theory.

This practice may seem paranoid but, in reality, various types of time- and 
FSM evolution-dependent bugs are hidden at the beginning and become evi-
dent only later during the FSM evolution. Returning to the problem at hand, 
we ask ourselves: Will this FSM react correctly many times, for example, 100 
times? With JUnit at our disposal, we can easily construct a test case that 
resolves such dilemmas.

This is exactly what the test case function test2() does. It does so by execut-
ing the body of the for loop 100 times. Inside the body of the loop, it drives 
the implementation under test with input value ‘0’ by calling its function pro-
cessMsg(). After each of these calls, it checks if the last output was the string 
“Output 0” by calling the function assertEquals().
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The function test3() is the third test case defined within the tester class 
Automata4Tester. This is a typical FSM-related test case, characterized with 
complete coverage of the FSM state transition graph. The flow of the state 
transitions checked by this test case is the following:

• From S0 to S0, driven with the input 0 (expected output 0)
• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S1, driven with the input 0 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S2, driven with the input 0 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test4() is the fourth test case defined within the tester class 
Automata4Tester. This is another typical FSM-related test case, characterized 
by its progressive nature. The counter is always driven with the input “1” so 
that its content is incremented every time. This test case does not provide the 
full state transition graph coverage, but it is valid, and we can think of many 
partial graph coverage test cases. The flow of the state transitions checked by 
this test case is as follows:

• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test5() is the fifth, and the last, test case defined within the 
tester class Automata4Tester. It is a fairly simple, yet rather intensive, test case 
that is based on the combination of the previous two test cases. The test case 
function test5() repeats the body of the for loop 1,000 times. Inside the body of 
the loop, it just calls the functions test3() and test4() in succession.

The function suite() returns the test suite, which it creates by calling the 
constructor of the class TestSuite. The real parameter of this function call is 
the name of the implementation under test class file (Automata4Tester.class). 
The constructor of the class TestSuite finds all the functions whose names 
start with the word “test” defined within the class Automata4Tester and auto-
matically adds them to the test suite it creates.

The function main() runs the test suite defined by the previous function 
suite(). It does that by calling the function run() of the class TestRunner, which 
is an integral part of the JUnit testing framework. The real parameter of this 
function call is the test suite that is created by the function suite(). This test 
suite contains all test cases defined within the class Automata4Tester.

In the case of more complex implementations, we may decide to create 
more tester classes rather than define all test cases within a single tester 
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class, such as the class Automata4Tester. In such a situation, we would need 
to create a hierarchy of test suites and an overall tester class that would auto-
matically run all test cases in all test suites. The source code of such a tester 
class is the following:

/*
* Tester
*
*/

package automata4;
import junit.framework.*;

/*
* TestSuite that runs all test suites
*
*/

public class AllTests {
 public static void main (String[] args) {
 junit.textui.TestRunner.run(suite());
 }
 public static TestSuite suite() {
 TestSuite suite = new TestSuite("All Tests");
 suite.addTest(Automata4Tester.suite());
 // add other test suites here
 return suite;
 }
}

The class AllTests comprises two function members, namely, the functions 
suite() and main(). The former function creates and returns the test suite that 
is in the root of the test suite hierarchy. This means that it contains all other 
hierarchically subordinated test suites. The latter function executes the root 
test suite, i.e., it executes all test suites that were added to it.

The function suite() creates the root test suite simply by calling the construc-
tor of the class TestSuite. The real parameter of this function call is the name of 
that test suite (the string “All Tests”). It then adds the test suite that contains 
the test cases defined within the tester class Automata4Tester to the root test 
suite. It does this by calling the function member addTests() of the root test 
suite object suite. Generally, in the case when we have multiple tester classes, 
we would repeat the call to the function addTests() for each tester class.

The function main() runs the test suite defined by the previous func-
tion suite(). It does this by calling the function member run() of the class 
TestRunner. The real parameter of this function call is the test suite created 
by the function member suite() of the class AllTests. This test suite contains a 
single, hierarchically subordinated test suite, which in turn contains all test 
cases defined within the class Automata4Tester.

We start the automatic execution of all test cases defined within the class 
Automata4Tester by running the file Automata4Tester.class. Similarly, we start 
the automatic execution of all test cases defined within all tester classes (in 
this simple example, we have just one of them: the class Automata4Tester) by 
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running the file AllTests.class. In both cases, we should get the same result. 
Each test case function will print its own outputs to the standard output file. 
At the end, the test runner will print out the final report, which should look 
like this:

Time: 1,783
OK (5 tests)
Press any key to continue...

The number 1783 corresponds to the number of seconds that were needed 
to execute all test cases, whereas the number 5 in parenthesis corresponds to 
the total number of test cases that were executed.

5.2  Conformance Testing

As already mentioned at the beginning of this chapter, conformance testing 
is the first step of acceptance testing (followed by load testing and in-field 
testing). The aim of conformance testing is to check the functional correct-
ness of external behavior of the implementation under test without checking 
its inner workings. Essentially, conformance testing is functional testing that 
is based on the “black box” approach.

The main goal of conformance testing is to separately check the correct-
ness of each individual function of the implementation under test (IUT). The 
sample test case for a simple SIP softphone (IUT) is: “Initiate session setup. 
Check if IUT sends the message INVITE to the outbound proxy server (imi-
tated by the testing framework). Make the testing framework replay with 
the message 404 (not found). Check if IUT replays with the message ACK” 
(see sequence diagram in Figure 5.2). We are intentionally making test cases 

iut : SoftPhone tester : TestingFramework

Invite

404

ACK

FIGURE 5.2
Example of the conformance testing test case.
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as simple as possible so we can easily interpret their outcomes. Of course, 
some of the test cases are inevitably complex and we cannot do anything 
about this, but we should never make them more complex than they need 
to be.

More precisely, we do not try to check more functions simultaneously 
by interleaving the corresponding scenarios. For example, consider the SIP 
proxy server as the implementation under test. In the case of conformance 
testing, we are only interested if it can support a single session establishment 
at a time. Normally, we would not be interested in checking if it can support 
multiple session establishments simultaneously. Actually, that is exactly the 
purpose of load testing.

When it comes to specifying official conformance test suites for real-world 
protocols (like SIP), this is a really serious business conducted by the inter-
national standardization institutions, such as IEEE, ISO, IETF, ITU-T, ETSI, 
and others. The results are rather voluminous specifications that most fre-
quently use TTCN language. The most recent version of TTCN at the time of 
this writing is the TTCN-3 (see Section 3.9), which enables both tabular and 
program formats of specifications.

For a better understanding of the scope of conformance testing, consider 
the documents currently available from ETSI (you can download them from 
the Internet; see http://www.etsi.org) that are related to conformance testing 
of SIP (IETF RFC 3261). These documents are the following:

• Conformance test specification for SIP, Part 1: Protocol implementa-
tion conformance statement proforma (ETSI TS 102 027-1)

• Conformance test specification for SIP, Part 2: Test suite structure 
and test purposes (ETSI TS 102 027-2)

• Conformance test specification for SIP, Part 3: Abstract test suite 
and partial protocol implementation of extra information for testing 
(ETSI TS 102 027-3)

The first document is the proforma to be completed by the vendor of the 
implementation to claim implementation capabilities. The guidance for com-
pleting the proforma is given in Section 5. This document is used both dur-
ing static conformance review and during the test suite parameterization 
phase of conformance testing.

The second document describes the test suite structure and the purposes 
of individual test cases. This document was used as the test plan before the 
test suite was written in the TTCN-3 language. Now it is used as the refer-
ence document for understanding the abstract test suite, which is given in 
the third document.

The third document specifies the abstract test suite to be used for SIP con-
formance testing. Actually, it is composed of two files, the archive (ZIP file) 
that contains SIP test suite in TTCN-3 program format, and the SIP test suite 

http://www.etsi.org
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overview file (PDF file). The SIP test suite in TTCN-3 program format can be 
executed using a commercially available TTCN-3 tool.

The SIP conformance test suite specification by ETSI (the three documents 
listed above) considers four types of implementations under test. The imple-
mentations are as follows (see IETF RFC 3261 for their definitions):

• User agent that behaves as client or server
• Registrar
• Proxy server (both outbound and simple proxy server)
• Redirect server

The present version of the specification considers the following three types 
of sessions:

• Sessions that are established using a proxy server
• Sessions that are established directly (without proxy)
• Sessions that are established using the redirect server

The way the SIP conformance test suite is structured is a good example 
of typical conformance test suite structuring. All test cases are classified 
into the following four main groups (which correspond to the main SIP 
functionalities):

• Registration
• Call control
• Querying for capabilities
• Messaging

The test cases in the main groups are further classified according to the 
role that should be checked. The roles for the main group registration are 
the registrant and the registrar. The roles for the main group call control are 
originating endpoint, terminating endpoint, proxy, and redirect server. The roles 
for the main group querying for capabilities are originating endpoint, terminat-
ing endpoint, and proxy. The roles for the main group messaging are registrant, 
registrar, originating endpoint, terminating endpoint, proxy, and redirect server.

Some of the role subgroups are further divided into functional subgroups. 
For example, the role subgroup originating endpoint of the main group call 
control is divided into three functional subgroups, namely, call establishment, 
call release, and session modification. Finally, functional subgroups of test cases 
can be divided into three test groups: valid behavior (V), invalid behavior (I), 
and inopportune behavior (O).

Notice that official conformance testing can be conducted only by autho-
rized organizations (national certification centers, telecom operators, and so 
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on) that use special tools that themselves were certified for such usage. These 
tools are professional equipment, most frequently referred to as testers, e.g., 
a SIP tester. A tester typically comprises the framework that supports test 
suite administration, execution (most frequently based on interpretation), 
and associated reporting. Such a framework is referred to as the testing 
framework.

The testers may be rather sophisticated. Most of them  support most of— if 
not all—the state-of-the-art protocols. Alternately, almost unique testers are 
also used that support ultramodern protocols that have not become part of 
the mainstream protocols. Both of these types of testers can be rather expen-
sive. Most frequently, competent and efficient operating of protocol testers 
requires special training.

Because of that, most of the small- and even middle-scale organizations 
involved in protocol development cannot afford purchasing testers and 
employing full-time employees (confusingly enough, also called testers) for 
the purpose of conformance testing. Rather, they rent the equipment or the 
person who can operate it for the purpose of the unofficial and preliminary 
conformance testing at the client location. The goals of this preliminary con-
formance testing are to reduce the overall cost and to minimize the risk of 
failing the official conformance testing.

Some organizations use open source test suites to reduce the cost of the 
preliminary conformance testing. An example of such a test suite is the SIP 
Forum Basic UA Test Suite created by Nils Ohlmeier, freely available on the 
Internet at https://github.com/nils-ohlmeier/sipsak (in accordance with the 
GPL license). This test suite is comprised of the following two parts:

• SIP Forum Testing Framework (SFTF)
• Basic UA tests

SFTF provides regular functions of test suite administration (e.g., adding 
new test cases, simply referred to as “the tests”), test suite execution control 
(executing all tests, selected groups of tests, or individual tests), and test suite 
execution reporting (both by printouts in the interactive window and in the 
log files, with five possible levels of logging details). The testing framework 
contains the logic required to execute the test, parse incoming messages, and 
create replies.

The second part (listed above) is simply a subdirectory that contains all 
basic user agent tests (i.e., test cases). The tests and SFTF itself are written in 
Python. The goal of these tests is not to provide complete conformance test-
ing of SIP implementations, as the ETSI specification does. Rather, the goal 
is to check the well-known SIP interoperability problems, which frequently 
occur in immature SIP User Agent (UA) implementations, such as the simple 
SIP softphone.

Additionally, these tests can discover the implementation under test 
behavior that conforms to the original SIP specification but is considered 

https://github.com
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a suboptimal implementation solution. Such cases are reported as warnings 
(W). The developer should consider revising the implementation in the case 
of warnings to make it more robust.

Many tests in this test suite are adopted from the IETF’s SIP torture tests 
Internet draft (available on the Internet under the name draft-ietf-sipping- 
torture-tests-02). The rest of the tests are the contributions from the SIP Forum 
members. Original IETF SIP torture tests focus on areas that have caused 
problems in the past or have particularly unfavorable characteristics if han-
dled improperly. Some of them test only the parser and others test both the 
parser and the application above it. Some use valid and some use invalid SIP 
messages to check target functionality.

The SIP Forum tests are classified into the following eight test groups: pro-
tocol tortures (26 tests), authentication (4 tests), registration (1 test), dialog 
and transaction processing (19 tests), DNS (2 tests), NAT capabilities (2 tests), 
services (2 tests), and warnings about obsolete features (5 tests). All tests 
are defined in one spreadsheet (XLS file). The test attributes (spreadsheet 
columns) are the following: number, title, tested device, expected behavior, 
typical failures, notes, call flow, source (the corresponding section in RFC 
3261), and comment.

For example, the test number 201 entitled “A Short Tortuous Request” tests 
the SIP user agent server behavior. The expected behavior is, “Server con-
siders the request valid and generates a proper response”. The call flow is 
illustrated with the sequence diagram shown in Figure 5.3.

c : UAC s : UAS

Invite

180 (Ringing)

Cancel

200 (OK)

487 (Request terminated)

ACK

FIGURE 5.3
Example of the SIP protocol torture test.
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5.3  Formal Verification

5.3.1  Formal Verification Based on Theorem Proving

This section covers the formal verification of communication protocols based on 
automated theorem proving. The reader will learn how to use automated theo-
rem proving for formal verification of both communication protocol specifica-
tion and its implementation. Normally, the communication protocol is modeled 
as the finite state machine. Basic knowledge of predicate calculus (first-order 
logic) is assumed for easy and complete understanding of this section.

The outline of this section is the following:

• Axiomatic specification of finite state machines
• Theoretic specification of test cases
• Formal verification of the specification
• Directions for generating test cases
• Formal verification of the implementation
• Software development process based on the formal verification
• A realistic example

The axiomatic specification of the finite state machine is the model of 
the FSM in the predicate calculus. This model is the set of well-formulated 
formulas. The first well-formulated formula in the model is optional and it 
defines the initial state of the FSM. Its general format is the following:

State(INITIAL).

State is a predicate and INITIAL is the name (label) of the FSM initial state. 
The names State and INITIAL are non-interpretative user-defined names 
(like names of the user-defined functions and constants in the higher-level 
programming languages). For brevity, in this section we use the name S 
instead of State and we label finite state machine states with numbers (0, 1, 
2…) rather than with symbolic names.

The fact that this first well-formulated formula is optional requires a short 
comment. In most of the formal FSM descriptions, such as UML activity dia-
grams and statecharts, the specification of the FSM initial state is mandatory. 
Here, it is not. If we always want to examine the FSM evolution, beginning 
from the same state, we will define it as the FSM initial state in the FSM axiom-
atic specification. Alternately, sometimes it is possible and preferable to exam-
ine the FSM evolution beginning from different FSM states. In that case, we 
do not define the FSM initial state in the FSM axiomatic specification; instead 
we define it on the left-hand side of the concluding well-formulated formula.

The rest of the well-formulated formulas in the FSM axiomatic specifica-
tion are obligatory. Each of the mandatory well-formulated formulas models 
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a single FSM state transition (also referred to as a FSM branch). The format of 
the well-formulated formula that models the time invariant FSM state transi-
tion from the state X to the state Y triggered with the input T and generating 
the output R is as follows:

 {State(X)&Input(T)} => {State(Y)&Output(R)}

State, Input, and Output are predicates. X, Y, T, and R are constants that label 
the source FSM state, the destination FSM state, the particular FSM input, 
and the particular FSM output, respectively. Most frequently, we use abbre-
viated names I and S instead of Input and Output, respectively. In the case 
that the state transition generates more, say N, output signals (messages), the 
corresponding well-formulated formula has the following format:

 {State(X)&Input(T)} => {State(Y)&Output(R_1)&
  Output(R_2)&…&Output(R_N)}

where R_1, R_2…R_N are the labels of particular output signals.
Next, we introduce the concept of control predicates. As their name suggests, 

the control predicates are used to control the FSM activity. A global control 
predicate is used to enable or disable the complete FSM activity. Usually we 
name it A(N_I), where A stands for Automata and N_I labels the particular FSM.

Besides the global control predicate, state transition control predicates 
also exist, one for each FSM state transition. A state transition control predi-
cate enables or disables the associated state transition. We typically name it 
T(M_I), where T stands for Transition and M_I labels the particular FSM state 
transition. The state transition well-formulated formula that includes control 
predicates has the following format:

 {Automata(I)&Transition(J)&State(X)&Input(T)} => {State(Y)&Output(R)}

I is the label of the particular FSM and J is the label of the particular state 
transition modeled with this formula. If we include both Automata(I) and 
Transition(J), the state transition is enabled. If we skip Automata(I), the FSM 
(i.e., all its state transitions) are disabled. If we skip Transition(J), this indi-
vidual state transition is disabled. This concludes the presentation of the axi-
omatic specification of a single FSM.

A theoretical test case for a single FSM is the theorem about the particular 
FSM evolution path, which states that for a given series of inputs (I1, I2…In), 
FSM performs a series of state transitions (S1, S2…Sn), which will produce 
a series of particular output values (O1, O2…On). The corresponding well-
formulated formula has the following format: 

 {Automata(N)&Transition(M)&Input(I1)&…&Input(In)} => 
  {Output(O1)&...&Output(On)&State(S1)&…&State(Sn)}
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Most frequently, we only want to check that FSM produces the expected 
series of outputs and that at the end it reaches the expected final state Sn. The 
corresponding theorem has a very similar, but simpler format:

 {Automata(N)&Transition(M)&Input(I1)&…&Input(In)} =>
  {Output(O1)&...&Output(On)&State(Sn)}

Before proceeding to modeling the groups of communicating FSMs, let us 
look at a simple example. The following shows the axiomatic specification 
of the counter by modulo 2 (see the statechart diagram in Figure 5.4) and a 
sample theorem about its expected behavior. The FSM axiomatic specifica-
tion is as follows:

S(0)
{A(0)&T(0)&S(0)&I(0)} => {S(0)&O(0)}
{A(0)&T(1)&S(0)&I(1)} => {S(1)&O(1)}
{A(0)&T(2)&S(1)&I(0)} => {S(1)&O(1)}
{A(0)&T(3)&S(1)&I(1)} => {S(2)&O(2)}
{A(0)&T(4)&S(2)&I(0)} => {S(2)&O(2)}
{A(0)&T(5)&S(2)&I(1)} => {S(0)&O(0)}

S(0)

S(1)

I(1)/O(1)

I(1)/O(2)

Counter by
modulo 2

S(2)

I(1)/O(0)

I(0)/O(0)

I(0)/O(1)

I(0)/O(2)

FIGURE 5.4
Counter by modulo two statechart.
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The first well-formulated formula defines the state S(0) as the FSM initial 
state. Next, six well-formulated formulas define six FSM state transitions—
from the state S(0) to S(0), from S(0) to S(1), from S(1) to S(1), from S(1) to S(2), 
from S(2) to S(2), and from S(2) to S(0), respectively. A(0) is the global control 
predicate. T(0), T(1)…T(5) are the individual state transition control predi-
cates. The sample theorem is as follows:

{A(0)&T(0)&I(0)&T(1)&I(1)} => {O(0)&O(1)&S(1)}

It may be interpreted as follows: The FSM is globally enabled by including 
the general control predicate A(0) on the left-hand side of the concluding 
well-defined formula. The first FSM state transition is enabled by including 
the state transition predicate T(0). The FSM is stimulated with the input I(0), 
which should result in the output O(0). The second FSM state transition is 
enabled by including the state transition control predicate T(1). The FSM is 
stimulated with the input I(1), and the FSM should generate O(1) at its out-
put. Finally, the FSM should reach the state S(1).

We can prove this theorem with the automated theorem prover THEO 
developed by Monty Newborn (2001). To do that, we must write the theorem 
in a text file, compile it using the program Compile (cc.exe), and prove it by 
running the program THEO (teo.exe). The final result looks like this:

Predicates: S A T I O
Functions: 0 1 . 2 3 4 5 :
EQ:
ESAF:
ESAP:
 0 <BC: 19 NC: 6 AC: 3 U: 0>
 1 {T0 N1 R1 F0 C9 H0 h0 U11} *
.Proof Found!

Of course, realistic FSMs never operate in isolation. Rather, they normally 
operate in groups of cooperating finite state machines. For example, accord-
ing to ITU-T, the system consists of functional blocks interconnected with 
communication channels (see Section 3.7, SDL). Each functional block com-
prises finite state machines (processes) interconnected with signaling paths 
(routes). A communication channel may comprise one or more signaling 
paths. Finite state machines communicate by exchanging signals (events, 
messages) over signaling paths.

We can use such a kind of traditional system decomposition for our conve-
nience, but it is not required. In the opposite extreme, we can have a chaotic 
system in which each FSM talks to all other FSMs (like stations in wireless 
networks). We can even connect more FSMs in signaling networks with all 
kinds of topologies, such as start, bus, or a network that connects an arbi-
trary number of FSMs. The means to model all these abstractions in the first-
order logic are predicates and their compositions.

To start, we can introduce the notation Signal(SIG_N) that represents 
the act of signaling the particular signal, where Signal is a predicate and 
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SIG_N is the label of a particular signal. We then can introduce the nota-
tion SignalOverPath(SIG_N,PATH_M) that represents the act of signaling 
the particular signal over the particular signaling path, and so on. The well-
formulated formulas that model state transitions do not change much. For 
example, the state transition from the state X to the state Y is triggered with 
the signal P and generates the signal Q, and looks like this:

 {State(X)&Signal(P)} => {State(Y)&Signal(Q)}

In the formula above, Signal(P) is received and Signal(Q) is sent out of any 
signaling path, channel, or network. In the case where the former signal is 
transferred over path M and the latter signal is sent over the path N, the for-
mula would look like this:

 {State(X)&SignalOverPath(P,M)} => {State(Y)&SignalOverPath(Q,N)}

After introducing the concept of signaling between finite state machines in 
a group of cooperating FSMs, we can proceed to the axiomatic specification 
of the group of FSMs. As shown above, each FSM in a group is specified with 
a set of well-formulated formulas (one optional for the initial state and one 
mandatory for each individual state transition). Consequently, the specifica-
tion of a group of FSMs is the union of sets of well-formulated formulas for 
individual FSMs that constitute that group.

The theoretical test case for the group of FSMs is just a generalization of 
the theoretical test case for the individual FSM. The left-hand side of the 
corresponding well-formulated formula consists of control predicates, if 
any, and staring signals whereas the right-hand side of the formula lists the 
resulting signals and final states of individual FSMs. The format of the typi-
cal theorem about the evolution of the group of FSMs is as follows (assume 
the system with two FSMs): 

 {Signal(A)} => {Signal(B)&Signal(C)&Signal(D)&State(X)&State(Y)}

In the sample theorem above, Signal(A) triggers the evolution of the system. 
As the result of the evolution, the system generates three signals: Signal(B), 
Signal(C), and Signal(D). At the end of the evolution, the FSMs reach their 
final states, namely, State(X) and State(Y).

We now illustrate the concepts introduced above by the means of a simple 
example. Consider a simple system with three FSMs (see their statechart dia-
grams in Figure 5.5). The first FSM waits for the signal E(0) in its state S(0). 
After receiving that signal, it sends the signal E(10) and goes to the state S(1), 
where it waits for the signal E(1). Once it receives the signal E(1), it sends the 
signal E(20) and goes to the state S(2). The second and the third FSMs are 
very much alike. The former waits for the signal E(10) and, after receiving 
that signal, it sends the signal E(11). The latter waits for E(20) and sends E(21).
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Next, we construct the theorem about the expected behavior of this simple 
system. This theorem says that if we supply signals E(0) and E(1) to this sys-
tem, the first FSM will start evolving and will generate the signals E(10) and 
E(20). These two signals will trigger the second and the third FSMs, which 
will, in turn, generate signals E(11) and E(21), respectively. Finally, these 
FSMs will reach final states S(2), S(11), and S(21), respectively.

The axiomatic specification of this simple system and the theorem 
explained above are specified in the following sequence of well-formulated 
formulas:

; Simple system with 3 FSMs
; Axiomatic spec. of the first FSM
S(0).
{S(0)&E(0)} => {S(1)&E(10)}.
{S(1)&E(1)} => {S(2)&E(20)}.

; Axiomatic spec. of the second FSM
S(10).
{S(10)&E(10)} => {S(11)&E(11)}.

; Axiomatic spec. of the third FSM
S(20).
{S(20)&E(20)} => {S(21)&E(21)}.

; Theorem
conclusion
{E(0)&E(1)} => {S(2)&S(11)&S(21)&E(10)&E(20)&E(11)&E(21)}.

To automatically prove this theorem, we run Compile and THEO once again. 
The final result looks like this:

Predicates: S E
Functions: 0 1 10 2 20 11 21 : .
EQ:
ESAF:
ESAP:
 0 <BC: 14 NC: 3 AC: 3 U: 0>
 1 {T0 N1 R1 F0 C1 H0 h0 U14} *
.Proof Found!

Next, we introduce the concept of a theoretical log file. As already men-
tioned, a theoretical test case is a theorem about an FSM’s expected behavior. 
It defines starting (input) signals on its left-hand side and a series of expected 
output signals and traversed FSM states (including the final ones that we are 
most interested in) on its right-hand side. We refer to the right-hand side of 
the theoretical test case as the theoretical log file.

A strong similarity exists between the theoretical and the real log files. The 
real log file is the result of the system execution in real time. It represents a 
particular path of the system evolution. The theoretical log file is the result of 
the virtual (speculative) system execution. It shows the expected outcomes, 
such as generated signals and traversed states (including the final states).

However, one principal difference between the two of them is that the logs 
in the real log file usually have a time stamp. The value of the time stamp 
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is usually unique (with the exception of the logs in multiprocessor systems). 
Alternately, logs in the theoretical log files are individual predicates that cor-
respond to signals and states, and they do not have any time stamp at all.

Furthermore, we can write logs in the theoretical log file in any order, 
because the operator “&” is a commutative one. The easiest way to think 
about it is that the theoretical test case is true forever. Hence, it really does 
not matter in which order we name the logs. Another way to think about it 
is that all of them have happened at the same moment of time. Therefore, all 
logs have the same “time stamp,” which may be omitted because it does not 
provide any meaningful information, and then again the order of logs does 
not matter.

Actually, when we look at the FSM axiomatic specification, and the theo-
retical test case more closely, we notice that no explicit notion of time exists 
at all. The only notion of time present there is an implicit one, and it is made 
through control predicates. Although the absence of an explicit notion of 
time may seem confusing and disadvantageous, it is the main source of the 
power of proving theorems.

To understand why, imagine that we made a system that reacts in certain 
ways when it receives two different messages, but we are not sure what will 
happen if these two signals arrive at exactly the same time. If the probability 
of this event is very low, it can take a long period of time before the event 
happens and we face a system failure. With the theorem-proving approach, 
we check such situations immediately. Imagine the enormous amounts of 
test time that are saved this way.

Another powerful characteristic of this approach is that each theoretical 
test case actually represents a family of test cases. For example, let us return 
to the counter by modulo 2. Consider the theorem:

 {A(0)&T(0)&I(0)} => {O(0)&S(0)}

Because in first-order logic, I(0) <=> I(0)&I(0), we can rewrite the theorem as 
follows:

 {A(0)&T(0)&I(0)&I(0)&I(0)&I(0)&I(0)} => {O(0)&S(0)}

We may interpret this theorem as follows: If we apply the same signal I(0) 
many times (even up to infinity), we will always get the signal O(0) at the 
FSM output and it will remain in the state S(0). Therefore, by proving indi-
vidual theoretical test cases, most frequently we are actually checking the 
families of test cases. This concludes the presentation of axiomatic specifica-
tion and theoretical test cases related to FSMs.

Now let us see how we can use this in communication protocol engineer-
ing. We start with the formal verification of the specification. The concept 
is rather simple, although it can prove to be difficult to realize in practice. 
Ideally, two independent teams must be present (or at least a person who is 
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“changing hats”), namely, the design and testing teams. The former writes 
the axiomatic specification of the family of communication protocols that is 
modeled as a group of FSMs. The latter writes and proves the theoretical test 
cases.

If a theoretical test case fails (the proof of the theorem cannot be found), at 
least one error is generated in either axiomatic specification or in the theo-
rem. It may be the case that two or even more errors occur in both of them. 
Most frequently, the errors are trivial oversights made by theorem writers 
because they are not so familiar with the system at hand. If not, the errors are 
typically caused by rather nontrivial oversights in the system design.

Finding these errors is not a trivial task at all. Typically, we would try to 
shorten the theorem or the axiomatic specification and see what happens. 
Of course, with an automated theorem prover, such as THEO, at our dis-
posal, this is much easier than doing it by hand. Control predicates may help, 
also—with them, we can sequence the events to our convenience. The need 
for them is typically a clue that we have synchronization problems.

We can also use an automated theorem prover for automatic test case gen-
eration. To do that, we assume that axiomatic specification of the system 
is errorless. We start by selecting one of the possible input signals on the 
left-hand side of the theorem. We then check various output signals at the 
right-hand side of the theorem by trying to prove the theorem. If the proof is 
found, our assumption was correct and we keep that signal at the right-hand 
side. If not, we continue by checking other signals.

Of course, some input signals can just cause internal state transitions and 
no signals at the output of the system. The right-hand side will remain empty 
in that case. By continuing this process, we can generate theoretical test cases 
of arbitrary length:

 {I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)}

Similarly, we can make guesses about transient or final states of the system, 
for example:

 {I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)&S(P)&S(Q)}

The real benefit of such automatically generated test cases is that they can 
be translated into executable test cases and used for automatic testing of the 
system implementation. Generating test cases in the previously described 
fashion is not very efficient, and neither it is well coordinated. We can gener-
ate test cases more cleverly by respecting the structure of the FSM axiomatic 
specification rather than viewing it as a black box. Actually, the FSM axiom-
atic specification introduced in this section is yet another means of modeling 
the FSM state transition graph.

Generating test cases by traversing the FSM state transition graph is pos-
sible with the goal to achieve its complete coverage. Three possible types of 
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FSM state transition coverage exist, namely, node, branch (arc), and path cov-
erage. That the path coverage cannot be achieved if the graph is cyclic is well 
known. Alternately, branch coverage subsumes node coverage and, because 
of that, seems to be the best selection.

Sometimes we may have the opposite problem. The test suite (a set of test 
cases) may already be available, such as the SIP conformance test suite avail-
able from ETSI in TTCN-3 language (see Section 5.3). In such a situation, we 
can use a tool to translate TTCN-3 test cases into theorems, and then we can 
use the automated theorem prover to formally verify conformance of the 
system axiomatic specification with the standard.

Yet another application of the automated theorem prover is the formal 
verification of the system implementation. To do this, we assume that a con-
formance test suite is already available and use the reverse engineering tool 
to extract the axiomatic specification of the system from the implementation 
source code and, optionally, from log files if some are available. The reverse 
engineering tool normally relies on conventions that govern the structure of 
the source code and log files.

For example, the reverse engineering tool for the FSM Library-based imple-
mentations relies on the specification of the FSM Library API (see Section 6.8). 
This tool simply searches the source code for specific library functions and 
their real parameters to retrieve the well-formulated formulas that consti-
tute system axiomatic specification. More precisely, the tool extracts the ele-
ments of the left-hand side of the state transition well-formulated formula by 
searching for library functions InitEventProc() and InitUnexpectedEventProc().

The real parameters of the function InitEventProc() are the source state, the 
triggering signal (event, message), and the state transition function. The first 
two parameters (state and signal) are exactly the elements of the left-hand side 
of the corresponding well-formulated formula. The real parameters of the func-
tion InitUnexpectedEventProc() are the source state and the state transition func-
tion. The state is the first element of the left-hand side of the well-formulated 
formula. The second element is any signal that is not valid for the given state.

The reverse engineering tool proceeds by examining an individual state 
transition function. It creates one well-formulated formula (they all have the 
same left-hand side) for each state transition function execution path. For 
example, a state transition function with a simple sequence of statements 
yields a single formula, whereas a state transition function that has a switch 
with three cases yields three formulas.

The right-hand side of the state transition well-formulated formula is con-
structed by the analysis of the state transition function. The tool first searches 
for the functions PrepareNewMessage() and SendMessage() to extract symbolic 
names of the signals that are generated by that execution path of the state 
transition function. It then searches for the function SetState(), whose real 
parameter is the name of the destination state. If this function is not found, 
the tool assumes that the FSM state should not be changed and copies the 
state name from the left-hand side to the right-hand side of the formula.
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This procedure is repeated for all state transition functions. Finally, the 
tool provides complete axiomatic specification of the system in ASCII format, 
which is readable by the automated theorem prover. We then use already 
available test cases to formally verify the system implementation source 
code.

Although most frequently we assume that the tools and other components 
we use are bug-free (in this particular case, these tools are the reverse engi-
neering tool, compiler, linker, loader, and operating system), sometimes they 
are not. No matter how low the probability of such a failure is, it can hap-
pen and when it does, it compromises the formal verification of the source 
code. In such a case, we can use the reverse engineering tool that extracts the 
axiomatic system specification from log files. The example of the particular 
log file that was created by the FSM Library-based implementation is given 
in Section 5.5.1. Principally, the axiomatic specification that is provided from 
the log file is usually incomplete (except when it contains traces of all pos-
sible system execution paths), but even as such, it is sufficient to locate and 
eliminate the problem at hand.

When it comes to the application of formal verification methods, software 
development processes can be classified into three different categories. The 
Cleanroom engineering is a typical representative of the first category. It uses 
formal verification methods to formally verify the system design. The sec-
ond category uses formal methods to formally verify the system implemen-
tation, whereas the third uses it to formally verify both the system design 
and implementation.

We will end this section with a more realistic example—the axiomatic 
specification of the FSM that implements both ITU-T Q.71 FE1 and FE5 call 
control functional entities (see Figure 3.38, Section 3.7.1) and a sample theo-
retical test case. The former functional entity models the functionality of the 
calling party (also referred to as subscriber A) whereas the latter models the 
functionality of the called party (also referred to as subscriber B). The follow-
ing is the axiomatic specification of the FSM, named FE1FE5 (ITU-T Q.71 FE1 
and FE5 merged together):

;
;  FE1FE5 definition
;
;  Initial state definition:
S(FE1FE5_ON_HOOK).

{S(FE1FE5_ON_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_ON_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_ReportReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_SetupReqInd)} =>
{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.
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{S(FE1FE5_ACTIV)&E(User_ON_HOOK)} =>
{S(FE1FE5_ON_HOOK?)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(User_ON_HOOK)} =>
{S(FE1FE5_ON_HOOK)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(User_OFF_HOOK)} =>
{S(FE1FE5_ACTIV)&E(r3_SetupRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)} =>
{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_SetupReqInd)} =>
{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)}.

conclusion
; {S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)} =>
; {S(FE1FE5_UNKNOWN_FE2)&E(r1_SetupReqInd)}.

; {S(FE1FE5_UNKNOWN_FE2)&E(User_ON_HOOK)} =>
; {S(FE1FE5_DISCONNECTING_FE2)}.

{S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)&E(User_ON_HOOK)} =>
{S(FE1FE5_DISCONNECTING_FE2)&E(r1_SetupReqInd)}.

Actually, this file contains three theorems (starting after the keyword 
conclusion). The first two are commented out (the semicolon character “;” at 
the beginning of the line means that the line is a comment) leaving only 
the third open as a subject to prove by the automated theorem prover. 
The first commented theorem claims that if the FSM FE1FE5 is stimulated 
with the input signal User_OFF_HOOK in its initial state FE1FE5_ON_
HOOK, it will generate the output signal r1_SetupReqInd and move to the 
state FE1FE5_UNKNOWN_FE2. The second commented theorem claims 
that if the FSM FE1FE5 is further stimulated with the signal User_ON_
HOOK in the state FE1FE5_UNKNOWN_FE2, it will just move to the state 
FE1FE5_DISCONNECTING_FE2.

Finally, the third theorem—which is actually the subject of automated 
theorem proving—is a simple composition of the previous two theorems. It 
states that if the FSM FE1FE5 is stimulated by the sequence of the input sig-
nals User_OFF_HOOK and User_ON_HOOK in its initial state FE1FE5_ON_
HOOK, it will generate the output signal r1_SetupReqInd and finish in the 
state FE1FE5_DISCONNECTING_FE2. To automatically prove this theorem, 
we run Compile and THEO once again. The final result looks like this:

Predicates: S E
Functions: FE1FE5_ON_HOOK User_OFF_HOOK r1_SetupReqInd User_ON_HOOK
FE1FE5_DISCONNECTING_FE2 . r1_DisconnectRespConf FE1FE5_UNKNOWN_FE2
r1_DisconnectReqInd User_DIGIT r1_ProceedingReqInd
FE1FE5_WAIT_FOR_DIGITS r1_ADDL_AddrReqInd r3_DisconnectReqInd
FE1FE5_WAIT_ON_HOOK r1_SetupRespConf FE1FE5_ACTIV r1_ReportReqInd
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r3_DisconnectRespConf r3_SetupReqInd FE1FE5_WAIT_OFF_HOOK
r3_ReportReqInd FE1FE5_ON_HOOK? r3_SetupRespConf :
EQ:
ESAF:
ESAP:
0 <BC: 56 NC: 4 AC: 4 U: 0>
1 {T1 N1 R1 F0 C49 H1 h0 U8} *
.Proof Found!

5.3.2  Formal Verification Based on Communicating Sequential Processes

This section covers formal verification of communication protocols based on 
the process algebra named Communicating Sequential Processes (CSP) and 
aided by the toolkit named Process Analysis Toolkit (PAT). PAT supports a 
rich modeling language named CSP#, which is essentially the CSP extended 
with elements of the programming language C#. PAT also supports the First-
Order Logic (FOL) and Linear Temporal Logic (LTL) formulas. Actually, PAT 
is a powerful toolkit comprised of many modules, including the module CSP#, 
the module Real-Time Systems (RTS), the module Probability CSP (PCSP), 
the module Probability RTS (PRTS), the module Labeled Transition Systems 
(LTS), the module Timed Automata (TA), the module NesC (targeting sen-
sor networks), the module Orc (targeting Service Oriented Architecture), 
the module Stateflow (MDL), the module Security, the module Web Services 
(WS), and the module UML to PAT (for translating UML state machines to 
CSP#). We focus on the module CSP# in this book, because it is the most com-
monly used module.

In this section, the reader will learn from examples how to model protocols 
in CSP# and how to formally verify them by checking their desired prop-
erties, which are normally specified in the form of the corresponding FOL 
and/or LTL formulas. We will start with some more simple, classical exam-
ples (such as alternating bit protocol and two-phase commit protocol), we 
will continue with various leader election protocols (in complete graphs, in 
rings, and in rooted trees), and we will end with an example of a real-world 
communication protocol for providing telecomm services (such as basic call 
establishment and release, unconditional call forwarding, etc.).

The outline of this section is the following:

• Brief overview of CSP in Section 5.3.2.1
• Brief overview of PAT and CSP# in Section 5.3.2.2
• Examples of formal verification based on CSP and PAT in 

Section 5.3.2.3

5.3.2.1  Brief Overview of CSP

Process algebra is a formal method that uses an algebraic approach to study 
the communications of concurrent systems. Three well-known process 
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algebras are Calculus of Communicating Systems (CCS),  Communicating 
Sequential Processes (CSP), and Algebra of Communicating Processes 
(ACP). This section serves as a brief introduction to CSP (Hoare, 1985), 
which was initially proposed by C.A.R. Hoare in 1978, and since then 
it has been developed into one of the most mature formal methods that 
are based on process algebras. CSP is specialized in modeling the inter-
action between concurrent systems using mathematical theories. Due to 
its powerful expressiveness, CSP is widely used in many different fields, 
such as real-time systems, web services, security, etc. CSP processes are 
composed of primitive processes and actions, which are connected by 
operators.

Here are the most important notions related to CSP processes:

• αP = α(P) is the alphabet of the process P, i.e., the set of actions that 
P can engage in.

• αc is the set of messages that are communicable on channel c.
• a → P means that the process first performs the action a and then 

behaves as the process P. We read it as a then P.
• (a → P) | (b → Q) means the choice between (a → P) and (b → Q), 

where b is the second action and Q is the second process.
• (x : A → P(x)) means the choice of x from A then P(x).
• μ X : A • F(X) means the process X with the alphabet A such that 

X = F(X).
• P / s means P after engaging in events of trace s.
• P || Q means P in parallel with Q (i.e., the parallel execution of P 

and Q).
• P [|X|] Q means that P and Q perform concurrent events on a set of 

channels X.
• l : P means P with the name l.
• L : P means P with names from the set L.
• P ┌┐ Q means the nondeterministic choice between P and Q. We 

read it as P or Q.
• P □ Q means the deterministic choice between P and Q. We read it 

as P choice Q.
• P \ C means P without the elements of the set C.
• P ||| Q means the interleaving of P and Q. We read it P interleaves Q.
• P >> Q means P is chained to Q.
• P // Q means P is subordinate to Q.
• P ; Q means that P is successfully followed by Q. We read it P fol-

lowed by Q.
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• P ◅ b ▻ Q means P if b (is true), else Q.
• *P means repeat P (more precisely, P repeats an arbitrary number of 

times).
• b * P means while b (is true) repeat P.
• x := e means x becomes (the value of) e.
• b!e means on (the channel) b output (the value of) e.
• b?x means from (the channel) b input to x.
• l!e?x means the call of the shared subroutine named l with the value 

parameter e and the results to x.
• P sat S means that the process P satisfies the specification S.
• tr is an arbitrary trace of the specified process, e.g., 〈x, y〉 where x and 

y are the elements of the alphabet of the specified process.
• ref is an arbitrary refusal of the specified process. The refusal of the 

process is the set of actions (events) in which the process cannot 
engage.

• x√ means the final value of x produced by the specified process.
• var(P) is the set of variables assignable by the process P.
• acc(P) is the set of variables accessible by the process P.
• Skip is a process which does nothing but terminates successfully.
• Stop is a process which is in the state of deadlock and does nothing.

The most important notions related to CSP special events are the following:

• √ means success (successful termination of the specified process).
• l.a means participation in event a by a process named l.
• c.v means communication of the value v on the channel c.
• l.c is the channel c of a process named l.
• l.c.v means communication of the message v on the channel l.c.
• acquire means acquisition of a resource.
• release means release of a resource.

Formal system verification in CSP is based on the trace model of a process, 
which is a set of traces, where each trace represents a sequence of events 
that the process may perform. The most important notions related to process 
traces are as follows:

• 〈〉 is the empty trace.
• 〈a〉 is the trace containing only a (the singleton sequence).
• 〈a, b, c〉 is the trace with three symbols, a then b, then c.
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• “+ is the trace catenation operator in this book. For example, 〈a, b, c〉 = 
〈a, b〉 “+ 〈〉 “+ 〈c〉.

• sn is the trace s repeated n times. For example, 〈a, b〉2 = 〈a, b, a, b〉.
• s ↑ A means s restricted to A (in this book ↑ is used as a restriction 

operator). For example, 〈b, c, d, a〉 ↑ 〈a, c〉 = 〈c, a〉.
• s ≤ t means s is a prefix of t. For example, 〈a, b〉 ≤ 〈a, b, c〉.
• s ≤n t means s is like t with up to n symbols removed. For example, 

〈a, b〉 ≤2 〈a, b, c, d〉.
• s in t means trace s is in the trace t (i.e., s is the subtrace of the trace t). 

For example, 〈b, c〉 in 〈a, b, c, d〉.
• #s means the length of trace s. For example, #〈b, c, b, a〉 = 4.
• s ↓ b means the count of b in s. For example, 〈b, c, b, a〉 ↓ b = 2.
• s ↓ c means the communications on the channel c recorded in s. For 

example, 〈c.1, a.4, c.3, d.1〉 ↓ c = 〈1, 3〉.
• s ; t means the trace s successfully followed by the trace t. For exam-

ple, (s “+ 〈√〉) ; t = s “+ t.
• A* means the set of sequences with elements in A, or more formally 

A* = {s | s ↑ A = s}.
• s0 means the head of s. For example, 〈a, b, c〉0 = a.
• s’ means the tail of s. For example, 〈a, b, c〉’ = 〈b, c〉
• s[i] means the ith element of s. For example, 〈a, b, c〉[1] = b.
• f *(s) means apply f on each element of s; we read it as f star of s. For 

example, square*(〈1, 5, 3〉) = 〈1, 25, 9〉.

The syntax of CSP core language is defined as follows:

P, Q ::= Skip | Stop | a → P | P ; Q | c?x → P |
 c!x → P | P || Q | P [|X|] Q | P ◅ b ▻ Q

At the end of this section, let’s have a look in some of the evergreen exam-
ples of CSP processes from Hoare (1985).

Example 1: The process COPY, which immediately copies every message it 
has input from the channel named left by outputting it to the channel named 
right.

αleft(COPY) = αright(COPY)
COPY = μ X  • ( left?x → right!x → X)

The process COPY satisfies the following specification:

COPY sat right ≤1 left
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Example 2: The process DOUBLE is like process COPY, except that every 
input number is doubled before it is output.

αleft(DOUBLE) = αright(DOUBLE) = N
DOUBLE = μ X  • ( left?x → right!(x + x) → X)

The process DOUBLE satisfies the following specification:

DOUBLE sat right ≤1 double*(left)

5.3.2.2  Brief Overview of PAT and CSP#

PAT is an extensible and modularized framework for automatic system analysis 
based on CSP, which is freely available for noncommercial research at http://
sav.sutd.edu.sg/PAT/. This self-contained framework supports modeling, sim-
ulating, and verifying concurrent real-time systems including communication 
protocols. PAT supports various model checking techniques targeting different 
properties, such as deadlock-freeness, divergence-freeness, reachability, LTL 
properties with fairness assumptions, refinement checking, and probabilistic 
model checking. Moreover, the PAT development team implemented advanced 
optimization techniques, including partial order reduction, symmetry reduc-
tion, process counter abstraction, and parallel model checking, in order to 
achieve good performance from the user point of view.

The main PAT facilities are as follows:

• Multidocument and multilanguage editor for creating models
• Simulator for visual and interactive simulation of system behav-

iors, including random simulation, step-by-step simulation, com-
plete state graph generation, trace playback, and counterexample 
visualization

• Verifiers for deadlock-free analysis, reachability analysis, state/event 
LTL checking (with and without fairness assumptions), and refine-
ment checking

• Documentation and many examples (we focus on some of them in 
the next section)

The PAT framework has been developed by J. Sun, Y. Liu, J.S. Dong, and 
their colleagues at the National University of Singapore since 2007 (Sun 2009). 
The first time that PAT was successfully demonstrated internationally was at 
the 30th International Conference on Software Engineering in 2008. Over the 
last decade, many other researches worldwide have been using PAT to model 
and verify various systems, ranging from recently proposed distributed 
algorithms and security protocols to real-world systems like multilifts and 
pacemakers. However, in this book, we focus on communication protocols.

http://sav.sutd.edu.sg
http://sav.sutd.edu.sg
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We continue with a brief overview of CSP#. CSP# (pronounced “CSP 
sharp”) is a super-language for CSP, which combines high-level operators 
(mostly coming from CSP) such as conditional and nondeterministic choices, 
interrupt, parallel composition, interleaving, hiding, and asynchronous mes-
sage passing, with low-level C# programming language constructs such as 
variables, arrays, and control flow statements like if–then–else and while 
and for loops. CSP# supports both general models of communication among 
processes, namely shared memory and message passing. The former model of 
communication is supported by the means of global variables, whereas the 
second model is supported by the channels for asynchronous message pass-
ing or by the CSP multiparty barrier synchronization. The main CSP# design 
principle is to keep the original CSP as a core sublanguage and additionally 
to provide access to data states and executable data operators from C#.

The CSP# language constructs may be divided into the following four 
groups:

• The core subset of CSP operators, including event-prefixing, internal 
and external choices, alphabetized lock-step synchronization, condi-
tional branching, recursion, etc.

• The language constructs that are regarded as a syntactic sugar to CSP, 
including global variables and asynchronous channels: Although, 
the original CSP supports modeling of shared variables and asyn-
chronous channels as processes, the dedicated language constructs 
offer better usability and improved verification efficiency.

• The set of event annotations: Since CSP supports only the notion of 
safety, the event annotations provide additional means for modeling 
fairness using event-based compositional language.

• The language constructs for stating assertions that may be automati-
cally verified using PAT built-in verifiers.

The language syntax structures are classified as follows:

• Global definitions
• Process definitions
• Assertions

5.3.2.2.1 CSP# Global Definitions

CSP# global definitions include:

• Model names
• Global constants
• Global variables and arrays



326 Communication Protocol Engineering

• Asynchronous channels
• Macros

Model names are given using a declaration //@@ model_name @@.
Constants are specified using the C macro directive #define or the key 

word enum. A constant value may be either integer or Boolean Examples:

#define N 10; // N == 10
enum {zero, one, two}; // zero == 0, one == 1, two == 2

Variables and arrays are specified using the keyword var. Since CSP# is a 
weekly typed language, no typing information is required. However, cast-
ing between incompatible types leads to run-time exceptions. PAT supports 
multidimensional arrays by converting them into one-dimensional arrays. 
The index range of an array dimension may be specified explicitly by giving 
the lower bound or the upper bound or both. Examples are as follows:

var x = 0; // variable x set to 0
var ba = [1, 2, 3, 4]; // array ba with 4 elements
var leader[3]; // array leader with 3 elements set to 0
var knight : {0..} = 0; // array knight with specified lower index 0

Elements of an array may be set using event-prefixing, e.g.,

P() = a {m[1][9] = 1} –>  Skip

User-defined type may be specified using the declaration var<type> var_
name; e.g.,

var<MyType> x; // default constructor MyType is called
var<MyType> x = new MyType(100); // constructor with one parameter

Channels and channel arrays are specified using the keyword channel, 
which has two parameters, namely the channel name and the corresponding 
buffer size. Examples are as follows:

channel c 10; // channel c with buffer size 10
channel c[3] 10; // channel array c comprising 3 channels

Macros may be defined using the C macro directive #define, which has 
two parameters, namely the macro (instruction) name and its definition. An 
example is

#define condition x==0; // the name is condition, the definition is x==0

Model inclusion: a submodel may be included in the current model using 
the directive #include. For example:

#include "c:\submodel.csp";
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5.3.2.2.2 CSP# Process Definitions

CSP# process definitions include:

• Stop
• Skip
• Event prefixing
• Statement block inside events
• Channel input/output
• Sequential composition
• External/internal choice
• Conditional choice
• Case
• Guarded process
• Interleaving
• Parallel composition
• Interrupt
• Hiding
• Atomic sequence
• Recursion
• Assert

Processes may be defined using the equations of the following format:

 P x x xn( , , , )1 2  = exp

where P is a process name, x1, …,  xn is an optional list of formal param-
eters, and exp is a process expression. A process P may be referenced by the 
expression:

 P y y yn( , , , )1 2 

where y1, …, yn are the real parameters (or arguments). Self-recursion and 
mutual-recursion among processes is normally allowed.

Stop is the deadlock process, whereas Skip is a process that immediately 
terminates.

Even prefixing e –> P describes a process which performs an event e 
first and then behaves as process P. An event may be in a simple form (just 
the event name) or in a compound form, such as event_name.e1.e2 where 
e1 and e2 are expressions composed from variables, including process 
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parameters, channel input variables, and global variables. Examples are 
as follows:

VM() = coin –> chocolate –> VM(); // chocolate vending machine
Phil(i) = get.i.(i + 1)%N –> Rest(); // i is a process parameter

Event name is an arbitrary (user-defined) string. It may also be a channel 
name. It cannot be the name of a global variable/constant, a process, a pro-
cess parameter, or a proposition.

Statement blocks inside events (a.k.a. data operations): A statement 
block {statements} may be attached to an event simply using the expression 
event_name{statements}, where statements may include declarations of local 
variables and arrays, control flow constructs made using the keywords like 
if–then–else and while, references to global variables, C# functions, etc., 
e.g.,

P() = incx{x = x + 1;} –> Stop // increment global variable x

The attached statement block is executed atomically (i.e., without inter-
leaving with other processes). On the other hand, an event with an attached 
statement block may be viewed as a labeled piece of code, which is also some-
times used for constructing counterexamples. A reader should note that here 
are no per process local variables in CSP#, so processes need to use global 
variables instead.

Invisible events may be specified using the keyword tau, e.g., tau{x = x + 
1;} is equivalent with {x = x + 1;}.

Channel input/output is written similar to simple event prefixing. Simple 
examples are as follows (let c be the channel name and P be a process expres-
sion; imagine channel as a FIFO buffer):

c!a.b –> P  // output values of expressions a and b
c?x.y –> P // input values of local free variables x and y
c!10 –> P // output constant 10
c?[x > y]x.y –> P // if x > y input values of x and y

We may use an arbitrary number of variables/expressions in channel 
input/output by separating them with dots (‘.’), but we cannot use global 
variables in channel input expressions. Here is an example of two processes 
involved in an asynchronous communication over the channel c:

channel c 1;
P(i) = c!i –> P(i)
Q() = c?x –> a.x –> Q()
System() = P(3) ||| Q()

In the example above, communication over channel c is asynchronous 
because the size of the channel is nonzero (it is 1). We may turn this commu-
nication into synchronous communication by setting the size of the channel 
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c to zero (channel c 0). Furthermore, we may attach statement blocks to 
asynchronous/synchronous channel input/output, e.g.,

channel c 1; // or channel c 0;
var x = 0;
P() = c!x{x = 1} –> P()
Q() = c?y{x = y} –> Q()
System() = P() ||| Q()

The execution sequence in the example above is c!x, (x = 1), c?y, (x = y). 
Note that the scope of the channel’s input variable (such as x and y above) is 
after the channel input event and within the enclosing process. Such vari-
ables may be referenced in the scope, but cannot be updated.

We should also remember that if channel input expressions evaluate to 
constants, the process can receive only the matching channel outputs. For 
example, process P(i) = (c?i.(i + 1) –> Skip) can receive only the sequence of 
values i, (i + 1) from the channel c. Furthermore, local free variables used in 
channel input can be reused again in the next channel inputs.

CSP# also supports channel arrays, for example:

channel c[2] 1;
S(i) = c[i]!i – S(i);
R() = c[0]?x –> a.x –> R() [] c[1]?x –> a.x –> R();
System() = (|||i:{0..2}@S(i)) ||| R()

Channel operations may be used to query the buffer information of an 
asynchronous channel. A channel operation is invoked by the static method 
call: call(channel_operation, channel_name). There are five channel operations:

• cfull is a Boolean function that tests weather the buffer if full or not.
• cepmty is a Boolean function that tests weather the buffer if empty 

or not.
• ccount is an integer function that returns the number of elements in 

the buffer.
• csize is an integer function that returns the buffer size.
• cpeek returns the first element (the head) of the buffer.

Sequential composition P; Q means that P and Q execute sequentially.
There are three kinds of choices in CSP#:

• The general choice P [] Q, which means that either P or Q may exe-
cute. If P performs an event first, it takes control, otherwise Q takes 
control.

• The external choice P [*] Q is resolved by the environment through 
observation of a visible event (not a tau event). If the first event of 
both P and Q are visible, P [] Q and P [*] Q have the same result.
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• The internal choice P <> Q means that either P or Q may execute and 
the choice is made internally and nondeterministically. Although 
nondeterminism is normally undesirable, it may be useful in the 
modeling phase for hiding irrelevant (or unknown) details.

The generalized forms of general/external/internal choices are as follows:

• [] x : {1..n} @ P(x) is the generalized form for P(1) [] … [] P(n)
• [*] x : {1..n} @ P(x) is the generalized form for P(1) [*] … [*] P(n)
• <> x : {1..n} @ P(x) is the generalized form for P(1) <> … <> P(n)

Conditional choices are also supported in CSP#. Besides the traditional 
conditional choices used in programming languages which are based on 
the keywords if, else, and else if, CSP# introduces more specialized condi-
tional choices, such as the atomic conditional choice (ifa) and the blocking 
conditional choice (ifb). The formats of conditional choices are as follows:

• if (condition1) P else if (condition2) Q else R. Of course, the shorter if 
and if–then–else formats are also allowed.

• ifa (condition) P else Q. The atomic conditional choice (ifa) performs 
condition checking and the first event of P or Q atomically.

• ifb (condition) P. The blocking conditional choice (ifb) is similar to 
the guarded process, but unlike the guarded process, in ifb condi-
tion checking and process execution are separated. There is no else 
in ifb, and side effects are not allowed.

The case construct in CSP# is somewhat similar to the switch–case con-
struct in say, C#:

case {
condition1: P
condition2: Q
…
default: R

}

The guarded process executes when its guarded condition is satisfied (i.e., 
the condition is true), otherwise the whole process waits:

[condition] P

Interleaving P ||| Q means that P and Q execute concurrently without 
barrier synchronization, except during termination events (termination 
events must be executed jointly by all the interleaving processes). Of course, 
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P and Q may communicate over shared variables and channels. The general-
ized format of interleaving is as follows:

||| x : {0..n} @ P(x)

We may specify groups of interleaving processes by using looping vari-
ables with a finite, or even infinite, range. We may do the same with the 
parallel composition and the internal/external choices. Examples are as 
follows:

||| {50} @ P(); // interleaving  of 50 P()
||| {..} @ Q(); // interleaving  of infinite number of Q()
||| {} @ P(); // this is equivalent to Skip
[] x : {0..1} @ ( (||| {x} @ P()) ||| (||| {x} @ Q()) )
// <=> (Skip|||Skip) [] (||| {1} @ P()) ||| (||| {1} @ Q())

A looping variable x may also be used as a process parameter within the 
process, e.g.:

||| x : {0..n} @ (a.x –> Skip)

Generally, the symbols used to define a looping variable’s range (like n in 
the example above) can be global constants or process parameters, but they 
cannot be global variables.

Parallel composition P || Q means that P and Q execute concurrently 
with possible lock-step synchronization, a.k.a., barrier synchronization. 
Lock-step synchronization means that P and Q simultaneously perform the 
same event. In the following example, P and Q are lock-step synchronized 
by the event b:

P() = a –> b –> Stop;
Q() = b –> Stop;
System() = P() || Q()

The execution sequence for the example above is a, b, Stop, because P 
performs a first, then both P and Q perform b, and, finally, both P and 
Q perform Stop. Obviously, lock-step synchronization assumes that the 
alphabets of parallel processes are known. It is well-known that deter-
mining the alphabet of a process automatically is generally not trivial 
(because of process self/mutual referencing and the usage of process 
parameters), and, in fact, sometimes it is not even possible (for example, 
in the case of a nonterminating processes). However, PAT provides a 
best-effort automatic procedure for determining the default alphabet of 
a given process. When the default alphabet is not as expected, we may 
manually modify it. For example, if we use data operations (statement 
blocks attached to events), PAT will not cover them when determining 
the default alphabet, and we would have to manually modify the default 
alphabet.
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Alternatively, we may decide to manually specify the alphabet of a process 
using the directive #alphabet P {events}, where P is the process name, and 
events is a comma-separated list of event expressions. The event expressions 
may also contain variables, for example, the alphabet of a process P(x) may 
be specified as #alphabet P {a.x};.

The important principle of CSP# (and PAT) is that the process signature com-
prises both the process expression and the process alphabet, i.e., processes with 
the same process expression, but with different alphabets, which are seen as 
different processes. To cope with this, we sometimes need to introduce supple-
mentary processes. For example, if the process P has different alphabets in two 
different parts of a model, we may introduce supplementary processes Q and R:

Q() = P();
#alphabet Q = {x};
R() = P();
#alphabet R = {y};

Generalized parallel composition has the following format:

|| x : {0..n} @ P(x);

We may also use indexed event lists within alphabets. For example:

#alphabet P {x:{0..N}; y:{0..N} @ e.x.y};

The interrupt composition P interrupt Q means that P executes until the 
first visible event of Q is engaged, and then control is switched to Q (the 
first visible event may occur at any point of P). The corresponding execution 
trace is a trace of P, followed by a trace of Q. The main purpose of interrupt 
abstraction is modeling the interrupt processing behavior.

Hiding may be used to define a process with a reduced alphabet, e.g., 
P \ A is a process whose alphabet is #alphabet(P) \ A, where A is any subset 
of #alphabet(P). We use hiding to hide unimportant events from a process 
alphabet (for example, to prevent unwanted synchronization in parallel com-
position) or in order to introduce nondeterminism. For example Phil specifies 
a philosopher who gets forks, eats, and puts the forks away when finished, 
whereas dashPhil hides the events related to forks:

Phil() = getfork.1 –> getfork.2 –> eat –>
         putfork.1 –> putfork.2 –> Phil();
dashPhil() = Phil() \ { getfork.1, getfork.2, putfork.1, putfork.2};

For our convenience, we may use indexed event lists for defining a set of 
events with the same prefix, for example:

dashPhil() = Phil() \ { x:{1..2}@getfork.x, y:{1..2}@putfork.y};

Atomic process P is declared using the declaration atomic{P}, which 
means that its events should be executed atomically. Also, if a statement 
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block is prefixed with the keyword atomic, this block should be executed as 
one superstep without interleaving with other processes. Such a statement 
block may contain any process statements and may be nondeterministic. 
Generally, an atomic process has a higher priority than a non-atomic process, 
i.e., if an atomic process has an enabled event, that event will execute before 
the events of non-atomic processes. However, if multiple atomic processes 
are enabled, they interleave each other.

We may use atomic processes and atomic statement blocks to reduce the 
model state space and thus speedup model checking, especially when the 
model comprises parallel process compositions. The state space may be some-
times reduced exponentially. Using atomic is actually similar to manual partial 
order reduction. An important rule is that local events that are invisible to the 
verifying property and independent of other events will get the higher priority.

Recursion is constructed by the self or mutual process referencing. The 
following example illustrates a system with mutual recursion:

P(i) = a.i – Q(i);
Q(i) = b.i – P(i);
System() = P(1) || Q(2);

A parameter of the recursive process may be any valid expression, e.g., 
P(x + y), P(new List()), etc. However, when a parameter is a user-defined type, 
the user must take special care to pass the correct value type, because CSP# 
is not a typed language, so PAT does not support compile time type check-
ing. The user should be also very conscious of possible negative side effects, 
which may, for example, appear within constructs with choices (e.g., exp1 [] 
exp2—a side effect in exp1 may remain even when exp2 is selected).

We may also use recursion to implement common loops. For example, the 
behavior of the while loop while (condition) {P()} is equivalent to the behavior 
of the following process:

Q() = if(condition) {P(); Q()};

Assert is used to add an assertion in the program. PAT simulator and 
verifiers check the assertion in run-time, and, if the assertion fails, the cor-
responding run-time exception is thrown and the system evaluation is 
stopped. For example:

var x = 0;
P() = assert(x = 0); a{x = x + 1;} –> P();

5.3.2.2.3  CSP# Assertions

Assertions are queries about system behavior. CSP# assertions include:

• Deadlock-freeness
• Divergence-free
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• Reachability analysis
• Linear Temporal Logic (LTL)
• Refinement/Equivalence

The deadlock-freeness assertion claims that a process P is deadlock-free:

#assert P() deadlockfree;

PAT uses a depth-first-search or a breadth-first-search algorithm to search 
the process’s state space. A deadlock state is a state with no further move-
ment, except a successfully terminated state. A process is deadlock-free if it 
does not have any deadlock states.

A divergence-free assertion claims that a process P is divergence free:

#assert P() divergencefree;

A process is divergent if it performs internal transitions forever without 
engaging in any useful events, e.g., P = (a –> P) \ {a}; a divergent-free process 
is a process that is not divergent.

A deterministic assertion claims that a process P is deterministic:

#assert P() deterministic;

A process is deterministic if it does not have a state with more than one 
outgoing transitions driven with the same event. Otherwise it is nondeter-
ministic, e.g., P = a –> Skip [] a –> Stop.

The nonterminating assertion claims that a process P is nonterminating:

#assert P() nonterminating;

A process is nonterminating if it does not have a terminating state (either 
a successfully terminated state or a deadlock state), e.g., such as P = a –> P.

The reachability assertion claims that a process P may reach a state satis-
fying a given condition (where a condition is a proposition defined as a global 
definition):

#assert P() reaches condition;

In the following example, the reachability assertion claims that the process 
P reaches a state satisfying the condition (x < 0):

#define goal x < 0;
var x = 0;
P() = a{x = x + 1;} –> P();
#assert P() reaches goal; // this will not be satisfied
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The optimized reachability allows, for example, minimizing a given cost 
function during the reachability search:

#assert P() reaches goal with min(cost);

For example:

#define goal x = 14;
var cost = 0;
var x = 0;
P() = if (x <= 14) {{some arithmetic with x} –> P()};
#assert P() reaches goal with min(cost);

LTL assertion claims that a process P satisfies a given LTL formula F:

#assert P() |= F;

An LTL formula is evaluated on an infinite sequence of truth evaluations 
over a path traversing the process state space, and a specified position on that 
path. The syntax of an LTL formula F is as follows:

F = event | proposition | [] F | <> F | X F | F1 U F2 | F1 R F2

where [] (or ‘G’) reads as always , <> (or ‘F’) reads as eventually, X reads as 
next, U reads as until, and R (or ‘V’) reads as release (note that in PAT [], <>, 
R may also be written as ‘G’, ‘F’, and ‘V’, respectively).

The semantic of unary modal operators is as follows:

• X ϕ, neXt, ϕ holds in the next state: • → • ϕ - - - → • → •
• G ϕ, Globally, ϕ holds on the entire subsequent path: • ϕ → • ϕ - - - 

→ • ϕ → • ϕ
• F ϕ, Finally, ϕ eventually has to hold: • → • - - - → • ϕ → • (holds 

somewhere on the subsequent path)

The semantic of binary modal operators is as follows:

• U ϕ, Until, ϕ holds at the current or future position, and ψ has to hold 
until that position; at that position ψ does not have to hold anymore: 
• ψ → • ψ - - - → • ψ → • ϕ

• R ϕ, Release, ϕ is true until the first position in which ψ becomes 
true, or ϕ is true forever if such position does not exist: • ϕ → • ϕ - - - 
→ • ψ → • ψ, or • ϕ → • ϕ - - - → • ϕ → • ϕ

The LTL assertion is true if and only if the given formula F is satisfied for 
all the possible paths corresponding to all the possible system executions. 
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Internally, PAT first constructs a Buchi automaton equivalent to the negation 
of F and a Buchi automaton of the process P, and then uses these automa-
tons to check the LTL assertion. For example, the following LTL assertion 
claims that the philosopher can always eventually eat, i.e., the nonstarvation 
property:

#assert Phil() |= [] <> eat;

Events in LTL formulas may also be component events like eat.0, and chan-
nel events like “c!3.8” and “c?19” (here we must use “” because ‘!’ and ‘?’ are 
special characters). In case of synchronous channels, PAT automatically con-
verts channel input/output operators (‘!’ and ‘?’) to dots in the events, e.g., the 
channel event “c!3.8” is converted to c.3.8.

Refinement/Equivalence is the FDR (Failures-Divergences Refinement) 
approach for checking whether an implementation meets its specification. In 
contrast to an LTL assertion, a refinement assertion compares the complete 
behaviors of two processes, for example, whether one is a subset of another. 
CSP# supports the following notions of a refinement relationship:

• #assert P() refines Q(): P() refines Q() in the trace semantics
• #assert P() refines <F> Q(): P() refines Q() in the stable failures 

semantics
• #assert P() refines <FD> Q(): P() refines Q() in the failures diver-

gence semantics

When it comes to verifying CSP# assertions, PAT supports the following 
options of admissible behavior (the process-level options are enabled only 
for the systems with interleaving or parallel composition):

• All (or No Special Fairness) is a default option that allows all behav-
iors to occur. We choose this option to give all the next states (that 
have the same previous state) the same fairness, i.e., the same pos-
sibility to happen, which also means that there is no special fairness 
for each process.

• Event-level Weak Fair Only means that for every event in the sys-
tem, if the event is eventually always enabled, then the event always 
eventually occurs.

• Event-level Strong Fair Only means that for every process in the 
system, if the process is always eventually enabled, then the event 
always eventually occurs.

• Process-level Weak Fair Only means that for every process in the 
system, if the process is eventually always enabled, then the process 
is always eventually engaged.
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• Process-level Strong Fair Only means that for every process in the 
system, if the process is always eventually enabled, then the process 
is always eventually engaged.

• Global Fair Only (or Strong Global Fairness) means that for every 
transition in the system, if the transition can always eventually be 
taken, then the transition is actually always eventually taken.

A detailed discussion of the above listed options is outside the scope of 
this book. Also, in order to save the space in the following examples, we 
sometimes present verification results for only some of the options. Shorter 
counterexamples are provided without comment so that the reader may ana-
lyze and think about them, while longer counterexamples are skipped to 
save space (of course, an interested reader may repeat the presented experi-
ments using the freely available PAT and reproduce all the counterexamples 
on their own).

5.3.2.3  Examples of Formal Verification Based on CSP# and PAT

In this section, we study the following examples:

• Alternating bit protocol
• Two-phase commit protocol
• Various leader election protocols in the complete graphs, the rings, 

and the rooted directed trees
• Telecomm service system

5.3.2.3.1  Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a data link layer protocol that retransmits 
lost or corrupted messages. Actually, it is a special case of a sliding window 
protocol where a timer regulates the order of messages to provide reliable 
message transmission over a data link, using the 1-bit window. Transmitter 
A sends messages to receiver B (initially the channel from A to B is empty). 
Each message contains data and a 1-bit sequence number (SN) whose value 
is 0 or 1. B acknowledges the successfully received messages by sending the 
appropriate ACK: ACK0 for a message with SN 0 or ACK1 for a message with 
SN 1.

A resends a message continuously with the same sequence number 
until it receives an ACK with the same sequence number, then A toggles 
(complements) the sequence number and starts sending the next message. 
Symmetrically, when B receives an uncorrupted message with SN 0, B 
resends ACK0 continuously until it receives an uncorrupted message with 
SN 1, then it switches to ACK1, etc. Therefore, A may still receive ACK0 when 
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it has already switched to resending a message with SN 1, and vice versa. A 
treats such ACKs as negative-ACKs (NAKs) by simply ignoring them.

The ABP is initialized by sending a bogus message and ACKs with SN 1, 
so the first real message is a message with SN 0.

We illustrate the ABP in Figure 5.6. A starts by sending the information 
message I1 with the data bit 1, and it keeps resending it until it receives 
ACK1. Once B receives the message, it acknowledges it by the ACK1, and it 
keeps resending ACK1 until it receives the message I0. In order to keep the 
figure readable, we show the message I1 and ACK1 as quarter-length arrows. 
Later on, when A receives ACK1 it starts sending I0, when B receives I0 it 
starts sending ACK0, and so on. In order to keep the figure readable, we do 
not show other messages that were resent. 

The parametrized ABP model in CSP# was created by Dr. Sun Jun. The fol-
lowing is ABP model for the parameter ChannelSize set to 1 (in the model that 
has the constant CHANNELSIZE):

#define CHANNELSIZE 1;
channel c CHANNELSIZE;
channel d CHANNELSIZE;
channel tmr 0;

Sender(alterbit) =
(c!alterbit -> Skip [] lost -> Skip);
tmr!1 -> Wait4Response(alterbit);

Wait4Response(alterbit) =
(d?x -> ifa (x == alterbit) {
          tmr!0 -> Sender(1 - alterbit)
        } else {
          Wait4Response(alterbit)
        })
[] tmr?2 -> Sender(alterbit);

Receiver(alterbit) =
c?x -> ifa (x == alterbit) {
         d!alterbit -> Receiver(1 - alterbit)
       } else {
         Receiver(alterbit)
       };

Timer = tmr?1 -> (tmr?0 -> Timer [] tmr!2 -> Timer);

ABP = Sender(0) ||| Receiver(0) ||| Timer;

#assert ABP deadlockfree;
#assert ABP |= []<> lost;

In the model above we model the sender (i.e., transmitter), the receiver, and 
the sender’s timer by the processes Sender (and Wait4Response), Receiver, and 
Timer, respectively. For simplicity, messages only have the sequence num-
ber and no data. Messages from Sender to Receiver are transferred over the 
channel c, whereas messages from Receiver to Sender are transferred over the 
channel d. Both channels c and d are ordinary CSP# channels, but in this 
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model, we call them the unreliable channel c and the perfect (or reliable) 
channel d, because the former models an unreliable channel and the latter 
models a reliable channel. The third channel in this model is a synchronous 
channel tmr between Sender and Timer, which is used to model timer-related 
events, namely start timer (the event tmr.1), stop timer (the event tmr.0), and 
timeout (the event tmr.2).

As mentioned above, the sender is modeled by the processes Sender and 
Wait4Response. Within Sender, we use external choice [] to model the unre-
liability of channel c. In particular, the construct (c!alterbit -> Skip [] lost -> 
Skip) means that Sender will either successfully send the message alterbit, or 
it will skip sending it, which is equivalent to losing the message on an unre-
liable channel—in the model, this case corresponds to the event lost. Next, 
Sender starts the timer using the channel output event tmr!1, and, further on, 
behaves as Wait4Response.

Within Wait4Response we use external choice [] to model a possible timer 
expiration event (i.e., the timeout behavior). In particular, Wait4Response will 
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FIGURE 5.6
ABP sequence diagram.
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either receive an ACK/NAK from the Receiver (the event d?x when the alter-
bit sent from Receiver will be assigned to the local variable x) or the timeout 
will occur (the event tmr?2). After receiving an ACK/NAK, Wait4Response 
atomically compares its alterbit with x, which is the alterbit sent by Receiver. 
If these values are equal (it means that Wait4Response received an ACK), 
then Wait4Response stops the timer (by using the event tmr!1), creates the 
new message by toggling its alterbit (by using simple arithmetic expression: 
1 – alterbit), and after that behaves as Sender.

If the value of Wait4Response’s alterbit and x are not equal (it means that 
Wait4Response received NAK), then Wait4Response ignores that NAK (just 
does noting), and continues waiting for ACK, i.e., continues behaving as 
Wait4Response. In case of timeout (the event tmr?2), Wait4Response further on 
behaves as Sender.

Receiver operates symmetrically to Sender (and Wait4Response). When 
Receiver receives an uncorrupted or corrupted message (the event c?x), it 
atomically compares its alterbit with x, which is the alterbit sent by Sender. 
If these values are equal (it means that Receiver received an uncorrupted 
message), then Receiver sends ACK (i.e., its current alterbit), constructs the 
new ACK for the next uncorrupted message (by using the simple arithme-
tic expression: 1 – alterbit) and behaves as Receiver. Alternatively, if Receiver 
received a corrupted message (where the values of its current alterbit and x 
where not equal), it continues waiting an uncorrupted message, i.e., it contin-
ues behaving as Receiver.

The timer models a discrete timer. At the beginning Timer waits to be 
started (the event tmr?1). Once started, Timer may be either ([]) stopped by 
Wait4Response (the event tmr?0) or it may expire and generate a timeout sig-
nal (the event tmr!2) towards Wait4Response. In both cases, after engaging in 
a prefix event (tmr?0 or tmr!2) it continues behaving as Timer.

The complete system is modeled as a parallel composition of Sender, 
Receiver, and Timer. Initially, both Sender and Receiver set their local variables 
alterbit to 0.

There are two assertions at the end of the model. The first assertion claims 
that ABP is deadlock-free. As a result of verifying this assertion, PAT pro-
duces the following positive report:

The Assertion (ABP() deadlockfree) is VALID.

The second assertion claims that always, at some point, a message from 
Sender to Receiver will be lost (the event lost will happen). The verification 
result for this assertion depends on the admissible behavior option that we 
select. As expected, if we select the options “Event-level Strong Fair Only” or 
“Global Fair Only”, the verification result is positive:

The Assertion (ABP() |= []<> lost) is VALID.
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But, if we select the option “All”, the result is negative with the following 
counterexample:

The Assertion (ABP() |= []<> lost) is NOT valid.
A counterexample is presented as follows.
<init -> c!0 -> (c?0 -> d!0 -> tmr.1 -> d?0 -> tmr.0 -> c!1 -> c?1
-> d!1 -> tmr.1 -> d?1 -> tmr.0 -> c!0)*>

Similarly, if we select the options “Event-level Weak Fair Only,” “Process-
level Weak Fair Only,” or “Process-level Strong Fair Only,” the result is also 
negative, with rather lengthy counterexamples that a reader may reproduce 
on their own.

5.3.2.3.2  Two-Phase Commit Protocol

Two-phase commit protocol (2PC) is one of the most widely used atomic 
commitment protocols (ACPs). It coordinates all the processes participating 
in a distributed atomic transaction on whether they should commit or abort 
(or rollback) the transaction. In the theory of distributed computing, 2PC is 
viewed as a specialized consensus protocol. The 2PC advantages are sim-
plicity and resilience to many temporary system failures, such as process, 
network node, or communication failures. However, in some rare cases, sys-
tem administrators must perform manual failure recovery procedures. To 
enable failure recovery, which is automatic in most of the cases, participat-
ing processes must maintain logs of the protocol’s states. Many existing 2PC 
variants use different logging strategies and recovery procedures.

The protocol relies on the following three assumptions:

• One node is the coordinator, whereas the rest of the nodes are partici-
pants (the coordinator may be selected using a leader election protocol).

• Each node has a stable storage for storing a write-ahead log, which is 
never lost or corrupted in a node crash.

• No node crashes forever.
• Any two nodes can (directly or indirectly) communicate with each other.

During normal operation (i.e., when there are no failures) the protocol 
consists of the following two phases:

• The commit request phase (or voting phase), in which the process 
coordinator requests from all the processes participating in the 
transaction (or participants, cohorts, workers, or pages) to prepare 
to commit/abort the transaction by performing all the necessary 
steps locally, and to vote “yes” (commit) if the local preparation was 
successful or “no” (abort) if some problem during local preparation 
was detected.
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• The commit phase, in which the coordinator decides whether to 
commit (if all the participants voted “yes”) or abort the transac-
tion (if at least one participant voted “no”), and notifies the decision 
result to all the participants. The participants, in turn, perform all 
necessary local actions (effectively realizing commit) on their local 
resources (or recoverable resources) and their portions in the trans-
action’s output (if any).

The commit request phase consists of the following steps:

 1. The coordinator sends the message query to commit to all the par-
ticipants and waits until it receives replies from all of them.

 2. The participants execute the transaction locally (and update their 
logs) to the point where they will be asked to commit/abort.

 3. Each participant replies to the coordinator with the message agree-
ment, which carries its vote—yes (commit) if its actions were suc-
cessful, or no (abort) if otherwise.

The completion phase in case of success (commit) consists of the following 
steps:

 1. The coordinator sends the message commit to all the participants 
and waits for their ACKs.

 2. Each participant completes the transaction locally and releases all 
locks and resources.

 3. Each participant sends the message ACK to the coordinator.
 4. The coordinator completes the transaction once it receives all the ACKs.

The transaction will fail if any of the participants votes no, or the coordina-
tor’s timer expires (and signals a timeout). The completion phase in case of 
failure (abort) consists of the following steps:

 1. The coordinator sends the message rollback to all the participants 
and waits for their ACKs.

 2. Each participant undoes the transaction locally, and then releases all 
locks and resources.

 3. Each participant sends the message ACK to the coordinator.
 4. The coordinator completes the transaction once it receives all the 

ACKs.

We illustrate the 2PC by the sequence diagram in Figure 5.7. As shown, the 
protocol consists of two phases. In the commit request phase, the coordinator 
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sends the message query to commit to each participant, and all the partici-
pants vote yes or no by using the corresponding message agreement. In the 
commit phase, depending on the results of the previous phase, the coordina-
tor sends either the message commit or the message rollback to each partici-
pant, and all the participants reply with the message ACK.

The parametrized 2PC model in CSP# was created by Dr. Sun Jun slightly 
different than the one explained above. The following is the simplified 2PC 
model for the parameter Page set to 2 (in the model that is the constant N):

#define N 2;
enum {Yes, No, Commit, Abort};
channel vote 0;
var hasNo = false;

//The following models the coordinator 
Coord(decC) =
(|||{N}@ request -> Skip); 

(|||{N}@ vote?vo -> atomic{tau{if (vo == No) {hasNo = true;}} -> Skip}); 

decide -> (
  ([hasNo == false] (|||{N}@inform.Commit -> Skip); 
    CoordPhaseTwo(Commit))
  []
  ([hasNo == true] (|||{N}@inform.Abort -> Skip); 
    CoordPhaseTwo(Abort))
);

CoordPhaseTwo(decC) = |||{N}@acknowledge -> Skip;

//The following models a page
Page(decP, stable) =

Coordinator Participant

Query to commit

Agreement (yes/no)

ACK

Commit/rollback

�e commit request phase

�e commit phase

FIGURE 5.7
2PC sequence diagram.
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request -> execute ->
  (vote!Yes -> PhaseTwo(decP) [] vote!No -> PhaseTwo(decP));

PhaseTwo(decP) =
inform.Commit -> complete -> result.decP -> acknowledge -> Skip
[]
inform.Abort -> undo -> result.decP -> acknowledge -> Skip;

#alphabet Coord {request, inform.Commit, inform.Abort, acknowledge};
#alphabet Page {request, inform.Commit, inform.Abort, acknowledge};
      
System = Coord(Abort) || (|||{N}@Page(Abort, true));

Implementation =
System \ {request, execute, acknowledge, inform.Abort, inform.Commit,
  decide, result.Abort, result.Commit};

Specification = PC(N);
PC(i) =
[i == 0](|||{N}@complete -> Skip)
[]
[i > 0](vote.Yes -> PC(i-1) [] vote.No -> PU(i-1));

PU(i) =
[i == 0](|||{N}@undo -> Skip)
[]
[i > 0](vote.Yes -> PU(i-1) [] vote.No -> PU(i-1));

#assert System deadlockfree;
#define has hasNo == 1;
#assert System |= [](has -> <> undo);
#assert System |= [](request -> <> undo);

#assert Specification deadlockfree;
#assert Implementation refines Specification;

In the model above, we model the coordinator and the participant (page) 
by the processes Coord (and CoordPhaseTwo) and Page (and PhaseTwo), respec-
tively. For simplicity, only messages carrying a Page’s vote (Yes/No) are sent 
over the channel vote to Cord. The rest of the communication is modeled 
as a barrier synchronization, mostly using component events like inform.
Commit, where inform corresponds to a channel and Commit corresponds 
to a message. In the two special cases, simple events are used rather than 
component events, namely the event request models the exchange of a query 
to commit message, whereas the event acknowledge models the exchange of 
an ACK message. This mapping of message names (given in the informal 
protocol specification at the beginning of this section) to the correspond-
ing events used in the CSP# model was done with a good choice of event 
names, so that the reader would not have any difficulties in recognizing the 
correspondences.

At the beginning of the model, we define the global constants N, Yes, No, 
Commit, and Abort; the channel vote with the (FIFO buffer) size 0 (which 
implies synchronous communication); and the Boolean variable hasNo with 
the initial value false (assuming final success, i.e., commit).
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The process Coord initially executes the event request once per each Page 
in the system (here twice, because N==2): (|||{N}@ request –> Skip); and then 
Coord waits for the votes from all Pages: |||{N}@ vote?vo. After receiving a 
vote from a Page, Coord atomically (see the keyword atomic) checks whether 
the vote (in the variable vo) is No, and if it is, Coord sets hasNo to true (effec-
tively changing the final result to failure, i.e., abort); otherwise it ignores the 
vote (Skip).

Next, Coord decides the final outcome (success/failure) based on the con-
tents of the variable hasNo and informs the pages accordingly. In particular, 
it first executes the observable event decide and then executes either the event 
inform.Commit (if hasNo is true), or inform.Abort (otherwise), once per each 
Page in the system: |||{N}@inform.Commit or |||{N}@inform.Abort. Further on, 
Cord behaves as CoordPhaseTwo wherein it simply ignores the event acknowl-
edge (the reader should note that CoordPhaseTwo corresponds only to the 
points 3 and 4 in the informal specification of the second phase of 2PC, given 
at the beginning of this section).

Page initially synchronizes with Coord using the event request and executes 
the externally observable event execute (which models local transaction pro-
cessing). The local page’s actions may be either successful or unsuccessful, 
and we model this possibility using the external choice operator [] (remem-
ber, we used [] similarly in the model of ABP in the previous section). Next, 
Page sends its vote to Coord – Yes (if local processing was successful) or No 
(otherwise). Further on, Page behaves as PhaseTwo (which corresponds to the 
page’s side of the second phase of 2PC). It is important to notice that Page 
passes the value Commit/Abort (if its vote was Yes/No) to PhaseTwo using the 
process parameter decP (decision of a Page).

PhaseTwo’s actions depend on the notification from Coord. In case the notifi-
cation was inform.Commit, PhaseTwo sequentially executes the events complete 
(which models successful commit), result.decP (which is in this case equal to 
result.Commit), and acknowledge. Similarly, in the case that the notification 
was inform.Abort, PhaseTwo sequentially executes the events undo (which models 
abort), result.decP (which is, in this case, equal to result.Abort), and acknowledge.

Next, we define alphabets of Coord and Page (they are equal) by listing 
the events that are used for barrier synchronization between them, namely, 
request, inform.Commit, inform.Abort, and acknowledge. The complete System is 
defined as a parallel composition of Coord and interleaving of Pages:

System = Coord(Abort) || (|||{N}@Page(Abort, true));

In this example, we also demonstrate usage of a refinement assertion. 
Therefore, we firstly define the process Implementation as System with-
out all the events related to internal operation of System. More precisely, 
Implementation inherits only the events complete, undo, vote.Yes, and vote.No 
from System.
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Second, we define the process Specification as the process PC(N), where 
the process PC(i), in turn, is defined as a mutual recursion of itself and the 
process PU(i). A reader may easily see that PC(i) and PU(i) are essentially 
countdown processes, where PC counts down Yes votes, whereas PU counts 
down both Yes and No votes starting with the first No vote. If the parameter 
i during counting down of votes reaches the value i==0 within the process 
PC(i), PC(i) will execute the N instances of the event complete; otherwise PU(i) 
will finally execute the N instances of the event undo.

At the end of the model, we define five assertions—three of them are 
related to System, one is related to Specification, and the fifth is a refinement 
assertion. The System-related assertions are the following:

• System is deadlock free.
• System satisfies that always after the point when the condition has 

holds (i.e., has is a macro which is defined as hasNo == 1, i.e. true), the 
event undo will be eventually executed.

• System satisfies that always after the point when the event request 
was executed, the event undo will be eventually executed.

When these assertions are verified by PAT, as expected, PAT reports that 
the first two are valid, whereas the third is invalid. The third assertion is 
invalid because after the initial execution of the event request, the resulting 
event may be either undo or complete, and not always undo as claimed. Here is 
the counterexample produced by PAT:

The Assertion (System() |= []( request-><> undo)) is NOT valid.
A counterexample is presented as follows.
<init -> request -> request -> execute -> vote.Yes -> τ ->
execute -> vote.Yes -> τ -> decide -> inform.2 -> inform.2 ->
complete -> result.Abort -> acknowledge -> complete ->
result.Abort -> acknowledge -> terminate>

The Implementation-related assertion claims that it is deadlock free. The 
fifth, and the last assertion in this example claims that Implementation refines 
Specification. When these two assertions are verified by PAT, as expected, PAT 
reports that both are valid.

5.3.2.3.3 Leader Election in Complete Graphs

Generally, leader election is a fundamental problem in distributed systems, 
because many hard-distributed problems are easy to solve once a central 
coordinator is available. An attractive approach to solve the leader election is 
by using self-stabilizing algorithms, which do not require initialization in 
order to operate correctly, and which can recover from transient faults that 
may destroy the system state information. Also, among many models, a net-
work of finite-state anonymous agents is a rather interesting one, because it 
models many distributed systems of identical, simple computational nodes, 
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such as wireless sensor networks, etc. It is well-known that the self-
stabilizing  leader election is impossible without a failure detector, which is 
a kind of oracle that provides some information to the system that it is unable 
to compute on its own.

Therefore, Fischer and Jiang (2006) introduced the eventual leader detec-
tor Ω?. We may imagine Ω? as a black box that provides global status infor-
mation about the protocol, in particular, whether or not there is a leader 
in the system. This detector is weak in the sense that it does not respond 
to status changes immediately, but with some indeterminate delay, and it 
does not report its findings to all the processes (agents) simultaneously. (So 
some agents may discover status changes sooner than the other processes.) 
Formally, Ω? provides a Boolean input to each process at each step, such that 
the following conditions are satisfied by every execution E:

• If all, except finitely many, configurations of E lack a leader, then all 
processes receive false in all, except finitely many, steps.

• If all, except finitely many, configurations of E have one or more lead-
ers, then all processes receive true in all, except finitely many, steps.

Thanks to its weakness, Ω? may be simply implemented using timeouts. 
Each leader periodically sends a keep-alive message, whereas each agent 
restarts its timer after receiving such a message, and sets the leader detector 
flag to true (indicating that leader is present). On timeout, the process sets 
the leader detector flag to false (indicating that leader is absent). Of course, 
in an adverse environment, Ω? may temporarily produce incorrect informa-
tion. However, eventually after the environment stabilizes, Ω? will produce 
correct information.

Further on in this section, we introduce, model, and analyze the self-
stabilizing  leader election algorithm for complete graphs (see the example 
of the complete graph with five nodes in the Figure 5.8) using Ω? (Fischer, 
2006), which works under either local or global fairness condition. According 
to this algorithm, each node has a memory slot that can hold either a leader 
mark “x” or nothing “-” for a total of two states. Each node receives its cur-
rent input true (T) or false (F) from Ω?. A nonleader becomes a leader, when 
Ω? signals the absence of a leader, and the responder is not a leader. When 
two leaders interact, the responder becomes a nonleader. Otherwise, no state 
change occurs.

The algorithm can be formally described by the three pattern rules, which 
are matched against the state and the input of the initiator and the responder, 
respectively. If the match succeeds, the states of the two interacting nodes 
are replaced by the respective states on the right-hand side of the rule. 
According to the star convention, “*” is a symbol that always matches the 
slot or the input. On the rule’s right-hand side, “*” specifies that the contents 
of the corresponding slot do not change. If no explicit rules match, neither 
node changes state (i.e., a null transition takes place).
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The three pattern rules are as follows:

Rule 1: ((x, *), (x, *)) –> ((x), (-)) 
Rule 2: ((-, F), (-, *)) –> ((x), (-))
Rule 3: ((-, T), (-, *)) –> ((-), (-))

The parametrized model of a leader election algorithm for complete graphs 
in CSP# was created by the PAT Team. The following is the particular model 
for the parameter Number of Processes set to 3 (in the model that is the con-
stant N):

#define N 3;
var dok = 0;  // detector correct (ok)
var detector = false;
var leader[N];

/*Rule 1*/
Rule1(i, r) =
[leader[i] == 1 && leader[r] == 1] 
  (rule1.i.r{leader[r] = 0;} -> Rule1(i, r)); 

/*Rule 2*/
Rule2(i, r) =
[leader[i] == 0 && leader[r] == 0 && !(( dok == 0 && detector) ||
(dok != 0 && ( leader[0] + leader[1] + leader[2] > 0)))]
  (rule2.i.r{leader[i] = 1;} -> Rule2(i, r));

N2

N1 N3

N5 N4

FIGURE 5.8
Example of the complete graph with five nodes.
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/*Rule 3*/
Rule3(i, r) =
[leader[i] == 0 && leader[r] == 0 && ((dok == 0 && detector) ||
(dok != 0 && (leader[0] + leader[1] + leader[2] > 0)))] 
  (rule3.i.r -> Rule3(i, r));

// eventual leader detector
DetectorCorrect() =
[dok == 0]
  (progress{dok = 1;} ->  DetectorCorrect());
// detector
RandomDetector() =
[dok == 0]
  ((random1{detector = false;} -> RandomDetector()) []
   (random2{detector = true;} -> RandomDetector()));

Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));

LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||
                   
Rule1(0,1)|||Rule1(1,0)|||Rule1(0,2)|||Rule1(2,0)|||
Rule1(1,2)|||Rule1(2,1)|||
                   
Rule2(0,1)|||Rule2(1,0)|||Rule2(0,2)|||Rule2(2,0)|||
Rule2(1,2)|||Rule2(2,1)|||
                   
Rule3(0,1)|||Rule3(1,0)|||Rule3(0,2)|||Rule3(2,0)|||
Rule3(1,2)|||Rule3(2,1));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

In the model above, we modeled the three rules: Rule 1, Rule 2, and Rule 3, 
by the processes Rule1, Rule2, and Rule3, respectively. Each of these processes 
has two parameters, namely i and r, where i is the index of the initiator node 
and r is the index of the responder node. Next, we model the eventual leader 
detector by the processes DetectorCorrect and RandomDetector, the random 
setup of the node’s initial states by the process Initialization, and the complete 
system by the process LeaderElection.

At the beginning of the model, we define global constants and variables. 
The global constant N is equal to the number of processes (i.e., 3). The value 
of the global integer variable dok determines whether the information pro-
vided by the leader detector is correct (value 1) or not (value 0). Initially, dok 
is set to 0, indicating the presence of transient errors in the environment, 
and later on it is set to 1, indicating that the environment becomes stable 
and well-behaved. The value of the Boolean variable detector represents the 
output of the leader detector (true if there is a leader in the system), which 
may be erroneous. The integer array leader (of size N) corresponds to mem-
ory slots at each node, which hold the current state of the node (the value 0 
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means that the node is not a leader, whereas the value 1 means that the node 
is a leader).

According to Rule 1, the process Rule1 checks if both leader[i] and leader[r] 
are set to 1 (i.e., if both initiator and responder are leaders), and if they are, it 
then sets leader[r] to 0 (i.e., the responder becomes a nonleader). Further on, 
it behaves again as Rule1. Obviously, the process Rule1 is a straightforward 
encoding of Rule 1.

Similarly, Rule2 and Rule3 are rather straightforward encodings of Rule 2 
and Rule 3, respectively. However, there is one important difference; unlike 
the process Rule1, the processes Rule2 and Rule3 behave differently in the first 
phase of the system evolution, when the environment is unstable (i.e., when 
the value of the variable dok is 0), and in the second phase when the environ-
ment becomes stable (i.e., when dok is set to 1). In the first phase, the processes 
Rule2 and Rule3 behave as specified by the rules (i.e., Rule 2 and Rule 3, respec-
tively), whereas in the second phase (when dok is not equal to 0), Rule2 and 
Rule3 execute if there is at least one leader in the system (when the sum of the 
elements of the array leader is greater than 0).

The process DetectorCorrect models the system transition from an unstable 
to a stable state. Initially, the variable dok is set to 0 (indicating an unstable 
environment). Once the process DetectorCorrect sees that the variable dok is 
set to 0, it simply sets it to 1 (indicating a stable environment). Similarly, the 
process RandomDetector models possibly erroneous readings from the leader 
detector. As long as the variable dok is set to 0 (indicating an unstable envi-
ronment), the process RandomDetector randomly sets the variable detector to 
either true or false, but once dok is set to 1, it stops writing to the variable 
detector (so its value stabilizes).

The process Initialization is a sequence of three sub processes, where each 
of the sub processes randomly sets the initial state of the corresponding node 
(i.e., the corresponding element of the array leader) to either 0 (nonleader) or 
1 (leader), and then terminates (Skip). So, the system may start from any pos-
sible combination of node states.

The process LeaderElection is the sequential composition of the pro-
cess Initialization and the process that is the interleaving of the processes 
DetectorCorrect, RandomDetector, and the process instances of the pro-
cesses Rule1, Rule2, and Rule3, for all possible combinations of values of 
their parameters i and r, i.e., (0, 1), (1, 0), (0, 2), (2, 0), (1, 2), and (2, 1).

At the end of the model, we define the macro oneLeader and the one 
LeaderElection-related assertion. The macro oneLeader is defined as the equa-
tion of the sum of the elements of the array leader (which corresponds to 
the number of leaders currently present in the system) and the constant 1. 
Of course, the goal of any leader election protocol is that this number of 
leaders is finally equal to 1, which means that there is exactly one leader in 
the system. Therefore, the assertion at the end of the model claims that the 
process LeaderElection eventually always satisfies the goal (i.e., the equation) 
oneLeader.
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PAT verification reports are as expected. If we select the admissible behav-
ior to be Global Fair Only or Event-level Strong/Weak Fair Only, the asser-
tion is found to be valid. Alternatively, if we select the admissible behavior 
option All, the assertion is found to be invalid. Here is the counterexample 
produced by PAT:

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> rule1.2.1 -> rule1.2.0 -> (rule2.1.0 -> 
rule1.2.1 -> rule2.1.0)*>

5.3.2.3.4  Leader Election in Rings

In this section we introduce, model, and analyze the uniform, self-stabilizing 
leader election algorithm for rings using Ω? (Fischer, 2006), which requires 
global fairness (and under local fairness is not feasible). See the example of 
the ring graph with five nodes in the Figure 5.9.

The algorithm is based on the following assumptions: The ring is directed 
such that each node has a sense of forward (clockwise) and backward (coun-
terclockwise) directions and every interaction takes place between the initia-
tor and its forward neighbor. Each node can store zero or one of each of three 
kinds of tokens: a bullet “o”, a leader mark “x”, and a shield “|”, for a total of 
eight possible states. Corresponding to each kind of token is a slot which is 
empty if the corresponding token is not present, and full if it is present. An 
empty slot is denoted by “-” whereas a full slot is denoted by the token. The 
slots in each node are ordered with the bullet first, leader mark second, and 
shield third. Extending this to a clockwise ordering of all slots in the ring, 

N2

N1 N3

N5 N4

FIGURE 5.9
Example of the ring graph with five nodes.
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the shield slot of one node is followed by the bullet slot of the next node in 
the clockwise order.

The algorithm can be formally described by the five pattern rules:

Rule 1. ((* * *, F), (* * *, *)) –> ((o x |), (* * *))
Rule 2. ((* - |, T), (* * *, *)) –> ((* - -), (- * |))
Rule 3. (( * x |, T), (* * *, *)) –> ((o x -), (- * |))
Rule 4. (( * x -, T), (- * *, *)) –> ((o x -), (- * *))
Rule 5. ((* * -, T), (o * *, *)) –> ((o - -), (- * *))

When two nodes interact and the initiator’s input is false (F), a leader and 
shield are created, and at the same time, a bullet is fired (Rule 1). This is the 
only way for leaders and shields to be created. When the initiator’s input is 
true (T), the following rules apply: Shields move forward around the ring 
(Rules 2 and 3), and bullets move backward (Rule 5). Bullets are absorbed by 
any shield they encounter (Rules 2 and 3) but kill any leaders along the way 
(Rule 5). If a bullet moves into a node already containing a bullet, the two 
bullets merge into one. Similarly, when two shields meet, they merge into 
one. A leader fires a bullet whenever it is the initiator of an interaction (Rules 
3 and 4).

In a configuration in which the node i has a leader mark, the node j has a 
shield, and all of the slots between i’s leader mark and j’s shield in clockwise 
order are empty, the node i is called the protected leader, and the node j is 
called its protecting shield. A node can be both a protected leader and its 
own protecting shield. The algorithm solves the leader election such that 
eventually there is exactly one protected leader, one protecting shield, and 
no unprotected leader.

The parametrized model of the leader election algorithm for rings in CSP# 
was created by PAT Team. The following is the particular model for the 
parameter Number of Processes set to 3 (in the model that is the constant N):

#define N 3;
var dok = 0;
var detector = false;
var leader[N];
var bullet[N];
var shield[N];

// Processes
Process(i) =
[!((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
  rule1.i.(i+1)%N{bullet[i]=1; leader[i]=1; shield[i]=1;} ->
  Process(i)
[]
[leader[i] == 0 && shield[i] == 1 && ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
  rule2.i.(i+1)%N{leader[i]=0; shield[i]=0; bullet[(i+1)%N] = 0;
  shield[(i+1)%N] = 1;} -> Process(i)
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[]
[leader[i] == 1 && shield[i] == 1 && ((dok ==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
  rule3.i.(i+1)%N{ bullet[i] = 1; leader[i] = 1; shield[i] = 0;
  bullet[(i+1)%N] = 0; shield[(i+1)%N] = 1;} -> Process(i)
[]
[leader[i] == 1 && shield[i] == 0 && bullet[(i + 1) % N] == 0
&& ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
  rule4.i.(i+1)%N{ bullet[i] = 1; leader[i] = 1; shield[i]=0;
  bullet[(i+1) % N] = 0;} -> Process(i)
[]
[shield[i] == 0 && bullet[(i+1)% N] == 1 && ((dok==0 && detector) ||
(dok!=0 && leader[0]+leader[1]+leader[2] > 0))]
  rule5.i.(i+1)%N{bullet[i] = 1; leader[i] = 0; shield[i] = 0;
  bullet[(i+1)%N] = 0;} -> Process(i);

// eventual leader detector
DetectorCorrect() =
[dok == 0](progress{ dok = 1;} ->  DetectorCorrect());
//detector
RandomDetector() =
[dok == 0]
  ((guess1{detector = false;} -> RandomDetector())
   []
   (guess2{detector = true;} -> RandomDetector()));

Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));
((tau{bullet[0] = 0;} -> Skip) [] (tau{bullet[0] = 1;} -> Skip));
((tau{bullet[1] = 0;} -> Skip) [] (tau{bullet[1] = 1;} -> Skip));
((tau{bullet[2] = 0;} -> Skip) [] (tau{bullet[2] = 1;} -> Skip));
((tau{shield[0] = 0;} -> Skip) [] (tau{shield[0] = 1;} -> Skip));
((tau{shield[1] = 0;} -> Skip) [] (tau{shield[1] = 1;} -> Skip));
((tau{shield[2] = 0;} -> Skip) [] (tau{shield[2] = 1;} -> Skip));

LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||
  Process(0)|||Process(1)|||Process(2));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

This model is rather similar to the model in the previous section. Actually, 
some processes are identical or almost identical. The main differences are as 
follows: In this model, the integer arrays leader, bullet, and shield (each of size 
N), correspond to memory slots at each node, which hold the current state of 
the node (the element value 1 means that the node holds the corresponding 
token, whereas the element value 0 means that the node does not hold the 
corresponding token). All the five pattern rules are encoded within a single 
process, namely Process, rather than being defined as separate processes (as 
was done in the model in Section 3.2.3.2). Process corresponds to a single 
node within a ring, and its parameter i is simply the index of the node in the 
ring. This index is used to access the corresponding elements of arrays leader, 
bullet, and shield. Obviously, in order to define the process LeaderElection in 
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this model, we need to make the three Process’s instances, namely Process(0), 
Process(1), and Process(2). Apart from these differences, the models are analo-
gous, and thus the reader should have no difficulties in analyzing the model 
above, and so we leave it as an individual reader’s exercise.

The PAT verification reports are as expected. If we select the admissible 
behavior option All, the assertion is found to be valid. Alternatively, if we select 
the admissible behavior to be Global Fair Only or Event-level Strong/Weak Fair 
Only, the assertion is found to be invalid. Here is the counterexample produced 
by the PAT for the option Global Fair Only (the other two counterexamples are 
longer, so we skip them, and leave the reader to reproduce them as an exercise):

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> τ -> guess2 -> rule3.0.1 -> 
rule3.2.0 -> guess1 -> rule1.1.2 -> rule1.0.1 -> guess2 -> rule5.2.0 ->
rule3.1.2 -> rule3.0.1 -> rule2.2.0 -> guess1 -> rule1.1.2 -> progress ->
rule3.0.1 -> (rule5.2.0 -> rule4.0.1 -> rule5.2.0)*>

5.3.2.3.5 Leader Election in Trees

In this section, we introduce, model, and analyze the deterministic, uni-
form, and self-stabilizing leader election algorithm for rooted directed trees 
using Ω? (Canepa, 2008), which requires global fairness (like the algorithm 
in the previous example). See the example of the tree graph with five nodes 
in Figure 5.10. This algorithm is space optimal because it requires only one 
memory bit per agent.
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FIGURE 5.10
Example of the tree graph with five nodes.
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The algorithm is based on the following assumptions: The root of a rooted 
directed tree is the only node of in-degree 0, and for each node in the tree, 
there is a directed path from the root to that node. Each node has a memory 
slot that can hold either a leader mark “x” or nothing “-”, for a total of two 
states per node, and each node receives its current input true (T) or false (F) 
from Ω?.

The algorithm can be formally described by the three pattern rules:

Rule 1. ((x, *), (x, *)) –> ((x), (-))
Rule 2. ((-, F), (-, *)) –>  ((x), (-))
Rule 3. ((-, *), (x, *)) –> ((x), (-))

Intuitively the algorithm works as follows: A clean agent (i.e., an agent 
without a leader mark) becomes leader mark holder, when Ω? signals the 
absence of leader marks, and the responder does not hold a leader mark 
(Rule 2). When two agents holding a leader mark each interact, the responder 
becomes clean (Rule 1). If the responder has a leader mark and the initia-
tor is a clean agent, the latter becomes a leader mark holder and the former 
becomes clean (Rule 3). Otherwise, no state change occurs.

The parametrized model of the leader election algorithm for rings in CSP# 
was created by the PAT Team. The following is the particular model for the 
parameter Number of Processes set to 3 (in the model that is the constant N):

#define N 3;
var dok = 0;
var detector = false;
var leader[N];

/*Rule 1*/
Rule1(i, r) =
[leader[i] == 1 && leader[r] == 1]
  (rule1.i.r{leader[r] = 0;} -> Rule1(i, r));

/*Rule 2*/
Rule2(i, r) =
[leader[i] == 0 && leader[r] == 0 && !(( dok == 0 && detector) ||
(dok != 0 && (  leader[0] + leader[1] + leader[2] > 0)))]
  (rule2.i.r{leader[i] = 1;} -> Rule2(i, r));

/*Rule 3*/
Rule3(i, r) =
[leader[i] == 0 && leader[r] == 1]
  (rule3.i.r{leader[i] = 1; leader[r] = 0;} -> Rule3(i, r));

// eventual leader detector
DetectorCorrect() =
[dok == 0]
  (progress{dok = 1;} ->  DetectorCorrect());
// detector
RandomDetector() =
[detectorcorrect == 0]
  ((random1{detector = false;} -> RandomDetector()) []
   (random2{detector = true;} -> RandomDetector()));
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Initialization() =
((tau{leader[0] = 0;} -> Skip) [] (tau{leader[0] = 1;} -> Skip));
((tau{leader[1] = 0;} -> Skip) [] (tau{leader[1] = 1;} -> Skip));
((tau{leader[2] = 0;} -> Skip) [] (tau{leader[2] = 1;} -> Skip));

// The topology is a rooted tree
LeaderElection() =
Initialization();
(DetectorCorrect() ||| RandomDetector() |||

Rule1(0,1)|||Rule1(0,2)|||
Rule2(0,1)|||Rule2(0,2)|||
Rule3(0,1)|||Rule3(0,2));

// The Property
#define oneLeader (leader[0] + leader[1] + leader[2] == 1);
#assert LeaderElection() |= <>[]oneLeader;

This CSP# code is completely analogous to the CSP# code given in Section 
5.3.2.3.3 (Leader Election in Complete Graphs), so the reader should have no 
difficulties understanding it. Actually, it uses the same variables and conven-
tions for encoding the pattern rules. Moreover, this example and the exam-
ple in Section 5.3.2.3.3 use the processes DetectorCorrect, RandomDetector, and 
Initialization.

The main difference between these two examples is the way how their 
respective LeaderElection processes instantiate the processes Rule1, Rule2, and 
Rule3. In this section, we introduce the convention that the node with index 
0 is the root of the tree, whereas nodes with indexes 1 and 2 are the leaves 
of the tree. We also assume that the first parameter (i) of the processes Rule1, 
Rule2, and Rule3 is the index of the root, whereas the second parameter (r) 
is the index of a leaf. Thus, we create two process instances of each of the 
processes Rule1, Rule2, and Rule3, for two possible combinations of values for 
their parameters i and r, i.e., (0, 1), and (0, 2).

The PAT verification reports are as expected. If we select the admissible 
behavior to be Global Fair Only or Event-level Strong/Weak Fair Only, 
the assertion is found to be valid. Alternatively, if we select the admissible 
behavior option All, the assertion is found to be invalid. Here is the counter-
example produced by PAT:

The Assertion (LeaderElection() |= <>[] oneLeader) is NOT valid.
A counterexample is presented as follows.
<init -> τ -> τ -> τ -> rule1.0.2 -> random2 -> (random2 -> random2)*>

5.3.2.3.6 Telecomm Service System

The Telecomm Service System (TSS) presented in this section is a simpli-
fied model of a telephone exchange (a.k.a., Private Branch eXchange, PBX) 
that supports local calls only. The main PBX call-processing functions are as 
follows:

• Establishing connections (circuits) between the telephone sets of the 
two users
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• Maintaining such connections as long as the users require them
• Disconnecting those connections as per the user’s request
• Providing information for accounting purposes, i.e., metering calls 

(not modeled in TSS)

Besides these basic functions, PBXs offer many other calling features and 
capabilities, also known as supplementary services or add-ons. Modeling all 
of them would result in a rather complex model, thus TSS supports only some 
of the most frequently used supplementary services, namely the following:

• Call Forward Unconditional (CFU)
• Call Forward when Busy (CFB)
• Originating Call Screening (OCS)
• Originating Dial Screening (ODS)
• Terminating Call Screening (TCS)
• Ring Back When Free (RBWF)

Normally, systems like TSS are designed (and implemented) incrementally. 
We start with the basic functions, and then add individual, supplementary ser-
vices incrementally. However, the complex interaction between users and incre-
mental system extensions may lead to unpredictable and undesirable results. 
Some new features may conflict with each other, or hinder the basic services. 
Thus, the model of TSS must reflect the high-level design of the system, both 
the interaction between the users and the compatibility of new services. We 
also need a comprehensive set of properties covering basic call-processing and 
the new services in order to verify if all the system requirements are satisfied.

Since the model of TSS is rather complex and there are many properties to 
verify, we first analyze only the model, and then we introduce and discuss 
the system properties separately. The parametrized model of TSS in CSP# was 
created by the PAT Team. The following is the particular model for the param-
eter Number of Users, set to 2 (in the model that is the constant NoOfUsers):

#define NoOfUsers 2;
#define NoOfChannels  4; // = NoOfUsers+2
#define NIL 3; // = NoOfUsers+1
#define INVALID_USER 2; // = NoOfUsers

// Model variables
var partner=[NIL(NoOfChannels)];
var chan=[NIL(NoOfChannels)];
var connect=[0(NoOfChannels)];
var dev=[1(NoOfChannels)]; 
var CFU:{0..NIL}=[NIL(NoOfChannels)];
var CFB:{0..NIL}=[NIL(NoOfChannels)];
var RBWF:{0..NIL}=[0(NoOfChannels)];
var lastCall:{0..NIL}=[NIL(NoOfChannels)];
var OCS:{0..NIL}=[NIL(NoOfChannels)];
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var ODS:{0..NIL}=[NIL(NoOfChannels)];
var TCS:{0..NIL}=[NIL(NoOfChannels)];

// Verification variables
var dialNum=[NIL(NoOfUsers)];
var justDial=[0(NoOfUsers)];

System() = (User());
// All users start from Idle
User() = ||id:{0..NoOfUsers-1}@(Idle(id));
#alphabet Idle
  {keepTalking.0.1,stopTalking.0.1,keepTalking.1.0,stopTalking.1.0}; 

// Processes corresponding to individual call-processing states
Idle(id) = 
  idle.id{chan[id]=NIL; partner[id]=NIL; dev[id]=1; connect[id]=0;
  dialNum[id]=NIL; } ->
  ([chan[id]== NIL] dialing.id{dev[id]=0;} -> Dialing(id)
   []
   [chan[id]>= 0 && chan[id] != NIL]
     answerCall.id{partner[id]=chan[id]; dev[id]=0;} -> Answer(id)
   []
   [RBWF[id]==1 && lastCall[id]!=NIL]
   // RBWF feature, reply last call
     if (lastCall[id]!=ODS[id]) {
       ringback.id.lastCall[id]{partner[id]=lastCall[id];
       lastCall[id]=NIL;} -> Calling(id)
     } else {forbidCall.id -> Idle(id)}
  );

Answer(id) =
case{
  partner[id]==TCS[id]:
    ignoreCall.id{if (chan[partner[id]]==id) chan[partner[id]]=NIL;}
    -> Idle(id)

  chan[partner[id]]==id:
    //partner[id] is waiting
    t_alert.id.partner[id] -> T_Alert(id)

  default:
    //chan[partner[id]]!= id -> partner[id] has changed dial number
    partnerChanged.id.partner[id] -> Idle(id)
};

Dialing(id) = 
noCall.id -> Idle(id)
[]
([] callId:{0..NoOfUsers}@( 
  if (callId!=ODS[id]) {
    dial.id.callId{justDial[id]=1;} ->
    makeCall.id{partner[id]=callId; dialNum[id]=callId;} ->
    Calling(id) 
  } else {
    forbidCall.id -> Idle(id)
  }
));

Calling(id) = 
if (partner[id]!=OCS[id]) {
  doCall.id.partner[id]{justDial[id]=0;} -> 
  case {
    partner[id]==id:
    //id call to itself
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    selfCall.id -> CallBusy(id)

    partner[id]==INVALID_USER:
    //id call to unobtainable user
    invalidCall.id -> CallUnobtainable(id)

CFU[partner[id]] != NIL:
    //partner[id] has CFU add-on
    forwardCall.partner[id].CFU[partner[id]]{
      partner[id]=CFU[partner[id]];} -> Calling(id)

chan[partner[id]]==NIL:
    //partner channel is free
    ringPartner.id{
      chan[partner[id]]=id; chan[id]=partner[id];} -> O_Alert(id)

    chan[partner[id]]!=NIL && CFB[partner[id]]==NIL: 
    //partner channel is busy, no CFB add-on
    if (RBWF[partner[id]]==0) { 
      //partner does not have RBWF add-on
      busyPartner.id -> CallBusy(id)
    } else { //partner has RBWF add-on
      busyPartner.id{lastCall[partner[id]]=id;} -> CallBusy(id)
    }

    chan[partner[id]]!=NIL && CFB[partner[id]]!=NIL: 
    //partner channel is busy, has CFB add-on
      forwardCall.partner[id].CFB[partner[id]]{
        partner[id]=CFB[partner[id]];} -> Calling(id)

    default:
    errorCall.id -> ErrorState(id)
  }
} else {
  forbidCall.id{justDial[id]=0;} -> Idle(id)
};

CallBusy(id) =
//id receives busy signal
soundBusy.id -> Idle(id);

CallUnobtainable(id) =
//id calls to unobtainable user
soundInvalid.id -> Idle(id);

O_Alert(id) = 
[chan[id]==partner[id] && connect[id]==1]
  callConnect.id.partner[id] -> O_Connected(id)
[]
[chan[id]==partner[id] && connect[id]==0]
  ringOut.id{if (chan[partner[id]]==id) chan[partner[id]]=NIL;
  chan[id]=NIL;} -> Idle(id)
[]
[chan[id]!= partner[id]]
  callStopped.id.partner[id] -> Idle(id)
[]
[chan[id]==partner[id] && connect[id]!= 1 && connect[id] != 0]
  alertError.id -> ErrorState(id);

O_Connected(id) =
[connect[id]==1 && connect[partner[id]]==1]
  keepTalking.id.partner[id] -> O_Connected(id)
[]
tau{connect[id]=0;connect[partner[id]]=0;} ->
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  stopTalking.id.partner[id] -> Idle(id)
[]
stopTalking.id.partner[id] -> Idle(id);

T_Alert(id) =
case {
  chan[partner[id]]!=id:
  //partner calls others before id can establish connection
  partnerBusy.id.partner[id] -> Idle(id)

  chan[partner[id]]==id:
  //partner is still calling id -> pickup
  partnerReady.id.partner[id] -> T_Pickup(id)

  default:
  // errors
  errorT_Alert.id -> ErrorState(id)
};

T_Pickup(id) = 
[chan[partner[id]]==id]
  pickup.id.partner[id]{
    dev[id]=0; connect[partner[id]]=1; connect[id]=1;
  } -> T_Connected(id)
[]
[chan[partner[id]]==NIL || chan[partner[id]]!=id]
  Idle(id);

T_Connected(id) = 
[connect[id]==1 && connect[partner[id]]==1]
  keepTalking.partner[id].id -> T_Connected(id)
[]
stopTalking.partner[id].id -> Idle(id)
[]
tau{connect[id]=0;connect[partner[id]]=0;} ->
  stopTalking.partner[id].id -> Idle(id);

ErrorState(id) =
error -> Stop; // an error happened

At the beginning of the model, we define global constants and variables. 
The global constant NoOfChannels is equal to the number of users plus 2 (i.e., 
4), so that each user has its own local channel and there are two additional 
channels, which are left for future work on this model (e.g., one outgoing 
trunk and one incoming trunk). The constant NIL is equal to the number of 
users plus 1 (i.e., 3), and it designates the inactive channel. When an element 
of the array chan (a shorthand for channel) is assigned the value NIL, it means 
that the corresponding channel is inactive. The constant INVALID_USER is 
equal to the number of users (i.e., 2), and it represents the upper bound on the 
variable id, which holds an index of a user (id must be less than this constant).

Next, we define global variables, which we classify as the model variables 
and the verification variables. The model variables include the arrays partner, 
chan, connect, dev, CFU, CFB, RBWF, lastCall, OCS, ODS, and TCS, which are 
of size NoOfChannels. The verification variables are the arrays dailNum and 
justDail, which are of size NoOfUsers. The conventions for the possible values 
of these variables are as follows:
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The value partner[i] = k means that the user i is connecting with the user 
k, whereas the value partner[i] = NIL means that the user i is free (i.e., 
in the state Idle). The value chan[i] = NIL means no incoming call for 
the user i, whereas the value chan[i] = k means the user k is calling 
the user i. The value connect[i] = 1 means that the user i is connected 
to other side, whereas the value connect[i] = 0 means that it is not con-
nected. The value dev[i] = 0 means that a device of the user i is busy, 
whereas the value dev[i] = 1 means that this device is ready.

The value CFU[i] = NIL means that the user i not subscribed to the CFU 
service, whereas the value CFU[i] = k means that a call to the user i 
shall be unconditionally forwarded to the user k. The value CFB[i] = 
NIL means that the user i has not subscribed to the CFB service, 
whereas the value CFB[i] = k means that a call to the user i shall be 
forwarded to the user k, if the user i is busy. The value RBWF[i] = 0 
means that the user i has not subscribed to RBWF service, whereas 
the value RBWF[i] = 1 means that the user i shall ring back the user 
lastCall[i] when the user i becomes free. The value lastCall[i] = NIL 
means there is no last call for the user i, whereas the value lastCall[i] = 
k means the last call to the user i (when the user i was busy) was from 
the user k.

Generally, a screen (block) list can be implemented using a hash table. 
For simplicity, here we use a list of size one, i.e., just one screened (blocked) 
number per user, which is quite sufficient for modeling and verification pur-
poses. Thus, the arrays OCS, ODS, and TCS, contain these minimal one-
element lists for each user. The value OCS[i] = NIL means that the user i is 
not subscribed to the OCS service, whereas the value OCS[i] = k means that 
the user k is screened. The conventions for ODS[i] and TCS[i] are the same as 
for OCS[i]. The difference between these three services is the moment when 
the screening takes place (i.e., in which call-processing state).

The conventions for the verification variables are as follows: The value 
dialNum[i] = k means that the user i dialed the number k (originally), whereas 
the value dialNum[i] = NIL means there is no such number. The value 
justDial[i] = 0 means that the user i did not just dial a number, whereas the 
value justDial[i] = 1 means the user i did just dial a number.

Next, we define the processes in the model. The process System behaves 
as the process User, which, in turn, is defined as a concurrent execution of 
NoOfUser (i.e., 2) instances of the process Idle. In fact, the process Idle models 
the initial state of each user. Further on in the model, we define an individual 
process for each possible call-processing state of the user. Besides Idle these 
processes are Answer, Dialing, Calling, Callbusy, CallUnobtainable, O_Alert, 
O_Connected, T_Alert, T_Pickup, T_Connected, and ErrorState. The single 
parameter of all these processes is the user identification (id), where id is an 
element of the set {0..NoOfUsers–1}, i.e., {0, 1}. In the following text, we briefly 
describe each process in turn.
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The process Idle first initializes model variables according to the conven-
tions introduced above, in particular it sets chan[id] to NIL, partner[id] to NIL, 
dev[id] to 1, connect[id] to 0, and dialNum[id] to NIL. Further on, Idle nondeter-
ministically selects one of the three possible activities (by using the external 
choice operator []). The guard for the first activity is that there is no incoming 
call to the user id (chan[id] == NIL), and in this case, Idle initiates the outgo-
ing call (by setting dev[id] to 0), and transforms into the process Dialing. The 
guard for the second activity is that there is an incoming call to the user 
id, and, in this case, Idle accepts this incoming call (by setting partner[id] to 
chan[id] and dev[id] to 0), and transforms into the process Alert. The guard for 
the third activity is that the user id is subscribed to RBWF service and that 
there was an incoming call to the user id while it was busy (RBWF[id] == 1 
&& lastCall[id] != NIL), and, in this case, Idle checks whether the initiator of 
that incoming call is in the ODS screen list. If that initiator is not in the ODS 
list (lastCall[id] != ODS[id]), Idle initiates the ring back (by setting partner[id] 
to lastCall[id] and lastCall[id] to NIL) and transforms into the process Calling; 
otherwise it ignores this situation and continues to behave as the same pro-
cess Idle.

The process Answer performs one of three possible cases. If the calling user 
(partner[id]) is in the TCS list of the user id (partner[id] == TCS[id]), Answer 
ignores this incoming call, and if the element chan[partner[id]] is set to id, it 
resets it to NIL, and ultimately transforms into the process Idle. Otherwise, if 
the calling user is still waiting for the user id to answer (chan[partner[id]] == 
id), Answer transforms into the process T_Alert. Otherwise (in the third case), 
Answer transforms into the process Idle.

The process Dialing nondeterministically selects one of the two possible 
activities. In the first activity, Dialing stops the outgoing call of the user id and 
transforms into the process Idle (this activity corresponds to the case when 
the user id, for some reason, quits the call). In the second activity, Dialing 
nondeterministically selects the called user (the variable callId). If this user 
is in the ODS list of the user id (callId == ODS[id]), Dialing forbids the call 
and transforms it to the process Idle. Otherwise (if the call is not screened), 
Dialing sets partner[id] to callId and dialNum[id] to callId, and transforms into 
the process Calling.

The process Calling first checks whether the called user (partner[id]) is in 
the ODS list of the user id, and if it is in this list, then it forbids the call 
and transforms into the process Idle. Otherwise (if the call is not screened), 
Calling performs one of the seven possible cases. The first case is when the 
user id calls itself, then Calling ignores the call and transforms into the pro-
cess CallBusy. The second case is when the called user is invalid, then Calling 
ignores the call and transforms into the process CallUnobtainable. The third 
case is when the called user is subscribed to CFU service, then Calling sets 
partner[id] to CFU[partner[id]] and continues to behave as the process Calling. 
The fourth case is when the channel of the called user is free, then Calling 
sets chan[partner[id]] to id and chan[id] to partner[id], and transforms into the 
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process O_Alert. The fifth case is when the called user is busy and is not 
subscribed to CFB service, then if the called user is subscribed to RBWF 
service, Calling sets lastCall[partner[id]] to id and transforms into the process 
CallBusy, else (if the called user is not subscribed to RBWF service), Calling 
just transforms into the process CallBusy. The sixth case is when the called 
user is busy and it is subscribed to CFB service, then Calling sets partner[id] to 
CFB[partner[id]] and continues to behave as the process Calling. The seventh 
case is the default case (none of the previous cases, i.e., some error occurred), 
then Calling transforms into the process ErrorState.

The process CallBusy notifies the user id that called user is busy (by the 
event soundBusy.id) and transforms into the process Idle. Similarly, the pro-
cess CallUnobtainable notifies the user id that the called user is invalid (by the 
event soundInvalid.id) and transforms into the process Idle.

The process O_Alert nondeterministically selects one of the four possible 
activities. The guard for the first activity is that the user id was still calling 
the same partner (chan[id] == partner[id]) and that partner answered the call 
(connect[id] == 1), and in this case O_Alert connects the call (by the event 
callConnect.id.partner[id]) and transforms into the process O_Connected. The 
guard for the second activity is that the user id was still calling the same 
partner (chan[id] == partner[id]), and that the partner did not answer the call 
(connect[id] == 0); in this case O_Alert quits the call (by the event ringOut.id), 
sets chan[partner[id]] to NIL and chan[id] to NIL, and transforms into the pro-
cess Idle. The guard for the third activity is that the user id quit the call (chan[id] 
!= partner[id]), and in this case O_Alert indicates that the call was stopped and 
transformed into the process Idle. The guard for the fourth case is that error 
occurred (connect[id] is neither 0 nor 1), and in this case O_Alert indicates that an 
error occurred and transformed the call into the process ErrorState.

The process O_Connected nondeterministically selects one of the three 
possible activities. The guard for the first activity is that both calling and 
called users are still connected, and in this case O_Connected indicates that 
the conversation phase is ongoing (keepTalking.id.partner[id]), and continues 
to behave as the process O_Connected. In the second activity, O_Connected 
disconnects both users (by setting connect[id] to 0 and connect[partner[id]] to 
0), indicates the end of the conversation phase (stopTalking.id.partner[id]) and 
transforms into the process Idle—this activity corresponds to the case when 
the calling user id ends the call first. The guard for the third activity is at 
the end of the conversation phase (stopTalking.id.partner[id]), which has been 
indicated by the called user, and, in this case, O_Connected transforms into 
the process Idle.

The process T_Alert performs one of three possible cases. The first case is 
when the called user is busy, then T_Alert indicates that partner is busy (part-
nerBusy.id.partner[id]) and transforms into the process Idle. The second case is 
when the user id is still calling the same partner[id] and the called user is not 
busy, then T_Alert indicates that partner is ready (partnerReady.id.partner[id]) 
and transforms into the process T_Pickup. The third case is the default case 
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when some error occurs, then T_Alert indicates the error and transforms into 
the process ErrorState.

The process T_Pickup nondeterministically selects one of the two possible 
activities. The guard for the first activity is that the user id is still calling the 
same partner[id], and in this case T_Pickup indicates the partner’s answer, sets 
dev[id] to 0, connect[partner[id]] to 1, and connect[id] to 1, and transforms into 
the process T_Connected. The guard for the second activity is that either no 
incoming call is present at the called side (chan[partner[id]] == NIL) or that the 
incoming call at the called side is not from the user id (chan[partner[id]] != id), 
and, in this case, T_Pickup transforms into the process Idle.

The process T_Connected nondeterministically selects one of the three 
possible activities. The guard for the first activity is that both users are still 
connected, then T_Connected indicates that the conversation phase is still 
ongoing (keepTalking.partner[id].id), and continues to behave as the process 
T_Connected. The guard for the second activity is the calling user id has dis-
connected the call (stopTalking.partner[id].id), then T_Connected transforms 
into the process Idle. The third activity is when the called user decides to dis-
connect the call, then T_Connected sets connect[id] to 0 and connect[partner[id]] 
to 0, indicates the end of the conversation phase (stopTalking.partner[id].id), 
and transforms into the process Idle.

The process ErrorSate just indicates that an error occurred and stops execu-
tion by transforming into the process Stop. Next, we define various system 
properties.

Property no. 1 states that a connection between two users is possible. We 
use the event pickup.1.0 (user 1 picks up the phone dialed by user 0) to check 
this property. The assertion below claims that user 1 will never pick up the 
phone dialed by user 0. PAT finds this assertion to be invalid and produces 
a lengthy witness trace, demonstrating that user 1 will pick up the phone 
dialed by user 0, i.e., that connection between 0 and 1 is possible.

#assert System |= [](!pickup.1.0);

Property no. 2 states that if a user dials itself, then it will receive the engaged 
tone before it returns to the idle state. We use the events dial.0.0 (the user 0 
dials themselves), soundBusy.0 (user 0 hears a busy tone, i.e., is engaged), and 
idle.0 (user 0 goes back to the Idle state) to check this property. The assertion 
below claims that if user 0 dials itself, then they must hear an engaged tone 
before returning to idle. As expected, the PAT finds this assertion to be valid.

#assert System |= []( dial.0.0 -> (soundBusy.0 R (!idle.0) ) ) ;

Property no. 3 states that either a busy tone or a ringing tone will directly 
follow calling. We use the events makeCall.0 (user 0 makes an outgoing call), 
soundBusy.0 (user 0 hears busy tone), ringPartner.0 (user 0 waits for a partner 
to answer the call, thus hearing the ringing tone), and soundInvalid.0 (user 0 
dials an invalid number) to check this property. The assertion below claims 
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that if user 0 makes a call, it must hear either a busy or ringing tone before 
any next major event (idle.0, callConnect.0, ringOut.0). Note that the attribute 
directly in the property specification is not equal to X (next) in LTL logic, 
because there are other events in between. Thus, we encode the attribute 
directly as before any next major event. As expected, the PAT finds this 
assertion to be valid.

#assert System |= [](makeCall.0 -> (soundBusy.0 || ringPartner.0 || 
soundInvalid.0) R (!idle.0 && !callConnect.0 && !ringOut.0) );

Property no. 4 states that the dialed number is the same as the number 
of the connection attempt. We use the condition dialed01 (user 0 has dialed 
user 1) and the event doCall.0.1 (user 0 attempts to call user 1) to check this 
property. The assertion below claims that in all traces, if user 0 attempts to 
call user 1, then user 0 must have dialed user 1. As expected, the PAT finds 
this assertion to be valid.

#define dialed01 (dialNum[0]==1);
#assert System |= []( doCall.0.1 -> dialed01 );

Property no. 5 states that if the user dials a busy number, then either 
the busy line is cleared before a call is attempted, or the user will hear the 
engaged (busy) tone before returning to the idle state.

We use the event dial.0.1 (user 0 dials user 1) and the condition rcvReady 
(user 1 is ready to receive a call), as well as the events makeCall.0 (user 0 starts 
a call), soundBusy.0 (user 0 hears the busy tone), and idle.0 (user 0 goes back 
to Idle state) to check this property. The assertion below claims that if user 
0 dials user 1, then either user 1 is ready to receive a call before user 0 starts 
making a call, or user 0 will hear busy signal before it goes back to Idle state. 
As expected, the PAT finds this assertion to be valid.

#define rcvReady (chan[partner[0]] == NIL);
#assert System |= [] ( dial.0.1 -> ( (rcvReady R (!makeCall.0) )
  || (soundBusy.0 R (!idle.0) ) ) );

Property no. 6 states that a user cannot make a call without having just 
dialed a number. Recall that the flag justDial[id] is set to 1 immediately after 
event dial.id.*, and is cleared just after the next makeCall.id event. We use the 
conditions justDialed0 (user 0 just dialed a number) and justDialed1 (user 1 
just dialed a number), as well as the events makeCall.0 and makeCall.1 to check 
this property. The assertion below claims that if user 0 starts making a call, 
then the event dial.0.* has just happened, as indicated by the condition just-
Dialed0, and the same holds for the user 1. As expected, the PAT finds this 
assertion to be valid.

#define justDialed0 justDial[0]==1;
#define justDialed1 justDial[1]==1;
#assert System |= []( (makeCall.0 -> justDialed0) &&
  (makeCall.1 -> justDialed1) );
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Property no. 7 describes the CFU (Call Forward Unconditional) service. To 
verify this property, we initialize systemCFU by setting CFU[1]=2 and per-
form verification on that system.

The first assertion below claims that if CFU[1]==2, then in all traces, if 
user 0 dials user 1 (the event dial.0.1), then user 0 will call user 2 (the event 
docall.0.2) before user 0 can go back to the state Idle (the event idle.0), see the 
sequence diagram in the Figure 5.11. The second assertion below claims that 
in all the traces, user 0 will not connect to user 1. As expected, the PAT finds 
both assertions to be valid.

SystemCFU = initCFU{CFU[1]=2;} -> System();
#assert SystemCFU |= [] (dial.0.1 -> (doCall.0.2 R (!idle.0)) );
#assert SystemCFU |= ([] !callConnect.0.1);

Property no. 8 describes the CFB (Call Forward when Busy) service. To ver-
ify this property, we initialize a system with CFB[1]=2. The assertion below 
claims that in all the traces, if user 0 dials user 1 (the event dial.0.1) and user 
1 is busy (the condition Busy1) then user 0 will not go back to the state idle 
before it has dialed user 2. Since the system is symmetric, similar assertions 
hold for other users. As expected, the PAT finds this assertion to be valid.

T0 TSS T2

Hook off

Dial tone

Dial(1)

RingRinging tone

Answer

Hook on

Hook on

dail.0.1

doCall.0.2

Talk
phase

idle.0

FIGURE 5.11
Sequence diagram for property no. 7.
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SystemCFB = initCFB{CFB[1]=2;} -> System();
#define Busy1 chan[1]!=NIL && chan[1]!=0;
#assert SystemCFB |= []( (dial.0.1 && Busy1)->
  (doCall.0.2 R (!idle.0)) );

Property no. 9 describes the OCS (Originating Call Screening) service. 
To verify this property, we initialize a system with OCS[0]=1. The assertion 
below claims that, in such a system, the event doCall.0.1 (user 0 calls user 1) 
will never happen, see the sequence diagram in the Figure 5.12. Since the 
system is symmetric, similar assertions hold for other users. As expected, 
the PAT finds this assertion to be valid.

SystemOCS = initOCS{OCS[0]=1;} -> System();
#assert SystemOCS |= []!doCall.0.1;

Property no. 10 describes the ODS (Originating Dial Screening) service. 
To verify this property, we initialize a system with ODS[0]=1. The assertion 
below claims that, in such a system, the event dial.0.1 (user 0 dials user 1) will 
never happen. As expected, the PAT finds this assertion to be valid.

SystemODS = initODS{ODS[0]=1;} -> System();
#assert SystemODS |= []!dial.0.1;

Property no. 11 describes the TCS (Terminating Call Screening) service. To 
verify this property, we initialize a system with TCS[0]=1. The assertion below 
claims that in such a system, the event t_alert.0.1 (user 0 responses to a call 

T0 TSS T1

Hook off

Dial tone

Dial (1)

OCS[0]=1

forbidCall.0

idle.0

Dook off

FIGURE 5.12
Sequence diagram for property no. 9.
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from user 1) will never happen. Since the system is symmetric, similar asser-
tions hold for other users. As expected, the PAT finds this assertion to be valid.

SystemTCS = initTCS{TCS[0]=1;} -> System();
#assert SystemTCS |= []!t_alert.0.1;

Property no. 12 describes the RBWF (Ring Back When Free) service. To 
verify this property, we initialize a system with RBWF[1]=1. Next, we define 
the supplementary condition dial10, meaning that user 1 must have dialed 
user 0. The first assertion below claims that, in such a system, the event ring-
back.1.0 (user 1 rings back user 0) will never happen. As expected, the PAT 
finds that this assertion is not valid, and produces a lengthy counterexam-
ple. The second assertion below claims that whenever dial.0.1 happens, if 
user 1 calls user 0, then user 1 must have dialed user 0 (the condition dial10). 
As expected, the PAT finds that this assertion is not valid, and produces a 
lengthy counterexample. The second assertion is invalid because user 1 may 
make a simple call to user 0 (the event dial.0.1) and not because user 1 is using 
the ring back service (the event ringback.1.0).

SystemRBWF = initRBWF{RBWF[1]=1;} -> System();
#define dialed10 dialNum[1]==0;
#assert SystemRBWF |= [] !ringback.1.0;
#assert SystemRBWF |= [](dial.0.1 -> [](callConnect.1.0 -> dialed10));

5.4  Statistical Usage Testing

Statistical usage testing, also referred to as statistical testing or behavioral test-
ing, is the main industry standard for quality assessment of embedded sys-
tems today. As its name suggests, the goal of statistical usage testing is to test 
the product under conditions that it is expected to face in its real exploitation. 
The description of these conditions is given with a set of the product’s opera-
tional profiles. Two key ideas are behind the concept of statistical usage test-
ing. The first addresses the focus of testing, whereas the second addresses 
the quality of the final product. 

We start with the genesis of the first of these two ideas. That any nontrivial 
product requires a vast amount of test cases for its verification should be 
obvious by now. The order of this amount can very easily go up to hundreds 
of thousands of test cases or more. Because some of the product’s work-
ing modes (also referred to as states) are more frequently used than others, 
selecting a number of associated test cases accordingly makes sense, espe-
cially if we want to limit the size of the test suite.

This reasoning led to the concept of the operational profile. Remember 
that the motivation for its introduction was to respect the usage frequencies 
of individual operational states. Actually, because product state transitions 
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are triggered by corresponding events (signals, messages), the state usage 
frequencies are equal to the frequencies of these events. Furthermore, if we 
want to make our considerations independent of the total number of usages 
(tests), introducing the probabilities of events is convenient. (In this context, 
we define probability as the number of real occurrences of the event divided 
by the total number of its possible occurrences.)

Mathematically, the operational profile is a Markov process. It can be mod-
eled as a special kind of graph whose vertices are product states, and whose 
arcs are state transitions triggered by the corresponding events of the given 
probability. The operational profile is essentially an FSM with given prob-
abilities of its state transitions. Of course, the sum of probabilities of all out-
going state transitions for a single state must be equal to 1 (100%).

The second idea behind the concept of statistical usage testing is to use the 
product’s reliability as the main measure of its quality. The genesis of this 
idea is that the traditional software engineering measures of product quality 
are the number of remaining bugs and the test coverage of the implementation 
under test that was achieved through its testing. However, achieving good 
results with respect to these two measures is not sufficient for assuring the 
high quality of the product.

For example, consider the following paradox: Imagine a software product 
that has a single bug that causes a system crash every time the software is 
started. Although the product has the excellent value of the metric number of 
remaining bugs (only 1 bug remaining), it is completely unreliable and there-
fore practically unusable. In real life, we are not interested in how good the 
product is with respect to the number of remaining bugs and test coverage. 
Rather, we are primarily interested in its reliability.

Of course, we cannot measure the product reliability directly, but we can 
estimate this from the number of test cases that it has successfully passed. 
More precisely, in real engineering practice we have the opposite problem. 
We want to calculate the number of test cases needed for the desired product 
reliability, and for the given level of risk we are ready to accept. We can do 
this by solving the following equation:

 B RN=

where
B is an upper bound on the probability that the model assertions are 

erroneous.
R is a lower bound on the estimate of product reliability.
N is the number of random test cases that the product must successfully 

pass.

For example, achieving even moderate reliability of R = 0.999 with B = 0.007 
would require the successful pass of N = 5,000 random test cases. Similarly, 
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achieving R = 0.9999 with B = 0.007 requires N = 50,000 random test cases, 
and achieving R = 0.99999 with B = 0.007 requires N = 500,000 random test 
cases. Alternatively, we can run a smaller number of test cases on more prod-
uct samples in parallel. For example, instead of running N = 500,000 random 
test cases on a single sample, we can run N = 50,000 random test cases on 10 
product samples simultaneously.

By considering these examples, we can deduce two conclusions. The first 
is that conducting statistical usage testing of the final product may require a 
significant amount of time. The order of magnitude of this amount is calendar 
weeks or even months, depending on the characteristics of the concrete prod-
uct. The second conclusion is that we definitely need tools that automatically 
generate and execute test suites of that size. We simply cannot do this by hand.

An example of the automated working environment for generating sta-
tistical test suites is described by Popovic and Velikic (2005). This working 
environment consists of two parts, namely, the front-end and the back-end 
(Figure 5.13). The front-end is the Generic Modeling Environment (GME) 
developed at the Institute for Software Integrated Systems at Vanderbilt 
University. GME is a configurable toolkit for creating domain-specific mod-
eling and program synthesis environments.

Generally, we configure GME by creating metamodels that specify the mod-
eling language, and therefore the modeling paradigm, of the application domain. 
Once we create a metamodel, we must interpret and register it by GME to 
create a new working environment for making domain-specific models. 
We normally use such working environments for building domain-specific 
models and for storing them in a model database. The domain-specific mod-
els are essentially graphs, and we render them by dragging and dropping 
the graphical symbols on the working sheet that is maintained by the GME 
graphical user interface (GUI). The symbols in GME have their attributes, 
preferences, and properties.

The particular metamodel that specifies the language (and the para-
digm) for modeling operational profiles is represented with the metaclass 
OperationalProfile in Figure 5.13. Each concrete operational profile model 
(represented with the class OpProfile in Figure 5.13) is created by using the 
operational profile modeling paradigm (the class OpProfile is derived from 
the class OperationalProfile). Creating operational profile models by using this 
paradigm is quite easy.

The modeling language for rendering operational profile models has a sin-
gle symbol, State. This symbol has a single attribute, which is the name of the 
state. Normally, we just drag and drop the state symbol icon to the working 
sheet, click on the name field, and type in its name. Each of the state symbols 
we place on the working sheet represents a single working state (mode) of the 
product that we want to test.

Rendering state transitions requires a little more work. To render a state 
transition, we select a connecting tool (symbolized by the operator “+”), 
click on the source state, and click on the destination state. When the state 



371Test and Verification

transition is in place, we enter the particular data for its attributes. A state 
transition has the following three attributes:

• EventClass specifies the class of events that trigger the state transition.
• Output specifies the expected output of the state transition.
• Probability specifies the probability of the state transition (in percent).

The most frequently used format of the attribute EventClass definition is 
as follows:

E(a,b,c...);->a := A1/A2/...; b := B1/B2/...; c := C1/C2/...

The event class definition above consists of two parts. The first one is on 
the left-hand side of the substring “->” and is referred to as the event class. 
The event class E(a,b,c…); is a string with an arbitrary number of parameters 
(substrings), labeled here as a, b, c, and so on. The second part of the defini-
tion is on the right-hand side of the substring “->”. It provides definitions of 
possible replacements (which are also strings) for each event class parameter. 
As indicated above, the parameter a may be replaced with the string A1 or 
A2 and so on.

A particular event (also referred to as the constant event) is an event class 
without parameters. We may also think about it as the event class with a 
single member. Particular events are generated from the event class by sub-
stituting each event class parameter with the randomly selected replacement 
from the list of possible replacements. All replacements have equal selec-
tion probabilities. Examples of particular events for the event class definition 
given above are E(A1,B1,C1…), E(A1,B1,C2…), E(A1, B2, C1…), E(A2, B1, C1…), and 
so on.

The event class format shown above is feasible as far as the number of the 
possible values of event class parameters is relatively small. But when the 
number of the possible values is large, writing them explicitly becomes 
impractical, if not impossible. For example, consider the integer parameter 
whose possible values are from the interval [0,10000). Writing all 10,000 of its 
possible values would be really annoying. To make it easier for the user, the 
working environment supports the following two intrinsic functions:

• randInt<i,j> randomly selects an integer number from the interval 
[i,j).

• randFloat<x,y> randomly selects a float number from the interval 
[x,y).

When we place and name all state symbols, interconnect them with state 
transitions, and enter the data for attributes of all state transitions, the opera-
tional profile model is finished, and we can store it in a file (or a database). 
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This is exactly the main purpose of the working environment front-end 
(Figure 5.13). Of course, later we may modify the model by adding or delet-
ing states or state transitions, as well as by changing the data for attributes 
of state transitions, and store it again. All these manipulations are supported 
by the GME’s GUI.

The working environment back-end consists of two parts. The first is the 
operational profile model interpreter (represented by the class ModelInterpreter 
in Figure 5.13), which is registered to GME. The second part of the back-end 
is a separate program written in Java, which is named Generic Test Case 
Generator (GTCG). The main task of the model interpreter is to transform 
the operational profile model to the operational profile specification, a simple 
text file of the well-defined format (represented with the class OpProfileSpec 
in Figure 5.13). Alternately, the main task of GTCG is to automatically gener-
ate the test suite to be used for statistical usage testing and the correspond-
ing statistical report (represented with the classes TestSuite and Statistics in 
Figure 5.13).

The operational profile model interpreter is a Java package that is regis-
tered to GME with the program JavaCompRegister. The package comprises 
the following three classes:

• OPBONComponent: the interface between GME and the model 
interpreter

• OPState: the state interpreter
• OPTransition: the state transition interpreter

The model interpreter behaves similarly to traditional plug-in components 
of GUIs. We activate it by a click on the corresponding model interpreter 
icon. As the result of this activation, GME calls the model interpreter inter-
face function invokeEx, which, in turn, creates temporary container objects 
for state names, event classes, state transition probabilities, event class defini-
tions, and next state definitions.

Next, the model interpretation is performed by traversing the multigraph 
architecture of the model in focus. While visiting individual states and state 
transitions, GME calls the function traverseChildren of the classes OPState 
and OPTransition, respectively. These two functions effectively interpret the 
model by reading the data of the attributes and filling the above-mentioned 
container objects. At the end of the interpretation, the content of these con-
tainer objects is saved into the operational profile specification file named 
opspec.txt.
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The automatic test case generator GTCG uses the following input items:

• The operational profile data from the file opspec.txt.
• The initial operational profile state: Most frequently, the initial state 

is fixed, but sometimes it may be selectable.
• The number of test cases to be generated: This item determines the 

size of the test suite. As mentioned earlier, it depends on the product 
reliability we want to guarantee.

• The test case length, defined as the number of test steps in a test case. 
A test step is the particular event that is randomly selected from the 
given event class.

The operational profile specification file opspec.txt consists of the following 
four parts:

• Part I defines the number of states (M) and the number of event 
classes (N).

• Part II is a matrix of state transition probabilities. The matrix ele-
ment Pij defines the probability of the event class number j in the 
operational profile state number i.

• Part III is a matrix of event class definitions. The matrix element Eij 
defines the event class number j in the operational profile state num-
ber i. Most frequently, Eij is the same in all states (Ei1 = Ei2 = …EiM).

• Part IV is a matrix of next states. The matrix element Tij defines the 
next state number (index) for the event class number j in the opera-
tional profile state number i.

GTCG provides the following two files at its output:

• testcases.txt contains the test suite to be used for statistical usage 
testing.

• statistics.txt contains the corresponding statistical report, which is 
the important measure of the generated test suite quality.

The file testcases.txt contains the series of test cases. Each test case starts 
with its number followed by the column character ‘:’ (e.g., 0:, 1:, 2:). The 
next line contains the test bed setup command TestBox.initialize(), which 
essentially initializes the hardware connected to product inputs and out-
puts for the purpose of automatic testing. The test bed setup command 
is followed by the series of lines that contain particular events randomly 
selected from the associated event classes (the number of these lines is 
determined by the given test case length). The event class itself is selected 
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randomly from the distribution defined by the operational profile data 
(opspec.txt, Part II).

The file statistics.txt consists of two parts. The first part contains a series 
of lines, one per operational profile state. Each of these lines indicates the 
number of occurrences of the corresponding operational profile state (ci), the 
discrepancy between the observed and expected frequency of state occur-
rence (di), and the significance level (SLi). The significance level is actually the 
probability that the discrepancies as large as those observed would occur 
with random variation. The second part of the statistical report shows the 
mean value of the discrepancy and the mean value of the significance value.

A detailed explanation of the statistical measures mentioned above is 
outside the scope of this book but can be found elsewhere (e.g., Woit, 1994). 
Practically, it is enough to remember the following guides:

• A significance level greater than or equal to 20% is considered large. 
This result means that the test suite is of sufficient quality and we 
may use it for statistical usage testing.

• A significance level less than or equal to 1% is considered small. This 
result means that the test suite quality is poor and it should not be 
used for statistical usage testing.

The statistical usage testing methodology governs the usage of tools that 
create the working environment. This methodology subsumes the following 
steps:

• Make the operational profile model of the product (implementation 
under test).

• Interpret the model.
• Determine the desired level of reliability.
• Calculate the required size of the test suite (the number of test cases).
• Generate the test suite.
• Check the test suite quality. If the quality is not acceptable, return to 

the previous step.
• Execute the test suite. If all test cases successfully pass, the final ver-

dict is pass. In that case, we can claim that product reliability is at 
least at the level of the desired reliability. If at least one test case fails, 
the final verdict is fail and the product is considered not usable, at 
least not at the desired level of reliability.

This methodology can be used for testing both parts of the products and 
their complete forms. We will illustrate such applications by the following 
two examples. The implementation under test in the first example is the SIP 
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invite client transaction. We start with modeling its operational profile in 
accordance with the methodology outlined above (Figure 5.14).

The operational profile shown in Figure 5.14 has five working states, 
namely, Initial, Calling, Proceeding, Completed, and Terminated. At the same 
time, it has nine event classes that are intentionally labeled with names that 
resemble the original specification (see RFC 3261, Figure 5). The definitions 
of the event classes (not shown in Figure 5.14) are the following:

• The event class labeled INVITE is defined as INVITE (this class has 
a single member).

• The event class labeled 300–699 is defined as 
M3->M3:=randInt<300,700>;

• The event class labeled TA is defined as TA (original RFC 3261 label: 
Timer A fires).

• The event class labeled 1XX is defined as M1->M1:= 
randInt<100,200>;

• The event class labeled TB or TransportERR is defined as E->E:=TB/
TransportERR;

• The event class labeled 2XX is defined as M2->M2:= 
randInt<200,300>;

• The event class labeled TD is defined as TD (original RFC 3261 label: 
Timer D fires).

• The event class labeled TransportERR is defined as TransportERR 
(constant event).

• The event class labeled End is defined as End (added because the 
sum of outgoing state transition probabilities for each state must be 
equal to 100%).

The probabilities of individual state transitions are shown in Figure 5.14. 
Note that outgoing state transition probabilities add up to 100% for each 
state (an essential request for a Markov process). Generally, we set the state 
transition probabilities according to what we expect the product will face in 
its real exploitation. Of course, we should use statistical data available for 
some similar product or the previous version of the same product whenever 
we can.

Next, we start the model interpreter, which transforms the model into the 
operational profile specification file opspec.txt. When writing GME model 
interpreters, we should make no assumptions about the order in which the 
model is traversed. For example, assuming that individual states and state 
transitions are going to be visited in the same order in which they were origi-
nally entered would be a mistake because this is not going to happen. The 
best assumption we can make in this respect is to assume a completely ran-
dom visiting order.
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Based on this assumption, the model interpreter simply assigns identifica-
tions to states and state transitions according to the order they are visited. 
The particular assignment of identifications to operational profile states in 
this example is the following:

• The state Terminated is assigned the identification 0.
• The state Calling is assigned the identification 1.

Initial

Calling

Proceeding

Completed

Terminated

1XX, P=20%

300–699, P=34%

TD, P=34%

INVITE, P=100%

TA, P=20%

1XX, P=33%

300–699, P=33%

300–699, P=20%

End, P=100%

2XX, P=33%

TB or TransportERR, P=20%
2XX, P=20%

TransportERR, P=33%

FIGURE 5.14
SIP INVITE client transaction operational profile.
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• The state Proceeding is assigned the identification 2.
• The state Completed is assigned the identification 3.
• The state Initial is assigned the identification 4.

The particular assignment of identifications to operational profile event 
classes is the following:

• The event class E is assigned the identification 0.
• The event class M1 is assigned the identification 1.
• The event class TA is assigned the identification 2.
• The event class INVITE is assigned the identification 3.
• The event class TransportERR is assigned the identification 4.
• The event class M2 is assigned the identification 5.
• The event class M3 is assigned the identification 6.
• The event class TD is assigned the identification 7.
• The event class End is assigned the identification 8.

The content of the file opspec.txt is the following:

5 9         
       
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0  
       
0.2 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0  
       
0.0 0.33 0.0 0.0 0.0 0.33 0.34 0.0 0.0  
       
0.0 0.0 0.0 0.0 0.33 0.0 0.33 0.34 0.0  
       
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

null null null null null null null null End
E->E:=TB/TransportERR; M1->M1:=randInt<100,200>; TA null null
 M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null
null M1->M1:=randInt<100,200>; null null null
 M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null
null null null null TransportERR null M3->M3:=randInt<300,700>; TD null
null null null INVITE null null null null null

0   0   0   0   0   0   0   0   0
0   2   1   0   0   0   3   0   0
0   2   0   0   0   0   3   0   0
0   0   0   0   0   0   3   0   0
0   0   0   1   0   0   0   0   0

NOT E:  The specifications of event classes for the states 1, 2, and 3 (Calling, 
Proceeding, and Completed) were too long to fit into a single line. Therefore, 
definitions of event classes for each of these states spans across two lines (the 
second starts at the next level of indentation).
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Next, we activate GTCG with the script that specifies the starting state 
identification 4 (Initial), the number of test cases that is equal to 1,000, 
and the test case length that is equal to 4 (this means 4 steps, i.e., par-
ticular events, per test case). Selection of this particular test case length 
requires a short comment. This value is exactly the length of the short-
est path across all five states, starting from the state Initial (path Initial–
Calling–Proceeding–Completed–Terminated, with five states and four state 
transitions). Of course, other paths of length 4 are possible and will be 
generated.

As already mentioned, the GTCG creates two output files, testcases.txt and 
statistics.txt. According to the methodology outlined above, we first check 
the quality of the generated test suite by inspecting the file statistics.txt. Its 
content is the following:

Calculating statistics

i=0   ci=1104                   di=0.0                    SLi=1.0
i=1   ci=1237                   di=2.470493128536783      SLi=0.0
i=2   ci=291                    di=0.7498208280500565     SLi=0.7014229616104999
i=3   ci=368                    di=0.1864198248469353     SLi=0.910066579962014
i=4   ci=1000                   di=0.0                    SLi=1.0
Mean  d=0.6813467562867549
Mean  SL=0.7222979083145027

The average significance level SL is equal to 72% (0.72). Because this number 
is greater than the required 20%, we conclude that the quality of the gener-
ated test suite is sufficient, and that we can use it for statistical usage testing.

Next, we look more closely at a couple of test cases from the beginning of 
the file testcases.txt to get a better feeling of the nature of statistical test cases. 
The relevant comments are interleaved with the test cases:

0:
TestBox.initialize();
INVITE
443
TransportERR
End

Test case number 0: After the initial INVITE, GTCG randomly selects the 
event class labeled 300–699 and the particular event 443 from that class. This 
action causes the state to transition to the state Completed (Figure 5.14). Next, 
GTCG randomly selects the event TransportERR, thus causing the state to 
transition to the state Terminated. End is the only possible event in that state.

1:
TestBox.initialize();
INVITE
TA
586
TD
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Test case number 1: After the initial INVITE, GTCG randomly selects the 
event class TA (Timer A fires). The current state remains in the state Calling 
(Figure 5.14). Next, GTCG randomly selects the event 586, thus causing the state 
transition to the state Completed. Finally, GTCG randomly selects the event TD 
(Timer D fires), which causes the state transition to the state Terminated.

2:
TestBox.initialize();
INVITE
190
267
End

Test case number 2: After the initial INVITE, GTCG randomly selects the 
event class 1XX and the particular event 190. This causes the state transition 
to the state Proceeding (Figure 5.14). Next, GTCG randomly selects the event 267, 
thus causing the state transition to the state Terminated. The next event must be 
the event End.

3:
TestBox.initialize();
INVITE
494
TD
End

Test case number 3: After the initial INVITE, GTCG randomly selects the 
event class 300–699 and the particular event 494. This causes the state tran-
sition to the state Completed (Figure 5.14). Next, GTCG randomly selects the 
event TD, thus causing the state transition to the state Terminated. The next 
event must be the event End.

In the short descriptions of the generated test cases given above, we used 
the construct, “GTCG randomly selects the event class X and the particular 
event Y,” for brevity. One should remember that the selection of the event 
class is always in accordance with the given operational profile probability 
distribution, whereas the selection of the particular event from the given 
class is really random.

The previous example shows how we can use statistical usage testing for 
testing a part of the product. As already mentioned, we can employ statisti-
cal usage testing for testing whole products, too. The next example shows 
such an application—statistical usage testing of the simple SIP softphone.

The operational profile of the SIP softphone is shown in Figure 5.15. 
It has 8 states and 13 event classes. The states are Connecting, Terminating, 
Disconnecting, Connected, Calling, Initial, Proceeding, and Ringing (listed here in 
the ascending order of their identification). The event classes are RELEASE, 
200, ACK, 180, ERR, END, ANSWER, 100, INVITE, SETUP, BYE, TH, and TB 
(also listed in the ascending order of their identification).

All event classes have just one member, and their definition is equal to 
the label shown in Figure 5.15, with the exception of the event class that is 
labeled ERR, which is defined as follows:



381Test and Verification

M3->M3:=randInt<300,381>/randInt<400,494>/randInt<500,514>/randInt<600,607>;

This definition is a good example of how we can specify a random value that 
may be selected from more disjointed intervals of values. Next, we generate 
1,000 test cases with five test steps each. The content of the file statistics.txt is 
the following:

Initial

Calling Ringing

Proceeding Connecting

Connected

Disconnecting

Terminated

SETUP, P=50% INVITE, P=50%

100, P=40% ANSWER, P=70%

200, P=40% ACK, P=80%

200, P=30%

RELEASE, P=50%

200, P=100%

End, P=100%

BYE, P=50%

180, P=30%

ERR, P=30%

ERR, P=30%

TH, P=20%

TB, P=30%

FIGURE 5.15
SIP softphone operational profile.
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Calculating statistics

i=0   ci=360                  di=0.625                   SLi=0.4686783191616166
i=1   ci=1564                 di=0.0                     SLi=1.0
i=2   ci=244                  di=0.0                     SLi=1.0
i=3   ci=546                  di=1.6483516483516483      SLi=0.21453651135488572
i=4   ci=496                  di=0.5843413978494628      SLi=0.7503695231083775
i=5   ci=1000                 di=0.064                   SLi=0.8248262531456066
i=6   ci=286                  di=3.0879953379953404      SLi=0.21451818049555796
i=7   ci=504                  di=0.4897959183673477      SLi=0.4966702889206116
Mean  d=0.8124355378204748
Mean  SL=0.6211998845233321

Because the average significance level is 62% (greater than 20%), we can 
conclude that the test suite quality is acceptable. A couple of typical test cases 
are taken from the file testcases.txt and are shown here without comment (the 
reader should study them for their own exercise): 

15:
TestBox.initialize();
SETUP
100
180
200
BYE

16:
TestBox.initialize();
INVITE
ANSWER
ACK
BYE
END

17:
TestBox.initialize();
SETUP
100
200
BYE
END

18:
TestBox.initialize();
INVITE
ANSWER
ACK
RELEASE
200

5.5  Examples

This section includes two examples and two related problems. The first exam-
ple demonstrates unit testing of the FSM Library–based implementations. The 
second example illustrates integration testing of FSM Library–based products.
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5.5.1  Example 1

This example demonstrates unit testing of the SIP invite client transac-
tion implementation, which is described in Section 4.5.2 (Example 2). The 
SIP invite client transaction implementation is based on the requirements 
and analysis made in Section 2.3.3 (Figure 2.16) and the design presented in 
Section 3.10.5 (Example 5).

Because the implementation under test (SIP invite client transaction) is 
implemented in C++, we use CppUnit implementation of the unit testing 
framework, introduced in Section 5.1. In this simple example, we will con-
struct just one test case to keep it short enough. Also, we will skip some 
SIP message-specific message handling, which is really not essential for this 
example.

We start this example by constructing two classes: ExampleTestCase and 
ExampleMessageFactory. The former is the tester class, which comprises 
one sample test case, whereas the latter is the supplementary class, which 
provides the functions for message management. The content of the class 
ExampleTestCase declaration file, named ExampleTestCase.h, is the following:

#ifndef CPP_UNIT_EXAMPLETESTCASE_H
#define CPP_UNIT_EXAMPLETESTCASE_H
// CppUnit helper macros
#include <cppunit/extensions/HelperMacros.h>
// Problem specific headers
#include "../kernel/fsmsystem.h"
#include "../kernel/logfile.h"
#include "../NewSIP/InvClientTE.h"
#include "ExampleMessageFactory.h"
/*
 * A sample test case
 *
 */
class ExampleTestCase : public CPPUNIT_NS::TestFixture {
 CPPUNIT_TEST_SUITE(ExampleTestCase);
 CPPUNIT_TEST(example);
 CPPUNIT_TEST_SUITE_END();

protected:
 FSMSystemWithTCP *pSys;
 LogFile *lf;
 InviteClientTE* pInviteCltTE[NUMBER_OF_TES];
 ExampleMessageFactory* pEMF;
 uint8 *msg;
 uint16 msgcode;
public:
 void setUp();
protected:
 void example();
};
#endif

The declaration file above includes the CppUnit helper macros header file 
(HelperMacros.h) and the problem-specific header files ( fsmsystem.h, logfile.h, 
InvClientTE.h, and ExampleMessageFactory.h). The class ExampleTestCase 
is derived from the class that is defined by the macro instruction 
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CPPUNIT_NS::TestFixture. The definition of the test suite starts with the 
macro instruction CPPUNIT_TEST_SUITE() and ends with the macro 
instruction CPPUNIT_TEST_SUITE_END(). The parameter of the former 
macro instruction is the name of the test suite (ExampleTestCase, in this 
example).

Generally, we use the macro instruction CPPUNIT_TEST() to define indi-
vidual test cases inside the body of test suite definition. The parameter of 
this macro instruction is the name of the test case function that is defined 
within the tester class and that we want to add to the test suite. In this par-
ticular example, we add a single test case function, named example(), with 
a single macro instruction, CPPUNIT_TEST(), whose real parameter is the 
string “example”.

Next, we define the test case fixture. In this example, it comprises the 
following:

• The pointer to the instance of the class FSMSystemWithTCP (see 
Section 6.8.9)

• The pointer to the instance of the class LogFile (which is the interface 
to the log file)

• The array of pointers to the instances of the class InviteClientTE 
(which is actually the implementation under test)

• The pointer to the instance of the class ExampleMessageFactory 
(which is the supplementary tester class)

• The pointer to the message
• The code of the message

At the end of this file we declare the function setUp() and the test case func-
tion example(). The content of the class ExampleTestCase definition file, named 
ExampleTestCase.cpp, is as follows:

#include "ExampleTestCase.h"
#include "../kernel/fsmsystem.h"
#include "../kernel/logfile.h"
#include "../NewSIP/InvClientTE.h"
#include "ExampleMessageFactory.h"

CPPUNIT_TES_SUITE_REGISTRATION(ExampleTestCase);
void ExampleTestCase::setUp() {
 pSys = new FSMSystemWithTCP(11,11);
 pEMF = new ExampleMessageFactory();
 for (int i = 0; i < NUMBER_OF_TES; i++) {
 pInviteCltTE[i] = new InviteClientTE();
 }

 uint8 buffClassNo = 4;
 uint32 buffsCount[4] = {50, 50, 50, 50};
 uint32 buffsLength[4] = {1025, 1025, 1025, 1025};
 pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);
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 lf = new LogFile("log.log", "log.ini");
 LogAutomateNew::SetLogInterface(lf);

 pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);
 for (i = 1; i < NUMBER_OF_TES; i++){
 pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);
 }
}

void ExampleTestCase::example() {
 msg = pEMF->MakeInviteToTALMsg();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(TLI_Test_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)INVITE);

 msg = pEMF->Make1XXToTAL();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_1XX);

 msg = pEMF->Make2XXToTAL();
 pInviteCltTE[0]->Process(msg);
 msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);
 CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_2XX);
}

At the beginning of this file, we register the test suite with the macro 
instruction CPPUNIT_TEST_SUITE_REGISTRATION(). The real parameter 
of this macro instruction is the name of the test suite. Next, we define the 
function setup() and the test case function example().

The function setup() starts by creating an instance of the class 
FSMSystemWithTCP, an instance of the class ExampleMessageFactory, and 
the given number (NUMBER_OF_TES) of instances of the implementa-
tion under test (the class InviteClientTE). After that, it defines the types 
of buffers to be used by the FSM Library kernel, initializes the kernel 
by calling the function InitKernel() (see Section 6.8.4), creates the log file 
by calling the function LogFile(), and sets the log interface by calling the 
function SetLogInterface() (see Section 6.8.105). At the end, it adds the given 
number (NUMBER_OF_TES) of instances of the implementation under 
test to the FSM system by calling its function Add() (see Section 6.8.2 and 
Section 6.8.3).

The function example() performs the test case by checking state transitions 
of the implementation under test in the following three steps:

• Check the state transition from the state STATE_IDLE (see Section 
4.5.2) to the state STATE_CALLING, driven by the message INVITE.

• Check the state transition from the state STATE_CALLING to the 
state STATE_PROCEEDING, driven by the message 1XX.

• Check the state transition from the state STATE_PROCEEDING to 
the state STATE_INITIAL, driven by the message 2XX.
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Each of these three steps consists of the following four substeps:

• Create the message (INVITE, 1XX, or 2XX).
• Send the message to the implementation under test by calling its 

function member Process() (see Section 6.8.82).
• Get the message code of the output message by calling the function 

member GetMsgCodeFromMBX() of the class ExampleMessageFactory. 
The output message is retrieved from the destination FSM Library 
mailbox. The destination mailbox is either the mailbox of the trans-
port layer (TPL) or the mailbox of the transaction user (TU).

• Check the retrieved message code against the expected one (mes-
sage code of the message INVITE, 1XX, or 2XX) by calling the macro 
CPPUNIT_ASSERT_EQUAL().

The particular substeps of the first step are the following:

• Create the message INVITE by calling the function member 
MakeInviteToTALMsg() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TPL 

mailbox.
• Check it against the code of the message INVITE.

The particular substeps of the second step are the following:

• Create the message 1XX by calling the function member 
Make1XXToTAL() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TU 

mailbox.
• Check the message code against the code of the message 1XX.

The particular substeps of the third step are the following:

• Create the message 2XX by calling the function member 
Make2XXToTAL() of the class ExampleMessageFactory.

• Send the message to the implementation under test.
• Get the message code of the message that is retrieved from the TU 

mailbox.
• Check the message code against the code of the message 2XX.
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Next, we construct the supplementary class ExampleMessageFactory. The 
content of its declaration file, named ExampleMessageFactory.h, is as follows:

#ifndef _ExampleMessageFactory_FSM_
#define _ExampleMessageFactory_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"
class ExampleMessageFactory : public FiniteStateMachine {
 int cseq_number;
 Message SIPMsg;
 sip_t *mes;
 stringresponseBody;
public:
 uint8* MakeInviteToTALMsg();
 uint16 GetMsgCodeFromMBX(uint8 mbx);
 uint8* Make1XXToTAL();
 uint8* Make2XXToTAL();

 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id);
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:
 ExampleMessageFactory();
 ~ExampleMessageFactory();
 void Initialize();
};
#endif

The content of the class ExampleMessageFactory definition file, named 
ExampleMessageFactory.cpp, is as follows (the parts that are not essential for 
this example are omitted to keep the example short):

#include "ExampleMessageFactory.h"
#include "../parser/smsgtypes.h"
#include "../parser/smsg.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);

ExampleMessageFactory::ExampleMessageFactory() : FiniteStateMachine(16, 2, 3) {}

ExampleMessageFactory::~ExampleMessageFactory() {}

void ExampleMessageFactory::Initialize() {}

uint8* ExampleMessageFactory::MakeInviteToTALMsg(){
 char temp[10];
 char szHostName[255];
 hostent* HostData;
 uint8* recmsg;
 uint8* msg;
 ...
 PrepareNewMessage(0x00,INVITE);
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 SetMsgToAutomate(InviteClientTE_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParam(SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),
 (uint8*) SIPMsg.getLastMessage().c_str());
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}
uint16 ExampleMessageFactory::GetMsgCodeFromMBX(uint8 mbx) {
 uint8* msg;
 uint16 msgCode;
 msg = GetMsg(mbx);
 msgCode = GetUint16((uint8*)(msg+MSG_CODE));
 return msgCode;
}

uint8* ExampleMessageFactory::Make1XXToTAL(){
 uint8* msg;
 ...
 PrepareNewMessage(0x00,RESPONSE_1XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}

uint8* ExampleMessageFactory::Make2XXToTAL(){
 uint8* msg;
 SIPMsg.makeResponse("200","OK",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_2XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(InviteClientTE_FSM_MBX);
 msg = GetMsg(InviteClientTE_FSM_MBX);
 return msg;
}
...

The main reason we must introduce the supplementary class 
ExampleMessageFactory is because most of the functions defined in the FSM 
Library API are protected, which means that they cannot be used in the tes-
ter class directly. Alternately, as defined at the moment, CppUnit does not 
allow us to use multiple inheritance when we are defining tester classes. 
Rather, a tester class may be derived only from the class that is defined by the 
macro instruction CPPUNIT_NS::TestFixture.

The source code from the file ExampleMessageFactory.cpp should be 
obvious by now. The only detail that deserves a short explanation is the 
method by which we create messages. We use typical snippets of code, 
which start with the PrepareNewMessage() function call and are followed 
with the series of SetXX() and AddParamXX() function calls. The way we 
end these code snippets may seem odd. First, we send a new message by 
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calling the function SendMessage() and, immediately after that, we read 
that message from the same destination mailbox by calling the function 
GetMsg(). Although it may seem odd, this is the most effective method of 
creating the complete message in the format that is expected by the func-
tion Process(). 

Finally, we write the main module, named Main.cpp. This module creates 
the collaboration of objects necessary to automatically execute the test suite 
and report the results of its execution (Figure 5.16). The function main() per-
forms the following steps:

• Create the event manager and the test controller.
• Add a listener that collects test results.
• Add a listener that prints dots as test cases are executed (one dot per 

test case).
• Add the top suite to the test runner.
• Print the test results in a compiler-compatible format.

The source code of the module Main.cpp follows:

#include <cppunit/BriefTestProgressListener.h>
#include <cppunit/CompilerOutputter.h>
#include <cppunit/extensions/TestFactoryRegistry.h>
#include <cppunit/TestResult.h>
#include <cppunit/TestResultCollector.h>
#include <cppunit/TestRunner.h>

int main(int argc,char* argv[]) {
 CPPUNIT_NS::TestResult controller;
 CPPUNIT_NS::TestResultCollector result;
 controller.addListener(&result);
 CPPUNIT_NS::BriefTestProgressListener progress;

Controller

Progress

Result Outputter

Runner

FIGURE 5.16
Collaboration of objects necessary for the automatic execution of the CppUnit test suite.
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 controller.addListener(&progress);
 CPPUNIT_NS::TestRunner runner;
 runner.addTest(CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest());
 runner.run(controller);
 CPPUNIT_NS::CompilerOutputter  outputter(&result,std::cerr);
 outputter.write();
 return result.wasSuccessful() ? 0 : 1;
}

As a result of automatic test suite execution, we get the following report on 
the monitor:

ExampleTestCase::example : OK
OK(1)
Press any key to continue...

Additionally, we will get the log file with the following content:

Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x0000), Length: 502  Coding type: 0
0f cd 02 ff | 00 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 f6 |
...
Start Timer:  (2)
State: 0 -> 1
-----------------------------------------------------
Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x0029), Length: 9  Coding type: 0
0f cd 06 ff | 29 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00 
04 00 | 50 9c 4c 00 | 00
Stop Timer:  (2)
State: 1 -> 2
-----------------------------------------------------
Fri Sep 16 19:32:50 2005
Msg To: UNKNOWN (0x02), Automate ID: 0x00000000
MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd
Received Msg: (0x002a), Length: 9  Coding type: 0
0f cd 06 ff | 2a 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00 
04 00 | 50 9c 4c 00 | 00
State: 2 -> 0
-----------------------------------------------------

Each record of the log file indicates date and time, message source and des-
tination, message type, message length, message coding type, the content of 
the message (in hexadecimal code), timer operations, and the state transition 
information (e.g., “0 -> 1” means a transition from the state S0 to the state S1). 
By looking at this particular log file, we see that the implementation under 
test behaves as expected. But normally we do not look at the log file if all test 
cases pass. The real value of the log file is that it is of great help in localizing 
bugs if a test case fails. Additionally, we could use the log file to check the 
internal operation of the implementation under test automatically by the tes-
ter class. We skipped that step to keep the example simple enough.
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5.5.2  Example 2

This example illustrates one of the steps in integration testing of an SIP-based 
softphone. Imagine that the SIP invite client transaction and the transaction 
layer dispatcher have undergone complete unit testing. The next normal step 
would be to integrate them into the final product. Furthermore, imagine that 
TU and TPL are not yet developed. The only thing we can do is to replace 
TU and TPL with their imitator classes, named UA_Test and TLI_Test (TLI 
stands for Transport Layer Interface), respectively (see the collaboration dia-
gram in Figure 5.17).

The aim of this simple example is to check one particular interaction, 
illustrated with the collaboration diagram in Figure 5.17. To achieve that 
goal, we construct the class UA_Test that acts as a simple test driver, and 
the class TLI_Test that acts as a simple test stub. Both classes are derived 
from the class FiniteStateMachine. The former class has a single state and 
a single state transition, whereas the latter has two states and two state 
transitions.

pUA : UA_Test

: InviteClientTEpTALDisp : TAL_Disp

pTLI : TLI_Test

5: rsp(1XXX)

8: rsp(200)

3: rsp(1XX)

6: rsp(200)

1: req(INVITE)
4: rsp(1XX)
7: rsp(200)

0: re
q(IN

VITE) 

2: re
q(IN

VIT
E)   

Test Driver

Test Stub

FIGURE 5.17
Example of integration testing collaboration.
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The class UA_Test declaration file, named UA_Test.h, has the following 
content:

#ifndef _UA_Test_FSM_
#define _UA_Test_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"

class UA_Test : public FiniteStateMachine {
 int cseq_number;
 Message SIPMsg;
 void SendInviteToTAL();
public:
 enum States { STATE_INITIAL };
 void Evt_Init_TIMER_TINV_EXP();
 void Event_UNEXPECTED();
 // FiniteStateMachine abstract functions
 StandardMessage StandardMsgCoding;
 MessageInterface *GetMessageInterface(uint32 id); 
 void SetDefaultHeader(uint8 infoCoding);
 void SetDefaultFSMData();
 void NoFreeInstances();
 void Reset();
 uint8 GetMbxId();
 uint8 GetAutomate();
 uint32 GetObject();
 void ResetData();
public:
 UA_Test();
 ~UA_Test();
 void Initialize();
};
#endif

As mentioned above, the class UA_Test has a single state, named STATE_
INITIAL, and a single state transition function, named Evt_Init_TIMER_
TINV_EXP(). The class UA_Test definition file, named UA_Test.cpp, has the 
following content (the parts that are not essential are omitted):

#include "UA_Test.h"
#include "../parser/smsgtypes.h"
#include "../parser/smsg.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);

UA_Test::UA_Test() : FiniteStateMachine(16, 2, 3) {}
UA_Test::~UA_Test() {}

void UA_Test::Initialize() {
 SetState(STATE_INITIAL);
 InitTimerBlock(TIMER_TINV,1,TIMER_TINV_EXPIRED);
 InitEventProc(STATE_INITIAL,TIMER_TINV_EXPIRED,
 (PROC_FUN_PTR)&UA_Test::Evt_Init_TIME_TINV_EXP);
 InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&UA_Test::Event_UNEXPECTED);
 StartTimer(TIMER_TINV);
}

void UA_Test::Evt_Ini_TIMER_TINV_EXP() {
 SendInviteToTAL();
}
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void UA_Test::SendInviteToTAL(){
 char temp[10];
 char szHostName[255];
 hostent* HostData;
 uint8* recmsg;
 sip_t *mes;
 ...
 PrepareNewMessage(0x00,INVITE);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParam((SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),
 (uint8*) SIPMsg.getLastMessage().c_str());
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}
...

The function Initialize() sets the FSM initial state, initializes the timer 
TIMER_TINV to a 1-s delay, sets the state transition functions, and starts 
the timer TIMER_TINV. When the timer expires, the state transition func-
tion Evt_Init_TIMER_TINV_EXP() is called. This function sends the INVITE 
message to the transaction layer dispatcher (TAL_Disp) by calling the func-
tion SendInviteToTAL(), which is very similar to the one given in the Example 
1 (see Section 5.5.1). Further on, the INVITE message is routed toward the test 
stub class TLI_Test.

The class TLI_Test declaration file, named TLI_Test.h, has the following 
content (the parts that are not essential are omitted):

#ifndef _TLI_Test_FSM_
#define _TLI_Test_FSM_
#include "../constants.h"
#include "../kernel/fsm.h"
#include "../message/message.h"

class TLI_Test : public FiniteStateMachine {
 ...
 Message SIPMsg;
 sip_t *mes;
 // Message management functions
 void Send1XXToTAL();
 void Send2XXToTAL();
public:
 enum States {
 STATE_INITIAL,
 STATE_1XX_SENT
};
 void Evt_Init_INVITE_T();
 void Evt_1XXSent_TIMER_T2XX_EXP();
 void Event_UNEXPECTED();
// FiniteStateMachine abstract functions
 ...
public:
 TLI_Test();
 ~TLI_Test();
 void Initialize();
};
#endif
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As mentioned above, the class TLI_Test has two states, named STATE_
INITIAL and STATE_1XX_SENT, and two state transition functions, named 
Evt_Init_INVITE_T() and Evt_1XXSent_TIMER_T2XX_EXP(). The class 
TLI_Test definition file, named TLI_Test.cpp, has the following content (the 
parts that are not essential are omitted):

#include "TLI_Test.h"
#define SipMessageCoding 0x00
extern char* IPString(unsigned int addr, char* buf, int len);
TLI_Test::TLI_Test() : FiniteStateMachine(16, 2, 3) {}
TLI_Test::~TLI_Test() {}

void TLI_Test::Initialize() {
 char szHostName[255];
 hostent* HostData;
 SetState(STATE_INITIAL);
 InitTimerBlock(TIMER_T2XX,2,TIMER_T2XX_EXPIRED);
 InitEventProc(STATE_INITIAL,INVITE,
 (PROC_FUN_PTR)&TLI_Test::Evt_Init_INVITE_T);
 InitEventProc(STATE_1XX_SENT,TIMER_T2XX_EXPIRED,

(PROC_FUN_PTR)&TLI_Test::Evt_1XXSent_TIME_T2XX_EXP);
 InitUnexpectedEventProc(STATE_INITIAL,
 (PROC_FUN_PTR)&TLI_Test::Event_UNEXPECTED);
 // Problem specific part
 ...
}

void TLI_Test::Evt_Init_INVITE_T() {
 Send1XXToTAL();
 StartTimer(TIMER_T2XX);
 SetState(STATE_1XX_SENT);
}

void TLI_Test::Evt_1XXSent_TIMER_T2XX_EXP() {
 Send2XXToTAL();
}

void TLI_Test::Send1XXToTAL(){
 uint8* recmsg;
 recmsg = GetParam(SIP_RAW_MESSAGE);
 ...
 SIPMsg.makeResponse("100","Trying",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_1XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}

void TLI_Test::Send2XXToTAL(){
 SIPMsg.makeResponse("200","OK",responseBody,0);
 PrepareNewMessage(0x00,RESPONSE_2XX_T);
 SetMsgToAutomate(TAL_Disp_FSM);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(0);
 AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
 SendMessage(TAL_Disp_FSM_MBX);
}
...
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The function Initialize() sets the initial state, initializes the timer TIMER_
T2XX to a 2-s delay, sets the state transition functions, and finishes with 
some problem-specific initializations. The state transition function Evt_Init_
INVITE_T(), triggered by the reception of the message INVITE, sends the 
preliminary response 100 (Trying) by calling the function Send1XXToTAL(), 
starts the timer TIMER_T2XX, and changes its state to STATE_1XX_SENT. 
The state transition function Evt_1XXSent_TIMER_T2XX_EXP(), triggered 
with the expiration of the timer TIMER_T2XX, sends the final response 200 
(OK) by calling the function Send2XXToTAL().

The content of the main module, named test_main.cpp, is as follows (the 
parts that are not essential are omitted):

#include <conio.h>
#include "kernel/fsmsystem.h"
#include "kernel/logfile.h"
#include "NewSIP/TAL_Disp.h"
#include "Test/UA_Test.h"
#include "Test/TLI_Test.h"
#include "NewSIP/InvClientTE.h"
 FSMSystemWithTCP *pSys;
 LogFile *lf;
 TAL_Disp* pTALDisp;
 TLI_Test* pTLI;
 UA_Test* pUA;
 InviteClientTE* pInviteCltTE[NUMBER_OF_TES];
 DWORD thread_id;
 HANDLE thread_handle;
 ...
DWORD WINAPI SystemThread(void *data){
 FSMSystem *sysAutomate = (FSMSystem *)data;
 sysAutomate->Start();
 return 0;
}
int init(){
 pSys = new FSMSystemWithTCP(11,11);
 pTALDisp = new TAL_Disp();
 pTLI = new TLI_Test();
 pUA = new UA_Test();
 for (int i = 0; i < NUMBER_OF_TES; i++){
 pInviteCltTE[i]= new InviteClientTE();
 }
 uint8 buffClassNo = 4;
 uint32 buffsCount[4] = { 50, 50, 50, 50 };
 uint32 buffsLength[4] = { 1025, 1025, 1025, 1025};
 pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);
 lf = new LogFile("log.log", "log.ini");
 LogAutomateNew::SetLogInterface(lf);
 pSys->Add(pTALDisp, TAL_Disp_FSM, 1, false);
 pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);
 pSys->Add(pTLI, TLI_Test_FSM, 1, false);
 pSys->Add(pUA, UA_Test_FSM, 1, false);
 for (i = 1; i < NUMBER_OF_TES; i++){
 pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);
 }
 thread_handle = CreateThread(NULL, 0, SystemThread, pSys,
 THREAD_PRIORITY_ABOVE_NORMAL, &thread_id);
 return 1;
}
...
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void main (void){
 parser_init();
 init();
while(!kbhit());
 exit_app();
}

As a result of the execution of the main module, we get the log file with 
nine records that correspond to the messages that are exchanged between 
implementations under test (the transaction layer dispatcher and SIP invite 
client transaction), test driver (UA_Test), and test stub (TLI_Test). This file is 
very similar to the one given in Example 1 (see Section 5.5.1) but three times 
longer, and hence is not included here.

Test automation of integration tests based on log files is possible for sim-
ple collaborations like the one shown in this example, although it may be 
cumbersome. However, if we must deal with more complex collaborations 
that evolve concurrently, this approach is hardly applicable. Using log files 
in such situations would normally require human intervention for checking 
the results of the integration tests. Generally, we should try to use the style of 
unit testing based on the automatic checking of results (see Section 5.1), even 
for the integration of the parts of the system.

5.6  Further Reading

The reader can find more information related to this chapter in the refer-
ences. The research by Berard et al. (2001) contains comprehensive coverage 
of the state-of-the-art model-checking techniques and tools. Newborn (2001) 
provides detailed information on the theorem prover THEO used in Section 
5.3. Hoare (1985) wrote the famous book on CSP (nowadays, it is also avail-
able online for free as a PDF). The study of Sun (2009) is about PAT. Fischer 
et al. (2006) and Canepa et al. (2008) are the original papers on leader elec-
tion algorithms, which appeared in the examples in Sections 5.3.2.3.3, 5.3.2.3.4, 
and 5.3.2.3.5. Popovic et al. (2001) provide a software maintenance case study 
in the area of communication protocol engineering. The research by Popovic 
and Velikic (2005) contains more information on the generic test case generator 
used in Section 5.5. Woit (1994; Chapter 3 and Section 3.1.1, in particular) pro-
vides more information on the reliability estimation model used in Section 5.5.
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6
FSM Library

The purpose of this chapter is to familiarize the reader with an example 
of a real-world library for making families of communication protocols. 
Although it is not perfect, it is in use and evolving. The main argument 
against it may be that there are too few C++ classes with too many function 
members. Alternately, this disadvantage is a tradeoff for a rather simple API, 
which is quite easy to learn and use.

6.1  Introduction

The FSM Library described in this book was created to be used as a work-
ing environment for the implementation of groups of communication proto-
cols. The programmer has two basic classes at his or her disposal, namely, 
FSMSystem and FiniteStateMachine. The class FSMSystem models a plat-
form for a group of communication processes (otherwise called finite state 
machines or automata). An instance of this class interconnects individual 
communication processes by handling all of the resources needed for the 
operation of individual finite state machines.

The class FiniteStateMachine models a generic communication process 
(i.e., communication protocol). Each individual communication protocol is 
represented by an instance of this class. The implementation of a particular 
communication protocol is narrowed down to writing state transition func-
tions in C++. The transition function comprises procedures that process the 
message received in a given FSM state. This processing results in a transi-
tion to a new FSM state and the optional generation of corresponding outgo-
ing messages. All state transition functions must be defined for all the finite 
state machines registered to a single FSM system (an instance of the class 
FSMSystem). Additionally, all the FSM system run-time elements must be ini-
tialized properly before they can be successfully started.

The relationship between the classes FSMSystem and FiniteStateMachine is 
symbiosis—one cannot operate without the other. The FSM system clearly 
represents an infrastructure, or an unused platform. In reality, an FSM sys-
tem is always used so that at least a couple of finite state machines are reg-
istered to it, together representing a group of finite state machines. Because 
of this, and in order to achieve simplicity and brevity, we frequently use 
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the term “FSM system” as a synonym for the group of automata, assuming 
that some individual automata are actually registered to it, and vice versa. 
Although an instance of the class FiniteStateMachine cannot operate on its 
own, we simply refer to it as a “finite state machine.”

6.2  Basic FSM System Components

The FSMSystem Library is written in C++ using an object-oriented approach. 
The basic components are written as C++ classes that provide functionality 
of both individual finite state machines and a group of finite state machines. 
These classes are the following:

• FiniteStateMachine

• FSMSystem

A class can inherit the functionality of a single finite state machine by spe-
cializing the base class FiniteStateMachine. The programmer implements this 
class by writing the real functions for those declared as virtual, by adding new 
problem-specific functions (e.g., state transition functions), and by optionally 
overriding the inherited functions to redefine the functionality of the base class.

A class can inherit the functionality of a group of finite state machines by 
specializing the class FSMSystem. Normally, this class is simply instantiated 
as an oracle of a group of finite state machines.

6.2.1  Class FSMSystem

An instance of the class FSMSystem is an object representing a finite state 
machine system, i.e., a group of finite state machines (a group of automata). 
The protected attributes of this class represent the resources available for all 
the automata included in a group of automata. The basic task of this class 
is the initialization and management of FSMs, buffers (memory zones), 
messages, and timers. During a normal lifecycle of an instance of the class 
FSMSystem, its user typically performs the following steps or operations:

• Create FSM system
• Initialize FSM system
• Start FSM system
• Stop FSM system

In the list above, the idiom “FSM system” represents an instance of the class 
FSMSystem.



401FSM Library

6.2.1.1  FSM System Initialization

The initialization of the FSM system consists of the following steps:

• Create the FSM system—see the constructor FSMSystem().
• Create and initialize individual finite state machines—see the con-

structor FiniteStateMachine().
• Add individual finite state machines to the FSM system.
• Initialize the FSM system.
• Start FSM system logging.

The constructor FSMSystem() requires two parameters:

• The number of types of finite state machines
• The number of mailboxes

Individual instances of the class FiniteStateMachine can be added to the 
FSM system by using one of two the possible functions:

void Add(ptrFiniteStateMachine object, // Automata instance address
 uint8 automataType, // Automata type
 uint32 numOfObjects, // Number of instances
 bool useFreeList = false); // List of free automata

void Add(ptrFiniteStateMachine object, // Automata instance address
 uint8 automataType); // Automata type

The first of the overloaded functions above is used to add the first finite 
state machine of each type. The other instances of the same type are added 
using the second function.

The initialization of the FSM system kernel is performed by calling the 
following function:

void InitKernel(uint8 buffClassNo, // Number of different types
 uint32 *buffersCount, // Number of buffers per type
 uint32 *buffersLength, // Buffer lengths per type
 uint8 numOfMbxs=0, // Number of mailboxes
 TimerResolutionEnum timerRes = Timer1s); // Timer  resolution in ms

The parameters of the function InitKernel specify the number of buffer 
types, the numbers of the instances of different types, their sizes, the num-
ber of mailboxes to be used by the automata in a group, and the basic timer 
resolution. The default number of mailboxes is 0. The default basic timer 
resolution is 1 sec (just as an example, it can be much smaller, e.g., 10 ms).

The FSM system logging functionality provides message content record-
ing in a sequence resulting from the evolution of the FSM system. These mes-
sages are recorded automatically into a file created at the FSM system startup. 
The file log.ini is optional and is used to define textual titles (names) of the 
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messages exchanged among the finite state machines included in the corre-
sponding FSM system. If log.ini file is defined, the message binary codes are 
substituted by the corresponding message names, thus making the log files 
human readable. On Windows® machines, the log.ini file must be placed in 
the system folder (c:\winnt or c:\windows). The format of this file is as follows:

[AUTOMATA]
1=AUTOMATA1_FSM
2=AUTOMATA2_FSM
SequenceNumber=AUTOMATA_TYPE
[MESSAGES]
0=0xe000,MSG_1,0
1=0xe002,MSG_2,0
SequenceNumber=MSG_CODE,TEXT_TITLE,0

A typical example is as follows:

#define NO_BUFFERS 3
#define NO_AUTOMATA_1 5
#define NO_AUTOMATA_2 9
...

// Definition of buffers: three types, where number of buffers per type
// is 50, 30, and 20, and their lengths are 128, 256, and 512 bytes,
// respectively.
uint8 buffClassNo = NO_BUFFERS;
uint32 buffersCount[NO_BUFFERS] = {50,30,20};
uint32 buffersLength[NO_BUFFERS] = {128,256,512};

// Create FSM system that has two automata types and uses
// two mailboxes (one mailbox per each automata type)
FSMSystem *fsmSystem = new FSMSystem(2,2);

// Create individual automata
Automata1 *automata1 = new Automata1[NO_AUTOMATA_1];
Automata2 *automata2 = new Automata2[NO_AUTOMATA_2];

// Add individual automata to FSM system and implicitly initialize each
// automata instance by calling its function Initialize(). This call is
// made from the function Add.
fsmSystem->Add(&automata1[0],AUTOMATA1_FSM,NO_AUTOMATA_1,false);
for((i=1; i<NO_AUTOMATA_1; i++))
 fsmSystem->Add(&automata1[i],AUTOMATA1_FSM);

fsmSystem->Add(&automata2[0],AUTOMATA2_FSM,NO_AUTOMATA_2,true);
for((i=1; i<NO_AUTOMATA_2; i++))
 fsmSystem->Add((&automata2[i],AUTOMATA2_FSM);

// Initialize kernel
fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,2);
// Create and set logging system (log file name, message definition file)
lf = new LogFile("log.log", "log.ini");
LogAutomataNew::SetLogInterface(lf);
...

The example above starts with the definition of the number of buffer types. 
In this example, three buffer types are defined (i.e., small, medium, and large 
buffers) by setting the symbolic constant NO_BUFFERS value to 3. Next, we 
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define the number of instances of two automata types by setting the values of 
symbolic constants NO_AUTOMATA_1 to 5 and NO_AUTOMATA_2 to 9. This 
means that five instances of the first automata type and nine instances of the 
second automata type will exist in the group of automata we are going to create.

Next, the program paragraph defines the number of buffers, as well as 
their size, for each buffer type. Fifty small buffers of size 128 bytes, thirty 
medium buffers of size 256 bytes, and twenty large buffers of size 512 bytes 
would be used. The number of buffer types is stored in the variable buff-
ClassNo. The number of buffers of each type and their lengths are stored in 
the arrays buffersCount and buffersLength.

We then create the FSM system by calling the constructor of the class 
FSMSystem. This constructor has two parameters: the number of automata 
types and the number of mailboxes to be used by the system for its own pur-
poses. Next, we create two groups of automata of two different types. In this 
program, these groups are represented as arrays of instances of classes, namely, 
the classes Automata1 and Automata2. In this example, we assume that these 
classes have already been defined by extending the base class FiniteStateMachine.

After creating two groups of automata of different types, all the autom-
ata are added to the already created FSM system. The first instance of each 
automata type is added by calling the overloaded function Add with the first 
type of signature, which specifies the instance address, the instance type, the 
total number of instances of this type, and the indicator specifying if a list of 
free automata of this type exists or not. The rest of the instances are added 
by calling the overloaded function Add with the second type of signature, 
specifying just the instance address and its type.

The first automata type in this example does not have a list of free autom-
ata, whereas the second type does have a list of free automata. This means 
that the instance of the second automata type can be viewed as a pool of 
resources of the same type. They may be dynamically allocated to be engaged 
in a certain communication scenario. When a programmer decides to use 
this opportunity, they must provide the function NoFreeInstance, which is 
called when the dynamic allocation request cannot be satisfied, because no 
more free automata instances of that type are found.

The FSM system is initialized by simply calling its function InitKernel. The 
parameters of this function specify the number of buffer types, the number 
of buffers of each type, their sizes, and the number of mailboxes to be used 
for FSMs. Normally, we use one mailbox per automata type. This is not a 
restriction imposed by the class FSMSystem, it is simply a convention. Other 
arrangements are also allowed; for example, we can create more mailboxes 
for messages of different priorities, or we can create additional mailboxes 
dedicated to communication between the given groups of automata types. 
Most generally, we can use mailboxes as queues of any kinds of messages. 
Because the last parameter of the function InitKernel is omitted, the timer 
resolution is set to its default value (1 sec, in this example).
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At the end of this example, we create and set the logging system by call-
ing its constructor LogFile and the function SetLogInterface, respectively. The 
parameters of the constructor specify the name of the log file (log.log) as well 
as the name of the file containing the textual names of the messages (log.ini). 
The parameter of the function SetLogInterface specifies the logging system 
interface, which generally is a file. In this example, the disk file is named 
log.log but it could be any file, including special files representing devices 
handled by the corresponding device drivers, such as /dev/lpt or /dev/com1.

6.2.1.2  FSM System Startup

The FSM system is started by calling its function Start. Most frequently, 
this function is called by the thread assigned to the FSM system. Here is an 
example:

DWORD WINAPI FsmSystemThreadFunc((void* param)){
 try {
  fsmSystem->Start();
 }
 catch(...){
  OutputDebugString('Exception — terminating FSM system\n');
  return 0;
 }
 OutputDebugString('FSM system terminated\n');
 return 0;
}
...

// Somewhere in the main function
DWORD fsmSystemThreadId;
CreateThread(NULL,0,FsmSystemThreadFunc,0,0,fsmSystemThreadId);
...

In the example above, we start the FSM system by calling its function Start 
from the thread function FsmSystemThreadFunction. We assume that thread 
has already been created and that its identification is stored in the variable 
fsmSystemThreadId.

6.2.2  Class FiniteStateMachine

All the automata added to the FSM system are implemented by extending 
the base class FiniteStateMachine. This class defines a set of virtual functions 
that must be defined by the programmer. These functions are as follows:

MessageInterface *GetMessageInterface(uint32 id);
void SetDefaultHeader(uint8 infoCoding);
uint8 GetMbxId();
uint8 GetAutomata();
void SetDefaultFSMData();
void NoFreeInstances();
void Initialize();
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The following example illustrates the most frequently used definitions of 
FiniteStateMachine functions. A detailed description of all the functions is 
given in Section 6.8.

// This function returns the message interface for the given interface ID.
// It is assumed that standardMsgCoding is defined as:
// StandardMessage standardMsgCoding;
MessageInterface *Automata::GetMessageInterface(uint32 id){
 switch(id){
  case 0x00:
  return &standardMsgCoding;

  // Other definitions
  // case 0x01:
  // case 0x02:
 }
 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}

// This function fills in the message header.
void Automata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();

}
// This function defines the mailbox number (ID) to be used as default
// by the automata of the type defined by this class.
uint8 Automata::GetMbxId(){
 return AUTOMATA_MB_ID;
}

// This function returns the number (ID) which identifies the automata
// type defined by this class.
uint8 Automata::GetAutomate(){
 return AUTOMATA_TYPE_ID;
}

// This function sets the values of the instance attributes.
void Automata::SetDefaultFSMData(){
 attribut1 = VALUE_1;
 attribut2 = VALUE_2;
}

// This function is called if there are no more free automata of this
// type. It may be used if the instances of this class have been added to
// the FSM system with the parameter useFreeList set to value true.
void Automata::NoFreeInstances(){
 // The activity if there are no free automata of this  type.
}

 // This function defines state transition functions and timers to be used
 // by the automata of this type. It is called by the function Add, which
 // is used to add an automata instance to the given FSM system.
 // It is assumed that state transition functions are declared and defined
 // elsewhere.
void Automata::Initialize(){
 // Here we place a series of initializations:
 // InitEventProc(uint8 state, uint16 event,  PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR  fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount,  uint16 signalId);
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 InitEventProc(IDLE, MSG_SEND, (PROC_FUN_PTR)  &Automata::Idle_MsgSend);
 InitEventProc(IDLE, MSG_RCV,  (PROC_FUN_PTR)  &Automata::Idle_MsgReceive);

 InitEventProc(SEND, MSG_NEW,  (PROC_FUN_PTR)  &Automata::Send_MsgNew);
 InitEventProc(SEND, MSG_END,  (PROC_FUN_PTR)  &Automata::Send_MsgEnd);
 InitEventProc(IDLE, T200_CODE,(PROC_FUN_PTR)  &Automata::T200Expired);

 InitUnexpectedEventProc(IDLE, (PROC_FUN_PTR)  &Automata::Idle_Unexpected);
 InitUnexpectedEventProc(SEND, (PROC_FUN_PTR)  &Automata::Send_Unexpected);

 InitTimerBlock(T200,T200_VALUE,T200_CODE);
}

In the example above, we would like to create the class Automata that mod-
els one type of finite state machines (automata). The definition of the class 
comprises the definitions of its function members. The function member 
GetMessageInterface returns the object that embodies the coding of messages 
to be used by the instances of the class Automata. In this example, it is an 
instance of the class StandardMessage.

The member function SetDefaultHeader is used to automatically fill in the mes-
sage header defaults. Normally, these are the data about the automata instance 
that has created the message to send to some other automata instance. In this 
example, it uses the function SetMsgInfoCoding to specify the type of coding to be 
applied. It also uses the function SetMessageFromData to specify the type of origi-
nating automata instance, the identification of the group to which the automata 
instance belongs, and the identification of the originating automata instance.

The member function GetMbxId returns the identification of the mailbox 
used by the automata instance of this type. In this example, it is the value 
of the symbolic constant AUTOMATA_MBX_ID. The member function 
GetAutomata returns the identification of the automata type. It is the value 
of the symbolic constant AUTOMATA_TYPE_ID. The member function 
SetDefaultFSMData is used by the automata instance to set its specific data 
before it commences its normal operation. In this example, attribute1 is set to 
the value VALUE_1 and attribute2 is set to the value VALUE_2.

The member function NoFreeInstances can be used to specify the action to 
be performed, if no more free automata instances of this type are found, e.g., 
to make a small system restart, allocate some additional automata instances, 
and so on. This mechanism is available to the programmer if the instances 
of automata have been added (function Add) to the FSM system with the 
parameter useFreeList, set to the value true.

The member function Initialize is used to define automata state transition 
 functions and timers (referred to as timer blocks throughout the FSM Library 
documentation) to be used by the automata. The FSM Library distinguishes 
two types of events, expected and unexpected, and allows the program-
mer to specify the corresponding event handlers, which are just specialized 
C++ functions. These handlers are defined by calling the registration func-
tions, namely, the function InitEventProc for expected events and the func-
tion InitUnexpectedEventProc for unexpected events. The parameters of both 
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of these functions specify the state code, the event (message) code, and the 
pointer to the event handler.

In this example, we have defined seven automata state transition functions 
altogether, five of them triggered by expected events and two triggered by unex-
pected events. The part of the automata shown in the example has two states, 
IDLE and SEND. The expected events in the state IDLE are MSG_SEND, MSG_
RCV, and T200_CODE. The corresponding event handlers are Idle_MsgSend, 
Idle_MsgReceive, and T200Expired, respectively. Two legible events exist in the 
state SEND, MSG_NEW and MSG_END. The corresponding handlers are 
Send_MsgNew and Send_MsgEnd. The unexpected event handler for the state 
IDLE is Idle_Unexpected whereas for the state SEND it is Send_Unexpected. The 
corresponding state transition table is shown in Table 6.1.

The timers are initialized by calling the function InitTimerBlock. The param-
eters of this function specify the unique timer identification, its duration (as 
the number of basic timer resolution units), and the code of the message sent 
when the timer expires. In the example above, these are the symbolic con-
stants T200, T200_VALUE, and T200_CODE.

To sum, automata states and attributes are defined in accordance with 
the problem at hand. The state transition function, referred to as the event 
handler, is called upon the reception of a given message in a given state, as 
defined by the function Initialize. Each event handler is defined as a class 
member function responsible for handling a given event.

The timers to be used by the automata are also defined by the function 
Initialize. This is done by calling the function InitTimerBlock, which, in turn, 
creates the internal kernel timer block (essentially a program object) and fills 
in its identification, duration, and corresponding timer message code.

6.3  Time Management

In Section 6.2, automata timers are initialized during the FSM system startup 
by the function Initialize. The automata type that uses timers in its regu-
lar operation manages them through the corresponding FSM Library API 

TABLE 6.1

Example of a State Transition Table

MSG_RCV
MSG_
SEND T200_CODE

MSG_
NEW

MSG_
END ?

Idle Idle_
MsgReceive

Idle_
MsgSend

T200Expired Idle_
Unexpected

Send Send_
MsgNew

Send_
MsgEnd

Send_
Unexpected
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functions, which maintain the internal kernel object behind the scenes. The 
API functions are the following:

void InitTimerBlock(uint16 tmrId,uint32 count,uint16 signalId);
void StartTimer(uint16 tmrId);
void StopTimer(uint16 tmrId);
void RestartTimer(uint16 tmrId)
bool IsTimerRunning(uint16 tmrId);

The function InitTimerBlock is used to define (initialize) the timer. Its 
parameters specify the unique timer identification, its duration as a multiple 
of the basic timer resolution unit, and the code of the message sent to the 
automata mailbox when the timer expires. This is explained in the previous 
section. Notice that each timer has the unique identification tmrId used as a 
parameter of all the API functions to identify the timer.

Each API function represents a primitive timer operation. The function 
StartTimer is used to start the timer, the function StopTimer stops the timer, 
the function RestartTimer restarts the timer, and the function IsTimerRunning 
is used to check if the timer is running or not.

The following example illustrates the usage of these primitives:

if(!IsTimerRunning(T200)){
 StartTimer(T200);
}
else
 StopTimer(T200);
...

A normal timer life cycle has the following phases:

• Define, i.e., initialize, the timer.
• Use the timer by alternative application of the following primitives:

• Start (applicable if the timer is not running, meaning it was either 
newly defined or previously stopped)

• Stop (applicable if the timer is running)
• Restart (logically equivalent to Stop plus Start)
• IsTimerRunning (returns true if it does; otherwise, it returns false)

6.4  Memory Management

Because the main application of the FSM Library is in real-time systems, effi-
cient memory allocation must be provided. The FSM Library does not rely 
on a hosting operating system because some of the operating systems suffer 
from a memory fragmentation problem. Furthermore, in some applications 
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on bare machines, the operating system may not even be available. Because of 
that, memory management is one of the main functions of the FSM Library.

The working memory is partitioned into certain zones referred to as buf-
fers. The programmer defines the number of different buffer types, the num-
ber of buffers of each type, and their sizes. The programmer specifies this 
data as parameters of the function InitKernel (see Section 6.8.4) and the FSM 
Library kernel, in turn, creates them as its own internal objects.

The buffers are most frequently used indirectly through message man-
agement (message create, send, receive, and similar operations) and timer 
operations (timer definition and usage operations). Besides this indirect buf-
fer usage, the buffers can be managed directly, if needed, through the follow-
ing API functions:

uint8 *GetBuffer(uint32 length);
void  RetBuffer(uint8 *buff);
bool  IsBufferSmall(uint8 *buff,uint32 length);
uint32 GetBufferLength(uint8 *buff);

The programmer requests a buffer by calling the function GetBuffer. The 
parameter of this function is the minimal size of the desired buffer. All the buf-
fers provided by the kernel must be returned by calling the function RetBuffer. 
Untidy memory management can cause buffer loss, commonly referred to as 
memory leak, which may cause irregular kernel operation and a system crash.

Besides memory allocation (malloc) and free primitives, two additional primi-
tives provide the information about the buffer already allocated to the finite state 
machine. The function IsBufferSmall checks if the buffer size is smaller than the 
value of its parameter. If yes, it returns true, otherwise, it returns false. Another 
function, named GetBufferLength, returns the buffer size in octets (bytes).

The following example illustrates the usage of the buffer management 
primitives:

// We define two buffer types, small and large.
// There are ten small buffers and fifteen large buffers.
// The small buffer size is 128 bytes. The large buffer size is
// 256 bytes.
uint8 buffClassNo = 2;
uint32 buffersCount[2] = {10,15};
uint32 buffersLength[2] = {128,256};
...

// Kernel initialization (noMBX is irrelevant in this example)
fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,noMBX);
...

uint32 bufferLength;
uint8 *pointer = GetBuffer(100);
if((IsBufferSmall(pointer,129)){
 RetBuffer(pointer);
 pointer = GetBuffer(129);
}
if((pointer != NULL))
 bufferLength = GetBufferLength(pointer);
...
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In the example above, we first define two buffer types—small and large—
by calling the function InitKernel. Its fourth parameter (noMBX, the number 
of the mailboxes) is not relevant for this example. The rest of the program 
illustrates the usage of the FSM Library’s buffer management functions. 
First, the program asks for a buffer not smaller than 100 bytes, then it checks 
if this buffer is smaller than 129 bytes. If yes, it returns the allocated buffer 
and requests a new one not smaller than 129 bytes (in this example, it will 
get one large buffer of size 256 bytes). At the end, the program checks if the 
pointer is defined, which also means that it points to a certain buffer. If it is 
defined, the program asks for its size by calling the function GetBufferLength.

6.5  Message Management

The main communication among individual automata included in the FSM 
system is achieved through the messages exchanged through the mail-
boxes typically assigned to individual automata. The message sent from the 
originating automata instance towards the destination automata instance 
is placed temporarily in the mailbox assigned to the destination automata 
instance. There, it waits to be taken over and subsequently processed by the 
destination automata instance (process).

As already mentioned, a mailbox is a message queue that can contain mes-
sages for any automata type, thus it does not need to be assigned to some 
particular automata type. In contrast to a typical paradigm, it can be used as 
a general message queue shared by more destination automata. Essentially, 
in such a paradigm, the source automata instance can put the message in any 
mailbox hosted by the FSM system, and it will eventually be delivered to its 
proper destination.

This message routing and delivery is performed automatically by the 
FSM system and is hidden from the automata, which are just service users. 
The FSM system has an abstraction of the mailbox from which it takes mes-
sages, one at a time (mailbox abstraction provides buffering functionality 
by employing the FIFO memory type). Upon the reception of each individ-
ual message, the FSM system consults the message header to determine the 
destination automata instance and passes the message to it. The destination 
automata instance looks up the message code and, based on the current 
automata state, calls the appropriate automata state transition function.

Message reception is completely transparent for the programmer writing 
the program code for the finite state machine. The above mechanism is abso-
lutely hidden from them. The programmer must simply accept that the mes-
sage reception and its classification are done automatically by the system. 
They just write the message processing functions that are called automati-
cally by the system upon the reception of the corresponding message.
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The API functions can be partitioned into two groups:

• The functions that work with the received message.
• The functions that work with the new message that must be pre-

pared and sent.

The functions in the first group are used to provide the information about 
the originating automata instance. The source of this information is the mes-
sage header and the values of the message parameters. The functions in the 
second group provide primitives needed to make and send a message:

• Buffer allocation (indirect call to GetBuffer primitive)
• Filling the message header with the data about the originating 

automata instance
• Adding the message parameters and setting them to the given values
• Sending the message to the mailbox assigned to the destination 

automata instance

The messages may be sent only from a finite state machine or a FSM sys-
tem. Note that during normal system operation, a FSM system does not send 
any messages. In this context, a finite state machine is an instance of the 
class FiniteStateMachine, or a class derived from it, and an FSM system is an 
instance of the class FSMSystem.

Example 1:

// Get parameter of type PARAM_1 from the received message.
// The size of PARAM_1 is WORD.
WORD word;
GetParamWord(PARAM_1,word);

// Get parameter of arbitrary size. Maximum size for StandardMessage is
// 256 bytes. If that is not sufficient, a programmer must derive a new
// class and redefine its functions.
uint8 *pointer;
uint8 text[300];
uint8 msgLength;

pointer = GetParam(TEXT);
if(pointer != NULL){
 // StandardMessage format: bytes 1 and 2 contain parameter name,
 // byte 3 contains parameter length in bytes,
 // byte 4 and further contain the parameter itself.
 memcpy(text,pointer+3,*((pointer+2)));

 // Make a string by placing null at the end of  character array.
 memset(text+(*((pointer+2))),0x00,1);
}

The example above shows how the programmer can get a parameter from 
the current message. A current message is the last message received by the 
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automata instance, i.e., it is the last message taken from the mailbox and 
assigned to the automata instance for processing. The parameter size is 
WORD (2 bytes). First, the programmer declares the variable word in which 
he wants to store the parameter value.

The message can contain many parameters, and therefore the programmer 
must specify the unique identifier of the parameter they want to get. In this 
example, the identifier is the value of the symbolic constant PARAM_1. Finally, a 
copy of the desired parameter is provided by calling the API function GetParam. 
The first parameter of this function is the parameter identifier (PARAM_1) and 
the second is the variable (word) in which the desired parameter is to be copied.

The second part of the example above demonstrates how the program-
mer may handle textual parameters of arbitrary size. The StandardMessage 
format prescribes that the first 2 bytes of such a parameter are reserved for 
the parameter name, the next byte is used for the parameter length (in bytes), 
and the rest of the bytes in the parameter represent its value. The example 
shows how a copy of such a parameter can be provided and how a null ter-
minated string can be constructed by adding the NULL character at its end.

Example 2:

...
// PrepareNewMessage parameters: buffer size and message type.
PrepareNewMessage(0xAA,MSG_NAME);

// Fill in the message header:
// destination automata type, its ID, and optionally its group ID.
SetMsgToAutomata(AUTOMATA_TYPE);
SetMsgObjectNumberTo(automataId);
SetMsgToGroup(INVALID_08);

// Add parameters: see also other AddParam functions.
AddParamByte(PARAM_1,byte);
AddParamWord(PARAM_2,word);
AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to the specified mailbox.
SendMessage(AUTOMATA_MBX_ID);

The example above shows a common way to construct and send a mes-
sage. The first step is to call the function PrepareNewMessage. The parameters 
of this function specify the expected buffer size (0xAA in this example) and 
the message name, which also specifies the message type (MSG_NAME).

Next, we fill in the message header by calling the following functions:

• SetMsgToAutomata: set the destination automata instance type 
(AUTOMATA_TYPE)

• SetMsgObjectNumberTo: set the destination automata instance identi-
fication (automataId)

• SetMsgToGroup: set the automata instance group identification 
(INVALID_08)
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We then add three message parameters by calling members of the AddParam 
family of functions. The first function shown in the example is AddParamByte. 
Its parameters specify the unique parameter identifier (PARAM_1) and the 
variable containing the value of the parameter to be copied to the corre-
sponding field of the message (byte). The second function is AddParamWord. 
Similarly, its parameters specify the parameter identification (PARAM_2) 
and the variable holding its value (word). The last function is AddParam. The 
parameters of this function specify the parameter identification (PARAM_3), 
its length (parameterLength), and a pointer to it (parameterPointer).

At the end of the example above, we send the message by calling the func-
tion SendMessage. The parameter of this function specifies the destination 
mailbox identification (AUTOMATA_MBX_ID).

Example 3:

// Send a message from the FSM system.
uint8 *msg = GetBuffer(messageInfoLength+MSG_HEADER_LENGTH);

// infoBuffer must be properly formatted.
memcpy(msg+MSG_HEADER_LENGTH,infoBuffer,infoBufferLength);

SetMsgFromAutomata(AUTOMATA_TYPE_FROM_ID,msg);
SetMsgFromGroup(INVALID_08,msg);
SetMsgObjectNumberFrom(automataFromId,msg);

SetMsgToAutomata(AUTOMATA_TYPE_TO_ID,msg);
SetMsgToGroup(INVALID_08,msg);
SetMsgObjectNumberTo(automataToId,msg);

SetMsgInfoCoding(0,msg); // 0 = StandardMessage
SetMsgCode(MSG_FROM_SYSTEM_AUTOMATA,msg);
SetMsgInfoLength(infoBufferLength,msg);
SendMessage(AUTOMATA_TO_MBX_ID,msg);
...

The example above shows how a message can be created and sent within 
the FSM system. This process is done through the following steps:

• Allocate a buffer by calling the function GetBuffer.
• Copy the information payload.
• Fill in the data about the originating automata instance by calling 

the function SetMsgFromAutomata fill in the originating automata 
instance type identification (AUTOMATA_TYPE_FROM_ID); by 
calling the function SetMsgFromGroup, fill in the originating autom-
ata instance group identification (INVALID_08); and by calling the 
function SetMsgObjectNumberFrom, fill in the automata instance 
identification (automataFromId).

• Fill in the data about the destination automata instance. The func-
tion SetMsgToAutomata sets the destination automata instance 
type identification (AUTOMATA_TYPE_TO_ID), the function 
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SetMsgToGroup sets the destination automata instance group iden-
tification (INVALID_08), and the function SetMsgObjectNumberTo 
sets the destination automata instance identification (automataToId).

• Finalize the message. The function SetMsgInfoCoding sets the type 
of coding (StandardMessage), the function SetMsgCode sets the mes-
sage code (MSG_FROM_SYSTEM_AUTOMATA), and the function 
SetMsgInfoLength sets the payload length (infoBufferLength).

• Send message by calling the function SendMessage with the second 
type of the signature. The parameters of this function specify the 
destination mailbox identification (AUTOMATA_TO_MBX_ID) and 
the pointer to the message to be sent (msg).

6.6  TCP/IP Support

One of the primary design goals of creating the FSM Library was to sup-
port the design of scalable applications based on distributed processing. The 
FSM Library enables both single-processor and multiprocessor applications. 
In the former case, all groups of automata execute in a single processor. They 
share processor resources, such as its processing unit, operating memory, 
flash, and so on. The automata communicate over the mailboxes placed in 
the common operating memory.

In the latter case, various groups of automata are deployed on more proces-
sors, which can be logically viewed as a multiprocessor system. The groups 
of automata execute on different processors in parallel and use the mailboxes 
physically located in separate operating memories. The FSM Library trans-
parently uses the network infrastructure to pass messages among the com-
municating automata. Most frequently, the communication infrastructure is 
the TCP/IP technology.

In both cases, the communicating automata are unaware of the real physi-
cal infrastructure because the physical details are hidden from them. This is 
accomplished by providing a unique API. An individual automata instance 
manages just its timers, buffers, and messages (new and current, i.e., last 
received). The rest is handled by the FSM Library kernel behind the scenes. 
This means that the FSM Library inherently provides implicit support for 
TCP/IP. For example, if an automata instance wishes to send a message to 
some other automata instance physically located on a different machine, it 
just prepares the message and calls the API function SendMessage. The class 
FSMSystem takes care of transporting the message over the TCP/IP network 
and placing it in the local mailbox assigned to the destination automata.

Since individual automata based on the FSM Library only need to com-
municate among themselves, implicit TCP/IP support is sufficient. The need 
to communicate with other program components that are not based on the 
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FSM Library, and that use TCP/IP sockets, directly leads to the requirement 
for explicit TCP/IP support. To fulfill that requirement, the FSM Library also 
provides explicit (in addition to implicit) TCP/IP support in a form of tradi-
tional TCP/IP socket abstraction. Of course, the automata instance that uses 
these additional API features must be aware and capable of handling details 
of TCP/IP communication (IP addresses and port numbers).

Explicit TCP/IP support is provided by two additional classes, namely, 
FSMSystemWithTCP and NetFSM. These two classes enable the FSM Library–
based automata to directly communicate over the TCP/IP protocol stack with 
other FSM Library–based automata, or with other TCP/IP program com-
ponents, e.g., a Web server or SIP client. As their names suggest, the class 
FSMSystemWithTCP is used instead of the class FSMSystem, and the class 
NetFSM is a logical counterpart of the class FiniteStateMachine.

6.6.1  Class FSMSystemWithTCP

The class FSMSystemWithTCP is derived from the class FSMSystem by extend-
ing it with support for communication over the TCP/IP family of protocols. 
It inherits the basic functionality of the base class, which has been described 
previously (see Section 6.2.1 describing the class FSMSystem).

In contrast to single-processor applications, distributed applications com-
prise parts (i.e., groups of automata) that are started independently. Because 
of this, two groups of automata executing on different processors must estab-
lish a TCP/IP connection at their startup. The connection establishing proce-
dure is symmetric: This means that either side of the party—or both—must 
start their local TCP servers by calling the function InitTCPServer. The oppo-
site side establishes the connection by calling the function establishConnection.

Example:

// In processor 1 (server)
//
// Initialize kernel.
fsmSystem1->InitKernel(buffClassNo,buffersCount,buffersLength,2);

// Initialize TCP/IP server on port number 5000.
// NetFSM_Automata1 is derived from NetFSM.
fsmSystem1->InitTCPServer(5000,NetFSM_Automata1);

// In processor 2 (client)
//
// Set server TCP/IP parameters (port, IP address).
// Establish the connection.
fsmSystem2.setPort(5000);
fsmSystem2.setIP("192.168.77.77");
fsmSystem2.establishConnection();
...

This example shows the code excerpts for the TCP/IP server and client 
machines, named processor 1 and processor 2. At startup, the server initializes 
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the FSM Library kernel by calling the function InitKernel (its parameters are 
the number of buffer types, their count, length, and the number of the mail-
boxes to be used). Next, it calls the function InitTCPServer to start the TCP/
IP server. We assumed in this example that the class NetFSM_Automata1 is 
derived from the class NetFSM.

Alternately, the client sets the TCP port number (5000) by calling the func-
tion setPort and the IP address of the TCP server (192.168.77.77) by calling the 
function setIP, and establishes the connection with the server by calling the 
function establishConnection.

6.6.2  Class NetFSM

The class NetFSM is derived from the base class FiniteStateMachine by extend-
ing its basic functionality with support for the communication over the TCP/
IP infrastructure. The inherited basic functionality has been described pre-
viously (see Section 6.2.2 describing the class FiniteStateMachine). The basic 
functionality is extended with the abstraction enabling TCP/IP communi-
cation by adding three new function members. The new functions are the 
following:

virtual void convertFSMToNetMessage()=0;
virtual uint16 convertNetToFSMMessage()=0;
virtual uint8 getProtocolInfoCoding()=0;

These functions are used to convert the internal message format (abbrevi-
ated as FSM) into an external, or network message format (abbreviated as 
Net), and vice versa. Normally, automata executing in the same processor 
exchange internal messages coded in internal message format. However, this 
message format is not suitable for transmission over the network. Most com-
monly, the message must be serialized, i.e., transformed from the data object 
and structure form into an external message in accordance with a given 
external message format. This is a series of bits, sometimes grouped in octets 
or words, that are transmitted over the communication line.

The functions listed above are virtual functions and therefore the pro-
grammer must define them while they write a class that is derived from 
the class NetFSM. The message format conversion functions naturally read 
a message from some input buffer, convert it into a requested format, and 
write the output to an output buffer.

The function convertFSMToNetMessage is not intended to be used directly 
by the communicating automata, but rather to be called internally by the 
FSM Library kernel to convert an internal message into the external one 
before it can be sent over the network. Therefore, the input of this function 
is the internal message, and its output is the corresponding output message. 
The parameters of this function specify the pointer to the internal mes-
sage fsmMessageS, its length fsmMessageLength, the pointer to the output, the 
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external message protocolMessageS, and its length sendMsgLength. The pro-
grammer must specify the mapping algorithm by writing this function.

Symmetrically, the function convertNetToFSM is intended to be used by 
the FSM library kernel to convert an external message received over the net-
work into an internal message representation, which must be delivered to 
the local mailbox and processed further by the corresponding local autom-
ata. The input of this function is the external message and the output is 
the internal message. The parameters of this function specify the pointer 
to the external message protocolMessageR, its length receivedMessageLength, 
the pointer to the output, internal message fsmMessageR, and its length 
fsmMessageRLength.

The function getProtocolInfoCoding returns the code of the type of exter-
nal information coding. An instance of the class NetFSM, referred to as net 
automata, initiates the transmission of the message across the TCP/IP net-
work by calling the function sentToTCP. This function may throw an excep-
tion in the case of an error, e.g., when net automata wants to send a message 
after the TCP connection has been closed.

Example:

// PrepareNewMessage parameters: buffer size and message type
PrepareNewMessage(0xAA,MESSAGE_NAME);

// Fill in message header:
// destination automata type, its ID, and its group ID (if relevant)
SetMsgToAutomata(AUTOMATA_TYPE);
SetMsgObjectNumberTo(automataId);
SetMsgToGroup(INVALID_08);
// Add parameters.
AddParamByte(PARAM_1,byte);
AddParamWord(PARAM_2,word);
AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to local mailbox:
// SendMessage(AUTOMATA_MBX_ID);
// or send it over TCP/IP network:
sendToTCP();

The example above demonstrates how automata can prepare a message 
and send it over a TCP/IP network. The message is prepared like any other 
message. The function PrepareNewMessage is used to allocate a buffer for the 
message and to specify a message name. A series of already described func-
tions is then used to fill in the message header and add the message parame-
ters (see the second example in Section 6.5 describing message management). 
At the end, instead of sending the message to the local mailbox by calling the 
function SendMessage, the message is sent over the TCP/IP network by call-
ing the function sendToTCP.

A net finite state machine receives the messages equally as simple automata 
(instances of the class FiniteStateMachine) do, just by reading its local mailbox.
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6.7  Global Constants, Types, and Functions

The file kernelConsts.h defines the global constants, types, and functions used 
by the FSM Library kernel. The constants and their values are as follows:

MSG_FROM_AUTOMATA = 0; // Source automata ID (BYTE)
MSG_FROM_GROUP = 1; // Source automata group ID (BYTE)
MSG_TO_AUTOMATA = 2; // Destination automata ID (BYTE)
MSG_TO_GROUP = 3; // Destination automata group ID (BYTE)
MSG_CODE = 4; // Message code(WORD)
MSG_OBJECT_ID_FROM = 6; // Source automata instance ID (DWORD)
MSG_OBJECT_ID_TO = 10; // Destination automata ID (DWORD)
CALL_ID = 14; // Call (process) ID
MSG_INFO_CODING = 18; // Info coding type, 0 = StandardMessage
MSG_LENGTH = 19; // Message payload length
MSG_INFO = 21; // Message payload offset
MSG_HEADER_END = MSG_INFO; // End of message header

INVALID_08 = 0xff; // Mask for 8 bits
INVALID_16 = 0xfff; // Mask for 16 bits
INVALID_32 = 0xffffffff; // Mask for 32 bits

The global data types are as follows:

int8, uint8 // BYTE
int16, uint16 // WORD
int32, uint32 // DWORD

The utility functions provided for the load-store manipulation with vari-
ous data types are as follows:

void SetUint16(uint8 *addr,uint16 value);
void SetUint32(uint8 *addr,uint32 value);
uint16 GetUint16(uint8 *addr);
uint32 GetUint32(uint8 *addr);

The utility functions are provided to avoid cast operators in C/C++ pro-
grams because some microcontrollers do not allow word or double-word 
memory access to odd memory addresses.

6.8  API Functions

The FSM Library API functions are grouped into the following eight groups:

• FSMSystem constructor (Table 6.2)
• FSMSystem member functions (Table 6.3)
• FSMSystemWithTCP constructor (Table 6.4)
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TABLE 6.2

FSMSystem Constructor Summary

FSMSystem(uint8 numOfAutomata, uint8 numberOfMbx)
The constructor initializes the object that represents the FSM system, along with the data 
structures needed for its proper operation.

TABLE 6.3

FSMSystem Member Functions Summary

Type Member Function

Void Add  (ptrFiniteStateMachine object, uint8 
automataType, uint32 numOfObjects, bool 
useFreeList=false)

This function adds the first instance of each automata type to 
the FSM system.

Void Add(ptrFiniteStateMachine object, uint8 
automataType)

This function adds all the automata instances of the given 
type to the FSM system, except for the first instance.

Void InitKernel(uint8 buffClassNo, uint32 
*buffersCount, uint32 *buffersLength, uint8 
numOfMbxs=0, TimerResolutionEnum 
timerRes=Timer1s)

This function initializes the elements of the kernel respon-
sible for time, buffer, and message management.

Void Remove(uint8 automataType)
This function removes all the instances of the given automata 
type from the FSM system.

ptrFiniteStateMachine Remove(uint8 automataType, uint32 object)
This function removes the given instance of the given 
automata type.

Virtual void Start()
This function starts the FSM system.

Void StopSystem()
This function stops the FSM system.

TABLE 6.4

FSMSystemWithTCP Constructor Summary

FSMSystemWithTCP(uint8 numOfAutomata, uint8 numberOfMbx)
The constructor initializes the object that represents the FSM system supporting communi-
cation over the TCP/IP network, along with the data structures needed for its proper 
operation.
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• FSMSystemWithTCP member functions (Table 6.5)
• FiniteStateMachine constructor (Table 6.6)
• FiniteStateMachine member functions (Table 6.7)
• NetFSM constructor (Table 6.8)
• NetFSM member functions (Table 6.9)

The following sections contain a detailed description of FSMSystem library 
API functions.

TABLE 6.5

FSMSystemWithTCP Member Functions Summary

Type Member Function

int InitTCPServer(uint16 port, uint8 automataType, char 
*ipAddress=0, unsigned char *parm=0, int length=0)

This function initializes the TCP server. Once initialized, the server waits for a 
request to establish the TCP connection with a remote client.

TABLE 6.6

FiniteStateMachine Constructor Summary

FiniteStateMachine(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16 
numOfState=DEFAULT_STATE_NO, uint16 maxNumOfProceduresPerState=DEFA
ULT_PROCEDURE_NO_PE_STATE, bool getMemory=true)

This constructor initializes the object that represents the instance of a given automata type, 
along with the data structures needed for its proper operation.

TABLE 6.7

FiniteStateMachine Member Functions Summary

Type Member Function

uint8* AddParam(uint16 paramCode, uint32 paramLength, 
uint8 *param)

This function is used to add a given parameter of the given 
length to the new message.

uint8* AddParamByte(uint16 paramCode, BYTE param)
This function is used to add the given parameter of length 
1 byte to the new message.

uint8* AddParamDWord(uint16 paramCode, DWORD param)
This function is used to add the given parameter of length 
4 bytes to the new message.

uint8* AddParamWord(uint16 paramCode, WORD param)
This function is used to add the given parameter of length 
2 bytes to the new message.

virtual void CheckBufferSize(uint32 paramLength)
This function provides a new message buffer with a size suf-
ficient enough to accept a parameter of the given length.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual void ClearMessage()
This function returns the buffer allocated for the current mes-
sage to the kernel and assigns value NULL to the internal 
pointer to the current message. The current message is the last 
message received by the automata instance.

virtual void CopyMessage()
This function makes a copy of the current message and 
assigns that copy to the new message.

virtual void CopyMessage(uint8 *msg)
This function makes a copy of the given message and assigns 
that copy to the new message.

virtual void CopyMessageInfo(uint8 infoCoding, uint16 
lengthCorrection=0)

This function copies the part of the message containing useful 
information, referred to as a payload (a message without its 
header), from the current to the new message.

virtual void Discard(uint8* buff)
This function deletes the message placed in the given buffer 
and returns the buffer to the kernel.

void DoNothing()
This function performs no operation. It is called when the 
 automata receives an unexpected message, unless a new func-
tion is provided to handle unexpected messages.

void Free FSM()
This function reports to the FSM system that the automata 
instance has finished its current assignment and is free for 
further assignments.

virtual uint8 GetAutomata()=0
This function returns the identification of the automata type 
for this automata instance.

uint8 GetBitParamByteBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 1 byte masked with the given mask.

uint16 GetBitParamWordBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 2 bytes masked with the given mask.

uint32 GetBitParamDWordBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message param-
eter of length 4 bytes masked with the given mask.

virtual uint8* GetBuffer(uint32 length)
This function returns the buffer whose size is not less than the 
size given by the value of its parameter.

uint32 GetBufferLength(uint8 *buff)
This function returns the size of the given buffer in bytes.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual inline uint32 GetCallId()
This function returns the identification of the communication 
process in which this instance is currently involved, e.g., the 
call ID.

uint32 GetCount(uint8 mbx)
This function returns the current number of messages in the 
given mailbox.

virtual uint8 GetGroup()
This function returns the identification of the group of autom-
ata to which this instance belongs.

virtual uint8 GetInitialState()
This function returns the identification of the initial state of 
this automata type.

virtual inline uint8  GetLeftMbx()
This function returns the identification of the mailbox 
assigned to the automata instance that is logically to the left 
of this automata instance.

virtual inline uint8  GetLeftAutomata()
This function returns the identification of the automata type 
that is logically to the left of this automata instance.

virtual inline uint8 GetLeftGroup()
This function returns the identification of the group of 
 automata that is logically to the left of this automata instance.

virtual inline uint32 GetLeftObjectId()
This function returns the identification of the automata 
instance that is logically to the left of this automata instance.

virtual uint8 GetMbxId()
This function returns the identification of the mailbox 
assigned to this automata instance.

virtual 
MessageInterface*

GetMessageInterface(uint32 id)
This function returns the object that governs the coding 
of messages used by this automata instance. The returned 
object is an instance of the class derived from the class Message 
Interface.

uint8* GetMsg()
This function returns the first unread message from the mail-
box assigned to this automata instance.

static uint8* GetMsg(uint8 mbx)
This function returns the first unread message from the mail-
box identified by the value of its parameter.

inline uint32 GetMsgCallId()
This function returns the identification of the communication 
process (e.g., call ID) from the current message.

inline uint16 GetMsgCode()
This function returns the message code from the current mes-
sage header.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline uint8 GetMsgFromAutomata()
This function returns the identification of the originating 
automata type from the current message.

inline uint8 GetMsgFromGroup()
This function returns the identification of the group of the 
originating automata instance for the current message. 

inline uint8 GetMsgInfoCoding()
This function returns the identification of the information 
coding scheme used for the current message.

inline uint16 GetMsgInfoLength()
This function returns the payload length of the current mes-
sage in bytes.

inline uint16 GetMsgInfoLength(uint8 *msg)
This function returns the payload length of the given message 
in bytes. The message is specified by its pointer.

inline uint32 GetMsgObjectNumberFrom()
This function returns the identification of the originating 
automata instance from the current message.

inline uint32 GetMsgObjectNumberTo()
This function returns the identification of the destination 
automata instance from the current message.

inline uint8 GetMsgToAutomata()
This function returns the identification of the destination 
automata type from the current message.

inline uint8 GetMsgToGroup()
This function returns the identification of the type of group of 
the destination automata from the current message.

inline uint8* GetNewMessage()
This function returns the address of the buffer that contains 
the new message.

inline uint8 GetNewMsgInfoCoding()
This function returns the identification of the information 
coding scheme used for the new message. 

inline uint16 GetNewMsgInfoLength()
This function returns the payload length of the new message 
in bytes.

uint8* GetNextParam(uint16 paramCode)
This function returns the address of the next instance of the 
given type of message parameter within the current message.

bool GetNextParamByte(uint16 paramCode, BYTE &param)
This function searches for the next instance of the given type 
of the single-byte parameter in the current message. If the 
instance is found, the function copies it into its parameter 
specified by the reference and returns the value true; other-
wise, it returns the value false.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

bool GetNextParamDWord(uint16 paramCode, DWORD 
&param)

This function searches for the next instance of the given type 
of the 4-byte parameter in the current message. If the instance 
is found, the function copies it into its parameter specified by 
the reference and returns the value true; otherwise, it returns 
the value false.

bool GetNextParamWord(uint16 paramCode, WORD &param)
This function searches for the next instance of the given type 
of the 2-byte parameter in the current message. If the instance 
is found, the function copies it into its parameter specified by 
the reference and returns the value true; otherwise, it returns 
the value false.

virtual uint32 GetObjectId()
This function returns the unique identification of this autom-
ata instance.

uint8* GetParam(uint16 paramCode)
This function returns the address of the first instance of the 
given type of the message parameter within the current mes-
sage.

bool GetParamByte(uint16 paramCode, BYTE &param)
This function searches for the first instance of the given type of 
single-byte parameter in the current message. If the instance 
is found, the function copies it into its parameter specified by 
the reference and returns the value true; otherwise, it returns 
the value false.

bool GetParamDWord(uint16 paramCode, DWORD &param)
This function searches for the first instance of the given type 
of 4-byte parameter in the current message. If the instance is 
found, the function copies it into its parameter specified by the 
reference and returns the value true; otherwise, it returns the 
value false.

bool GetParamWord(uint16 paramCode, WORD &param)
This function searches for the first instance of the given type 
of 2-byte parameter in the current message. If the instance is 
found, the function copies it into its parameter specified by 
the reference and returns the value true; otherwise, it returns 
the value false.

PROC_FUN_PTR GetProcedure(uint16 event)
This function returns the pointer to the event handler for the 
given event identifier and the current state of automata.

virtual inline uint8 GetRightMbx()
This function returns the identification of the mailbox 
 assigned to the automata instance that is logically to the 
right of this automata instance.

virtual inline uint8 GetRightAutomata()
This function returns the identification of the automata type 
that is logically to the right of this automata instance.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual inline uint8 GetRightGroup()
This function returns the identification of the type of the 
group of automata that is logically to the right of this autom-
ata instance.

virtual inline uint32 GetRightObjectId();
This function returns the identification of the automata  instance 
that is logically to the right of this automata instance.

virtual inline uint8 GetState()
This function returns the identification of the current state of 
this automata instance.

virtual bool IsBufferSmall(uint8 *buff, uint32 length)
This function returns the value true if the size of the given 
buffer is not greater than the given size specified as the value 
of its second parameter; otherwise, it returns the value false.

virtual void Initialize()
This function defines the automata state transition event han-
dlers and timers used by this automata type.

void InitEventProc(uint8 state, uint16 event, 
PROC_FUN_PTR fun)

This function defines the given state transition event handler for 
the given automata state and the given event (message code).

void InitTimerBlock(uint16 tmrId, uint32 count, 
uint16 signalId)

This function initializes the given timer by the given duration 
and the timer expiration message code.

void InitUnexpectedEventProc(uint8 state, PROC_FUN_
PTR fun)

This function defines the given state transition event handler 
for unexpected events in the given automata state.

bool IsTimerRunning(uint16 id)
This function returns the value true if the given timer is active 
(running); otherwise, it returns the value false.

void NoFreeObjectProcedure(uint8 *msg)
This function defines the behavior of this automata type if the 
list of free automata of this type is used and if it is empty at 
the moment when a free instance is requested.

virtual void NoFreeInstances()
This function defines the behavior of the FSM system if a list 
of free automata is used and if it is empty at the moment when 
a free instance is requested.

virtual bool ParseMessage(uint8 *msg)
This function checks if the given message is coded properly 
and, if it is, it becomes the current message (its pointer is 
 assigned to the internal variable CurrentMessage).

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual void PrepareNewMessage(uint8 *msg)
This function defines the given buffer as the new message 
buffer by assigning the given pointer to the internal variable 
NewMessage. The buffer is used as a working area for the con-
struction of the new message.

virtual void PrepareNewMessage(uint32 length, uint16 code, 
uint8 infoCode = LOCAL_PARAM_CODING)

This function creates a new message of the given length with 
the given message code and the given type of information 
coding.

virtual void Process(uint8 *msg)
This function performs the preparations for the message pro-
cessing and selects the state transition event handler based on 
the message code and current state of this automata instance.

void PurgeMailBox()
This function purges all the messages from the mailbox 
 assigned to this automata type and releases all the buffers 
 assigned to the messages.

bool RemoveParam(uint16 paramCode)
This function removes the given type of message parameter 
from the new message.

virtual void Reset()
This function resets this automata instance by returning it to 
its initial state and by stopping all its active timers.

void ResetTimer(uint16 id)
This function resets the internal timer block object and returns 
the buffer allocated by the StartTimer primitive to the FSM 
 Library kernel.

void RestartTimer(uint16 tmrId)
This function restarts the given timer. It is logically equivalent 
to a sequence of StopTimer and StartTimer primitives.

virtual void RetBuffer(uint8 *buff)
This function returns the given buffer to the FSM Library ker-
nel. Normally, each memory buffer is returned at the end of 
its life cycle. Failure to do so leads to a memory leak problem.

void ReturnMsg(uint8 mbxId)
This function makes a copy of the current message and sends 
it to the given mailbox. This primitive is used frequently for 
message forwarding. On many occasions, the communication 
process must react in this simple way.

void SetBitParamByteBasic(BYTE param, uint32 
offset, uint32 mask=MASK_32_BIT)

This function sets the given single byte parameter of the new 
message to the result of the bit-wise inclusive OR operation 
applied to the given parameter and its previous value masked 
(bit-wise AND operation) with the given bit-mask.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

void SetBitParamDWordBasic(DWORD param, uint32 
offset, uint32 mask=MASK_32_BIT)

This function sets the given 4-byte parameter of the new 
message to the result of the bit-wise inclusive OR operation 
 applied to the given parameter and its previous value masked 
(bit-wise AND operation) with the given bit-mask.

void SetBitParamWord(WORD param, uint32 offset, 
uint32 mask=MASK_32_BIT)

This function sets the given 2-byte parameter of the new 
message to the result of the bit-wise inclusive OR operation 
 applied to the given parameter and its previous value masked 
(bit-wise AND operation) with the given bit-mask.

inline void SetCallId()
This function sets the default value of the attribute CallId of 
this automata instance.

inline void SetCallId(uint32 id)
This function sets the given value of the attribute CallId of this 
automata instance.

inline void SetCallIdFromMsg()
This function sets the attribute CallId of this automata instance 
to the value of the parameter CallId of the current message. 
This primitive is used to store the reference number specific 
to the communication protocol.

virtual void SetDefaultFSMData()
This function sets the automata-specific data to their default 
values. It is typically used before the normal operation phase.

virtual void SetDefaultHeader(uint8 infoCoding)
This function sets the default header field values for the given 
type of the message information coding.

inline void SetGroup(uint8 id)
This function sets the identification of the group of automata 
for this automata type to the given value. This primitive is 
used to declare the group membership.

virtual void SetInitialState()
This function sets the current state of this automata instance 
to its initial state.

static void SetKernelObjects(TPostOffice *postOffice, 
TBuffers *buffers, CTimer *timer)

This function sets the FSMSystem library kernel objects (post 
office, buffers, and timers), which are common for all of the 
automata in the FSM system.

inline void SetLeftMbx(uint8 mbx)
This function sets the identification of the mailbox assigned 
to the automata instance that is logically to the left of this 
automata instance.

inline void SetLeftAutomata(uint8 automata)
This function sets the identification of the automata type that 
is logically to the left of this automata instance.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetLeftObject(uint8 group)
This function sets the identification of the type of the group of 
automata that is logically to the left of this automata instance.

inline void SetLeftObjectId(uint32 id)
This function sets the identification of the automata instance 
that is logically to the left of this automata instance.

static void SetLogInterface(LogInterface *logingObject)
This function defines the object responsible for message log-
ging. The object is an instance of a class derived from the class 
LogInterface.

inline void SendMessage(uint8 mbxId)
This function sends a new message to the given mailbox. The 
mailbox is specified by its identification.

inline void SendMessage(uint8 mbxId, uint8 *msg)
This function sends the given message to the given mailbox.

void SetMessageFromData()
This function sets the header fields of the new message relat-
ed to the originating automata instance to the values specific 
to this automata instance.

inline void SetMsgCallId(uint32 id)
This function sets the call ID parameter of the new message 
to the given value.

inline void SetMsgCallId(uint32 id, uint8 *msg)
This function sets the call ID parameter of the given message 
to the given value.

inline void SetMsgCode(uint16 code)
This function sets the message code parameter of the new 
message to the given value.

inline void SetMsgCode(uint16 code, uint8 *msg)
This function sets the message code parameter of the given 
message to the given value.

inline void SetMsgFromAutomata(uint8 from)
This function sets the type of the originating automata param-
eter of the new message to the given value.

inline void SetMsgFromAutomata(uint8 from, uint8 *msg)
This function sets the type of the originating automata param-
eter of the given message to the given value.

inline void SetMsgFromGroup(uint8 from)
This function sets the type of the originating group of autom-
ata parameters of the new message to the given value.

inline void SetMsgFromGroup(uint8 from, uint8 *msg)
This function sets the type of the originating group of autom-
ata parameters of the given message to the given value.

inline void SetMsgInfoCoding(uint8 codingType)
This function sets the message information coding parameter 
of the new message to the given value.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetMsgInfoCoding(uint8 codingType, uint8 *msg)
This function sets the message information coding parameter 
of the given message to the given value.

inline void SetMsgInfoLength(uint16 length)
This function sets the message payload (useful information) 
length parameter of the new message.

inline void SetMsgInfoLength(uint16 length, uint8 *msg)
This function sets the message payload (useful information) 
length parameter of the given message.

inline void SetMsgObjectNumberFrom(uint32 from)
This function sets the originating automata instance identifi-
cation parameter of the new message to the given value.

inline void SetMsgObjectNumberFrom(uint32 from, uint8 *msg)
This function sets the originating automata instance identi-
fication parameter of the given message to the given value.

inline void SetMsgObjectNumberTo(uint32 to)
This function sets the destination automata instance identifi-
cation parameter of the new message to the given value.

inline void SetMsgObjectNumberTo(uint32 to, uint8 *msg)
This function sets the destination automata instance identi-
fication parameter of the given message to the given value.

inline void SetMsgToAutomata(uint8 to)
This function sets the destination automata type identification 
parameter of the new message to the given value.

inline void SetMsgToAutomata(uint8 to, uint8 *msg)
This function sets the destination automata type identification 
parameter of the given message to the given value.

inline void SetMsgToGroup(uint8 to)
This function sets the destination automata group identifica-
tion parameter of the new message to the given value.

inline void SetMsgToGroup(uint8 to, uint8 *msg)
This function sets the destination automata group identifica-
tion parameter of the given message to the given value.

void SendMessageLeft()
This function sends the new message to the mailbox assigned 
to the automata instance that is logically to the left of this 
 automata instance.

void SendMessageRight()
This function sends the new message to the mailbox assigned 
to the automata instance that is logically to the right of this 
automata instance.

inline void SetNewMessage(uint8 *msg)
This function sets the new message to the given message by 
assigning the given message pointer to the internal pointer to 
the new message.

inline void SetObjectId(uint32 id)
This function sets the identification of this automata instance 
to the given value.

(Continued)
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetRightMbx(uint8 mbx)
This function sets the identification of the mailbox assigned 
to the automata instance that is logically to the right of this 
automata instance.

inline void SetRightAutomata(uint8 automata)
This function sets the identification of the automata type that 
is logically to the right of this automata instance.

inline void SetRightObject(uint8 group)
This function sets the identification of the type of the group of 
automata that is logically to the right of this automata instance.

inline void SetRightObjectId(uint32 id)
This function sets the identification of the automata instance 
that is logically to the right of this automata instance.

inline void SetState(uint8 state)
This function sets the identification of the current state of this 
automata instance.

void StartTimer(uint16 tmrId)
This function starts the given timer. The timer is specified by 
its identification.

void StopTimer(uint16 tmrId)
This function stops the given timer. The timer is specified by 
its identification.

static void SysClearLogFlag()
This function stops the logging of the messages exchanged by 
the automata.

static void SysStartAll()
This function starts the logging of the messages exchanged 
by the automata.

TABLE 6.8

NetFSM Constructor Summary

NetFSM(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16 
numOfState=DEFAULT_STATE_NO, uint16 maxNumOfProceduresPerState=DEFA
ULT_PROCEDURE_NO_PER_STATE, bool getMemory=true)

The constructor initializes the object that represents an instance of the given automata type, 
along with the data structures needed for its proper operation.
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6.8.1  FSMSystem

Function prototype:

FSMSystem(
 uint8 numOfAutomata,
 uint8 numberOfMbx)

Function description: This constructor initializes the object that repre-
sents the FSM system together with the data structures needed for its proper 
operation.

Parameters: 
numOfAutomata: the number of various automata types to be added to 

the FSM system
numberOfMbx: the number of mailboxes to be used by the FSM system

Note: Typically, a single mailbox is assigned to each automata type, but 
other arrangements are also allowed. Normally, an automata type corre-
sponds to a protocol. For example, the IP protocol may be implemented as 
one automata type, and the TCP protocol may be implemented as another 
automata type. A typical arrangement would be to assign one mailbox to IP 
and one to TCP. Another arrangement would be to assign two mailboxes to 
each protocol. For example, in this arrangement, IP would use the first mail-
box to receive the messages from network interfaces (drivers) and the second 
mailbox to receive the messages from TCP. Yet another arrangement would 

TABLE 6.9

NetFSM Member Functions Summary

Type Member Function

virtual void convertFSMToNetMessage()
This function converts the internal message format into the external 
message format appropriate for the transmission over the TCP/IP 
network.

virtual uint16 convertNetToFSMMessage()
This function converts the external message format into the internal 
message format appropriate for communication within the FSM system.

void establishConnection()
This function establishes the TCP connection between two geographi-
cally distributed FSM systems.

virtual uint8 getProtocolInfoCoding()
This function returns the identification of the type of the external mes-
sage coding.

void sendToTCP()
This function sends the new message to the remote FSM system over 
the previously established TCP connection.
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be to assign a single mailbox to all the protocols. Finally, a set of mailboxes 
can be used to prioritize the messages. For example, three mailboxes may be 
used to distinguish high, middle, and low priority messages.

6.8.2  Add(ptrFiniteStateMachine, uint8, uint32, bool)

Function prototype:

void Add(
 ptrFiniteStateMachine object,
 uint8 automataType,
 uint32 numberOfObjects,
 bool useFreeList = false)

Function description: This function adds the first instance of each autom-
ata type to the FSM system. At the same time, this function defines the 
unique identification of this automata type and the number of instances of 
this automata type that will be subsequently added to the FSM system. It 
also declares a group of instances of this automata type as either a set of 
resources to be used individually or as a pool of resources of the same type 
available for dynamic allocation.

Function parameters:
object: the pointer to the first instance of this automata type to be added 

to the FSM system
automataType: the unique identification of this type of automata
numberOfObjects: the total number of instances of this type to be added 

to the FSM system
useFreeList: the indicator selecting the mode of usage of individual 

instances of this type

Note: Typically, the FSM system is created at system startup, and then 
groups of various automata types are added to it. As a rule, the first instance 
of the given automata type is added by this function. Its parameters specify, 
in order from left to right, the pointer to the first object of this type, the 
identification of this automata type, the total number of instances that will 
be added to the FSM system, and the mode of individual instance alloca-
tion. This last parameter has a default value false, which means that each 
automata instance represents an individual resource. If this default is over-
ridden by the value true, the group of instances of this automata type rep-
resents a pool of resources of the same type. The individual instances from 
this pool are allocated dynamically and on-demand, based on the use of the 
internal FSMSystem library kernel list of resources of the given type. (This 
is the origin of the name of the last parameter of this function, useFreeList.) 
This dynamic allocation is requested by sending a message to an unknown 
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automata, which is identified by the instance identification set to the value –1 
(see function SetMsgObjectNumberTo).

6.8.3  Add(ptrFiniteStateMachine, uint8)

Function prototype:

void Add(
 ptrFiniteStateMachine object,
 uint8 automataType)

Function description: This function adds all the automata instances except 
the first instance of the given type to the FSM system. It assumes that the first 
instance of this automata type has been added previously to the FSM system 
by calling the overloaded function Add with four parameters in its signature.

Function parameters:
object: the pointer to the instance of this automata type to be added to 

the FSM system
automataType: the unique identification of this automata type

Note: As already mentioned, after the FSM system is created at system 
startup, the groups of various automata types are added to it. As a rule, the 
first instance of the given automata type is added by the overloaded function 
Add with four parameters in its signature (see the previous section for more 
details on its parameters). All the other instances of the given automata type 
are added to the FSM system by this overloaded function Add. An advantage 
of differentiating these two functions becomes obvious in a dynamic envi-
ronment where objects are created on-demand and added to the FSM sys-
tem. If the given automata type already exists, and a need arises for another 
instance of it, this overloaded Add function is sufficient.

6.8.4  InitKernel

Function prototype:

void InitKernel(
 uint8 buffClassNo,
 uint32 *buffersCount,
 uint32 *buffersLength,
 uint8 numOfMbxs=0,
 TimerResolutionEnum timerRes = Timer1s)

Function description: This function initializes the elements of the kernel 
responsible for time, buffer, and message management. The parameters of 
this function specify the number of buffer types, the number of instances 
per buffer type and their lengths, the number of mailboxes to be used by 
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the automata added to the FSM system, and the basic timer resolution. The 
default value of the basic timer resolution is 1 sec, which is defined by the 
symbolic constant Timer1s.

Function parameters:
buffClassNo: the number of buffer types
buffersCount: the pointer to the array of the numbers of instances of the 

corresponding buffer types
buffersLength: the pointer to the array of the sizes of the corresponding 

buffer types
numOfMbxs: the number of the mailboxes
timerRes: the basic timer resolution

Note: This function essentially initializes the FSMSystem library kernel. It 
must be called after the FSM system has been created and before it can be 
started. It also assumes that the arrays of the cardinal numbers and the sizes 
of individual buffer types were already created and filled by the program-
mer. Because the specification of the buffers to be provided by the kernel 
may look cumbersome, we provide the following example. Suppose that a 
need arises for three buffer types, namely, small, medium, and large. The 
programmer should set the first parameter of this function to the number 
3. Next, suppose that the programmer needs 300 small buffers, 200 medium 
buffers, and 100 large buffers, and that their sizes should be 64, 128, and 256 
bytes, respectively. Before calling this function, the programmer should cre-
ate the following two arrays:

• Array of cardinal numbers = [300, 200, 100]
• Array of sizes = [64, 128, 256]

Finally, the programmer should specify the pointers to these two arrays as 
the second and the third parameter of this function.

6.8.5  Remove(uint8)

Function prototype:

void Remove(unit8 automataType)

Function description: This function removes all instances of the given 
automata type from the FSM system.

Function parameters:
automataType: the type of automata to be removed from the system
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Note: First, the FSM system removes all instances of the given automata 
type from the FSM system. Next, the kernel frees all the memory zones occu-
pied by the internal data structures used by the automata of this type.

6.8.6  Remove(uint8, uint32)

Function prototype:

ptrFiniteStateMachine Remove(
 uint8 automataType
 uint32 object)

Function description: This function removes the given instance of the 
given automata type. The parameters of this function specify the identifica-
tion of the automata type and the identification of the automata instance.

Function parameters:
automataType: the identification of the automata type
object: the identification of the instance of the given automata type

Function returns: This function returns the pointer to the automata 
instance removed from the FSM system.

6.8.7  Start

Function prototype:

virtual void Start()

Function description: This function starts the FSM system and is the main 
function of the FSM system. In this function, the FSM system thread enters a 
loop in which it reads the kernel mailboxes and distributes the messages to 
the destination automata.

Note: The FSM system thread remains in the loop while the internal attri-
bute SystemWorking is set to the value true. A typical implementation of the 
FSM system thread is shown in the example in Section 6.2.1.2.

6.8.8  StopSystem

Function prototype:

void StopSystem()

Function description: This function stops the FSM system. It sets the inter-
nal attribute SystemWorking to the value false, thus causing the FSM system 
thread to exit its loop and stop the FSM system.



436 Communication Protocol Engineering

Note: If the function Start has been called from the separate operating sys-
tem thread, the call to the function StopSystem will cause the termination of 
that thread.

6.8.9  FSMSystemWithTCP

Function prototype:

FSMSystemWithTCP(
 uint8 numOfAutomata,
 uint8 numberOfMbx)

Function description: This constructor initializes the object that represents 
the FSM system supporting communication over TCP/IP network, along 
with the data structures needed for its proper operation. Its parameters 
specify the number of automata types to be added to the FSM system and 
the number of mailboxes.

Function parameters:
numOfAutomata: the number of automata types that will be added to 

the FSM system
numberOfMbx: the number of mailboxes that will be used by the autom-

ata added to the FSM system

Note: Typically, a single mailbox is assigned to each automata type included 
in the FSM system, but other arrangements are also allowed. For example, a 
single mailbox may be assigned to all the automata types included in the 
FSM system. Also allowed is to assign an arbitrary number of mailboxes to 
each automata type, e.g., to enable message prioritization.

6.8.10  InitTCPServer

Function prototype:

int InitTCPServer(
 uint16 port,
 unit8 automataType,
 char *ipAddress = 0,
 unsigned char *parm = 0,
 int length = 0)

Function description: This function initializes the TCP server. Once ini-
tialized, the server waits for a request to establish the TCP connection 
with a remote client. The parameters of this function specify the number 
of the TCP port on which the server awaits the connection request, the 
automata type included in the FSM system engaged in the communica-
tion, the server IP address, the pointer to the area where the connection 
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parameters should be passed to the specified automata type, and the 
parameter lengths in bytes. After reception of the request, the server allo-
cates an instance of the given automata type and passes the connection 
together with the received parameters to the allocated automata instance. 
Further communication continues directly between the remote client 
and the allocated automata instance, i.e., the server is completely isolated 
from it.

Function parameters:
Port: the number of the TCP port on which the server awaits a connec-

tion request
automataType: the automata type included in the FSM system that is 

engaged in the communication. This automata type must be derived 
from the class NetFSM. After the connection has been initially estab-
lished, the server transfers it to the allocated instance of this autom-
ata type.

ipAddress: the pointer to the server IP address
parm: the pointer to the area where the parameters received while estab-

lishing the connection should be passed and subsequently taken by 
to the specified automata type

length: the parameter lengths specified by the previous pointer, in bytes

Function returns: If the TCP server awaiting a request from a remote client 
is successfully started, this function returns the value 0. Otherwise, it returns 
the value –1.

Note: This function should be called only once, just initially to start the 
TCP server.

6.8.11  FiniteStateMachine

Function prototype:

FiniteStateMachine(
 unit16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,
 bool getMemory = true)

Function description: This constructor initializes the object that repre-
sents the instance of a given automata type together with the data structures 
needed for its proper operation. Its parameters specify the number of timers 
to be used by this automata type, the number of the states that this automata 
type has, the maximal number of state transitions per state, and the indica-
tor specifying whether this constructor should reserve the memory for the 
objects that represent the states and state transitions of this automata type 
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or not. The default value of this indicator is true, which means that this con-
structor is responsible for memory allocation.

Function parameters:
numOfTimers: the number of the timers to be used by this automata 

type
numOfState: the number of the states that this automata type has
maxNumOfProceduresPerState: the maximal number of state transitions 

per state
getMemory: the memory allocation indicator (by default, its value is true)

Note: This constructor may be called either with some or without any of 
the parameters. If the parameter is not specified, the constructor will use its 
default value. The indicator getMemory may be set to the value false when 
the programmer wants to do manual memory allocation to optimize overall 
memory consumption.

6.8.12  AddParam

Function prototype:

uint8 *AddParam(
 uint16 paramCode,
 uint32 paramLength,
 uint8 *param)

Function description: This function is used to add a given parameter of a 
given length to the new message. The parameters of this function specify the 
unique identification of the parameter type, the parameter length in bytes, 
and the pointer to the parameter itself. If the parameter to be added to the 
message is too large to fit in the buffer that is assigned to the new message, 
this function will get a bigger buffer, copy the new message into it, add the 
parameter, and release the old buffer.

Function parameters:
paramCode: the parameter type
paramLength: the parameter length, in bytes
param: the pointer to the parameter

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: This function enables the programmer to add a parameter of an arbi-
trary size to the new message with the limitation that it must not exceed the 
maximal parameter length specified for the given type of message coding 
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(e.g., for the type StandardMessage, the maximal parameter length is 256 
bytes). The message parameters in StandardMessage are sorted by ascending 
order of their corresponding type identifiers.

6.8.13  AddParamByte

Function prototype:

uint8 *AddParamByte(
 uint16 paramCode,
 BYTE param)

Function description: This function is used to add the given parameter of 
length 1 byte to the new message. The parameters of this function specify the 
unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the 
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.14  AddParamDWord

Function prototype:

uint8 *AddParamDWord(
 uint16 paramCode,
 DWORD param)

Function description: This function is used to add the given parameter of 
length 4 bytes to the new message. The parameters of this function specify 
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the 
given type of message coding. In any case, it must not exceed 232 bytes.
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6.8.15  AddParamWord

Function prototype:

uint8 *AddParamDWord(
 uint16 paramCode,
 WORD param)

Function description: This function is used to add the given parameter of 
length 2 bytes to the new message. The parameters of this function specify 
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the 
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.16  CheckBufferSize

Function prototype:

uint8 *CheckBufferSize(uint32 paramLength)

Function description: This function provides a new message buffer with 
the size sufficient enough to accept the parameter of the given length. The 
parameter of this function specifies the parameter length in bytes.

Function parameters:
paramLength: the parameter length

Function returns: This function returns the pointer to the new message.
Note: This function is obsolete. In the previous version of the FSM Library, 

this function ensured the new message buffer management was transpar-
ent for the programmer. Typically, the programmer would call this function 
before calling some of the AddParam functions to ensure that the new mes-
sage is stored in a buffer of sufficient size. This means that the buffer is large 
enough to accept a new parameter of the given size, in addition to the current 
content of the new message. Behind the scenes, this function checked the 
current size of the new message. If it was not sufficient, the function allo-
cated a new, larger buffer; copied the current new message into it; released 



441FSM Library

the old buffer; and returned the pointer to the newly allocated buffer con-
taining the new message. In the current version of the FSM Library, all the 
AddParam functions call this function internally at their very beginning, and 
the programmer no longer needs to call it explicitly.

6.8.17  ClearMessage

Function prototype:

virtual void ClearMessage()

Function description: This function returns the buffer allocated for the 
current message to the kernel and assigns the value NULL to the internal 
pointer to the current message. The current message is the last message 
received by the automata instance.

Note: If the FSMSystem library has been compiled for the debug mode, this 
function will additionally verify that the return value of the function is NULL.

6.8.18  CopyMessage( )

Function prototype:

virtual void CopyMessage()

Function description: This function makes a copy of the current message 
and assigns that copy to the new message. By definition, a current message is 
the last received message, and a new message is the message under construc-
tion to be subsequently sent. The value of the pointer to the current message 
copy is assigned to the internal pointer to the new message.

Note: This function first checks if the new message already exists by check-
ing the internal pointer to the new message. If the new message has already 
been defined or is under construction (the internal pointer is not equal to 
the value NULL), the function releases the buffer that contains the new mes-
sage and assigns the value NULL to the internal pointer. Next, the function 
makes a copy of the current message and assigns its address to the pointer 
to the new message. This function is typically used for message forwarding. 
The protocol A sends a message to the protocol B, which, in turn, forwards 
the copy of the same message to the protocol C.

6.8.19  CopyMessage(uint*)

Function prototype:

virtual void CopyMessage(uint8 *msg)
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Function description: This function makes a copy of the given message 
and assigns that copy to the new message. The parameter of this function 
specifies the pointer to the original message.

Function parameters:
msg: the pointer to the original message

Note: This function assumes that the new message does not exist, i.e., the 
internal pointer to the new message should contain the value NULL before 
this function is called. However, if the new message already exists, this func-
tion will return its buffer and get a fresh buffer for the new message before 
copying the given message into it.

6.8.20  CopyMessageInfo

Function prototype:

virtual void CopyMessageInfo(
 uint8 infoCoding,
 uint16 lengthCorrection = 0)

Function description: This function copies the part of the message con-
taining the useful information, referred to as a payload (message without 
its header), from the current message into the new message stored in a 
newly allocated buffer. The parameters of this function specify the type of 
information coding that governs the formatting and length correction of 
the message.

Function parameters:
infoCoding: the identification of the type of information coding
lengthCorrection: the message length correction

Note: The message length correction depends on the type of applied infor-
mation coding. If the new message buffer does not exist, this function will 
get a buffer, assign it to the new message, and make the required copy.

6.8.21  Discard

Function prototype:

virtual void Discard(uint8* buff)

Function description: This function deletes the message placed in the 
given buffer and returns the buffer to the kernel. The parameter of this func-
tion specifies the buffer to be cleared and released.
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Function parameters:
buff: the pointer to the buffer

6.8.22  DoNothing

Function prototype:

void DoNothing()

Function description: This function performs no operation. It is called 
when the automata receives an unexpected message, unless a new function 
to handle unexpected messages is defined. By definition, an unexpected 
message is any type of message that has not been defined as a legal type of 
message in the current automata state.

Note: This function may be redefined by calling the function Init 
UnexpectedEventProc, if a need exists for concrete functionality handling 
unexpected messages.

6.8.23  FreeFSM

Function prototype:

void FreeFSM()

Function description: This function reports to the FSM system that an 
automata instance has finished its current assignment and is free for further 
assignments. If the first instance of this automata type has been added to the 
FSM system with the parameter useFreeList set to the value true, the group of 
instances of this automata type is viewed as a pool of resources. In that case, 
this function returns the resource to the corresponding pool by queuing it to 
the internal list of the resources of the same type.

Note: If a group of instances of this automata type is used as a set of indi-
vidual resources, rather than as a pool of resources (the parameter useFree 
List has been set to the value false when the first automata instance has been 
added to the FSM system), this function has no effect.

6.8.24  GetAutomata

Function prototype:

virtual uint8 GetAutomata() = 0

Function description: This function returns the identification of the autom-
ata type for this automata instance.

Function returns: This function returns the unique ID of the automata type.
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Note: This function is a pure virtual function, which means that it must be 
defined in the class that models some concrete automata type. Typically, this 
function returns the constant value that represents the required identification. 
It finds this constant by looking up the table of identifications created by read-
ing the file of all the known automata types at the FSM system startup time.

6.8.25  GetBitParamByteBasic

Function prototype:

unit8 GetBitParamByteBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 1 byte masked with the given mask. The parameters 
of this function specify the offset of the original parameter of the message 
and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND 
operation between the value of the message parameter at the given message 
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing the 
value of a single bit, or of a group of bits simultaneously, is possible in the param-
eter of size 1 byte that is at a given distance from the beginning of the message.

6.8.26  GetBitParamWordBasic

Function prototype:

unit8 GetBitParamWordBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 2 bytes masked with the given mask. The param-
eters of this function specify the offset of the original parameter of the 
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask
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Function returns: This function returns the result of the bit-wise AND 
operation between the value of the message parameter at the given message 
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing 
the value of a single bit, or a group of bits simultaneously, is possible in the 
parameter of size 2 bytes that is at a given distance from the beginning of 
the message.

6.8.27  GetBitParamDWordBasic

Function prototype:

unit8 GetBitParamDWordBasic(
 uint32 offset,
 uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 4 bytes masked with the given mask. The param-
eters of this function specify the offset of the original parameter of the 
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND 
operation between the value of the message parameter at the given message 
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing 
the value of a single bit, or of a group of bits simultaneously, is possible in 
the parameter of size 4 bytes that is at a given distance from the beginning 
of the message.

6.8.28  GetBuffer

Function prototype:

virtual uint8 *GetBuffer(uint32 length)

Function description: This function returns a buffer whose size is not less 
than the size given by the value of its parameter. The parameter of this mes-
sage specifies the minimal buffer length in bytes.

Function parameters:
length: the buffer length
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Function returns: This function returns the pointer to a newly allocated 
buffer.

Note: The FSMSystem library kernel handles a limited number of buffer 
types with a limited number of instances per each type defined during the 
kernel initialization by calling the function InitKernel. By definition, this 
function first searches for the buffer types of the size that ideally match the 
desired buffer. If such a type does not exist, the function searches for the next 
size buffer type (in the increasing order of size). This allocation policy may 
yield a buffer of a size much bigger than needed, and the frequent occurrence 
of this type of allocation may lead to inefficient memory usage. For example, 
suppose that the programmer has mistakenly defined only two buffer sizes, 
small and large, such that not a single protocol message can fit into the small 
buffer. In this case, only the large buffers will be consumed, and the small 
buffers will not be used at all. Therefore, special care must be taken when 
defining the buffers before calling the function InitKernel.

Now, let us go back to the buffer allocation algorithm. When this function 
finds a buffer type of a sufficient size, it checks for a free buffer of that type. 
If no such type is found, the system is badly designed and a new buffer type 
must be added to the system. If such a buffer type exists, but no free buffers 
of that type are available, the function will look for the next size buffer. If 
all the buffers of the sufficient size are already allocated, the FSM system 
experiences a memory exhaustion problem. In the academic examples, the 
system is allowed to crash under these circumstances. However, industrial-
strength applications require implementation of additional mechanisms, 
such as overload protection and intelligent automatic restarts.

6.8.29  GetBufferLength

Function prototype:

uint32 GetBufferLength(uint8 *buff)

Function description: This function returns the size of the given buffer in 
bytes. The parameter of this function specifies the pointer to the buffer.

Function parameters:
buff: the address of the buffer

Function returns: This function returns the specified buffer length in bytes.

6.8.30  GetCallId

Function prototype:

virtual inline uint32 GetCallId()
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Function description: This function returns the identification of the com-
munication process that this instance is currently involved in, e.g., the call 
ID. The actual meaning of this identification is application specific.

Function returns: This function returns the value of the attribute CallId.
Note: Historically, the attribute CallId is tied to call processing (e.g., Q.71) 

and signaling (e.g., SS7, DSS1) protocols, but it has also proved to be useful in 
modern multimedia protocols (e.g., H.323 and SIP). Generally, this attribute 
may be used as an identification of the process or transaction that engages 
more cooperative automata. If a single attribute is not sufficient, the pro-
grammer may introduce additional attributes in classes derived from the 
base class FiniteStateMachine.

6.8.31  GetCount

Function prototype:

uint32 GetCount(uint8 mbx)

Function description: This function returns the current number of mes-
sages in the given mailbox. The parameter of this message specifies the iden-
tification of the mailbox.

Function parameters:
mbx: the mailbox identification

Function returns: This function returns the number of unread messages 
contained in the mailbox of interest.

6.8.32  GetGroup

Function prototype:

virtual uint8 GetGroup()

Function description: This function returns the identification of the group 
of automata to which this instance belongs.

Function returns: This function returns a number that uniquely identifies 
the group of automata which, besides other members, includes this automata 
instance.

6.8.33  GetInitialState

Function prototype:

virtual uint8 GetInitialState()
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Function description: This function returns the identification of the initial 
state of this automata type.

Function returns: This function returns the number that uniquely identi-
fies the initial state of this automata type.

Note: The default value of the initial state is 0.

6.8.34  GetLeftMbx

Function prototype:

virtual inline uint8 GetLeftMbx()

Function description: This function returns the identification of the default 
mailbox assigned to the automata instance that is logically to the left of this 
automata instance.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox assigned to the left automata instance.

Note: Historically, the terms left and right automata instance originate from 
SDL, where an automata instance typically communicates with its left and 
right neighbors. These neighbors might have their own mailboxes, some-
times briefly called left and right mailboxes.

6.8.35  GetLeftAutomata

Function prototype:

virtual inline uint8 GetLeftAutomata()

Function description: This function returns the identification of the autom-
ata type that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left automata type.

Note: By definition, left automata are logically placed to the left of the cur-
rently observed automata instance.

6.8.36  GetLeftGroup

Function prototype:

virtual linline uint8 GetLeftGroup()

Function description: This function returns the identification of the group 
of automata that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left group of automata.

Note: By definition, a left group of automata is a group that contains left 
automata.
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6.8.37  GetLeftObjectId

Function prototype:

virtual inline uint32 GetLeftObjectId()

Function description: This function returns the identification of the autom-
ata instance that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the left automata instance.

Note: By definition, left automata are logically placed to the left of the cur-
rently observed automata instance. This function returns the identification 
of the particular left automata instance with which the currently observed 
automata instance communicates.

6.8.38  GetMbxId

Function prototype:

virtual uint8 GetMbxId()

Function description: This function returns the identification of the default 
mailbox assigned to this automata type. Note that an instance of a given 
automata type may receive its messages through any mailbox, i.e., through 
the default mailbox as well as through other mailboxes. Alternately, a single 
mailbox may be assigned to more than one automata type.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox assigned to this automata instance.

Note: This function is a pure virtual function, which means that it must 
be defined by the programmer when they write a class derived from the 
class FiniteStateMachine. Typically, this function returns the constant value 
that represents the required mailbox identification (the content of the cor-
responding class field). This constant can be initially determined by looking 
up the table of identifications, and set by calling the function SetMbxId. The 
table of identifications can be created by reading the file containing all the 
known automata types at the FSM system startup time. A mailbox ID is typi-
cally a record field that describes a single automata type.

6.8.39  GetMessageInterface

Function prototype:

virtual MessageInterface *GetMessageInterface(uint32 id) = 0

Function description: This function returns the object that governs the cod-
ing of messages used by this automata instance. The parameter of this func-
tion specifies the identification of the information coding scheme. The returned 
object is an instance of the class derived from the class MessageInterface.
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Function parameters:
id: the information coding scheme

Function returns: This function returns the pointer to the object respon-
sible for parsing and coding the messages used by this automata instance.

Note: This function is a virtual function, which means that it must 
be defined when the programmer writes a class derived from the class 
FiniteStateMachine. The identification with the value 0 is reserved for the 
information coding used by the format of the class StandardMessage, which is 
a basic type of message supported by the FSMSystem library.

6.8.40  GetMsg()

Function prototype:

uint8* GetMsg()

Function description: This function returns the first unread message from 
the mailbox assigned to this automata instance.

Function returns: This function returns a pointer to the buffer that has 
been removed from the head of the list, which is hidden by the abstraction of 
the mailbox assigned to this automata instance. If no such buffer exists, i.e., 
if the list is empty, the function returns the value NULL.

6.8.41  GetMsg(uint8)

Function prototype:

static uint8* GetMsg(uint8 mbx)

Function description: This function returns the first unread message from 
the given mailbox. The parameter of this function specifies the identification 
of the mailbox.

Function parameters:
mbx: the mailbox ID

Function returns: This function returns the pointer to the buffer that has 
been removed from the head of the list, which is hidden by the abstraction of 
the given mailbox. If no such buffer exists, i.e., if the list is empty, the func-
tion returns the value NULL.

Note: Although this function is defined as a static function, a call to this func-
tion is not allowed before the kernel initialization and the FSM system startup. 
The call to this function made before that may cause unpredictable behavior.
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6.8.42  GetMsgCallId

Function prototype:

inline uint32 GetMsgCallId()

Function description: This function returns the identification of the com-
munication process (e.g., call ID) from the current message.

Function returns: This function returns the value of the attribute CallId.
Note: The attribute CallId is application specific. It can be used to indicate 

a process or a transaction in which more cooperating automata are involved. 
The size of CallId is 32 bits. It is considered large enough for most of the appli-
cations. To increase the size of CallId, the programmer would need to modify 
the base class FiniteStateMachine.

6.8.43  GetMsgCode

Function prototype:

inline uint16 GetMsgCode()

Function description: This function returns the message code from the 
current message header.

Function returns: This function returns the value of the message code 
from the header of the current (last received) message.

6.8.44  GetMsgFromAutomata

Function prototype:

inline uint8 GetMsgFromAutomata()

Function description: This function returns the identification of the origi-
nating automata type from the current message. This value is provided from 
the header of the current message.

Function returns: This function returns the value of the identification 
of the automata type that has created and sent the current message to this 
automata instance.

6.8.45  GetMsgFromGroup

Function prototype:

inline uint8 GetMsgFromGroup()
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Function description: This function returns the identification of the group 
of the originating automata instance for the current message. This value is 
provided from the header of the current message.

Function returns: This function returns the value of the identification of 
the group of automata instance that has created and sent the current mes-
sage to this automata instance.

6.8.46  GetMsgInfoCoding

Function prototype:

inline uint8 GetMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the current message.

Function returns: This function returns the value that identifies the type of 
information coding that has been used to create the current message.

Note: This information is provided from the header of the current 
message.

6.8.47  GetMsgInfoLength()

Function prototype:

inline uint16 GetMsgInfoLength()

Function description: This function returns the payload length of the cur-
rent message in bytes.

Function returns: This function returns the value of the current message 
payload size in bytes.

Note: The length of the message header is not included in the length 
returned by this message. By definition, the total message length is the 
sum of the length of the message header and the length of the message 
payload.

6.8.48  GetMsgInfoLength(uint8*) 

Function prototype:

inline uint16 GetMsgInfoLength(uint8 *msg)

Function description: This function returns the payload length of the 
given message in bytes. The parameter of this function specifies the pointer 
to the message.
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Function parameters:
msg: the pointer to the message

Function returns: This function returns the value of the size of the given 
message payload in bytes.

Note: The length of the message header is not included in the length 
returned by this message. By definition, the total message length is the sum 
of the length of the message header and the length of the message payload.

6.8.49  GetMsgObjectNumberFrom

Function prototype:

inline uint32 GetMsgObjectNumberFrom()

Function description: This function returns the identification of the origi-
nating automata instance from the current message.

Function returns: This function returns the value that identifies the autom-
ata instance that has created and sent the message.

Note: This value is provided from the header of the current (last received) 
message.

6.8.50  GetMsgObjectNumberTo

Function prototype:

inline uint32 GetMsgObjectNumberTo()

Function description: This function returns the identification of the des-
tination automata instance from the current message. This value is actually 
this automata instance.

Function returns: This function returns the value that identifies the autom-
ata instance that has received the message and that must process it.

Note: This value is provided from the header of the current (last received) 
message.

6.8.51  GetMsgToAutomata

Function prototype:

inline uint8 GetMsgToAutomata()

Function description: This function returns the identification of the desti-
nation automata type from the current message. This value is actually this 
automata type.
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Function returns: This function returns the value that identifies the autom-
ata type that should receive the message and that should process it.

Note: This value is provided from the header of the current (last received) 
message.

6.8.52  GetMsgToGroup

Function prototype:

inline uint8 GetMsgToGroup()

Function description: This function returns the identification of the type of 
the group of the destination automata from the current message. This value 
is actually the group to which this automata type belongs.

Function returns: This function returns the value that identifies the group 
of automata that has received the message and that must process it.

Note: This value is provided from the header of the current (last received) 
message.

6.8.53  GetNewMessage

Function prototype:

inline uint8 *GetNewMessage()

Function description: This function returns the address of the buffer that 
contains the new message.

Function returns: This function returns the pointer to the already defined 
new message or the message under construction.

Note: If the new message does not exist, this function returns the 
value NULL. This function assumes that the programmer has already allo-
cated a buffer for the new message by previously calling the function 
PrepareNewMessage or calling the function GetBuffer.

6.8.54  GetNewMsgInfoCoding

Function prototype:

inline uint8 GetNewMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the new message.

Function returns: This function returns the value that uniquely identifies 
the type of information coding.

Note: This value is provided from the header of the new message.
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6.8.55  GetNewMsgInfoLength

Function prototype:

inline uint16 GetNewMsgInfoLength()

Function description: This function returns the payload length of the new 
message in bytes.

Function returns: This function returns the value of the new message pay-
load size in bytes.

Note: The length of the message header is not included in the length 
returned by this message. By definition, the total message length is the sum 
of the length of the message header and the length of the message payload.

6.8.56  GetNextParam

Function prototype:

uint8 *GetNextParam(uint16 paramCode)

Function description: This function returns the address of the next instance 
of the given parameter type within the current message. The parameter of 
this function specifies the type of message parameter.

Function parameters:
paramCode: the identification of the type of message parameter

Function returns: The function returns the pointer to the next instance of the 
message parameter. If it does not exist, the function returns the value NULL.

Note: This function cannot be used by the programmer to get the first 
instance of the message parameter of a given type. It assumes that the 
first instance has already been provided by calling the function GetParam. 
Typically, the function GetParam is called once to provide the first instance 
of the parameter and then called iteratively to provide the next instances of 
the parameter.

6.8.57  GetNextParamByte

Function prototype:

bool GetNextParamByte(
 uint16 paramCode,
 BYTE &param)

Function description: This function searches for the next instance of 
the given type of the single-byte parameter in the current message. If the 
instance is found, the function copies it into its parameter specified by the 
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reference and returns the value true; otherwise, it returns the value false. The 
parameters of this function specify the identification of the type of message 
parameter and the pointer to the memory area, where this function should 
store the next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of the message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the next instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.

Note: The programmer cannot use this function to get the first instance of 
the message parameter of the given type. This function assumes that the first 
instance has already been provided by calling the function GetParamByte. 
Typically, the function GetParamByte is called once to provide the first 
instance of the parameter and then called iteratively to provide the next 
instances of the parameter.

6.8.58  GetNextParamDWord

Function prototype:

bool GetNextParamDWord(
 uint16 paramCode,
 DWORD &param)

Function description: This function searches for the next instance of the 
given type of parameter 4 bytes in the current message. If the instance is 
found, the function copies it into its parameter specified by the reference and 
returns the value true; otherwise, it returns the value false. The parameters of 
this function specify the identification of the type of the message parameter 
and the pointer to the memory area, where this function should store the 
next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the next instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.
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Note: The programmer cannot use this function to get the first instance of 
the message parameter of the given type. This function assumes that the first 
instance has already been provided by calling the function GetParamDWord. 
Typically, the function GetParamDWord is called once to provide the first 
instance of the parameter and then called iteratively to provide the next 
instances of the parameter.

6.8.59  GetNextParamWord

Function prototype:

bool GetNextParamWord(
 uint16 paramCode,
 WORD &param)

Function description: This function searches for the next instance of the 
given type of parameter 2 bytes in the current message. If the instance is 
found, the function copies it into its parameter specified by the reference and 
returns the value true; otherwise, it returns the value false. The parameters of 
this function specify the identification of the type of the message parameter 
and the pointer to the memory area, where this function should store the 
next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the next instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.

Note: The programmer cannot use this function to get the first instance of 
the message parameter of the given type. This function assumes that the first 
instance has already been provided by the call to the function GetParamWord. 
Typically, the function GetParamWord is called once to provide the first 
instance of the parameter and then called iteratively to provide the next 
instances of the parameter.

6.8.60  GetObjectId

Function prototype:

virtual uint32 GetObjectId()

Function description: This function returns the unique identification of 
this automata instance.
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Function returns: This function returns the value that uniquely identifies 
this particular automata instance.

Note: This value has been automatically assigned to this automata instance by 
the function Add, which is called to add this automata instance to the FSM system.

6.8.61  GetParam

Function prototype:

uint8 *GetParam(uint16 paramCode)

Function description: This function returns the address of the first instance 
of the given type of message parameter within the current message. The 
parameter of this function specifies the identification of the parameter type.

Function parameters:
paramCode: the identification of the parameter type

Function returns: This function returns the pointer to the first instance of 
the message parameter within the current message. If no message param-
eters of the given type are found, this function returns the value NULL.

Note: This function returns the pointer to the beginning of the message 
parameter. The format of the message parameter is governed by the selected 
type of message information coding. For example, the parameter of the mes-
sage StandardMessage consists of three fields. These fields are the parameter 
type (stored in 2 bytes), the parameter length (stored in 1 byte), and the infor-
mation part of the parameter (stored in the number of bytes determined by 
the content of the previous field of the parameter).

6.8.62  GetParamByte

Function prototype:

bool GetParamByte(
 uint16 paramCode,
 BYTE &param)

Function description: This function searches for the first instance of the 
given type of single-byte parameter in the current message. If the instance is 
found, the function copies it into its parameter specified by the reference and 
returns the value true; otherwise, it returns the value false. The parameters of 
this function specify the identification of the type of message parameter and 
the pointer to the memory area, where this function should store the first 
instance of the message parameter.



459FSM Library

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the first instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.

Note: The programmer must use this function to get the first instance of 
the  message parameter of the given type. Typically, this function is called 
once to  provide the first instance of the parameter, and then the function 
GetNextParamByte is called iteratively to provide the next instances of the 
parameter.

6.8.63  GetParamDWord

Function prototype:

bool GetParamDWord(
 uint16 paramCode,
 DWORD &param)

Function description: This function searches for the first instance of the 
given type of parameter 4 bytes in the current message. If the instance is 
found, the function copies it into its parameter specified by the reference and 
returns the value true; otherwise, it returns the value false. The parameters of 
this function specify the identification of the type of message parameter and 
the pointer to the memory area, where this function should store the first 
instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the first instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.

Note: The programmer must use this function to get the first instance of 
the message parameter of the given type. Typically, this function is called 
once to provide the first instance of the parameter, and then the function 
GetNextParamDWord is called iteratively to provide the next instances of the 
parameter.
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6.8.64  GetParamWord

Function prototype:

bool GetParamWord(
 uint16 paramCode,
 BYTE &param)

Function description: This function searches for the first instance of the 
given type of parameter 2 bytes in the current message. If the instance is 
found, the function copies it into its parameter specified by the reference and 
returns the value true; otherwise, it returns the value false. The parameters of 
this function specify the identification of the type of message parameter and 
the pointer to the memory area, where this function should store the first 
instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for 

the next instance of the message parameter

Function returns: This function returns the value true if the first instance 
of the message parameter is found. If the instance is not found, this function 
returns the value false.

Note: The programmer must use this function to get the first instance of 
the message parameter of the given type. Typically, this function is called 
once to provide the first instance of the parameter, and then the function 
GetNextParamWord is called iteratively to provide the next instances of the 
parameter.

6.8.65  GetProcedure

Function prototype:

PROC_FUN_PTR GetProcedure(uint16 event)

Function description: This function returns the pointer to the event han-
dler for the given event identifier and the current state of automata. The 
parameter of this function specifies the identification of the event type.

Function parameters:
event: the identification of the event type (message code)

Function returns: This function returns the pointer to the event handler. 
Essentially, the event handler is a C++ class function member that handles 
the given event type in the current state.
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Note: The FSM system internal data structures contain all the necessary 
information about the automata states, the sets of recognizable events (mes-
sages) for all automata states, and the corresponding event handlers. This 
information must be defined for each automata type after it has been added 
to the FSM system by the function Add. The programmer specifies this infor-
mation in the parameters of the function Initialize. If the event handler has 
not been specified by the function Initialize for the given event type in the 
current automata state, this function returns the pointer to the function 
DoNothing, which performs the default processing of the unexpected events 
(messages).

6.8.66  GetRightMbx

Function prototype:

virtual inline uint8 GetRightMbx()

Function description: This function returns the identification of the default 
mailbox assigned to the automata instance that is logically to the right of this 
automata instance.

Function returns: This function returns the number that uniquely identi-
fies the default mailbox for the right automata instance.

Note: Historically, the terms left and right automata instance originate 
from SDL, where an automata instance typically communicates with its left 
and right neighbors. These neighbors have their own mailboxes, sometimes 
briefly called left and right mailboxes.

6.8.67  GetRightAutomata

Function prototype:

virtual inline uint8 GetRightAutomata()

Function description: This function returns the identification of the autom-
ata type that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right automata type.

Note: By definition, right automata are logically placed to the right of the 
currently observed automata instance.

6.8.68  GetRightGroup

Function prototype:

virtual linline uint8 GetRightGroup()
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Function description: This function returns the identification of the group 
of automata that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right group of automata.

Note: By definition, a right group of automata is a group that contains right 
automata.

6.8.69  GetRightObjectId

Function prototype:

virtual inline uint32 GetRightObjectId()

Function description: This function returns the identification of the autom-
ata instance that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identi-
fies the right automata instance.

Note: By definition, right automata are logically placed to the right of the 
currently observed automata instance. This function returns the identifi-
cation of the particular right automata instance with which the currently 
observed automata instance communicates.

6.8.70  GetState

Function prototype:

virtual inline uint8 GetState()

Function description: This function returns the identification of the cur-
rent state of this automata instance.

Function returns: This function returns the value that uniquely identifies 
the current state of this automata instance.

6.8.71  IsBufferSmall

Function prototype:

virtual bool IsBuferSmall(
 uint8 *buff,
 uint32 length)

Function description: This function returns the value true if the size of the 
given buffer is not greater than the given size specified as the value of its 
second parameter; otherwise, it returns the value false. The parameters of this 
function specify the buffer whose size is to be checked and the size to be used 
as a measuring unit.
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Function parameters:
buff: the pointer to the buffer whose size is to be checked
length: the value of the measuring unit

Function returns: This function returns the value true if the size of the 
given buffer is less than or equal to the given size. If the buffer size is greater 
than the given size, the function returns the value false.

6.8.72  Initialize

Function prototype:

virtual void Initialize() = 0

Function description: This function defines the automata state transi-
tion event handlers and timers used by this automata type. State tran-
sition event handlers are essentially the C++ functions defined by the 
programmer, which process events (messages). Timers are primitive 
time mechanisms used to restrict the duration of certain communication 
phases.

Note: While writing the function Initialize, the programmer normally 
defines the functions that process the expected events (messages) by calling 
the function InitEventProc, the functions that process the unexpected events 
by calling the function InitUnexpectedEventProc, and the timers by calling the 
function InitTimerBlock.

6.8.73  InitEventProc

Function prototype:

void InitEventProc(
 uint8 state,
 uint16 event,
 PROC_FUN_PTR fun)

Function description: This function defines the given state transition event 
handler for the given automata state and the given event (message code). 
The parameters of this function specify the identification of the state of this 
automata type, the identification of the event type, and the pointer to the 
event handler.

Function parameters:
state: the identification of the state of this automata type
event: the identification of the event type
fun: the pointer to the event handler
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Note: This function may be used only within the definition of the func-
tion Initialize. A sequence of calls to this function fills in the internal state 
table for this automata type. This table is used by the FSM system and this 
automata type during its normal operation to locate the event handler that 
corresponds to the given pair (state, event).

6.8.74  InitTimerBlock

Function prototype:

void InitTimerBlock (
 uint16 tmrId,
 uint32 count,
 uint16 signalId)

Function description: This function initializes the given timer by the given 
duration and the timer expiration message code. The parameters of this function 
specify the timer identification, the timer duration, and the identification of the 
message to be sent to this automata type when the specified timer expires.

Function parameters:
tmrId: the timer identification
count: the timer duration (in timer ticks)
signalId: the identification of the message (signal) to be sent by the spec-

ified timer

Note: The timer identification is a value selected by the programmer. This 
value uniquely identifies the timer to the automata type that uses it in all 
the timer-related primitives, namely, InitTimerBlock, ResetTimer, RestartTimer, 
StartTimer, and StopTimer. Uniqueness of identifiers is limited to the scope 
of a single automata type. If the timer expires, it sends a special message 
(referred to as a signal) to the automata instance that has started that timer. 
The code of this message is set to the value of the parameter SignalId. The 
kernel calculates the absolute timer duration in seconds by dividing the time 
resolution specified for automata type with the time resolution of the FSM 
system and by multiplying this result with the basic timer resolution speci-
fied as the parameter of the function InitKernel.

6.8.75  InitUnexpectedEventProc

Function prototype:

void InitUnexpectedEventProc(
 uint8 state,
 PROC_FUN_PTR fun)
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Function description: This function defines the given state transition event 
handler for unexpected events in the given automata state. The parameters 
of the function specify the automata state and the unexpected event han-
dler, which is essentially a C++ function that handles unexpected events 
(messages).

Function parameters:
state: the value that uniquely identifies the automata state
fun: the pointer to the unexpected event handler

Note: If the unexpected event (message) handler does not exist because 
it has not been defined by this function, the FSM system and this automata 
type will use the function DoNothing to handle unexpected messages for all 
the states in which the unexpected message is not defined.

6.8.76  IsTimerRunning

Function prototype:

bool IsTimerRunning(uint16 id)

Function description: This function returns the value true if a given timer 
is active (running); otherwise, it returns the value false. The parameter of this 
function specifies the timer identification.

Function parameters:
id: the timer identification

Function returns: This function returns the value true if the timer is run-
ning. If the timer is not active, this function returns the value false.

Note: The timer may not be active because it has not been started at all, or 
it has been started but has expired in the meantime.

6.8.77  NoFreeObjectProcedure

Function prototype:

void NoFreeObjectProcedure(uint8 *msg)

Function description: This function defines the behavior of this automata 
type if the list of free automata of this type is used, and if it is empty at the 
moment when a free instance is requested. The parameter of this function 
specifies the pending event (message).
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Function parameters:
msg: the pointer to the pending message

Note: This function is used if a group of automata of this type is used as a 
pool of resources of the same type. This function is called if the message related 
to this automata type appears and no available automata instances (resources) 
of this type are available. The programmer should write their own function to 
handle this situation in an application-specific way. This situation is addition-
ally handled at the level of the FSM system by the function NoFreeInstances.

6.8.78  NoFreeInstances

Function prototype:

virtual void NoFreeInstances() = 0

Function description: This function defines the behavior of the FSM sys-
tem if a list of free automata is used, and if it is empty at the moment when a 
free instance is requested.

Note: This function is used if a group of automata of this type is used as a 
pool of resources of the same type within the FSM system. This function is 
called if the message related to this automata type appears and no available 
automata instances (resources) of this type are available. The programmer 
should write their own function to handle this situation in an application-
specific way. This situation is additionally handled at the level of this autom-
ata type by the function NoFreeObjectProcedure.

6.8.79  ParseMessage

Function prototype:

virtual bool ParseMessage(uint8 *msg)

Function description: This function checks if the given message is coded 
properly and, if it is, it becomes the current message (its pointer is assigned to 
the internal variable CurrentMessage). The parameter of this function speci-
fies the message to be parsed.

Function parameters:
msg: the pointer to the message to be parsed

Function returns: This function returns the value true if the message syn-
tax is correct; otherwise, it returns the value false.

Note: This function is called internally for each received message. 
Normally, this function is called after the reception of the message to check 
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its syntax. If the message syntax is correct, further message processing func-
tions are called. Otherwise, the FSM system reports an error and discards 
the syntactically incorrect message.

6.8.80  PrepareNewMessage(uint8*)

Function prototype:

virtual void PrepareNewMessage(uint8 *msg)

Function description: This function defines the given buffer as the new 
message buffer by assigning the given pointer to the internal variable 
NewMessage. The buffer is used by this automata instance as a working area 
for the construction of the new message. The parameter of this function 
specifies the buffer.

Function parameters:
msg: the pointer to the buffer

Note: If the programmer wants to create a new message, they would nor-
mally call the function GetBuffer to obtain the buffer for the construction of 
the message. Next, the programmer would call this function to declare the 
buffer provided by the kernel as the buffer that will contain the new mes-
sage. After this declaration, the programmer may use all the functions from 
the family of functions that operate on the new message to construct the new 
message. Basically, these are the AddParamX functions.

6.8.81  PrepareNewMessage(uint32, uint16, uint8)

Function prototype:

virtual void PrepareNewMessage(
 uint32 length,
 uint16 code,
 uint8 infoCode = LOCAL_PARAM_CODING)

Function description: This function creates the new message of the given 
length with the given message code and the given type of information cod-
ing. The parameters of this function specify the message length, the message 
code, and the identification of the type of message information coding.

Function parameters:
length: the message length
code: the value of the message code
infoCode: the identification of the type of message information coding
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Note: Dealing with static messages of fixed and known sizes is easy. In 
this case, the programmer normally knows the size of the message they 
must create. The programmer creates the new message by calling this func-
tion and specifying the size as the value of the function parameter length. 
However, dealing with dynamic messages is more complicated, because the 
message length might not be known in advance. In this case, the program-
mer may specify the value 0 as the value of the parameter length. This func-
tion, in turn, will create the empty message that has its header, but has no 
payload. Further on, the programmer typically uses functions AddParamX 
to dynamically add new parameters to the message. Whenever not enough 
room exists for the new parameter in the existing new message buffer, the 
function AddParamX transparently allocates a bigger buffer, moves the con-
tent of the new message into it, and releases the smaller buffer. Of course, 
the price paid for this flexibility is the processing overhead for transparent 
buffer management.

6.8.82  Process

Function prototype:

virtual void Process(uint8 *msg)

Function description: This function performs the preparations for the 
message processing and selects the state transition event handler based on 
the message code and current state of this automata instance. After com-
pletion of the message processing, this function releases the buffer used 
by the message. The parameter of this function specifies the message to be 
processed.

Function parameters:
msg: the pointer to the message to be processed

Note: This function is called internally by this automata type. Because this 
function is virtual, the programmer may define the message handling proce-
dure in accordance with the application-specific requirements.

6.8.83  PurgeMailBox

Function prototype:

void PurgeMailBox()

Function description: This function purges all the messages from the mail-
box assigned to this automata type and releases all the buffers assigned to 
the messages.
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Note: Notice that the mailbox is assigned to an automata type rather than 
to an individual instance of this type. This means that the mailbox may con-
tain the messages addressed to different instances of this type. This function 
does not differentiate the messages. Instead, it simply purges all of them.

6.8.84  RemoveParam

Function prototype:

bool RemoveParam(uint16 paramCode)

Function description: This function removes the given type of message 
parameter from the new message. The parameter of this function specifies 
the identification of the type of message parameter.

Function parameters:
paramCode: the value that uniquely identifies the type of message 

parameter

Function returns: This function returns the value true if the given type of 
message parameter is successfully found and removed. If the new message 
does not contain the given type, this function returns the value false.

Note: Removing the type of message parameter with identification 0 is not 
recommended because it marks the end of the parameters in the message. 
The FSMSystem library debug version will report an error in that case and 
stop the program execution.

6.8.85  Reset

Function prototype:

virtual void Reset()

Function description: This function resets this automata instance by 
returning it to its initial state and stopping all its active timers.

Note: If the programmer wants to specify some additional actions to be 
undertaken during the restart operation, they may redefine this default 
behavior by writing the corresponding function member of a class derived 
from the class FiniteStateMachine.

6.8.86  ResetTimer

Function prototype:

void ResetTimer(uint16 id)
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Function description: This function resets the internal timer block object 
and returns the buffer allocated by the StartTimer primitive to the FSM 
Library kernel. The parameter of this function specifies the identification of 
the timer.

Function parameters:
id: the value that uniquely identifies the timer

6.8.87  RestartTimer

Function prototype:

void RestartTimer(uint16 tmrId)

Function description: This function restarts the given timer. It is logically 
equivalent to a sequence of StopTimer and StartTimer primitives. The param-
eter of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the timer

6.8.88  RetBuffer

Function prototype:

virtual void RetBuffer(uint8 *buff)

Function description: This function returns the given buffer to the FSM 
Library kernel. Normally, each memory buffer is returned at the end of its 
life cycle. Failure to do so leads to a memory leak problem. The parameter of 
this function specifies the buffer to be released.

Function parameters:
buff: the pointer to the buffer to be released

Note: The programmer must pay special attention to releasing the buffers 
when they are not needed anymore because the FSMSystem library does not 
include a garbage collector. Memory outage causes the exception that will 
stop the program execution.

6.8.89  ReturnMsg

Function prototype:

void ReturnMsg(uint8 mbxId)
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Function description: This function makes a copy of the current message 
and sends it to the given mailbox. This primitive is used frequently for mes-
sage forwarding. On many occasions, the communication process must react 
in this simple way. The parameter of this function specifies the identification 
of the mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox

6.8.90  SetBitParamByteBasic

Function prototype:

void SetBitParamByteBasic(
 BYTE param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given single-byte parameter of 
the new message to the result of the bit-wise inclusive OR operation applied 
to the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the 
value of the single-byte parameter, the offset of the target parameter of the 
new message, and the value of the bit-mask.

Function parameters:
param: the value of the single-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.91  SetBitParamDWordBasic

Function prototype:

void SetBitParamDWordBasic(
 DWORD param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given 4-byte parameter of the 
new message to the result of the bit-wise inclusive OR operation applied to 
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the 
value of the 4-byte parameter, the offset of the target parameter of the new 
message, and the value of the bit-mask.
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Function parameters:
param: the value of the 4-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.92  SetBitParamWordBasic

Function prototype:

void SetBitParamWordBasic(
 WORD param,
 uint32 offset,
 uint32 mask = MASK_32_BIT)

Function description: This function sets the given 2-byte parameter of the 
new message to the result of the bit-wise inclusive OR operation applied to 
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the 
value of the 2-byte parameter, the offset of the target parameter of the new 
message, and the value of the bit-mask.

Function parameters:
param: the value of the 2-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.93  SetCallId()

Function prototype:

inline void SetCallId()

Function description: This function sets the default value of the attribute 
CallId of this automata instance.

Note: This function automatically allocates the first available identification 
and assigns it to the protected class attribute CallId, completely transparent 
to the programmer.

6.8.94  SetCallId(uint32) 

Function prototype:

inline void SetCallId(uint32 id)
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Function description: This function sets the given value of the attribute 
CallId of this automata instance. The parameter of this function specifies the 
value to be assigned to the attribute CallId.

Function parameters:
id: the value to be assigned to the attribute CallId

Note: In contrast to an overloaded function without any parameters in 
its signature, this function enables the programmer to manually assign the 
value to the attribute CallId. However, this value must be unique. The pro-
grammer must pay special attention to the assignment of these numbers, 
especially if they mix this function call with function calls to the overloaded 
function that assigns the default values.

6.8.95  SetCallIdFromMsg

Function prototype:

inline void SetCallIdFromMsg()

Function description: This function sets the attribute CallId of this automata 
instance to the value of the parameter CallId of the current message. This primi-
tive is used to store the reference number specific to the communication protocol.

6.8.96  SetDefaultFSMData

Function prototype:

virtual void SetDefaultFSMData() = 0

Function description: This function sets the automata-specific data to their 
default values. It is typically used before the normal operation phase.

Note: The programmer must define this virtual function for a class derived 
from the class FiniteStateMachine. They do so by writing a C++ function that 
initializes the problem-specific data.

6.8.97  SetDefaultHeader

Function prototype:

virtual void SetDefaultHeader(uint8 infoCoding = 0)

Function description: This function sets the default header field values for 
the given type of message information coding. The parameter of this func-
tion specifies the identification of the type of message information coding.
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Function parameters:
infoCoding: the type of message information coding

Note: The programmer must define this virtual function for a class derived 
from the class FiniteStateMachine. They do so by writing a C++ function that 
fills in the protocol-specific data in the new message header.

6.8.98  SetGroup

Function prototype:

inline void SetGroup(uint8 id)

Function description: This function sets the identification of the group of 
automata for this automata type to the given value. This primitive is used 
to declare group membership. The parameter of this function specifies the 
value to be assigned to the corresponding class attribute.

Function parameters:
id: the value that uniquely identifies the group of automata

6.8.99  SetInitialState

Function prototype:

virtual void SetInitialState()

Function description: This function sets the current state of this automata 
instance to its initial state.

Note: The programmer must obey the rule that the value of the identifica-
tion of the initial automata state is 0.

6.8.100  SetKernelObjects

Function prototype:

static void SetKernelObjects(
 TPostOffice *postOffice,
 TBuffers *buffers,
 CTimer *timer)

Function description: This function sets the FSMSystem library kernel 
objects (post office, buffers, and timers), which are common for all the autom-
ata in the FSM system. The parameters of this function specify the post office 
object, the buffers object, and the timers object.
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Function parameters:
postOffice: the pointer to the post office object
buffers: the pointer to the buffers object
timer: the pointer to the timers object

Note: This function is called internally by the function InitKernel. 
Remember that this function defines the kernel objects that are common for 
all automata types and all their instances. An accidental call to this function 
may cause unpredictable behavior in the FSM system.

6.8.101  SetLeftMbx

Function prototype:

inline void SetLeftMbx(uint8 mbx)

Function description: This function sets the default identification of the 
mailbox assigned to the automata instance that is logically to the left of this 
automata instance. The parameter of this function specifies the identification 
of the mailbox.

Function parameters:
mbx: the value that uniquely identifies the mailbox

6.8.102  SetLeftAutomata

Function prototype:

inline void SetLeftAutomata(uint8 automata)

Function description: This function sets the identification of the automata 
type that is logically to the left of this automata instance. The parameter of 
this function specifies the identification of the automata type.

Function parameters:
automata: the value that uniquely identifies the automata type

6.8.103  SetLeftObject

Function prototype:

inline void SetLeftObject(uint8 group)

Function description: This function sets the identification of the type of the 
group of automata that is logically to the left of this automata instance. The 
parameter of this function specifies the identification of the group of automata.
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Function parameters:
group: the value that uniquely identifies the group of automata

6.8.104  SetLeftObjectId

Function prototype:

inline void SetLeftObjectId(uint32 id)

Function description: This function sets the identification of the automata 
instance that is logically to the left of this automata instance. The parameter 
of this function specifies the identification of the automata instance.

Function parameters:
id: the identification of the automata instance

6.8.105  SetLogInterface

Function prototype:

static void SetLogInterface(LogInterface *logingObject)

Function description: This function defines the object responsible for 
message logging. The object is an instance of a class derived from the class 
LogInterface. The parameter of this function specifies the message logging 
object.

Function parameters:
logingObject: the pointer to the message logging object

Note: The programmer must not call this function before the initialization 
of all the automata included in the FSM system has been finished. The log-
ging object may log data to the file on the local mass memory unit (e.g., flash 
memory) or to the network file server. The log file is essential for debugging 
and test and verification purposes.

6.8.106  SendMessage(uint8)

Function prototype:

inline void SendMessage(uint8 mbxId)

Function description: This function sends the new message to the given mail-
box. The parameter of this function specifies the identification of the mailbox.
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Function parameters:
mbxId: th e value that uniquely specifies the mailbox

Note: By definition, the internal pointer NewMessage points to the buffer 
that contains the new message. The programmer initializes this pointer by 
calling the function PrepareNewMessage.

6.8.107  SendMessage(uint8, uint8*)

Function prototype:

inline void SendMessage(
 uint8 mbxId,
 uint8 *msg)

Function description: This function sends the given message to the given 
mailbox. The parameters of this function specify the identification of the 
mailbox and the message to be sent to that mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox
msg: the pointer to the message

6.8.108  SetMessageFromData

Function prototype:

void SetMessageFromData()

Function description: This function sets the header fields of the new mes-
sage related to the originating automata instance to the values specific to this 
automata instance. The data specifying the originating automata instance 
are its type, group, and identification.

Note: This function is automatically called from the function SendMessage.

6.8.109  SetMsgCallId(uint32)

Function prototype:

inline void SetMsgCallId(uint32 id)

Function description: This function sets the call ID parameter of the new 
message to the given value. The parameter of this function specifies the 
value of the call ID.
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Function parameters:
id: the value of the call ID

Note: The call ID parameter has been traditionally used to identify a single 
telephone call. In general, it may be used to uniquely identify a communica-
tion process or a transaction that engages a group of automata that partici-
pates in its processing.

6.8.110  SetMsgCallId(unit32, unit8*)

Function prototype:

inline void SetMsgCallId(
 uint32 id,
 uint8 *msg)

Function description: This function sets the call ID parameter of the given 
message to the given value. The parameters of this function specify the value 
of the call ID and the target message.

Function parameters:
id: the value of the call ID
msg: the pointer to the buffer that contains the target message

Note: The value of the call ID parameter is the same for all the messages 
involved in a transaction or a process, e.g., a single telephone call.

6.8.111  SetMsgCode(uint16)

Function prototype:

inline void SetMsgCode(uint16 code)

Function description: This function sets the message code parameter of the 
new message to the given value. The parameter of this message specifies the 
message code.

Function parameters:
code: the message code

6.8.112  SetMsgCode(uint16, uint8*)

Function prototype:

inline void SetMsgCode(
 uint16 code,
 uint8 *msg)
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Function description: This function sets the message code parameter of 
the given message to the given value. The parameters of this function spec-
ify the message code and the target message.

Function parameters:
code: the message code
msg: the pointer to the buffer that contains the target message

6.8.113  SetMsgFromAutomata(uint8)

Function prototype:

inline void SetMsgFromAutomata(uint8 from)

Function description: This function sets the type of the originating automata 
parameter of the new message to the given value. The parameter of this func-
tion specifies the identification of the automata type that is the message source.

Function parameters:
from: the identification of the automata type

Note: This function is automatically called by the function SetMessage 
FromData.

6.8.114  SetMsgFromAutomata(uint8, uint8*)

Function prototype:

inline void SetMsgFromAutomata(
 uint8 from,
 uint8 *msg)

Function description: This function sets the type of the originating autom-
ata parameter of the given message to the given value. The parameters of 
this function specify the type of automata that is the message source and the 
target message.

Function parameters:
from: the a utomata type that is the message source
msg: the pointer to the buffer that contains the target message

6.8.115  SetMsgFromGroup(uint8)

Function prototype:

inline void SetMsgFromGroup(uint8 from)
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Function description: This function sets the type of the originating group 
of automata parameter of the new message to the given value. The parameter 
of this message specifies the identification of the group of automata that is 
the message source.

Function parameters:
from: the identification of the group of automata that is the message 

source

Note: This function is automatically called by the function SetMessage 
FromData.

6.8.116  SetMsgFromGroup(uint8, uint8*)

Function prototype:

inline void SetMsgFromGroup(
 uint8 from,
 uint8 *msg)

Function description: This function sets the type of the originating group 
of automata parameter of the given message to the given value. The param-
eters of this function specify the identification of the group of automata that 
is the message source and the target message.

Function parameters:
from: the identification of the group of automata that is the message source
msg: the pointer to the buffer that contains the target message

6.8.117  SetMsgInfoCoding(uint8)

Function prototype:

inline void SetMsgInfoCoding(uint8 codingType)

Function description: This function sets the message information coding 
parameter of the new message to the given value. The parameter of this mes-
sage specifies the identification of the information coding scheme.

Function parameters:
codingType: the value that uniquely specifies the information coding 

scheme

Note: This function is automatically called by the function Prepare NewMessage.
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6.8.118  SetMsgInfoCoding(uint8, uint8*)

Function prototype:

inline void SetMsgInfoCoding(
 uint8 codingType,
 uint8 *msg)

Function description: This function sets the message information coding 
parameter of the given message to the given value. The parameters of this 
function specify the identification of the information coding scheme and the 
target message.

Function parameters:
codingType: the identification of the information coding scheme
msg: the pointer to the target message

6.8.119  SetMsgInfoLength(uint16)

Function prototype:

inline void SetMsgInfoLength(uint16 length)

Function description: This function sets the message payload (useful infor-
mation) length parameter of the new message. The parameter of this func-
tion specifies the value of the payload length.

Function parameters:
length: the payload length in octets (bytes)

Note: All the AddParamX functions—which are responsible for adding 
parameters to the new message—call this function automatically to update 
the length of the message payload.

6.8.120  SetMsgInfoLength(uint16, uint8*)

Function prototype:

inline void SetMsgInfoLength(
 uint16 length,
 uint8 *msg)

Function description: This function sets the message payload (useful 
information) length parameter of the given message. The parameters 
of this function specify the value of the payload length and the target 
message.
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Function parameters:
length: the payload length in octets (bytes)
msg: the pointer to the buffer that contains the target message

6.8.121  SetMsgObjectNumberFrom(uint32)

Function prototype:

inline void SetMsgObjectNumberFrom(uint32 from)

Function description: This function sets the originating automata instance 
identification parameter of the new message to the given value. The param-
eter of this function specifies the identification of the automata instance that 
is the message source.

Function parameters:
from: the identification of the automata instance that is the message source

Note: This function is automatically called by the function SetMessage 
FromData.

6.8.122  SetMsgObjectNumberFrom(uint32, uint8*)

Function prototype:

inline void SetMsgObjectNumberFrom(
 uint32 from,
 uint8 *msg)

Function description: This function sets the originating automata instance 
identification parameter of the given message to the given value. The param-
eters of this message specify the identification of the automata instance that 
is the message source and the target message.

Function parameters:
from: the identification of the automata instance that is the message source
msg: the pointer to the buffer that contains the target message

6.8.123  SetMsgObjectNumberTo(uint32)

Function prototype:

inline void SetMsgObjectNumberTo(uint32 to)

Function description: This function sets the destination automata instance 
identification parameter of the new message to the given value. The 
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parameter of this function specifies the automata instance that is the message 
destination.

Function parameters:
to: the automata instance that is the message destination

6.8.124  SetMsgObjectNumberTo(uint32, uint8*)

Function prototype:

inline void SetMsgObjectNumberTo(uint32 to,uint8 *msg)

Function description: This function sets the destination automata instance 
identification parameter of the given message to the given value. The param-
eters of this function specify the automata instance that is the message des-
tination and the target message.

Function parameters:
to: the automata instance that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.125  SetMsgToAutomata(uint8)

Function prototype:

inline void SetMsgToAutomata(uint8 to)

Function description: This function sets the destination automata type 
identification parameter of the new message to the given value. The 
parameter of this function specifies the automata type that is the message 
destination.

Function parameters:
to: the automata type that is the message destination

6.8.126  SetMsgToAutomata(uint8, uint8*)

Function prototype:

inline void SetMsgToAutomata(
 uint8 to,
 uint8 *msg)

Function description: This function sets the destination automata type 
identification parameter of the given message to the given value. The 
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parameters of this function specify the identification of the automata type 
that is the message destination and the target message.

Function parameters:
to: the identification of the automata type that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.127  SetMsgToGroup(uint8)

Function prototype:

inline void SetMsgToGroup(uint8 to)

Function description: This function sets the destination automata group 
identification parameter of the new message to the given value. The param-
eter of this function specifies the identification of the group of automata that 
is the message destination.

Function parameters:
to: the identification of the group of automata that is the message destination

6.8.128  SetMsgToGroup(uint8, uint8*)

Function prototype:

inline void SetMsgToGroup(
 uint8 to,
 uint8 *msg)

Function description: This function sets the destination automata group 
identification parameter of the given message to the given value. The param-
eters of this function specify the identification of the group of automata that 
is the message destination and the target message.

Function parameters:
to: the identification of the group of automata that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.129  SendMessageLeft

Function prototype:

void SendMessageLeft()

Function description: This function sends the new message to the mailbox 
assigned to the automata instance that is logically to the left of this automata 
instance.
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Note: The programmer may use this function if they have already defined 
the left automata instance for the currently observed automata instance. This 
definition includes the definition of the mailbox assigned to the left automata 
instance. If the left automata instance and its mailbox are defined, this func-
tion automatically fills in all the data related to both the source (originating) 
and destination automata instances within the new message and sends the 
new message to the left mailbox.

6.8.130  SendMessageRight

Function prototype:

void SendMessageLeft()

Function description: This function sends the new message to the mail-
box assigned to the automata instance that is logically to the right of this 
automata instance.

Note: The programmer may use this function if they have already defined 
the right automata instance for the currently observed automata instance. 
This definition includes the definition of the mailbox assigned to the right 
automata instance. If the right automata instance and its mailbox are defined, 
this function automatically fills in all the data related to both the source 
(originating) and destination automata instances within the new message 
and sends the new message to the right mailbox.

6.8.131  SetNewMessage

Function prototype:

inline void SetNewMessage(uint8 *msg)

Function description: This function sets the new message to the given 
message by assigning the given message pointer to the internal pointer to the 
new message. The parameter of this function specifies the target message.

Function parameters:
msg: the pointer to the buffer that contains the target message

6.8.132  SetObjectId

Function prototype:

inline void SetObjectId(uint32 id)

Function description: This function sets the identification of this automata 
instance to the given value. The parameter of this function specifies the iden-
tification of this automata instance.
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Function parameters:
id: the value that uniquely identifies this automata instance

6.8.133  SetRightMbx

Function prototype:

inline void SetRightMbx(uint8 mbx)

Function description: This function sets the identification of the mailbox 
assigned to the automata instance that is logically to the right of this autom-
ata instance. The parameter of this message specifies the identification of the 
right mailbox for this automata instance.

Function parameters:
mbx: the identification of the right mailbox for this automata instance

6.8.134  SetRightAutomata

Function prototype:

inline void SetRightAutomata(uint8 automata)

Function description: This function sets the identification of the automata 
type that is logically to the right of this automata instance. The parameter of 
this function specifies the automata type that is to the right of this automata 
instance.

Function parameters:
automata: the identification of the automata type

6.8.135  SetRightObject

Function prototype:

inline void SetRightObject(uint8 group)

Function description: This function sets the identification of the type of the 
group of automata that is logically to the right of this automata instance. The 
parameter of this function specifies the type of the group of automata that is 
to the right of this automata instance.

Function parameters:
group: the identification of the group of automata
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6.8.136  SetRightObjectId

Function prototype:

inline void SetRightObjectId(uint32 id)

Function description: This function sets the identification of the automata 
instance that is logically to the right of this automata instance. The param-
eter of this function specifies the identification of the automata instance that 
is to the right of this automata instance.

Function parameters:
id: the identification of the automata instance

6.8.137  SetState

Function prototype:

inline void SetState(uint8 state)

Function description: This function sets the identification of the current 
state of this automata instance. The parameter of this function specifies the 
identification of the state.

Function parameters:
state: the value that uniquely identifies the particular state of automata

6.8.138  StartTimer

Function prototype:

void StartTimer(uint16 tmrId)

Function description: This function starts the given timer. The parameter 
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single 
automata type that uses it.

6.8.139  StopTimer

Function prototype:

void StopTimer(uint16 tmrId)
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Function description: This function stops the given timer. The parameter 
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single 
automata type that uses it.

6.8.140  SysClearLogFlag

Function prototype:

static void SysClearLogFlag()

Function description: This function stops the logging of the messages 
exchanged by the automata.

6.8.141  SysStartAll

Function prototype:

Static void SysStartAll()

Function description: This function starts the logging of the messages 
exchanged by the automata.

Note: Normally, the programmer should start the logging of messages 
before they start the individual automata included in the FSM system.

6.8.142  NetFSM

Function prototype:

NetFSM(
 uint16 numOfTimers = DEFAULT_TIMER_NO,
 uint16 numOfState = DEFAULT_STATE_NO,
 uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,
 bool getMemory = true)

Function description: This constructor initializes the object that represents 
an instance of the given automata type together with the data structures 
needed for its proper operation. The parameters of this function specify the 
number of timers to be used by this automata type, the total number of states 
for this automata type, the maximal number of state transitions per state for 
this automata type, and the memory allocation indicator. All the parameters 
have their default values as shown in the function prototype declaration 
above.
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Function parameters:
numOfTimers: the number of timers to be used by this automata type
numOfState: the total number of states for this automata type
maxNumOfProceduresPerState: the maximal number of state transitions 

per state
getMemory: the memory allocation indicator

Note: The programmer may call this a constructor without parameters. 
In this case, the parameters will be set to their corresponding default val-
ues. The value of the fourth parameter getMemory regulates memory allo-
cation. By default, this indicator is set to the value true, which means that 
the constructor will take care of memory allocation. Default memory alloca-
tion is not optimal because it is based on the maximal number of transitions 
per state. This compromise has been made intentionally because it leads 
to a very simple FSM definition API. If the programmer wants to optimize 
memory allocation, they may build the data structure describing the FSM by 
allocating necessary memory blocks from the memory heap, linking them 
together, and storing the pointer to this data structure in the protected class 
field member States before this function is called. In that case, the program-
mer would set the fourth parameter getMemory to the value false.

6.8.143  convertFSMToNetMessage

Function prototype:

virtual void convertFSMToNetMessage() = 0

Function description: This function converts the internal message format 
into the external message format appropriate for the transmission over the 
TCP/IP network.

Note: The programmer must define this virtual function by writing the 
corresponding function member of a class derived from the class NetFSM.

6.8.144  convertNetToFSMMessage

Function prototype:

virtual uint16 convertNetToFSMMessage() = 0

Function description: This function converts the external message format 
into the internal message format appropriate for the communication within 
the FSM system.

Function returns: This function returns the code of the received message.
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Note: The programmer must define this virtual function by writing 
the corresponding function member of a class derived from the class 
NetFSM.

6.8.145  establishConnection

Function prototype:

void establishConnection()

Function description: This function establishes the TCP connection 
between two geographically distributed FSM systems.

Note: The programmer must call this function before they can call the 
function sendToTCP to send the message to the remote FSM system.

6.8.146  getProtocolInfoCoding

Function prototype:

virtual uint8 getProtocolInfoCoding() = 0

Function description: This function returns the identification of the type of 
external message coding.

Function returns: This function returns the value that uniquely identifies 
the type of coding of the external message.

6.8.147  sendToTCP

Function prototype:

void sendToTCP()

Function description: This function sends the new message to the remote 
FSM system over the previously established TCP connection.

Note: The programmer must call the function establishConnection before 
they can call this function.

6.9  A Simple Example with Three Automata Instances

This section shows how the programmer can construct the FSM system and 
how they can add individual automata instances to it. To keep the example 
simple, we include only one use case, Show Simple Demo (Figure 6.1). The 
realization of this use case is a simple collaboration that comprises three 
instances (instance_1, instance_2, and instance_3) of the same automata type 
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(Automata), which are added to the FSM system (Figure 6.2). These three 
automata instances have the trivial task of exchanging the given number of 
messages in a “round robin” fashion.

At the beginning, the main thread calls the function StartDemo of instance_1, 
which, in turn, asynchronously sends itself the message IDLE_START. Upon 
reception of this message, instance_1 sends the message IDLE_MSG to 
instance_2, which increments the message sequence number and forwards 
the message to instance_3; the latter translates it to the message MSG_MSG 
and sends it back to instance_1. This message then makes two full circles 
around the collaborating objects. Finally, instance_1 translates it to the mes-
sage MSG_STOP and sends it to instance_2, which, in turn, forwards it to 
instance_3. The corresponding sequence diagram is shown in Figure 6.3. The 
conditions A, B, and C regulate the already mentioned translations of the 
messages.

The statechart diagram that describes the behavior of a single autom-
ata instance is organized into two hierarchical levels. The top level com-
prises two simple states (IDLE and MESSAGE) and four composite states 
(Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, 
and Automata_MSG_STOP) (Figure 6.4). The symbolic constant MAX_
MSG_NUM is defined to have the value 10 in this example. The variable 
msgno is the message sequence number, whose values are shown in paren-
theses in Figures 6.2 and 6.3. Later in the program text, this short vari-
able name suitable for figures is replaced with the longer self-documenting 
name msgNumber.

The individual composite states Automata_IDLE_START, Automata_
IDLE_MSG, Automata_MSG_MSG, and Automata_MSG_STOP are shown in 

Demonstrator

Show simple demo

System

«uses»

FIGURE 6.1
Simple use case diagram for the example with three automata instances.
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Figures 6.5 through 6.8, respectively. These have been made rather detailed to 
show how to provide the mapping from the UML model to the correspond-
ing program code by the application of forward engineering. Essentially, the 
state transition actions are sequences of calls to functions provided by the FSM 
Library, such as PrepareNewMessage, AddParamDWord, SendMessage, and so on.

Each of the composite states can be modeled as an operation by the 
corresponding activity diagram. The activity diagrams for the opera-
tions Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_
MSG, and Automata_MSG_STOP are shown in Figures 6.9 through 
6.12, respectively. Again, these diagrams have been made by applying 
forward engineering, but on a slightly higher abstraction level, using 
informal text statements instead of explicit functions calls. Essentially, 
composite statechart and activity diagrams have the same semantics in 
this example.

Initial

Preparing

Sending

/PrepareNewMessage(0×00,IDLE_MSG); AddParamDWord(COUNT,msgno);

/SendMessage(MBX_AUTOMATA_ID);

/msgno=1

Automata_IDLE_START

FIGURE 6.5
Statechart diagram for the composite state Automata_IDLE_START.
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The third and semantically equivalent method of modeling the behav-
ior of individual automata instances is by using the domain-specific SDL 
model. This model comprises state transitions triggered by the recep-
tion of the corresponding messages. The same names are used again so 
that the reader can easily follow the correspondence between the SDL 
state transitions and the UML composite states and activity diagrams. 
The SDL state transitions Automata_IDLE_START, Automata_IDLE_MSG, 
Automata_MSG_MSG, and Automata_MSG_STOP are shown in Figures 
6.13 through 6.16, respectively.

As already mentioned, all three automata instances in this example are 
of the same type, i.e., class. The class Automata is a specialization of the 
FSM Library class FiniteStateMachine and is used by the FSM Library class 
FSMSystem (see the corresponding UML class diagram in Figure 6.17). The 

Automata_MSG_STOP

Initial

Preparing

SENDING_STOP

/ GetParamDWord(COUNT,msgno); msgno––

[msgno>0]/PrepareNewMessage(0×00,MSG_STOP); AddParamDWord(COUNT,msgno);

[else]

/SendMessage(MBX_AUTOMATA_ID);

FIGURE 6.8
Statechart diagram for the composite state Automata_MSG_STOP.
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class Automata inherits all the members from its parent class and adds some 
field members (such as msgno) and function members (such as Automata_
IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, Automata_
MSG_STOP, Initialize, and StartDemo). The first four correspond to composite 
states from the previous UML statechart model.

An object diagram, such as the one shown in Figure 6.18, helps us to 
better understand the structural relationships among objects. A collabora-
tion diagram (Figure 6.2) shows the logical communication of automata 
instances over their virtual, peer-to-peer connections. On a more detailed 
level of abstraction, we see that the real communication is governed by the 
FSM system, which is the owner of the mailboxes (not shown in the figure) 
used for storing the messages, e.g., StandardMessage (shown in Figure 6.18). 
This particular message shown in one snapshot of object collaboration is 
the first message sent from instance_1 to instance_2. The message code is 
IDLE_MSG, and the value of the message sequence parameter is 1.

msgno=1

Prepare IDL_MSG

Send to next instance

Set state message

tAu omata_ IDLE _ START

FIGURE 6.9
Activity diagram for the operation Automata_IDLE_START.
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Get msgno

Increment msgno

PREPARE IDLE_MSG

Send to next instance

Set state message

Prepare MSG_MSG

Send to next instance

Set state message

[msgno<NUM_AUTOMATA][else]

Automata_IDLE_MSG

FIGURE 6.10
Activity diagram for the operation Automata_IDLE_MSG.
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Get msgno

Increment msgno

Prepare MSG_MSG
Set msgno to

NUM_AUTOMATA - 1

[msgno<MAX_MSG_NUM][else]

Send to next instancePrepare MSG_STOP

Set state messageSend to next instance

Set state IDLE

Automata_MSG_MSG

FIGURE 6.11
Activity diagram for the operation Automata_MSG_MSG.
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Get msgno

Decrement msgno

Set state IDLE Prepare MSG_STOP

Send to next instance

[msgno>0][else]

Set state IDLE

Automata_MSG_STOP

FIGURE 6.12
Activity diagram for the operation Automata_MSG_STOP.
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IDLE

IDLE_START

Set msgno
to 1

Prepare
IDLE_MAG

Send to
next

instance

Message

Automata_IDLE_START

FIGURE 6.13
SDL diagram for the transition Automata_IDLE_START.
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IDLE

IDLE_MSG

Get msgno

Increment
msgno

msgo<
NUM_AU
TOMATA

Prepare
IDLE_MSG

Prepare
MSG_MSG

YesNo

Send to
next

instance

Send to
next

instance

Message

Automata_IDLE_MSG

FIGURE 6.14
SDL diagram for the transition Automata_IDLE_MSG.



505FSM Library

Message

MSG_MSG

Get msgno

Increment
msgno

msgno<
MAX_MSG

_NUM

Prepare
MSG_MSG

Set msgno
to

NUM_AUTO
MATA-1

Prepare
MSG_STOP

Send to
next

instance

Send to
next

instance

IDLE

Message

Automata_MSG_MSG

FIGURE 6.15
SDL diagram for the transition Automata_MSG_MSG.
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Message

MSG_STOP

Get msgno

Decrement
msgno

msgno>0

Prepare
MSG_STOP

Send
to

next
instance

IDLE

IDLE

Automata_MSG_STOP

FIGURE 6.16
SDL diagram for the transition Automata_MSG_STOP.
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-Automata_IDLE_START()
-Automata_IDLE_MSG()
-Automata_MSG_MSG()
+Automata_MSG_STOP()
+Initialize()
+StartDemo()

-msgno
Automata

Here and in other UML
diagrams we use the
abbrevation msgno.
�e full name of this
filed is msgNumber.

#GetLeftMbx()
#GetLeftAutomate()
#GetLeftGroup()
#GetLeftObjectId()
#SetLeftMbx()
#SetLeftAutomate()
#SetLeftObject()
#SetLeftObjectId()
#Initialize()
#InitEventProc()
#InitUnexpectedEventProc()
+FiniteStateMachine()
+~FiniteStateMachine()
+Process()

-NumOfStates
-Nu
-MaxNumOfProcPerState
-States
-Connection Id
-Group Id
-Call Id
-LeftMbx
-LeftAutomate
-LeftGroup
-LeftObjectId
-RightMbx
-RightAutomate
-RightGroup
-RightObjectId
-State

FiniteStateMachine
�is is not the complete
specification of the
class FiniteStateMachine.
It’s just a snippet that
should give you an idea
of it’s complexity.

#GetBuffer()
#GetMsg()
#GetMsgToAutomate()
#GetMsgToGroup()
#GetMsgInfoLength()
#GetMsgObjectNumberTo()
#SendToMbx()
+FSMSystem()
+~FSMSystem()
+Add()
+Delete()
+InitKernel()
+Start()
+StopSystem()

-Post office
-Buffers
-Timer
#Automates
#Number of Mbx
#Number of automates
-Number of objects
-Free kernel memory : bool
-System working : bool

FSMSystem

«uses»

�is is not the complete
specification of the
class FSMSystem.

FIGURE 6.17
Class diagram for the example with three automata instances.
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The program project in this example comprises the files Automata.h, 
Automata.cpp, Constants.h, Main.cpp, and the FSM Library (see the cor-
responding component diagram in Figure 6.19). Building this project in 
Microsoft® Visual Studio 6.0 yields a single executable, which is executed 
on a single PC machine (see the corresponding deployment diagram in 
Figure 6.20).

The rest of this section is devoted to the program implementation of 
the previous models. The content of the corresponding program files is as 
follows.

«framework»
FSM Library

«executable»
Main.exe

«file»
Main.dsw

«file»
Main.cpp  

«file»
Automata.cpp

«file»
Constants.h

«file»
Automata.h

FIGURE 6.19
Component diagram for the example with three automata instances.

PC

«executable»
Main.exe

FIGURE 6.20
Deployment diagram for the example with three automata instances.
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File Automata.h:

#ifndef __AUTOMATA__
#define __AUTOMATA__
#include <stdio.h>
#include "stdlib.h"
#include "kernel\fsm.h"
#include "kernel\errorObject.h"
#include "Constants.h"

class Automata: public FiniteStateMachine {
 private:
  StandardMessage StandardMsgCoding;
  MessageInterface *GetMessageInterface(uint32 id);

  void SetDefaultHeader(uint8 infoCoding);
  uint8 GetMbxId();
  uint8 GetAutomata();
  void SetDefaultFSMData();
  void NoFreeInstances();

  uint8 text[20];
  uint32 msgNumber;
  uint32 idToMsg;

  // State transition functions for the state IDLE
  void Automata_IDLE_START();
  void Automata_IDLE_MSG();
  // State transition functions for the state MSG
  void Automata_MSG_MSG();
  void Automata_MSG_STOP();
  // Unexpected event handlers for the states IDLE and  MSG
  void Automata_UNEXPECTED_IDLE();
  void Automata_UNEXPECTED_MSG();

 public:
  Automata();
  ~Automata(){};

 void Initialize();
 void StartDemo();
};
#endif

The file Automata.h contains a declaration of the class Automata derived from 
the class FiniteStateMachine. This declaration has its private and public parts. The 
private field members are the message interface object StandardMsgCoding, the 
text work area text, the message sequence number msgNumber, and the identifica-
tion of the message destination automata idToMsg.

The common private function members are the following functions:

• GetMessageInterface: returns the message interface object
• SetDefaultHeader: sets the message header in accordance with the 

specified information coding
• GetMbxId: returns the identification of the mailbox assigned to this 

automata type
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• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type 

(msgNumber and idToMsg)
• NoFreeInstances: handles the situation when no more free instances 

of this type are found

The application-specific private function members are the following state 
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the 
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state 
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state 
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the 
state MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in 
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in 
the state MESSAGE

The public function members are the class constructor, the class destruc-
tor, the initialization function Initialize, and the startup function StartDemo.

File Automata.cpp:

#include "kernel/LogFile.h"
#include "Automata.h"

Automata::Automata() : FiniteStateMachine(
 0, // uint16 numOfTimers = DEFAULT_TIMER_NO,
 2, // uint16 numOfState = DEFAULT_STATE_NO,
 3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE
 {
 SetDefaultFSMData();
 }

// This function returns the pointer to the object that governs the
// message information coding (the pointer to the message interface).
// This automata instance works only with the standard messages
// (ID 0x00). If the caller specifies another type of coding,
// this function throws the exception TErrorObject. The message
// interface is defined in Automata.h
MessageInterface *Automata::GetMessageInterface(uint32 id){
 switch(id){
  case 0x00:
   return &StandardMsgCoding;
 }
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 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}

// This function fills in the message header.
void Automata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

// This function returns the identification of the mailbox that is
// assigned to this automata type.
uint8 Automata::GetMbxId(){
 return MBX_AUTOMATA_ID;
}

// This function returns the identification of this automata type.
uint8 Automata::GetAutomata(){
 return FSM_TYPE_AUTOMATA;
}

// This function initializes the data specific to individual
// instance of this automata type.
void Automata::SetDefaultFSMData(){
 msgNumber = 0;
 idToMsg  = INVALID_32;
}
// This function is called if there are no free instances of this
// automata type. If the programmer wants to use this option, they must
// add the first automata instance of this type to the parameter
// useFreeList of the function Add set to true. In this example, it
// is empty. In real applications, the programmer should provide
// some recovery mechanism, such as overload protection or restart.
void Automata::NoFreeInstances(){
}

// This function initializes the state transition functions and the
// timers that are used by this automata type. This function is
// called implicitly by the function Add, which is responsible for
// adding individual automata instances to the FSM system.
// Each state transition function is separately declared and defined.
void Automata::Initialize(){
 // Here the programmer does the following initializations:
 // InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);
 InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)
  &Automata::Automata_IDLE_START);
 InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)
  &Automata::Automata_IDLE_MSG);

 InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)
  &Automata::Automata_MSG_MSG);
 InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)
  &Automata::Automata_MSG_STOP);

 InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)
  &Automata::Automata_UNEXPECTED_IDLE);
 InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)
  &Automata::Automata_UNEXPECTED_MSG);
}

// State transition functions for the state IDLE.
void Automata::Automata_IDLE_START(){
 msgNumber = 1;
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 idToMsg  = GetObjectId()+1;

 // Round Robin message transfer among automata instances 0-2
 if(idToMsg == 3)
  idToMsg = 0;

 // The automata instance prepares and sends the message,
 // and changes its state to MESSAGE.
 PrepareNewMessage(0x00,IDLE_MSG);

 char text[] = "THIS IS THE FIRST MESSAGE";
 AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);
 AddParamDWord(COUNT,msgNumber);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 SendMessage(MBX_AUTOMATA_ID);
 SetState(MESSAGE);
}

void Automata::Automata_IDLE_MSG(){
 idToMsg = GetObjectId()+1;

 // Round Robin message transfer among automata instances 0-2
 if((idToMsg == 3)
  idToMsg = 0;
 // Get parameters from the message
 unsigned char *tmp;
 tmp = GetParam(PARAM_TEXT);
 assert(tmp);
 memcpy(text,tmp+2,*(tmp+1));
 memset(text+(*(tmp+1)),0x00,1); // make the string
 GetParamDWord(COUNT,msgNumber);

 // Round Robin – this instance receives the message from the previous one
 uint32 idFromMsg = GetObjectId()-1;
 if(idFromMsg == -1)
  idFromMsg = 2;

 printf("Text received: %s\n from automata:%u \n",text,idFromMsg);

 // If the message sequence number is less than NUM_AUTOMATA,
 // send IDLE_MSG. If not, send MSG_MSG.
 msgNumber++;
 if(msgNumber < NUM_AUTOMATA){
  // Prepare and send the message.
  // Change automata state to MESSAGE.
  PrepareNewMessage(0x00,IDLE_MSG);

  char text[] = "THIS IS THE SECOND MESSAGE";
  AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);
  AddParamDWord(COUNT,msgNumber);

  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  SendMessage(MBX_AUTOMATA_ID);
 }
 else {
  // Prepare and send the message.
  // Change automata state to MESSAGE.
  PrepareNewMessage(0x00,MSG_MSG);
  AddParamDWord(COUNT,msgNumber);
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  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  SendMessage(MBX_AUTOMATA_ID);
 }
 SetState(MESSAGE);
}

void Automata::Automata_MSG_MSG(){
 GetParamDWord(COUNT,msgNumber);
 msgNumber++;
 if(msgNumber < MAX_MSG_NUM){
  // Forward the message to the next automata   instance.
  PrepareNewMessage(0x00,MSG_MSG);
  AddParamDWord(COUNT,msgNumber);
  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  SendMessage(MBX_AUTOMAT_ID);
 }
 else {
  printf("Stop automata:%with message:%u\n",GetObjectId(),msgNumber);

  // Prepare and send the message.
  // Change automata state to IDLE.
  PrepareNewMessage(0x00,MSG_STOP);
  AddParamDWord(COUNT,NUM_AUTOMATA-1);
  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  SendMessage(MBX_AUTOMATA_ID);
  SetState(IDLE);
 }
}

void Automata::Automata_MSG_STOP(){
 printf("Stop automata instance: %u\n",GetObjectId());

 GetParamDWord(COUNT,msgNumber);
 msgNumber——;
 if(msgNumber > 0){
  // Prepare and send the message.
  // Change automata state to IDLE.
  PrepareNewMessage(0x00,MSG_STOP);
  AddParamDWord(COUNT,msgNumber);
  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  SendMessage(MBX_AUTOMATA_ID);
 }
 SetState(IDLE);
}

void Automata::Automata_UNEXPECTED_IDLE(){
 printf("Unexpected message in the state IDLE \n");
}

void Automata::Automata_UNEXPECTED_MSG(){
 printf("Unexpected message in the state MESSAGE \n");
}

void Automata::StartDemo(){
 uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);



515FSM Library

 SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgFromGroup(INVALID_08,msg);
 SetMsgObjectNumberFrom(0,msg);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgToGroup(INVALID_08,msg);
 SetMsgObjectNumberTo(0,msg);

 SetMsgInfoCoding(0,msg); // 0 = StandardMessage
 SetMsgCode(IDLE_START,msg);
 SetMsgInfoLength(0,msg);
 SendMessage(MBX_AUTOMATA_ID,msg);
}

The file Automata.cpp contains the definition of the class Automata. This defi-
nition starts with the class constructor that first calls the base class constructor 
specifying no timers, two states, and the maximum of three state transitions 
per state for this automata type. After that, the constructor calls the function 
SetDefaultFSMData, which sets the data specific for this automata type.

The function GetMessageInterface returns the pointer to the message interface 
object for the given type of information coding. This class operates with only 
standard messages (the corresponding ID is 0x00). If the caller of this function 
specifies the identification of the standard message as its parameter, the function 
returns the pointer to the object StandardMsgCoding. If the caller specifies some 
other message type, this function throws the exception TErrorObject.

The function SetDefaultHeader sets the message information coding by call-
ing the function SetMsgInfoCoding and the automata specific data by calling the 
function SetMessageFromData. The function GetMbxId returns the value MBX_
AUTOMATA_ID as the identification of the mailbox assigned to this automata 
type. The function GetAutomata returns the value FSM_TYPE_AUTOMATA as 
the identification of this automata type. The function SetDefaultFSMData sets the 
field msgNumber to the value 0 and the field idToMsg to the value INVALID_32. The 
function NoFreeInstances is empty in this simple example. In real-world projects, 
it would be used to trigger some higher-level protection or recovery mechanism.

The function Initialize defines the event handlers by calling the function 
InitEventProc and the unexpected event handlers by calling the function 
InitUnexpectedEventProc. More precisely, this function defines the event han-
dlers for the messages IDLE_START and IDLE_MSG in the state IDLE, and 
for the messages MSG_MSG and MSG_STOP in the state MESSAGE. It also 
defines the handlers for unexpected messages in both states.

The function Automata_IDLE_START handles the message IDLE_START 
in the state IDLE. First, it sets the message sequence number msgNumber to 
the value 1. It then determines the identification of the destination automata 
instance by incrementing its own identification by modulo 3. (This means that 
the destination of the messages created and sent by instance_0 is instance_1, 
the destination for instance_1 is instance_2, and the destination for instance_2 
is instance_0.) Next, this function prepares and sends the message, “THIS 
IS THE FIRST MESSAGE”. At the end, it performs the state transition from 
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IDLE to MESSAGE by calling the function SetState and specifying the value 
MESSAGE as its parameter.

The function Automata_IDLE_MSG handles the message IDLE_MSG in 
the state IDLE. First, it determines the identifications of the source and des-
tination automata instances for the received message and prints them to the 
monitor. It then increments the message sequence numbers and checks if 
they are less than the number of communicating automata instances NUM_
AUTOMATA (value 3). If yes, the function prepares and sends the message 
IDLE_MSG with the text, “THIS IS THE SECOND MESSAGE”. If not, the 
function prepares and sends the message MSG_MSG without any text. In 
both cases, it sets the current state of the automata instance to the value 
MESSAGE.

The function Automata_MSG_MSG handles the message MSG_MSG in the 
state MESSAGE. First, it gets the message sequence number from the received 
message and increments that number. It then checks if the new value of the 
message sequence number has reached the given limit. If not, this function 
prepares and sends the message MSG_MSG to the next automata instance in 
the chain. If it has, this function prepares and sends the message MSG_STOP 
to the next automata instance in the chain, and sets the current state of this 
automata instance to IDLE.

The function Automata_MSG_STOP handles the message MSG_STOP in 
the state MESSAGE. First, it decrements the message sequence number and 
checks its new value. If the value is positive, the function prepares and sends 
the message MSG_STOP to the next automata instance in the chain, and sets 
the current state of this automata instance to IDLE.

The unexpected event handlers in this example just print the warning mes-
sages. In real applications, these functions would trigger some higher-level 
recovery mechanisms. The function StartDemo creates the first message in 
the system. It fills in its header as if the automata instance with the identifica-
tion 0 had sent that message to itself, and sends the message to the mailbox 
assigned to this automata type.

File Constants.h:

// FSM
#define FSM_TYPE_AUTOMATA 0

// MBX
#define MBX_AUTOMATA_ID 0

#define MAX_MSG_NUM 10
#define NUM_AUTOMATA 3
#define COUNT 1
#define PARAM_TEXT 2

enum AutomataStates{
 IDLE = 0,
 MESSAGE,
};
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enum Messages{
 IDLE_START = 0,
 IDLE_MSG,
 MSG_MSG,
 MSG_STOP
};

The file Constants.h first defines general symbolic constants. The iden-
tification of the automata type FSM_TYPE_AUTOMATA is assigned the 
value 0, the identification of the mailbox related to the automata type 
MBX_AUTOMATA_ID is assigned the value 0, the maximal message 
sequence number MAX_MSG_NUM is assigned the value 10, the num-
ber of automata instances of this type NUM_AUTOMATA is assigned the 
value 3, the identification of the message parameter that contains the mes-
sages sequence number COUNT is assigned the value 1, and the identifi-
cation of the message parameter that contains the text PARAM_TEXT is 
assigned the value 2.

Next, the identifications of the individual states of this automata type are 
enumerated. The identification of the state IDLE is assigned the value 0 and 
the identification of the state MESSAGES is assigned the value 1. Finally, 
the identifications of various message types (message codes) are enumer-
ated. The message types are named as IDLE_START, IDLE_MSG, MSG_
MSG, and MSG_STOP. These symbols are assigned the values 0, 1, 2, and 3, 
respectively.

File Main.cpp:

#include "conio.h"
#include "Kernel/fsmsystem.h"
#include "Kernel/LogFile.h"
#include "Automata.h"

// Assume the following.
// The FSM system hosts a single automata type.
// The FSM system uses a single mailbox for the message exchange.
// Create the FSM system.
FSMSystem fsmSystem(1,1);

// Create three instances of the class Automata.
Automata instance_1, instance_2, instance_3;

// FSM system thread
DWORD WINAPI ThreadFunction(void* dummy){
 uint32 buffersCount[3] = {5,3,2};
 uint32 buffersLength[3] = {128,256,512};
 uint8 buffClassNo = 3;
 // Initialize the FSM system.
 printf("Initialize the FSM system... \n");
 fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,3,false);
 fsmSystem.Add(&instance_2,FSM_TYPE_AUTOMATA);
 fsmSystem.Add(&instance_3,FSM_TYPE_AUTOMATA);

 fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);



518 Communication Protocol Engineering

 LogFile lf("log.log", "log.ini");
 LogAutomataNew::SetLogInterface(&lf);

 // Start the FSM system.
 printf("Start the FSM system... \n");
 try {
   fsmSystem.Start();
 }
 catch(...) {
   OutputDebugString("Exception — stop the FSM    system...\n");
   return 0;
 }
 OutputDebugString("The end of the operation.\n");
 return 0;
}

void main(int argc,char* argv[]){
 DWORD threadID;
 bool end = false;
 char ret;

 // Start the FSM system thread.
 HANDLE hTemp =  CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);
 Sleep(100);

 // Program works until the character 'Q' or 'q' is  pressed.
 while(!end) {
  if(_kbhit()) {
   ret = _getch();
   switch(ret) {
    case 'Q':
    case 'q':
     fsmSystem.StopSystem();
     end = true;
     Sleep(100);
     break;
    case 'S':
    case 's':
     instance_1.StartDemo();
     break;
    default:
     break;
   }
  }
 }
 CloseHandle(hTemp);
 printf("The end. \n");
}

The file Main.cpp starts with the instantiation of the class FSMSystem 
by calling its constructor. The parameters used in this call specify that an 
instance of the FSMSystem, named fsmSystem, will include a single automata 
type, and this automata type will use a single mailbox. Next, three instances 
of the class Automata are made, namely, instance_1, instance_2, and instance_3. 
Additionally, this file contains the definitions of the FSM system thread 
function ThreadFunction and the function main.

The function ThreadFunction first prepares the data needed to define 
three buffer types. The sizes and quantities of these buffers are five at 
128 bytes, three at 256 bytes, and two at 512 bytes. Next, three automata 
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instances are added to fsmSystem. Note that the fourth parameter of the 
first call to the function Add is set to the value false, which means that these 
three instances are to be used as three distinctive instances, rather than 
as a pool of instances of the same type. After that, this function initializes 
the kernel by calling the function InitKernel, defines and sets the logging 
interface by calling the function SetLogInterface, and starts the fsmSystem by 
calling its function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After that, it just waits 
for the character ‘Q’ or ‘q’ to be pressed and to subsequently terminate the 
program.

6.10  A Simple Example with Network-Aware 
Automata Instances

This section shows how the programmer can construct FSM systems with 
TCP support that is able to communicate over the TCP/IP network, and how 
they can add individual, network-aware automata instances to it. Normally, 
the programmer creates the FSM system with TCP support by instantiating 
the class FSMSystemWithTCP. Alternately, network-aware automata types 
are normally derived from the base class NetFSM. Of course, network-aware 
automata instances of a given type are then created simply by instantiating 
that automata type.

This example is very similar to the previous one. Actually, it has been cre-
ated from it with a few rather simple modifications. Only one instance of the 
given automata type is added to the FSM system (now with TCP/IP support). 
This automata instance has a trivial task of exchanging the given number of 
messages with its peers in the remote FSM system. The main difference is 
that the whole program is instantiated twice. These program instances run 
as two separate processes that communicate over the TCP/IP protocol stack 
(see the corresponding collaboration diagram in Figure 6.21).

At the beginning, as in the previous example, the main thread calls the 
function StartDemo of instance_1, which, in turn, sends itself asynchronously 
the message IDLE_START. Upon reception of this message, instance_1 sends 
the message IDLE_MSG to its peer instance_1 that resides at the remote FSM 
system. These two automata instances, local and remote, then exchange nine 
MSG_MSG messages (the last MSG_MSG message is not shown in the fig-
ure). At the end of the communication, the local instance sends the message 
MSG_STOP to the remote instance (not shown in the figure). The corre-
sponding sequence diagram is shown in Figure 6.22. This diagram shows 
all the messages.
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The statechart diagram that describes the behavior of an individual 
automata instance is again organized into two hierarchical levels. The top 
level is exactly the same as the one shown in Figure 6.4. The composite states 
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and 
Automata_MSG_STOP are a little simpler in this example and are shown in 
Figures 6.23 through 6.26, respectively.

The program code given in this example assumes that both processes run 
on the same machine whose IP address is 192.168.0.57. To get this code run-
ning on another machine, the reader should change this parameter accord-
ingly. If the reader wants to experiment on two different machines, they 
must set this parameter to the IP addresses of those machines (see the cor-
responding deployment diagram shown in Figure 6.27).

main:�read Object2 Object3

StartDemo();
IDLE_START

IDLE_MSG (1)

MSG_MSG (2)

MSG_MSG (3)

MSG_MSG (4)

MSG_MSG (5)

MSG_MSG (6)

MSG_MSG (7)

MSG_MSG (8)

�is object resides in
a remote FSM system.

�is object resides in
a local FSM system.

MSG_MSG (9)

MSG_MSG (10)

MSG_STOP

FIGURE 6.22
Sequence diagram for the example with network-aware automata.
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Initial

Preparing

Sending

/ PrepareNewMessage(0×00,IDLE_MSG); AddParamDWord(COUNT,msgno);

/sendToTCP();

/msgno=1

Automata_IDLE_START

FIGURE 6.23
Composite state Automata_IDLE_START.
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Automata_IDLE_MSG

Initial

Preparing

SENDING_MSG

/ GetParamDWord(COUNT,msgno); msgno++

/ PrepareNewMessage(0×00,MSG_MSG); AddParamDWord(COUNT,msgno);

/ sendToTCP();

FIGURE 6.24
Composite state Automata_IDLE_MSG.
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Before proceeding further, studying the previous example first is strongly 
recommended. The content of the program files are as follows:

File NetAutomata.h:

#ifndef __NET_AUTOMATA__
#define __NET_AUTOMATA__
#include <stdio.h>
#include "stdlib.h"
#include "kernel\NetFSM.h"
#include "kernel\errorObject.h"
#include "Constants.h"

class NetAutomata: public NetFSM {
 private:
  // NetFSM
  uint16 convertNetToFSMMessage();

Automata_MSG_STOP

Initial

/PrintStopMessage();

FIGURE 6.26
Composite state Automata_MSG_STOP.

Machine1 : PC Network : Internet Machine2 : PC

1 1 1 1

«executable»
i1 : Example21

«executable»
i1 : Example22

FIGURE 6.27
Deployment diagram for the example with network-aware automata.



526 Communication Protocol Engineering

  void convertFSMToNetMessage();
  uint8 getProtocolInfoCoding();
  // FSM
  StandardMessage StandardMsgCoding;
  MessageInterface *GetMessageInterface(uint32 id);
  void SetDefaultHeader(uint8 infoCoding);
  uint8 GetMbxId();
  uint8 GetAutomata();
  void SetDefaultFSMData();
  void NoFreeInstances();

  uint8 text[20];
  uint32 msgNumber;
  uint32 idToMsg;

  // State transition functions for the state IDLE
  void NetAutomata_IDLE_START();
  void NetAutomata_IDLE_MSG();
  // State MSG
  void NetAutomata_MSG_MSG();
  void NetAutomata_MSG_STOP();
  // Unexpected messages in states IDLE and MSG
  void NetAutomata_UNEXPECTED_IDLE();
  void NetAutomata_UNEXPECTED_MSG();

 public:
  NetAutomata();
  ~NetAutomata(){};
  void Initialize();
  void StartDemo();
   };
#endif

The file NetAutomata.h contains the declaration of the class NetAutomata 
derived from the class NetFSM. This declaration has its private and public parts. 
The private field members are the message interface object StandardMsgCoding, 
the text work area text, the message sequence number msgNumber, and the iden-
tification of the automata instance idToMsg, which is the message destination.

The private function members specific to the class NetFSM are the follow-
ing functions:

• convertNetToFSMMessage: converts the external message format into 
the internal message format appropriate for communication within 
the FSM system

• convertFSMToNetMessage: converts the internal message format into 
the external message format appropriate for the transmission over 
the TCP/IP network

• getProtocolInfoCoding: returns the identification of the type of the 
external message coding

The private function members specific to the class FinteStateMachine are 
the following functions:

• GetMessageInterface: returns the message interface object
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• SetDefaultHeader: sets the message header according to the specified 
information coding

• GetMbxId: returns the identification of the mailbox that is assigned 
to this automata type

• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type 

(msgNumber and idToMsg)
• NoFreeInstances: handles the situation when no more free instances 

of this type are found

The application-specific private function members are the following state 
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the 
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state 
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state 
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the state 
MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in 
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in 
the state MESSAGE

The public function members are the class constructor, the class destruc-
tor, the initialization function Initialize, and the startup function StartDemo.

File NetAutomata.cpp:

#include "kernel/LogFile.h"
#include "NetAutomata.h"

NetAutomata::NetAutomata() : NetFSM(
 0, // uint16 numOfTimers = DEFAULT_TIMER_NO,
 2, // uint16 numOfState = DEFAULT_STATE_NO,
 3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE
{
 SetDefaultFSMData();
}

// This function returns the pointer to the object that governs the
// message information coding (the pointer to the message interface).
// This automata instance works only with the standard messages
// (ID 0x00). If the caller specifies another type of coding,
// this function throws the exception TErrorObject.
// The message interface is defined in NetAutomata.h
MessageInterface *NetAutomata::GetMessageInterface(uint32 id){
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 switch(id) {
  case 0x00:
   return &StandardMsgCoding;
 }
 throw TErrorObject(__LINE__,__FILE__,0x01010400);
}
// This function fills in the message header.
void NetAutomata::SetDefaultHeader(uint8 infoCoding){
 SetMsgInfoCoding(infoCoding);
 SetMessageFromData();
}

// This function returns the identification of the mailbox that is
// assigned to this automata type.
uint8 NetAutomata::GetMbxId(){
 return MBX_AUTOMATA_ID;
}

// This function returns the identification of this automata type.
uint8 NetAutomata::GetAutomata(){
 return FSM_TYPE_AUTOMATA;
}

// This function initializes the data specific for individual
// instance of this automata type.
void NetAutomata::SetDefaultFSMData(){
 msgNumber = 0;
 idToMsg = INVALID_32;
}

// This function is called if there are no free instances of this
// automata type. If the programmer wants to use this option they must
// add the first automata instance of this type with the parameter
// useFreeList of the function Add set to true. In this example it is
// empty. In real applications the programmer should provide some
// recovery mechanism, such as overload protection or restart.
void NetAutomata::NoFreeInstances(){}

// This function initializes the state transition functions and the
// timers that are used by this automata type. This function is called
// implicitly by the function Add responsible for adding individual
// automata instances to the FSM system.
// Each state transition function is separately declared and defined.
void NetAutomata::Initialize(){
 // Here the programmer does the following  initializations:
 // InitEventProc(uint8 state, uint16 event,  PROC_FUN_PTR fun);
 // InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR  fun);
 // InitTimerBlock(uint16 timerId, uint32 timerCount,  uint16 signalId);

 InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_IDLE_START);
 InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_IDLE_MSG);

 InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_MSG_MSG);
 InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_MSG_STOP);

 InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_UNEXPECTED_IDLE);
 InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)
  &NetAutomata::NetAutomata_UNEXPECTED_MSG);
}
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// State transition functions for the state IDLE.
void NetAutomata::NetAutomata_IDLE_START(){
 msgNumber = 1;
 idToMsg = 0;

 // The automata instance prepares and sends the  message,
 // and changes its state to MESSAGE.
 PrepareNewMessage(0x00,IDLE_MSG);

 char text[] = "THIS IS THE FIRST MESSAGE";
 AddParam(PARAM_TEXT,strlen(text),(unsigned char  *)text);
 AddParamDWord(COUNT,msgNumber);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 SetState(MESSAGE);
}

void NetAutomata::NetAutomata_IDLE_MSG(){
 idToMsg = 0;

 // Get parameters from the message
 unsigned char *tmp;
 tmp = GetParam(PARAM_TEXT);
 assert(tmp);
 memcpy(text,tmp+2,*(tmp+1));
 memset(text+(*(tmp+1)),0x00,1); // make the string

 GetParamDWord(COUNT,msgNumber);
 printf("Text received: %s\n",text);

 // If the message sequence number is less than given  limit,
 // continue message counting. If not stop the program.
 msgNumber++;

 // Prepare and send the message.
 // Change automata state to MESSAGE.
 PrepareNewMessage(0x00,MSG_MSG);
 AddParamDWord(COUNT,msgNumber);
 SetMsgToAutomata(FSM_TYPE_AUTOMATA);
 SetMsgToGroup(INVALID_08);
 SetMsgObjectNumberTo(idToMsg);
 sendToTCP();
 SetState(MESSAGE);
}

void NetAutomata::NetAutomata_MSG_MSG(){
 GetParamDWord(COUNT,msgNumber);
 msgNumber++;
 if(msgNumber < MAX_MSG_NUM){
  // Forward the message.
  PrepareNewMessage(0x00,MSG_MSG);
  AddParamDWord(COUNT,msgNumber);
  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  sendToTCP();
 }
 else {
  printf("Stop automata: %u\n",GetObjectId());
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  // Prepare and send the message.
  // Change automata state to IDLE.
  PrepareNewMessage(0x00,MSG_STOP);
  SetMsgToAutomata(FSM_TYPE_AUTOMATA);
  SetMsgToGroup(INVALID_08);
  SetMsgObjectNumberTo(idToMsg);
  sendToTCP();
  SetState(IDLE);
 }
}

void NetAutomata::NetAutomata_MSG_STOP(){
 printf("Stop automata: %u\n",GetObjectId());
 SetState(IDLE);
}
void NetAutomata::NetAutomata_UNEXPECTED_IDLE(){
 printf("Unexpected message in the state IDLE \n");
}

void NetAutomata::NetAutomata_UNEXPECTED_MSG(){
 printf("Unexpected message in the state MESSAGE \n");
}

void NetAutomata::StartDemo(){
 uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);
 SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgFromGroup(INVALID_08,msg);
 SetMsgObjectNumberFrom(0,msg);

 SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);
 SetMsgToGroup(INVALID_08,msg);
 SetMsgObjectNumberTo(0,msg);

 SetMsgInfoCoding(0,msg); // 0 = StandardMessage
 SetMsgCode(IDLE_START,msg);
 SetMsgInfoLength(0,msg);
 SendMessage(MBX_AUTOMATA_ID,msg);
}

uint16 NetAutomata::convertNetToFSMMessage(){
 // Manipulate only data because automata sends the new
 // message to itself.
 int length = receivedMessageLength-MSG_HEADER_LENGTH;
 memcpy(fsmMessageR,  protocolMessageR+MSG_HEADER_LENGTH, length);
 fsmMessageRLength=length; // mandatory – used by  workWhenReceive()

 // Rotate bytes
 uint16 msgCode =  GetUint16((uint8*)(protocolMessageR+MSG_CODE));

 switch((msgCode)){
  case IDLE_START:
   msgCode = IDLE_START;
   break;
  case IDLE_MSG:
   msgCode = IDLE_MSG;
   break;
  case MSG_MSG:
   msgCode = MSG_MSG;
   break;
  case MSG_STOP:
   msgCode = MSG_STOP;
   break;
  default:
   msgCode = 0xffff;
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 }
 return msgCode;
}

void NetAutomata::convertFSMToNetMessage(){
 // Here we send the whole message.
   memcpy(protocolMessageS,fsmMessageS,fsmMessageSLength);
 sendMsgLength = fsmMessageSLength;
}

uint8 NetAutomata::getProtocolInfoCoding(){
 // Standard msg info coding
 return 0;
}

The file NetAutomata.cpp contains the definition of the class NetAutomata. 
This definition starts with the class constructor that first calls the base class 
constructor specifying no timers, two states, and the maximum of three state 
transitions per state for this automata type. After this, the constructor calls the 
function SetDefaultFSMData, which sets the data specific for this automata type.

The functions GetMessageInterface, SetDefaultHeader, GetMbxId, GetAutomata, 
SetDefaultFSMData, NoFreeInstances, and Initialize are the same as in the pre-
vious example. The only difference is that the name of the class Automata has 
been renamed to NetAutomata.

The function NetAutomata_IDLE_START handles the message IDLE_
START in the state IDLE. First, it sets the message sequence number msgNum-
ber to the value 1 and the identification of the destination automata instance 
idToMsg to the value 0. Next, this function prepares and sends the message, 
“THIS IS THE FIRST MESSAGE,” to its peer in the remote FSM system by 
calling the function SendToTCP. At the end, it performs the state transition 
from IDLE to MESSAGE by calling the function SetState and specifying the 
value MESSAGE as its parameter.

The function NetAutomata_IDLE_MSG handles the message IDLE_MSG 
in the state IDLE. First, it prints the received message to the monitor. It then 
prepares and sends the message with the code MSG_MSG to its peer by 
calling the function SendToTCP, and sets the current state of this automata 
instance to the value MESSAGE.

The function NetAutomata_MSG_MSG handles the message MSG_MSG 
in the state MESSAGE. First, it gets the message sequence number from the 
received message and increments this value. It then checks if the new value 
of the message sequence number has reached the given limit. If not, this func-
tion prepares and sends the message MSG_MSG to its peer at the remote 
FSM system by calling the function SendToTCP. If it has reached the limit, this 
function prepares and sends the message MSG_STOP to its peer at the remote 
FSM system, and sets the current state of this automata instance to IDLE.

The function NetAutomata_MSG_STOP handles the message MSG_STOP 
in the state MESSAGE. It is fairly simple and just sets the current state of 
this automata instance to IDLE. The unexpected event handlers in this 
example just print the warning messages. In real-world applications, these 
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functions would trigger some higher-level recovery mechanisms. The func-
tion StartDemo creates the first message in the system. It fills in its header as 
if the automata instance with the identification 0 had sent that message to 
itself and sends this message to the mailbox assigned to this automata type.

The function convertNetToFSMMessage just copies the payload of the exter-
nal message received from the remote FSM system to the current FSM system 
internal message (the last received message), because in this simple example, 
the two communicating instances have the same IDs and no need exists for 
any mappings between them. The pointer fsmMessageR points to the current 
internal message, the pointer protocolMessageR points to the current external 
message, and the variable fsmMessageRLength is equal to the payload size of 
the current external message. At the end, this function determines the mes-
sage code and returns it as its return value.

The function convertFSMToNetMessage copies the whole new internal mes-
sage to the new external message and sets the value of its length. The pointer 
fsmMessageS points to the new internal message, the pointer protocolMessageS 
points to the new external message, and the variables fsmMessageSLength and 
sendMsgLength contain their lengths.

The function getProtocolInfoCoding returns the code of the standard message 
coding (code 0x00) used for coding external messages. Note that in this simple 
example, both internal and external messages are actually standard messages.

File Constants.h:

// FSM
#define FSM_TYPE_AUTOMATA 0

// MBX
#define MBX_AUTOMATA_ID 0
#define MAX_MSG_NUM 10
#define COUNT 1
#define PARAM_TEXT 2
#define IP_ADDRESS "192.168.0.57"
#define PORT_1 7000
#define PORT_2 8000

enum AutomataStates {
 IDLE = 0,
 MESSAGE,
};

enum Messages {
 IDLE_START = 0,
 IDLE_MSG,
 MSG_MSG,
 MSG_STOP
};

The file Constants.h first defines general symbolic constants. It is very 
similar to the file with the same name in the previous example. The iden-
tification of this automata type FSM_TYPE_AUTOMATA is assigned the 
value 0, the identification of the mailbox related to this automata type 
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MBX_AUTOMATA_ID is assigned the value 0, the maximal message 
sequence number MAX_MSG_NUM is assigned the value 10, the iden-
tification of the message parameter that contains the message sequence 
number COUNT is assigned the value 1, and the identification of the 
message parameter that contains the text PARAM_TEXT is assigned the 
value 2.

The main difference with the previous example is the definition of the sym-
bolic constants related to the communication over the TCP/IP infrastructure. 
The IP address IP_ADDRESS is assigned the value 192.168.0.57, the TCP port 
number for the first server PORT_1 is assigned the value 7000, and the TCP 
port number for the second server PORT_2 is assigned the value 8000. Next, 
the identifications of the individual states of this automata type, as well as 
possible message codes, are enumerated. This part of the file is the same as 
in the previous example.

File Main.cpp:

#include "conio.h"
#include "Kernel/fsmsystem.h"
#include "Kernel/LogFile.h"
#include "NetAutomata.h"

// If the following line is not commented out we get the code for the
// server listening to the port number PORT_1.
// If the following line is commented out we get the code for the
// server listening to the port number PORT_2.
#define AUTOMATA1

// Assume the following.
// The FSM system hosts a single automata type.
// The FSM system uses a single mailbox for the message exchange.
// Create the FSM system.
FSMSystemWithTCP fsmSystem(1,1);

// Create the instance of the class NetAutomata.
NetAutomata instance_1;

DWORD WINAPI ThreadFunction(void* dummy){
 uint32 buffersCount[3] = {5,3,2};
 uint32 buffersLength[3] = {128,256,512};
 uint8 buffClassNo = 3;

 // Initialize the FSM system.
 printf("Initialize the FSMSystemWithTCP... \n");
 fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,1,true);
   fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);
 LogFile lf("log.log", "log.ini");
 LogAutomataNew::SetLogInterface(&lf);

 // Server in machine number 1 will listen to the port  number PORT_1.
 // Server in machine number 2 will listen to the port  number PORT_2.
 // It does not matter which instance will establish  the TCP
 // connection by calling the function  establishConection().
#ifdef AUTOMATA1
 printf("Start server...on port:%u\n",PORT_1);
 fsmSystem.InitTCPServer(PORT_1,FSM_TYPE_AUTOMATA);
#else
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 printf("Start server...on port:%u\n",PORT_2);
 fsmSystem.InitTCPServer(PORT_2,FSM_TYPE_AUTOMATA);

#endif
 // Start the FSM system.
 printf("Start the FSM system...\n"); 
 try {
  fsmSystem.Start();
 }
 catch(...) {
  OutputDebugString("Exception - stop the FSM system...\n");
  return 0;
 }
 OutputDebugString("The end of the operation.\n");
 return 0;
}

void main(int argc,char* argv[]){
 DWORD threadID;
 bool end = false;
 char ret;

 // Start the FSM system thread.
 HANDLE hTemp = CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);
 Sleep(100);

 // Program works until the character 'Q' or 'q' is pressed.
 while((!end)) {
  if(_kbhit()) {
   ret = _getch();
   switch((ret)) {
    case 'Q':
    case 'q':
     fsmSystem.StopSystem();
     end = true;
     Sleep(100);
     break;
    case 'S':
    case 's':
     instance_1.StartDemo();
     break;
    case 'E':
    case 'e':
// Press 'e' to establish the connection with the remote server.
// This will enable the communication with the remote system.
#ifdef AUTOMATA1
     instance_1.setPort(PORT_2);
     instance_1.setIP((IP_ADDRESS));
     printf("establishConection on port:%u",PORT_2);
     instance_1.establishConnection();
#else
     instance_1.setPort(PORT_1);
     instance_1.setIP(IP_ADDRESS);
     printf("establishConection on port:%u",PORT_1);
     instance_1.establishConnection();
#endif
     default:
     break;
   }
  }
 }
 CloseHandle(hTemp);
 printf("The end. \n");
}
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The file Main.cpp starts with a list of the necessary included files and the 
definition of the symbolic constant AUTOMATA1. This constant should be 
defined for the local process and not for the remote process (this is done by 
commenting out the source code line that defines the symbol AUTOMATA1).

Next, the instantiation of the class FSMSystemWithTCP is performed by a 
call to its constructor. The parameters used in this call specify that an instance 
of the FSMSystemWithTCP, named fsmSystem, will include a single automata 
type and this automata type will use a single mailbox. After that, a single 
instance of the class NetAutomata is made, instance_1. Additionally, this file 
contains the definitions of the FSM system thread function ThreadFunction 
and the function main.

The function ThreadFunction first prepares the data needed to define three 
buffer types. The sizes and quantities of these buffers are five at 128 bytes, 
three at 256 bytes, and two at 512 bytes. Next, the three automata instances 
are added to fsmSystem. Note that the fourth parameter of the first call to 
the function Add is set to the value true, which means that the instances are 
to be used as a pool of instances of the same type. After that, this function 
initializes the kernel by calling the function InitKernel, defines and sets the 
logging interface by calling the function SetLogInterface, starts the TCP server 
by calling the function InitTCPServer, and starts the fsmSystem by calling its 
function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After this, it waits for the 
user command. If the user presses the character ‘E’ or ‘e’, it establishes the 
TCP connection with the remote TCP server by calling the function estab-
lishConnection. If the user presses the character ‘Q’ or ‘q’, it terminates the 
program.
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(SDL), 107–125
channels, definition of, 112
diagram, 177, 178, 184, 191
dilemma, 108
external signal, 110
family of protocols, 111
flowchart, 108
forms, 111
functional blocks, 109, 115
game, 112
graphically oriented languages, 

advantages of, 109
graphical symbols, 116
hook-off event, 108
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internal signal, 110
ITU-T recommendation Z.100e, 110
model integrated computing, 111
nesting, 120
process, definition of, 110
process declaration, 119
process with stable states, 109
protocol stack, 111
stable state, 120
state events, 108–109
tasks, 109
telephone call processing example, 

121–125
unstable states, 110

Star convention, 347
Statechart diagrams, 89–102, 175, 176, 183

action, 89
action types, 91
activity, 89
advanced abstractions, 95
attributes, 90
composite state, 95
DNS client, 99
event types, 91
example, 97, 99
graphical symbols, 92
history state, 96
purpose, 89
state machine, 89
state properties, 90
symbols, 90
TCP, 101
transition, 90
transition properties, 92
triggerless transition, 94

State design pattern, 237–241
context, 238
FSM behavior, 238
Java code, 239–241
original motivation, 238
static structure, 239

Statement blocks, 328
Statistical usage testing, 11, 368–382

Generic Modeling Environment, 370
Generic Test Case Generator, 372
graphical user interface, 370
methodology, 375
modeling paradigm, 370
model interpreter, 376

number of remaining bugs, 369
operational profile, 376, 377
SIP softphone operational profile, 

380, 381
test coverage, 369

Switch–case statement, 219, 222, 237
System under test (SUT), 129

T

TA, see Timed Automata
TAL, see Transaction layer
TCI, see TTCN-3 Control Interface
TCP/IP

Internet protocol, 4
support, FSM Library, 414–417

TCS (Terminating Call Screening) 
service, 367

Telecomm Service System (TSS), 
356–368

Telelogic® Software Development Tools, 
111

Testing and Test Control Notation 
Version 3 (TTCN-3), 129–174

abstract test suites, 136
alt (statement), 135, 163
any port (keyword), 160, 161
assignments, 143
basic constructs and statements, 

138–146
basic data types, 140
Boolean data, 140
Boolean guards, 164
charstring, 131, 140, 153
check (operation), 160
coddec, 138
comments, 140
communication ports, 132
components, 138, 151
conditional statements, 143
conformance testing, 129
constants, 139
control (keyword), 135
control part (module), 146
deactivate (operation), 170
default altsteps, 167, 170
default behavior, 136
enumerated, 131
error (verdict), 134, 154
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execute (keyword), 135
execute (statement), 153
expressions, 143
external (keyword), 142
fail (verdict), 134, 150
float, 151
functions, 141, 172
Generated Code, 138
goto statements, 145
identifiers, 138
implementation under test, 129
inout parameters, 154, 170, 173
integer, 131
integer data, 140
labels, 145
language, test suite, and test systems, 

130–138
log statements, 145, 152
Main Test Component, 136
Media Access Control address, 147
message-based communication, 156
message codecs, 136
modules, 131, 139
operators, 143
parameters with default values, 142
pass (verdict), 135, 150
Platform Adapter, 137, 138
ports, 150
predefined functions, 142
preprocessing macros, 146
receive (method), 133, 135
receive (operation), 156, 157, 158
record, 131
repeat (statement), 166
return (statement), 168
runs on, 174
Runtime System, 138
scopes, 139
send (operation), 157
setverdict (keyword), 134
single component test suites, 

146–174
snapshot, 164
subtypes, 140
SUT Adapter, 137, 138
system under test, 129
templates, 132, 155
term instantiating a function, 142
test cases, 152

test components, 132
test logging, 138
test management, 137, 138
test system interface, 136, 152
timeout (operation), 162, 163
timers, 161
TTCN-3 Control Interface, 137
TTCN-3 Executable, 138
TTCN-3 Runtime Interface, 137
variables, 140

Test logging (TL), 138
Test management (TM), 138
Test system interface (TSI), 136, 152
Test and verification, 289–397; see also 

Communicating Sequential 
Processes, formal verification 
based on

activities, 289
bug detection, 292
cleanroom engineering, 292
Communicating Sequential 

Processes, 320–368
conformance testing, 303–307
drivers, 290
examples, 382–396
formal verification, 308–368
FSM Library–based implementations, 

383–396
Generic Modeling Environment, 

370
Generic Test Case Generator, 372
integration test collaborations, 290
load generator, 291
open source test suites, 306
regression testing, 294
SIP softphone operational profile, 

380, 381
statistical usage testing, 368–382
theorem proving, formal verification 

based on, 308–320
unit testing, 293–303

Timed Automata (TA), 320
TL, see Test logging
TM, see Test management
Transaction layer (TAL), 35
Transaction user (TU), 35, 201
Transport layer interface (TLI), 35
Transport Layer Security (TLS), 33
TSI, see Test system interface
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TTCN-3, see Testing and Test Control 
Notation Version 3

TTCN-3 Control Interface (TCI), 137
TTCN-3 Executable (TE), 138
TTCN-3 Runtime Interface (TRI), 137
Two-phase commit protocol (2PC), 

341–346

U

UAC, see User agent client
UAS, see User agent server
UML (Unified Modeling Language), 1

history, 96
interaction diagrams, 65
tool vendors, 210

Unit testing, 293–303
aim, 293
controlled execution, 296
framework example, 296
framework functions, 294
hidden bugs, 300
hierarchy of test suites, 302
JUnit, 296, 297
purpose, 293
regression testing, 294
roles, 293
test case results, checking of, 295

Unstable states, 110
Use case diagrams, 13–21

actors, 13, 14
flow of events, 19–21
graphical symbols, 16
package properties, 17
rendering, 15
SIP softphone, 37
use cases, 13

User Agent (UA), 306
User agent client (UAC), 32, 35
User agent server (UAS), 32
User-defined type, 326

V

Variables, 326
Verification, see Test and verification
Virtual collaboration, 30
Virtual finite state machines (VFSMs), 

210
Voting phase, 341

W

Web Services (WS) module, 320
World Wide Web (WWW), 54
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