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Preface

This book presents a novel management framework, which I refer to as
the Measurement-Estimation-Scheduling-Actuation (or MESA) model. This is
derived from the control and queueing theory; and applies it to various aspects
of computer communications, from modulation and coding theory to routing
protocols and topology reconstruction.

Why a new approach to the subject? After all, the Internet and its under-
lying technologies and protocols are doing quite nicely, thank you. Likewise
there is no shortage of well-written, current books on networking and commu-
nications. The short answer is that this is the book that I wish were available
when I first started working for IBM on network management architecture in
1984. I believe it clearly details the tasks executed in computer networks, the
large majority of which are in some sense management tasks. It derives from
first principles a model of management in general and of management in
computer networks in particular that is comprehensive, that is not tied to any
particular protocol architecture, and that helps identify the basic elements of
management that recur at different layers of the protocol stack.

This last point leads to a longer answer, namely, that in the course of
researching what it means to manage the logical and physical resources in a
computer network, I came to the conclusion that the effort was hampered
by a naive reductionism that created artificial distinctions where none truly
existed. A good example of this is what I would argue is the false distinction
made between fault management per SNMP or RMON versus fault manage-
ment executed by a protocol that uses retransmission or fault management as
executed by dynamic routing. Decomposing these into the MESA management
tasks reveals common denominators and unifies otherwise disparate areas of

xvii



networking. In short, the MESA model was developed to help explore what
we mean when we speak of management in computer networks and their
protocols.

The results that came of these explorations are presented in this book,
which is organized into four parts. The first part is devoted to management in
the physical layer: with channels, signals, and modulation; with error control
coding; and management at the physical layer interface. The second part moves
up the protocol stack to the data link layer and examines the management tasks
executed by data link protocols, including the principal serial and LAN proto-
cols. Part III examines management in end-to-end protocols, focusing on the
TCP/IP and SNA protocol suites. Finally, the fourth part of this book looks at
the management tasks implicit in the various concatenation techniques used in
computer networks: bridging, routing, and tunneling.
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1
Introduction and Overview

1.1 The Internet, the MESA Model, and Control Systems

The Internet is arguably the greatest technological achievement since the
microprocessor. A measure of its success can be seen in its explosive growth,
which since 1969 has developed from an experimental testbed connecting a few
dozen scientists into a commercial juggernaut, fueled by the explosion of the
World Wide Web, connecting tens and even hundreds of millions of users
everyday.

When a technology has been this successful, it may be unwise to suggest a
new approach to the subject. Nonetheless, that is the purpose of this book: To
propose a new management model, derived from control systems engineering,
with which to analyze communications protocols and data networks, from
simple LANs to the Internet itself. As we hope to make clear in the next
14 chapters, this is not a book about network management as the term is con-
ventionally used but rather a book about management in networking.

1.1.1 Why a New Approach?

There are several reasons for advancing a new management framework. First, it
is our belief that management is ubiquitous in modern communications net-
works and their protocols, at every layer and in ways not commonly appre-
ciated. Indeed we contend that layering, central to every modern protocol
architecture, is itself an instance of (embedded) management: Layering works
by mapping from the abstracted layer interface to implementation details, and
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this mapping is a management task. And yet, because of narrow and constrict-
ing definitions of what constitutes management, this fact is obscured.

Another example of this obscurity is the handling of faults. Most pro-
tocols include some mechanism(s) for the detection if not correction of com-
munications faults that corrupt the transported data. Another type of fault
recovery is provided by routing protocols and other methods of bypassing failed
links and/or routers. Still another type of fault management is the collection of
statistics for the purpose of off-line fault isolation. Our goal is to unify these,
and for this we need a definition of management that treats all of these as
instances of a common task.

Instead of such a common definition, today we are confronted by a
reductionism that in the first place differentiates protocol management from
network management. This book seeks to go beyond such distinctions by con-
structing from the first principles a very broad formulation of management and
utilizing this to identify management tasks whether they occur in communica-
tions protocols, routing updates, or even network design. To borrow a notable
phrase from another field, we seek to demonstrate the “unity in diversity” of
management in data networking.

And the foundation of this construction is the concept of the manager as
a control system. More precisely, from control engineering we derive a frame-
work for task analysis called MESA, taking its name from principal task primi-
tives: Measurement, Estimation, Scheduling, and Actuation. Corresponding to
these four tasks are four classes of servers that make up closed-loop control
systems: sensors, which measure the system being controlled (also known as
the plant); estimators (also known as observers), which estimate those plant
parameters that cannot be easily measured; schedulers (also known as regula-
tors), which decide when and how to change the plant; and actuators, which
carry the changes (Figure 1.1). Note that in Figure 1.1 the plant is a discrete
event system, composed of a client and a server, along with storage for queued
Requests for Service (RFSs). Everything in this book will revolve around this
basic model, where management intervenes to control the rate at which work
arrives from the client(s) and/or is executed by the server(s). The former we
refer to as workload management and the latter we call bandwidth (or service)
management.

1.1.1.1 Repairing Foundations
Another reason for a new approach is that networking suffers from cracks in its
foundations. The theoretical framework on which networking at least nomi-
nally has been based for most of the last 20 years—epitomized by the OSI 7
layer model—has been rendered increasingly irrelevant by recent innovations
and hybrids that have blurred once solid distinctions. For example, from the
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1960s onward, routing reigned supreme as the best—in fact the only—way to
concatenate data links. When local-area networks (LANs) appeared, with their
peer protocols and universally unique station addresses, it became possible to
concatenate at layer 2. Bridging, as this became known, and its modern equiva-
lent, Application-Specific Integrated Circuit (ASIC)-based incarnation known
as (frame) switching, is simpler and often faster at forwarding data than con-
ventional layer 3 routing.

Routing advocates counter that bridging/switching is considerably less
efficient at using network resources and less robust at handling faults than rout-
ing. All this has led to heated arguments and uncertainty about how to design
and implement large computer networks, as well as a slew of curious hybrids
such as “layer 3 switches,” “IP switches,” and the like that may owe more to
marketing hyperbole than any meaningful technical content. Separating the
latter from the former requires, in part, a neutral vocabulary, and that is one
by-product of our study of management. To repeat, our aim is to construct a
unified theory of data networking, with unified definitions of tasks such as con-
catenating transporters, independent of the nature of the technology—bridges,
routers, and so on—used in implementing networks.
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1.1.1.2 Next-Generation Internets: New Management Models
Finally, the current model will not get us from where we are to where we
want to go. The next generation of internetworks must be self-tuning as well as
self-repairing. By monitoring traffic intensity (its constituents, workload arri-
val, and server bandwidth), throughput, and particularly response times, the
managers of these networks will automatically adapt workload to changes in
bandwidth, increasing the latter in reaction to growth in the former (for exam-
ple, meeting temporary surges through buying bandwidth-on-demand much as
electric utilities do with the power grid interconnect (Figure 1.2)).

Response time is particularly worth mentioning as a driving force in the
next generation of internets: the visions of multimedia (voice and video) traffic
flowing over these internets will only be realized if predictable response times
can be assured. Otherwise, the effects of jitter (variable delays) will militate
against multimedia usage. All of this points to the incorporation of the tech-
niques and models of automatic control systems in the next generation of inter-
networking protocols.

1.1.2 Control Systems

This is precisely the tracking problem encountered in control engineering. Two
tracking problems frequently used as examples in discussions of control systems
are the home furnace/thermostat system, perhaps the simplest and certainly
most common control system people encounter, and the airplane control
system, perhaps the most complex. Someone who wishes to keep a home at a
certain temperature sets this target via a thermostat, which responds to changes
in the ambient temperature by turning a furnace on and off. Similarly, a pilot
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who moves the throttle or positional controls (e.g., elevators, ailerons) is giving
a goal to one or more control systems, which seek to match the target value. In
both cases, as the goal changes the control system attempts to follow, hence, the
term tracking problem.

A control system attempts to ensure satisfactory performance by the
system being controlled, generally referred to as the plant, the fifth entity in
Figure 1.1. The control system’s scheduler receives a high-level goal or objec-
tive. Obviously, the goal is expressed in terms of the desired state value(s) for
the plant. The scheduler seeks to attain this state by means of actuations that
change the plant. Naturally enough, the actuations are executed by the control
system’s actuator(s). The roles of sensor and estimator are complementary: For
those state variables that can be measured, the sensor executes this task; how-
ever, in many instances the plant may have state variables that cannot be meas-
ured and must instead be estimated—this estimation is the task of estimators.
Finally, this information on the state of the plant, obtained either by measure-
ment or estimation, is fed back to the scheduler, which uses it to schedule the
next actuation(s).

1.1.2.1 Interacting With the Plant: Monitoring and Control
The obvious next question is “What about the plant are we measuring and/or
actuating?” The plant is characterized by its state, that is, the set of variables and
parameters that describe it. For example, the state of an aircraft is described
by its motion, its position, its current fuel supply, and its currently attainable
velocity; other variables and parameters may include its mass, its last servicing,
the number of hours its engines have been ignited, and so on. The computer
analogy of state is the Program Status Word (PSW), the set of state information
that is saved when a process is suspended by an operating system and that is
retrieved when execution is resumed. The state is the set of information needed
to adequately characterize the plant for the purposes of monitoring and con-
trolling it.

The actuator is the server in the control system that changes the plant’s
state. When an actuator executes, it changes one or more of the state variables
of the plant; otherwise, if no variable has changed then by definition the execu-
tion of the actuator has been faulty or, put equivalently, the actuator has a fault.
When the plant is an airplane, the actuators are its ailerons, its other wing
surface controls (canards, variable geometry, and so on), its rudder, and its
engines. By altering one or more of these, the airplane’s position will change:
open its throttle and the engine(s) will increase its acceleration and speed; pivot
its rudder and the direction in which it is heading will correspondingly alter;
change its wing surfaces and the amount of lift will alter, increasing or decreas-
ing altitude. Note that not all of a plant’s state variables may be directly
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actuatable; in this case those variables that cannot be directly actuated may be
coupled by the plant’s dynamics to variables that can be actuated, allowing
indirect control.

The sensors in a control system provide information about the plant.
Also, when it comes to sensors, a similar situation may arise: With many plants,
it is impossible to measure all state variables for either technical or economic
reasons. For this reason the literature on control and instrumentation intro-
duces a distinction, which we will follow here, between state and output vari-
ables. Therefore, when we speak of a sensor it may be measuring a state variable
or an output variable, depending on the plant involved.

An output variable does not describe the plant but rather its environment;
in other words, an output variable represents the influence the plant has on its
environment, and from which the state of the plant may be inferred. For exam-
ple, there is no direct way to measure the mass of planetary bodies; however,
by applying Newton’s laws and measuring the forces these bodies exert, their
respective masses can be estimated. This brings us to the role of the estimator
in our control system model. Estimation is complementary to measurement.
Using the state and/or output variables that can be measured, an estimator
estimates those state variables that cannot be measured. Another term used by
some authors for this is reconstruction (see, for example, [1]).

Finally we come to the scheduler. Although this statement may seem
obvious, a scheduler schedules. For example, at the heart of a flight control sys-
tem is a scheduler (regulator) that decides when the various actuators should
execute so as to change some aspect of the plant, such as the airplane’s position
or momentum. The classic feedback control system operates by comparing the
state of the plant, measured or estimated, with the target state: Any discrep-
ancy, called the return difference, is used to determine the amount and timing of
any actuations to drive the plant toward the target state, often called the set-
point. When the scheduler receives a target (goal), this is in fact an implicit
request for the service. The simplest example of a feedback control system is
perhaps the furnace–thermostat combination. The room’s desired temperature
is set and a thermometer measuring the room’s actual temperature provides the
feedback; when the difference between the temperature setpoint and the actual
temperature is sufficiently great, the furnace is triggered, actuating the room’s
temperature to the setpoint.

1.1.2.2 Types of Control: Open Versus Closed Loop
Although every control system has a scheduler and actuator, not all control
systems rely on estimators or even feedback. Some schedulers make their deci-
sions without regard to the state of the plant. These are referred to as open-loop
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control systems. In other instances, the plant’s state variables are all accessible
to measurement; this is called perfect information, and no estimator is required
to reconstruct them. The most complicated control system, of course, is the
scheduler-estimator-sensor-actuator, which is required when one or more state
variables are inaccessible to measurement (Figure 1.3).

1.1.3 The Plant and Its Model

It is worth briefly mentioning the role of the model in control systems. There
must be some understanding of the plant and its dynamics if the scheduler is to
create the optimum schedule or, in many instances, any schedule at all. In addi-
tion, the design of the instrumentation components (sensors and estimators) is
based on the model chosen, otherwise it will not be known what data must be
collected. The sensors and estimators change the state of the model, and the
updated model is used by the scheduler (Figure 1.4).

A control system that uses feedback does so to correct discrepancies
between the nominal model of the plant and the plant itself. Two common
sources of these discrepancies are (exogenous) disturbances and uncertainties
reflecting idealization in the mathematical models—the latter is introduced
as a concession to the need for tractability. When a server suffers a fault, for
example, this is an example of a disturbance.
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1.1.4 Control System as Manager

When it suits our purpose we would like to abstract the details of a given con-
trol system (open-loop, closed-loop with perfect information, closed-loop with
imperfect information) and simply denote its presence as a manager, which in
our vocabulary is the same thing as a control system.

1.1.5 Managing Discrete Event Plants

Let’s move back from the plant being either a plane being flown or a room
being heated to the plant being a discrete event system composed of a server
and a client (Figure 1.5), where the client generates work for the server in
the form of RFSs, which are stored in a queue for execution if there is suffi-
cient space.

Reduced to essentials, we are interested in controlling the performance of
a discrete event system (also known as a queueing system). Later we explain that
the server is the computer network that is a collective of individual servers and
the client is the collective set of computers seeking to exchange data; that is in
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the case at hand, the plant is the communications network and its clients (i.e.,
digital computers), and the function of the control system is to respond to
changes in the network and/or its workload by modifying one or both of these.
For now, however, let’s keep it simple.

The performance of a discrete event system can be parameterized by such
measures as delay, throughput, utilization, reliability, availability, and so on
(Figure 1.6). These are all determined by two (usually random) processes: the
arrival process, which determines the rate at which workload arrives from
the client; and the service process, which determines the rate at which the work-
load is executed by the server. This means that, for even the simplest discrete
event (i.e., queueing) system, there are two degrees of freedom to the task of
controlling the performance: actuating the arrival and service processes. Other
ancillary factors include the maximum size of the queue(s), the number of
servers, and details about how the queueing is implemented (input versus
output versus central queueing), but the fundamental fact remains that overall
performance is determined by the arrival and service processes.

1.1.5.1 Discrete Event System State Variables
The state of a discrete event plant is determined by the state of the client and
the state of the server (leaving aside for now the question of queue capacity
and associated storage costs) (Figure 1.7).

In the terminology of queueing theory, the client is characterized by
the arrival process/rate. The arrival rate generally is shorthand for the mean
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interarrival time, and is denoted by the Greek letter λ; more sophisticated statis-
tical measures than simple means are sometimes used (Figure 1.8). Real-world
clients generate requests for service (work) that can be described by various
probabilistic distributions. For reasons of mathematical tractability the expo-
nential distribution is most commonly used.

In addition, we must specify what the client requests. A client must, of
necessity, request one or more types of tasks (this can include multiple instances
of the same task). The task type(s) a client may request constitute its task set.
Two clients with the same task set but with different arrival processes will be
said to differ in degree. Two clients with different task sets will be said to differ
in kind.

A server by our definition executes tasks. The types of tasks a server can
execute constitute its task set. Take, for example, an Ethernet LAN with four
clients: The LAN can execute a total of 12 tasks (move data from client 1 to
client 2, move data from client 1 to client 3, and so on). Note that the task
A → B is not equivalent to the task B → A so we count each separately. If we
add a station (client) to the LAN then its task set grows to 20 tasks. If the server
can execute only one task (type) then its client(s) need not specify the task. This
is called an implicit RFS.
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As with clients, two servers with the same task set but with different arri-
val processes will be said to differ in degree. Two servers with different task sets
will be said to differ in kind.

A server’s task set is basically an atemporal or static characterization. To
capture a server’s dynamic behavior, we need to discuss its tasking—how many
tasks it can be executing at one time. The obvious answer to this is one or
many—the former is single tasking and the latter is multitasking. However, we
must further differentiate multitasking between serial multitasking and concur-
rent multitasking. In serial multitasking, two or more tasks may overlap in exe-
cution (i.e., their start and stop times are not disjoint) but at any given time
the server is executing only one task. Concurrent multitasking, on the other
hand, requires a server that can have two or more tasks in execution at a given
moment. Concurrent multitasking implies additional capacity for a server over
serial multitasking. Figure 1.9 illustrates serial versus concurrent multitasking.

Obviously, if there is a mismatch between the task set of a server and the
task set of its client(s), then there is a serious problem; any task that is requested
that is not in the former will effectively be a fault. Corresponding to each task
in a server’s task set is a mean service rate, which we will refer to as the band-
width of the server. It is denoted by the Greek letter µ. As with arrival rates,
more sophisticated statistical measures than simple means are sometimes used.
In all cases, however, one thing holds true: The service rate is always finite.
This will, it turns out, have profound consequences on the type of workload
manager that must be constructed.
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Now, there is an additional fact of life that complicates this picture: An
actual server will have finite reliability. At times it will be unable to execute a
task requested of it not because it has no additional bandwidth but because it
has no bandwidth at all. There are several classes of faults that can cause prob-
lems in a server. A fatal fault, as its name indicates, “kills” a server; a server that
has suffered a fatal fault cannot operate, even incorrectly. A partial fault will
reduce a server’s bandwidth and/or task set but neither totally.

We also must distinguish faults based on their duration. Some faults are
persistent and disable a server until some maintenance action (repair or replace-
ment) is undertaken by a manager. Other faults are transient: They occur, they
disable or otherwise impair the operation of the server in question, and
they pass. Exogenous disturbances are often the source of transient faults;
when the disturbance ends the fault does, too. An immediate example is a
communication channel that suffers a noise spike from an outside source such
as lightning.

1.1.5.2 Bandwidth Management
Management of a server in a discrete event plant amounts to managing its
bandwidth, that is, its service rate, and by extension of its task set. When we
speak of bandwidth we mean its effective bandwidth (BWe), which is the prod-
uct of its nominal bandwidth (BWn) and its availability A. Availability, in turn,
is determined by the server’s reliability R, typically measured by its Mean Time
Between Failures (MTBF) and its maintainability M, typically measured by its
Mean Time To Repair (MTTR). A “bandwidth manager”—arguably a more
descriptive term than “server manager” or “service rate manager”—can there-
fore actuate the bandwidth of a server by actuating its nominal bandwidth, its
reliability, or its maintainability.

Implementing the least-cost server entails making a set of trade-offs
between these parameters. For example, a server with a high nominal band-
width but low availability will have the same average effective bandwidth as a
server with a low nominal bandwidth but high availability. Similarly, to attain
a given level of average availability, a fundamental trade-off must be made
between investing in reliability (MTBF) and maintainability (MTTR). A
highly reliable server with poor maintainability (i.e., a server that seldom is
down but when it is down is down for a long time) will have the same availabil-
ity as a server that is less reliable but which has excellent maintainability (i.e.,
is frequently down but never for a long time). In both of these trade-off
situations, very different servers can be implemented with the same averages,
although it should be noted that the standard deviations will be very different.
Figure 1.10 shows a MESA analysis of the process of making these trade-offs.
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When is a server’s bandwidth (and/or other parameters) actuated?
Figure 1.11 shows the occasions. The first is during its design and implementa-
tion. Implementation is an actuation of the server’s nominal bandwidth from
zero, which is what it is before it exists, to some positive value; and an actuation
of its task set from null to nonempty. Up to this point, the server does not exist.
Although it seems obvious to say, bandwidth management is open loop in the
design phase since there is nothing to measure. Based on measurements and/or
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estimates of the client’s demand, management will schedule the actuation of
the server and its components.

This question has been studied considerably: Can a reliable server be
constructed out of unreliable ones? The answer is yes, and the key is the use
of redundancy. For this reason, implementing a reliable server is much easier
when the plant is a digital plant that can be replicated at will, subject to limita-
tions in cycles and storage. We will explore ways to do this in more detail
in various chapters that follow, from coding theory to data link redundancy
(bonding) to protocol retransmission to dynamic routing.

After this there is a server extant, and this means that bandwidth manage-
ment may be, if desired, closed loop. The next instance of actuating a server’s
bandwidth generally occurs after a fault. As we remarked earlier, all servers have
finite reliability. A server that is disabled by a fault has a reduced bandwidth.
A partial fault may reduce the bandwidth but still leave a functioning server,
whereas a fatal fault reduces the bandwidth to 0. Restoring some or all of the
server’s lost bandwidth is obviously an instance of bandwidth management.

This task is typically divided into three components: fault detection,
isolation, and repair (or replacement). Of these, fault detection involves the
measurement of state and/or output variables to detect anomalous conditions.
For example, high noise levels in a communications line can indicate a variety
of faults or vibrations at unusual frequencies or can mean mechanical system
faults. Fault isolation generally requires estimators since it entails a process
of inference to go from the “clues” that have been measured to identifying
the failed component(s) of the server. The actuation of the server is effected in
the last phase, repair or replacement. The reason this is bandwidth actuation is
that after a successful repair the bandwidth of the server is restored to the status
quo ante.

It might seem from the preceding discussion that a bandwidth manager
must be closed loop to effect maintenance; and while feedback undoubtedly
reduces the time from the occurrence of a fault to the server having its band-
width restored, there are circumstances under which open-loop maintenance
policies might be used instead. Such policies as age replacement and block
replacement require the bandwidth manager to replace components of the
server irrespective of their condition; such a policy will result in any failed
components eventually being replaced, and many failures being prevented in
the first place, albeit at the cost of discarding many components with useful
lifetimes left. (For further discussion of various maintenance policies, see either
Goldman and Slattery [2] or Barlow and Proschan [3].)

Typically, however, bandwidth managers responsible for maintaining
servers are closed loop. Indeed, in the absence of sensors and estimators to
infer the server’s condition, the incidence of latent faults will only increase.
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Therefore, a major part of most bandwidth managers is the instrumentation of
the server to monitor its condition. In fact, because it can even be argued that
the maintainability of a server is one measure of the service rate of a bandwidth
manager that is responsible for fault detection, isolation, and recovery (repair
or replacement), an investment in instrumentation that reduces downtime
increases the bandwidth of the bandwidth manager.

Finally we come to deliberately upgrading or improving the server’s band-
width, as opposed to merely restoring it after a fault. The two basic degrees of
freedom here are (1) the bandwidth of the server and (2) its task set. Consider
first the instance where we have a server that can execute multiple types of tasks
but we can change neither its total bandwidth nor its task set. By holding both
of these constant, we can still change the bandwidth allocated to each task
and this is still a meaningful change. An example would be to alter the amount
of time allocated to servicing the respective queues of two or more competing
types of tasks, such as different classes of service or system versus user applica-
tions. Because we are not changing the tasks the server can execute, the “before”
and “after” servers differ only in degree, not kind. We will therefore refer to this
as actuation of degree.

Another variant of actuation of degree is possible, namely, holding the
server’s task set constant but now changing the total bandwidth of the server.
An example would be to replace a communications link with one of higher
speed; for example, going from 10BaseT to 100BaseT, but not adding any
additional stations. The task set would be unchanged but the bandwidth would
be increased. We refer to this as actuation of degree as well, but to distinguish
the two cases we will call this actuation of degree2 and the first type actuation
of degree1. Of course, if a server can execute only one task, obviously, this
collapses to a single choice, namely, the actuation of degree2.

Changing a server’s task set does transform it into a different type of
server and we call this last type of change actuation of kind. Changing the task
set of a server often entails significant alteration of its design and/or compo-
nents. Of course, it can be as simple as adding a new station to a LAN. Gener-
ally, though, actuation of kind is the most complicated and extensive of the
changes possible in bandwidth management. Figure 1.12 shows the continuum
of change for bandwidth actuations.

Note that changing the nominal service rate and/or task set is not some-
thing undertaken easily or often. In some cases servers have two or more
normal service rates that a bandwidth manager can actuate between, perhaps
incurring higher costs or increased risk of faults as the price of the higher band-
width. For example, increasing the signal levels in communications channels
can improve the noise resistance but reduce the lifetime of the circuits due to
increased heat. An example of a server that has several service rates is a modem
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that can operate at several speeds, depending on the noise of the communica-
tions channel.

We should also remark that for many servers, particularly those which are
complex and composed of many component servers, the key parameters may
not be known or known adequately and must be measured. In these cases, it
may be up to bandwidth management to monitor (measure and/or estimate)
the three key random variables/parameters: the service time process, the reli-
ability process, and the maintainability process. If the server is composite, then
the option exists to estimate these parameters for its components and, with
knowledge of its composition, estimate the topology of the composite; or its
internal details can be simply elided, lumping the components together and
treating them as one entity.

1.1.5.3 Workload Management
Now we come to workload managers. The need for, indeed, the very existence
of, workload management is a concession to the inescapable limits in any
implementable server. This means, as we just discussed, accommodating a
server’s finite bandwidth and reliability. And, just as we identified three levels
of actuation for changing the task set and/or service rate(s) of a server, so are
there three levels of workload actuation.

The first level of workload management is access and flow control. A
server with limited (i.e., finite) bandwidth cannot service an unlimited number
of RFSs. (In addition, although we did not dwell on it in the state description
given earlier, the limits on the queue size often constitute even greater con-
straints than the fact that bandwidth is necessarily finite.) A basic workload
manager will actuate only the interarrival distribution, that is, the arrival
process. Figure 1.13 illustrates an example of this called traffic shaping, with
before and after graphs of the interarrival time distributions. We will refer to
this as actuation of degree1.

Various mechanisms can be used to actuate the arrival rate so as to allo-
cate scarce resources (bandwidth, queue space, and so on). These mechanisms
can be broadly divided into coercive and noncoercive. Coercive mecha-
nisms include tokens, polling, and other involuntary controls. To change the
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arrival rates of workload can also be done by buffering and/or discard, either
in-bound or out-bound. Noncoercive mechanisms revolve around issues of pric-
ing and cost: raising “prices” to slow down arrivals, lowering them to increase
arrivals. Note that coercive and noncoercive mechanisms can be combined.

Examples of basic workload actuation (actuation of degree1) abound in
computer communications. The access control mechanisms in Ethernet require
each station (i.e., client) to sense the status of the shared bus and, if it is not
free, to stop itself from transmitting. SDLC uses a polling protocol with a
single master that allocates the channel to competing clients. Token Bus and
Token Ring systems (802.4 and 802.5) use token passing to limit access.

By altering the arrival rates at which the work (RFSs) arrives, workload
management can avoid saturating limited queues, balance out the workload over
a longer period, and avoid the possibility of a contention fault, when two or
more competing clients prevent any from having their requests being success-
fully executed.

One of the most important types of workload actuation of degree extends
beyond simply deferring or accelerating the rate of arrival of RFSs. If the origi-
nal RFS is replicated into two or more RFSs, this is what we will call actuation
of degree2. The importance of this replication may not seem obvious but the
whole concept of time slicing that lays behind packet switching is in fact actua-
tion of degree2 in which the plant is divided for piecemeal execution. (Packet
switching works by dividing a message into smaller units called packets—see
Part III for more on the technology and origins of the term.)
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In the case of packet switching, this means sharing scarce communica-
tions bandwidth by means of dividing the bandwidth of a transporter into time
slices, also called quanta; the result of this division is packets. That is to say,
given a transporter of finite bandwidth, it follows that in a finite interval of
time only a finite amount of data could be transported. Consider what it means
to time slice a transporter of bandwidth M symbols per second (= Mk bits per
second, where there are k bits/symbol). If we establish the time-slicing interval
(quantum) as 1/J seconds then the maximum amount of data that can be
transported in that interval is Mk/J bits. This is the maximum packet size
(Figure 1.14). Equivalently, if we limit the maximum unit of plant (data) that
can be transported with one RFS we effectively establish an upper bound on the
quantum that can be allocated to an individual client.

The preemptive nature of packet switching is what distinguishes it from
message switching, another technique for serially reusing (sharing) a trans-
porter. With message switching, transporters are shared serially among two or
more clients but the plant each client requests to be transported is sent intact,
that is, without division. Consider, for example, message switching of a
9.6-Kbps transporter with two clients, one of which has file transfer that
involves transporting 2 MB of data while the other needs to send a credit card
verification of 265 bytes. If the file transfer occurred first and without interrup-
tion, then the transporter would be unavailable for almost 3.5 min; the credit
card client would have no choice but to accept this delay. The advantage
of packet switching’s preemption is that such large delays and the associated
“jitter” can be minimized if not eliminated.

Time slicing has another benefit, namely, fault management
(Figure 1.15). Because the plant is now divided into components, these consti-
tute units of recovery that are much smaller than the whole message. A fault
that occurs during the transportation of the plant is unlikely to affect all of the
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components, meaning that only the affected components need be retransmitted
(if such reliability is necessary).

Such replication is a very powerful technique for managing transient
faults in digital servers; by replicating the plant and RFS for either concurrent
execution or serial reexecution, the effects of the transient faults can be miti-
gated. Examples of the former in digital communications include parallel trans-
mission and forward error correction via error correction coding; examples of
the latter include retransmission of data corrupted by faults on the channel.
Table 1.1 compares workload and bandwidth management responses to tran-
sient and permanent faults. Note, though, that both of these stop short of
actuating the type of the RFS. This brings us to workload actuation of kind:
transforming one RFS into another of a different type. At first blush, workload
actuation of kind is not a very useful tool for managing the dynamics of a dis-
crete event plant. That would be true except for one vital application: When
the server is a composite of other servers, then in effect RFSs to the composite
server are aliases and workload management must “de-alias” the RFSs into
RFSs for the component servers (Figure 1.16).

A workload manager actuating an RFS from one type of task to another
occurs with layered implementations where the implementation details of a
server are abstracted from a client. For example, when the server is a composite
transporter, then this de-aliasing is precisely the concatenation task that we fre-
quently call routing (although it could be bridging, switching, and so on). The
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server S1 in the figure could be an IP network, with S2, S3, …, Sk as component
networks and the workload manager is a router (bridge, switch, and so on). In
other words, workload actuation of kind is precisely the relaying function. This
brings us to one of our principal results, which we will explore in detail in the
chapters of Part IV namely, that the composition of two or more servers is nec-
essarily effected by a workload manager. In this instance we say that the work-
load manager is a proxy client for the actual client.

Figure 1.17 shows an example of an internetwork in which he relays R1,
R2, R3, and R4 could be bridges, routers, switches, or some combination.

The transport task N1 → N2 is realized by a set of component transport
tasks between pairs of MAC addresses (and, internal to the relays, between
LAN interfaces):
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Table 1.1
Management Actions: Transient Versus Permanent Faults

Management Action
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Figure 1.16 RFS mapping with composite servers: workload actuation of kind.
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Looking over the range of workload actuations, as with bandwidth actua-
tion, there is a clear continuum of change when it comes to workload actuation
(Figure 1.18).

1.1.5.4 Coordinating Workload and Bandwidth Control
An issue remains to be considered, namely, the interaction of the bandwidth
and workload managers. Of course, it is possible to have a monolithic manager
responsible for both workload and bandwidth actuation. However, even in this
case the question remains of which variable to actuate for controlling the per-
formance variables of the discrete event system. A number of problems in man-
agement stem directly from the fact that the objectives of the respective control
systems cannot be easily decoupled; the coupling is due to the presence of per-
formance variables in any optimality criteria used to optimize the control of
service rates and traffic, respectively. Because performance is a joint product
of service and traffic rates, specifically the traffic intensity, the two indirectly
influence each other.

In some instances, for example, fault recovery, it may be that both vari-
ables are actuated. For instance, beyond the case we discussed earlier where
fault recovery is effected by retransmission, there are circumstances in which
bandwidth management will attempt to restore the lost bandwidth while work-
load management attempts to reduce the arrival rate(s) until this happens.
Table 1.2 lists various possible responses of the workload and bandwidth
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schedulers to various events in a discrete event system’s life cycle. This means
that the coupled schedulers must cooperate. One way to establish the rules
of this cooperation is to define another scheduler that is a “master” of the
schedulers of the two managers. This master scheduler receives the same state
and parameter feedback from the respective monitoring servers (sensors and
estimators) and using this information determines the targets that the workload
and bandwidth managers will seek to attain with their respective plants.

The master scheduler can decide these targets economically. If the utility
to the client of the service provided by the server is known and if the cost func-
tion of providing the service is likewise known then, using the well-known for-
mula for profit maximization, MR = MC (from marginal economic analysis;
see, for example, [4]). In other words, the master scheduler would set the band-
width target such that the marginal revenue from client RFSs equals the
marginal cost of providing the bandwidth; and the bandwidth scheduler would
then seek to keep the server at that level. Difficulties in applying MR = MC
include defining cost function and establishing price elasticity for the demand
from the clients.

Figure 1.19 shows a master scheduler receiving feedback from the client
and server monitoring servers and sending workload and bandwidth targets to
the respective schedulers.

1.2 Managing Transport Clients and Servers

The previous section differentiated between servers insofar as they were compo-
nents of managers (control systems)—indeed, the cornerstone of this analysis is
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Table 1.2
Bandwidth Versus Workload: Responses

Event
Responder

Workload
Decline

Workload
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Bandwidth
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Bandwidth
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Bandwidth
Scheduler

Reduce bandwidth
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Restore bandwidth
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Workload
Scheduler
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Restrain demand
Increase minimum
Access priorities
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Restrain demand
Increase minimum
Access priorities
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Stimulate demand
Lower prices
Alter priorities



the MESA model, with its schedulers, estimators, sensors, and actuators. How-
ever, no differentiation was made with regard to servers as plant to be managed.
In this section we discuss just this: computer networks as servers to be managed.

Toward this end, we first ask a simple question: What is a computer net-
work? One answer is to say that it is a special type of server; a subclass of actua-
tor, what we will call a transport actuator or transporter, for short. Notice that we
do not mention anything about its topology—whether it is built out of a single
data link or thousands. Or the way it is put together—routers, switches, or
other types of relays. That is the advantage of a functional description like
“transporter,” which is based on what is done, not how.

In this section we explore several points peculiar to managing transport
actuators. One is the distributed nature of the plant, that is, the server and
by extension the distributed nature of the workload. A particular consequence
of this is the fact that a manager of a transport network has a locus of imple-
mentation—distributed or centralized. In addition, the distributed nature of
the transport server means that, like the blind men and the elephant, it is possi-
ble to monitor and control the whole by having its parts report on their respec-
tive sums. This, of course, is the area of routing protocols, which we merely
touch on here, but explore in detail in subsequent chapters.

1.2.1 Physical Transporters

So what does a transporter do? A transporter actuates the location of its plant,
that is, it moves things. When the things are tangible items with shapes,
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weights, and so on, we speak of physical transporters such as trucks, trains, and
planes. When the things to be moved are bits of information in files, media
streams, and so on, we speak of information transporters, examples of which
range from simple LANs to the Internet itself. (Of course, as Tanenbaum’s
example of a station wagon loaded with high-density computer tapes illustrates,
there can be some overlap between the two types [5].) The plant is the data that
is to be locationally actuated, that is, transported. The client is, in most cases,
the source of the data to be transported, and in our case is assumed without any
loss of generality1 to be a digital computer. (Figure 1.20).

The physical layer provides the basic server of a computer communica-
tions network (internet). As we have indicated, such an entity is a transport
actuator (transporter); it changes the location of information from the source
to the destination. So what is the actual transporter here? It is a composite,
the components of which are a communications channel plus the signal that
the channel carries; the transmitter, an actuator that creates the signal; and the
receiver, a sensor that measures it at the destination (Figure 1.21).
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Few communications channels can carry the signals used within digital
computers in an unmodified form. This is because of inherent limitations in
the propagation of such signals over distances greater than a few feet. Because of
this, the transmitter in most instances executes a transformation of the plant
(i.e., the signal carrying the user data) from the form in which it is received
from the client into a form that can propagate better over the channel. The
generic term for this conversion is modulation. A corresponding demodulation
then is executed at the receiving end to convert the plant back into the form
expected by the receiving entity (typically, also a computer). The combination
of a modulator and demodulator is termed a modem.

Along with modulation and demodulation, another topic that dominates
digital communications is error control codes and coding theory. We referred
earlier to such codes and their relationship to workload management. One
result of Shannon’s work [6] on the capacity of a channel was the search for
error correcting codes that could utilize a higher fraction of the capacity than
communications without such codes. The development in the past 15 years of
higher speed modems such as 9600 and above is directly attributable to the
success in finding such codes and their realization in inexpensive VLSI circuits.

These are the physical resources that move the data, and physical faults
may affect them. Workload management is fundamentally the responsibility of
the data link protocols. Bandwidth management basically amounts to monitor-
ing the condition of the server, with instrumentation mainly measuring the
state of the signal, the transmitter, the receiver, and the state of the channel to
the extent that geographic distances allow this. Geography, however, is the key
limitation to local management.

1.2.1.1 What Is Meant by Transportation?
The preceding definition of a transporter may seem unambiguous. For this rea-
son, it may be surprising to find out that there has for many years been a deep
philosophical debate in the computer communications community over what
exactly constitutes communications. This is the debate over connections: Prior
to the transportation of data must a connection be set up between the client,
the destination, and the transporter, or can the client transmit without any
prior connection being established? The most important benefit of a connec-
tion is, quite simply, that it ensures the destination will be there when the signal
arrives. The disadvantage of connections is the overhead of and delay caused by
the connection (and disconnection) process.

This issue of what is required for effective transportation mirrors the old
paradox about the tree falling in the forest: If no one is about to hear it, does it
make a sound? Clearly, the impact of the tree creates a physical “shock-wave”
that propagates throughout the forest—is this what we mean by sound? If you
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say yes then you agree with the connectionless advocates. If you say no, there
is no sound if there is no one to hear the impact, then you agree with the
connection-oriented advocates. Similarly, if information via a signal is trans-
mitted but there is no sensor to detect it, has the information been transported?
Technically, the answer must be yes. Effectively, however, the answer is no.

The telephone network is a classic example of connection-oriented trans-
portation of a signal. If the destination is unattainable, then the client will be
unable to set up a connection (no one picks up the phone); there will be no
uncertainty when an information-carrying signal is sent whether there was
anyone to hear it. The connectionless model is used, for example, in mass com-
munications and old-fashioned telegraphy. When a telegram is dispatched, the
client who originates it does not know, unless some acknowledgment mecha-
nism is used, whether the destination ever receives it.

Each school of thought, connection oriented and connectionless, has its
advocates. The telephone world tends toward connection-oriented solutions,
as can be seen in the connection-obsessive structure of broadband ISDN and
ATM; the data communications community, on the other hand, tends toward
connectionless models of communications, most notably in protocols such as
IP. Neither is unambiguously the best approach, and we will see the debate
between the two at almost every level of communications we will examine in
this book.

1.2.2 Layering and Embedded Management

Let’s now put back the layers of communications protocols that typically sur-
round an actual transporter and in some way “virtualize” it. The layered model
of communications is shown in Figure 1.22 using the nested (Chinese) box
way of depicting this. Each layer encapsulates its predecessor, abstracting
implementation details and allowing a client to request services without neces-
sarily knowing any of the details of implementation.
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The nature of a layered communications architecture is that intelligence
is embedded within each layer to present an abstracted service to its immedi-
ately superior layer. The top layer, which provides the interface for the commu-
nicating applications, varies according to the different protocols used; but in
the world of the Internet the top layer is generally TCP and/or UDP. Regard-
less of the top layer, as the client’s request and accompanying data proceed
down the protocol stack through the lower layers, the request and generally the
data are both transformed into new RFSs and into multiple pieces, respectively.
This is why, in the layered model of communications protocols such as the
SNA, TCP/IP, or OSI, the (n − 1)st layer can be a transporter to the nth layer,
which is a proxy client for the real client, at the same time that the nth layer is a
transporter to the (n + 1)st layer, again a proxy client.

Although we have not stressed this fact, the definitions of server have
all been “object oriented”; specifically, there is adherence to the principle of
inheritance. In particular, the significance of this is that a composite server,
such as a transporter plus a manager, may “inherit” the task(s) of the compo-
nent server. In the case at hand, this means that a transporter plus a manager is
a transporter (Figure 1.23).The service rates may be different, indeed the tasks
may have been actuated, but they are nonetheless transportation tasks. This is
the reason layering works. Because when all the layer logic (really, management
logic as we have demonstrated and will show further in subsequent chapters) is
stripped away, we are still left with a transporter that moves data from one loca-
tion to another.

As we discussed in Section 1.1, this transformation is an actuation of the
workload. Because one RFS is being transformed into a completely different
RFS, this is actuation of kind. Figure 1.24 shows this process for several arbi-
trary layers in the OSI protocol stack, along with the workload managers that
must be there to effect the transformation of one layer’s Service Data Unit
(SDU) into another (ICI refers to control information passed between layers).

1.2.3 Locus of Implementation: Centralized Versus
Distributed Management

The Internet, and by extension modern data communications itself, comes
from the marriage of two distinct technologies: the use of voice communica-
tions channels, made possible by inexpensive modems necessary for sending
digital data over voice networks, to facilitate multiuser access to computing
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centers; and the development by Paul Baran et al. at the RAND Corporation of
adaptive, fault-tolerant management protocols for highly available communica-
tions networks [7].

Baran’s work was driven by the U.S. military’s need for highly survivable
communications networks, with the attendant requirement for no single point
of failure. This precluded the use of management that relied on centralized
monitoring and controlling. To get around this, Baran and his colleagues inves-
tigated a number of concatenation techniques, both open and closed loop, that
did not rely on routing centers, and which had the vital property of adapting to
the loss of communications channels and/or relays. Prior to this dynamically
based/distributed routing approach, other networks used centralized route
determination computers to calculate optimal routes, which were then dissemi-
nated to the individual routers.

1.2.3.1 Estimators and Routing Protocols
Perhaps the most complicated topic we will discuss in this book is that of rout-
ing protocols. The irresistible analogy for a routing protocol is the story of the
blind men and the elephant. This fable tells of a certain number of sages, who
might be more generously referred to as visually challenged, confronted by
an unknown entity. Each touches the part nearest him and comes to the
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appropriate conclusion: The man who touches a leg thinks he has felt a tree, the
man who touches the trunk thinks he has felt a snake, and so on. Only by shar-
ing with each other their respective impressions do the sages realize they are
feeling up a pachyderm. The pachyderm’s reaction to all this is unrecorded, and
the story ends before we find out.

The analogy with a routing protocol is apt. Assume each relay (workload
manager) has a bandwidth manager as well, measuring the condition of the
local channels and the relay itself. This local state information is then broadcast
or otherwise disseminated to the other relays, each of which uses the sum of this
local information to reconstruct the global topology of the network. Such
reconstruction is clearly the task of an estimator, and this points out one part of
a routing protocol: the presence of a bandwidth estimator to put together the
“big picture.” (Seen another way, a routing protocol’s collection of topology
information is a type of configuration management; this tells us something
about the functional areas of network management, a topic that we return to in
the next section.)

The reason for collecting local topology (state) information and recon-
structing the global topology is to efficiently use the components of the net-
work—the data links and relays. Recall that the challenge of “computer
networking” is knitting together multiple transport actuators. When it comes
to this concatenation, the important question is “What is the path?” This
brings us to the major second part of a routing protocol: scheduling. Determin-
ing the best next stage in a multistage transporter can be done in several ways,
such as distance vector or link state (more on these later in the book), but in
any case this is the responsibility of a workload scheduler.

We see that a routing protocol can be decomposed into a workload
scheduler and a bandwidth estimator (at a minimum, other management com-
ponents are usually present). We explore this in much greater detail in later
chapters.

1.2.4 Costs of Implementing Management

This discussion of routing protocols gives us the opportunity to touch on some-
thing often ignored: the cost of management. Management is not free. There is
a significant expense to the various management servers necessary to monitor
and control the network. The question arises “How much should be invested in
management servers and how much instead should be devoted to additional
servers for the network itself ?” An answer to this depends on the relative contri-
butions to performance obtained from added management bandwidth versus
added transport bandwidth.
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These costs to managing a network come in two varieties: the fixed costs,
generally from the implementation of the management servers, and the variable
costs that are incurred when these servers execute their respective management
tasks. For example, monitoring a communications network requires instru-
menting it, that is, implementing sensors to measure the network’s state, as
least as it is reflected in the output (that is, measurable) variables. The
“upfront” cost of implementing the sensors is fixed. Whether these servers are
monitoring/measuring/executing or not, they still must be “paid” for.

On the other hand, certain costs accrue from operating the sensors: Power
is consumed, memory and CPU cycles may be used that might otherwise be
employed in executing communications and other tasks, and, not least, the
measurements made by these sensors are usually sent to management decision
servers (estimators and/or schedulers) located elsewhere in the network. This
last cost can be particularly significant because management traffic (consisting
of such things as these measurements from sensors, estimates from estimators,
and commands from schedulers) either competes with the user traffic for the
available bandwidth of the network or must flow over its own dedicated com-
munications network.2

1.2.4.1 The Cost of Management: Routing Overhead
An example of this is the routing protocol’s topology data exchange, which uses
network bandwidth that is consequently unavailable for transporting end-user
data. And, unfortunately, as the size of the internetwork grows, the amount
of topology data exchanged grows even faster, in fact as O(n2). To reduce this
quadratic scaling, various techniques have been devised that, generally speak-
ing, involve aggregation of routing information, with a concomitant loss of
granularity. This modularization, in fact, results precisely in the hybrid locally
central, globally distributed decision structure we referred to earlier
(Figure 1.25).

One design objective, therefore, when planning the monitoring network
is to reduce the volume and frequency of measurements that must be sent over
the network. Two types of sampling can reduce this volume: spatial sampling
and time sampling. Sampling in time brings us to the sampled data control
system. Spatial sampling is considerably more complex and is applicable to dis-
tributed parameter systems such as computer networks.
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1.3 False Dichotomies, Reconsidered

As noted earlier, a principal catalyst for developing the MESA model of
management—bandwidth versus workload, actuation of kind and actuation
of degree (both types)—was to eliminate from network theory certain false
dichotomies, that is, artificial distinctions based on practice and precedence,
perhaps, but not well founded in analysis. Conspicuous among these are the
prevailing wisdom that protocol issues are distinct from management issues,
and that the events of a network’s life cycle constitute distinct and dissimilar
phases.

1.3.1 Management Versus Protocol

In the development of computer networks and their associated protocols, at
an early point tasks were divided into two categories: those that were part of
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enabling computers to send and receive data among themselves and those that
were part of managing the enabling entities, that is, managing the communica-
tions networks themselves. The first of these we have come to call computer net-
working, the second management. Yet, we will demonstrate in this book that,
apart from the simple transportation of the plant as it was received from the
client, all other tasks executed in a computer network are management tasks.

Take, for example, two computers sending and receiving data from each
other. Computer A is sending data to computer B. If a fault occurs that causes
the link to corrupt the data but it still arrives at computer B (what we call a
latent fault) or if the fault causes the link to fail to transport anything at all
(what we call a fatal fault) then B sends feedback to A informing it that, by
inference from the condition of the received data (or its failure to arrive at all), a
fault has occurred in the transmission.

Reliable transport means that, at some level in the protocol stack, there is
a mechanism for fault detection and recovery by, in the first instance, resending
the data that failed to arrive at the destination correctly. Such retransmission is
predicated on the fact that many faults are transient and, in effect, the server
“repairs” itself when they occur. Most connection-oriented data link protocols
(for example, SDLC or LAP-B) specify that the sender will retransmit a finite
number of times in case the fault proves to be transient. All fault detection, iso-
lation, and recovery is automated, implemented in a combination of hardware
and software.

Contrast this, however, with the situation that arises if the communica-
tions link(s) suffer a more persistent fault, in which retransmission will be of no
avail. If the network’s topology has been laid out such that alternative routes are
available linking client and destination and if the network possesses sufficient
intelligence to reroute traffic, then automatic recovery is still possible. Whether
such is the case or not, however, full recovery typically will require sending a
service technician to examine and repair the physical links in question. This
may involve pulling configuration records from a computer database (or file
cabinet), setting up line probes and analyzers to identify the faulty compo-
nent(s), replacing or repairing those components thus isolated, testing the
repaired communications link(s) to check the repairs, and so on.

In computer networks even most of these “management” tasks are exe-
cuted manually. On the other hand, the protocol management tasks are not
ever executed manually, that is to say, by people examining each frame, decid-
ing if it is bad, scheduling retransmission, and so on. Any way we look at it, the
prospect is absurd. Yet to distinguish between identical servers because one is
implemented digitally and the other manually is no less absurd—all we care
about in terms of servers is their nominal bandwidth, their reliability, their
maintainability, and their task set. The difference between communications
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protocols and network management comes down to how the tasks are executed
(i.e., manual versus mechanized). In fact, what we have are two bandwidth
managers that are components of a multiechelon maintenance server (band-
width manager).

1.3.2 Unified Life Cycle Management

In the section on bandwidth management, we discussed the occasions when
a server’s bandwidth was actuated, namely, when it is initially designed and
implemented, during fault recovery, and at the time of upgrades or other
improvements (Figure 1.11). This integrated approach is consistent with the
experience of software developers, in which the life cycle concept has grown in
popularity in recent years as the best way to address the design, implementa-
tion, and maintenance of software. The core lesson is that all phases of a
project’s existence should be considered from the beginning when making
trade-offs in design and implementation.

A side benefit to considering a new approach is that it allows us to step
back and look at the whole network life cycle and see if we can integrate or
unify its activities, in other words to develop a new approach to managing the
life cycle of the computer network, from its preimplementation design to fault
management to growth and decline as traffic ebbs and flows. What is needed is
a unified approach encompassing four areas of computer networking tradition-
ally addressed separately: network design, tuning, management, and operations
(including routing).

Toward this end, we can identify certain well-defined events that punctu-
ate the life cycle of a computer network. First of all, there is the initial design
and implementation; this is unique because there is no existing network to con-
sider. The next event to typically occur is a fault; thus fault detection/isola-
tion/recovery must be considered and the servers implemented to execute the
requisite tasks. Finally, as the traffic workload changes, the network itself must
adapt: A workload increase requires capacity expansion, whereas a workload
decrease may necessitate some capacity reduction. Although the latter may
seem unlikely in this time of explosive Internet growth, even the normal ebb
and flow of daily commerce can impact the design of the transport infrastruc-
ture—especially provisioning communications bandwidth (discussed later).

1.3.2.1 Timescales of Network Dynamics
We can arrange the various tasks executed in a computer network according to
the frequency with which they happen. As a matter of fact, a convenient way
to look at these is by their “interarrival times” (Figure 1.26).
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• The least frequent is, naturally, the design of the network; this can
happen only once, because all subsequent changes to the network will
have a functioning network to start with.

• The next most frequent activity is network tuning/redesign. This
occurs approximately every 3 months to every 3 years; that is to say,
every 107 to 108 seconds.

• Likewise, the events of network management occur approximately
every 103 to 106 seconds (20 minutes to 11 days). If such events occur
more frequently, then that means the network is suffering faults more
frequently than normal operations would allow.

• Finally, network operations represent the shortest timescales of all.
Consider a 1-Gbps channel, more or less the upper limit on commu-
nications today. Assuming that error correction coding (ECC) is
employed then a decision must be made approximately 100,000,000
times per second as to whether a fault has occurred. Likewise, a frame
with a Frame Check Sequence to be calculated will arrive from 100 to
1,000,000 times per second.

1.4 Summary

We said at the outset that this book was predicated on two assertions. First,
that management pervades computer communications networks, their archi-
tectures, and their protocols. Second, that management is best understood
using the concepts and vocabulary of control engineering. Toward this latter
end, this chapter has introduced a new conceptual framework, borrowed from
control engineering, which we have called the Measure-Estimate-Schedule-
Actuate or MESA model.

The advantages of the MESA/control systems model can be summarized
as follows:
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1. Results in less unplanned, uncoordinated redundancy in the
implementation;

2. Encompasses the life cycle of an internet within one unifying frame-
work; and

3. Defines a new vocabulary—consistent and (almost) complete.

Taking this last point first, terminology bedevils any technology discussion,
computer communications more than most. This chapter has pointed out sev-
eral key areas where the current approach to internetworking has created artifi-
cial distinctions and unnecessary complexity—our “false dichotomies.” What
has been needed is a new vocabulary for discussing the relevant concepts free
from the “baggage” of current definitions.

This brings us to our next point: More than just a vocabulary, however,
this chapter has shown that the MESA model gives us a “toolbox” with which
we can constructively define what it means to manage a discrete event system in
general, and an internet specifically. First, we showed this amounts to actuating
workload and bandwidth. Second, with respect to each of these, we showed the
range of possible actuations: from actuation of degree1 (no task transformation,
simply changing the arrival rate) to actuation of degree2 (no task transforma-
tion, but with task replication = time slicing) to finally actuation of kind (with
transformation of the task).

Likewise, we demonstrated that layering and encapsulation, concatena-
tion, and even “traditional” network management issues such as security and
accounting all can be best explained with these basic concepts. The task(s)
executed by computer networks involve the transportation of data from one
location to another. The actual transportation of data is effected using one or
more communications channels (and their respective signals)—the sine qua non
component(s). However, that is only the beginning of the process. The vast
majority of tasks executed are management tasks. Indeed, as we showed in
Section 1.1 both workload and bandwidth management tasks are present
everywhere:

• Scheduling mechanisms such as token passing, carrier sensing, and
polling are all examples of workload actuations of degree1.

• Packetizing data for time-division multiplexing of communications
channels and relays is workload actuation of degree2.

• Finally, layered protocol models with their emphasis on abstracting a
layer’s implementation details from its client(s) in upper layer(s)
involve workload actuation of kind.
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This chapter has discussed other advantages to approaching networking
and network management from an automatic control theory perspective. Con-
trol engineering is concerned with ensuring the stability and optimality of
controlled systems, called the plant ; here the plant is the transport network
being managed. The control system does this by mathematically modeling the
dynamics of the plant and by applying various optimization techniques to
determine the best management policies. Part of the challenge of this is that
simple models do not work when it comes to controlling computer networks
and their traffic flows because of their spatially varying nature. At its heart is a
set of optimization decisions concerning revenue and costs, traffic flows and
service capacities, and the related parameters that are relevant to network opera-
tions. The concept, at least, is simple:

1. Establish an objective to be attained, for example, a range of accept-
able response times, server utilizations and traffic intensities, or other.

2. Monitor the arrival of traffic and its servicing by the network’s links.

3. Based on these measurements and/or estimates, determine the neces-
sary intervention (if any) to optimize the network’s performance.

4. Finally, effect the change using the available management actua-
tors—workload and/or bandwidth.
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Management of the Basic Transporter

2
Management of the Basic Transporter:
Channels, Signals, Modulation, and
Demodulation

2.1 Introduction

This chapter presents the MESA analysis of the mechanisms involved in trans-
porting signals across communications channels and especially the modula-
tion and demodulation required to do so. While the intricacies of modulation,
transmission, and demodulation extend beyond the scope of this book, we can
nonetheless derive meaningful insights into the tasks involved without delving
into all of the minute details. The purpose here and in subsequent chapters is
to focus on placing the tasks in the context of our control theoretic model of
workload and bandwidth management; and identifying where the respective
tasks of estimation, scheduling, actuation, and measurement are executed in
different types of implementations.

As we saw in the introductory chapter, workload and bandwidth manage-
ment can occur at many levels, particularly when the server is composite. That
is the case here: The transporter is composed of a channel and associated sig-
nals, as well as the modulator that created the signals and the demodulator that
recovered the signals after they had been transported across the channel and
subjected to its noise and other faults. This combination of modulator–chan-
nel–demodulator is, in communication and information theory, referred to as a
discrete memoryless channel (DMC) for reasons we explain later.
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Putting things into the context of workload/bandwidth management, this
chapter demonstrates that the modulator is an actuator that creates the sig-
nals. In fact, the transmitter is a composite: a scheduler that selects which signal
waveform to transmit and the actuator that creates the waveform selected. This
constitutes both bandwidth actuation, regarding the channel/signal as the
server, and, in a different frame of reference, workload actuation of kind since it
can be looked on as transforming the RFS to the DMC into RFS to the channel
within the DMC; that is to say, the client of the DMC issues an RFS to the
DMC, but conceptually this must be mapped or transformed into an RFS
to the actual transport actuator, namely, the channel that is contained within
the DMC. Returning to modulators, the chapter examines the various types of
actuation, that is to say modulation, and the corresponding signals they create.
The “big picture” can be stated very simply: The modulator actuates the plant
into a form that matches the channel’s characteristics and that, subject to con-
straints on cost and realizability, optimizes or otherwise improves the chances
of successful understanding (estimation) at the receiver.

Complementing this (bandwidth) actuation, the chapter then proceeds to
examine the mechanisms of demodulation, that is, the measurement and esti-
mation of the server (the channel/signal composite). Such instrumentation is
at the heart of designing the receiver; in particular, this chapter discusses the
design of demodulators to reconstruct the transmitted waveform. The chapter
also explores the efficacy of demodulation and its intimate connection to the
types of signals and types of modulation used.

2.2 Channels

2.2.1 What Is a Channel?

It is appropriate to begin the chapter with the channel. One definition in the
literature is as follows:

channel (1) That part of a communications system that connects the mes-
sage source with the message sink. In information theory in the sense of
Shannon the channel can be characterized by the set of conditional prob-
abilities of occurrence of all the messages possible received at the message
sink when a given message emanates from the message source. (2) A path
along which signals can be sent…. [1]

The definition proposed by Shannon himself provides some examples of
channels:
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The channel is merely the medium used to transmit the signal from trans-
mitter to receiver. It may be a pair of wires, a coaxial cable, a band of radio
frequencies, a beam of light, etc. [2]

Although we hesitate to take issue with Shannon, we would alter his definition
with concern to the radio band and the beam of light: Both electromagnetic
waves are signals, and the channel is the space through which it propagates. In
other words, channels are not always wires or other tangible entities. Wireless
communication, for example, with microwave links and satellite channels relies
merely on space for the propagation of its signals. Figure 2.1 shows a wireless
communication scenario built around two ground stations, each a pairing of
transmitter and receiver, and a geosynchronous satellite, itself comprised of two
pairings of receivers and (re)transmitters. The channel is the volume of space
through which the radio signals propagate between the two earth stations and
the satellite. Likewise, the channel used with an infrared communications link
is just the space transited by the infrared beams.

2.2.2 Channels: Actual Versus Ideal

An ideal channel is quite simple to define, if not to implement: It would trans-
port a signal without changing it. Actual channels, however, are neither that
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simple nor that benign. Signals are attenuated, delayed, and distorted by the
addition of noise from the channel itself, from amplifiers and other ancillary
components, and from exogenous sources outside the communications system.
Complicating this picture even further, many of these deleterious effects vary
according to the frequency of the signals.

Attenuation, for example, is typically uneven across the frequency spec-
trum, with the consequence that channels are often modeled mathematically as
linear bandpass filters. The dimensions of this passband, commonly measured
from the high and low frequencies that have been attenuated by 50% from the
nominal response, are referred to as the bandwidth of the channel (and corre-
sponding filter). Converting this 50% loss into the decibel (dB) measurements
frequently used in communications engineering, the passband is the band of
frequencies for which the attenuation is less than 3 dB off the ideal or nominal
response (Figure 2.2).1 Note that the bandwidth of the channel is not the same
thing as what we’ve been calling the bandwidth, that is, the service rate, of
the channel/signal composite. The former is a factor in determining the latter,
which in information and communications texts is called the channel capacity
(more on this subject later).

The situation is similar with delay. Figure 2.3 shows the delay that might
be experienced with a given channel over a certain distance. Few, if any, chan-
nels propagate signals of different frequencies uniformly, that is, at the same
rate. Indeed, one widely held misconception of Einstein’s theory of relativity
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1. A decibel is a measure of gain, that is, amplification (or attenuation). Decibels are expressed
logarithmically. If A is the amplitude of a variable before it has been subject to gain and B is
its amplitude after the gain, then the value of the gain G in decibels is given by the equation
G = 20 log10 (B/A).



concerns the speed of light: Although electromagnetic radiation propagates at
300,000 km/s in a vacuum, through nonvacuous media different frequencies
propagate at different speeds. This, in fact, is the basis of the phenomenon
of refraction. Different frequencies of light propagating at different speeds
produce the refractive, spreading effect. The same is true of communications
channels, in which certain frequencies are retarded relative to others, inducing
relative phase skews that enormously complicate the problems of demodulation
(see later discussion).

2.2.3 Noise

Beyond its bandwidth, a channel is characterized by its noise—roughly speak-
ing, its reliability. Noise is a sequence of latent faults that corrupts the signal
propagating over the channel. There are different types of noise—notably the
thermal (Gaussian) noise inherent in any physical system, and the impulse
noise associated with individual events such as relays closing, accidental con-
tacts due to careless maintenance, and even lightning strikes. Models of noise
must balance capturing these real-world details versus mathematical tractabil-
ity. The particular “type” of noise used in most models of channels is additive
white Gaussian noise (AWGN); this results in the so-called AWGN channel
encountered frequently in discussions of digital communications, modulation,
and coding theory. As with attenuation and delay, noise is seldom uniform
across all frequencies.

Imperfections and faults in the channel introduce noise. A partial list
includes linear distortion, nonlinear distortion, frequency offset, phase jitter,
and impulse noise.
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2.2.4 Channel Topologies

To borrow a phrase, no channel is an island. It exists within the context of a
communications system that consists of the channel; a transmitter, which con-
tains an actuator that creates the signal; and a receiver, which contains a sen-
sor that measures the received signal; and if necessary an estimator that applies
estimation techniques to reconstruct the original signal (Figure 2.4).

We can interpret the relationship of transmitter to channel in two ways.
In both interpretations the transmitter is an actuator—the difference between
the two interpretations being what we regard as the plant. In the first instance,
the transmitter creates (actuates into existence) a signal that the channel trans-
ports to the destination; that is, the plant of the transmitter is the signal, and
the channel is just the actual transport actuator of the signal. The channel
“picks up” the signal and carries it to one or more destinations. The second
interpretation regards the transmitter as an actuator that changes the state of
the channel, that is, the channel is the plant of the transmitter. In other words,
whether the channel is a pair of electrical conductors, a fiber optic cable,
or, in the case of wireless communication, just plain space, the transmitter
changes the state of the channel. For example, if the channel is a pair of wires
then the transmitter changes the state of the pair by introducing a current/
voltage waveform.

Such is also true in terms of the relationship of channel to receiver. At the
destination, a sensor is present that measures one or more state and/or output
variables of the channel to detect the transported signal. One can regard the
channel as the plant of the sensor or one can regard the signal as the plant. It
essentially amounts to whether we regard the channel as distinct from the signal
or inextricably bound with it; arguments can be made either way, and for our
purposes it is not important where we draw the boundary.

Leaving philosophy, there is the question of channel topology. The topol-
ogy of a channel—more broadly, the topology of the transporter—can be char-
acterized by the relationship of transmitter to channel to receiver. The simplest,
clearly, is a one-to-one-to-one relationship: The topology is a point-to-point
one, connecting a single transmitter to a single receiver. This is the simplest
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possible transport actuator. The task set of the transport actuator contains only
the single source → destination transport actuation task.

Point-to-multipoint (one-to-one-to-many) topology allows a single trans-
mitter to transmit over a channel and multiple sensors to receive the signal
without creating untenable reception problems for each other (Figure 2.5).
This is obviously the mass communications model, in which a single transmit-
ter broadcasts either line of sight or via such intermediary mechanisms as satel-
lites or tropospheric scattering, and then distributes its signals to millions
of receivers—television and radio stations, for example. However, it is also the
model of a communications bus—Ethernet LANs, for example. In both
instances, the signal is sent simultaneously to multiple destinations.

Finally, we come to a many-to-one-to-many topology. A channel that
supports multiple transmitters is clearly the most complicated to effect, and
it requires workload management mechanisms to allocate the channel band-
width. We defer a discussion of workload management, including frequency-
and time-division multiplexing, until later chapters.

Note that the type of channel and signal frequently dictate limitations on
the channel topology. Many channels are inherently broadcast in nature: wire-
less channels, for example, and even some electrical channels such as busses.
Others, for instance waveguides, tend to be limited to point-to-point configu-
rations. Such limitations can, generally speaking, be overcome by use of various
relays and repeaters. For example, Token-Ring LANs are actually a set of
point-to-point channels, each channel having a single transmitter and a single
receiver, joined at the physical layer.
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2.2.5 Discrete Memoryless Channels

Within the physical layer a key abstraction is that of the discrete memoryless
channel (DMC; Figure 2.6). The essence of digital communications is that
information is discretized. The analogy can be made to sampled data or digital
control systems, in which the measurements and the actuations are quantized
to a finite set and occur at periodic intervals. A discrete channel is one that
receives a finite set of input messages {Xi, i = 1, …, m} from a source and,
after transporting the corresponding signals, outputs a finite set of messages {Yj,
j = 1, …, n} to a sink. By abstracting the entire communication system—trans-
mitter, channel, and receiver—a discrete channel results.

As for memorylessness, recall the first part of the definition of channel
offered earlier: “the channel can be characterized by the set of conditional prob-
abilities of occurrence of all the messages possible received at the message sink
when a given message emanates from the message source.” With a memoryless
channel, the conditional probabilities associated with a given output message
depend only on the input message. A DMC refers to one in which the sets of
input and output messages are both finite, and in which the conditional prob-
abilities of incorrect execution are independent of the previous messages sent
(memoryless). It is frequently convenient to talk about discrete memoryless
channels as abstractions, and indeed when we discuss coding theory in the next
chapter we will do so.
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2.3 Signals

2.3.1 What Is a Signal?

After channels, the obvious next thing to explore is signals. Indeed, as we tried
to explain in the previous section, a channel without a signal is hardly a channel
at all—at the very least, it is not able to function as a transport actuator to carry
information. This is why we stress the fact that the composite of the channel
and the signal is the working unit—each is necessary, neither is sufficient.

So what is a signal? One standard reference work reads:

data transmission (1) A visual, audible, or other indication used to convey
information. (2) The intelligence, message or effect to be conveyed over a
communications system. (3) A signal wave; the physical embodiment of a
message. [3]

A second definition offers a more “active” view of signals: “In communications,
a designed or intentional disturbance in a communications system” [1]. Look-
ing at these two definitions, several things are clear. First, signals have transi-
tions. A constant, undisturbed wave, for example, does not convey anything
because it never changes. In terms of information content, a constant signal has
a probability of one and an information content of zero; to see this, recall that
information content is measured by the negative of the logarithm of the prob-
ability, and the logarithm of 1 (the probability) is 0. (Just think of the blaring
car alarms in urban neighborhoods—few if any listeners pay any attention
because there is always an alarm going, forming an acoustic drone not unlike
water torture.)

The second thing that is clear is that signals are, essentially, energy.
Indeed, in this respect at least, signals and noise have much in common—they
are both forms or states of energy. When energy has a nonrandom (intentional)
content it carries information; the random component is called noise. As we
saw when discussing actual versus ideal channels, all physically realizable
mechanisms of transporting information that use signals/energy suffer from
degradation, in which the noise increases and signal decreases. The crucial
parameter here is the signal-to-noise ratio (S/N): the energy contained in the
signal versus the energy contained in the noise on the channel.

Note that we can measure the respective energy or power in the signal
and the noise in many different ways. Some of these include Root Mean Square
(RMS) and peak signal-to-peak noise methods. Whichever method is used, the
higher the S/N, the less likely a receiver is to mistake the incoming message for
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another. In conventional telephone networks, for example, it is typical for noise
to be 20 to 30 dB below the signal level.

2.3.2 Capacity of the Channel/Signal Composite

Now that we have touched on signals and the S/N, we can elaborate on the
whole question of bandwidth—the bandwidth of the channel versus what we
have called the bandwidth (i.e., service rate) of the transporter of which it is
part. Channel or communications bandwidth—a term we have had cause to
reconsider or at least nuance in the course of the chapter—is but one factor in
determining the bandwidth (as we use the term) of the transporter. The other
factor is the power of the signal it carries relative to the strength of the channel’s
noise, that is, the S/N.

This is the substance of Shannon’s Channel Capacity Theorem, which
established, using information theoretic arguments, upper bounds on the
attainable capacity (i.e., what we refer to as the bandwidth of a server) of a
channel with a given noise level carrying a signal of a given power level. Given a
transmitter that creates (= actuates) a signal with power S and a channel that
has communications bandwidth BW and noise N, what in information theory
is called the maximum capacity (service rate) of the combination is given by the
equation:

Capacity BW
S

N
= × +



log 2 1

This is Shannon’s result and is frequently called the fundamental theorem of
information theory. Notice that if S/N is zero then so is the capacity. If S/N = 1
then the capacity is equal to the bandwidth of the channel. Although it might
seem possible to increase channel capacity arbitrarily simply by increasing the
signal power, the realities of implementing the mechanisms involved—trans-
mitters, channels, and receivers—constrain signal levels because higher signal
levels require components that are both more expensive and more unreliable.
This is part of the system designer’s cost structure when budgeting for a com-
munications system.

2.3.3 Signals and Signal Rates

Now that we know the maximum possible bandwidth of a transporter, we can
address the question of how much data we wish to send across the channel
and how best to accomplish this. There are essentially two types of signals:
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broadband and baseband. The difference between the two types comes down
to the presence (broadband) or absence (baseband) of a carrier signal that is
modulated to encode the incoming messages. It is worth noting that the signals
used within computers are, with few if any exceptions, always baseband (digital
signals without any modulated carrier). Baseband signals, by their very nature,
are always electrical, whereas broadband signals can be either electrical or wire-
less (electromagnetic) (Figure 2.7).

A note on terminology: Recent years have seen a new meaning assigned to
the term broadband, as in Broadband-ISDN (B-ISDN), generally as a synonym
for Asynchronous Transfer Mode (ATM) and the very high bandwidth com-
munications links of the Synchronous Digital Hierarchy. The term broadband
was originally used in telephony to refer to refer to “a bandwidth greater than
a voice-grade channel (4 Khz) and therefore capable of higher-speed data
transmission” [1]. While ATM over fiber optic channels does use a form of
carrier-based communications (on–off keying; see later discussion), ATM over
electrical channels such as DS-3s uses baseband signaling. Consequently, we
will try to be careful to specify which broadband is meant when we use the term.

Back to signals. A signal s(t) can be mathematically represented by the
function

( ) ( ) ( )[ ]s t a t f t tc= +cos 2π θ

where a(t) is the amplitude of the signal, cos is the sinusoidal carrier with the
frequency fc, and θ(t) is the phase of the signal [4]. From this equation we can
see that three basic degrees of freedom are required when modulating a carrier
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so that it can carry information: amplitude, frequency, and phase. These corre-
spond, respectively, to amplitude, frequency, and phase modulation, three
common techniques of modulation (think of AM and FM radio, for example).

If the signals within computers are baseband, then why bother to use
broadband signals for digital communications? Quite simply, because of dis-
tance. Typically, baseband signals have broad spectra with significant high-
frequency content. A Fourier analysis of the signal reveals the reason for this:
the sharp transitions or “edges” in the signal. And, as noted earlier when we dis-
cussed bandwidth-limited channels, their attenuation of frequencies is uneven,
with high-frequency signals being more affected than most. This means that
recovering the original baseband signal becomes problematic once the signal
has propagated more than a limited distance. For this reason, baseband signals
are typically limited to LANs (both 802.3 and 802.5 use baseband signals) or to
very specialized applications within the telephone network where digital repeat-
ers reform the signal frequently to overcome the attenuation effects.

Broadband signals, on the other hand, are especially well suited to travers-
ing long distances over channels with minimal attenuation and delay. This is
partly because, with some care exercised in their design, carrier-modulated sig-
nals have spectra that are limited in breadth and consequently do not suffer
from the extreme gradients of deterioration that characterize long-distance
channels at the extremes of their passband. Of course, many channels can sup-
port either type of signal so it is a designer’s choice (see Table 2.1).

2.3.4 Waveforms

Recall that we said a discrete channel, memoryless or not, has a finite alphabet
of input and output symbols. That is to say, unlike analog communications
systems (for example, radio and television), which must transport signals
with potentially unlimited variations, digital communications systems must
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Table 2.1
Types of Channels: Baseband Versus Broadband

Channel Baseband Broadband

Twisted pair Yes (e.g., 802.5) Yes (e.g., modems)

Coaxial Yes (e.g., 802.3) Yes (e.g., 802.4)

Fiber optic No Yes

Infrared No Yes

Radio No Yes



accommodate only a finite number of input variations—two at a minimum
since 1 and 0 define the minimum “symbol alphabet” that a discrete memory-
less channel can be presented—in which case it is called a binary channel.

As a consequence, the modulator in a digital communications system
need only create a finite set of signals corresponding to the number of input
“symbols” that the system accepts. These modulated signals are called wave-
forms and constitute the basic unit of communication across the channel. Such
waveforms are, from an information theoretic perspective, symbols with respect
to the channel, and much of waveform design is concerned with minimizing
and mitigating what is called intersymbol interference as the waveforms traverse
the channel.

Just as there are baseband and broadband channels, so are there corre-
sponding waveforms: digital waveforms for baseband channels and analog
(carrier-modulated) waveforms for broadband channels. Unfortunately, the
communications field has two meanings for the term waveform (yes, Virginia,
we come to another instance of inconsistent terminology and overloaded defi-
nitions). The first, more restrictive meaning, limits waveform to analog carriers.
In the context of this more restrictive definition, the term waveform channel is
used to denote a channel that propagates analog (broadband) signals. For exam-
ple, if phase modulation is used two instances of the carrier might have phases
of 45° and 135°; with frequency modulation, one waveform might have a fre-
quency of 88.100002 MHz while another has 88.099998 MHz.

The second, broader meaning of waveform includes not just analog sig-
nals but digital as well. Obviously, a digital waveform does not use a carrier.
Digital waveforms exist in various shapes, but the key thing is that they use a
finite number of levels and a finite number of transitions between these. The
propagation characteristics of digital electric signals are very different than the
propagation characteristics of analog electric signals. Digital electric signals
suffer greater losses due to impedance than analog signals, and they are less
impervious to certain types of noise. On the other hand, digital signals can be
regenerated by a combination of sensor, estimator, scheduler, and actuator.
(The longer distance baseband channels in the telephone network have digital
repeaters spaced as frequently as every 1.2 km.)

We now examine analog and digital waveforms in more detail.

2.3.4.1 Analog Waveforms
As was just noted, the term waveform in some texts means carrier-modulated
(i.e., analog) signals, and this is why when we speak of modems (modula-
tors/demodulators), we are specifically referring to analog waveform signaling.
A carrier can be modulated in three basic ways: amplitude, frequency, and
phase. More complicated waveforms involve a combination of two or more of
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the amplitude, frequency, and phase. Among the issues involved in designing
analog waveforms are the carrier and its sidebands: Is there a single sideband
used in the modulated signal or dual sidebands on either side of the carrier, is
the carrier itself present or suppressed in the transmitted signal, and so on? The
interested reader should consult one of the standard texts on digital communi-
cations, such as [4], [5], or [6].

Amplitude and frequency waveforms are relatively straightforward to
envision, since they are basically similar to the familiar radio modulation tech-
niques. Figures 2.8 and 2.9 show two hypothetical sets of four waveforms, one
amplitude modulated and the other frequency modulated (with the frequency
differences between waveforms greatly exaggerated).

Phase modulation, on the other hand, has no radio equivalent, but does
have advantages that make it particularly suited for higher speed signaling (for
the mathematics, consult one of the previously mentioned texts [4–6]). One
variant of phase modulation is differential phase modulation, where the infor-
mation is encoded in the difference in the phase from the previous waveform.
Figure 2.10 shows four phase-modulated waveforms, which may be differential
or not depending on whether there is a fixed association of symbols to wave-
forms or if the association of symbols is to the transitions. For example, a tran-
sition of 45° might correspond to the input symbol 00, a transition of 135° to
the input symbol 01, and so on.
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Different modulation techniques have been employed, particularly as
technologies such as integrated circuits have evolved and speed requirements
have increased. Early modems used amplitude or frequency modulation, and
even today’s less-expensive low-speed modems, for example V.21 modems, still
employ these. Phase modulation is used at greater speeds, as for example in
V.27. Among the more sophisticated modems, one popular technique is called
quadrature amplitude modulation (QAM). QAM combines amplitude and
phase modulation to create a set of waveforms with improved noise resistance
and bandwidth utilization (see later discussion). The V.29 and V.32 technolo-
gies use QAM. Figure 2.11 shows a QAM constellation diagram, in which
the radial angle of a point corresponds to the phase (or phase differential) of the
waveform and its distance from the origin indicates the waveform’s amplitude.
In very high speed modems it is not uncommon to have constellation diagrams
with 64 or more points.

Finally, optical systems use signaling that might, in some lights, be con-
sidered the limiting case of carrier amplitude modulation. On–off keying (also
called amplitude-modulation keying; Figure 2.12) uses two waveforms, one of
the carrier at nominal power and one of the carrier at little or even no power;
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the latter can be considered a “null” waveform. As an example, consider an
FDDI or similar system using a diode laser that emits light at 1300 nm to
carry a signal that changes at 125 MHz—then a unit of signal would consist of
1845 wavelengths of light or the equivalent “time slice” of no light.

So, with on–off keying, a space or mark is indicated by a signal, whereas
a mark or space is indicated by the absence of a signal. The absence can be
regarded as a signal of zero amplitude. Hence, we can regard on–off keying as
an instance of amplitude modulation.

2.3.4.2 Digital Waveforms
Digital waveforms are used in LANs and in the digital links that comprise the
telephone backbone in the world. Digital waveforms can be broadly divided
into return-to-zero (RZ) and non-return-to-zero (NRZ) signals. An NRZ
encoding has constant value for the entire bit interval. An RZ encoding, in
contrast, takes part of the bit interval to encode a value and then it changes
back to the previous level. NRZ-Inverted (NRZI) is a non-return-to-zero code
that changes levels to indicate the occurrence of a one in the incoming signal
stream. Return-to-zero codes are important principally because of the issue of
clock recovery—the extra transition helps ensure that the estimation mecha-
nisms in the demodulator can keep synchronization.

The importance of synchronization can be seen from the fact that the
digital waveforms in both 802.3 and 802.5 LANs (although each is theoreti-
cally media independent and hence allows for broadband realizations, in prac-
tice both use baseband signals) and alternate mark inversion signaling all use
some form of return-to-zero encoding.

In the case of 802.3, its symbols are Manchester encoded, which splits
the bit period into two equal parts and enforces a transition midway to ensure
recovery of timing information. The two symbols, called Clocked Data 0 and
Clocked Data 1, are complementary: CD0 starts out high and transitions low,
whereas CD1 starts out low and transitions high (Figure 2.13). In addition to
the CD0 and CD1 symbols, the 802.3 standard specifies two control signal
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waveforms, CS0 and CS1, that do not use Manchester encoding and are only
used between the DTE and its local multistations access unit (MAU), that is,
the control signals do not appear on the LAN’s channel.

The 802.5 standard also uses Manchester encoding but it uses differential
Manchester coding, which avoids fixed assignment of waveforms to bits. A
binary 0 is encoded by issuing a symbol that has opposite polarity to that of the
trailing segment of the previous symbol, whereas a binary 1 is encoded by issu-
ing a symbol that has the same polarity to that of the trailing segment of the
previous symbol. In addition, the 802.5 standard specifies two other nondata
symbols, called J and K, which lack the midway polarity transitions but which
otherwise follow the same coding rule. The J symbol has the same polarity to
that of the trailing segment of the previous symbol, and the K symbol has
opposite polarity to that of the trailing segment of the previous symbol
(Figure 2.14).

Finally, the digital waveforms used over telephone channels most often
use a variant of bipolar signaling based on alternate mark inversion (AMI) with
modifications designed to ensure that long streams of 0’s do not cause loss of
synchronization at the receiver [7]. AMI uses alternating polarity transitions
whenever 1’s occur in the data signal (Figure 2.15). Examples of these variants
include high-density bipolar codes (HDBn), where n refers to the maximum
number of consecutive zeros allowed; and bipolar with n zero substitution
(BnZS), where again n is the maximum number of consecutive zeros allowed.
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(The difference between HDBn and BnZS codes concerns how the coder
modifies the bit stream when more than the allowed number of consecutive
zeros occurs.)

Also used are block codes that group multiple bits together and use cod-
ing with, for example, three different digital waveforms. Codes used in practice
include Four Binary, Three Ternary (4B3T), which takes 4 bits and represents
the 16 possible combinations by three ternary symbols, that is, 33 = 27 possible
combinations. Also used is the Six Binary, Four Ternary (6B4T) code, which
encompasses 64 four-bit combinations by 81 ternary combinations.

2.3.4.3 The Waveform Set
It should have been clear from the preceding discussion that waveforms do not
exist in isolation. That is to say, just as we saw that a signal without transitions
has zero information content, so a single waveform does not carry any informa-
tion. It is the transition between waveforms, the sequence of waveforms sent,
that carries the information. Therefore, it is more appropriate to speak of the
waveform set {sm(t)}, m = 1, 2, …, M than of individual waveforms. Digital
communications systems and their properties are, to a considerable degree,
dependent on the set of waveforms that the designer chooses to use.

To some extent, the choice is constrained by the channel to be used and
its associated noise levels. Just distance or medium (e.g., wireless) can force the
issue of baseband versus broadband signaling, so some waveforms work better
on noisy channels than other waveforms, generally at the expense of increased
bandwidth requirements. Conversely, some waveforms are bandwidth efficient,
that is, less bandwidth is required per bit transmitted, but they require
“cleaner” channels. In the remainder of this section we touch on some of the
principal issues involved with selecting a set of waveforms.

Size of the Waveform Set
The number of waveforms required for signaling digital information is deter-
mined by the number of bits of information each waveform is to carry. The
minimum waveform set contains two elements. This would correspond to 1 bit
per waveform. As the size of the set of waveforms increases, more bits can be
encoded per waveform: If there are M waveforms, then each waveform can
encode k = log2 M bits, that is, M = 2k.

The size of the waveform set is critical. When just two waveforms are
used, this is called binary signaling. When more than two waveforms are used,
it is called m-ary signaling. Binary versus m-ary signaling touches on one of the
many minor points of confusion that plague the discussion of communications:
bit rate versus Baud rate. These are frequently—and incorrectly—used as syno-
nyms. The Baud2 rate is the rate at which the signal changes. The bit rate is the
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rate of binary information conveyed by the signal. By definition, when binary
signaling is used the bit and Baud rates are the same; otherwise, the bit rate is a
multiple of the Baud rate.

The basic trade-off that exists between bit and Baud rates is that the
greater the size of the waveform set, the lower the Baud rate and the larger
the signaling interval, which is the reciprocal of the Baud rate. Obviously, the
higher the Baud rate, the smaller the signaling interval. As we will see in this
section, this is a very important parameter. For example, with frequency-
modulated signals, the smaller the signaling interval, the greater the frequency
spacing required for waveform orthogonality (see later discussion). Another
advantage of larger waveform sets is that, for a given probability of error in
demodulating the waveforms, there is a corresponding reduction in the signal-
to-noise ratio per bit.

Waveform Energy
A waveform sm(t), like any signal, has associated with it an energy:

( )E s t dtm m

T

= ∫ 2

0

where Em is the energy of the waveform and T is the signaling interval deter-
mined by the rate of the symbols (the Baud rate).

To ease demodulation (see later discussion), the waveforms in the wave-
form set should have equal energy; this simplifies implementing estimators
for recovering many of the lost waveform parameters such as phase, carrier,
and clocking. The reason is that if all waveforms have equal energy, then their
attenuation by the channel will be identical and this factor (attenuation) can be
left out of the complex task of estimating the missing pieces of information
about the waveform.

Cross-Correlation Between Waveforms
Another very important design point is the desired and/or attainable cross-
correlation between different waveforms in the set. Two waveforms sm(t) and
sj(t) have a (complex-valued) cross-correlation coefficient given by

( ) ( )ρ jm

j m

m

T

j
E E

u t u t dt= ∫
1

2 0
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where ui(t) is the low-pass equivalent of the waveform si(t). This can be
expressed directly in terms of the waveforms as

[ ] ( ) ( )RE ρ jm

j m

m

T

j
E E

s t s t dt= ∫
1

0

A set of waveforms is said to be orthogonal if the cross-correlation of any two
waveforms is equal to zero. More generally, a set of waveforms is said to be
equicorrelated if the cross-correlation of any two waveforms is equal. In other
words, orthogonal waveforms are a subset of equicorrelated waveforms, where
the correlation is identically equal to zero. Orthogonal waveforms are advanta-
geous in demodulation because the noise terms can be more easily filtered out
by the demodulator (more on this topic later).

However, zero cross-correlation is not necessarily optimal. For example,
with binary signaling, antipodal waveforms are optimal: s 1(t) = −s 2(t). In this
case, the correlation coefficient is −1. Extending the antipodal concept brings
us to the simplex set of waveforms. These are equicorrelated with the cross-
correlation coefficient r given by the relation

ρr M
=

−
−
1

1

where M is the size of the waveform set. Notice that if M = 2 (binary signaling)
then ρr = −1, which is the result for antipodal waveforms; that is, antipodal
waveforms are simplex with M = 2.

Waveform Efficiency
Several different methods are available for measuring the efficiency of a digital
modulation system. One metric is the ratio of information rate to the required
bandwidth in hertz. A basic trade-off in waveforms is between bandwidth
efficiency, in particular as measured by the increase in bandwidth required to
accommodate an increase in the number of waveforms, versus the signal-to-
noise ratio required per bit to achieve a specified level of performance. That is
to say, as the size of a waveform set increases, a corresponding increase occurs in
either the bandwidth of the channel or in the signal-to-noise ratio. In addition,
the various types of modulation and waveforms have their own efficiency
characteristics. For example, efficiency is a downside to orthogonal waveforms:
Their requirement for transport bandwidth—and corresponding receiver com-
plexity—increases exponentially with the size of the waveform set. Likewise,
waveforms that are created by modulating carrier phase and/or amplitude are
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more efficient users of channel bandwidth than orthogonal waveforms formed,
for example, by frequency modulation of the carrier.

Waveform Spectra and Pulse Shape
The spectral characteristics of an information signal are very important, par-
ticularly when it comes to controlling the effects of intersymbol (symbol here
meaning waveform) interference. With bandwidth-limited channels, such
interference can be the principal impediment to waveform recovery/estimation.
To quote from a text on digital communications, “A system designer can con-
trol the spectral characteristics of the digitally modulated signal by proper
selection of the characteristics of the information sequence to be corrected.” (In
Chapter 3 we discuss the question of selecting the information sequences by
encoding.) Exploring the spectral characteristics of various pulse shapes would
take us too far from our focus, but the interested reader is advised to consult the
previously referenced works on digital communications.

2.4 Modulators

2.4.1 What Is a Modulator?

We started the two previous sections by asking the questions “What is a chan-
nel?” and “What is a signal?” It seems almost unnecessary to pose this question
about modulators, because most of their aspects were more or less covered in
our discussion of waveforms. That is, when designing a waveform set, in terms
of its size, the energy and cross-correlation of the waveforms, their shape, and
so on, one is fundamentally designing the corresponding modulator.

Nonetheless, we should provide a definition of what we mean—we have
been using the terms modulate and modulator quite freely but have not pro-
vided a rigorous definition. Unfortunately, just as we discovered with wave-
form, modulate is an overloaded term. One popular definition of modulate is:

1. v.t. Regulate, adjust; moderate. 2. adjust or vary tone or pitch of (speak-
ing voice); alter amplitude or frequency or phase of (wave) by wave of a
lower frequency to convey a signal. [8]

Even a more technical dictionary gives the same, analog-flavored definition:

data transmission (1) (Carrier) (A) The process by which some character-
istic of a carrier is varied in accordance with a modulating wave…. (2)
(Signal Transmission System) (A) A process whereby certain characteristics
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of a wave, often called the carrier, are varied or selected in accordance with
a modulating function. [3]

Clearly, these definitions focus on analog waveforms and modulation. Our
meaning is broader: to modulate is to create a signal bearing information,
whether that signal is carrier-based or digital.

What, in terms of the MESA model, is modulation? It is actuation.
Remember from the introduction to the MESA model that, if something
changes, some actor or agent changed it, and that agent we called an actuator.
Within a communications system the actuator that creates and changes the sig-
nal is, as we indicated before, the modulator. Baseband modulation is the
actuation of the voltage (or, in some cases, the current) of the signal. Carrier
modulation (amplitude, frequency, and/or phase) is the actuation (= change)
of one or more parameters of the carrier. The type of modulation, obviously,
depends on the set of waveforms used on the channel. Some of the types we
have already discussed include:

• Pulse Amplitude Modulation (PAM): actuate the amplitude of the
signal;

• Frequency Shift Keying (FSK): actuate the frequency of the signal;

• Phase Shift Keying (PSK): actuate the phase of the signal; and

• Quadrature Amplitude Modulation (QAM): actuate the phase and
amplitude of the signal.

Figure 2.16 summarizes the various possible actuations that a modulator
(actuator) can execute according to the input and waveforms. Notice that all
four possible combinations are typically encountered in communications
engineering, although analog-to-analog modulation is not often employed in
digital communications systems except as an intermediate stage between
digital-to-analog and analog-to-digital modulations, for example, with micro-
wave line-of-sight or satellite links using carrier-modulated waveforms to
transport end-to-end digital signals.

We should say a word about analog-to-digital conversion and specifically
pulse code modulation (PCM). When the source is analog, the plant (its signal)
is a continuous time, continuous state. A digital channel, in contrast, requires a
plant that is discrete time, discrete state. Recall that we characterize a signal by
its state and temporal characteristics and that a signal that can only assume a
finite number of states is said to be discrete; otherwise, it is continuous. Like-
wise, a signal that changes only at finite instances in time is said to be discrete
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time; otherwise, it is continuous. When a signal is in a finite state then we can
speak of its alphabet X = {Xi, i = 0, …, q − 1}.

Unlike the discrete modulators we implicitly considered when discussing
discrete waveform sets, a PCM converts a continuous or denumerably infinite
input alphabet of symbols into a finite input alphabet. It does this by measur-
ing the signal level at a fixed interval, called the sampling frequency, and convert-
ing the measurement into a digital “sample.” There are two variables here: the
sampling frequency and the number of levels of quantification, generally speak-
ing, the number of bits in each sample.
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This brings us to another fundamental result of communications theory,
namely, the Nyquist theorem on sampling, which states that a continuous sig-
nal can be reconstructed from a sample sequence if the sampling frequency is
at least twice the highest frequency in the continuous signal. By using filters
to shape the input signal, the telephone network uses a sampling frequency of
8000 Hz, which is clearly adequate to handle voice-band signals. The number
of bits in a sample determines the granularity of quantification and also the
signal-to-noise ratio. The rule of thumb is that each additional bit adds 6 dB.

2.4.2 Modulation Management

In this limited definition of the modulator as actuator (the “brawn”), some sort
of decision-making entity (the “brains”) must exist to instruct the modulator
regarding which actuation to execute, that is, which waveform to create. To
quote from a standard text on digital communications systems, “The modula-
tor performs the function of mapping the digital sequence into waveforms that
are appropriate for the waveform channel” [4]. This mapping is scheduling.
Therefore components of the transmitter then include a waveform actuator, the
task set of which is the waveform set of the signals it can create, and a scheduler
that manages the actuator. This scheduling is workload actuation of kind:
mapping the RFS to the discrete channel composite (modulator plus channel
plus demodulator) to the RFS to the modulator/waveform actuator itself
(Figure 2.17).

We have just demonstrated that modulation is necessarily a composite
task. Recall that a modulation is an actuation: The plant is changed. There are
two possibilities: If the plant of the modulator is never changed, then the
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modulator is vacuous and can be replaced by the null server (this is equivalent
to being discarded). Otherwise, the plant of the modulator is changed at least
once. We must consider three possibilities: The plant is always changed, and
each time the same way, or the plant is not always changed, or the plant is not
always changed the same way. Recall the reason (raison d’etre) of the modu-
lation: to convey information. If the modulation always produces the same
change, then the probability of this event is equal to one and its information
content is zero.

Therefore, we can rule out the first case. This leaves the two remaining
possibilities, namely, that the modulation either is not constant in time or not
constant in kind/degree. In the first of these, the unmodulated signal (= plant)
carries one “piece” of information, whereas the modulated plant carries the
second; it is possible to convey information with these two states. Likewise,
assume that the modulator always changes the plant but not always in the same
way. The plant may be modulated a, b, and so on. In either of these instances, a
scheduling is required. The client may schedule the modulation tasks but this
merely moves part of the composite workload to the client.

2.4.3 Modulation as Channel Adaptation

Finally, we can look at modulation as an adaptation mechanism between two
or even three different types of channels (and signals). As we just discussed, dif-
ferent types of channels are suited to carrying different types of signals. The
interconnection of computers typically involves distances that preclude the use
of signals similar to those within the computers. Hence, we experience the need
to mix different types of channels and to adapt signals between them.

Consider a discrete memoryless channel which, as we discussed earlier, is
composed of a channel, a modulator, and a demodulator. The modulator and
demodulator “encapsulate” the channel, isolating its implementation details
and in effect abstracting it. In this way we can view modulation as signal
adaptation, between the waveforms used by end systems and those used by the
communications channel that interconnects them (Figure 2.18). The channel
used may, according to needs and availabilities, be baseband (DS0, DS1) or
broadband, meaning analog waveforms are carried.

2.5 Demodulation

We began this chapter by first exploring channels, then signals, and last modu-
lation and modulators, fitting these into our MESA analysis. Now we complete
the picture with demodulation and demodulators, the last of the four basic
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building blocks of the physical layer. Where does demodulation fit into the
larger context of workload and bandwidth management? Recall that together
the signal and the channel that carries it make up the server we are managing,
namely, our information transporter; and that modulation is, as an actuation of
the server, part of bandwidth management. It follows, therefore, that demodu-
lation, with its reconstruction or estimation of the waveforms received over the
channel, is also part of bandwidth management, namely, bandwidth (or server)
monitoring.

The task of the demodulator would be relatively simple if the channel
propagated the signal without any deleterious or destructive result. Undo the
effect of the modulator by taking the received waveform as measured by
the sensor, look up the corresponding bit(s), and output these for transport
to the destination (Figure 2.19). But what we saw in the previous sections is
precisely that a channel corrupts a signal it propagates—both endogenously, by
attenuation and delay, as well as exogenously, by the noise coming from various
“fault” processes. Indeed, as we just discussed in the previous section, much
of the analysis involved in designing/selecting the modulator’s waveforms is to
find the trade-off between signal level, channel bandwidth, pulse shape, and so
on, that optimizes the performance of the composite transporter with respect
to such metrics as the probability of incorrect reception.

As a prerequisite to recovering or estimating the bits as they first appeared
to the transmitter, the demodulator relies on the receiver’s sensor(s) to first
measure the received signal. The sensor that executes this signal measurement is
part of a bandwidth manager. Measuring the signal (and, of course, at the same

66 Protocol Management in Computer Networking

Modulator Demodulator

Channel

End system waveform/signal
Channel waveform/signal

Estimator

Sensor Actuator

Scheduler

Sensor Actuator

Scheduler

Figure 2.18 Modulation as channel adaptation.



time measuring the interference from the channel’s noise) is measuring the state
of the transporter. Therefore, the first-level bandwidth instrumentation of the
channel/signal composite is the receiver’s sensor. We will pass over the details
of the sensor(s), simply noting that they are appropriate to whatever chan-
nel/signal combination is used: volt meters for baseband electrical signals,
tuned circuits for wireless signals, and so on.

2.5.1 Demodulation and Signal Uncertainty

The complexity in designing a demodulator is to find the optimal estimation
mechanisms to mitigate the effects of the channel on the received waveform,
to “undo” the corruption, and to decide what the original waveform was as
transmitted by the modulator. This recovery is only possible because of one
advantage that the demodulator (and demodulator designer) has: Notwith-
standing uncertainties in the received signal due to the random nature of noise,
the effects of intersymbol interference on bandwidth-limited channels, and so
on, the waveform set used by the modulator is known.

In fact, the nature of the demodulator depends greatly on the nature of
the modulation used and specifically the set of waveforms employed. First
of all, the waveforms may be baseband or broadband—digital or analog signals.
A demodulator that is to estimate baseband waveforms has a much simpler task
to execute than its broadband counterpart; the baseband demodulator must
concern itself principally with two issues, namely, synchronization and recover-
ing from intersymbol interference on bandwidth-limited channels. A broad-
band demodulator, in contrast, must deal with both of these and with the
additional complexities that come with carrier-modulated signals: uncertainties
in amplitude, phase, and frequency introduced by the channel and/or by the
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modulator itself creating signals (waveforms) that deviate from the nominal.
Another source of uncertainty concerns the time characteristics of the channel,
notably delay. Delay in the channel, and possibly at the modulator, can pro-
duce clock/synchronization errors for the demodulator.

Due to these uncertainties, the received signal can differ from the trans-
mitted signal in one or more ways. Mathematically the received signal is repre-
sented with greatest generality by the equation

( ) ( ) ( ) ( )[ ]{ }r t t u t t e z t em
j f t j f tc c= − +−Re α π π

0
2 20

where t0 is the time delay of the channel (which, as we noted before, is actually
variable over different frequencies); α(t) is the attenuation introduced by the
channel (also, as we noted before, it is actually variable over different frequen-
cies); and z(t) is the additive noise, a zero mean Gaussian stationary random
process in the case of AWGN channels.

Note that the carrier phase φ of the received signal is itself dependent on
the time delay φ = 2πfct0, and since the carrier frequency fc used in most digital
communications signals tends to be in megahertz and higher, a small uncer-
tainty in its value can result in large uncertainty in the phase φ. Beyond fre-
quency instability in the oscillators in the modulator and/or demodulator,
other reasons for uncertainty in phase include phase instability in the oscillators
and/ or variable or random time delay in the channel. Depending on whether
the demodulator does or does not know the phase, the demodulation is referred
to as coherent or noncoherent (more on this later).

The rest of this section addresses the recovery of clocking and phase infor-
mation, its use in (coherent) demodulation of FSK, PSK, and PAM signals,
and, finally, noncoherent demodulation.

2.5.2 Synchronization and Clock Recovery

Digital demodulators receive signals, as measured by the receiver’s sensors, that
change at discrete intervals. With such demodulation, therefore, the question
of synchronization is both more important and, as we will see, more compli-
cated than might first appear. The essence of digital communications is that
information is discretized—the analogy can be made with sampled data, also
known as digital control systems. In both instances, timing is, if not everything,
then at least crucial.

The idea behind synchronization can be illustrated by recalling a com-
mon sight to viewers of World War I movies, namely, a pilot firing his machine
gun through the moving propeller of his own plane. The secret that made this
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work was a synchronization of the machine gun to the drive shaft that powered
(actuated, to be precise) the propeller. This coordination (scheduling) pre-
vented the ignominious spectacle of dashing airmen shooting themselves out of
the skies.

It is putting things mildly to say that a considerable simplification in the
demodulation task occurs when the receiver is synchronized to the transmitter.
For starters, if the receiver is synchronized to the transmitter (and also the phase
is known) then the delay t 0 is known and the consequent reduction in uncer-
tainty means that the received signal can be represented by

( ) ( ) ( )r t e u t z tj
m= +−α φ

There is, in addition, an impact on the probability of correct estimation from
any loss of synchronization between transmitter and receiver. Figure 2.20
shows an actual versus a nominal digital waveform, where the deviation from
nominal is due to such effects as capacitance and inductive loading of the elec-
trical circuits, and finite rise times. The result of these imperfections is that
measuring and/or estimating the waveforms toward the beginning or the end of
the signaling interval increases the probability of error. That is to say, the ques-
tion of when the signal is assessed becomes paramount: too early or too late
and the probability of correct measurement and/or estimation diminishes
markedly.

The timing of these changes originates at the modulator, since it creates
the signal in the first place. And, just as the demodulator is “in the dark” about
many other aspects of the transmitted (as opposed to received) signal, so too
with the exact timing used by the modulator. For this reason most if not all
digital demodulators include, in the absence of an explicit signal from the
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transmitter, a mechanism called a synchronizer to extract clock information
from the received signal. It does this by tracking the timing of the changes in
the signal.

If we examine this for a moment, it is clear that the synchronizer is
an estimator; after all, the signal is measured but the clock is not, it is recon-
structed or otherwise estimated (Figure 2.21). By recovering the transmitter’s
clock, the synchronizer is creating the schedule to be used by the demodulator
to measure and/or make estimation decisions about the incoming signal. In this
respect, it could be considered a scheduler but it is actually a scheduler manque,
a proxy. The actual scheduler is at the transmitter, and the synchronizer at the
receiver is recovering the timing (scheduling) information.

Why not just transmit a separate clock signal along with the data signal?
That is, one simple solution to the synchronization problem is to have the
transmitter send a clock signal along with the data-carrying waveforms. There
are two reasons why this is seldom used. The first is that this would require part
of the transmitter’s power to be devoted to nondata purposes. The second is
that, to ensure adequate receiver separation for demodulation, the clock and
data signals would together ensure inefficient use of the channel bandwidth.

The alternative, as we noted in the section on line encodings, is to embed
the clock into the data-carrying signal in such a way that it can be extracted at
the receiving end by the aforementioned synchronizer. Most of the codes we
discussed, including AMI, Manchester, and NRZI are self-clocking, and their
respective demodulators include estimators (synchronizers) that recover the
transmitter’s clock from the transitions in the data signal. A requirement
to recovering the clock of the transmitter from transitions in the signal is that
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there be sufficient transitions in the signal to allow the estimator to keep in
sync. When users’ computer equipment interfaces directly with digital tele-
phone channels, the service provider frequently requires that a certain “density”
of transitions be assured by the interfacing CSU/DSU.

Several different mechanisms can be used for this recovery of clocking sig-
nals from a signal. Two of the most common mechanisms for executing clock
recovery are the early–late gate synchronizer and the phase-locked loop (PLL).
Because we are going to explore PLLs with respect to recovering or estimating
the carrier itself in broadband demodulation, we concentrate here on the first
of these.

An early–late gate synchronizer, like demodulators (see later discussion)
themselves, can be realized using a pair of either matched filters or cross-
correlators. The signal r (t) is fed into the filters or correlators, along with a
reference waveform; the exact waveform chosen as reference is not material as
long as the same one is sent to both the early and the late estimators. Whether
filter or correlator is used, the pair produce estimates of the autocorrelation of
the signal r (t). If one estimator executes some time before and the other an
equal time after the peak of the autocorrelation, then the estimates will be equal
(autocorrelation is an even function, hence symmetric about the peak). On
the other hand, if the transmitter’s clock is not synchronized with the clock
encoded in the signal’s transitions, then the two estimators will not execute
equally before and after the peak; one will be closer to the peak and the other
will be further away from it. Using the autocorrelation function of a rectangular
pulse, Figure 2.22 shows two examples, one in which the transmitter and
receiver clocks are synchronized and one in which they are not. Clearly, in the
first example the difference of the two estimates will be zero while in the second
it will not.
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Subtracting one estimate from the other yields an estimate of the error
between the transmitter’s clock and the receiver’s clock. The synchronizer is
essentially a feedback controller that actuates the receiver’s clock, advancing or
retarding it to match the clock used by the transmitter, based on the return
error difference between the two clocks. The scheduler then instructs an actua-
tor, which actuates the receiver’s clock until the return error difference is driven
to zero (Figure 2.23).

Other realizations of early–late synchronizers are possible, including ones
based on square-law devices. For more details, see [5].

2.5.3 PLLs and Carrier Recovery

After the synchronizer, the next estimator we want to discuss is the carrier
recovery mechanism. Just as it is possible to recover a clock signal from a “well-
behaved” data signal (i.e., one with adequate signal transitions), so it is also pos-
sible to actually reconstruct the carrier, including its phase, from a signal that
is not too noisy. The mechanism that executes this reconstruction is called a
phase-locked loop, as mentioned in the preceding section.

Like early–late synchronizers, PLLs use feedback to modify estimates
derived from the incoming signal. One common implementation of a PLL
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passes the incoming signal through a squared-law device and then a bandpass
filter tuned to the carrier frequency fc. This produces a double-frequency signal
cos(4πfct + 2φ), and it is this that the PLL actually tracks by actuating a
voltage-controlled oscillator (VCO) that produces an estimate signal sin(4πfct +
2φ∗), where the term φ∗ is the estimate of the phase. The product (call it the
return product) of these two signals is then fed into a loop filter, which actuates
the VCO to drive the error as measured by the product to zero. The VCO con-
verges to the true value of φ (actually, 2φ) if the original signal r(t) is not too
noisy. Finally, the output of the VCO is fed into a frequency divider, which
produces sin(2πfct + φ∗), and it is from this that the demodulator gets the esti-
mate of the incoming signal’s phase (Figure 2.24).

2.5.4 Optimum Demodulators

Now that we have seen how the clock and the carrier can be provided, it is time
to focus on the demodulation process itself. The challenge of a demodulator is
that every signaling interval T it receives a waveform that has been mangled and
garbled by the noise on the channel, by interference from preceding waveforms
(symbols), and which in fact may have started out with some problems when it
was created by the modulator due to degradations and/or faults in the latter. All
the demodulators we will consider execute their respective reconstruction of the
waveforms by comparing the measured waveform with instances of the wave-
forms in the waveform set. Confining ourselves to broadband demodulators,
we see these can be divided into those that make this comparison using cross-
correlators and those that use matched filters.

Of course, the exact type of demodulator will depend on the nature of the
modulation involved. Frequency shift keying and related orthogonal waveform
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modulation techniques require that the demodulator perform M comparisons,
where M is the size of the waveform set. That is to say, the demodulator for
these waveforms has M cross-correlators or M matched filters. In the former
case, the received waveform is fed into each cross-correlator along with the
complex conjugate of one of the waveforms in the waveform set; the output of
each cross-correlator is an estimate of the “match” of the received waveform
and the candidate waveform. In the latter case, the received waveform is
fed into M filters, each matched to the equivalent low-pass impulse response
corresponding to one of the waveforms in the waveform set; as with the cross-
correlators, the outputs of these filters are estimates of the “match” between
received and candidate waveforms.

Whether they have been derived by cross-correlation or from matched fil-
ters, these estimates of the closeness are used to compute M decision variables
by multiplying each estimate by e jφ, taking the real part of the product, and
then subtracting the bias terms corresponding to the attenuated energies αEm

for each of the waveforms in the waveform set. An advantage of equal-energy
waveforms is that the bias terms for all the waveforms are the same and they can
be ignored rather than calculated; this includes the attenuation factor α, which
would otherwise have to be estimated.

The resulting M decision variables are fed into a comparator, which
selects the largest of these as representing the best “match” between the received
waveform and the set of all possible waveforms. This is called maximum a poste-
riori (MAP) probability decision making and the comparator is, in our analysis,
an estimator. To see this, note that the plant is the channel/signal composite
and in particular the received waveform, which is being “processed” to mitigate
the effects of the channel transit (noise, delay, attenuation); the effect of this
is to reconstruct or estimate the original waveform. The two-tiered estimator
depicted in Figure 2.25 could correspond to either the cross-correlator or
matched filter implementation.

A somewhat different demodulator structure is used if the waveform set is
constructed by phase and/or amplitude shift keying. In the case of PSK, the
phase modulated waveforms sm(t) are constructed from one basic waveform by
phase shifting:
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where u(t) is the equivalent low-pass waveform. The same is true of various
forms of ASK such as PAM. In the case of PAM, the waveforms sm(t) are con-
structed from one basic waveform by actuating the signal amplitude Am
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where Am = 2m − 1 − M, m = 1, 2, …, M.
In both cases, because essentially one waveform is involved in construct-

ing the waveform set, demodulation no longer requires M comparisons of the
received waveform with the M waveforms sm(t). This means that demodulators
for PSK or PAM (or QAM) systems need only one cross-correlator or matched
filter, that is, only one estimation.

PSK demodulators nonetheless still require M decision variables, which are
created by taking the inner product of this estimate and M unit vectors corre-
sponding to the phase shifts. These M variables are then sent to a comparator and
the largest is selected, just as with FSK demodulation. Differential PSK is similar
but uses a delay to allow comparison between successive received waveforms.

PAM demodulators differ from both of these in several significant ways.
First of all, the decision to be made centers on the amplitude or level of the
received waveform, meaning only the levels of the waveforms need be com-
pared; however, such a decision is necessarily predicated on knowing (or esti-
mating) how the channel has attenuated the arriving waveforms. Complicating
this estimation, the waveforms used in PAM do not have equal energy, mean-
ing that the bias terms that we were able to ignore in other demodulators
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cannot be ignored here. The solution is to incorporate an estimator/compensa-
tor called automatic gain control (AGC) to mitigate the attenuation (more on
AGC in the next section).

2.5.4.1 Noncoherent Demodulation
In the discussion of demodulators up until now, we have implicitly assumed
that the demodulator knew or had estimates, via carrier recovery, of the phase.
If the demodulator contains no mechanism (PLL or otherwise) for recovering
or estimating the phase of the received carrier, then it is still possible to
demodulate the signal and estimate the waveform that was transmitted, albeit
with worse performance than if the phase were known or estimated and used in
the demodulation decision making. By assuming that the phase of the incom-
ing signal r (t) is a random variable uniformly distributed over the interval
[0, 2π], a worst-case analysis can be performed on the probability of erroneous
demodulation estimates.

Noncoherent demodulators have a multitiered structure similar to that
of coherent demodulators. In both instances, the first tier usually consists of
estimators based on either matched filters or cross-correlators that estimate the
“closeness” of the incoming waveform to the various waveforms in the wave-
form set. However, the absence of phase information means that another stage
of estimators is needed to produce a set of decision variables that will be used to
decide which waveform was received. This second stage consists of envelope
detectors or square-law detectors, both of which produce magnitude estimates
that are independent of the phase. These decision variables are then fed to the
third and last stage estimator which, as with the demodulators we discussed
above, uses MAP probabilities.

2.6 Summary

The objective of this chapter was twofold: to outline the elements of digital
communications systems and to place these in the MESA framework we devel-
oped in Chapter 1. Toward this end we saw in this chapter that there are four
components to a communications system: (1) a transmitter, (2) the signal,
(3) a communications channel, and (4) a receiver (a sensor that measures the
received signal).

A transmitter is an actuator—it creates the signal. We also discussed
how bandwidth in the context of actual communications channels has a slightly
different meaning than in Chapter 1. We saw that there are two basic types
of signals, namely, baseband signals, which are digital, and broadband signals,
which are analog.
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The chapter also explored why, because the long-distance channel has dif-
ferent characteristics than the channel(s) inside a digital computer, the task of
modulation is to convert the signals used inside the computer to signals better
suited for transport over the long-distance channel.

This exploration of modulation brought us, naturally, to demodulation.
On the surface, the task of demodulation is quite simple to define, namely, to
reverse the effects of the modulation process. We saw that demodulators belong
to one of two families, those that use matched filters and those that use cross-
correlators. Both types of demodulators have a two-tiered structure. The first
tier of estimators produces a set of decision variables that is then sent to the
second-tier estimator where an estimate of the waveform is produced.

However, we saw that in the real world of imperfect communications
systems, the demodulator may lack other information concerning the received
signal, information that must either be estimated or done without in the wave-
form estimation process. Synchronization in digital communications involves
the receiver scheduling its measurements relative to when the sender (actuator)
changed the signal. We explored the extraction of timing information and the
corresponding implementation of synchronization mechanisms.

The chapter concluded with an examination of adaptive equalization.
The reason for this is twofold. First, adaptive equalization is an unequivocal
example of a bandwidth manager employing explicit feedback control to
actuate the channel, in this instance, for the purpose of changing its transmis-
sion characteristics. Second, adaptive equalization is worth studying in its
own right. Along with error-correcting encoders and decoders (covered in
Chapter 3), it is principally responsible for the enormous increase in the
speeds and price/performance of modems thaty we have witnessed in the past
two decades.
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3
Managing Channel Faults via Error
Control Coding

3.1 Introduction

Recall from Chapter 1 that we said the need for management in discrete event
plants is due in part to the finite reliability of servers. We saw in Chapter 2 that,
although a DMC’s bit error rate can be made arbitrarily small by using high
enough signal power and suitably “distant” waveforms, realizing error-free
DMCs are not practical because of the associated inefficiencies and costs such
as those due to high-power levels. Consequently, the question becomes this:
Can we substitute fault recovery for fault prevention with the DMC? In other
words, can we repair or replace the faulty data the DMC transported? The
answer is yes and the solution, as is so often the case with high availability
systems, is to employ redundancy. In modern communications systems, this
redundancy is in the form of error control coding of the client data.

The chapter begins by reviewing what it means to detect and repair faults
when the server is a discrete memoryless channel; the focus is on error control
coding as DMC maintenance. It then proceeds to outline the three basic ele-
ments to error control coding systems: the code, the encoder, and the decoder.
Just as much of Chapter 2 was taken up with discussing signals and waveforms,
this chapter is organized around the different families of codes for error detec-
tion and correction. There are two very different ways to generate error cor-
rection codes, namely, block and convolutional encoding, and this chapter
explores the corresponding differences in the respective encoders and decoders.
An example of a block code is the parity code used in many simple
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communications links; an example of a convolutional code is trellis code modu-
lation (TCM) used in such modem protocols as V.32 and V.33. Both these and
other related codes are discussed. As in Chapter 2, our focus is not on present-
ing a comprehensive survey of the topic of coding but rather on the MESA
analysis.

As we will see, from a MESA perspective there are marked similarities
between the tasks of encoder and modulator. Just as a modulator executes a
mapping of data to be transported into waveforms better suited to the exigen-
cies of channel transit, so the encoder executes a mapping of data into coded
forms that are designed to better withstand faults. Both instances involved
scheduling and actuation tasks. Such is also the case between the tasks of
decoder and demodulator: Each executes a reconstruction that reverses the
effects of its partner, all with the ultimate purpose of more reliable transporta-
tion of data. As with demodulators and modulators, decoders are much more
sophisticated than encoders because of the greater amount of uncertainty they
must accommodate in making their decisions—uncertainty introduced by the
channel.

3.2 Error Control Coding

3.2.1 DMC Maintenance: Fault Detection, Isolation, and Repair

Traditional reliability theory decomposes maintenance into fault detection,
isolation, and recovery. Further, detection and isolation are frequently aggre-
gated into a single task, while recovery may mean repair or replacement. In data
communications the equivalent terms are error detection and error correc-
tion. To detect that a fault in transmission has introduced an error into the
received data, we need to receive an unambiguous indicator that a fault has
occurred. However, to repair the received data, that is to say, to correct the
error, an unambiguous indicator of which fault has occurred is required. If it
can be determined which bits have been changed, then the original data can
be reconstructed.

What is a DMC fault? Quite simply, a fault occurs if the symbol a DMC
delivers to the destination(s) is not the symbol the DMC received from the
client. And notwithstanding the best efforts of the demodulator, a DMC is
inevitably going to suffer from faults—the destination will get an incorrect
symbol due to the demodulator’s inability to accurately reconstruct the trans-
mitted waveform.

We can characterize DMC faults according to their severity and duration.
The severity of the fault is determined by the DMC’s ability to transport any
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signal, however erroneous the result may be. If no symbol is delivered then the
fault was fatal; otherwise, it was a latent fault—the DMC appears to be func-
tioning correctly but it is in fact introducing errors into the transported data.
Obviously, latent faults are more difficult to detect than fatal faults and such
detection represents a central challenge to managing DMCs.

In terms of duration, DMC faults may be transient or persistent. Persis-
tent faults, as the term implies, do not go away. A persistent fault is generally
caused by equipment failure due to factors ranging from overheating trans-
formers to backhoe operators digging up telephone channels (fiber optic or
copper cables). Transient faults, on the other hand, will resolve themselves
(hence use of the term transient). The vast majority of transient faults are
caused by noise on the communications channel.

Table 3.1 lists the four possible combinations corresponding to various
types of faults for any server, including the discrete memoryless channel, and
the necessary management intervention, if any.

Management of the DMC’s faults varies widely depending on the nature
of the fault in question. Persistent faults require the intervention (actuation)
of a bandwidth manager to execute maintenance, either repair or replacement,
on the components of the DMC (channel, modulator, and/or demodulator);
otherwise, the server (DMC) will not recover and will remain in the faulty con-
dition. Transient faults, on the other hand, do not require management inter-
vention for the server to recover, because they come and go with the highly
stochastic channel noise. If transient faults are too frequent, indicating for
example an excessive noise level, bandwidth management may be indicated;
otherwise, bandwidth managers are not necessary to recover from transient
faults—by definition, they are self-limiting.
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Table 3.1
Faults: Severity Versus Duration

Severity

Duration Fatal Latent

Transient The server fails completely but
recovers by itself

The server fails but continues operating;
recovers by itself

Persistent The server fails completely and
will not recover without outside
maintenance (repair)

The server fails partly and will not recover
without outside maintenance (repair)



However, the effects of the DMC’s faults, even transient faults, on the
plant (the data being transported) do not go away so easily. A fault can have
two consequences: for the server and for its “output”—depending on the par-
ticular server, fault, and plant. If the server is an actuator or scheduler, the plant
may be affected; if the server is a sensor or estimator, the information about the
plant may be affected. A DMC is a transport actuator, and as such its faults can
corrupt the data it is moving, with potentially disastrous consequences for the
client.

So how do we repair the damage of a DMC fault? We touched briefly on
the solution in Chapter 1 when we remarked that, with a digital server, redun-
dancy effectively “repairs” the consequences of transient faults such as
those that are caused by noise on a communications channel. We distinguish
between redundancy as being either concurrent or serial. In the former, the
redundant information is sent at the same time the original data is sent, while
with the latter the redundant information is sent following the original data.

Concurrent redundancy is ordinarily accompanied by replication of the
server to gain the greatest degree of immunity to faults, notably persistent
faults; in this case the replicated servers may still fail but the composite does not
as long as a sufficient number of component servers are unaffected by the
fault(s). An example would be bonding k DMCs together and sending the same
data down each. However, because the focus here is on transient faults, this
extra degree of protection is generally unnecessary. We nonetheless still use the
term concurrent redundancy to refer to any scenario in which client data is trans-
ported along with the redundant data all at once; this technique is also called
forward error control (FEC).

Serial redundancy involves retransmission: Keep sending the message
until the destination indicates the message has arrived without error. This is
also called backward error control (BEC) and, of course, implies that there is at
the destination a means to detect that errors have occurred. The advantage of
forward error control is that the destination will receive the redundant data at
the same time it receives the client data, eliminating the delay attendant on
retransmission; the advantage of backward error control is that redundant data
is transported only if necessary.

In both FEC and BEC, transient faults are being remedied by workload
management. Recall that a workload manager is necessary to actuate the
Requests for Service (RFSs) arriving from the client. With BEC, what had been
a single RFS “Task = Transport (client data)” from the client is mapped into k
RFSs “Task = Transport (client data)” by the workload manager, where the
number k is determined by the number of times the transporter (the DMC)
fails to transport the data without fault. With FEC, the RFS is transformed
from “Task = Transport (client data)” to “Task = Transport (client data +
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redundant data).” In addition, of course, a workload scheduler (not necessarily
the same one) is at least conceptually present to map the RFS “Task = Trans-
port (client data)” into the three RFSs “Task = Encode,” “Task = Create Wave-
form,” and “Task = Transport (client data)”—this mapping is required because
the transporter is now a composite server.

Concurrent redundancy is an open-loop maintenance policy; serial
redundancy, on the other hand, is a closed-loop maintenance policy. Recall
from Chapter 1 that in open-loop maintenance, such as age or block replace-
ment, the component is replaced without reference to its actual condition; with
concurrent replication k copies of the RFS and the plant are created irrespective
of the server’s condition. Closed-loop maintenance, in contrast, takes mainte-
nance action only in response to feedback about the system being maintained;
similarly, serial replication only occurs when it has been determined that the
server has suffered a fault and the task must be reexecuted.

3.2.2 Forward Error Control and Error Control Coding

A simple implementation of forward error control can be terribly inefficient.
Consider a message of k symbols, two copies of which are transported. This in
effect is 100% redundancy overhead. Each copy of the message will arrive with
from 0 to k symbols changed by faults in the DMC. By comparing the two cop-
ies symbol by symbol, it is possible to detect many of the faults—although not
all of them, since a comparison of two symbols affected identically by faults will
not reveal anything. Another shortcoming of this simple twofold replication is
that it is impossible to correct any of the faults thus detected. Of course, a three-
fold replication allows correction of any single error in the message, but at the
cost of 200% redundancy overhead.

The question therefore arises: Can we combine the advantages of serial
and concurrent redundancy, that is, transport the redundancy information
along with the client data so as to eliminate the delay of serial redundancy but
utilize a form of redundancy more sophisticated than simple repetition to mini-
mize the inescapable overhead of concurrent redundancy? The answer is yes.
Use of an error control coding based on advanced mathematical concepts, such
as the theory of finite fields, yields the benefits of concurrent redun-
dancy—recovery from faults on the channel—with much less overhead than
simple replication. This is the subject of coding theory, and we explore differ-
ent types of codes in subsequent sections.

As with so much else in communications theory, the origins of error con-
trol coding can be traced to Shannon’s landmark paper “The Mathematical
Theory of Communication” [1]. Beyond defining channel capacity and its
relationship to signal and noise levels (see Chapter 2), in this paper Shannon
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proved that channel capacity was attainable with some error correction coding
system:

Shannon’s basic coding theorem … states that with a sufficiently sophisti-
cated channel encoder and decoder, we can transmit digital information
over the channel at a rate up to the channel capacity with arbitrarily small
probability of error. [2]

What Shannon’s coding theorem says is that we can exchange information
“gain,” in the form of encoding and decoding, for information loss due to
the occurrence of faults on the channel. In other words, faults in the chan-
nel “lower” the amount of (useful) information in the signal; coding miti-
gates the effects/consequences of the information loss due to the introduction
of noise.

Just as there is a fundamental trade-off with any server between reliability
and maintainability, so is there a trade-off here between the investment in the
DMC to make it more reliable and the investment in the coding servers
(encoder and decoder) to make the composite transporter more maintainable.
The design trade-offs we discussed for a DMC—signal and noise levels, wave-
form set, and demodulator sophistication—are reliability concerns. Error
control coding addresses the maintainability of the transporter. Fundamentally,
Shannon’s result is a restatement of the reliability/maintainability trade-off as
applied to transporter design. Indeed, as one author remarked,

Shannon’s theory of information tells us that it is wasteful to build a chan-
nel that is too good; it is more economical to make use of a code. [3]

3.2.3 The Components of a Coding System: Code, Encoder, and Decoder

As we said earlier, the three components of an error control coding system
are the code, the encoder, and the decoder. What must come first is the code,
for its nature determines much of the structure of the encoder and decoder.
Although Shannon’s proof gave impetus to the search for error control codes, it
did not say how to construct such codes and it was more than a decade before
codes were discovered that began to approach the performance Shannon prom-
ised. Today, however, many different types of codes are used in commercial
and government communications systems; powerful error control codes have
been developed for applications as diverse as deep space probes and low-cost
modems. Indeed, beyond communications systems proper it is increasingly
common for highly available computer systems to use error control coding in
their memory subsystems; the data is stored in encoded form and when it is
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retrieved the error control coding (ECC) information is used to ensure that no
corrupted data are sent to the CPU.

3.2.3.1 Types of Coding Systems: Block Versus Convolutional
Error control codes can be divided into block and convolutional. As the name
implies, block coding operates by encoding client data in units called blocks of
k symbols in length. Each k symbol block is mapped into an n symbol code
word, where obviously n > k. Convolutional coding, on the other hand, is more
analogous to a “continuous flow” process, in which there are no clearly defined
units of client data encoded independently.

In the case of block codes, as we see later, the aim is to construct code
words of maximum dissimilarity. This is analogous to modulation, where by
selecting channel waveforms for maximum dissimilarity (for example, orthogo-
nal waveforms) subject to constraints such as waveform efficiency, the greatest
degree of immunity to noise can be attained. The set of code words that define
a block code is generally chosen to exploit certain algebraic properties. Convo-
lutional codes, on the other hand, do not have code words or algebraic structures
to exploit; rather, they are based on probabilistic properties useful in decoding.

All codes share some common elements. To quote a standard text on the
coding theory:

Although individual coding schemes take on many different forms … they
all have two common ingredients. One is redundancy. Coded digital mes-
sages always contain extra or redundant symbols. The second ingredient is
noise averaging. This averaging effect is obtained by making the redundant
symbols depend on a span of several information symbols. [4]

The mechanism that introduces the redundant information is an encoder.
An encoder is a scheduler/actuator composite server. The scheduler receives the
input symbols and selects the appropriate output symbols; it then schedules
the appropriate actuation to “create” this new symbol. There is a fundamental
isomorphism between the tasks of modulation and encoding. In both cases there
is a mapping of input to output; in the former scheduling channel waveforms
and in the latter scheduling code words, which are then actuated into existence.

The purpose of the discrete channel encoder is to introduce redundancy in
the information sequence which aids in the decoding of the information
sequence at the receiver. [2]

An encoder’s actuation of the input symbols can be regarded as either actuating
by modifying an existing bit pattern or actuating by creating a new bit pattern.
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The parallel, again, is with modulation where we saw that the actuator either
created or modified waveforms.

Returning to the differences between block and convolutional codes, a
major distinction centers on the use of state information in the encoding and
decoding processes. A block encoder makes the same coding decision irrespec-
tive of the past data encoded: A block of k symbols will be encoded into the
same code word irrespective of the symbol content of the preceding block(s).
In contrast, a convolutional encoder’s scheduler includes the past data in its
decision as to which code will be created. The distinction is identical to that
which separates combinational and sequential circuits.

Whether the encoding is block or convolutional, the redundancy intro-
duced by the encoder is used to “repair” the plant, following its transportation,
by the decoder (Figure 3.1). The decoder is an estimator that reconstructs,
from information passed to it by the demodulator, the data as it was originally
passed to the encoder by the client: The demodulator is a device which esti-
mates which of the possible symbols was transmitted [4].

To do this reconstruction, the decoder relies on its knowledge of the rules
by which the encoder selected which code word to use for a given set of bits.
Again, the similarity is with demodulation: Whereas a demodulator uses its a
priori knowledge of the waveform set used by the modulator to arrive at the
most likely estimate of which waveform was sent over the channel, a decoder
uses its a priori knowledge of the code used by the encoder to arrive at the
most likely estimate of the coded “information sequence” that was sent over
the channel.
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With both block and convolutional codes, decoding involves identifying
syndromes corresponding to any errors that the channel (in the case of soft
decoding) or the DMC (in the case of hard decoding) has introduced. A con-
ventional definition of a syndrome is a set of “concurrent symptoms in disease”
[5]. More precisely, a syndrome is a set of state and/or output variables that
characterizes a given fault. For example, when the plant is an electrical motor
that has suffered a burnt-out armature, the failure syndrome might include infi-
nite resistance across the coil due to the open circuit. Similarly, if the plant is a
person the failure syndrome might be his or her temperature, blood pressure,
and so on. It is on the basis of the syndrome’s values that an estimate of the
fault can be made. The choice of code words is specifically designed to optimize
the code estimator.

This illustrates the isomorphism between the tasks of demodulation and
decoding. In both cases a reconstruction is executed at the destination that
effectively undoes the mapping effected at the transmitter. Because of the noise
and resulting errors introduced by the channel, the complexity of reconstruct-
ing the transmitted waveform (in the case of demodulation) and the transmit-
ted code word (in the case of decoding) is greater than the complexity of
scheduling the waveform or code word in the first place.

Neither the demodulator nor the decoder will be perfect. An error in
received data means either that one or more waveforms has been incorrectly
demodulated into information symbols different than those transmitted or that
the coded sequence has been incorrectly decoded into data different than that
which the client sent to be transported. Regardless of the sophistication of the
demodulator used, such faults can occur. In this respect, the decoder provides a
second echelon of maintenance for the automatic detection of such faults and,
if possible, their correction.

Berlekamp [6] makes an important distinction between decoding failures,
in which the decoder is unable to decide which code was transmitted, and
decoding errors, in which the decoder mistakenly decides that code word A was
transmitted when in fact it was code word B. The decoding failure will at least
indicate the presence of an error in the received code word and leave it to other
management entities to decide what to do (e.g., retransmission at a higher layer
in the protocol stack). The danger of a decoding error is that the upper layers
may or may not learn that an error occurred, and in any case will assume that
the decoder has taken care of the problem.

3.2.3.2 Hard-Decision Versus Soft-Decision Decoding
A demodulator provides estimates used by the decoder. There are several ways
in which this demodulator/decoder interaction can happen. If the demodulator
sends estimates of the symbols transmitted, then this is called hard-decision
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decoding. On the other hand, if the demodulator sends to the decoder estimates
that have yet to be quantified to symbols then this is called soft-decision
decoding.

3.3 Block Codes

We now focus on block codes and their corresponding encoders and decoders.
Block codes are some of the principal codes that are in use today primarily
because of their power and the rigorous foundations provided by the mathe-
matics of finite fields, linear spaces, and groups. For simplicity, we’ll focus on
binary block codes, but it should be noted that block codes based on nonbinary
symbols are in common use, for example Reed-Solomon codes.

3.3.1 Block Code Characteristics

As we said earlier, the heart of (block) coding for error detection and error cor-
rection is the mapping of blocks of the data to be transported (the plant) into
code words specifically chosen for their resistance to channel faults. Two tasks
are involved in this depending on the particular block of data that arrives at the
encoder: (1) a scheduling of which code word is to be created (actuated into
existence) and (2) the actuation itself. Of course, prior to this is the determina-
tion of the code words to be used. Many different codes are in use, each repre-
senting a particular design trade-off between various costs and benefits (more
on these later).

We can illustrate how the selection of code words can minimize the
effects of propagating over a channel with a nondigital example. Consider a
primitive community that has settled a large valley. The community wants to
be able to communicate by shouting a relatively small number of important
messages, such as “attack,” “fire,” “meeting,” “dinner,” and so on. The commu-
nications channel, namely, the valley and the air in it, will distort and attenuate
the signals (the words) as they propagate. They would probably devise a
vocabulary of code words that have a reasonable chance of being correctly
understood after propagating across the valley. The individual code words
would also be chosen for dissimilarity from each other to the maximum extent
possible so as to minimize the chances that one might be confused with the
other.

The simplest example of a block code is the parity code that is often used
on asynchronous (start–stop) links. The parity bit is chosen so as to make the
sum of the character’s bits even or odd, depending on the type of parity used.
The idea behind this is simple: Take a block of data, generally a 7-bit ASCII
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character, and add up its bits. For instance, the bits in the ASCII character
1001101 (the letter M ) add up to 4, which obviously is even. If even parity is
being used, then the parity bit for this character is set to 0; if odd parity is being
used, then the parity bit is set to 1. This is equivalent to Modulo 2 addition.
The encoder appends the parity bit to the character and passes it to the DMC
for transportation to the destination, where it is processed by the decoder and
an estimate of the channel condition (i.e., did a fault occur?) is made based on
calculating the parity of the received character and comparing it to the parity
expected (odd or even).

A parity encoder maps a 7-bit block into an 8-bit code word, meaning
that out of 256 possible code words only 128 are used (Figure 3.2). If a single
bit, or in fact any odd number of bits (3, 5, or 7 bits), is changed by the effects
of a fault, then the decoder will detect a parity error since this will transform
any of the 128 code words into one of the 128 invalid combinations. On
the other hand, the well-known shortcoming of parity coding—that it cannot
detect a fault that results in an even number of bits being flipped—is because
the resulting combination is a valid code word.

Consider the creation (actuation ex nihilo) of the code word by a block
encoder. The plant is the block of k information bits. These are “measured”
and a code word is created. This code word is substituted for the original plant,
and it is this that is transported across the channel. The received code word,
possibly corrupted by fault(s), is “measured” and an attempt is made to recon-
struct the original code word.

3.3.1.1 Block Code Parameters
So what is a block code? It is a set of 2k code words of n bits each in length;
obviously, n > k, otherwise some of the code words would be duplicated. Some
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of the parameters of a given block code include those discussed in the following
subsections.

Block Size
As we indicated earlier, block codes are characterized by the fact that the data
being encoded are discretized into units called blocks of k bits, each of which is
encoded separately, rather than being encoded in a continuous process a la con-
volutional coding. The resulting encoded blocks of n bits, n > k, constitute an
(n,k) code with n − k redundant bits of information per block of k bits of data.
The greater the lengths of k and n (or, equivalently, n − k) the greater the noise
averaging and redundancy, respectively. For an (n,k) code, there will be 2k code
words out of a total 2n possible.

We can make an analogy between the size of a waveform set and the
number of code words in an ECC implementation. In both instances, the com-
plexity and overhead scale as the numbers increase. As we will discuss, some block
codes, notably the cyclic codes, possess properties that reduce the overhead.

Code Rate
A closely related concept is the code rate, the ratio of the size of the original unit
of data to the size of the code words created by the encoder. This is often denoted
by Rc. A simple parity code such as we used in the example where the original
block of data (module) is 7 bits and the output is 8 bits has a code rate Rc = 7/8.

Hamming Distances
Recall that the problem with parity codes is that the code words created by the
concatenation of the character plus the parity bit are too “close” to each other.
This concept of closeness has been rigorously defined in coding theory and is
called the Hamming distance. Given two code words of n bits (or symbols)
in length, the Hamming distance between them is the number of positions in
which they differ.

A crucial parameter of any code is the number of erroneous bits that the
decoder can correct. For a linear code the number of errors that can be cor-
rected is determined by d min, the minimum Hamming distance between any
two code words in a code. This is directly related to the minimum Hamming
distance d min according to the formula

t
d

=
−





min 1

2

where [x] returns the largest integer less than or equal to x.
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Given the similarity between encoding and modulation, it is not surpris-
ing that there is a connection between the Hamming distance of two code
words and the cross-correlation of the corresponding waveforms. The determi-
nation of the 2k n-bit code words is an equivalent task to determining the set of
waveforms used by the modulator.

Linearity
A code is said to be linear if any linear combination of code words is also a
code word. A code that is not linear is said to be nonlinear. By implication,
a linear code must contain the all-zero code word. Most of the codes in use
are linear codes.

Code Word Weight
The weight of a binary code word is the number of its nonzero elements. The
weights of the code words in a code constitute the weight distribution of the
code. If the code words all have the same weight then this is called a fixed-
weight or constant-weight code. This means that no equal-weight code can be
linear since the all-zero code word must be included in a linear code and its
weight is zero, while the remaining code words must have nonzero weights.
Nonetheless, for a linear code the weight distribution is important because
from it we can determine the distance properties of the code.

Cyclicity
A linear code is cyclic if code words can be generated from each other by a rota-
tion of the bits in any one of the code words. Cyclic codes are a subclass of lin-
ear codes. Many of the most important linear block codes are cyclic: Golay,
Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (a subset of BCH
codes), and maximum-length shift register codes are all cyclic; in addition,
Hamming codes are equivalent (see later discussion) to cyclic codes. The prin-
cipal reason cyclic block codes are so powerful is that their cyclicity can be
exploited to allow very efficient realizations of encoders and decoders, enabling
larger block size codes than would otherwise be possible.

3.3.1.2 Examples of Codes
We have already looked at parity codes, the simplest of block codes. Next we
summarize the parameters of some of the more important linear block codes.

Hamming Codes
These are (2m − 1, 2m − 1 − m) codes where m is a positive integer; if m = 3,
for example, then we obtain a (7,4) Hamming code. For any value of m, the
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corresponding Hamming code has d min = 3. By the formula given earlier, such
codes can correct one erroneous bit. For this reason Hamming codes are known
as single-error correcting, double-error detecting (SECDED) codes. For the
(7,4) Hamming code, there are 27 = 128 possible code words but of these
only 24 = 16 are required. These are listed in Table 3.2. The Hamming distance
d min = 3 of the code words is clear from inspecting them.

Golay Code
This is a (23,12) cyclic code with d min = 7. The Golay code can correct up to
three errors in a code word. Whereas the (7,4) Hamming code uses 16 out of
128 possible code words, the binary (23,12) Golay code uses 212 = 4096 out
of 223 ≈ 8 × 106 possible code words. Since the Golay code is cyclic, it can be
generated using the polynomial

( )g p p p p p p p= + + + + + +11 9 7 6 5 1

This gives the basis code word [00000000000101011100011]T. By the
cyclicity property it is clear, for example, that [000000000010111000110]T is
another code word. We discuss generating cyclic codes using generator polyno-
mials more in the next section.

The extended Golay code is created by adding a parity bit to the Golay
code, creating a (24,12) code where d min = 8. Note that this extension does not
increase the number of errors the extended code can correct: the largest integer
less than or equal to (8 − 1)/2 is 3, same as for (7 − 1)/2.

Bose-Chaudhuri-Hocquenghem (BCH) Codes
One of the most powerful families of codes is the BCH codes codiscovered by
Bose-Chaudhuri and Hocquenghem. These are cyclic (2m − 1,k) codes with
d min = 2t + 1, where t is determined by the inequality
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Table 3.2
The (7,4) Hamming Code: Data Block and Code Words

Data
Block

Code
Word

Data
Block

Code
Word

Data
Block

Code
Word

Data
Block

Code
Word

0000 0000000 0100 0100111 1000 1000101 1100 1100010

0001 0001011 0101 0101100 1001 1001110 1101 1101001

0010 0010110 0110 0110001 1010 1010011 1110 1110100

0011 0011101 0111 0111010 1011 1011000 1111 1111111



n k mt− ≤

or equivalently,

2 1m k
m

t
− −

≤

BCH codes were first constructed that with t = 2, which would enable a
decoder to correct two errors in a code word (the next level of error recovery
after the single-error correction of Hamming codes). However, it was immedi-
ately apparent that the BCH technique was extensible to provide any level
of error correction, unlike the Golay and Hamming codes, which are limited to
three and one errors, respectively. The power of BCH decoding comes from what
is called the error locator polynomial. We discuss this in the section on decoding.

Maximum-Length Shift Register Codes
These are cyclic (2m − 1,m) codes with d min = 2m − 1. These codes are attractive
in part because they are equidistant: The distance between every pair of code
words is the same. Equidistance of code words makes analysis of the code easier
and allows tighter bounds on the code’s distance properties. Another family of
codes that possesses this property is the family of Hadamard codes (for more on
Hadamard and other equidistant codes, see [2] and [6]). Maximum-length shift
register codes are also attractive because of the simple mechanism required for
the encoder, namely an m-stage shift register with feedback (more on this in the
next section). Table 3.3 lists the m = 3 (7,3) maximum-length shift register
code words and the corresponding data blocks.

3.3.2 Encoding Block Codes

As we said earlier, an encoder can be regarded as a scheduler/actuator compos-
ite. The scheduler receives the input symbol and selects the appropriate output
symbol; that is to say, it schedules the appropriate actuation to create this new
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Table 3.3
The (7,3) Maximum-Length Shift Register Code: Data Block and Code Words

Data
Block

Code
Word

Data
Block

Code
Word

Data
Block

Code
Word

Data
Block

Code
Word

000 0000000 010 0100111 100 1001110 110 1101001

001 0011101 011 0111010 101 1010011 111 1110100



symbol, which can be seen equally either as actuating by modifying an existing
bit pattern or actuating by creating a new bit pattern.

The implementation of an encoder for linear block codes can take many
forms. We can distinguish between different types of linear block encoders on
the basis of how they schedule these actuations. With this in mind, we will con-
sider four broad classes of encoders: (1) table lookup, (2) generator polynomial
using Galois field methods, (3) generator matrix using vector space methods,
and (4) maximum-length shift registers.

The most straightforward implementation is table lookup: The k bits of
the data block to be encoded are the “key” to search the table, and the code
word found is the output. The problem with this tabular approach is that, as
the size k of the block increases, the size of the table increases exponentially. If
k = 30, for example, the table has 230 or more than 1 billion entries. An encoder
with gigabytes of memory is not practical, even with today’s low memory
prices, and the memory requirements of table lookup implementations were
even more unacceptable back in the 1950s and 1960s when much of the foun-
dational work on coding was being developed.

This led to the search for alternative implementations that did not have
such high storage requirements. This necessarily involves the encoder calculat-
ing code words based on the input block of data. In contrast to the extensional
implementation of table lookup, such an intentional or algorithmic implemen-
tation of the encoder effectively “substitutes” arithmetic operations for storage.
The algorithm is, in fact, the schedule of the actuation tasks involved in creat-
ing the code words.

Most linear block encoders are implemented using algorithms based on
associations: the association of the block of data to be encoded, and the corre-
sponding code word, with either polynomials over finite fields; or alternatively
with vectors and linear vector spaces. The cornerstones of these two approaches
are, respectively, the generator polynomial and the generator matrix. A third type
of implementation, the maximum-length shift register, offers a different way of
scheduling not based on either of these. We next examine these three techniques.

The generator polynomial approach is grounded in abstract algebra.
Recall that we said the prominence of cyclic codes was due in large measure to
their mathematical tractability and what this means for the implementation of
encoders (and decoders). As one author comments,

Cyclic codes are important because their underlying Galois-field descrip-
tion leads to encoding and decoding procedures that are algorithmic
and computationally efficient. Algorithmic techniques have important
practical applications, in contrast to the tabular decoding techniques that
are necessary for arbitrary linear codes. [3]
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We won’t go into Galois field theory here; the interested reader can consult ref-
erences on abstract algebra (such as [7] or [8]). Suffice it to say that modern
coding theory is in large part built on Galoisian foundations.

To generate the code words of a cyclic (n,k) code, we first start with the
generator polynomial g (p) where g (p) is a factor of the polynomial pn + 1 and is
of degree n − k. The coefficients of the polynomial are drawn from elements of
the field—in communications applications, the symbols that make up the data
block, here being 1 or 0 because we said we are confining ourselves to binary
codes. The key to this is the association of each n bit code word Ck with a poly-
nomial C (p) of degree n − 1 or less. Likewise, a block of data to be encoded is
associated with a polynomial X (p) where the k coefficients xi of the polynomial
are the symbols of the block of data. There are 2k possible polynomials of
degree less than or equal to n − 1 which are divisible by g (p). These are the code
words that the code can generate.

Given a generator polynomial, the task of creating a code word for a given
block of data becomes one of polynomial multiplication over the field. That is,

( ) ( ) ( )C p g p X p=

For example, we saw that (23,12) Golay codes are generated with the
polynomial

( )g p p p p p p p= + + + + + +11 9 7 6 5 1

Notice that this polynomial is of degree 11, which indeed is n − k. To generate
the code word for a block of 12 bits of data, the encoder performs a multipli-
cation of the generator polynomial g (p) and the polynomial X (p), of degree
less than or equal to 12, that corresponds to the data to be encoded. The
result is the desired code word. If the block of data is, for example,
[1100000011000]—an arbitrary choice to illustrate the procedure—then the
result is

( ) ( )( )C p p p p p p p p p p p

p p p p

= + + + + + + + + + =

+ + +

11 9 7 6 5 12 11 4 3

23 22 21 2

1

( )0 19 16 15 14 12 8 5 3+ + + + + + + +p p p p p p p p

Translating back into bits, the code word is [111110011101000100101000].
It should now be clear why the degree of the generator polynomial must
be n − k: Since the “data” polynomial X (p) may be of degree up to k, if the
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generator polynomial were greater than n − k, then the code word produced
could be greater than n symbols long.

Many codes not generated polynomially are nonetheless cyclic. Looking
at the (7,4) Hamming code words, it is clear that the 16 code words can
be divided into four: the all-zero code word [0000000], the all-one code word
[1111111], and the rotations (seven each) of the code words [0001011] and
[0011101]. The (7,4) Hamming code, in other words, is cyclic. For more
details on cyclic codes, consult [3, 6, 9].

In contrast to generator polynomials and their roots in abstract algebra,
the generator matrix/vector space approach to coding theory and implementa-
tion rests in large part on linear algebra. We start by regarding the code words
as n × 1 vectors, that is, vectors with n elements. A set of n linearly independent
vectors each of which has n elements defines (or spans) an n-dimensional linear
space S. If the set has k < n linearly independent vectors (or code words) then it
spans a subspace Sc of the space S. Therefore, an (n,k) code defines a subspace Sc

of an n-dimensional space.
A generator matrix G, which has k rows and n columns, spans the sub-

space Sc. A generator matrix is a very concise way to represent the schedule (i.e.,
the algorithm) of these operations. G is called a generator matrix because it has
the property that, when multiplied by the vector X corresponding to the k bit
information block, the result generated is an n bit code word C:

C X G1 1× × ×=n k k n

Note that the arithmetic operations are defined relative to the field whose ele-
ments are the symbols used in the information to be encoded. For example, if
the code is binary the elements are 1 and 0 and addition, for instance, is per-
formed modulo 2. Technically speaking, this is the Galois Field GF(2).

Given that there are 2k possible information blocks the result is that 2k

possible code words can be generated in this way. The question is this: What
are the elements of the generator matrix G? Consider the (7,4) Hamming code
in. It is clear that the block of 4 bits to be encoded is transferred directly to
form the four leftmost bits of the corresponding code words. The remaining
three bits, the parity bits, are generated by the following equations:

C

C

C

m m m m

m m m m

m m m m

x x x

x x x

x x x

5 1 2 3

6 2 3 4

7 1 2 4

= ⊕ ⊕
= ⊕ ⊕
= ⊕ ⊕
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From these equations we, in fact, can derive a generator matrix for the (7,4)
Hamming code:

G =



















1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

Note that the rows g i of G are code words of the (7,4) Hamming code. In other
words, for the (7,4) Hamming code it turns out that the rows gi of G are code
words of the code we seek to generate.

G =
















g

g k

1

M

This is true for all linear codes, not just Hamming codes. The rows of a genera-
tor matrix are code words, and because any linear combination of code words is
a code word, so is the product XG.

Because G is made of k code words, out of the total 2k code words in the
code, there is no one-to-one correspondence between a linear block code and a
generator matrix. In particular, there are

( )
2 2

2

k k

kk k k







=
−
!

! !

possible generator matrices for a code that has k information bits. As k increases
in size (increasing the noise-averaging effect of the code), the number of possi-
ble generator matrices grows rapidly.

Of the generator matrices corresponding to a given code, one stands out.
A generator matrix in “systematic form,” also called standard or echelon
canonical form, has a particular structure consisting of a k × k identity matrix
adjoined to a k × (n − k) matrix that specifies how the redundant bits are
encoded.
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G =























−

−

1 0 0 0

0 1 0

0 1

0 1

11 1

1

K

M O

K

O

p p

p p

n k

k kn k

or

[ ]G = × × −i Pk k k n kM

A systematic code has the advantage that the structure of its generator matrix
reduces the number of arithmetic operations required to generate a code word
since the first k bits are simply identical to the k bits of the block of client data
being encoded. Using a generator matrix for a nonsystematic code requires nk
arithmetic operations, whereas using a generator matrix for a systematic code
requires (n − k)k arithmetic operations, a savings of k 2 operations. For large
block size codes this can amount to thousands of operations saved per code
word generated. Any linear block code can be reduced to systematic form by
suitable matrix operations.

Not all code words are generated using a generator polynomial or genera-
tor matrix. The maximum-length shift register codes are encoded using shift
registers with feedback. The code word generation begins by loading the
m-stage register with the block of m symbols (bits, if the code is binary). The
register is then left shifted 2m − 1 times, each shift producing 1 bit of the code
word and, with the feedback, the result of some modulo 2 addition of two or
more of the stages being fed back into the shift register.

3.3.3 Decoding Block Codes

Just as there is more than one way to implement linear block encoders, so, too,
with decoders are there multiple ways of achieving the same end, namely, the
reconstruction (estimation) of the code word as it was originally, prior to trans-
portation. What all these estimation techniques have in common, however, is
that they exploit the properties of the code being used, such as the distance
between code words. Much as a demodulator relies on its a priori knowledge of
the waveform set used by the modulator, so the decoder knows which code
words could have been created by the encoder and which must be the result of
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faults in the DMC. For example, the decoder may maintain a table of all valid
code words and use pattern matching with a “closeness” metric to decide which
is the best estimate of the original code word.

Tabular decoding, however, suffers from the same problem as tabular
encoding: the exponential growth in the size of the table of code words as the
length of the code’s code word increases. And, as was the case with encoding,
the alternative is to use algorithmic methods to reconstruct the transmitted
code word either on the basis of the received code word (in the case of hard-
decision decoding) or the decision variables estimated by the demodulator (in
the case of soft-decision decoding). Not surprisingly, these methods have a
strong connection to the techniques used in linear block encoding. It turns out,
in particular, that at the heart of this decoding there is an intimate connection
between the generator matrix for a linear block code and the generator matrix
of what is called its dual code.

Every linear (n,k) block code has a dual (n,n − k) linear block code. Recall
that the code words of a linear block code, regarded as linear vectors, span a
k-dimensional subspace Sc of an n-dimensional space S. The (n − k) dimen-
sional subspace that is not spanned by the code words of the (n,k) code is the
null space of Sc. The code words of this dual (n,n − k) code span the null space
of the (n,k) code. The two sets of code words are orthogonal, and the generator
matrix H for this dual code possesses the special property that the product of
any code word Cj of the (n,k) code and H is the null vector 0.

What this means is that with H we can determine whether or not a
received code word is in fact part of the (n,k) code. H is called the parity check
matrix for the original (n,k) code and it is the heart of the decoding estimator.
As with the generator matrix, the parity check matrix specifies a schedule for a
set of field arithmetic operations, out of which comes the estimate of the trans-
mitted code word. Finally, if the generator matrix G of the (n,k) code is in sys-
tematic form, then the generator matrix of its dual code likewise has a special
structure related to the structure of G as follows:

[ ]H P I= − ′ −M n k

where P′ is the transpose of the matrix P that is part of the matrix G. As was the
case with G in systematic form, H in systematic form is computationally advan-
tageous since (n − k)2 multiplications can be avoided.

Recall the generator matrix G for the (7,4) Hamming code we presented
earlier. Because this matrix was listed in systematic form, the generator matrix
for the dual (7,3) code is also in systematic form. That is, H is
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H =
















1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

Now, consider a code word Cj delivered to the decoder by the demodulator (as
we said earlier, for the sake of simplicity our discussion of decoding will be
confined to hard-decision decoding). The term Cj is an n × 1 vector. H is an
(n − k) × n matrix. The result of multiplying the two is an (n − k) × 1 vector,
which is the null vector 0 if Cj has not been corrupted by a DMC fault; or
rather, Cj has not been corrupted into another valid code word Ck. This is why
the distance property of a code is so important. If Cj has been corrupted (but
not into another valid code word) then the product S = HCj will be a nonzero
(n − k) × 1 vector. This vector S is called the syndrome of the error pattern
resulting from the fault, and it is used to both detect the fault and “repair” the
consequent error by restoring the code word to its original form.

A syndrome S, however, is intrinsically limited in that it is an (n − k) × 1
vector, meaning there are only 2n − k syndromes. Given that an encoder has cre-
ated a code word for an (n,k) code, the problem that the decoder faces is that
there are 2n − 1 possible erroneous code words, of which 2k − 1 are also valid
code words. An obvious difficulty is that the correspondence between errors
and syndromes is not one to one; the syndrome may unambiguously determine
if an error has occurred but not which error.

To decide which error caused a particular syndrome (fault isolation)
requires another estimation of the most likely error pattern corresponding to
the syndrome. This is, in effect, a two-tiered estimator (Figure 3.3). Depending
on the code used, this second estimation may be implemented by table lookup
even though this was impractical for the first estimation considered earlier.
That is because the syndrome table, as it is called, has only 2n − k entries. If there
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are relatively few parity bits in the code (i.e., n − k is small relative to k) then
this can be efficient.

Table 3.4 lists the syndromes and most likely (minimum distance) error
patterns for the (7,4) Hamming code we have used in our examples. Note that
all the error patterns in the table involve a single symbol (bit). Given that the
code is single-error correcting, this is not surprising. Nonetheless, it also illus-
trates how a double error will cause an incorrect error pattern to be estimated.
For example, if the original code word C was [0100111], corresponding to the
block of data [0100], but the received code word was [1000111] then the syn-
drome S = HC will be [010], which the table says indicates the error pattern
[0000010]. Correcting C to reflect this estimate, the recovered code word
would be [1000101]—which is doubly unfortunate, because this is a valid code
word corresponding to the block of data [1000]. This is, as we defined earlier, a
decoding error.

Given this limitation of syndromes, the question arises: Beyond parity
check matrices and syndrome tables, is there an algorithmic way to derive the
error patterns that is more powerful? The answer is yes, and it is called an error
locator polynomial. Error locator polynomials are the basis of the powerful BCH
codes, or rather their decoders.

The process of decoding BCH code words begins by finding syndromes,
as just done, but with BCH decoding the calculation proceeds very differently.
For starters, a BCH syndrome S is a 2t × 1 vector, where t is the number of
errors the code can correct. As with BCH encoding, the procedure associates a
code word with a polynomial. S is then found by solving over the field of the
code 2t simultaneous equations for its 2t components Si evaluated at the 2t
roots of the code’s generator polynomial.

Finding the syndrome S is just the first step. From these Si the error loca-
tor polynomial is derived, and from its roots are calculated the locations of the
symbols (bits) in the code words which are in error. For more details beyond
this very abbreviated account, consult [3], [6], or [10].
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Table 3.4
Syndromes and Error Patterns for (7,4) Hamming Code

Syndrome
Error
Pattern Syndrome

Error
Pattern Syndrome

Error
Pattern Syndrome

Error
Pattern

000 0000000 010 0000010 011 0001000 110 0100000

001 0000001 100 0000100 101 0010000 111 1000000



3.4 Convolutional Coding

We now come to convolutional codes. Other terms used to designate the family
of codes and coding systems (encoder/decoder pair) that does not rely on a for-
mal set of code words are sequential and tree. Such codes are the focus of this
section and, while we limit ourselves to binary codes as we did in examining
block codes, it is important to note what we discuss here generalizes to nonbi-
nary symbols and codes.

3.4.1 Convolutional Codes and Encoders

Unlike block coding systems, it is difficult to discuss convolutional codes sepa-
rately from convolutional encoders. To describe (n,k ) block code one can just list
the 2k n-bit code words without discussing generator polynomials, matrices, and
so on. There is no similarly simple way to describe a convolutional code. Instead,
it is necessary to discuss a convolutional code and the encoder together.

The basic mechanism of a convolutional encoder is a shift register. This
shift register, however, is generally not monolithic but rather is composed of L
stages, where each stage can hold k symbols (bits if the code is binary). The data
is shifted into a convolutional encoder k bits (or symbols) at a time, so that with
each shift the k symbols move from the first stage to the second until finally it is
shifted from the Lth stage. (Figure 3.4 shows such a convolution encoder.) A
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good analogy is between convolutional coding and continuous flow manufac-
turing, whereas block coding is similar to batch manufacturing.

It is from the k symbols held in each of these L stages that the encoded
output is created. The encoder puts out n bits generated by n linear algebraic
circuits called function or arithmetic generators, generally adders. The client data
is fed into the shift register and moves through it, in the process creating the
convolutional code by means of connections between stages in the shift register
and adders, which then create the encoded output. The code rate of a convolu-
tional code has the same meaning as in the case of block codes, namely, the
ratio of the k symbols input to the n symbols output.

Of course, not every one of the k positions in each of the L stages is neces-
sarily connected to every function generator; the topology of the connections is,
in fact, one way to characterize a given code and encoder. The connections for
each function generator can be listed by a vector with Lk bits; a zero if there is
no connection, and a one if there is one. When the function generators are
adders (over the field of the code’s symbols—for example, modulo 2 adders for
binary codes) these vectors offer a concise description of the code—the closest
thing to a generator matrix, in fact, and for this reason the n vectors are referred
to as the code’s generators.

For a given encoder, this product of the number k of symbols shifted per
time and the number L of its stages is called its constraint length. The constraint
length is important because, in part, it determines the “protecting” power of a
convolutional code. Recall that with block encoding, each k symbol block of
data is encoded into an n symbol code word. With convolutional encoding,
each k symbol block is, along with the k symbol blocks in the other L − 1 stages,
encoded in up to Ln symbol units of encoded data (not code words). The span
of noise averaging of block codes is one k symbol block of data. For convolu-
tional coding, the constraint length kL represents the “memory” of the code,
that is, the span of its noise averaging.

At least two difficulties, however, come with increasing constraint length.
First, the complexity of the decoder increases and so does its storage require-
ments. Second, the latency introduced by the encoder and decoder grows with
the constraint length. Choosing the parameters k, L, and n such that the con-
straint length is not too great is part of the challenge of designing convolutional
codes and encoders.

The first question in designing convolutional codes is: How many sym-
bols (bits if the code is binary) are shifted into the encoder at each time interval?
The number ranges from a minimum of one to an arbitrarily large number.
Next comes the question of how many output symbols, n, created for each k
symbol, are shifted into the encoder. Finally, there is the question of how many
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stages the encoder has, where each stage is a shift register capable of holding
k symbols. Note that if L = 1 then effectively the convolutional encoder has
become a block encoder: k bits are shifted into the encoder and n bits are
shifted out; there is no extra noise averaging from symbols in other stages, and
such an encoder would be effectively “stateless.”

This, however, would violate what we said earlier was one of the dis-
tinguishing characteristics of convolutional encoders: that the output of the
encoder depends not just on the data being encoded but on the state of the
encoder, and that the state of the encoder at a given moment is determined by
the L − 1 recent data inputs. From simple multiplication we can see that the
dimension of the state is k(L − 1). That is to say, in addition to the k symbols
shifted into the first stage of the encoder, the state of the encoder used in mak-
ing the decision of which n symbols to output is the k symbols in each of the
remaining L − 1 stages. If for example k = 1, L = 2 then the state of the encoder
is the one symbol in the second stage—if the symbols are binary then there are
two possible states. On the other hand, if k = 3, L = 6 then the state is given
by the 15 symbols in the remaining five stages and, assuming binary symbols
again, there are 32,768 states for the encoder.

Much of the power of convolutional coding systems comes from this
adaptability. With block coding, the decisions of the encoder’s regulator are
fixed with the selection of the code: The same k bit block will result in the same
n bit code word being created every time, irrespective of the past blocks that
were encoded. In contrast, the regulator in a convolutional encoder is “closed
loop” in that its encoding decisions (schedules) adapt to the patterns of the data
being encoded, meaning that when the same k bit block is shifted into the
encoder, the n bits output will vary according to the previous L − 1 k bit blocks
(Figure 3.5).

3.4.1.1 Generating Convolutional Codes
Even though an encoder can be described by the number of stages it has, the
number of symbols per stage, and the number of symbols created per input
symbol, it is still necessary to specify how the encoder generates its outputs
when it receives an input sequence of data. One way to do this, as we said
earlier, is with the n generators of the encoder. Technically speaking, it is even
possible to construct a generator matrix for a convolutional code, but this
is not practical because its dimension would, because the input sequence is
unbounded and the dimension of the generator matrix corresponds to the
length of the input sequence, be equally unbounded if not infinite. Instead, the
generation of a convolutional code is generally described by one of three means:
a tree diagram, a trellis diagram, or a state diagram. Each of these is an equiva-
lent representation of the scheduling executed by the encoder.
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For reasons of brevity, we examine only trellis diagrams. We start with the
encoder’s mk (L − 1) states—where m is the number of input symbols and k(L − 1)
is the state dimension of the encoder. These are listed in columns. The process
begins by convention with the encoder in the all-zero state. As with tree
diagrams, from each state there are mk branches to mk other states. Also as with
tree diagrams, along these branches indicating the transitions between states are
listed encoding decisions of the encoder. The result is a trellis diagram, from
which the term trellis code modulation is derived. The advantage of trellis
diagrams over tree diagrams is that they are bounded, and they show more
concisely the state-dependent nature of the convolution encoder’s scheduling.
Figure 3.6 shows a trellis diagram with states and transition branches.

3.4.2 Convolutional Decoders

Much of the popularity of convolutional codes is due to the availability of rela-
tively simple yet powerful decoders. As with block code decoders, both hard-
decision and soft-decision decoding techniques are employed. In either case,
the objective is the same: to estimate (or reconstruct) which k symbols were
the input to the convolutional encoder from the client for each n symbol that
arrives over the channel.

The most important convolutional encoder is the so-called Viterbi
decoder, which can be implemented either with hard-decision decoding
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(the decoder receives symbols) or soft-decision decoding (the decoder receives
unquantified decision variables). The only difference in the decoder is the met-
ric used to discriminate between possible decodings: Hamming distance for
hard-decision decoding and Euclidean distance for soft-decision decoding. In
either case, the algorithm at the heart of the Viterbi decoder attempts to retrace
the path taken by the encoder through its states as it encoded the client data. If
the decoder chooses the correct path out of B possible paths, then the original
data will be correctly recovered. Otherwise, a decoding failure will occur.

The Viterbi decoder does this by calculating branch metrics, based on the
conditional probability of a sequence of symbols Y arriving given a sequence
C was transmitted; and from these branch metrics are calculated path metrics
corresponding to a sequence of branches taken by the encoder (in response,
obviously, to the input symbols). The Viterbi algorithm compares possible
paths and, as subsequent symbols arrive to be decoded, chooses the path that
has the highest metric. At each stage, a survivor path is chosen for further com-
parisons. This allows the reduction of the number of decoding comparisons
necessary from growing exponentially as the length of the sequence to be
decoded grows.

The Viterbi algorithm does, nonetheless, suffer from scaling with the
constraint length. As the state of the encoder grows according to mk (L − 1)

the decoder must consider mk (L − 1) survivor paths and mk (L − 1) metrics. For this
reason, the Viterbi decoder is typically used with encoders that have small
constraint lengths.
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3.5 Summary

In this chapter we discussed error control coding (also known as forward error
control) of data for transport across a noisy channel. We placed the discussion
in the context of server maintenance: how to employ redundancy to optimally
repair the consequences of transporter faults. If a fault in a transporter results in
the corruption of the data being transported, then a repair has been effected
when the data are finally transported correctly. To ease fault detection and
to utilize channel bandwidth more efficiently, we saw that an error control
encoder maps input symbol(s) to different symbol(s), these being transported
over the channel; at the receiving end, after symbol reconstruction has been
executed by an estimator in the demodulator, a corresponding decoder recon-
structs the original symbol(s) as received by the encoder.

In addition, just as the modulator and demodulator encapsulated the
channel to create an abstraction (i.e., the discrete memoryless channel), so
the encoder and decoder encapsulate the discrete memoryless channel and cre-
ate an abstraction, namely, a channel with much reduced bit error rate (BER)
and hence improved reliability. Similarly, just as we saw that a modulator was
an actuator the plant of which is the signal the client requests to be transported,
transforming it from the waveforms used by the client (a computer) to the
waveforms optimized for the channel, so it is with the task of error correction
coding: It is an actuation of the plant, transforming it from its original form
into a new form that will better resist the noise introduced by the channel.

We discussed the two types of codes: block codes and convolution codes.
Notwithstanding their differences, we saw that certain basic facts about error
control codes are true whether we are talking about block or convolutional
codes. First of all, error control codes add redundant information. The redun-
dancy introduced by the encoder is used to “repair” the plant, following its
transportation, by the decoder. With decoders we are reminded of the real rea-
son for codes and encoders: to increase the robustness of the transporter by
facilitating the reconstruction of transported code words.
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4
Management and the Transporter
Interface

4.1 Introduction

We saw in Chapter 2 that the actual transporter in a digital communications
system is a channel plus the signal(s) it carries, but that in most circumstances
the client interfaces with a virtual transporter—the discrete memoryless chan-
nel (DMC)—created by the encapsulation of the channel by a modulator and
demodulator. The modulator and demodulator hide from client and destina-
tion the implementation details of the actual channel and signal(s). Chapter 3
took this virtualization of the transporter one step further, encapsulating the
DMC with an encoder and decoder. By introducing redundant information
into the client’s data to better withstand the effects of the noise and transient
faults occurring in the channel, the result is a more robust virtual transporter,
with the same task set but greater reliability/maintainability. In effect, we have
an “outer” virtual transporter composed of an encoder and decoder encapsulat-
ing an “inner” virtual transporter composed of a modulator, demodulator, and
channel.

Whatever the transporter’s components, we still need to define its inter-
face. At first blush, this would appear to be a trivial task since all we have dis-
cussed is the transporter executing its transport task. What else is there? In a
word, management. While coding, by reducing the incidence of faults and/or
repairing their effects, affects bandwidth management, this is hidden manage-
ment: The client of a transporter consisting of just a channel does not see
any difference between it and a transporter consisting of an encoder/decoder
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encapsulating a DMC. The client does not explicitly request that the
coder/modulator transform the data; the client “sees” just a transporter to
which it sends data (and may receive as well). Now, however, we must consider
transporter management that is explicit and visible: The client of the trans-
porter can invoke to request actuation of the transporter (for example, turning
the transporter on or changing the service rate); can request to be informed
about the state of the transporter; and can request allocation (that is, schedul-
ing) of the transporter. The first two of these tasks involve bandwidth manage-
ment, while the last is an instance of workload management.

This chapter concludes the virtual transporter hierarchy within the physi-
cal layer by discussing management and the virtual transporter defined by the
interface between clients, referred to as Data Terminal Equipment (DTE),
and transporters, generically known as Data Circuit-Terminating Equipment
(DCE). The parallel is with abstract data types and objects. Just as methods
define the interactions with the data structure (object), so the tasks defined at
the interface (such as Request to Send, Send, and Receive) define the interac-
tions with the transporter and its manager. In this chapter we analyze these
interface tasks in terms of the MESA model. These channel interfaces come in
many forms and flavors, but in this chapter we focus on two classes. The first
are the serial interfaces, such as EIA-232 and V.35, most of which use another
interface standard called V.24 that defines the interface functions. The second
class consists of the physical layer specifications of the IEEE 802 local-area net-
work standards, some aspects of which we touched on in Chapter 2.

4.2 DTEs, DCEs, and Interface Standards

4.2.1 DTE and DCE

As we just said, in the world of data communications both client and destina-
tion of a transporter are referred to as Data Terminal Equipment (DTE). In
other words, the DTEs are the computers that want to send data to each other.
The term Data Circuit-Terminating Equipment (DCE) is used to encompass
the modulators, encoders, decoders, and demodulators that provide access to
the actual channel. In other words, the DCE contains the equipment that, as
its name implies, “terminates” the communications circuit (the actual channel)
before it reaches the DTE; that is, while the DCE does not include the channel
itself, it provides the interface by which the DTE invokes the services of the
channel (see next section).

At its simplest, the DCE may be a simple pass-through mechanism (the
so-called null modem or modem eliminator); here the channel signals are
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the same as the signals that are used between DTE and DCE. Modem elimina-
tors are useful only for very short distance connections between DTEs because
of the signal attenuation difficulties we studied in Chapter 2. Depending on the
desired characteristics of the transporter (DCE–channel–DCE), the DCE may
contain a modulator (with corresponding demodulator in the DCE at the des-
tination), or an encoder/modulator composite (with corresponding demodula-
tor/decoder composite in the DCE at the destination). Obviously, as we saw in
Chapter 3, the latter implementation would have higher reliability and effective
bandwidth (throughput) than the former due to the use of coding, at the price
of greater component cost and complexity. Figure 4.1 illustrates the possi-
ble DCEs.

We should note that, at least conceivably, it would be possible to imple-
ment a modem eliminator with coding—just an encoder at the client’s DCE
and decoder at the destination DCE—but this implementation is seldom if
ever seen in practice.

The DTE–DCE separation reflects a modularization decision. The ori-
gins of this separation stem in part from the accidents of history. The telephone
monopolies of years past provided the access equipment to connect users to
their transport networks, and they defined the DCE interface to facilitate this.
Both DTE and DCE were typically customer-premises equipment (CPE) with
the DCE presenting an abstracted channel to the DTE. Manufacturers of
computer equipment (DTEs) simply needed to convert their signals to those
prescribed for communication over the DTE–DCE interface. Given that the
DCEs (modems) were generally supplied by the telephone service provider, this
simplified the lives of computer manufacturers and telephone service pro-
viders alike.

4.2.2 Interface Standards

Why standardize interfaces? Because without isolating the implementation
details of the many different types of channels and signals, the challenge of
constructing a data transport system, particularly with modular or off-the-shelf
components, would become horrendous. To remedy this, during the past
40 years the data processing and communications community has defined
a number of interface standards for addressing the needs of different types
of interconnection; as we will see in this chapter, low-speed, short-distance
connections require different types of interfaces than higher speed, longer dis-
tance ones.

EIA-232 nicely illustrates the distinction between architecture and imple-
mentation in the way it draws its definitions from a family of other standards.
The architectural component is provided by a standard known as V.24, which
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defines the functions or tasks that the interface enables to be requested. The
V.24 standard defines the functional semantics of interface commands and sig-
nals used in several other interface standards besides EIA-232, notably V.35.
The implementation component of EIA-232 is provided by V.28, which speci-
fies the signal and channel characteristics of the connections between DTE and
DCE. If the functional signals defined in V.24 are, by analogy, the methods for
accessing our transporter “object,” then the signaling standards such as V.28
define the exact syntax of the control blocks and parameters that realize these
methods.

We now examine some signaling standards.

4.2.3 Interface Signal Standards

By virtue of its association with EIA-232 interfaces, V.28 is probably the most
common interface standard in the world today. It is, however, not the only
standard used. V.28, as we will see, is particularly designed for relatively low-
speed interfaces where low cost is important. Given the wide variety of DTEs
and DCEs and their associated communication requirements, it is not surpris-
ing that there are several different standards defining interface signal character-
istics which are tailored to address different requirements. Two other interface
standards that we look at in this section, V.10 and V.11, are designed to meet
the needs of higher speed and/or longer distance signaling.

Notwithstanding these possible variations, all physical layer interfaces
between the DTE and DCE do have at least one thing in common: They use
baseband (digital) rather than broadband (carrier-modulated) signaling. Recall
from Chapter 2 that we said carrier modulation was necessary when signals
were to propagate over attenuating channels for relatively long distances; that
digital signals may, depending on the signal bandwidth and the channel, propa-
gate adequately for limited distances without any sophisticated mechanisms
such as repeaters or modulators. Because both DTEs and DCEs are customer-
premises equipment, it is generally assumed that the distances between them
are relatively limited, from a few meters to a few kilometers, at most.

An obvious question then is, since by definition a digital computer uses
digital signals internally, can these signals be used on the DTE–DCE chan-
nel(s)? The answer is no, for two reasons. First, even when computers (DTEs)
are colocated with the DCE equipment, though they are close enough to allow
digital signals to be used between the two, they are not close enough for the
very specialized signals used over the computer’s internal busses to propagate
successfully between DTE and DCE. The signals used internally within a
computer are optimized for channels measuring a few centimeters to a meter at
most and transmission of tens of megabytes per second.
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Therefore, the DTE must convert its internal digital signals (waveforms)
to the digital signals specified by the interface standard being used between it
and the DCE; the DCE, in turn, generally converts these waveforms into inter-
nal waveforms that its circuitry uses. This is exactly the “language translation”
problem we mentioned earlier: Because DTE and DCE convert their respective
internal signals into a common lingua franca, namely, the interface standard’s
signals, each is free to use the signals that best fit its needs without worrying
about compatibility or the permutations of interconnection.

The second obstacle to using the DTE’s internal signals over the
DTE–DCE connection is serialization. Data are generally transferred within a
computer over parallel channels—for example, 32- or 64-bit-wide data busses.
Apart from esoteric interface standards such as the High Performance Parallel
Interface (HPPI) defined in ANSI standard X3T9.3/88-023, communications
interfaces are serial, meaning 1 bit is transferred at a time. This means that
“serialization” of the data used within the DTE is required before it can be
transferred to the DCE.

Another concern is the electrical stability of the interface channel(s) con-
necting the DTE and DCE. A very common complication is the risk of ground
potential differences as the distance between DTE and DCE increases. A
grounded electrical device has the ground potential of its local ground—where
its power circuit is grounded to earth. It is relative to this (local) ground poten-
tial that the voltage levels of the signaling waveforms are actuated. Unfortu-
nately, the values of ground potential can vary widely within a relatively short
distance so that two electrical devices (such as a DTE and a DCE) may have
very different ground potentials. A signal created at +5V relative to local
ground may, even without any attenuation or other loss, be measured at the
destination as +2V relative to the ground level at the receiver.

It is in part to overcome the effects of such ground potential differences
that balanced signaling is used when the distance between DTE and DCE is
great and/or the signaling rate is high. Balanced signaling requires two circuits
(transporters) to reliably transport a waveform. A mark or space is sent by creat-
ing waveforms (signals) on each of the two channels, the difference of which is
+5V or −5V, respectively. At the destination these two signals are measured
and, by taking their difference, the information being transported is recovered.
This reconstruction is another instance of estimation: The plant, namely,
the information to be transported, cannot be measured because neither of the
transmitted waveforms by itself carries the information. Figure 4.2 illustrates a
balanced channel and estimator that reconstructs the original data.

Balanced signaling improves the reliability of the interface channels, but
not all circuits require it. If the distance between the DTE and DCE is short,
then on these interface circuits a simple, unbalanced signaling can be used.
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Balanced signaling is also advantageous when the channel is to transport high-
speed signals. Here we should note that the exact throughput of a channel
is inversely proportional to its length: the longer the channel, the greater the
attenuation and noise and hence the lower the attainable channel capacity
(bandwidth) (see, for example, [1]). Because of its superior noise resistance,
balanced signaling is better suited to high-speed signals. When the distance
relative to signal bandwidth (speed) exceeds the safety margin of unbalanced
signaling, then balanced signaling is used.

The V.35 interface standard, intended for communications above the
20,000-bps limit of EIA-232, illustrates this nicely. Based on the same func-
tions defined in V.24, V.35 is very similar to EIA-232 except for one significant
difference: Because V.35 is intended for high speeds and longer distance, bal-
anced circuits are used for carrying the data and timing signals. On the control
circuits (see later discussion) the interface uses unbalanced circuits that con-
form to V.28 specifications. This division works because the control signals are
not truly high-speed signals while the data signals are.

Table 4.1 lists the principal serial interface standards and some of their
implementation parameters. The limits of rate and distance are, generally
speaking, to be used as design targets rather than hard constraints. For example,
according to the standard’s specification the V.28 (EIA-232) interface should
not be used above 20 Kbps but many vendors ignore this; similarly with the
distance limit of 15m. The principal balanced interface is the V.11, which can
handle signaling rates up to 10 Mbps.

4.2.4 The Logical Structure of the Serial Transporter Interface

Now that we have discussed these implementation characteristics, we want
to return to the “architectural” aspects of interfaces, that is, their functional
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structure. As we said earlier, an interface defines the methods by which services
are invoked and, in the case of a transporter, by which they are delivered. That
is, a transporter has by definition two interfaces: (1) between the transporter
and the client and (2) between the transporter and the destination. A desti-
nation is not necessarily a client (in the sense that it does not request of the
server any transport actuation—see below), but it nonetheless interacts with
the transporter. This brings up an important design principle for our trans-
porter interface: universality. Unless we want to define different interfaces for
client and destination then the interface must accommodate both the send and
receive tasks.

Then there is management. For example, to the extent that the trans-
porter is shared between two or more clients there must be some management
server to control (schedule) which of the competing/contending clients will
have its RFS executed by the transporter at what time. This is workload man-
agement. Other workload management interface tasks may include synchroni-
zation of the transmitter and receiver on the individual channels between DTE
and DCE.

Bandwidth management, too, must be considered. A request to test the
transporter, such as loopback testing, changes the task set of the transporter.
Whereas neither the composition of channel and modulator/demodulator into
a discrete memoryless channel nor the composition of a discrete memoryless
channel and encoder/decoder altered the task set of the basic transporter, at
the interface level it may be necessary to consider some bandwidth actuation of
kind. For example, a loopback test involves changing the task set of the trans-
porter; if this capability is required, then an actuator must be implemented to
execute it.

In the next section we explore management and the transporter interface
more completely by taking the functions and signals of the V.24 standard and
mapping them on to our model of workload and bandwidth management.
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Table 4.1
Serial Interface Standards

CCITT Standard EIA Standard Signaling Balance Rate Distance

V.10/X.26 EIA-423 Voltage Unbalanced <100 Kbps 10m

V.11/X.27 EIA-422 Voltage Balanced <10 Mbps Variable

V.28 EIA-232 (electrical) Voltage Unbalanced <20 Kbps 15m

V.31 EIA-410 Current Not applicable <75 bps —



4.3 Managing the Serial DTE and DCE

The interface tasks of the V.24 standard include the transporter’s actuations
(Send data and Receive Data) as well as management actuations of the trans-
porter, and monitoring information from instrumentation of the transporter
that reports its condition, status, and so on. As one author puts it, “[V.24] is a
‘superset’ standard. Vendors select the appropriate V.24 circuits for their prod-
uct, as do the standards groups that publish the V series interfaces” [2]. Note
that we discuss only the 100 series of V.24 recommendations; including the
200 series, which specifies certain additional circuits for supporting automatic
dialing of telephone numbers, would add little to our discussion.

4.3.1 Managing the Transporter: Bandwidth Control

We are going to divide bandwidth management tasks into control (those tasks
that result in changes in the transporter’s state and/or parameters) and monitor-
ing (those tasks that measure and/or estimate these variables). The former tasks
allow the DTE to request actuations of the transporter’s task set and/or service
rate(s). For example, this would allow the DTE to specify the speed of the
transport actuation. These are bandwidth actuations in that they change
the rate at which the composite DCE–channel–DCE server can execute its
transport actuation task(s). Table 4.2 lists the V.24 bandwidth actuation tasks
and, where they exist, the equivalent identifiers for EIA-232 and EIA-449 (a
seldom used successor to EIA-232). We can see in this table that, beyond basic
actuations such as turning on and off the transporter and its associated compo-
nents such as modulators, V.24 provides for selection (actuation) of a limited
set of transmitter and receiver parameters. The range of actuations is limited
by two factors. The first is that all V.24 signals, including Requests for Service,
are binary. These circuits are, in fact, dedicated communications channels with
binary waveform sets. The second reason is that, altogether, the total number
of V.24 “circuits” cannot be too large, because the physical connectors termi-
nating the cables between DCE and DTE would become unwieldy. Indeed, a
principal reason why the EIA-449 standard was never widely adopted was the
large connector it used to support more of the V.24 circuits than the earlier
EIA-232 standard could with its DB-25 25-pin connector.

4.3.1.1 Actuating the Transporter: Status
The first management actuation to discuss is turning the transporter “on,”
which we referred to in Chapter 1 as a status actuation. Note that not all trans-
porters need to be turned on. The simplest transporters, for example, those
consisting of two DTEs connected to a modem eliminator or null modem, do

Management and the Transporter Interface 117



not need to be turned on. However, many DCEs have components such as
transmitters and receivers that, for reasons of economy, reliability, and so on,
should not be left “on.” Prior to transmitting, therefore, the DTE must request
that the DCE turn these on.

V.24 defines two RFS messages that cause the DCE to trigger this status
actuation. The first of these is carried on circuit 108/1 (connect data set to line).
This RFS “causes the DCE to connect the signal-conversion or similar equip-
ment to the line” [1]. The second message is carried on circuit 108/2 (Data ter-
minal ready); this circuit is equivalent to the familiar EIA-232 circuit CD (Data
Terminal Ready). As with circuit 108/1, this circuit is generally used to trans-
port a RFS to the DCE to actuate the status of the transporter, turning the lat-
ter on and off as required.

4.3.1.2 Actuating the Transporter: Rate Selection
V.24 defines two circuits for specifying the rate of the transporter: 111 and 112
(both called Data signaling rate selector). These two circuits carry the same mes-
sage, namely, selecting between two different signal rates, but the originators
are different. All of the bandwidth actuation requests listed in are issued by the
DTE with the exception of the message carried by circuit 112, which is issued
by the DCE. The reason for this asymmetry is simple. The others concern
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Table 4.2
V.24 Bandwidth Control Tasks

Circuit Description V.24 EIA-232/449 Source

Connect data set to line 108/1 CD/TR DTE

Data terminal ready 108/2 CD/TR DTE

Data signaling rate selector 111 CH/SR DTE

Data signaling rate selector 112 CI/SI DCE

Select frequency groups 124 –/– DTE

Select transmit frequency 126 –/SF DTE

Select receive frequency 127 –/– DTE

New signal 136 –/– DTE

Backup switching in direct mode 116/1 –/– DTE

Backup switching in authorized mode 116/2 –/– DTE

Loopback/maintenance test 140 LL/RL DTE

Local loopback 141 LL/LL DTE



transporter implementation details, such as signal frequencies, that do not
affect the DTE, so there is no need for the DCE to request the DTE change its
operating parameters. On the other hand, if the rate of the transporter is actu-
ated, for example in response to a request from the local DTE on circuit 111,
then the remote DTE must operate at this higher rate otherwise the total trans-
porter (DTE–DCE–DCE–DTE) will fail.

4.3.1.3 Actuating the Transporter: Signal Selection
Recall that in Chapter 2 we stressed the basic transporter was composed of
the channel and the signal(s) it carried. It follows, therefore, when considering
actuation of the transporter that actuating the signal may be attractive to some
users and indeed such actuations are within the V.24 functions. With circuit
124 (Select frequency groups) a DTE may request that the bandwidth manager
actuate the transmitter to use all or a predefined subset of the available fre-
quency groups. With circuit 126 (Select transmit frequency) a DTE may
request that the bandwidth manager actuate the transmitter to use one of two
frequency bands.

The requested actuations may also affect the receiver within the local
DCE. With circuit 127 (Select receive frequency) a DTE may request that the
bandwidth manager actuate the receiver to use one of two frequency bands.
Finally, circuit 136 (New signal ) carries a request from the DTE to actuate the
receiver of the transporter by changing the response times used to decide if a
signal has been lost (circuit 109; see section on “Monitoring the Transporter”).
This change is useful if, for example, there is an advantage to rapidly connect-
ing and disconnecting from a switched telephone connection.

4.3.1.4 Actuating the Transporter: Switching to a Standby Transporter
We saw in Chapter 1 that highly available systems frequently replicate critical
components, either for concurrent execution with the main/primary compo-
nents or for use as standby reserves that can be switched on in the event the
primary components fail. In the case of transporters, the standby components
may include alternative transmitters and/or receivers (modulator/demodula-
tors, encoders/decoders, and so on). Such switching constitutes a major actua-
tion of the transporter and it is supported at the DCE interface by V.24. A
DTE can request the bandwidth manager switch to standby components using
the V.24 circuit 116/1 (direct mode) or 116/2 (authorized mode). There are no
equivalent EIA-232 circuits but there are for EIA-449.

4.3.1.5 Actuating the Transporter: Testing and Loopbacks
The bandwidth manager within the DCE may also support special actuations
of the signal path that aid in fault detection and particularly fault isolation. If a
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DTE’s request for a connection to another DTE fails to elicit any response,
then the source (client) DTE may attempt to initiate fault detection. Recall our
earlier comment that with the introduction of the DCE, by which we mean
in this instance modulators/demodulators or encoders/decoders, we now have
four components (the two DTEs and two DCEs) and three distinct stages in
the transportation of data: DTE to local DCE, local DCE to remote DCE, and
remote DCE to destination DTE. (If the DCE is a null modem then the inter-
mediate DCE to DCE stage is null and we have a two-stage, three-component
transporter.)

The challenge of fault identification given this composite transporter is
that the server is distributed and the fault may be in any of the three stages. A
simple test, however, can aid in determining where the fault is located. If the
transporter can be reconfigured (= actuated) so that data the client DTE sends
are returned to it by one or other of the DCEs then locating the fault becomes a
process of elimination. For obvious reasons, this actuation of the transporter is
called looping back the data. Another standard called V.54 defines four types of
possible loopbacks, including a loopback within the originating DTE (loop 1)
to check its circuitry (Figure 4.3).

If the local DTE passes, then the local DCE is actuated to loopback the
data (loop 3); if the DTE receives its data from the DCE then it can be inferred
that the local DCE as well as the channel between the DTE and local DCE are
operating correctly (in nominal condition). Assuming that this test is passed
then the local DCE is actuated back to normal or pass-through operation and a
remote loopback is effected by actuating the remote DCE (loop 2). Loop 4 can
also be used to test the remote DCE and channel. From these remote loopbacks
we can determine, using the same reasoning, if the remote DCE and the
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DCE-to-DCE channel are operating correctly. Finally, assuming both local
and remote loopbacks are successful, then it can be concluded that the remote
DTE is at fault. Figure 4 .3 illustrates both local and remote loopbacks.

Notice that in both types of loopbacks that the task set by the transporter
is changed from {local_DTE remote_DTE, remote_DTE local_DTE} to
{local_DTE local_DTE}. That is to say, the transport task executed by the
transporter is the same whether the loop is before the local DCE (loop 1), after
the local DCE but before the channel (loop 3), after the channel but before the
remote DCE (loop 4), or after the remote DCE but before the remote DTE
(loop 2).

Corresponding to local and remote loopback, V.24 defines two RFSs to
the bandwidth managers in the local and remote DCEs. Circuit 140 (Loop-
back/maintenance test) requests the transporter be put into remote loopback,
and circuit 141 (Local loopback) requests the transporter be put into local loop-
back. To further specify the type of loopback (1 or 3, 2, or 4 , respectively) the
V.54 recommendation specifies using other V.24 circuits; for details consult
the standard or [2].

4.3.2 Managing the Transporter: Bandwidth Monitoring

Why provide any information to the client about the state of the transporter?
The client in the DTE may contain what is, in effect, its own workload man-
ager. This workload manager decides when and whether to request service from
the transporter, basing its decision in whole or in part on the current state
of the transporter. This is essentially what happens with connection-oriented
communication: The connection establishment phase does not proceed with-
out positive acknowledgment from the transporter (including, for purposes
of connection setup, the remote DTE as part of the total transporter). This
acknowledgment is, in essence, a form of feedback.

Before a client begins to send data to the DCE, it might be a good idea to
check to make sure the transporter (channel, transmitter, receiver, and so on) is
on and in nominal condition. Otherwise, the DTE may send data that cannot
be forwarded by the DCE due to faults in the channel and/or partner DCE.
Provision should be made, therefore, for the DTE to obtain state information
about the transporter (including any component servers such as modulators).
The key question is how granular should the feedback be? At one extreme, the
DCE can merely inform the DTE that the overall state of the transporter is
nominal or not. At the other extreme, the DCE can provide information about
the signal levels, the noise on the channel, and so on. The constraint here is the
same as we encountered with the actuation signals: binary signals and the need
to limit the total number of circuits.
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Given this limitation, V.24 defines six circuits by which the DCE can
send to the DTE information on the state of the transporter. These circuits
are listed in Table 4.3 and can be divided into three groups. The first of these
groups conveys information about the status of the transporter and its readiness
to execute transport tasks. The second group of circuits conveys information
about the state of the signal arriving at the DCE from its partner DCE. The last
group conveys information about the mode in which the transporter is operat-
ing; specifically, is it in standby or test mode?

4.3.2.1 Monitoring the Transporter: Status Instrumentation
Circuit 107 (Data set ready), also known as DCE ready, is used by the DCE to
indicate to the DTE that the DCE has been turned on. This information
can be obtained in one of two ways: Either the DCE measures some parameter
of the channel and/or its peer DCE, and based on the measurement(s) and/or
estimates derived from the measurement(s) decides the actuation has been suc-
cessfully executed; or the DCE estimates that the composite has been status
actuated merely because the DCE has attempted to execute such an actuation.
The first is closed loop and the second is open loop.

Beyond this, the use of transitions on 107, or perhaps it would be more
accurate to say the use of context (i.e., state), to provide further information
increases the information capacity of the circuit. If the circuit’s signal goes from
ON to OFF during a call then this indicates the occurrence of a fault. Knowing
whether the circuit was part of a switched connection or a dedicated connec-
tion allows further inference (estimation) as to the type of fault. This is fault
isolation. If the two DCEs are communicating using a switched line then the
ON → OFF transition during a call indicates a lost call, whereas if the line
is nonswitched then the ON → OFF transition during a call indicates a hard
failure.
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Table 4.3
V.24 Bandwidth Monitoring Tasks

Circuit Description V.24 EIA-232/449 Source

Ready for sending 106 CB/CS DCE

Data set ready 107 CC/DM DCE

Received line signal detector 109 CF/RR DCE

Data signal quality detector 110 CG/SQ DCE

Standby indicator 117 –/SB DCE

Test indicator 142 –/TM DCE



Circuit 106 (Ready for sending), also known as Clear to send, indicates if
the DCE, by extension including the channel and the partner DCE(s), is either
busy and cannot accept data from the DTE or is idle and can accept data.
Because this is, in essence, workload scheduling, we defer a more detailed analy-
sis until the next section on workload management. However, note that some
simple implementations of DCE interfaces use this circuit as a proxy for circuit
107 and do not include the latter. The DTE can assume, if it receives permis-
sion to send via circuit 107, that the DCE is ready.

When both circuits 107 and 106 are used, however, the relationship
between the two circuits and their signals is shown in Table 4.4. For the most
part it is straightforward: If the DCE is on and ready to operate (107 = 1) but
not available (106 = 0), then it can be inferred that the DCE/channel is busy
executing a transport actuation task for another client; if the DCE is on and
ready to operate (107 = 1) and available (106 = 1), then it can be inferred that
the DCE/channel is either not busy executing a transport actuation task for
another client or that the transporter supports concurrent multitasking (FDX)
execution. The only interesting aspect of the relationship between the Data
set ready circuit and the Ready for sending circuit is if the former indicates the
DCE is off but the latter says that the DCE is ready to accept data; in this case,
there is clearly a fault in the DCE’s instrumentation.

4.3.2.2 Monitoring the Transporter: Signal Instrumentation
V.24 provides two state variables concerning the signal: Received line signal
detector (circuit 109) and Data signal quality detector (circuit 110). Received line
signal detector (RLSD) carries/transports a measurement/estimate of the reliabil-
ity of the transporter that moves data from DCE to DCE. For the RLSD (car-
rier detect) circuit to be meaningful, there must be a sensor in the DCE to
measure the signal arriving over the communications channel and a decision
mechanism (an estimator) to determine if the signal quality as measured is suf-
ficient. This is a binary decision: Either the received line signal is adequate or it
is not. In the simplest case, the criterion is simply whether a carrier was detected
or not.
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Table 4.4
Data Set Ready Circuit Versus Ready for Sending Circuit

Data Set Ready = 0 Data Set Ready = 1

Ready for Sending = 0 DCE is off DCE is busy

Ready for Sending = 1 Fault in DCE instrumentation DCE is idle



Whereas RLSD informs the DTE if the received signal is within estab-
lished tolerances, the Data signal quality detector circuit informs the DTE if, in
the estimation of the DCE, there is a “reasonable probability of error” having
occurred in the data just received. If, for example, a decoder in the DCE is
unable to decode a received string of symbols (a decoder failure; see Chapter 3),
then the DCE can use circuit 110 to signal the DTE that the data it has been
sent have probably been corrupted in transit. The signal itself may have been
within tolerances but nonetheless its “quality” has been reduced.

4.3.2.3 Monitoring the Transporter: Mode Instrumentation
As we saw in the previous section on actuations, the DCE and by extension the
transporter can be in one of five modes of operation, four of which (Off, Ready,
Test, and Standby) are generally entered in response to requested actuations
originating with the DTE while the fifth, Fault, is entered from either the
Ready, Test, or Standby mode as a result of a fault in the transporter. Off is the
default state. V.24 defines two instrumentation circuits specifically for signal-
ing whether the DCE is in Test or Standby mode.

Circuit 142 (Test indicator) indicates that the DCE (and hence the trans-
porter) is in test mode, meaning that data can neither be sent or received. For
example, if a DCE has actuated a loopback in response to a request from one of
the DTEs, then this circuit will indicate to all the DTEs that the transporter
is unavailable and that any data presented to it should be treated as test data
rather than client data. In addition, if a DCE has initiated testing of its compo-
nents and/or the channel at the initiative of its own bandwidth manager, then
circuit 142 is used to signal the consequent unavailability to the DTEs. When
the tests are completed, if the condition of the components and channel is
nominal (or close enough) then this circuit signals that test mode has been
exited and the DCE is ready (107 = 1).

Circuit 117 (Standby indicator) indicates that the DCE has switched to
backup components. Again, this actuation of the DCE’s internal structure may
have occurred in response to a request from the DTE (direct on circuit 116/1 or
authorized on circuit 116/2) to switch to alternative circuits or, if the DCE has
a bandwidth manager with the autonomy, it may have been initiated by the
DCE itself in response to some internal condition it detected, such as an immi-
nent failure of the primary transmitter. In either case, circuit 117 signals to the
DTE that the DCE is in backup mode. The DTE may want this information
for a variety of reasons related to management. For example it may wish to send
an SNMP message, for example, indicating that repair and/or replacement of
the primary components is required.

We can summarize these transporter actuations and corresponding feed-
back information with the state (or mode) transition diagram in Figure 4.4.
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The transition arcs indicate the (event/output) pairing that triggers the state
transitions and the output messages sent using various V.24 circuits.

4.3.3 Managing the Client: Workload Control

Recall that workload control actuates the arrival of work at a server; and that, in
its absence, the client’s RFSs (and accompanying plant, if any) will arrive at the
server at the rate and in the order in which they left the client (or clients). As
such, one of workload management’s main concerns is “throttling” (= actuat-
ing) the flow of work (RFSs). But if the DTE knows the bandwidth (= service
rate) of the transporter for which the DCE is the interface, then why should it
ever be necessary to control the traffic from the DTE? In other words, wouldn’t
the DTE limit itself to what it knew the transporter could handle and thus not
overwhelm the transporter?

There are at least three difficulties with this assumption. First, even a
simple, single-stage transporter may have a highly variable service rate due to
exigencies of the channel and any intermediate components. For example, it
is well known that microwave links suffer severe degradation under certain
atmospheric and geographic conditions. Likewise, modems and other DCEs
may fall back to lower rates when there is too much noise on the channel or
when lower speed backup systems are switched on. In the absence of workload
control mechanisms, it is impossible to be sure that a client that has been allo-
cated (= scheduled) the channel will not overwhelm it since the channel/trans-
porter’s bandwidth may change while the client is using it.

Second, flow control/workload management may be necessary if the des-
tination is unable to receive the transported data as fast as it can be generated by
the client and moved by the transporter. With the introduction of DCEs as
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isolating elements, the transporter has in fact not one but three stages: DTE
to DCE, DCE to DCE, and DCE to DTE. However, it may not know what
the bandwidth of the destination DTE is. Indeed, this can be highly variable
depending, among other things, on other tasks the destination DTE may
be executing—such as data arriving at the same destination from other sources
(clients). Or, as we will see in Part III, if the DTE-DTE traffic flows over multi-
ple transporters and relays, then congestion in the intermediate components
can cause fluctuations in the overall service rate.

Finally, and perhaps most importantly, at any given time some or all of
the transporter’s capacity may be allocated to other clients, of which the “local”
client knows nothing due to the spatially distributed nature of transport actua-
tion and transporter alike. The most obvious example is a local-area network
(LAN) that has dozens or even hundreds of stations (clients) that may be
seeking its services at the moment. Even something as simple as a bidirectional
transporter may have contention problems between the two clients (DTEs) if the
channel and/or DCEs can only support transmission in one direction at a time.

It is for these reasons that mechanisms of flow control are used even at
the lowest layers of the protocol stack. In the case of LANs, as discussed later,
the workload management is mainly located at the Data Link layer; this
includes carrier sense and token-passing mechanisms. At the Physical layer of
serial transporters, V.24 defines mechanisms by which both the DTE and DCE
can start and stop data flowing over the send and receive circuits. We will dis-
cuss these mechanisms, including the Request to send and Ready for sending sig-
nals we discussed as part of bandwidth management, and also the mechanisms
for synchronizing DTE and DCE.

4.3.3.1 Transporter Task Set and Tasking
We discussed in Chapter 1 that we can characterize a transporter (in fact, any
server) by its task set and its tasking. This is important here because the type of
workload management a transporter requires will depend on the nature of its
task set and tasking. How many clients (DTEs) does it have to contend for
its services? How many tasks (transport actuations) can it execute at one time?
These parameters determine the complexity of the workload manager’s task.

A trivial transporter is one that has a single client. The transporter is nec-
essarily simplex, that is, traffic flows in one direction only. It has only the single
client so that means traffic from the reverse direction is impossible. Examples of
such simplex transporters include telemetric applications, such as power line
or pipeline monitoring systems. However, the overwhelming majority of com-
puter communications involves two (or more) clients competing/contending
for the services of a shared transporter.
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Beyond the task set, the tasking of the transporter is crucial in determin-
ing the applicable workload management. That is, how many transport actua-
tion tasks can the transporter execute at once? The obvious minimum is one,
and a server that can execute only one task at a time is referred to as single task-
ing. If the transporter can execute more than one task at a time then we say it is
multitasking; the distinction we made in Chapter 1 between serial and concur-
rent multitasking is important and we will return to it in later discussions, but
for the moment all we need to note is that a multitasking transporter supports
two or more transport tasks in execution.

Reflecting on this, we make a distinction between two types of duplex:
half duplex, which can be either single tasking or serial multitasking, and full
duplex, which implies support for concurrent multitasking. For example, let’s
say we have a transporter that has two clients A and B and a task set that
includes A → B and B → A transport actuations. If A can send data to B at the
same time as B is sending data to A, then this is a full-duplex transporter. On
the other hand, if A sending data to B precludes at that exact moment B send-
ing data to A (or vice versa), then the transporter is a half-duplex transporter.
Note that if A and B are allowed to completely send their data to each other
without interruption, then this is effectively single tasking, whereas if their
respective tasks are “time sliced” and interleaved then this is serial multitasking.

With a full-duplex (FDX) transporter that is bidirectional there is
no problem with coordinating (scheduling) the two clients because there is no
conflict for common resources. The same is obviously true with simplex
transporters. However, a half-duplex (HDX) channel is a shared resource that
requires a workload manager to schedule its allocation to competing demands.
Likewise if the transporter has more than two clients then even with full-duplex
transportation some potential conflict cannot be eliminated; such multi-
dropped configurations are common with certain data link protocols that are
designed primarily for terminal handling, such as SDLC and Bisync. In these
cases the coordination of this sharing is the task of the management entities
within the DCEs.

V.24 defines a number of messages and services by which these servers
can affect the required workload actuations. Table 4.5 lists these V.24 work-
load actuations. Note that we have included a number of the V.24 circuits we
have already discussed in the context of bandwidth management. The reason
for this repetition is, as we will see later, that these circuits affect workload as
well as the transporter itself. In addition, there is a set of circuits that concern
managing workload specifically for an HDX transporter. They allow a DTE to
request the DCE to actuate the allocation of the transportation—that is, “turn-
ing around” the transporter.
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Finally, in this section we discuss the synchronization of the DTE and
DCE. Why treat synchronization as a special case of workload management? In
part, because there is an inherent relationship of a clock to a scheduler; in fact,
every scheduler must have some clock with reference to which it constructs
schedules. Given a pair of DTEs and DCEs, each has its own clock.

As the data are transported from, say, DTE A to DCE 1, DCE 1 must
know when to sample the signal so that it can know what it is to send to the
channel for transportation to DCE 2. In turn, DCE 2 must be synchronized to
DCE 1 so that it can know when to sample the channel output; we discussed in
Chapter 2 the means of doing this, notably self-clocking codes and clock recov-
ery mechanisms. Finally, the data are transported from DCE 2 to DTE B and
DTE B must know when to sample the output.

If these receivers and transmitters are not synchronized, that is, if their
respective clock rates are not kept within certain tolerances, errors will occur.
V.24 provides mechanisms for either the DTE or the DCE to provide the clock
signal to be used by the schedulers in each. For example, a transmitter can send
the clock it used to schedule the actuation of the signal to the receiver so that
the latter can schedule the measurement of the received signal; or the receiver
can provide the clock for a transmitter to schedule its actuations. The effect is
the same: the execution of the transport task, or rather its component transmis-
sion and reception tasks, is actuated, and this is why we include these circuits
under workload management.
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Table 4.5
V.24 Workload Control Tasks

Circuit Description V.24 EIA–232/449 Source

Request to send 105 CA/RS DTE

Ready for sending 106 CB/CS DCE

Data set ready 107 CC/DM DCE

Ready for receiving 133 –/– DTE

Request to receive 129 –/– DTE

Return to nondata mode 132 –/– DTE

Transmitter timing 113 DA/TT DTE

Transmitter timing 114 DB/ST DCE

Receiver timing 115 DD/RT DCE

Receiver timing 128 –/– DTE

Received character timing 131 –/– DCE



4.3.3.2 Workload Actuation: Scheduling the Execution of the Transporter

As we outlined earlier, scheduling the arrival of work at a server depends to a
considerable degree on the client. We can make an analogy with automobiles
and the rules of the road. If a car’s driver ignores traffic rules, there will be no
orderly sharing of the pavement, irrespective of how well designed the signals
may be. In the same way, fundamentally a DTE can only be “throttled” if it
allows itself to be throttled. This isn’t to say that a DTE that insists on sending
data will be allocated the transporter by the workload manager in the DCE.
The latter is still the “traffic cop” and will discard unallocated traffic, but it
would obviously be preferable in most circumstances to avoid this.

The key to “well-behaved” DTEs is the recognition that, as with the rules
of the road, if one disregards them the result will be chaos. If one DTE
monopolizes a transporter then the RFSs of other DTE(s) cannot be executed.
There are two possible solutions: (1) The upper layer protocol will self-limit the
length of DTE transmission (2) or the DCE can shut down the DTE by using
the V.24 circuits for flow control (workload actuation).

What are these controls? Let’s start with the two circuits in Table 4.1,
which we discussed in the section on bandwidth monitoring, namely, Data set
ready (circuit 107) and Ready for sending (circuit 106). Both of these report on
the status and readiness of the transporter, which is indeed a bandwidth moni-
toring task, but they also are part of the workload actuation process. Just as the
Data terminal ready (circuit 108/2) is more than a measurement/estimation of
the status of the DTE—in the absence of Connect data set to line (circuit 108/1)
it is also an implicit RFS to the DCE’s actuator to turn the transporter on—so
do Data set ready and Ready for sending convey more than just information on
the transporter. In particular, Ready for sending tells the DTE more than that
the transporter is not busy; it is an implicit actuation of the DTE, allowing it to
send data to the transporter.

Ready for sending has different meanings depending on the tasking of the
transporter under consideration. If the transporter is HDX then Ready for send-
ing “measurement” is an open-loop estimate of the transporter/channel (uses
timer after RTS). If the transporter is FDX then clear to send is a measure-
ment/estimate of the channel based on RLSD. If the transporter is FDX with
error detection the Ready for sending circuit can convey internal DCE condition
(e.g., modem buffers are ready to accept data).

With an HDX transporter or a transporter (HDX or FDX) with more
than two clients, the DCE will send Ready for sending to a DTE in response to
the latter sending a Request to send message on circuit 105. Request to send is
an RFS to be scheduled for allocation of the transporter. The sequence request
to send/ready for sending is sometimes referred to as hardware flow control, as
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opposed to the use of the ASCII control characters X-ON (x′11′) and X-OFF
(x′13′), also known as control-Q and control-S, which is a widely used method
of software flow control. Unlike hardware flow control, however, software flow
control is not character transparent: If the patterns x′11′ or x′13′ occur in client
data then the confusion may cause the DTE to suspend sending unnecessarily.

Note that not all transporters needtoimpose flow control. For FDX
point-to-point transporters (bidirectional since there are two clients) there is no
reason to actuate the DTEs sending data since each client (DTE) appears to
have its own transporter—the concurrent multitasking of the transporter effec-
tively creates two “virtual” transporters. On the other hand, if it is possible that
the “bandwidth” of the receiving DTE can be exceeded by the traffic sent from
the transmitting DTE there is still need for some throttling. V.24 provides for
the receiving DTE to itself actuate the flow using Ready for receiving (circuit
133). This backward pressure from the receiving DTE causes its associated DCE
to signal the transmitting DCE to throttle back, which will in turn result in the
transmitting DTE losing the Ready for sending signal. At this point the transmit-
ting DTE should cease sending data until it receives permission to send more.

Reviewing these mechanisms, it is clear that the DTE has three choices:

1. It can just start sending data to the DCE and hope for the best.

2. It can send a Request to send (circuit 105) RFS to the DCE and wait
for the DCE to respond with a Ready for sending (circuit 106) message
and only when this is received start sending data to the DCE.

3. It can issue a Data terminal ready/Connect data set to line (circuit 108)
RFS to the DCE, wait for a Data set ready (circuit 107) message
from the DCE, then issue a Request to send RFS to the DCE and
wait for the DCE to respond with a Ready for sending message and
only when this is received start sending data to the DCE.

Figure 4.5 illustrates this full sequence of “handshaking” between DTE
and DCE.

4.3.3.3 Workload Actuation: “Turning Around” Half-Duplex Transporters
Several V.24 workload actuation tasks are meaningful primarily with half-
duplex transporters. Circuit 129 (Request to receive) allows the DTE to request
that the workload manager within the DCE enter the “receive” mode and thus
free the channel for a remote DCE to use. This is an explicit request for “turn-
ing around” the channel, as opposed to the implicit channel turnaround we dis-
cussed earlier. Circuit 132 (Return to nondata mode) allows the DTE to request
that the workload manager within the DCE enter “nondata” mode, meaning
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that the DCE is effectively off-line; however, the channel is not released to
another DCE.

Figure 4.6 summarizes the workload actuations we have considered so far.

4.3.3.4 Workload Actuation: Synchronization
The last instance of workload control, albeit at a considerably different level
than we have seen up to now, is synchronizing or “clocking” the transmitter
and receiver over the DTE–DCE channel(s). This is what we might call micro-
managing the flow of data between DTE and DCE. The issue is not the starting
or stopping of the larger units of data that we have been discussing up to now,
but rather when the individual bits (or waveforms carrying those bits) are sent
between the two. Such control is necessary because the spatially distributed
nature of transporters introduces an inescapable uncertainty between transmit-
ter and receiver. The latter cannot know exactly when the former has created
(sent) waveforms over the channel.

And when dealing with digital transporters the discrete (in time) nature
of digital signals makes such uncertainty problematic. Scheduling the measure-
ment of the signal by the receiver’s sensor is crucial: too early or too late and
the probability of error increases as the signal-to-noise level falls, the effects of
intersymbol interference rise, and so on. This is exactly the same question we
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discussed at some length in Chapter 2. If there is a mistiming between receiver
and transmitter (whether the receiver is the DCE and the transmitter is the
DTE or whether the receiver is the DTE and the transmitter is the DCE), then
the transported data may be mismeasured and/or misestimated, resulting in
corrupting faults. Synchronization tells the workload scheduler in the recipient
(DTE or DCE) when to schedule the measurements of the incoming circuits
and/or actuations of the outgoing circuits.

There are three ways to affect this level of workload control. First, DTE
and DCE can use asynchronous character framing so the receiver, alerted by
start bits, knows when to begin measuring the bits of each character. As we saw
in early discussions, asynchronous framing is the least expensive to implement
in terms of the circuitry required; it is, however, the most expensive in terms of
the overhead. Second, DTE and DCE can use a self-clocking code (such as
NRZI, B8ZS, or one of the others discussed in Chapter 2) and an estimator
to recover the clock from the code. The receiver reconstructs the transmitter’s
clock using a phase-locked loop or equivalent estimator. The third approach to
synchronizing the transmitter and receiver is to use explicit timing signals from
either DTE to DCE or vice versa. This is called external clocking, and we discuss
in this section the V.24 mechanisms for supporting it.

The situation is complicated by the fact that with a duplex transporter,
there are two transmitter–channel–receiver composites that may require syn-
chronization. That is to say, for a bidirectional (duplex) transporter there are,
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in fact, two clocks: the sending clock, which provides the synchronization for
the Transmitted data transporter that transports data from DTE to DCE (V.24
circuit 103); and the receiving clock, which provides synchronization for the
Received data transporter that transports data from DCE to DTE (V.24 circuit
104). For each of these two clocks, V.24 provides circuits for either the DTE or
the DCE to provide the synchronizing signal to its partner.

The V.24 circuits that provide clocking for the Transmitted data trans-
porter (circuit 103) are shown in Figure 4.7. Circuit 113, Transmitted Signal
Element Timing (DTE source), enables the DTE to provide clocking to the
DCE’s receiver for the measurement of the data signal carried on circuit 103.
Circuit 114, Transmitted Signal Element Timing (DCE Source), enables the
DCE to provides clocking to the DTE’s transmitter. The transmitter uses
the clock from the DCE to schedule the actuation of the signal.

The V.24 circuits that provide clocking for the Received data transporter
(circuit 104) are shown in Figure 4.8. Circuit 128, Received Signal Element
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Timing (DTE Source), enables the DTE to provide clocking to the DTE’s
transmitter. The transmitter uses the clock from the DCE to schedule the
actuation of the signal. Circuit 115, received signal element timing (DCE source),
enables the DCE to provide clocking to the DTE’s receiver for the measure-
ment of the data signal carried on circuit 104.

As their names imply, these four circuits provide synchronization at the
signal element level, which, in the case of binary waveforms as defined by most
of the interface standards such as V.28, V.10, and V.11, means the bit level. In
addition to these V.24 provides for character level synchronization via circuit
131, Received Character Timing, by which the DCE signals the receiver in the
DTE when characters are transported; this signal indicates the framing of
the character. Table 4.6 summarizes these circuits.

4.3.4 Managing the Client: Workload Monitoring

Unlike the transporter itself, explicit monitoring of the workload is much sim-
pler because the very receipt of data from the DTE is, in some ways, “monitor-
ing.” There are, however, two V.24 circuits that do carry information about the
workload. The first of these is Calling indicator (circuit 125), which informs a
DTE that another DTE wishes to establish a connection. This is particularly
important in dial-up applications. The second monitoring circuit is Received
data present (circuit 134), sent from the DCE to a receiving DTE to indicate
that the Receive data circuit is carrying data from a sending DTE. This informa-
tion can be used by the DTE to disregard data on that circuit, for example, if a
loopback or test is being executed. Table 4.7 summarizes these circuits.

4.4 LAN Interface Standards

We now move on to consider LANs and their interfaces. As we’ll see in dis-
cussing the physical layer portions of the 802.3 and 802.5 standards, the same
issues and concepts that we just discussed apropos of serial transporters apply to
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DTE Source DCE Source
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LANs as well. However, because LANs were designed decades after the serial
protocols and reflect advances, for example, in synchronization technology
(estimators), there is no need for many of the management circuits we have
been discussing and hence the physical layer of LAN interfaces is considerably
simpler than their serial counterparts. That is, this simplicity comes because
LAN signals are self-clocking; LANs at the physical layer are connectionless;
and many workload management tasks are relegated to the data link control
protocols.

Notwithstanding their vastly improved rates of transmission and reduced
error rates, LANs are still finite in both their bandwidth (service rate) and reli-
ability, and this compels the inclusion of management to accommodate these
imperfections. The focus of this section is to map these management tasks on to
our model of workload and bandwidth management, exactly as we have done
with the V.24 tasks for serial transporters.

4.4.1 IEEE 802.3 Physical Interface

With Ethernet (802.3) some of the terminology used in the world of serial
interfaces has changed. The 802.3 standard speaks of end stations as DTEs but,
rather than DCEs, the term medium access unit (MAU) is used to denote the set
of mechanisms that provides the interface to the channel. Outside the standard,
however, MAU is rarely used; in practice, the term transceiver is used, from the
abridgment of transmitter/receiver. Whatever it is called, the functions of DCE
and MAU/transceiver are largely identical: to isolate the DTE from the channel
and to provide the interfaces to mechanisms of bandwidth and workload man-
agement by which the DTE can request information about the channel and/or
actuate changes.

4.4.1.1 MAUs
Positioned between the channel and the DTE, the MAU has three main com-
ponents: the Attachment Unit Interface (AUI), to which the DTE is attached
by means of what is called the AUI cable; the Physical Medium Attachment,
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Received data present 134 –/– DCE



which contains functional circuitry (see later discussion); and the Medium
Dependent Interface, which provides the interface to the actual channel. Fig-
ure 4.9 illustrates the relationship of DTE, channel, and MAU components.
Note that the standard makes clear this modularization is functional: An imple-
mentation that bundles the MAU with the DTE, say on the adapter card, is per-
fectly valid; in this case, the AUI interface is hidden and there is no AUI cable.

The 802.3 standard specifies four functions that the MAU must execute,
and a fifth that is optional. The first two are the Transmit and Receive func-
tions, which are self-explanatory. The third is called the Collision Presence
function, which detects if two or more DTEs are transmitting on the channel
simultaneously. The fourth is the jabber function, which will prevent a DTE
from transmitting for too long by interrupting its transmission. The jabber
function is an example of a management task that the MAU will execute auto-
matically, without any RFS from the DTE. The last of these is called the moni-
tor function, which actuates the MAU to disable the transmission of data, and
is optional to 802.3 AUIs.

Mapping these on to our model of workload and bandwidth manage-
ment, the collision presence and jabber functions are workload management—
collision presence is workload monitoring and jabber is workload control. The
monitor function is an instance of bandwidth management. Figure 4.10 shows
these components and their mapping to the MAU’s workload and bandwidth
managers. We also show a Signal error message from the bandwidth manager to
the DTE; this is not a formal component of the MAU.

4.4.1.2 AUI Channels
The 802.3 equivalent of the DTE–DCE channels we discussed earlier is a set of
balanced (two conductors) circuits that form the AUI cable. The reason bal-
anced circuits are used is simple: speed. Just as the V.11 standard uses balanced
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circuits for high-speed serial channels, so are AUI circuits used in the 802.3
standard; originally these were running at 10 Mbps but with later versions this
has increased first to 100 Mbps and recently into the Gbps range. The AUI
cable has four of these balanced pairs: one pair for data into the DTE, abbrevi-
ated DI; one pair for data out from the DTE to the MAU, abbreviated DO; a
third pair for control (management) signals from the DTE, abbreviated CO;
and a last pair for control (management) signals from the MAU, abbreviated
CI. There are in addition several power and ground circuits, so that the AUI
cable typically uses 15-pin DB-15 connectors.

Two differences stand out between these DTE–MAU interface circuits
and the DTE–DCE interface circuits used in serial transporters: more wave-
forms but fewer circuits. First, whereas the latter employ binary waveforms,
with the former, the signaling is ternary for both the data and the control cir-
cuits. In addition to the CD0 and CD1 waveforms on the data circuits and
the CS0 and CS1 waveforms on the control circuits, respectively, each circuit
can carry a third waveform, namely, the idle signal IDL. This third waveform,
though, does not compensate for the fact that instead of the several dozen or so
management circuits defined in V.24, there are only two management channels
(circuits) connecting the AUI to the DTE—one in each direction. Consequently,
the number of management actuations is extremely limited as is the granularity
of information the MAU can report about the transporter/workload.

We will pass quickly over the two data channels DI and DO because they
are relatively straightforward: Each carries data as the Manchester-encoded
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waveforms CD1 and CD0 (see Chapter 2) and the IDL waveform to indicate
no data to be transferred. With the control circuits, however, the limited
number of messages (three in, three out) presented an obvious challenge to the
designers. The Control In (CI) circuit transports monitoring information from
the MAU to the DTE. When the MAU sends an IDL waveform to the DTE
on the CI circuit, this carries the mau_available message. This message is
approximately the equivalent of the Data set ready message of the V.24 stan-
dard. On the other hand, if the MAU sends a CS1 waveform then this carries a
mau_not_available message, indicating that the MAU is not ready to connect
the DTE to the channel; this message is optional in that not all AUIs need this
“instrumentation” to conform to the 802.3 standard.

Part of the reason the mau_not_available message is optional is that if
there is any difficulty then the MAU will send to the DTE a message called sig-
nal_quality_error (SQE) by means of the CS0 waveform. To quote from the
802.3 standard:

The PMA sublayer [within the MAU] may send the signal_quality_error
message to the PLS sublayer [within the DTE] in response to any of three
possible conditions. These conditions are improper signals on the medium,
collision on the medium, and reception of the output_idle message. [3]

That is to say, the signal_quality_error message “lumps” together several very
different states which nonetheless are all indicators that the channel is not avail-
able at the moment. The first of these, improper signals or signal errors on the
medium (that is, the channel), is an instance of bandwidth monitoring: Some
component of the transporter (a transmitter or the channel itself ) has suffered a
fault. The second cause for sending an SQE message to the DTE is to indicate
a collision. This, too, can be regarded as a fault but it is properly speaking
a workload fault—two or more stations have started transmitting at the same
time. This is an inevitable consequence of the distributed scheduling mecha-
nism, carrier sensing, that is the cornerstone of the 802.3 and related protocols.
The output_idle message, when received from the DTE after the transmission
of data by the MAU, indicates the end of transmission (EOT) and triggers the
MAU to execute an SQE “self-test,” which checks its internal components; an
SQE message is sent if there is any anomaly.

The standard elsewhere specifies some additional circumstances under
which the signal_quality_error message is sent by the MAU to the DTE. If there
are no other MAUs on the channel, then this triggers an SQE message. If
another MAU starts transmitting after the local MAU has started transmitting,
then an SQE message is sent. If the Jabber function of the MAU has had to
inhibit transmission then the MAU sends an SQE message [3].
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The Control Out (CO) circuit carries bandwidth actuation RFSs to the
bandwidth manager in the AUI. Here, too, the options are limited by the single
circuit and the ternary waveform set. If the DTE wishes the AUI to function
normally it sends over the CO circuit an IDL waveform. In this case, the AUI
will send to and receive from the DTE data over the DO and DI circuits,
respectively. On the other hand, some AUI implementations provide an
optional actuation that the DTE may invoke by sending the AUI a CS0 wave-
form over the CO circuit. This waveform corresponds to an isolate RFS. The
AUI will disable its transmitter while leaving the receiver and collision detec-
tion mechanisms functioning. This optional state is called Monitor Mode and
can be used if a DTE suspects that its AUI’s transmitter is malfunctioning.

It is important to recognize that there is no equivalent AUI message to
V.24’s Ready for sending (EIA-232, Clear to send ) by which the MAU might
schedule (i.e., allocate to the DTE) the channel. A DTE that wishes to transmit
will monitor the channel’s activity by the DI circuit, which will carry any data
on the shared channel from the MAU to the DTE; if the DI circuit is transport-
ing the IDL waveform, then the DTE regards this by inference as a Ready for
sending.

Figure 4.11 shows the signals the DTE and MAU exchange over the data
and control circuits.

4.4.2 IEEE 802.5 Physical Interface

The 802.5 standard specifies a simpler physical interface than the 802.3 inter-
face. First of all, there are only two interface circuits, one for send and one for
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receive; as in the 802.3 standard, these are balanced interfaces. These circuits
connect DTEs, stations in the language of the standard, not directly to each
other but instead by means of a central concentrator that is variously known as
a Trunk Coupling Unit (the standard’s term) or a Multistation Access Unit (in
practice). This results in what is sometimes called a star-wired ring, as shown in
Figure 4.12. Observe that in this figure each station on the Token-Ring LAN is
connected to the next station by a simplex transporter. That is, an 802.5 LAN
is a circular concatenation of simplex channels—each has a single client and
a single destination, all joined like so many elephants “trunk-to-tail.” Because
there is no channel shared between two or more transmitters, many of the
workload management functions we discussed earlier are not necessary. In
addition, there is no instrumentation in the TCU/MAU to report on the state
of the channel but this omission is immaterial because every station is, in effect,
directly attached to the channel.

So what is the reason for having a TCU/MAU? The basic function of
the TCU/MAU is, to quote from the standard, to provide the “mechanism for
effecting the insertion or bypass of the station” [4]. This is bandwidth actuation
of the LAN: The task set is actuated whenever a station is joined or leaves the
ring. We can see in Figure 4.12 the bypass mechanism and that when a station
on the token-ring LAN is bypassed then the TCU/MAU connects its upstream
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and downstream neighbor stations directly. In part this is designed to accom-
modate stations that might be powered off, which might otherwise “break”
the ring.

The mechanism executes this actuation in response to a request for service
from a station. The question is, how does the station send the RFS? Because
there are no control circuits, any control messages must pass over the two data
circuits. Given that the waveform set contains two nondata symbols (J&K) in
addition to the data symbols for 1 and 0 (see Chapter 2) these would seem logical
candidates for carrying control messages. However, they are not used for this.

So if there are control messages, how are they carried? They are carried by
means of what is called phantom circuits. These are created by means of DC
voltages, transparent to the various symbols, that a station sends on its send and
receive circuits concurrently with the data traffic. In effect, the phantom voltage
signals constitute an additional waveform. To quote from the standard again:

The voltage impressed is used within the TCU to effect the transfer of a
switching action to cause the serial insertion of the station in the ring. Ces-
sation of the phantom drive causes a switching action that will bypass the
station and cause the station to be put in a looped (wrapped ) state. This
loop may be used by the station for off-line self-testing functions…. The
phantom drive circuit is designed such that the station may detect open-
wire and certain short-circuit faults in either the receive pair or transmit
pair of signal wires. [6]

Thus the TCU/MAU’s bandwidth management mechanism also effects a cer-
tain amount of fault detection and recovery, in the sense that a malfunctioning
station can automatically be removed from the token-ring LAN. We discuss
this more when we consider the 802.5 medium access control protocol.

4.5 Summary

In this chapter we completed building our basic transporter by defining its
interface to client and destination. We started by defining from first principles
what such a generic interface must include to meet the needs of client and
transporter alike. The client, or data terminal equipment, interacts with the
transporter via the interface presented by the DCE, the data circuit-terminating
equipment, via the explicit management visible at the DCE interface. Whatever
the details, the DCE–channel–DCE entity is a composite that hides implemen-
tation details from the DTE. Isolating implementation details is perhaps the
single most important principle of modular system design.
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This chapter explored how the V.24 standard defines the functional
semantics of interface commands and signals used in several other interface
standards, notably EIA-232 and V.35. In addition, we discussed the actual
channels between the DTE and DCE, including the waveform sets used on
these. In addition, we discussed the V.24 circuits for bandwidth management,
including selection of signal rates and frequencies. V.24 also includes numerous
circuits that carry information on the transporter’s state as well as workload
management of a HDX channel.

We concluded this chapter by examining the Physical layer portion of the
IEEE 802.3 and 802.5 LAN standards. Among other things, we saw that these
are notable for their relative simplicity compared to serial interfaces. Using
self-clocking Manchester and Differential Manchester waveforms over bal-
anced high-speed circuits, respectively, the 802.3 interface uses only four cir-
cuits with just two for management messages; whereas the 802.5 interface uses
just the bare minimum of two circuits, with the only management signaling
accomplished by means of a so-called phantom circuit.

References

[1] McNamara, J., Technical Aspects of Data Communications, 3rd ed., Bedford, MA: Digital
Press , 1988.

[2] Black, U., The V Series Recommendations, New York: McGraw Hill, 1991.

[3] IEEE Standard 802.3, New York: Institute of Electrical and Electronics Engineers,
1988, p. 79.

[4] IEEE Standard 802.5, New York: Institute of Electrical and Electronics Engineers, 1988.

142 Protocol Management in Computer Networking



Part II
Management in the Data Link Layer



This Page Intentionally Left Blank



5
Data Link Management: Basics

5.1 Introduction

Having considered the physical layer and its management in the context of the
MESA model, we now move up the encapsulation hierarchy to look at manage-
ment in the data link layer. There is a sharp division of opinions as to how
much management should be incorporated into data link protocols (and
indeed the higher protocols as well). At its most extreme, the choice is between
simplicity/efficiency, on the one hand, and complexity/robustness, on the
other. As we will see, with data link protocols the early consensus which favored
connection-oriented mechanisms that attempted to create a reliable transporter
for upper layer clients has given way substantially to an increasing preference
for connectionless mechanisms that offer only “best effort” delivery.

Above and beyond the noise faults, which we considered at some length
in Part I, transporters are subject to two additional events that, depending on
one’s perspective, may or may not be faults: overflow/saturation and “nobody
home.” Noise faults are amenable to forward error control (FEC), although at
the data link layer the primary technique used for recovery is retransmission
or backward error control (BEC). Overflow/saturation faults occur when the
receiving link station is unable to accept data as fast as the transporter can
deliver it from the client, that is, the sending link station. This can be prevented
by employing flow control, where the receiver paces the sender. Finally, there
are “nobody home” faults, which (as the name implies) occur when the destina-
tion is not on-line or is otherwise unable/unwilling to receive data. These can
be prevented by requiring a connection be established before the client sends
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any data: if the connection does not want to recieve data then it will decline or
simply ignore a connection request.

This chapter is devoted to discussion of generic data link management
issues, including four that define a core management taxonomy: connections
versus connectionless operation, framing, flow control, and fault management.
We also look at the relationship between transporter topology and data link
protocol and the relationship between the data link protocol and its upper layer
client(s). Finally, we discuss the overarching protocol management question,
namely, the locus of control: Is the protocol based on peer managers or a mas-
ter/slave dichotomy? The aim is to objectively examine the pros and cons of
these options by using the MESA model to shed some light on the management
mechanisms required.

5.2 Data Links and Data Link Protocols

5.2.1 What Is a Data Link Protocol?

In Chapters 2–4 we constructed a virtual transporter consisting, first and fore-
most, of a channel and associated waveform signals, along with the modula-
tor/demodulator, and/or encoder/decoder that, with internal management,
comprises the DCEs. Given such a transporter, what more is necessary? In a
word, a protocol governing the behavior of the clients (and destinations) with
respect to the transporter and with respect to each other. That is to say, work-
load management. Recall that we said in Chapter 4 that control of a DTE’s
transmission can be effected by a workload manager within an upper layer pro-
tocol (to schedule the transmission of waveforms over the channel).

So what is a protocol? One reference work defines it as follows: “A formal
set of conventions governing the format and relative timing of message
exchange between two communications terminals” [1]. Another definition
is that a protocol is “a formally specified set of conventions governing
the format and control of inputs and outputs between two communicating
systems” [2].

A protocol is realized by a set of finite state machines, also called protocol
machines, located at the DTEs. Part of a protocol specification is the set of
input messages and their respective formats; another part of the protocol speci-
fication is the set of output messages and their respective formats; and the final
part of the protocol specification is the set of the state transitions of a protocol
machine that the input messages trigger and which result in the corresponding
output messages.
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There is a hierarchy of protocol machines within a DTE corresponding
to the protocol stack, that is, the layered communication model, implemented
at that node. The (input and output) messages exchanged between protocol
machines of the same layer are, in the terminology of the OSI model, called
Service Data Units. Service Data Units are further encapsulated in two types of
messages exchanged between protocol machines. In the terminology of the OSI
model, the messages carried between the protocol machines at adjacent layers in
the same DTE are called Interface Data Units, which consist of Interface Con-
trol Information plus Service Data Units. This may seem somewhat confusing
but that is what the architects of the OSI model arrived at.

The messages carried between protocol machines at the same layer in the
different DTEs are called Protocol Data Units (PDUs). A PDU consists of
three parts: header of protocol information, a section we will call the payload for
carrying the data to be transported (in this case, the Service Data Units), and a
trailer of protocol information. Layer 2 PDUs are more commonly known as
frames. Figure 5.1 shows the components of the generic PDU.

Note that with some protocols the trailer is omitted, and as we will see
when we examine specific protocols the payload is omitted in special messages
(PDUs) that are exchanged between state machines. What is delivered to each
layer of protocol machine is the corresponding Service Data Unit. Figure 5.2
shows the relationship of Interface Data Units and Protocol Data Units.

A data link protocol is realized by the protocol machines at layer 2. These
protocol machines are also known as link stations; hence, in SDLC we speak of
the protocol machines as Primary and Secondary link stations and in HDLC
we refer to them as Combined link stations. While all link stations contain
client and receiver components, what differentiates them (and their respective
protocols) are the management servers that implement the protocol
mechanisms.

The language of the Open System Interconnect Reference Model in the
X.200 standard is clear on the purpose of data link protocols:
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The Data Link Layer provides functional and procedural means to estab-
lish, maintain and release data-link-connections among network-entities
and to transfer data-link-service-data-units. A data-link-connection is built
upon one or several physical-connections [3].

The orientation toward connections is unambiguous. Zimmerman, who was a
principal author of the X.200 standard, wrote in 1980 that the “purpose of the
data link layer is to provide the functional and procedural means to establish,
maintain, and release data links between network entities” [4]. Since that time,
however, as we discuss later there has been a major change in thinking toward
connectionless services.

With the addition of the data link protocol, we are creating yet another
virtual transporter on top of the virtual transporter hierarchy we have just
constructed within the physical layer. The process is identical to our previous
“virtualizations,” namely, the embedding of management servers that effec-
tively alter the implementation characteristics of the underlying server, in this
case the (already virtual) transporter presented by the physical layer.

There is, though, one significant difference. Up to this moment, we have
made a clear demarcation between client and transporter, on the one hand, and
between destination and transporter, on the other. The three were assumed to
be distinct physical entities, the transporter of course a composite of the DCEs
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and the channel. Now, however, at each step up the protocol stack, the trans-
porter is composed of the lower level protocol machines within the respective
DTEs plus the DCE–channel–DCE composite. In the case of the data link
layer, the transporter is composed of the physical layer of each DTE plus the
DCE–channel–DCE composite (Figure 5.3).

We can help understand and classify data link protocols with the follow-
ing “taxonomic” criteria:

• Does the data link protocol require a connection between client and
destination to be set up prior to the transportation of data?

• Does the data link protocol use variable or fixed length PDUs?

• Does the data link protocol have any mechanism for throttling the
transmission of clients?

• Does the data link protocol have any mechanism such as retransmis-
sion for recovery from transient faults?

In addition to these criteria, to characterize data link protocols we will also ask
these questions:

• Can the data link protocol support channels with three or more DTEs
(so-called multidrop or multipoint topologies) or is the protocol lim-
ited to point-to-point topologies?

• Can the data link protocol support multiple upper layer protocols?

We now explore these topics in more detail.
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5.2.2 Workload Management: Connection Versus
Connectionless Operations

As we discussed in Chapter 1, the computer networking community has been
divided into two camps over the issue of connections since its earliest days. At
the network layer this has taken the form of a long-running debate over the
merits of “virtual circuits” versus “datagrams.” But even at the data link layer
the partisans of connectionless and the partisans of connection-oriented com-
munications have continued their dispute. The former seek simple, efficient
protocols unencumbered by much overhead; the latter argue that some added
protocol complexity is worth the price if it purchases additional robustness.

Unlikely as it may seem, ultimately this is a philosophical disagreement
over what constitutes the transport (locational) actuation of data. Recall that in
Chapter 1 we illustrated the issue with the paradox of the tree falling in a forest
when no one is present to hear it: Does it make a sound? To the connection-
less advocates, data that has been transported has been sent, irrespective of
whether any recipient was present to receive it; in other words, the tree makes a
sound. On the other hand, to the advocates of connection-oriented communi-
cations data is not sent unless the destination is ready and able to receive it, and
the best way to ensure this is to secure “permission” from the destination in the
form of establishing a connection; to advocates of connection-oriented trans-
port, the tree makes no sound if no one is present to hear it.

What are the differences between connection-oriented and connection-
less data links? In connection-oriented data links, prior to sending user data
there must be an exchange of management data; this management data initi-
ates/actuates the connection. The management data is exchanged by means of
messages with special formats, different from the message formats used to carry
the client’s data to the destination. If either side of the connection fails to exe-
cute its tasks, then the connection establishment fails (Figure 5.4). This allows,
first of all, for a destination, be it down, busy, or otherwise unavailable, to
decline a connection; the source will not attempt to send data because it now
knows from the destination’s lack of response that this would be pointless.
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In this respect, a connection establishment is an exchange, either explicit
or implicit, of state information by the two link stations. And because the desti-
nation is required to give its permission if the connection establishment is to
occur, failure to do so will convey to the source state information about the des-
tination computer much in the way of Sherlock Holmes’s dog that didn’t bark.
Connection establishment, therefore, is “fail-safe” in that a connection will not
be brought up with a link station that is incapable of receiving data.

The exchange between source and destination can even be extended to
allow a negotiation of connection parameters (Figure 5.5). The station that is
seeking to establish a connection may propose certain values for negotiable
parameters, such as optional protocol features to be supported by the connec-
tion, that is, by the protocol machines. The recipient of the connection request
may accept the proposed parameter values, may decline the connection
entirely, or may propose its own set of values. Other uses for this exchange
of information include security passwords and telephone numbers for dial
circuits.

In part, the advocates of connectionless service base their arguments on
basic principles of modular design, namely, the decomposition of tasks into
their components for the purposes of reuse, seeking what we might call, by
analogy, the “greatest common denominator” (see, for example, a text on soft-
ware decomposition, such as [5]). That is to say, modular design emphasizes
the decomposition into subsets based on common functionality. And from the
point of view of modular design theory, a connectionless transporter is the basic
module. After all, a connection-oriented transporter is built on top of a connec-
tionless transporter by the addition of protocol logic in the form of managers;
and, clearly, the management exchanges that constitute connection establish-
ment requests, responses, and negotiation (if any) are transported without
benefit of connections.

Another argument for a connectionless transporter as the basic module is
that not every client (DTE) needs the assurance provided by the connection
that the destination is ready and willing to accept data. For example, telemetry
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data may be sent irrespective of the destination’s state; all things considered,
just transporting the data is the simplest course of action and the benefits of the
implicit feedback that a connection conveys are not worth the overhead of the
connection management process (establishment and disestablishment). This is
particularly true if the data are sent frequently but not so often that one wishes
to dedicate the resources implied by keeping a connection open. A client that is
content with the greater uncertainties of connectionless service should not be
forced to use a connection-oriented transporter.

All this is not to say that there are no advantages to connection-oriented
communication. Foremost of these, perhaps, is that it facilitates the implemen-
tation of flow control, fault detection and recovery, and other management
tasks. A connection provides a context, a shared frame of reference, by which
the management in the source and/or the destination can communicate state
information concerning, for example, corrupted data or full buffers. In addi-
tion, advocates of connection-oriented protocols argue that, when the volume
of data to be transported is sufficiently large and/or the duration of the
exchanges is sufficiently great, the overhead due to connection management is
small compared to the benefits; with short-lived exchanges, this is not as clear.

In the remaining sections we examine framing, flow control, fault detec-
tion and recovery, and other management tasks.

5.2.3 Workload Management: Time Slicing the Transporter

As we have remarked more than once, in the development of data communica-
tions many ideas were borrowed from the world of operating systems. Indeed,
just as the idea of layering in communications architectures came from the lay-
ered approach to the design and implementation of operating systems, so the
inspiration behind much of the original research in packet switching was the
idea of preemptive multitasking via time slicing the execution of a processor.
The aim in both cases was identical: to treat a shared actual server as a serially
reusable resource, affording multiple clients the appearance of dedicated virtual
servers while at the same time ensuring no client could monopolize the actual
server’s bandwidth by dividing the client’s RFS into multiple pieces, the execu-
tion of which was interleaved with those of other clients.

At the data link layer this division (actuation) is called framing. We
explained in Chapter 1 that time slicing was one form of workload actuation,
namely, workload actuation of degree2. An RFS to transport a unit of data (the
plant) is replicated into k RFSs and the plant is divided into k plants. When
data arrive at the data link layer from upper layer clients (users or applications)
it is up to the data link protocol to ensure that the data are transported. Irre-
spective of whether this involves connections or not, the data link protocol
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encapsulates the data in frames, another term for data link PDUs. Just as a sym-
bol (and corresponding waveform) is the basic module of a plant for a physical
layer transporter, a frame is the basic module of a plant for a data link
transporter.

There are at least two issues in framing: the size of the total frame and
the size of the frame’s header and/or trailer. Technically speaking, the header
and/or trailer are overhead, much like the start and stop bits used in asynchro-
nous line encoding. While these (header and/or trailer) must contain fields to
carry the information (state) necessary for the sending and receiving protocol
state machines to execute, at the same time each extra bit included in these
fields constitutes overhead that is consuming transporter bandwidth that could
otherwise be transporting client data, so the incentive to keeping down the sizes
of header and trailer is obvious. The challenge is finding the optimum balance.

There are two aspects to the size of the total frame: first, the maximum
allowable length of a frame; and second, whether the frame length should be
variable or not. Allowing variable length frames, up to the maximum dictated
by time slicing, accommodates different users and types of data; however,
variable length frames require special delimiter flags and/or frame size fields to
identify the beginning and end of the frames, all of which adds to the overhead
and the total frame length. Most of the data link protocols in use today, both
WAN protocols like SDLC, HDLC, and PPP and LAN protocols like Ethernet
and Token Ring, allow variable length frames.

With fixed length frames, generally referred to as cells, such length and/
or flag fields are unnecessary and hence their associated overhead can be
eliminated. In addition, using fixed length frames is advantageous because the
latency associated with transporting and processing these is relatively constant;
in contrast, with variable length frames, the amount of time required to trans-
port and process the frames at each station is highly variable as it depends on
the length of the frame. This variability in latency is called jitter, and is particu-
larly problematic for multimedia or constant-bit-rate traffic such as voice and
video. Because cells are typically much shorter than frames (53 bytes, compared
to 1500 bytes, for example) their latency is low in addition to being constant;
and small cell size gives fine control over the granularity of delay since a cell
carrying video will not be delayed by a frame carrying a file transfer. The
most important cell-based protocol is Asynchronous Transfer Mode/Broad-
band ISDN, which uses 53-byte cells with payloads of 48 bytes.

Advocates of cell-based protocols argue that another advantage is that
with these the frame (cell) handling mechanisms can be much simpler. Taken
in conjunction with simplified error handling and flow control mechanisms,
all of this facilitates implementation in silicon, allowing very high forwarding
rates. For this reason, there is much interest in high-speed data links and

Data Link Management: Basics 153



networks using cell-based protocols such as ATM. However, recent interest
in such alternatives as PPP over SONET/SDH (RFC 1619) indicates that the
argument is far from settled. For our purposes, we will regard frame-based and
cell-based protocols as merely different implementations or instances of the
same thing, namely, workload managers time slicing a transporter.

Finally we note that if the client is an upper layer protocol that is packet
oriented, then the data link transporter will receive its plant already in discrete
units. There may, however, be a mismatch in the sizes used at the different lay-
ers; what is optimal at the data link layer may not be optimal at the network
layer, for example. After extracting an upper layer SDU from its corresponding
IDU “envelope,” the workload manager in the data link layer has three choices:

1. It may encapsulate one SDU in one PDU.

2. It may divide one SDU between two or more PDUs.

3. It may encapsulate two or more SDUs in one PDU.

The second form of encapsulation is called splitting, and the last is called block-
ing (Figure 5.6).

5.2.4 Workload Management: Flow Control

The aim of employing flow control at the data link layer is to prevent a destina-
tion link station from being overwhelmed by a sending link station that can
generate data faster than the destination can accept it; as we will see later in this
book, flow control is closely related to congestion control and what is called
traffic management. Note that if the recipient lacks capacity to accept a PDU
and hence must discard it, this is a fault no less than if the PDU never arrived or
arrived corrupted. (Admittedly, such an overflow fault is not in the transporter
itself but in the “extended” transporter consisting of the channel/signal pair
and the end systems.) Thus flow control can be considered an instance of fault
management, specifically fault recovery.
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Just as with the question of whether a data link protocol should use con-
nections or not, there are several schools of thought about the question of flow
control at the data link layer. Once again it is a debate between protocol sim-
plicity on the one hand versus protocol robustness on the other. One school,
not surprisingly the same one that argues for connectionless data link protocols,
advocates that in the interests of simple, efficient protocols, no flow control
should be employed. If the destination cannot process all of the frames it
receives, it should discard the excess; if the frames were important, upper layer
protocols will retransmit and may even have workload management mecha-
nisms to control the rate of transmission and avoid more congestion. And, as
with connections, the other school argues that flow control brings benefits that
outweigh the additional complexity and overhead. By implementing flow con-
trol mechanisms, clients can be assured more reliable service and predictable
response times and also avoid the inefficient retransmission of frames discarded
due to lack of resources at the destination.

Three entities are involved in transport (and flow control) at the data link
layer: the sending link station, the transporter (consisting of the physical layer
DTEs, the DCEs, and the channel), and the receiving link station. The diffi-
culty in preventing the sending link station from overwhelming the receiving
is that the two are spatially disjoint and, without some explicit feedback, the
former will be ignorant of those aspects of the latter’s state (buffers, processor
usage, and so on) that might affect its ability to receive more data. In fact, the
feedback need not be so granular: a simple semaphore (yes/no) can suffice to
signal the sending link station to stop sending (Figure 5.7).

This is not to say that flow control must be feedback based; flow control
without feedback is said to be “open loop.” A workload manager using open-loop
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flow control relies on a priori knowledge (measurements and/or estimates) of
the nominal bandwidth of the transporter and/or the bandwidth of the
receiver, and with this information paces the sender to stay below that rate. As
long as the actual bandwidth of the transporter and/or receiver stays at or above
the nominal rates assumed a priori, open-loop flow control can work well.
Another term for open-loop flow control is timer-based flow control: The
workload manager schedules the client’s data according to the clock rather than
any state information about the destination.

However, as we discussed in Chapter 4, open-loop flow control is vulner-
able to uncertainties and variations in the transporter’s bandwidth due to noise,
faults, and other exogenous factors, as well as uncertainties and variations over
the rate at which the destination can receive the transported data. In contrast to
open-loop flow control, which is timer based, closed-loop flow control is state
based. The workload manager at the client receives periodic feedback about the
state of the receiver. This way, as the bandwidth of transporter and/or destina-
tion ebb and flow, the workload manager at the client alters the amount of traf-
fic it allows to be sent. Of course, the state feedback that the receiver sends to
the client’s workload manager is management overhead, consuming transport
bandwidth that could otherwise be used to move client data; the trade-off,
though, is that the destination will not discard frames that arrive faster than it
can accept them, itself an inefficiency if it causes retransmission.

The simplest closed-loop flow control involves the client sending one
block of data (frame) to the destination and then waiting until the latter sends
permission for more to be sent. This is called “stop-and-wait” flow control.
Clearly, this will keep the sending link station from overwhelming the receiving
link station; the receiving link station will not return permission to send more
until it is ready to receive the frame. After a client has sent a frame of data to
the destination, it must then wait (or block) until the destination receives the
frame, processes it, and returns via the transporter permission to send more.

Such “stop-and-wait” flow control can be inefficient in its use of the
transporter’s bandwidth: If the destination is busy or otherwise delayed in send-
ing back permission then the client must wait and, if the transporter’s band-
width is dedicated or otherwise reserved, this is wasted. In addition, a channel
may be able to accommodate multiple frames at one time if the channel is long
relative to the propagation speed of the signal. For example, consider a satellite
channel that is more than 43,000 miles long, with a latency of 0.231 seconds.

If we are transmitting at a rate of 256 Kbps then each bit requires
3.9 × 10−6 seconds and, at the speed of light c = 186,000 miles per second, each
bit “waveform” occupies 0.726 miles of space. If we assume an average frame
length of 125 bytes then that means the 43,000-mile-long channel can accom-
modate 59 frames at one time. Put another way, we can consider the channel as
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being composed of 59 “virtual stages” through which frames transit as they pass
from transmitter to satellite to destination. Assuming the destination station
immediately responded with permission to continue sending, at best a stop-
and-wait protocol would transmit one frame every 0.462 seconds since the
frame must propagate the 43,000 miles and the permission to transmit must
also transit the 43,000 miles, for a total round-trip delay of 0.462 seconds. This
represents a utilization of 0.00845 of the channel bandwidth, which is clearly
unacceptable.

This example also points out another flaw in “stop-and-wait” flow con-
trol. The receiving link station must now be given sufficient priority at the des-
tination system to minimize the waste of bandwidth. This means that other
processing may be disrupted in order to service the data link, an unacceptable
situation in many or even most instances. The problem is that most if not all
receiving systems are executing many tasks in addition to processing incoming
frames of data; and as the delay increases until a message can be sent carry-
ing permission for the client to send more data, the transporter efficiency
plummets.

The key to solving this problem is that most link stations have memory
to accommodate more than one frame; stop-and-wait, it turns out, is unneces-
sarily protective of memory at the expense of transporter and processor
bandwidth. With this in mind it is possible to increase the efficiency of the
transporter and reduce the disruption to the receiving system if we modify
the flow control to allow multiple frames to be sent before the workload man-
ager must receive permission to send more. This accomplishes two things: (1) It
fills the channel and thus increases the utilization of the transporter’s band-
width and (2) it allows the destination link station to receive frames and just
store them in buffers without having to drop everything when a frame arrives to
send permission for another to be sent. Another advantage is that it reduces the
overhead of permission messages by reducing their frequency.

This is an example of pipelining, which exploits concurrency in the trans-
porter and/or destination by allowing multiple outstanding frames. This tech-
nique has long been used in the design of high-performance CPUs, where
the pipelined architectures allow multiple instructions to be in execution at any
given time. One of the key design parameters for a pipeline is its depth: What is
the optimal number of stages? The equivalent question for data link flow con-
trol is this: What number of outstanding frames is optimal?

The answer is complicated by several factors. First, some link stations
(and their systems) will have more memory than others; if the allowable
number of outstanding frames is made too large then smaller systems will be
overwhelmed and run out of buffers, defeating the flow control. As we will see,
the solution to this employed with protocols such as SDLC and HDLC has
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been to allow two different values for the number of outstanding frames, 7 and
127, to meet the needs of different types of systems and different types of chan-
nels. A second complication is that flow control is frequently coupled with fault
detection and recovery, particularly in the means of identifying frames for the
purpose of fault notification and retransmission. What is optimal for flow con-
trol may result in poor fault recovery performance.

We will examine the relationship between flow control and fault manage-
ment more closely in the next section.

5.2.5 Workload Management: Reliable Versus Best Effort Transportation

5.2.5.1 Simple Versus Robust Data Link Protocols
When we consider fault management at the data link layer, an obvious question
is why is it needed if we employ error control coding within the physical layer
transporter? The answer is that Shannon’s coding theorem only proves that we
can build an encoder able to make a channel arbitrarily reliable, not that ideal
transporters are realizable. Implementation trade-offs and the law of diminish-
ing returns inevitably result in transporters with finite reliability. Given this
fact, the question becomes: What maintenance tasks should a data link proto-
col execute to increase the reliability and/or availability of the transporter?

As with connections and flow control, the consensus on this has been
changing, particularly during the last 10 years. Prior to this, the conventional
wisdom about the data link layer was:

The function of this layer is to convert an unreliable transmission channel
into a reliable one for use by the layer above it (i.e., the network layer). The
raw data bit stream is organized into frames each containing a checksum
for detecting errors. [2]

This is generally effected by retransmission of corrupted frames, hence the cen-
tral role of workload management. The advantage to reliable data link proto-
cols is that they enable a simplified upper layer protocol to assume that any data
passed to it are uncorrupted. Of course, this reliability comes at a price, notably
greater protocol complexity. In addition, there is the transport and storage
overhead that comes with retransmission or other replication of the data.

But the advocates of protocol simplicity argue that all this has become
unnecessary, that fault management is not needed at the data link layer, not-
withstanding the inevitable faults in the underlying transporter, as transmission
facilities have increased in quality (see Table 5.1).

To the advocates of simplicity, the basic service provided by a transporter
should be unencumbered with the management complexity and overhead
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needed to respond to faults. Not all clients will care if the occasional fault
occurs in the transportation of data, and these should be allowed to avail them-
selves of a simple transporter.1 Finally, between these two extremes, a compro-
mise has the data link protocol provide fault detection but not any recovery.

5.2.5.2 Fault Detection
Fault detection, whether as an end in itself or as a means to fault recovery,
involves monitoring the transporter. However, as was discussed in earlier chap-
ters, direct instrumentation of distributed parameter servers such as transport-
ers is not really possible. The solution is to use some form of indirect inference
mechanisms, that is, estimators. The mechanisms of fault detection used in
data link protocols most often used are remarkably similar to those we saw at
the physical layer, namely, some form of redundancy data encoding which,
when it arrives at the destination, can be used to estimate whether a fault
occurred in transit that resulted in corruption of the frame. These can range
from simple checksums to outright replication of the entire frame; in this last
case, the fault detection works by simply comparing, symbol for symbol, the
received frames and detecting inconsistencies.

By far the most important mechanism, however, is the cyclic redundancy
check (CRC). This involves the sending link station generating (via an estima-
tor; see Chapter 3) a CRC using the same generator polynomial methods we
discussed in Chapter 3. Note that a CRC is also called a frame check sequence
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Table 5.1
Bit Error Rates for Communications Channels

Type of Channel Bandwidth BER

Telephone circuit, ca. 1971 300–2400 bps 10−4 to 10−6

802.3 Ethernet 10 Mbps 10−8

802.5 Token ring 16 Mbps 10−9

FDDI 100 Mbps 2.5 × 10−10

1. For example, clients requesting the transportation of multimedia data (audio or video) do
not care if a small fraction of samples transported is corrupted by faults in the transporter;
the reconstruction processes at the destination are not so fragile that infrequent errors invali-
date the audio or video output. Beyond this, such clients might find little use in retransmis-
sion of corrupted frames because they would arrive out of sequence and could not be
incorporated in any real-time reconstruction of the original data.



(FCS). For example, SDLC uses the polynomial X 16 + X 12 + X 5 + 1 (the so-
called V.41 polynomial [6]) to produce a 16-bit remainder. ATM/BISDN and
PPP, on the other hand, use 32-bit polynomials for greater detection capabili-
ties. Irrespective of the polynomial used, the CRC produced is then appended
to the frame’s trailer and the frame is sent to the physical layer transporter.

Once the frame is delivered to the receiving link station from the physical
layer transporter, it is inspected, first, to determine if the frame conforms to
the protocol’s requirements (length, fields, special delimiting characters, and so
on); this will detect any egregious faults that might have occurred in transit or
at the sending link station. After this, the receiving link station creates a new
FCS/CRC based on the frame as received. By comparing the FCS/CRC that
arrived with the frame (from the source link station) with the new FCS/CRC
thus created at the destination, yet another estimator in the destination link sta-
tion can decide if a fault has changed the header and/or payload of the frame.
This is summarized in Figure 5.8.

This type of fault detection has parallels outside the world of data com-
munications. In the early days of cereal manufacturing, consumers complained
that they had been swindled when the contents did not fill the box to the brim.
Manufacturers (the sender) responded by printing the weight of the contents
on the box, along with the caution that “contents may have settled during ship-
ment.” A consumer (the receiver) thus has a simple fault detection estimator:
Weigh the contents and compare. If the weight at the destination equals the
weight on the box then there is no fault; otherwise, a fault has occurred either
in manufacturing at the sender or in transporting.
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The FCS/CRC estimation is block coding. Recall from Chapter 3 that a
key parameter of a block code is the block size, that is, the number of symbols
on which the code word is based. When a data link protocol includes fault
detection by means of a FCS/CRC, the equivalent parameter is what portion of
the protocol’s frame is used to calculate the FCS/CRC. Some data link proto-
cols, notably ATM/BISDN, provide coverage only for the header, on the prin-
ciple that if the header’s management data are ensured to be intact then any
corruption of the payload can be handled by upper layer protocols if they so
desire, whereas if the header suffers an undetected fault this can lead to a cas-
cade of forwarding faults that will impair the performance of the (composite)
transporter [7]. Other protocols such as SDLC base their FCS/CRC calculation
on the entire frame (minus special delimiters called flags; see later discussion).

5.2.5.3 Fault Recovery: Forward Versus Backward Error Control

Once a fault has been detected, there remains the question of what to do with
the information. As we can see in Figure 5.8, a fault detection estimate is pro-
duced at the destination on the basis of redundant information sent with the
transported data—such as the FCS/CRC. There are three possible destinations
for such estimates:

1. They can be sent to an upper layer protocol machine and/or manager.

2. They can be sent to the sending link station to initiate fault recovery
via retransmission.

3. They can be used locally to initiate fault recovery if there is sufficient
redundant information.

In this section we will concentrate on the last two of these possibilities, which
are generically called backwards error control (BEC) and forward error control
(FEC), respectively.

We explored forward error control at the physical layer in Chapter 3.
There FEC is realized via error control coding, which is basically a sophisticated
mechanism for introducing redundancy into the data so that they could with-
stand faults better. At the data link layer the FEC redundancy is more straight-
forward: Make n copies of the data to be transported, from which the original
data are reconstructed at the destination, most often by simple comparison
logic. An advantage of FEC and its concurrent replication is that the impact of
any faults can be hidden from destination and sending link stations, assuming
that the estimator at the destination is able to decide with sufficient confidence
the original frame from the frame(s) that arrived. But because of its overhead
(see later discussion) FEC is not often used at the data link layer.

Data Link Management: Basics 161



Backwards error control, on the other hand, involves retransmission of
one or more copies of the data sent only in the event of a fault. It is for this rea-
son that we say the workload manager in the sending link station makes its
decision to introduce redundancy closed loop in the case of BEC and open loop
in the case of FEC. That is to say, whereas the workload manager in FEC auto-
matically makes one or more copies of the frame and sends them to the destina-
tion link station, in BEC the workload manager is more sophisticated: Given a
frame to be sent, it makes a copy and stores it locally; only if it gets feedback
from the destination link station indicating that the frame has been corrupted
by a transporter fault does it retrieve the copy from storage and send it over the
channel.

Obviously, if the fault recovery occurs only in response to feedback from
the destination, the nature of the feedback is critical to the operation of the pro-
tocol. Here there is an important distinction to be made between positive and
negative acknowledgments. Some of the first data link protocols to incorporate
feedback for fault detection used feedback only to indicate a fault. If a frame
arrived that had been corrupted then a message, called a negative acknowledg-
ment, indicates this was sent to the sender. On the surface this would seem
perfectly adequate, but there is a difficulty with using only negative acknowl-
edgments. What if the negative acknowledgment is lost or otherwise distorted
beyond recognition? The sender will never learn of the original fault and will
proceed on the assumption that all is well.

It is for this reason that the basic BEC mechanism relies instead on
positive acknowledgments, which indicate that a frame has safely arrived. If the
sending station does not receive such an acknowledgment within a specified
interval of time after it sends a frame then it estimates a fault has occurred
and initiates recovery procedures consisting, at least initially, of retransmission.
This is distributed fault estimation in that there is a redundancy-based estima-
tor in the destination link station that covers (detects) one class of faults while a
timer-based estimator in the sending link station covers another class of faults
(Figure 5.9).

This is called positive acknowledgment with retransmission (PAR), also
known as automatic repeat request (ARQ), and forms the basis for most reliable
data link protocols. Two things are worth noting about PAR protocols. First,
they introduce a potential instability into the client-transporter dynamics: if an
acknowledgment is delayed because the receiving link station (end system) is
busy then the sender may wrongly estimate a fault and initiate retransmission.
The consequence of this will be to increase the processing load on an already
overburdened destination, exacerbating the delays and, in effect, pouring fuel
on the fire. Second, PAR is somewhat problematic in a connectionless environ-
ment since, in the absence of retransmission limits, a sending link station may
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continue to resend frames to a destination link station that is not even powered
up and able to receive frames, on the incorrect inference that an absence of
acknowledgments indicates only channel faults.

The relationship between fault recovery and flow control stems from their
mutual reliance on feedback from destination to sending link station. If a pro-
tocol employs flow control then it already has a mechanism for sending feed-
back from the destination to the sending link station. The acknowledgment of
a frame is also permission to send more data. The obvious next step is to extend
this feedback from just simple flow control pacing (permission to send) to
include requests for retransmission. The extension is natural: a pacing message
requests sending unsent frames while a retransmit message requests sending
frames already sent but which arrived corrupted by faults.

As with flow control, the challenge comes once we allow multiple frames
outstanding. We must devise a way to identify each of these frames so that the
destination can signal the source about which of many frames received have
been corrupted by faults. How does the receiving link station indicate in its
feedback which frame has been corrupted by a fault and thus requires retrans-
mission? In the case of stop-and-wait flow control, the difficulty does not arise
because only one frame is sent at a time. The challenge is to reduce the ambigu-
ity in such feedback by means of some sort of identifier that “tags” each frame
so that when the receiving station detects a fault, it can reference the frame by
its identifier in subsequent feedback to the sending station.

One means of doing this is with sequence numbers. Although sequence
numbers are generated in various ways, the most common is cyclic or modulo
numbering. The sequence numbers range from 0 to 2n − 1, after which they
wrap back to 0. This allows a sequence number to fit in an n-bit field in the
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frame’s header. This is commonly referred to as a sliding window (Figure 5.10).
Note that there are separate send and receive indicators (Ns and Nr) since the
data link protocol is managing bidirectional transporters.

When a receiving link station determines that a frame has been corrupted
by a fault during transportation, it is said to reject the frame by its feedback,
either explicitly with negative acknowledgment or implicitly by sending an
indicator message to the sending link station that this frame needs to be retrans-
mitted. Those data link protocols that employ BEC may differ in their granu-
larity of rejection. If a frame is corrupted, does the protocol offer a feedback
mechanism such that the individual frame is identified or must a group of
frames be rejected? The latter is called go-back-n, and the former is called selec-
tive rejection. Obviously, selective rejection results in fewer frames requiring
retransmission. However, the cost is greater buffering at the destination since,
depending on the extent of SDU fragmentation, packet reassembly may require
storing frames until the missing frame is received.

The overhead that comes with fault management is of two types: trans-
port overhead, that is, the additional transporter bandwidth required by the
fault management mechanisms and their communications; and storage over-
head, to hold the additional plant and/or state information required. The
amount of overhead increases as we move from best effort to fault detection to
fault recovery via BEC and FEC (Figure 5.11).

Transport overhead is the most direct. Fault detection by means of a
FCS/CRC field introduces some overhead to the transportation of each frame
corresponding to the size of the FCS/CRC field. BEC further increases the
amount of transport overhead, since the FCS/CRC is still present and now we
have the additional overhead of the acknowledgments and of the retransmitted

164 Protocol Management in Computer Networking

0

1

3

2

4

5

6

7

Nr

Ns

Figure 5.10 The modulo 8 sliding window.



frames. The exact amount depends on the number of retransmissions, which
will depend on the quality of the underlying transporter as well as such factors
as the size of the frames. On the other hand, the concurrent replication (send-
ing n copies of each frame) of FEC necessarily leads to an n-fold increase in the
bandwidth of the transporter.

Storage overhead is a consequence of retransmission mechanisms: the
sending link station must have buffers (memory) to store the frames that
have been sent until they have been acknowledged by the destination link sta-
tion—or the transporter has been deemed to have suffered a persistent fault
that retransmission by definition cannot resolve. Most reliable data link proto-
cols that use retransmission have implementation-dependent limits for the
number of times they will retransmit before estimating that a persistent fault
has occurred; note that unsuccessful retransmissions are themselves “measure-
ments” from which such estimates are drawn.

Finally, we should note the relationship between fault recovery and fram-
ing. We saw in Chapter 3 that error control coding relies on grouping symbols
into larger units to gain much of its power. At the data link layer, this also
is true. A data link frame constitutes the minimum unit of recovery because
it is the unit of retransmission. As such, retransmission brings us back to the
question of the maximum size for a frame: As frame size increases, so to does
the amount of data that must be retransmitted. In addition, as the frame size
grows, so does the probability of a fault that corrupts the frame. These trade-
offs can be analyzed mathematically by protocol designers to find the optimal
size frame/unit of recovery.

Data Link Management: Basics 165

Fault detection
via FCS/CRC

Fault recovery 1:
Backward error control

Fault recovery 2:
Forward error control

Transport
overhead

Storage
overhead

Best effort

Complexity

Figure 5.11 Complexity versus overhead of reliability actions.



5.2.6 Topology and Addressing

We know by definition that every transporter connects at least one client and
one destination; and that, in most instances, there is both a client and a destina-
tion at each location. If a transporter connects only two locations then its topol-
ogy is said to be point to point. The original data networks were built out of
bidirectional point-to-point data links. On the other hand, if a transporter con-
nects more than two locations its topology is said to be multipoint (also known
as multidropped). With the introduction of Bisync and later SDLC, multi-
dropped data links became common and, since the introduction of LANs, they
have become the rule in many campus environments.

Coupled to topology is the question of addresses. With point-to-point
data links, there is no need to actually identify the source or destination of each
frame: An address is implicit in each RFS (frame). If station A sends data, it can
send them to only one location, namely, station B. Likewise, if B sends data
then the only destination is A. After all, with only two stations on the data link,
if a frame did not originate locally then there is little doubt as to where it must
have come from. And because addresses represent additional management over-
head, omitting them when possible only increases the bandwidth available for
transporting client data. We call such addressing implicit. On the other hand, if
the data link is multipoint the addressing must be explicit: when a third station
is added, implicit addressing is no longer adequate. If A issues an RFS to the
data link and it does not qualify the request with an address then the data link
(i.e., the link stations) lacks sufficient information to remove the ambiguity in
the request.

Addresses can also be characterized by their span of uniqueness. This
refers to the extent to which any other location can have the same address. The
larger the span of uniqueness the more stations needing unique addresses and
the larger the addresses must be. Obviously, if explicit addresses are used then,
with the exception of broadcast and multicast aliases (addresses), these must
be unique within the span of the data link. We say such addresses are locally
unique. In the early WAN data link protocols, addresses were either implicit
or locally unique. There were two reasons for this: first, the bandwidth neces-
sary to transport addresses (in frame headers) is management overhead and
WAN bandwidth was both scarce and expensive; and second, globally unique
addresses were unnecessary because the scope of a data link protocol is a single
data link transporter. Global uniqueness was reserved for layer 3 addresses,
where they were necessitated by the nature of multitransporter concatenations.

The advent of LANs, however, brought globally unique addresses which
changed this picture in ways that had deep ramifications for the way we con-
catenate data links; notably, bridging and layer 2 frame switching would not
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be possible with locally unique addresses. Why did the early designers of LANs
opt for globally unique addresses? In part, because they could. The dramatic
increase in LAN bandwidth, by three, four, or even greater orders of magnitude
over the bandwidths of typical WAN data links, meant that the overhead asso-
ciated with globally unique addresses was much less important. This is reflected
in the 48-bit addresses chosen by the IEEE 802 committee versus, for example,
the 8-bit addresses used by SDLC and its daughter protocols.

Taking these factors together, we can see three possibilities:

1. Implicit addresses (example: PPP);

2. Explicit addresses—locally unique (example: SDLC); and

3. Explicit addresses—globally unique (example: 802 LANs).

Addressing raises other issues. First of all, how are addresses determined
and what entity assigns them? Second, a link station must decide if it is the
destination of the plant. A surprising consequence of explicit addressing on
multipoint data links is the requirement it brings for estimation. The question
of interest to the link station is this: Is this frame intended for me? Reading
(= measuring) the address in the frame is insufficient to answer this. Instead,
the question (“Is this frame for me?”) can only be answered by comparing the
frame address and the station’s address and aliases, if any. This means that
an estimator is required, since the information (variable) of interest (a binary
variable since either the data/information is for the station or it is not—there is
no intermediate possibility) can only be estimated.

5.2.7 Workload Management: Scheduling the Data Link

In the discussion of data link protocols up to this point, we have yet to broach
the central issue of workload management. How and where is the execution of
the workload of the data link scheduled? Because the physical layer transporter
is a server with finite bandwidth and finite reliability, we know the requests of
competing clients cannot all be executed as they arrive. As such, there must be
some workload management for allocating the transporter to clients, and it is
the data link protocol that specifies how these mechanisms execute their tasks.
All data link protocols, from Bisync to SDLC and from Ethernet to ATM,
allocate (i.e., schedule) the physical layer transporter. To do this they contain
workload schedulers. The different approaches to such scheduling—centralized
or distributed, open loop or closed loop—should not be allowed to obscure this.

The exact workload management required depends in part on the topol-
ogy of the underlying transporter, its task set, and its tasking. For example,
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no workload management is required for either simplex (monodirectional) or
full-duplex point-to-point data links because in each case there is no conflict for
the services of the data link. In contrast, workload management is required
for duplex (full or half ) multipoint or half-duplex point-to-point data links
precisely because two or more clients may wish to use the transporter at the
same time; in the latter case this is called “turning around” a half-duplex link.
The analogy is with an intersection of two roads. If there is no stop sign or
other “rules of the road” allocating the intersection, then an accident is inevita-
ble. Such is also true of shared transporters. The data link protocol enforces the
rules of the road for sharing the data link, preventing the otherwise inevitable
faults as clients interrupt each other.

Such workload managers can be characterized by two principal parame-
ters: type of control (open versus closed loop) and, when the plant being
managed is distributed, locus of control (centralized versus distributed). With
centralized management, a single scheduler is responsible for allocating the
transporter (data link) to competing clients. With distributed management, on
the other hand, each link station contains its own scheduler and these collec-
tively allocate the transporter. We have already seen that such distributed
management implementations with both flow control and fault management,
particularly where schedulers and/or estimators are located at both source and
destination locations (link stations), are common in data link protocols.
Extending this to overall scheduling is straightforward, albeit at the price of
increased complexity. Indeed, this is an area where the trend has run toward
more protocol complexity rather than less.

In addition, these protocol workload manager(s) may be either open loop
or closed loop depending on what information about the state of the data link
is required by the scheduler(s). Open-loop workload management means there
is no measured information on the status (busy or idle) of the transporter, that
is, if it is currently executing another station’s transport task. Closed-loop
workload management implies the opposite: The schedulers receive measure-
ments and/or estimates of the transporter’s status. For example, recall that in
Chapter 4 we saw that instrumentation is built into Ethernet MAUs precisely
to monitor the status of the data link.

Although this theoretically gives four possible types of workload manag-
ers, in practice there are really only two: centralized/open loop and distrib-
uted/closed loop. With centralized control the workload manager does not
need to monitor the transporter’s status because it knows, from its past and
present scheduling decisions, whether the transporter is busy or idle. Closed-
loop monitoring is unnecessary if we assume that all the clients heed the sched-
uling authority of the workload manager; and if a client transmits without
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permission this is a fault, meaning that any monitoring is effectively part of
fault management.

On the other hand, closed-loop control is integral to most realizations of
distributed workload management, notably the LAN protocols such as Ether-
net and Token Ring. When two or more autonomous workload managers are
scheduling a shared transporter, one of the simplest ways to coordinate their
actions is for each to monitor the transporter to see if it is executing another
client’s task before attempting to allocate the transporter to its own client.
The two most common types of distributed control are random-access proto-
cols such as with Ethernet that involve monitoring the transporter directly, and
sequential access protocols such as Token Ring or FDDI where the monitoring
is of a common semaphore called a token that is set by a workload manager
when it allocates the transporter to itself. Although such coordination conceiva-
bly could be realized via open-loop methods using timers, this type of dis-
tributed control is seldom encountered because of potential difficulties in syn-
chronizing stations.

Table 5.2 summarizes the various combinations.
Centralized workload scheduling is also called master/slave because the

single scheduler that decides the execution of the data link is the master of the
data link, and clients in all the other stations are slaves, dependent on the mas-
ter for permission to send. Another term for the master is the primary link sta-
tion (PLS) while the slave(s) are called secondary link station(s). Master/slave
workload scheduling functions quite well in terminal-oriented computer net-
works because of the asymmetry of processing power and storage that typified
computing until relatively recently, where the mainframe and/or its com-
munications controllers had much more memory and CPU cycles than was
economical to put in the vastly more numerous terminals and/or terminal con-
trollers. Bisync and SDLC are the main data link protocols that use centralized
control (Figure 5.12).

The primary advantage to master/slave workload management is the rela-
tive simplicity of the data link protocols. The disadvantages, however, should
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not be discounted. First of all, any centralized mechanism constitutes a single
point of failure. If the primary link station fails, then the entire data link is dis-
abled unless there is a fallback mechanism. In addition, master/slave workload
management is not conducive to any-to-any data links. If a secondary link sta-
tion cannot send data to another secondary link station unless given permission
by the primary link station, then this introduces additional delay and traffic on
the data link. However, the deficiency of master/slave protocols with respect
to direct communication between secondary link stations is less important in
terminal-oriented network protocols (such as SNA) because of the intrinsically
host-oriented nature of the traffic flows.

Distributed workload scheduling is considerably more complicated than
centralized scheduling, not least because of its concomitant requirement for
monitoring the transporter (feedback) (Figure 5.13).

Distributed workload scheduling is at the heart of so-called peer data link
protocols, most notably the LAN protocols such as Ethernet, Token Ring, and
FDDI. As we remarked earlier, such peer control falls into two categories:
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random access and sequential access. These protocols were not possible before
the VLSI breakthroughs of the 1970s, because the complexity of their imple-
mentations would have made them prohibitively expensive. In addition, as we
pointed out earlier, there was really no need for peer protocols supporting any-
to-any transport when the computing environment was terminal oriented and
all the computing power was located in mainframes or even minicomputers.
Only with the explosive growth of desktop computing, first in the Unix work-
stations and then with PCs and Macs, was the opportunity ripe for LANs. We
explore LAN protocols in more depth in Chapter 8.

5.2.8 The Data Link in Multiprotocol Networks

The data link layer is obviously an intermediary between the protocol layers
above it and the physical layer below it. The physical layer, from DTE to DCE
to channel to DCE to DTE, appears as a transporter to the data link layer.
Likewise, the data link layer’s encapsulation of the physical layer gives the
appearance to the protocol layer above it that it is just a transporter. This is
the inheritance property we discussed earlier.

This brings us to the last topic in this chapter, namely, the question of
supporting more than one upper layer protocol. Data links were originally part
of monoprotocol networks, that is, networks that are homogeneous in both the
end systems and intermediate systems. When there is just one type of upper
layer protocol then all the data passed to and from the data link protocol can be
treated the same. This, in turn, simplifies the data link protocol. Multiplexing
of multiple upper layer clients is completely invisible to the data link protocol,
as is the demultiplexing at the receiving end. The receiving link station merely
passes the contents of the information frames to upper layer protocol, where
the demultiplexing is handled by looking into the packet headers. With the
progenitor of modern data link protocols, SDLC, this was not a problem
because its use was proprietary to SNA and hence used only in monoprotocol
networks.

On the other hand, when two or more upper layer protocols are sharing a
data link, the invisibility of the upper link protocols cannot be preserved for
one simple reason: the data link protocol machines cannot parse the upper layer
SDUs carried in the payload of data link frames to determine to which protocol
they belong. To a data link protocol machine, an IP packet and an SNA packet
are indistinguishable; they are merely random bits that cannot be resolved
into packet headers, address fields, and so on. And, unlike the monoprotocol
case, upper layer demultiplexing cannot be handled without some additional
information since it is impossible to tell a packet’s protocol type by inspecting
the bits.
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This became an issue with the emergence of multiprotocol end systems
and intermediate systems (routers). Once these came on the scene in the mid-
1980s the problems posed required a solution, which was provided by the
Xerox Palo Alto Research Center’s networking group. This was the use of a
protocol type field, an additional field in the data link PDU header that identi-
fies the type of upper layer protocol SDU being carried in the payload of the
frame. A data link protocol that supports a protocol type field in effect creates
virtual data links, each dedicated to a given upper layer protocol. Figure 5.14
shows a PPP link that is transporting upper layer protocol data units for three
different protocols. In effect, each of these upper layer protocol clients thinks it
has a dedicated data link when in fact all are multiplexed over a single PPP
data link.

5.3 Summary

In this chapter we have developed a management taxonomy for the classifica-
tion and understanding of data link protocols, although we again note that
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much of the taxonomy is applicable to protocols at any layer. We also briefly
explored the hierarchical structure of layered communications architectures
and the role played by data link protocols in such hierarchies.

The taxonomy, as we saw, involves four basic criteria: (1) whether the
data link protocol requires connection establishment prior to sending data;
(2) the nature of the time slicing that the protocol effects, that is, variable versus
fixed length PDUs; (3) whether flow control is implemented, enabling a desti-
nation to throttle (workload actuate) a source; and (4) whether fault manage-
ment is effected and if so to what level (fault detection or fault recovery). In
addition, to fully characterize a protocol we saw that it is necessary to discuss
the topologies (of the physical layer transporter) that it can manage as well
as its ability to support multiple upper layer protocols. We also discussed the
implementation of the management mechanisms involved: centralized versus
distributed and open loop versus closed loop and the trade-offs entailed in the
various combinations.
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6
Data Link Management: SDLC and HDLC

6.1 Introduction

Now that we have examined in some detail the generic characteristics of data
link protocols, it is time to examine some actual protocols used in real-world
networks. Given the diversity of data link protocols, we will divide our exami-
nation into several parts. The first part, which occupies the balance of this
chapter, focuses on the so-called “serial” protocols and specifically on the family
of bit-oriented protocols that includes IBM’s Synchronous Data Link control
(SDLC) and the High-level Data Link Control (HDLC).

The protocols represent different design trade-offs. This is not surprising
given the different eras in which they were developed: SDLC is a product of the
late 1960s/early 1970s (pre-VLSI), whereas HDLC was developed in the mid-
to late 1970s as memory and CPU power decreased dramatically in cost. In
addition, SDLC was designed to manage a multipoint link of terminal control-
lers and other devices with limited resources (processing power and storage). As
a consequence, SDLC opted for centralization of most decision-making and
management authority. SDLC is also a product of its times in that it is designed
to run over very noisy channels; as such, much of SDLC’s management is con-
cerned with fault detection and recovery.

Next we examine HDLC, which as we indicated was designed when the
advances in integrated circuits had greatly reduced the costs of distributed con-
trol. HDLC is a superset standard, including SDLC as a protocol subset. We
focus on the HDLC subset known as Asynchronous Balanced Mode (ABM).
HDLC/ABM is a peer protocol connecting two link stations over a point-to-
point channel. The two link stations are symmetric; neither is master nor slave
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of the other. In part, HDLC/ABM’s importance stems from its incorporation
into a variety of other standards, notably the X.25 family of protocols, where
it is known as LAP-B and serves as the data link protocol; narrowband
ISDN, where a variant called LAP-D is used over the D channel; and even
modems, where a variant called LAP-M is used by smart modems to negotiate
such features as compression and encryption.

With both protocols we will seek to identify the management tasks
involved. We will explore the protocols and map their management tasks onto
our client/server and workload management/bandwidth management model.

6.2 SDLC

Synchronous Data Link Control (SDLC) was introduced in 1974 as the serial
data link protocol for IBM’s Systems Network Architecture (SNA), one of the
first comprehensive layered communications architectures developed. We note
that SDLC owes much of its design to an earlier IBM protocol called Bisync, a
so-called byte-oriented protocol. Byte-oriented protocols are intimately coupled
to character sets; in contrast, bit-oriented protocols are transparent to character
sets, and hence are better suited to handle the transmission of digitized media,
computer programs and data, and so on.

In terms of the data link taxonomy we established in the last chapter,
SDLC is connection oriented, it uses variable length frames, it employs flow
control, and it provides both fault detection and fault recovery. SDLC is a mas-
ter/slave protocol. Each SDLC data link has a primary link station (PLS) and
one or more secondary link stations (SLSs). The PLS has overall control of the
data link, meaning the physical layer transporter and the SLSs. SDLC supports
both point-to-point and multipoint data link topologies; however, SDLC in
multipoint topologies does not allow direct communication between secondary
link stations.

Part of the reason that SDLC was built on a rigid master/slave model is
because of its intended use as a terminal-handling protocol. In addition, given
the expense of processor bandwidth and memory, at the time (early 1970s),
there was considerable cost advantage to having the protocol’s management
“intelligence” centralized in one link station rather than replicated at each link
station. And the designers of SDLC sought a data link protocol that was robust,
albeit at the price of considerable complexity. In the words of one of SNA’s
early architects, with SDLC the

… objective is to give the effect, so far as the other layers of the communi-
cation system are concerned, of a highly reliable link, even though
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retransmissions may be needed. This requires that the DLC level itself be
able to detect errors and to correct those errors without outside interfer-
ence [i.e., management]. [1]

6.2.1 SDLC Task Set and Tasking

6.2.1.1 Transporter Topology and SDLC Task Sets: Nominal
Versus Effective

To define the task set of an SDLC data link, we first start with the task set of
the transporter (that is, the channel) being managed by the data link protocol.
The task set of a bidirectional point-to-point link is {A1 → A2, A2 → A1} where
A1 and A2 are the two link stations. With a multipoint link that provides any-
to-any transportation between k stations Aj, j = 1, 2, …, k, there are k (k − 1)
tasks in its task set: {Ai → Aj, → Aj → Ai, i and j different}. SDLC, however, is
not an any-to-any protocol. It is logically a hub and spoke topology, with only
the PLS able to communicate with every other station. With SDLC, therefore,
the task set is {PLS → A1, PLS → A2, …, PLS → Ak; A1 → PLS, A2 → PLS, …
Ak → PLS} where A1, A2, …, Ak are the secondary link stations; this is because
the secondary link stations cannot have direct communication (see Figure 6.1).

Because SDLC is connection oriented, we need to distinguish between
what we will call the nominal task set of the SDLC data link versus what we will
call its effective task set. The nominal task set of an SDLC data link consists of
the transport actuations between the PLS and the SLS(s) attached to the com-
munications channel. The effective task set, on the other hand, consists of the
transport actuations between the PLS and the SLS(s) attached to the communi-
cations channel that have connections to the PLS. At any given moment, these
are the only tasks the SDLC data link can execute.
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Clearly, the effective task set is a subset of the nominal task set. The
nominal task set is determined by the topology of the data link, in particular,
the addresses of the SLS(s), whereas the effective task set is determined by the
topology of the data link and the state of the SLS(s). Whereas the nominal task
set is relatively static, the effective task set changes as secondary link stations are
activated and deactivated; or suffer faults and are “repaired” by management
intervention. These are the principal bandwidth management tasks of the PLS.
In the next section we discuss the mechanisms by which the PLS activates and
deactivates link stations; fault recovery is discussed in a later section.

6.2.1.2 SDLC Tasking: Two-Way Simultaneous Versus Two-Way
Alternating

In addition to supporting point-to-point and multipoint topologies, SDLC
data links support two types of multitasking: sequential, or half-duplex, mean-
ing one transport task at a time, and concurrent, or full-duplex, meaning
(in this instance) two transport tasks at a time. In SDLC these are referred as
Two-Way Alternating (TWA) and Two-Way Simultaneous (TWS), respectively.
TWS SDLC (full-duplex) means that concurrent transport is possible in both
directions (Figure 6.2). In this case, because of SDLC’s task set one of the tasks
necessarily is from the PLS to an SLS, and the other is from an SLS to the PLS.

With a master/slave protocol like SDLC, what does this mean? Consider
a point-to-point SDLC link. Because with SDLC the secondary station cannot
send without permission of the primary station, this limits one advantage
of full-duplex communications, namely, unconstrained bidirectionalism. With
SDLC’s master/slave control, the principal advantage of full-duplex communi-
cation is that the PLS can send at any time, including sending control infor-
mation to the secondary station concerning communication in the reverse
direction (i.e., from secondary to primary). The PLS does not have to share the
transporter with any SLS, which it must when the data link is TWA. This in
itself is not an inconsiderable advantage.
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Support for a TWS operation requires several things. First, the PLS must
be multitasking, that is, able to send and receive simultaneously. On a point-
to-point link, the same holds true for the SLS. If the PLS is able to send and
receive at the same time, then its partner SLS must be able to as well or the
capability will be wasted. On the other hand, on a multipoint data link the PLS
may be capable of TWS operation while the SLSs are capable of only TWA
operation; the PLS simply sends to one station while it receives from another.
(This does not violate the restriction that only one poll is possible at a time
since the PLS never polls itself.)

The second requirement for exploiting TWS SDLC is that the channel it
uses should be FDX. The tasking of the data link is not independent of the
tasking of the underlying physical transporter. Recall from earlier chapters that,
using standard line driver technology, a two-wire facility cannot support con-
current multitasking; the two lines can carry HDX signals from A to B or from
B to A but not both signals simultaneously. To achieve concurrent multitask-
ing, that is, FDX, the solution generally involves a four-wire facility, where one
pair of wires carries the A → B signals while the other pair carries the B → A
signals. An alternative is to use frequency-division multiplexing to split the
signal “space” into two or more bands, each of which can carry signals inde-
pendently of the other.

Four scenarios correspond to the four possible combinations of SDLC task-
ing (TWA and TWS) and channel tasking (HDX and FDX) (see also Table 6.1):

1. Single-tasking communications channel/Single-tasking link stations:
TWA link stations connected by an HDX channel. Because the link
stations cannot handle concurrent sending and receiving, nothing is
lost by using the HDX channel.
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Table 6.1
SDLC Versus Channel Tasking

Communications
Channel SDLC Link Station

TWA TWS

HDX Scenario 1 Scenario 3

FDX Scenario 2 Scenario 4



2. Single-tasking communications channel/Multitasking link stations:
Theoretically, nothing prevents implementing a TWS link station
running over an HDX communications channel. However, an HDX
channel vitiates the advantage of a TWS link station, namely, that it
can concurrently (simultaneously) send and receive data. Therefore,
this is seldom used.

3. Multitasking communications channel/Single-tasking link stations: If
all the stations on an FDX communications channel are TWA, then
at any given time the channel will be executing only one task. This
wastes the channel’s capability to execute two tasks concurrently,
namely, from the PLS to an SLS and from an SLS to the PLS.

4. Multitasking communications channel/Multitasking link stations:
TWS stations on a FDX channel permit full exploitation of their
respective capabilities for concurrency. If a channel is point to point,
then both the PLS and SLS must be TWS. On the other hand, if the
channel is multipoint, then the PLS must be TWS but the SLSs may
be TWA.

6.2.2 SDLC Frames

SDLC link stations exchange (via the underlying transporter provided by the
physical layer) frames (messages) ranging from RFSs to actuate the state of a
link station to an RFS to send state information to data intended for upper
layer protocol clients. For reasons best known to the protocol designers, in
SDLC the frames (messages) are referred to as “elements of procedure.”

The distinction made in SDLC between primary and secondary link
stations carries over to the frames sent between the two types of link stations.
When a frame is sent from the PLS it is called a command. Likewise, when a
frame is sent from an SLS it is called a response (Figure 6.3). What this means is
that certain frames that either the PLS or SLS can send may be either com-
mands or responses depending on the originating station.

SDLC frames all follow the generic structure shown in Figure 6.4. Every
frame is delimited in front and back by an 8-bit field called the flag ; the flag
consists of a reserved pattern, which is b001111110 (= 0x7E). This pattern is
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never permitted in client data and an SDLC station will “bit stuff ” to prevent
this. When six consecutive 1’s are detected in client data then a 0 is inserted. At
the receiving link station the corresponding inverse operation is performed to
restore the client’s data to its original form. The importance of bit stuffing is
that it ensures SDLC is data or character code transparent; client data can be in
ASCII, EBCDIC (a character set used by IBM’s mainframes), or even in no
character set at all like programs or digitized signals (audio, video, and so on)
because the SDLC sending link station will ensure via bit stuffing that it not
contain the only truly reserved bit pattern, namely, the flag.

The flag in SDLC is critical for several reasons. First, unlike some proto-
cols that include a field specifying the PDU’s length, SDLC relies on the flags
to allow the receiver to parse beginning and end, thereby enabling the receiver
to reconstruct the frame’s length. A second reason for the use of this particular
flag is related to the line encoding. In conjunction with NRZI line encoding,
the leading flag ensures that a receiver will have sufficient time to recover (esti-
mate) the clock before important data are received. (Recall that NRZI inverts
the waveform on a binary zero; too many consecutive 1’s precludes a transition,
and the receiver’s clock reconstruction mechanism can lose synchronization.)
Note that SDLC (and SNA) did not initially recognize a clear demarcation
between the data link and the physical layers, and the initial SDLC specifi-
cation coupled the protocol with the NRZI line encoding we discussed in
Chapter 2.

6.2.2.1 SDLC Addresses
Following the flag, every frame has an 8-bit field for the address of the sec-
ondary link station. This is a very important point about SDLC frames: They
contain a field for only one address, not the two addresses (source and destina-
tion) that one would expect. This works because SDLC permits transport only
between the PLS and an SLS, never two SLSs. The PLS address is always
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implicitly present, whereas the SLS address that is explicitly present is, depend-
ing on the direction of traffic, either the client (source) or destination of the
frame.

SDLC addresses are typically statically assigned when individual SDLC
devices are configured by a network operator or technician. Note that two
SDLC addresses are reserved: the all-zeros address (0x00), which is used for test
purposes, and the all-ones address (0xFF), which is used for SDLC broadcasts
to those SDLC devices that support this capability.

6.2.2.2 The Control Field
Following the address field is the control field, which has several subfields. The
control field indicates which type of SDLC frame it is. The subfields include a
field that identifies the type of frame, a 1-bit field called the Poll/Final bit and,
depending on the type of frame, zero, one, or two sequence number fields for
use in flow control and fault recovery.

There are three types of SDLC frames (Table 6.2). The largest in number
are called unnumbered (also known in earlier SDLC documents as nonse-
quenced) frames; SDLC defines 13 unnumbered frames. These are manage-
ment frames exchanged by link stations primarily for purposes of managing
the connections. The second type are Supervisory frames, three frames which are
exchanged for purposes of flow control and fault recovery. The last type of
frame is called an Information frame (I frame); this is the only frame that can
carry normal user data on an SDLC connection, and constitutes the great
majority of frames exchanged over a typical SDLC data link.

Note that this frame identification uses a form of Huffman encoding (see
Chapter 3): I frames, which are the most common, use a single-bit identifier
while supervisory and unnumbered frames use 2 initial bits augmented by
2 and 5 bits, respectively. This means that there are four possible Supervisory
frames, of which SDLC uses three; and that there are 32 possible unnumbered
frames, of which SDLC uses 13. We discuss these frames and their role in man-
aging an SDLC data link in the next section (Table 6.2).

The Poll/Final (P/F) bit in the control field of every frame is so called
because it means two separate things depending on whether the frame is sent
from a PLS, in which case it indicates a poll or no poll, or from an SLS, in
which case it indicates a final frame. That is:

1. When the frame originates at the PLS the P/F bit is used to indicate
either that the PLS is retaining the transporter for itself to send fur-
ther frames or that the PLS is finished with the transporter and that it
has been allocated to the destination SLS.
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2. When the frame originates with an SLS then the P/F bit (often
shortened to the Final bit) is used to indicate that the frame in ques-
tion is the last to be sent by the SLS (or not).

We will discuss the P/F bit more when we explore workload management.
The last subfields of the control field are dedicated to sequence numbers.

Two uses for such sequence numbers are to identify the frame being sent for
purposes of acknowledging its receipt or requesting its retransmission and to
acknowledge the receipt of SDLC frames that have arrived without fault. These
are designated, respectively, the Ns and Nr sequence numbers. In addition to
their role in fault management, sequence numbers play a part in flow control.
The fact that the quantity of sequence numbers is finite imposes a worst-case
flow control on a station sending frames. Once it has exhausted the sequence
numbers the station must stop sending until its partner link station sends
acknowledgment for some or all of the outstanding frames.

Unnumbered frames lack either Nr or Ns numbers, in part because there
is no room in the control field after setting aside the bits needed for identifying
the type of frame. These frames are referred to as Unnumbered or nonse-
quenced precisely because they lack sequence number identifiers. Supervisory
frames, too, lack sequence number identifiers; on the other hand, they do carry
Nr sequence numbers so they can acknowledge frames received at the same
time as they carry their particular management messages pertaining to flow
control. Finally, the I frame carries both Ns and Nr numbers. The Ns provides
an unambiguous identification of the frame being sent and the Nr number
acknowledges frames that have been received.
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Table 6.2
Bits in Control Field of SDLC Frames (Modulo 7 Sequence Numbers)

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Control Field for Unnumbered
Frames: No Sequence Numbers

1 1 U U P/F U U U

Control Field for Supervisory
Frames: Received Sequence
Numbers

1 0 S S P/F N(R) N(R) N(R)

Control Field for Information
Frames: Sent and Received
Sequence Numbers

0 N(S) N(S) N(S) P/F N(R) N(R) N(R)



The number of bits in the sequence number is obviously a crucial
parameter in determining how well the protocol manages links. If too few bits
are used then a link station will be forced to frequently halt sending, approach-
ing the worst case of stop-and-wait behavior. The original SDLC specification
used 3-bit sequence numbers, which meant that there could be seven outstand-
ing frames. However, as we discussed earlier, when SDLC began to be deployed
over high latency channels, most notably channels using geosynchronous
satellites to relay signals, the result was very poor utilization of total channel
bandwidth (capacity). Most of the time, the channel was idle. The transmitting
station had blocked after sending seven frames since it was waiting for acknowl-
edgments that would not arrive until the receiving station had received the
frames and sent its own acknowledgments.

On the other hand, if too many bits are used then the management overhead
per frame becomes unacceptable, as does the buffer (storage) requirements for link
stations holding frames awaiting acknowledgment. As a compromise, SDLC allows
two different sequence number schemes: modulo 8, which uses 3-bit sequence
numbers; and modulo 128, which uses 7-bit sequence numbers. The control field
of an I frame, which includes two sequence numbers as well as the P/F bit and the
type bit, will either be 8 (2 × 3 bits + 2 bits) or 16 bits (2 × 7 bits + 2 bits) in
length. This is why, as we can see in Figure 6.4, the length of the control field may
be either 8 or 16 bits depending on the modulo number used.

Including the Nr sequence number and the P/F bit in the control field are
instances of “piggybacking,” whereby a single frame effectively serves two or
more purposes. In earlier protocols such as Bisync, polls and acknowledgments
required separate frames, increasing the management overhead and reducing
the bandwidth available to carry client data. By including acknowledgments
and polls in the SDLC control field, the protocol’s designers reduced the need
for separate frames just to poll and/or acknowledge, thereby increasing the data
link’s efficiency.

6.2.2.3 Payload and Trailer Fields
Following the control field is an optional information field for carrying client
data, in the case of I frames, or management data, in the case of certain unnum-
bered management frames. Some unnumbered frames, however, lack any infor-
mation field, as do all the supervisory frames. When data fields are present
SDLC requires that they be a multiple of 8 bits in length. The maximum frame
size determines how large the data field can be, and this is typically a configura-
tion parameter set when defining the link stations.

The next field is the Frame Check Sequence (FCS), which is present in
all frames. The FCS is a 16-bit Cyclic Redundancy Polynomial similar to that
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discussed in Chapter 3. The purpose of the FCS field is to provide a second
level of fault detection beyond that offered by the Physical layer. We discuss the
FCS and its use in fault detection later.

The frame is terminated with a flag identical to the flag that was used at
the beginning. Note that another use for flags is to keep the line up; even when
the PLS has no data to send, it will often send flags to one or more SLSs to keep
receiver estimators synchronized and link stations up. This becomes an issue
when SDLC frames are encapsulated in so-called payload PDUs for tunneling
(see Chapter 12).

Table 6.3 lists all of the SDLC frames. We discuss these and their roles in
the next three sections.
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Table 6.3
SDLC Frames

Frame Name Abbreviation Frame Type

Request initialization mode RIM Unnumbered

Set initialization mode SIM Unnumbered

Set normal response mode SNRM Unnumbered

Request disconnect RD Unnumbered

Disconnect DISC Unnumbered

Frame reject FRMR Unnumbered

Unnumbered acknowledgment UA Unnumbered

Beacon BCN Unnumbered

Configure CFGR Unnumbered

Disconnect bode DM Unnumbered

Exchange station identification XID Unnumbered

Unnumbered poll UP Unnumbered

Unnumbered information UI Unnumbered

Test TEST Unnumbered

Receive ready RR Supervisory

Receive not ready RNR Supervisory

Reject REJ Supervisory

Information I Information



6.2.3 SLS Modes of Operation

Link stations are finite state machines (protocol machines). As such, SDLC link
stations are characterized by their states, the transitions between those states,
and outputs that occur in response to (are triggered by) various input messages.
In the case of secondary link stations, which can have only one connection (to
the primary link station) the station’s state is identical to the state of the con-
nection. (The PLS is stateless in the sense that it is always “up.”)

There are four states, three of which are called modes, and the messages
that trigger state transitions include the frames exchanged by link stations
or external events such as activation of a device or link station by an outside
manager. The three SDLC modes are called the Normal Disconnect Mode,
the Initialization Mode, and the Normal Response Mode. We discuss these in
detail next.

Normal Disconnect Mode
A link station in Normal Disconnected Mode (NDM) is powered on but
unable to send or receive client data. Note that NDM does not imply that the
station is completely disconnected from the data link. According to IBM’s
specification, “A secondary station in NDM cannot receive or transmit infor-
mation or supervisory frames.” This does not preclude unnumbered (i.e., man-
agement) frames. In fact, an SLS in NDM will stay in NDM until the PLS
sends it one of several unnumbered frames that request the actuation of the link
station’s mode to either the Initialization Mode or Normal Response Mode.
(More on these in a moment.)

Initialization Mode
Initialization Mode (IM) is a transitory state for the link station. The link station
will not stay in IM but rather will move to Normal Response Mode, assuming
no faults occur during initialization that preclude this. Not all link stations are
required to transit the IM but instead move directly from NDM to NRM.

Normal Response Mode
An activated SDLC link station, able to send and receive client data, is said to
be in Normal Response Mode (NRM). When an SLS is in NRM this means
that a connection is up between PLS and SLS. The importance of NRM is that
only an SLS in NRM will be polled by the PLS, and this is the only way it will
be allocated (scheduled) the transporter. A station not in NRM cannot send or
receive client data. In effect, if an SLS is not in NRM then the corresponding
transport tasks are not in the task set of the data link.
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Finally, an SLS can be in a special state called Frame Reject, which,
strictly speaking, is not an SDLC mode but rather an exception condition that
is nonrecoverable within the connection. The exception requires either the PLS
to undertake management intervention (for example, resetting the SLS with
a mode management frame) or an outside manager (programmed or human).
We discuss the Frame Reject state when we consider fault recovery later.

6.2.4 Connection (Mode) Management: Bandwidth Actuation

As we indicated earlier, one of the principal tasks of the PLS as bandwidth
manager is managing connections with the SLSs attached to the channel. Part
of the process by which a PLS activates an SLS involves sending one or more
frames requesting the SLS to actuate its mode. The PLS uses unnumbered
(management) frames included in SDLC for just this purpose. In fact, the
majority of SDLC frame types effect mode actuations of one sort or another.
A measure (or, to be consistent with the MESA terminology, an estimate)
of the complexity of a data link protocol can be obtained from the number
of management frames relative to the number of frames that actually carry cli-
ent data. In SDLC, 16 frames are, in some respect, management frames and
only 2 frames (the Information frame and a related Unnumbered Information
frame) carry client data.

Figure 6.5 shows this exchange between the bandwidth scheduler within
the PLS and bandwidth actuators in both the PLS and SLS with which a
connection is to be established (or taken down). Note that management of
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a connection is inherently distributed. Although scheduling is centralized, the
actuation occurs in both locations. That is because on each side of the connec-
tion, actuating a connection entails buffer allocation for holding frames, setting
or clearing Nr and Ns counters, and so on.

This is part of the challenge of managing transporters. If both sides
do not cooperate then failure is inevitable. The primary link station issues
commands to the secondary link station(s) that are requests for service con-
cerning mode actuation. At each secondary link station, actuators change the
mode of the station from “disconnected” to “initializing” to “normal” and
back among them.

The mode of an SLS is just a proxy for what we are really interested in,
namely, the state of the connection between the PLS and that SLS; in other
words, the effective task set of the data link. Given this, mode (connection)
actuation alters the effective task set of the transporter (the SDLC data link).
This is bandwidth actuation of kind, and the scheduler in the PLS that initiates
the actuation is part of a bandwidth manager. To reiterate, an SDLC data link’s
static configuration only defines the nominal data link; the effective data link
will vary according to which stations have active connections versus those that
are just powered on and those that are turned off.

6.2.4.1 Configuring the PLS

But before the PLS can schedule these actuations, it must know which SLS sta-
tions are attached to the channel—that is, it must know the topology of the
data link and from this the nominal task set. After all, prior to mode/connec-
tion actuation there must be some way for the PLS to learn the addresses
of these devices, otherwise it cannot send them the requisite mode actuation
frames since it lacks their respective addresses. There are two ways for the PLS
to learn this information: by manual configuration or automatic “discovery” of
the SLSs.

The former approach relies on network personnel defining for the PLS
device a static configuration of SDLC SLSs on data link; when an SDLC SLS
device is added or removed, the PLS configuration must be changed. Because,
as we remarked earlier, a network operator or technician typically must con-
figure the SDLC addresses for the individual SDLC SLS devices, requiring
manual definition at the PLS is not an extraordinary onus. Automatic discovery
entails the SDLC PLS discovering the link’s topology via exhaustive polling of
all SLS addresses. There are 254 possible addresses, and the PLS can periodi-
cally cycle through the range of addresses to see if any station responds. Clearly,
this will discover any SLSs but at a considerable cost of bandwidth.
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6.2.4.2 SDLC Mode Actuation Frames

Let’s look at the various SDLC frames involved in the PLS’s actuation of the
data link’s connections/SLS modes. Table 6.4 lists the SDLC command and
response frames that can be exchanged by the PLS and SLS(s).

Just as there are three (nominal) modes, so are there three types of actua-
tions: initialization, normal response, and disconnect. Corresponding to these,
the PLS can send to an SLS a Set Initialization Mode (SIM) frame, a Set Normal
Response Mode (SNRM) frame, or a Disconnect (DISC) frame, respectively. We
now discuss these in turn.

Set Initialization Mode

Some secondary link station devices need to execute preliminary tasks such as
loading software modules before they can proceed to full readiness. By sending
the SIM command frame the PLS schedules the execution of these tasks. To
quote from the specification: “This command initiates system-specified proce-
dures for the purpose of initializing link-level functions…. The primary and
secondary station Nr and Ns counts are reset to 0” [2].

Set Normal Response Mode

A PLS sends the SNRM command to an SLS that is ready to begin sending and
receiving data. Again, to quote from the specification: “This command places
the secondary station in normal response mode (NRM) for information trans-
fer. … The primary and secondary station Nr and Ns counts are reset to 0.
No unsolicited transmissions are allowed from a secondary station that is in
NRM. The secondary station remains in NRM until it receives a DISC or SIM
command” [2].
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Table 6.4
SDLC Frames: Bandwidth/Mode Actuations

Request initialization mode Response

Set initialization mode Command

Set normal response mode Command

Request disconnect Response

Disconnect Command



Disconnect
When the PLS has finished sending and receiving data from a link station, it
may wish to tear down the connection and remove the SLS from the polling
schedule. This is accomplished by sending a DISC command to the SLS: “This
command terminates other modes and places the receiving (secondary) station
in disconnected mode…. A secondary station in disconnected mode cannot
receive or transmit information or supervisory frames” [2].

Table 6.4 also lists two SDLC response frames that can be sent by an SLS
to the PLS to request actuation. Secondary link stations cannot just actuate
themselves. An SLS lacks the authority to schedule the actuation of its own
mode (and by implication, its connection to the PLS). Instead, the manager in
the SLS must request that the manager in the PLS schedule the actuation and
send the corresponding mode actuation command frame. An SLS that needs
to be initialized will send a Request Initialization Mode response to the PLS to
elicit an SIM command. An SLS that wants to tear down a connection will
send a Request Disconnect response. Note that there is no response frame
requesting that the PLS send an SNRM; an SLS that wants to be actuated into
NRM will instead send an RIM response and the PLS will follow the SIM with
a SNRM. In all cases the PLS is the master of the data link.

The reason for this is that the primary link station must alter its polling
to reflect any mode change in secondary link stations. This is logical because
the PLS’s workload manager, which is responsible for scheduling access to the
shared transporter by means of polls (permission to send) sent to the SLS(s),
cannot do its job effectively if it doesn’t know the topology of active link
stations, that is, the effective task set. The alternative would be to proceed
open loop with respect to topology and poll every possible SLS address, which
is clearly inefficient and will result in many unproductive polls and hence
wasted bandwidth (wasted both in terms of the polls carried as well as the
opportunity cost of unnecessary delays inflicted on those stations present and
that have data to transport).

SDLC requires that the mode actuation commands be acknowledged
by the SLS recipient. However, the acknowledgment mechanism used here is
different than that encountered earlier, where we were acknowledging num-
bered (sequenced) I frames. There the solution involved the receiving station
returning the sequence number of a successfully transported I frame. Clearly
this will not work with the various unnumbered (nonsequenced) mode actua-
tion commands. Instead, to acknowledge these, SDLC provides a frame called
unnumbered acknowledgment (UA).

Figure 6.6 is a state/transition diagram describing the behavior of an
SDLC secondary link station. The convention for reading such diagrams is that
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a state transition will be denoted with an arc and a label of the form “A/B”
where A is the input message that triggered the transition and B is the output
(if any) that the finite state machine produces. Here, for example, we see that
an SLS in the NDM state will, in response to a SIM command, move to the
IM state and issue a UA response; in response to an SNRM command, move to
the NRM state and issue a UA response; and, in response to any other SDLC
frame, stay in the NDM state and issue a Disconnect Mode (DM) response to
tell the PLS that the SLS is not in a state to respond to frames other than SIM
or SNRM.

Likewise, an SLS is in the NRM state will, in response to a SIM com-
mand, move to the IM state and issue a UA response; in response to a DISC
command, move to the NDM state and issue a UA response; and, in response
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to any other SDLC frame, stay in the NRM state and follow the protocol for
responding to I frames and so on. An SLS in the IM state will, in response
to an SNRM command, move to the NRM state and issue a UA response;
in response to a DISC command, move to the NDM state and issue a UA
response; and, in response to any other SDLC frame, stay in the IM state.

We defer discussion of the FRMR failure state and its associated
state/transition behavior until the section on SDLC fault recovery.

6.2.4.3 Connection Actuation: Setup Sequences
A connection can be actuated in at least three ways: (1) The PLS can initiate a
connection by sending an SNRM; (2) the PLS can poll (either with an RR or
an I frame with the poll bit set) an SLS that is in NDM and, after learning the
latter’s mode status via the DM sent by the SLS, send an SNRM; or (3) the SLS
can initiate a connection by sending a RIM in response to a poll from the PLS.
As we remarked earlier, no frame exists that allows the SLS to request a direct
actuation to NRM (an RNRM frame); the SLS must request actuation to IM
and rely on the PLS to follow through with an SNRM. Note that in all of these
scenarios the SLS must issue a UA for the task to be considered complete.
Figure 6.7 illustrates the three scenarios.

Again, in terms of state transitions not every secondary link station must
pass through the Initialization Mode before going into the Normal Response
Mode. However, if an SLS sends a RIM response the PLS cannot send an
SNRM command immediately but must first send an SIM command and then
an SNRM once the SLS sends a UA indicating completion of the initialization.

As with bringing up a connection and thus actuating an SLS to NRM,
tearing down a connection and (thus actuating an SLS to NDM) can be initi-
ated by either PLS or SLS but the scheduling authority rests with the PLS
(Figure 6.8).

After a PLS issues a DISC the “expected response is UA” [2]. This means
that any data (I frames) that the SLS has yet to send must be either discarded or
buffered until the connection is reestablished. On the other hand, it is imple-
mentation dependent whether an SLS that issues an RD may have to stay in
NRM until the PLS has sent all the data it wishes.

6.2.5 Bandwidth (Server) Monitoring

Having covered mode/state actuation, it is time to look at state instrumenta-
tion. The state information provided by such instrumentation enables the PLS
to manage the data link more effectively than in its absence (i.e., open loop).
We have already seen several instances where an SLS will send its state to the
PLS if it receives an RFS/command that is inappropriate to its present mode.
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For example, we saw earlier that if an SLS is in Disconnect mode and it receives
any command other than a SIM or an SNRM then the SLS will send a DM
response to the PLS. In addition, the detection of channel faults by means
of the Frame Check Sequence and/or transmission timer is also an instance of
bandwidth monitoring (Figure 6.9); we discuss this in more detail later.
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There are a total of four response frames defined in SDLC that can be
categorized as bandwidth (server) monitoring, whereby an SLS will send to the
PLS information describing its current state. These four frames are listed in
Table 6.5 and discussed next.

Disconnect Mode (DM) is sent by a secondary link station when it is in
Normal Disconnect Mode and it receives a frame other than an SNRM or
a RIM. Exchange Station Identification (XID) is used by the link stations to
exchange configuration parameters and for negotiation of these. Test (TEST)
carries a data field the contents of which is a special pattern known a priori by
all stations. Frame Reject (FRMR) indicates a nonrecoverable fault has occurred
and that the connection between link stations is terminated.

Because we have already discussed the Disconnect Mode response suffi-
ciently, so we move on to the Exchange Station Identification command. This
may be sent by a PLS for one of several purposes. If a node has only fixed
parameters then an XID can only exchange authentication information. Other-
wise the exchange of XIDs can be used to select among possible services by
specifying different parameter values and configurations.
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Table 6.5
SDLC Frames: Bandwidth Monitoring

Frame reject Response

Exchange station identification Command/response

Test Command/response

Disconnect mode Response



The Test frame is used by the PLS to check the channel and the SLS. The
PLS will send a Test command frame to an SLS to elicit a Test response. The test
command may optionally contain an information field; if it does, then the SLS
is supposed to include the contents in its Test response. By comparing the sent
and received frames the PLS can get an estimate of the reliability of the infor-
mation transfer.

We discuss Frame Reject in more detail in the section on fault manage-
ment. Suffice it to say for now that if an SLS is in the FRMR state and it
receives any command other than a SIM, an SNRM, or a DISC then it will
send an FRMR response to the PLS. The FRMR response will contain an
information field that includes the cause of the FRMR condition.

6.2.6 Workload Management

Workload management in SDLC has two components: allocation of the trans-
porter to one (TWA) or two (TWS) link stations; and flow control, enabling a
destination link station to throttle the arrival of I frames to prevent its being
overwhelmed. Although the PLS participates in both types of management,
an SLS participates only in flow control; it has no role in allocation of the
transporter.

6.2.6.1 Allocating the Transporter
After one or more connections has been set up by the PLS and SLSs exchanging
the various mode-actuating frames, the next task of the PLS is the allocation
(i.e., scheduling) of the transporter. As with the connection management
phase, the PLS is responsible for this. However, unlike connection manage-
ment this is a workload management issue: Which link station of which active
connection is going to be the client of the transporter? The PLS schedules the
transporter based on two parameters of the data link: (1) the effective task set of
the data link (Which SLSs are in NRM?) and (2) the tasking of the data link
(Is it TWA or TWS?).

We have discussed the effective, as opposed to nominal, task set of the
data link at some length. The effective task set highlights the fact that the work-
load scheduler in the PLS is closed loop in its allocation decisions. It will only
send permission to use the transporter to an SLS that it knows to be in NRM,
and this information is based on feedback from the SLS(s), notably the UA
returned after an SNRM, that indicates it is in NRM and ready to send and
receive data.

How is this permission conveyed? It is conveyed with the Poll/Final bit in
the control field of a frame the PLS sends to an SLS. As has been mentioned,
earlier data link protocols, notably Bisync, required a separate frame to carry a
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poll from the master link station. With SDLC, a poll can be piggybacked on
any command frame. By setting the P/F bit = 1 the PLS schedules/allocates the
transporter to an SLS.

On a TWA data link, for example, steady-state operation (no mode
actuations) may consist of just I frames being exchanged between PLS and
SLSs, with the last frame in each exchange “toggling” the P/F bit to alternate
use of the data link. Only if the PLS has no data to send would it use a frame
other than an I frame, notably the Receive Ready (RR) supervisory frame (more
on this frame in the next section), to poll an SLS. Likewise, if an SLS receives a
poll (any command frame with the P/F bit set) and it has no data to send it will
respond by sending an RR with the P/F bit set indicating it is returning use of
the data link to the PLS for reallocation.

The Poll and Final bits are both indications that a client is finished with
the transporter. In other words, the P/F bit is a semaphore. When a frame origi-
nates at the PLS the P/F bit is a semaphore indicating that the PLS is either
using the data link or releasing it to the SLS addressed in the frame. Likewise,
when the frame originates at an SLS the P/F bit is a semaphore that indicates
whether the SLS is still using the channel (transporter). Consider an SLS that
has k frames to send. The PLS sends an RR or an I frame with the P/F bit set.
The SLS sends the first k − 1 frames with the P/F bit not set (P/F = 0). The k th
frame, on the other hand, is sent with the P/F bit set (P/F = 1); this indicates
that the SLS is finished with the channel (transporter), and the PLS can sched-
ule the transporter to itself, to another SLS, or that SLS again.

6.2.6.2 Controlling the Flow Between Link Stations
The second instance of workload management in SDLC is flow control. As
we discussed in our earlier survey of generic protocol issues, flow control is
designed to keep a receiving link station from being overwhelmed by a sending
link station when the former lacks the capacity or resources to accept frames as
fast as the latter can send them. But with flow control, unlike the other man-
agement mechanisms we have considered such as mode actuation and trans-
porter allocation, the management is symmetric: the SLS has the same control
over its receipt of additional frames from the PLS as the PLS has over its receipt
of additional frames from any SLS. For this reason, within the context of
flow control, the distinction between primary and secondary in link stations is
unimportant, and for the balance of this section we simply discuss flow control
in terms of source and destination link stations.

Flow control in SDLC is effected in two basic ways (Figure 6.10):

1. The Receive Ready (RR) and Receive Not Ready (RNR) supervisory
frames; and

196 Protocol Management in Computer Networking



2. The acknowledgment of frames received via Nr fields in “counter-
flow” frames.

The first mechanism involves the use of two supervisory frames: Receive
Ready and Receive Not Ready. The RR and RNR enable and disable, respec-
tively, a link station from scheduling any RFSs to the transporter. When a
link station sends an RNR to another link station (secondary or primary), the
recipient suspends itself from sending any more to the sender of the RNR;
the recipient’s workload manager will not schedule any requests for service. The
suspended workload scheduler may resume scheduling when the link station
that sent the RNR sends an RR.

We have seen the Receive Ready frame used by the PLS to carry a poll
when it has no data to send in an I frame; and that the SLS likewise uses the
Receive Ready frame to respond to a poll when it has no data but must respond
to a poll. However, the primary purpose of supervisory frames, and RRs and
RNRs in particular, is as traffic signals. An RNR is a red light, signaling a send-
ing link station that it should not send any more I frames; and an RR is a green
light, signaling a sending links station that it is free to resume sending I frames.

Supervisory frames are unlike unnumbered frames in that, although both
are management frames, supervisory frames include Nr sequence numbers in
their control fields. This means that supervisory frames can be used to acknowl-
edge frames received. On the other hand, supervisory frames lack any informa-
tion field; in contrast, some unnumbered frames such as XID can carry state
information. And unlike either unnumbered or information frames, supervi-
sory frames are unacknowledged. Finally, note that supervisory frames may be
either commands or responses—they may be sent by either a PLS or an SLS.
Table 6.6 lists SLDC’s three supervisory frames. The third supervisory frame,
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Reject (REJ), also affects the scheduling of the workload manager but because
its use is confined to fault notification we postpone further discussion of it until
the next section.

Complementing the role of the RR and RNR frames, the second type
of flow control involves the use of acknowledgments to inhibit the sending of
frames. By withholding acknowledgments, a receiving link station will eventu-
ally force its sending link station partner to stop sending. Each workload sched-
uler keeps track of available sequence numbers. When a frame is acknowledged
its sequence number becomes available for reuse. On the other hand, if no
frames are acknowledged then the available numbers will be gradually depleted
and the link station will be forced to stop sending frames that require sequence
numbers—that is, I frames.

There is a potential problem with flow control effected by withholding
acknowledgments. Because each link station in a connection maintains a copy
of the unacknowledged I frames it has sent, it may run into memory problems.
But SDLC has a provision to enable a link station to clear its buffers: An RR
sent by a link station that has been “flow controlled” will force its partner link
station to respond with acknowledgment of the frames it has received. For a
PLS that has tens or even hundreds of connections open, such freeing of buffers
is of great importance. A link station that wants to keep inhibiting incoming
frames can return this Nr acknowledgment via an RNR and thus maintain its
“red light” to its partner sending more frames. Although the sending link sta-
tion will still be blocked, it would be able to clear its buffers of frames awaiting
acknowledgment.

Recall an earlier discussion in which we said a protocol that allows multi-
ple outstanding frames is, in effect, pipelining the transporter it is managing.
The nominal depth of the pipeline is determined by the number of sequence
numbers—7 and 127 being the most common because these can be accommo-
dated with 8- and 16-bit control fields, respectively. The size of the pool of
available sequence numbers measures the occupancy of the transporter pipe-
line. At the extreme, when the pool is empty (i.e., the sliding window is closed)
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Receive ready Command/response

Receive not ready Command/response

Reject Command/response



the pipeline is full. When an RNR is received its effect is to actuate the effective
depth of the pipeline to its current level of occupancy. In other words, when an
RNR is received the pipeline is automatically deemed full and will remain that
way until an RR restores its nominal depth.

To summarize, the decision logic used by the workload manager in sched-
uling frames is as follows:

1. Has the destination link station sent an RNR? If yes, then stop; no I
frames may be sent until an RR is received (if the destination station is
an SLS the PLS may send an RR to elicit new state information and a
possible RR). If no, then go to question 2.

2. Is there an available sequence number? If no, then stop; no I frames
may be sent until an acknowledgment or rejection is received (if the
destination station is an SLS the PLS may send an RR to elicit new
state information and a possible acknowledgment/rejection). If yes,
then use the next sequence number(s) to send the queued frame(s)
up to the number of sequence numbers available (allowed by the
sliding window).

Figure 6.11 shows a flowchart for this process.
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We should touch on the relationship between the workload scheduler in
the PLS that controls the allocation of the transporter (what we will call the
outer scheduler) and the workload scheduler that controls the sending of indi-
vidual frames (the inner or flow control scheduler). The two schedulers may be
coupled or decoupled. If an SLS has sent feedback (either by an RNR or by
withholding acknowledgments) to inhibit the PLS from sending data then the
outer scheduler should not allocate the channel to itself since the PLS cannot
send data to this SLS, although the PLS may send nonsequenced frames or it
may send frames to another SLS. If the outer scheduler is aware of the state
information used by the inner scheduler (i.e., is coupled) then the outer sched-
uler would not allocate the transporter the PLS. On the other hand, if the two
schedulers are decoupled then the outer scheduler will not know of this state
information and will make its scheduling decisions oblivious to the state infor-
mation available to the inner scheduler.

6.2.7 Fault Detection and Recovery

As we discussed earlier, foremost among SDLC’s design objectives is robust-
ness. The protocol creates a virtual transporter (composed of a pair of SDLC
link stations managing a transporter itself composed of the channel/signal plus
physical layer managers) that appears to upper layer clients as a highly reliable
server. To do this, SDLC uses several mechanisms for fault detection and
recovery. We discuss these in this section. Most notably, as a positive acknowl-
edgment with retransmission (PAR) protocol, an SDLC link station will resend
a frame that has arrived at the destination link station having been corrupted by
a channel fault.

By definition, retransmission is the responsibility of the workload man-
ager in the sending link station. However, as with flow control, this is a coop-
erative process. The workload manager in the sending link station generally
relies on the bandwidth monitoring server(s) in the receiving link station to
detect faults and communicate this information (Figure 6.12). This is classic
backward error control. The exception is timer-based retransmission—a so
called “dead-man’s switch,” which is an instance of forward error control. We
look at this more in the next section.

6.2.7.1 Types of Faults
When a stream of bits is passed to the receiving link station by its correspond-
ing physical layer, the link station’s bandwidth monitor must decide which
faults, if any, occurred to prevent the arrival of a frame of uncorrupted data.
The faults can be broadly divided into three categories. First, the link station
estimates if a fault has occurred on the basis of the frame’s conformance to
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SDLC specifications: leading and trailing flags; address, control, and FCS
fields; and so on. If, when the bit stream is scanned, no leading flag is found
then there is no frame; likewise, if no trailing flag is found (possibly serving as
the leading flag of the next frame) then there is no frame. We will call these
types of faults, which do not involve frames, or at least not complete frames,
recoverable protocol faults.

Next are those channel faults that result in an FCS discrepancy. These are
the simplest to detect and to recover from. This type of fault, namely, when the
frame that arrives over the channel has been corrupted by a fault in one or more
of the physical layer components, is detected by comparing the pretransit FCS
with the FCS calculated from the arrived frame. The bulk of SDLC faults are
FCS faults, and the recovery involves retransmission.

The remaining faults require more complicated means of diagnosis (esti-
mation) and recovery. These faults do not originate in the channel but rather in
the sending link station and its misconfiguration vis-à-vis the receiving link sta-
tion. The difficulty with detecting these faults is precisely that the FCS does not
catch them. The FCS, as calculated at the sending link station, matches the
FCS calculated on arrival, but the frame is still invalid. Several fault scenarios
need to be considered. Either the frame does not conform to SDLC formats or
the frame’s arrival violates SDLC protocols. An example of the first type of fault
is seen when a frame type indicates that it should be of some length (for exam-
ple, an SNRM) but, as delimited by the flags, it is longer. Obviously, it is some-
how malformed. The same is true if a frame arrives that is out of sequence (for
example, the correct frame is a UA but an RR is sent instead). When an SDLC
frame arrives with correct FCS fields but which is nonetheless invalid this is a
nonrecoverable protocol fault.

Figure 6.13 shows the complete decision logic used by the bandwidth
monitor to decide which faults, if any, have occurred. We now examine in
more detail these faults and their respective management requirements.
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6.2.7.2 Recoverable Protocol Faults
The first type of fault that the bandwidth estimator checks for is an incomplete
frame. It does so by checking for the presence of a leading and a trailing flag.
Depending on which (if either) flag is missing there are three possible fault sce-
narios: (1) The link station, having been allocated the channel, never even starts
to transmit; or (2) it never stops; or (3) it stops before a complete frame has
been sent. Included, therefore, within this category are those faults where a link
station’s hardware fails (always off or always on) as well as those where more
than six consecutive ones are present in the bit stream.

Logically, if no flag is found in the arriving bit stream (meaning six con-
secutive ones are never detected) then there are two possibilities: More than six
consecutive ones are found or fewer than six consecutive ones are found. As
it happens, the precise number is important and means different things. If a
stream of bits arrives and contains no block of more than 5 ones this is called
a nonproductive receive condition. If a stream arrives that contains 7 to 14 ones
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then this is called a frame abort condition. If a stream arrives with 15 or more
consecutive ones then this is called a line idle condition.

A nonproductive receive condition is detected at the destination link sta-
tion when an SLS transmitter is “stuck” or is otherwise sending garbage. That is,

When bits are being received that do not result in frames, a nonproductive
receive condition exists. This condition could be caused by secondary sta-
tion malfunctions that cause continuous transmission. The primary station
must provide a time-out period when nonproductive receive occurs. The
usual time period is in the range of 3 to 30 seconds. If the nonproductive
receive condition continues after the time-out, the problem is normally
not recoverable at the data link control level and must be handled by some
method above the data link control level. [2]

The PLS will not poll the SLS during this time-out period; if at the end of this
hiatus the SLS is still in nonproductive receive then the fault is deemed nonre-
coverable and will require the intervention of exogenous management servers
(such as a technician to replace the offending circuits).

Recall that a flag is precisely six consecutive ones (b001111110 = 0x7E)
and that SDLC has a prohibition on more than five consecutive ones appearing
elsewhere in a frame. In certain circumstances, however, SDLC allows the
deliberate violation of this prohibition. When a sending link station decides
to prematurely terminate a frame before it is complete (i.e., has the
F/A/C[data]FCS/F fields), it may do so by sending a minimum of 7 consecu-
tive zeros (but fewer than 15), in violation of the zero insertion. The receiving
link station (PLS or SLS) contains abort detection logic that will allow a link
station to detect if its partner link station has prematurely terminated
transmission.

However, if the link station sends 15 or more consecutive ones then the
data link is said to be idled. The idle timer will detect that an SLS has “gone
away,” that is, suffered a fatal fault or simply been turned off. With NRZI cod-
ing, a channel that carries no data will never have a waveform transition and
hence its output signal will be interpreted at the destination as a string of ones.
The danger, of course, is that without a waveform transition, the destination
clock recovery mechanism will not be able to maintain synchronization.

6.2.7.3 FCS Faults
As we discussed in Chapter 3, error control coding (ECC) used at the physical
layer is designed to correct the most common channel faults and to detect
those faults that cannot be corrected. We also saw in Chapter 4 that many
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DCE–DTE interface standards include a circuit/signal that allows the DCE to
indicate to the DTE’s physical layer that, for example, a decoder failure has
occurred and that the data being sent over the receive channel is probably
corrupted. The DTE’s physical layer then may or may not use an internal
mechanism to signal the data link layer of the occurrence of this fault. Such
mechanisms are outside the scope of SDLC’s protocol definition.

Instead, SDLC relies on the detection provided by the Frame Check
Sequence/Cyclic Redundancy Check result appended to the trailer of every
SDLC frame. Most channel faults that are not corrected by the physical layer’s
ECC mechanism result in a frame with an FCS that is different than that of the
frame sent by the client; and, in fact, the FCS can provide an additional level of
protection by detecting erroneous corrections performed by the ECC decoder.
We discussed in the last chapter how producing such transporter fault estimates
is accomplished by means of comparing the two FCSs; and that this bandwidth
(server) estimation is the responsibility of the bandwidth monitoring mecha-
nisms at the destination link station.

When the estimate is made that a newly arrived frame has been cor-
rupted, the receiving/destination link station can send this information to the
sending link station in one of two ways: explicitly, via a Reject (REJ) frame; or
implicitly, by withholding an acknowledgment for the frame and relying on the
timer-based fault estimator to decide a fault had occurred. Reject is the third
supervisory frame used by SDLC and should not be confused with the Frame
Reject frame used to signal nonrecoverable faults (see below).

Unfortunately, Reject provides a somewhat coarse recovery. If the middle
(or first) frame of a sequence of frames is faulty then an REJ of that frame
necessitates the retransmission of all subsequent frames, whether or not these
arrived corrupted. Clearly this is very inefficient, but remedying this had to
await HDLC, which introduced a fourth supervisory frame called SREJ, for
Selective REJect.

Implicit fault notification relies on another component of an SDLC link
station: a timer that is set when a frame is transmitted. The timer that triggers
retransmissions in the absence of ack/rej is yet another fault detection mecha-
nism. Note that such timers do not schedule the retransmission—that task is
the province of the retransmission timer.

With both explicit and implicit fault notification, the key is the sliding
window. Consider, for example, the SDLC workload scheduler shown in
Figure 6.14. The workload scheduler keeps track of which frames are outstand-
ing and which frame numbers are available for frames to be sent. If the recipient
link station sends an acknowledgment with Nr = k (for k = 2, 3, 4, 5, or 6) then
that will cause the workload scheduler to adjust the window and the sequence
numbers up to k − 1 modulo 8/128 will be available for reuse. If Nr = 6 then all
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outstanding frames have been acknowledged and the recipient link station is
indicating it is expecting the next frame to have Ns = 6.

6.2.7.4 Nonrecoverable Protocol Faults
Certain other protocol events were also perceived by the designers of SDLC to
be so severe or otherwise indicative of such fundamental problems that they
were deemed nonrecoverable. That is, these faults are considered nonrecov-
erable because retransmission will not effect recovery. In these instances the
SDLC state machine enters the FRMR state and stays there until it is reset by
the PLS with a mode actuation command. This is the fourth, nonmode state
of an SDLC state machine. As with the other three states, this applies only to
secondary link stations.

An SLS in the FRMR state will, at the next opportunity (i.e., when
polled) send to the PLS a fault notification in the form of an FRMR frame; and
until the link station has been reset every frame sent to the link station will be
discarded and an FRMR frame sent back to the PLS. As with the other fault
notifications, this is an instance of bandwidth management, specifically band-
width monitoring.

With nonrecoverable faults the bandwidth monitor goes beyond simple
fault detection and attempts to provide fault isolation. It does this by including
in the information field of the FRMR frame state information that may aid
the PLS and/or exogenous manager in diagnosing (isolating) and repairing the
source of the fault. (Recall that we said earlier certain unnumbered frames carry
information fields.) Figure 6.15 shows the contents of the information field.
First is the Command field of the rejected frame. By comparing this with the
Command field of the frame as sent (assuming a copy of the frame was kept)
this provides a first level fault diagnosis mechanism: If the Command field sent
is different than the Command field returned in the FRMR frame, then the
most likely cause is a channel fault that escaped detection by the FCS (rare but
not impossible).
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Following this, the information field contains the SLS’s current state with
respect to its sent (Ns) and received (Nr) sequence numbers. This allows the
PLS to compare with its Ns and Nr state and detect any major discrepancy. For
example, if the SLS is expecting frame 5 (Nr = 5) and the PLS has sent through
frame 0 (the PLS’s Ns = 1) then four frames are missing. An SLS that is repeat-
edly out of step with the PLS is most likely indicative of a systemic fault in the
transporter (channel) that needs repair.

Last, the SLS includes a diagnostic code in the FRMR indicating four
possible causes of the received frame being rejected. Two of these diagnostic
bits convey what is essentially state information: Either the SLS has suffered a
buffer overrun, indicating that flow control has failed, or the two link stations
have different Ns values. More interesting, however, are the last two bits; these
indicate outright protocol violations, specifically an invalid frame type (unim-
plemented command) and a prohibited I field.

Recall that, although the 5 bits used to identify unnumbered frames
allowed 32 possible unnumbered frames, basic SDLC (modulo 7) defined only
13; and of the four possible supervisory frames, SDLC only defined three. If a
frame from the PLS arrives that contains a command field indicating its frame
type is one of these unused combinations then the SLS sets the corresponding
diagnostic bit, sends the FRMR frame, and enters the FRMR state. Likewise, as
we indicated earlier, only the I frame and certain unnumbered frames (includ-
ing, obviously, the FRMR frame) are allowed to include an information field. If
the receiving SLS determines, by parsing the frame’s flags and thus inferring
(estimating) its length that a frame is longer than allowed then it concludes
(estimates) that the frame includes an illegal I field. As with unsupported frame
types, the SLS sets the corresponding diagnostic bit, sends the FRMR frame,
and enters the FRMR state.
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6.2.7.5 SDLC Recovery Parameters

The number of times retransmission will be attempted is one of several
implementation-dependent parameters that characterize an SDLC link’s
behavior; some implementations are fixed while others allow considerable lati-
tude in setting these parameters. An example of a more configurable implemen-
tation is provided by IBM’s AS/400, its flagship minicomputer with more than
1,000,000 systems sold; the AS/400 allows users to specify many fault detec-
tion parameters, including those listed in Table 6.7.

6.2.8 SDLC Loop Topologies

For the sake of completeness, we should mention a seldom deployed topology
that may be used with SDLC called a loop (Figure 6.16). An SDLC loop
is constructed using one-way communications channels that connect each
station to the next much in the fashion of Token-Ring LANs (see the next
chapter). In an SDLC loop only one station transmits at a time; and the
SLS transmit sequence is determined by their order in the loop relative to
the PLS/loop controller.

SDLC has three frames that are used only with loop topologies. These
frames are used in fault isolation and loop configuration. They are listed in
Table 6.8.
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Table 6.7
SDLC Recovery Parameters

Nonproductive receive timer How long to wait before deciding a nonproductive
receive condition exists (how many bits)

Idle timer How long to wait before deciding a line is idle

Connect poll timer How long to poll a link station

Poll cycle pause How long to wait between poll cycles

Frame retry count How many times the link station will resend

Fair polling timer How to apportion bandwidth

DSR drop timer Physical layer timers (see Chapter 4)

CTS timer Physical layer timers (see Chapter 4)

Abort Detect When to decide an SLS has aborted

Recovery limits—count limit, time interval How many times to attempt link recovery and how often



6.2.9 Relationship of SDLC to Other Layers

To summarize what we have covered so far, Figure 6.17 shows the various
SDLC frames and the components of the link station. At the interface to upper
layer protocols, we see that the SDLC link station receives data (SDUs) to be
encapsulated in SDLC frames; and that the contents of I and/or UI frames were
passed upward. We also see that the various SDLC frames are passed to work-
load and bandwidth managers by a command processor that parses frames out
of bits as they are passed upward from the physical layer DTE. Finally, there is
an interlayer management component consisting of semaphores and such that
signal between the two layers.

As we mentioned in Chapter 5, SDLC does not include any protocol type
data between layer 2 and layer 3. Because the protocol is limited to SNA net-
works, this omission has not proven serious.
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Table 6.8
SDLC Loop Frames

Unnumbered poll Command/response

Beacon Command/response

Configure Command/response



6.3 HDLC

6.3.1 SDLC and HDLC

After its introduction SDLC was criticized by many in the data communica-
tions community, principally over the PLS/SLS dichotomy and the associated
master/slave control. While such mechanisms were accepted as inescapable for
multipoint data links (until the advent of the first LANs—see Chapter 7), it
was argued that with point-to-point links not only was peer control possible
but also much more consonant with the high-availability/distributed manage-
ment orientation of the newly emerging packet networks and internets. After
all, a master controller implies a single point of failure, and this was contrary to
the direction in which networking was evolving.
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In part as a result of the criticism, the High-Level Data Link Control
(HDLC) standard (actually, family of standards) came to include not just
SDLC’s NRM but two additional modes of operation, the Asynchronous
Response Mode (ARM) and the Asynchronous Balanced Mode (ABM), each
of which increased the autonomy of the secondary link station. In fact, with
the ABM the distinction between primary and secondary link stations is erased
completely and we speak instead of the combined link station. The ARM lies
between the NRM with its strict master/slave management and the ABM with its
complete peer symmetry. Thus with HDLC we have a spectrum of autonomy.

But nothing we have discussed about SDLC’s frame structure, frames, or
state machines needs to be discarded when we come to HDLC. For our pur-
poses, we will consider HDLC to be a superset of SDLC that builds on SDLC’s
basic structure to include more “peer” connections.

6.3.2 The Locus of Control in HDLC: NRM, ARM, and ABM

So, if to its critics the principal deficiency of SDLC was its inability to support
fully balanced, independent data transfer between equals, how did HDLC’s
designers remedy this? They created a symmetric state, the Asynchronous Bal-
anced Mode, which eliminated the differentiation of link stations into primary
and secondary; indeed, both ABM stations have addresses. Whereas with
the NRM, the locus of control for most of the decision making resides in the
primary link stations and the only control that is symmetric between primary
and secondary link station is flow control and fault detection/recovery, with the
ABM the link stations are completely symmetric in their abilities. And a link
station in the ARM is halfway between the two: Fewer management tasks
(scheduling and estimating) are centralized but the primary/secondary dichot-
omy nonetheless remains.

This increased autonomy, however, comes at a price, namely, support for
multipoint topologies. The reason stems from the term asynchronous in the
mode names, which is clearly in contrast to normal. Asynchronous in this
instance has nothing to do with the physical layer coding or broadband
ISDN/Asynchronous Transfer Mode but rather with the autonomy of each
link station to send data without being polled or scheduled. (This is a further
overloading of an already overloaded term.) Unlike a link station in the NRM
state, a link station in the ARM or in ABM states can, once a connection is
extant, send data without waiting for a poll. And, even if the underlying trans-
porter/channel is FDX, with three or more link stations there is the inevitability
of a collision between link stations that decide to start sending data at the same
time. As we will see in Chapter 7, it was only with the advent of closed-loop
management in the LAN protocols that this difficulty was to be overcome.
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If that is the distinction between asynchronous and normal modes, what
is the difference between response and balance modes? The answer again is
in terms of the locus of control. A link station in a response mode, normal or
asynchronous, lacks the schedulers and actuators to actuate its connection to
another link station; in fact, a link station in NRM or ARM is necessarily a
secondary link station, dependent on a primary link station for management of
the connection. It is only with the one balanced mode, namely, the ABM, that
either link station (recall we are limited to point-to-point links) has the control
mechanisms to change its connection to the other link station. By devolving
control to what had been the secondary link station until the two became equal
in all their capabilities, the ABM designers created the combined link station.

6.3.3 HDLC Modes and Classes of Procedure

Technically speaking, the various modes (NRM, ARM, and ABM) pertain to
the states of link stations—secondary link stations in the case of NRM or ARM
and combined link stations in the case of ABM. (Recall we remarked earlier
that the PLS in SDLC is stateless, and this is also true with the PLS in an ARM
data link.) The actual protocols corresponding to the three modes are called
classes of procedure (cf. elements of procedure, also known as frames). These
classes of procedures are called the Unbalanced Normal Class (UNC), the
Unbalanced Asynchronous Class (UAC), and the Balanced Asynchronous
Class (BAC). These correspond, respectively, to the Normal Response Mode,
the Asynchronous Response Mode, and the Asynchronous Balanced Mode.
Obviously, the response modes (NRM and ARM) are part of unbalanced
(UNC and UAC) classes of procedure.

As we indicated earlier, HDLC is not a single standard but rather a family
of standards specified in a set of five documents. The first of these standards
specifies HDLC’s frame format; this is the familiar Flag-Address-Control
Structure. The remaining standards define the various classes of procedure.

In the rest of this section we concentrate on the Unbalanced Asynchro-
nous and Balanced Asynchronous classes since HDLC’s Unbalanced Normal
Class is identical to the SDLC, which we have just discussed at some length.
However, we should note that, notwithstanding the differences in their respec-
tive modes, the three protocols have much in common. As we have already
remarked, all three use the same frame structure and indeed most of the same
frames (more on the frames later). In terms of our protocol taxonomy, all three
protocols are connection oriented; all three support variable length frames; all
employ flow control to prevent receiving link stations from being overwhelmed
by sending link stations; and all attempt to detect and recover from faults. And
the UNC protocol (SDLC) is not completely master/slave: with regard to flow
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control and fault management it relies on peer mechanisms, just as the UAC
and BAC protocols.

So where do the asynchronous protocols differ from the normal proto-
cols? The first and perhaps most conspicuous area is in the scheduling, that
is, allocation, of the channel. With the unbalanced normal class of procedures
(i.e., SDLC) the PLS controls that link a station or stations are allowed to use
the channel at any given time; if two stations are using the channel at once then
obviously one is the PLS itself. With the asynchronous classes of procedure
(unbalanced and balanced), on the other hand, no link station is a master.
In the case of the unbalanced asynchronous class of procedure this means the
SLS can schedule itself just as readily as the PLS; in the case of the balanced
asynchronous class of procedure, there is no distinction between the two link
stations sharing the channel. This is what asynchronous in this context means:
the link stations operate independently.

A consequence of such asynchronous control is the loss of multipoint
topology support. As we have already noted, only SDLC/UNC supports effec-
tive multipoint operations. UAC does allow multipoint topologies but it is
multipoint in name only. Just a single secondary link station can be in ARM at
any given time, the remainder being in what is called Asynchronous Discon-
nected Mode (the asynchronous analog of Normal Disconnected Mode):

Because of the asynchronous nature of secondary station transmissions
when ARM is utilized in a multipoint environment, only one secondary
station can be activated (on-line) at a time. Other secondary stations on
the multipoint link must be kept in a quiescent disconnected mode (off-
line) so as not to interfere with any transmission in progress. [3]

In other words, while the nominal task set under UAC management of
a multipoint transporter with k secondary link stations includes multiple pairs
of tasks of the form PLS → SLSi/SLSi → PLS (2k tasks in all), the effective task
set can contain only one such pair at any given time. Support under the UAC
protocol for multipoint topologies is, in essence, a fiction.

This brings us to another area of major difference among the three proto-
cols: connection management. The UAC/multipoint fiction can be maintained
precisely because, under the UAC protocol, the PLS still retains control over
mode actuations, and hence the PLS can ensure that one and only one SLS is in
ARM; no SLS can self-actuate a connection. In effect, when the PLS wants to
send data to (or receive data from) an SLS it must actuate any existing connec-
tion down and bring up the connection to the target SLS; once the connection
is up the SLS can send data without its use of the transporter being scheduled
by the PLS—that is, no polling is required. This, by the way, also illustrates
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why with BAC not even the fiction of multipoint communication can be main-
tained: Each (combined) link station can actuate modes as well as schedule its
own use of the transporter, and there is no central manager to keep multiple
stations from actuating connections and starting to send data.

Table 6.9 summarizes the differences among the three protocols in the
principal areas of link management. Note that with regard to fault detec-
tion/recovery and flow control, all three classes of procedure use peer or sym-
metric management.

6.3.4 HDLC Elements of Procedure

Given the fact that the design of HDLC was driven by a variety of factors,
a monolithic protocol was unlikely to satisfy the many competing claims for
its favors, and this led to the decision to include three classes of procedure.
To increase its flexibility further, the committee that designed HDLC opted to
organize the various frames in terms of a base set of frames, to be recognized by
all stations that implement a given class of procedure, and a set of optional
frames that may or may not be implemented, depending on the requirements
of the data link and its management. The resulting “base and towers” was
highly modular and could accommodate many different types of data links.

Part of this modularity is that all three classes of procedure use not just
the same frame structure but, for the most part, the same basic frames. There
were exceptions, however, most notably the mode setting command frames.
Obviously, it is problematic to use the SNRM command with either UAC or
BAC protocols. To remedy this, HDLC introduces two new mode setting
frames called Set Asynchronous Response Mode (SARM) and Set Asynchronous
Balanced Mode (SABM), which are analogs of the SNRM command frame.

The base sets of frames are largely the same for all three classes of proce-
dure and consist of commands and responses, although in the case of the BAC
either combined link station (CLS) could issue either a command or a response.
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Table 6.9
Management Tasks: Locus of Control

Type of Management UNC UAC BAC

Mode actuation Master/Slave Master/Slave Peer

Transporter allocation Master/Slave Peer Peer

Fault detection/recovery Peer Peer Peer

Flow control Peer Peer Peer



Another complication that comes with BAC is that, unlike UNC or UAC
where the PLS has no address, each of the combined link stations does have an
address. And whereas with the unbalanced protocols the PLS sends command
frames with the address of the destination SLS and an SLS sends response
frames with its own address in the address field, with BAC a combined link sta-
tion sends a command frame with the destination CLS’s address and a response
frame with its own address.

So what is in the base set? For all three protocols it consists of command
and response I frames, as well as command and response workload manage-
ment frames—RR and RNR—and the respective mode actuation commands
corresponding to each class of procedure—SNRM for UNC, SARM for UAC,
and SABM for BAC, as well as the DISC command frame and the UA, DM,
and FRMR response frames. These base sets were deemed sufficient to provide
functional data link management, albeit with certain omissions.

Implementers who are not happy with the base functionality can aug-
ment this with additional frames defined in various option sets. Complement-
ing the 3 base sets for the three classes of operation, there are no fewer than 14
option sets or towers, yielding thousands of possible protocols within the over-
all HDLC framework. Some of these option sets add individual frames while
others modify some aspect of all frames such as the addresses or FCS fields.

For example, option set 1 adds the XID command and response frames.
Option set 2 adds the supervisory REJ command and response frames, while
option set 3 provides the more granular supervisory SREJ command and
response frames. Option sets 4 and 6 define the unnumbered information and
unnumbered poll frames, which we touched on briefly with regard to SDLC
loops. As we will see in the next section, the UI frame has taken on increased
importance in conjunction with Internet WAN protocols such as PPP. Option
set 5 provides the RIM response and SIM command frames. Option sets 11,
12, and 13 round out HDLC with the RD and TEST frames we discussed ear-
lier in SDLC, as well as a new frame called RSET that is used to reset the Ns
counter at the sending link station and the Nr at the receiving link station; this
provides a more granular reset capability than that of the SIM or other mode
actuation commands.

Three option sets affect all frames. Option set 10 extends the sequence
numbers from 3 bits (modulo 8) to 7 bits (modulo 128). In addition, option 10
also introduces new extended mode actuation command frames: SNRME,
SARME, and SABME, which replace their corresponding nonextended cous-
ins. Option set 14 replaces the 16-bit FCS polynomial with a 32-bit polyno-
mial, providing greater fault detection for clients that require greater reliability.
And option set 7 modifies the address field, which as we have seen is ordinar-
ily 8 bits in length. With option set 7, however, the address field is arbitrarily
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extensible. Multiple octets may be employed to increase the number of avail-
able addresses, facilitating character-based addressing for multidrop data links.

Last, two of the option sets do not add frames but in fact remove them
from the base set. Option set 8 calls for the removal of response I frames, and
option set 9 removes command I frames. These option sets are used with the
BAC protocols to provide an additional means of detecting and isolating faults.
If a CLS that is operating under BAC with option set 9 (8) receives an I frame
that does not carry the sending (receiving) station’s address, that is, it is a com-
mand (response) I frame, then the receiving station knows that there is a fault
in the data link, either due to a loopback or in the configuration of the part-
ner CLS. Note that with either of the unbalanced protocols the elimination of
command I frames would silence the PLS while eliminating response I frames
would silence any SLS. And it is difficult to see using both options 8 and 9 with
any protocol since this would eliminate sending any data.

A common abbreviation is to indicate the class and the option sets sup-
ported—for example, UNC,1,2,5,13 is standard SDLC. It includes XID, REJ,
RIM, SIM, and RD, with 3-bit sequence numbers, 8-bit addresses, and 16-bit
FCSs. BAC,2,8 is one of the most common implementations of the peer
HDLC protocol, which adds REJ frames but excludes response I frames; it is
known as Link Access Procedure Balanced (more on this later).

Figure 6.18 depicts the base and towers for the various HDLC base and
option sets.

6.3.5 HDLC Multiprotocol Support

With all the various option sets it may be surprising that something is still miss-
ing from HDLC, but none of these options remedies a key omission, namely,
that the frame format specified in ISO 3309 does not include a protocol type
field. A protocol type field indicates the nature of the client upper layer proto-
col being carried in the payload of the HDLC I frames. When multiplexing
multiple upper layer clients that all use the same protocol, their respective pack-
ets can be disambiguated using information in the upper layer protocol headers
(for example, the TCP port numbers). However, when the protocols are differ-
ent this crucial information is missing: The payload contents that the data link
passes upwards may be an SNA packet or an IP packet, and without a protocol
type field in the frame itself there is no way to remove ambiguity about the
packets.

This omission was not significant before the emergence of multiprotocol
networks; and there was no need for another field in the frame header, with the
overhead that this represents, if there was no need to indicate the type of proto-
col being carried. Just as SDLC’s frame has no provision for a protocol type
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field because they carry only SNA packets, neither does HDLC, and for the
same reason—private networks that used HDLC were monoprotocol. Even
the deployment of public data networks based on X.25 did not change this,
because one protocol still was the exclusive client of the data links, namely,
X.25. And, notwithstanding the flexibility that comes from its base and towers
modularity, HDLC is nonetheless a product of that era.

However, as multiprotocol routers started to be deployed in the mid-
1980s, it became increasingly common for vendors to implement proprietary
extensions of HDLC in which a protocol type field was inserted in the frame,
most often but not always immediately following the control field. The most
common practice was to adopt the 2 octet protocol type field that Xerox
had defined for use with Ethernet, the first truly multiprotocol data link (see
Chapter 8) (Figure 6.19).

This had the added benefit of being able to use the so-called DIX pro-
tocol type numbers (for Digital Equipment/Intel/Xerox, the consortium that
popularized Ethernet) which had been already defined for Ethernet frames to
carry common protocols including IP, IPX, and XNS. (We discuss network
layer protocols in Part III.) The culmination of these modifications was an
entirely new protocol, the Point-to-Point Protocol (PPP) which we will con-
sider in the next chapter.

6.4 Summary

This chapter has applied the data link management taxonomy developed in
Chapter 5 to the family of serial protocols that includes SDLC, HDLC, and
derivatives such as LAPD, LAPF, and LAPM. In so doing we have seen that
many tasks executed by these data link protocols are in fact management tasks.

And we saw that perhaps the most defining characteristic of SDLC man-
agement was the central role played by the primary link station. A PLS manages
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the data link and its connections, and managing connections means managing
the state of the SLSs. The PLS is also responsible for workload management,
that is, scheduling the execution of the SDLC data link, which is effected by
polling centralized/open-loop control. Polls can be issued by the PLS with an
RR or they can be piggybacked onto another frame, typically an I frame carry-
ing client data from the PLS to an SLS. Acknowledgments can also be piggy-
backed in the control fields of supervisory (RR, RNR, REJ) and I frames.

With HDLC, actually a superset protocol that includes SDLC as one
mode of operation—the Normal Response Mode—we saw that control was
more symmetric. By defining two additional modes of operation, namely, the
Asynchronous Response Mode and especially the Asynchronous Balanced
Mode, the designers of HDLC moved to introduce greater autonomy to the
secondary link station. We saw that with HDLC/ABM we no longer speak of
primary and secondary link stations but rather combined link stations. While
ARM and ABM move the link management toward control that is distributed,
it is still open loop. The price of this autonomy was the loss of multipoint
topology support; only NRM (i.e., SDLC) supports multipoint data links. Dis-
tributed control of multipoint topologies is possible only with closed-loop con-
trol, which only comes with the LAN protocols (see Chapter 8).
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7
Data Link Management: The
Point-to-Point Protocol

7.1 Introduction

In this chapter we complete our survey of serial data link management with the
Point-to-Point Protocol (PPP). Besides being the WAN protocol for the Inter-
net, PPP also represents some of the latest thinking in data link protocol design
and implementation. Highly modularized, PPP consists of a base protocol and
a set of ancillary protocols providing a framework for extensibility that has
allowed for the definition of new protocols and features not included in
HDLC, let alone SDLC, including authentication, link quality monitoring,
encryption, and compression.

Before discussing these, however, we first review the requirements that
drove the development of what was then called the Internet Standard Point-
to-Point Protocol, starting with support for multiple upper layer protocols. As
well as discussing what PPP was intended to accomplish, we discuss why earlier
protocols, mainly proprietary variants of HDLC, were rejected. We also discuss
the management philosophy pursued by the PPP architects. As we will see, this
has a decidedly “Internet” orientation, notwithstanding the fact that it, like
SDLC and HDLC, is connection oriented.

But where those protocols realized management with dozens of special-
ized frames, PPP itself is a “light” protocol that has a single frame type. Build-
ing on its modularized management approach, most of the services provided
by those SDLC and HDLC management frames are instead realized by PPP’s
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Link Control Protocol (LCP). As we will see, at its most basic the LCP pro-
vides configuration management services for PPP link stations, much like an
elaborate form of XID exchanges. However, by design a PPP’s LCP is much
more powerful and able to accommodate new options and features than any
XID exchange.

Next we spend time discussing authentication and link quality monitor-
ing. These are major additions, innovations absent from earlier protocols. We
then look at the PPP network control protocols. These enable the negotiation
of configuration parameters for various network protocols, another feature
absent from HDLC or SDLC. Each network protocol has its own associated
NCP, and this chapter examines the NCPs for IP, IPX, and layer 2 bridging.
Likewise PPP defines control protocols for link stations to negotiate compres-
sion and encryption, and we discuss these as well.

We conclude by examining the PPP Multilink Protocol (MP) for bond-
ing multiple data links into a higher bandwidth composite. PPP MP, along
with the Bandwidth Allocation Protocol (BAP) and the Bandwidth Allocation
Control Protocol (BACP), offer the greatest bandwidth flexibility among serial
protocols.

7.2 Requirements for the Internet Standard
Point-to-Point Protocol

As we mentioned in our discussion of HDLC and multiprotocol support, when
multiprotocol networking took off in the 1980s, various internetworking ven-
dors began shipping proprietary versions of HDLC to interconnect their rout-
ers; these vendors were driven initially by the need to support protocol type
fields but soon various other modifications were incorporated from connec-
tionless service to security and so on. Not surprisingly, one casualty of such
proprietary proliferation was interoperability: It was impossible to attach a
router from vendor A to a router from vendor B over a WAN link and hope for
successful exchange of data.

In response to the growing complications this posed for interoperation,
the Internet Engineering Task Force (IETF) started working on what was then
called Internet Standard Point-to-Point Protocol (ISPPP), subsequently short-
ened to the Point-to-Point Protocol. The design rationale for PPP was laid out
in a working paper subsequently published as RFC-1547, “Requirements for
an Internet Standard Point-to-Point Protocol” [1]. The committee that worked
on these requirements laid out some basic design predicates, the most impor-
tant of which were the following:
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1. No multipoint topology support;

2. Simplicity and efficiency in the protocol;

3. Highly reliable channels—no error recovery necessary but error detec-
tion required;

4. Peer management—no master/slave mechanisms;

5. No flow control—a receiving link station will discard packets it can-
not handle;

6. Multiple upper layer protocols;

7. Extensibility; and

8. Negotiation between link stations of configuration parameters.

In addition, the decision was made after drawing up the working papers to
exclude simplex and half-duplex data links. An immediate consequence of these
requirements and objectives was that the ISPPP would not execute any work-
load management. Without fault recovery there was no need to retransmit
frames; without flow control there was no need to actuate the rate at which a
link station sent data; and without simplex or half-duplex transporters, or mul-
tipoint topologies, there was no need to schedule mechanisms such as polling to
allocate the channel to contending clients. That is why everything that we will
consider about PPP involves bandwidth (i.e., server) management.

7.2.1 Why Existing Protocols Were Rejected

RFC-1547 also documents why the existing serial protocols failed to meet these
requirements. The prevailing Internet serial protocol, called the Serial Line IP
(SLIP) protocol [2] and which was distributed in the BSD 4.3 Unix, was
rejected because it lacked support for multiprotocol operation, was not extensi-
ble, and had no error detection. The HDLC data link standards (ISO 6256
and so on) were also rejected because they lacked support for multiprotocol
operation, as well as for containing too much in terms of error correction, flow
control, and so on.

RFC-1547 also catalogs the proprietary serial protocols from Cisco,
Wellfleet, Proteon, and others, and why these were rejected. These were typi-
cally proprietary versions of HDLC, connectionless, and used only UI frames
to carry data between routers. However, each differed from the others and all
were missing one or more aspects of the desired solution, such as error detec-
tion and extensibility. Not to be discounted, either, was the political difficulty
of endorsing one vendor’s solution over another.
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7.3 PPP Base and Towers

So, after laying out the requirements and rejecting existing serial protocols,
what did the IETF committee design? To meet the objectives of simplicity
and efficiency, on the one hand, and extensibility, on the other, the committee
opted for a stripped down base protocol and numerous option sets (the familiar
“base and towers” approach) realized as additional protocols. And like HDLC,
PPP is actually defined by a family of standards, which, as Internet specifica-
tions are known, are called Requests for Comment (RFCs). The core PPP pro-
tocol was originally defined in 1989 with RFC-1134 and was most recently
revised in 1994 as RFC-1661 [3].

As we said, this modular approach is similar to HDLC and its option
sets. But whereas HDLC option sets generally added frames or modified frame
parameters such as the size of the sequence numbers or addresses, with PPP the
option sets define additional mechanisms, called control protocols, rather than
additional frames. Unlike SDLC or HDLC, PPP does not use a multitude of
frame types. Instead, the only PPP frame is the UI (unnumbered information)
augmented with a protocol type field that may be 8 or 16 bits in length,
although typically is the latter (Figure 7.1). RFC-1661 requires that all protocol
numbers be odd and further restrictions that we discuss later.

To quote from the PPP standard (RFC-1661),

PPP is comprised of three main components:

1. A method of encapsulating multi-protocol datagrams;

2. A Link Control Protocol (LCP) for establishing, configuring, and test-
ing the data-link connection;

3. A family of Network Control Protocols (NCPs) for establishing and
configuring different network-layer protocols. [4]

The first of these components, then, is the UI frame with a protocol field. The
second and third, namely, the link and network control protocols, handle
the management tasks served by the frames left out of PPP. The former define
the data link protocol parameters that are optional and subject to negotiation
between the two link stations. Likewise, the latter are used to negotiate
protocol-specific options corresponding to the particular upper layer protocol
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in question (for example, IP Control Protocol, AppleTalk Control Protocol).
The control protocols are intended to make PPP as self-configuring as possible,
reducing or even eliminating the need for management intervention.

Although PPP incorporates many features from HDLC, there are consid-
erable differences. First, while the PPP frame structure mimics the ISO 3309
standard, the inclusion of the protocol type field makes the frames fundamen-
tally different. Secondly, PPP uses a completely different approach to manage-
ment. Whereas HDLC relies on a proliferation of management frames such
as SNRM(E)/SARM(E)/SABM(E), DISC, DM, and XID, PPP delegates this
responsibility for bringing the link up and down, negotiating parameters, and
so on, to the various control protocols.

These control protocols, LCP and NCPs, are to PPP merely other pay-
load protocols to be encapsulated in the UI frames (Figure 7.2). Because the
protocol field is 2 octets, more than 65,000 protocol types can be specified
so there is little danger of running out of valid numbers. In addition to the
link control protocol and network control protocols, these obviously include
the upper layer protocols (ULPs).

7.3.1 PPP and the Data Link Taxonomy

Where does PPP fit in our data link taxonomy? PPP uses variable length
frames. It does not employ flow control. A link station will send frames unless
an upper layer protocol inhibits sending more data. In terms of fault manage-
ment, PPP provides only fault detection but not fault recovery; as with flow
control, any management action is left to an upper layer protocol. In fact, as we
mentioned earlier, PPP contains no workload management component at all.
And with regard to bandwidth management, meaning configuration manage-
ment as well as link actuation up and down, PPP is a peer protocol in every
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aspect. Table 7.1 lists the taxonomy criteria and compares PPP to SDLC and
HDLC (BAC).

The classification of PPP with respect to connection orientation may
seem somewhat problematic given that the exchange of PPP frames is not
inhibited until a connection a la SDLC or HDLC is established, since PPP uses
UI frames and only UI frames. On the other hand, a PPP link is not “up” until
the LCP successfully executes its negotiation. And even then a PPP link station
will not send the PDUs for a given protocol unless and until the corresponding
control protocol has been successfully executed—meaning, the successful nego-
tiation of configuration parameters. Finally, the PPP standard refers numerous
times to “connections.” Conclusion: PPP is connection oriented.

7.4 PPP and Multiprotocol Networking

To fully understand PPP we need to step back and look at multiprotocol net-
working for a moment. For purposes of illustration, consider a PPP link joining
two systems (end or intermediate) that are each running three upper layer pro-
tocols—say, IP, IPX, and AppleTalk (AT). The PPP data link will be a compo-
nent of three different protocol stacks (Figure 7.3). Each of these PPP links is a
virtual transporter that is executed by the actual PPP link.

In particular, because of the actuating role played by PPP control proto-
cols, we must nuance (again) our definition of a transporter’s task set. The tasks
in the task set must be qualified with respect to the ULPs that are carried. Thus
the nominal task set of our example PPP data link would be:

S S S S S S S S S S1 2 2 1 1 2 2 1 1
IP IP IP IP IPX IPX IPX IPX AT→ → → → →, , , ,{ }2 2 1

AT AT AT,S S→
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Table 7.1
Serial Data Links: Summary

Taxonomic Criterion SDLC HDLC PPP

CO or CL CO CO CO

Reliable or best effort R R BE w/ FD

Flow control Yes Yes No

Fixed or variable size frames Variable Variable Variable

Master/slave or peer M/S Either Peer



where the link stations are S1 and S2. The effective task set, however, depends
on the control protocols that have been executed. Prior to execution of the
LCP, the effective task set is empty. Even after LCP execution the effective task
set is empty with respect to the ULPs. It is only once an NCP executes that the
corresponding tasks are in the effective task set.

Because successful execution of the link and network control protocols
alters the effective task set of the transporter being managed by the data link
protocol, it is clear that these are bandwidth management mechanisms. The
control protocols as well as the ancillary protocols concerned with such areas as
authorization, compression, encryption, and so on, are all focused on configu-
ration management. (Recall from Chapter 1 that we saw configuration manage-
ment as an instance of bandwidth management.)

7.5 Management in PPP

7.5.1 PPP Management Philosophy

The overall management philosophy for PPP was clearly laid out in RFC-1547
(the PPP requirements document):

The internetwork layer (IP) is a fairly simple, almost stateless protocol pro-
viding an unreliable datagram service. The data link layer need provide no
more capability than the IP protocol; no error correction, sequencing, or
flow control is necessary. [5]
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This perspective is reiterated with regard to flow control:

Flow control (such as XON/XOFF) is not required. Any implementation
of the ISPPP is expected to be capable of receiving packets at the full rate
possible for the particular data link and physical layers used in the imple-
mentation. If higher layers cannot receive packets at the full rate possible,
it is up to those layers to discard packets or invoke flow control procedures.
As discussed above, end-to-end flow control is the responsibility of the
transport layer. Including flow control within a point-to-point protocol
often causes violation of the simplicity requirement. [5]

Such is also true of error correction:

It is the consensus of the Internet community that error correction should
always be implemented in the end-to-end transport, but that link error
detection in the form of a checksum, Cyclic Redundancy Check (CRC) or
other frame check mechanism is useful to prevent wasted bandwidth from
the propagation of corrupted packets. Link level error correction is not
required. [5]

As we said earlier, because PPP is limited to FDX channels and there is no error
correction (typically entailing retransmission) or flow control, there is no occa-
sion for any workload management. Everything that we will consider about PPP
involves bandwidth (i.e., server) management, in particular the negotiation of
connection parameters via the LCP and the monitoring of the link’s condition
via the Link Quality Monitoring (LQM) protocol (more on this later).

7.5.2 Configuration Negotiation

In addition to simply actuating the link’s effective task set and enabling the
transportation of various ULPs, most of the control protocols allow the PPP
link stations to negotiate certain options. This is similar to HDLC negotiations
using XID frames, except it takes place using the packets of the respective con-
trol protocols. The two PPP link stations on a data link each have certain prop-
erties/parameters that can only be exercised if both sides agree. As we will see
when we examine some of the more important control protocols, the options
vary considerably depending on the protocol being controlled.

In all cases, however, because PPP is a peer protocol, no fiat (master/slave)
control can be exercised by either link station. Instead, every protocol and
option must be negotiated between the two PPP link stations by means of the
various control protocols. If agreement cannot be reached, then the protocol
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and/or option cannot be used. For this reason, almost every PPP control proto-
col, link and network, follows the negotiation pattern shown in Figure 7.4. The
four “commands” shown are all configuration control commands—bandwidth
management in our scheme of things. The exceptions to this offer–counteroffer
sequence are authentication protocols (discussed later).

The negotiation between PPP link stations to start the PPP connection
occurs in three distinct phases, although the second phase is optional and may be
omitted if the services provided (authentication and/or link quality assessment)
are not required. The three phases are (1) link control protocol, (2) authentica-
tion and link quality management, and (3) network control protocol(s).

The LCP negotiation must successfully complete before the link stations
can negotiate authentication and LQM; and if authentication and/or link qual-
ity management protocols are employed, these negotiations must complete suc-
cessfully before the negotiations of the network control protocol(s), mandatory
for each upper layer protocol the link is to transport, can begin. Note that in all
instances the configuration control commands are not frames. Rather they are
options exchanged in protocol-specific packets carried as payload in the infor-
mation fields of the UI frames PPP uses for encapsulation.

7.6 The Link Control Protocol

As we indicated earlier, many of the management tasks that HDLC accom-
plished with specialized control and unnumbered frames have been abstracted
in PPP into optional link control protocols. All link level control protocols such
as the LCP have protocol numbers that are in the range from 0xC*** to 0xF***.
LCP’s protocol number is 0xC021.

LCP packets have an open-ended structure. The first three fields are
fixed. These are an 8-bit Code field, an 8-bit Identifier field, and a 16-bit Length
field. The Code field contains the packet type code. The Identifier field contains
a sequence number used by the two link stations to correlate requests and
responses. The purpose of the Length field is to allow the PPP link station to
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parse the packet. The last field consists of zero or more options, each of which
is specified with a uniform format consisting of an 8-bit Type field, an 8-bit
Length field, and a variable length data field consisting of zero or more octets.
Figure 7.5 shows this encapsulation hierarchy. The kind of LCP packet is deter-
mined by the code in the packet header. Table 7.2 lists the set of LCP codes.

The PPP standard organizes the principal codes (and the corresponding
LCP packets) into three classes [4]:

1. Link configuration: Configure-Request, Configure-Acknowledge,
Configure-Negative-Acknowledge, and Configure-Reject;

2. Link termination: Terminate-Request and Terminate-Acknowledge;
and

3. Link maintenance: Code-Reject, Protocol-Reject, Echo-Request,
Echo-Reply, and Discard-Request.

The Link Configuration packets are those we saw in the negotiation exchange
illustrated in Figure 7.4. These packets are, of course, exchanged in initializing
the data link but may also be sent at any time during the link’s operation to
change the connection’s parameters “on the fly.” Let’s look at these in more
detail:

• Configure-Request (Code 0x01): Informs a PPP link station that
its counterpart is willing to bring up a PPP connection with the
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accompanying options in effect (we discuss the options in a moment).
Each PPP link station sends a Configure-Request packet to its counter-
part; in other words, there are two option negotiations that occur with
PPP data links, one for each direction of traffic. The options agreed
on for one direction do not have to match those for the opposite direc-
tion.

• Configure-Acknowledge (Code 0x02): Accepts all of the proposed
options and their suggested values that were sent in a Configure-
Request packet.

• Configure-Negative-Acknowledge (Code 0x03): Used by a PPP link
station to indicate that some values of the options are unacceptable and
to propose alternative values for these. If the alternatives proposed
are acceptable to the receiving link station then it will send a new
Configure-Request packet with the options modified as per the
Configure-Negative-Acknowledge packet.

• Configure-Reject (Code 0x04): Used by a PPP link station to reject
one or more options entirely, if the link station does not support that
option irrespective of its parameter values.
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Table 7.2
Link Control Protocol Codes

Configure-Request 01

Configure-Acknowledge 02

Configure-Negative-Acknowledge 03

Configure-Reject 04

Terminate-Request 05

Terminate-Acknowledge 06

Code-Reject 07

Protocol-Reject 08

Echo-Request 09

Echo-Reply 0A

Discard-Request 0B

Identification 0C

Time-Remaining 0D

Reset-Request 0E

Reset-Reply 0F



Before discussing the remaining LCP packets, we should talk about the
LCP various options that are the subject of these negotiations. As we indicated
earlier, each control protocol is used to manage the parameters of the proto-
col—in the case of the LCP, these concern the link connection. The nego-
tiation between PPP link stations is over which options will be used with the
connection between them. When the Configure-Request packet is sent, it con-
tains zero or more options that the PPP link station is willing to accept for
the connection being actuated. Table 7.3 lists the most common negotiation
options for the LCP.
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Table 7.3
LCP Options

Vendor extensions 00

Maximum receive unit 01

Asynch control character map 02

Authentication protocol 03

Quality protocol 04

Magic number 05

Reserved (not used) 06

Protocol field compression 07

A and C field compression 08

FCS alternative 09

Self-describing pad (SDP) 0A

Numbered mode 0B

Multilink procedure 0C

Callback 0D

Connect time 0E

Compound frames 0F

Nominal data encapsulation 10

Multilink–MRRU 11

Multilink–short sequence number 12

Multilink–endpoint discriminator 13

Proprietary 14

DCE identifier 15

Multilink plus procedure 16

Link discriminator 17



According to a book on implementing PPP, “Options 01, 02, 03, 05, 07,
and 08 are nearly universal. Options 11, 12, and 13 are common in MP [mul-
tilink PPP] implementations. The others are rarely used” [6]. The Maximum
Receive Unit (option 01) is used by PPP link stations to negotiate the largest
frame they will accept. The Magic Number (option 05) is a four octet number
that should be chosen as randomly as possible, and which is used by each link
station to disambiguate its LCP packets from those originating at its partner;
the magic number is used to help detect accidental loopback conditions, for
example.

The Protocol Field Compression (option 07) and A and C Field Com-
pression (option 08) options are designed to reduce the overhead of the LCP
packets by reducing the size of the respective fields. The former reduces the size
of the protocol type field from two to one octet. The latter is based on the fact
that in most cases the Address and Control fields are constant values (0xFF and
0x03, respectively). As for the MP and authentication options, we defer discus-
sion of these until later.

A successful negotiation of LCP parameters effects not just configuration
management but also actuates the status of the PPP connection. Once agree-
ment is reached on the LCP options for each direction of the link, the PPP state
machines in each link station transition from the initial state to the open state.
Put another way, the Link Configuration packets, in addition to configuration
management (the actuation of PPP parameters), also effect status actuation. Of
course, this is only half of the status actuation process. The obvious question is
this: How is a PPP connection torn down? Because PPP is a peer protocol, nei-
ther link station can unilaterally decide to tear down the connection. Instead,
the teardown must be negotiated, and the LCP has two Link Termination
packets which are exchanged to accomplish this:

• Terminate-Request (Code 0x05): When a link station wishes to ter-
minate its connection, it sends to the other link station a Terminate-
Request packet;

• Terminate-Acknowledge (Code 0x06): A link station that has received
a Terminate-Request packet and agrees to the actuation will respond
with a Terminate-Acknowledge packet. At this point the connection is
down.

As with the other protocols we have discussed, various fault conditions can
arise, and a data link protocol should have a mechanism for detecting and iso-
lating. PPP includes several Link Maintenance packets that are used to isolate
faults and to convey various fault estimates. These are as follows:
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• Code-Reject (Code 0x07): When a link station receives an LCP packet
with an unknown LCP code, it is possible to infer (estimate) both that
a fault has occurred and the cause: The two link stations must have
different versions of PPP. The receiving link station sends back a
Code-Reject packet to inform the originating link station that a ver-
sion problem exists. The original LCP packet is included in the Code-
Reject packet in the data field.

• Protocol-Reject (Code 0x08): As with Code-Reject, when a link sta-
tion receives a control protocol packet for a protocol that is unsup-
ported it is possible to infer (estimate) both that a fault has occurred
and the cause: The two link stations support different upper layer pro-
tocols. The receiving link station sends back a Protocol-Reject packet
to inform the originating link station that a problem exists.

Figure 7.6 shows the fault estimation process within a receiving link sta-
tion’s bandwidth manager.

We note that the Code-Reject and Protocol-Reject packets serve the same
purpose as HDLC’s FRMR frame—to indicate that an unrecoverable configu-
ration error has occurred and some intervention (= actuation) by a network
administrator is required. With both Code-Rejection and Protocol-Rejection,
quoting from the PPP RFC, “it is unlikely that the situation can be rectified
automatically” [4].
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Next we come to loopback packets. We saw in Chapter 4 that loopbacks
were a special type of bandwidth actuation of use in fault detection, wherein
the task set is transformed from {S1 → S2, S2 → S1} to {S1 → S1, S2 → S2}. To
quote from RFC-1661, “LCP includes Echo-Request and Echo-Reply Codes
in order to provide a Data Link Layer loopback mechanism for use in exercising
both directions of the link. This is useful as an aid in debugging, link quality
determination, performance testing, and for numerous other functions” [4].

A PPP link station that wishes to test the link can do so by sending an
Echo-Request (Code 0x09) packet, containing a field for a magic number and
an arbitrary data pattern. The receiving link station must reply by sending an
Echo-Reply (Code 0x0A) packet containing the same data pattern. By compar-
ing the two packets the sending link station can estimate the link quality; and
by measuring the response time an estimate of link performance can be made.
Either link station can initiate a loopback once the link is Open (up). Note
that, unlike the loopback actuation at the physical layer, the loopback that
results from the exchange of Echo-Request and Echo-Reply packets is just a
temporary actuation, lasting only for the duration of the exchange. Some PPP
implementations will periodically send Echo-Request packets on an idle link to
check that it is still up.

Finally, the Discard-Request (Code 0x0B) packet is provided in the LCP
to enable a link station to send a frame of data to its remote peer strictly for
the purpose of testing its own transport mechanisms; on receipt of a Discard-
Request packet, a link station simply discards the packet.

7.7 Authentication and Link Quality Monitoring Protocols

Although it may seem that the LCP covers every possible requirement, in
fact many management tasks have been deliberately omitted. Instead, it has
been left to other link protocols to provide these for PPP link stations that want
them. These protocols fall into several distinct categories. In this section we
look at two of these, namely, the protocols that provide some sort of authen-
tication service, ensuring that only valid remote locations can connect, and a
protocol that helps monitor link quality, providing measurements for use in
management and planning.

7.7.1 Authentication Protocols

With PPP being deployed as the preferred Internet serial protocol for users
seeking remote access to Internet Service Providers (ISPs) as well as to corporate
intranets, there has been an overriding security interest in ensuring that only
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authorized users are allowed access. Many manufacturers of remote access
concentrators have implemented security mechanisms that rely on proprietary
authentication protocols; an example is the Shiva Password Authentication
Protocol (SPAP), published as an information RFC to help others (browser
vendors, emulator vendors, etc.) who might need to connect their products to
Shiva systems.

As with PPP itself, the IETF has sought to discourage the proliferation
of proprietary protocols by defining its own authentication protocols. The
original RFC covering authentication was RFC-1333, which included two
protocols: the Password Authentication Protocol (PAP, protocol code 0xC023)
and the Challenge Handshake Authentication Protocol (CHAP, protocol code
0xC223). CHAP has been revised with RFC-1994, which omits PAP as too
ineffective, but a new protocol, called the Extensible Authentication Protocol
(EAP), is being finished that may replace them both. The particular protocol
used on a link is determined during the LCP negotiation stage, where option
03 specifies the protocol type code of the authentication protocol a PPP link
station wants to be used.

All authentication relies on establishing the legitimacy of an unknown
party by means of some token, password, or other information that only
authorized parties would know. PPP authentication protocols are executed
after the LCP negotiation concludes successfully but before any NCP protocol
negotiation. This limits the information an unauthorized user could retrieve
from (or insert into) a secured system. Also, unlike the LCP and most other
PPP control protocols, there is typically no “negotiation” involved in authenti-
cation: either the unknown PPP link station is authorized to make a connection
or it is not. The authentication decision is a binary estimation.

Each authentication protocol defines a set of packets that are exchanged
between two PPP link stations for the purpose of establishing this legitimacy.
For example, PAP defines three packet types: Authenticate-Request (Code 01),
which is sent by the link station seeking authentication and which contains
the station’s password; and Authenticate-Ack (Code 02) and Authenticate-Nak
(Code 03), which are sent are by the authenticating link station to either
confirm or deny permission to open a connection. Figure 7.7 shows the PAP
authentication process.

CHAP, on the other hand, defines four packet types: Challenge (Code
01), Response (Code 02), Success (Code 03), and Failure (Code 04). With
CHAP, the authenticating link station creates a random key (the challenge),
which it sends to the authenticatee in a Challenge packet. Next, both link sta-
tions perform an identical look-up operation using a hash algorithm; the choice
of which algorithm to use may be the subject of an LCP negotiation, but
CHAP currently requires use of the MD5 algorithm [7]. The authenticatee

234 Protocol Management in Computer Networking



returns this in a CHAP Response packet, and the authenticating estimator
compares the two values. If there is a match then the authenticating link station
responds with a CHAP Success packet; otherwise it sends a CHAP Failure
packet, and tears down the connection. Figure 7.8 shows the CHAP authenti-
cation process.
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Note that an important distinction between PAP and CHAP is which
side, authenticator or authenticatee, initiates the authentication process. With
CHAP, the authenticating link station controls (schedules) the authenticating
process by sending the challenge packet; any attacker will only get to make
as many attempts as the authenticating link station allows. With PAP, on
the other hand, the authenticatee takes the initiative when it sends the
Authenticate-Request packet. This allows repeated attempts by a potential
attacker. Other distinctions between the two protocols include the fact that
PAP can only be run at the initiation of the PPP connection, whereas CHAP
can be run throughout the connection’s existence, enabling repeated challenges
to reduce potential damage from an unauthorized user. For a more detailed
discussion of PPP security, see [6].

7.7.2 Link Quality Monitoring

Recall we saw that the LCP Echo-Request and Echo-Reply packets can be used
to test the condition and performance of a PPP link both during PPP initiali-
zation and throughout the existence of the connection. This information is
useful, for example, to routers that may wish to select links that have greater
reliability, as well as to network managers tracking link problems and initiating
repairs. Beyond the use of Echo-Request and Echo-Reply packets, however,
PPP makes provision for using a so-called “quality protocol” to further assess
link reliability and performance. To quote from RFC-1661, “On some links it
may be desirable to determine when, and how often, the link is dropping data.
This process is called link quality monitoring” [4].

As with the use of an authentication protocol, the use of a quality proto-
col is the subject of LCP negotiations. Link quality monitoring is configured
during the LCP negotiation using option 0x04, Quality Protocol. This option
allows the link stations to specify which quality protocol they are willing to use
and the reporting period [4]. Currently, the only quality protocol defined is the
Link Quality Monitoring protocol (protocol code 0xC025), which is defined in
RFC-1989 [8].

The LQM protocol defines only a single type of packet. This is called a
Link Quality Report (LQR), and carries a number of measurements that char-
acterize the link’s performance. These include SNMP MIB-II interface counters
that record the number of octets and packets transmitted and received by that
link station as well as statistics on the number of discarded packets, errors, and so
on. In addition, each LQR includes three LQM-defined counters that conform
to MIB formats and which record the number of LQRs sent and received and the
total number of good octets. By comparing subsequent LQRs, a link manager
can infer if the link quality is decreasing, increasing, or staying constant.
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7.8 Network Control Protocols

Assuming the LCP has successfully opened the connection between PPP link
stations and that the authentication and LQM protocols, if in use, have like-
wise been successfully configured, the next (and final) stage in actuating the
PPP link’s task set is the execution of the network control protocols (NCPs)
corresponding to the upper layer protocols to be transported over the link. The
NCPs are, to quote from the PPP standard (RFC-1661), responsible for “estab-
lishing and configuring different network layer protocols” [4].

This begs the question, however, of why a data link protocol should be
concerned with the configuration management of upper layer protocols. After
all, no other data link protocol we have considered has included such a mecha-
nism, let alone one with provision for negotiating parameters. The answer can
be traced in part back to a requirement in RFC-1547 (PPP Requirements) for
Network Layer Address Negotiation:

The ISPPP must allow network layer (such as IP) addresses to be negoti-
ated…. Many network layer protocols and implementations are required
to know the addresses at both ends of a point-to-point link before packets
may be routed. These addresses may be statically configured, but it may
sometimes be necessary or convenient for these addresses [to] be dynami-
cally ascertained at connection establishment. [5]

Given this requirement, the designers of PPP could have opted for a monolithic
protocol that encompassed the network protocols requiring such negotiation
capabilities, but this would have violated the modular architecture they had
embraced, for example, with the LCP. By including configuration management
for upper layer protocols in separate network control protocols, they had a solu-
tion that was extensible. As new protocols (for example, IPv6) were defined,
new NCPs were defined for their management. We should note that PPP
allows for protocols that typically have low volume traffic running over
PPP links without first executing an associated NCP; these protocols have
distinct protocol type codes that inform the PPP protocol machine that no
NCP is necessary.

Specifically, in PPP’s numbering scheme, those protocols that have no
associated NCP have protocol codes in the range from 0x4*** to 0x7***
whereas the protocol codes range for the “normal” upper layer protocols them-
selves range from 0x0*** to 0x3*** and the protocol codes for the network con-
trol protocols themselves range from 0x8*** to 0xB***. As should be obvious,
an NCP type code is related to its protocol’s type code by simply adding
0x8000. Table 7.4 lists some of the most common network protocols, their
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associated control protocols, and the NCP’s RFCs (obsolete RFCs are noted in
parentheses).

The majority of network control protocols are very simple, their RFCs
constituting little more than a few pages. Because their basic purpose is to
negotiate upper layer protocol1 parameters, the NCPs resemble the LCP and its
negotiating mechanisms. By and large, the NCPs use the same packet types
as the LCP, notably the link configuration (Configure-Request, Configure-
Acknowledge, Configure-Nak, and Configure-Reject) packets; link termina-
tion (Terminate-Request and Terminate-Acknowledge) packets; and, of the
link maintenance packets, the Code-Reject packet. In the balance of this sec-
tion, we briefly survey several of the more important NCPs and the parameters
they negotiate.

7.8.1 IP Control Protocol

The first NCP we look at is the IP Control Protocol (IPCP), defined in
RFC-1332 [9]. It may seem surprising that, notwithstanding the importance of
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Table 7.4
Protocol Numbers: Network and Control Protocols

Protocol Protocol Type Code NCP Type Code NCP RFC(s)

IP 0021 8021 1332 (1172)

OSI 0023 8023 1377

XNS 0025 8025 1764

DECNET IV 0027 8027 1762

AppleTalk 0029 8029 1378

IPX 002B 802B 1552

Bridging 0031 8031 1638 (1220)

Banyan Vines 0035 8035 1763

NetBIOS 003F 803F 2097

SNA over LLC2 004B 804B 2043

SNA/APPN HPR 004D 804D 2043

IP version 6 0057 8057 2023

1. We refer to “upper layer protocols” rather than “network layer protocols” because some of
the NCPs are for configuring nonlayer 3 protocols such as NetBIOS.



IP as a protocol, relatively few options are negotiable with the IPCP (see
Table 7.5). On the other hand, as was mentioned earlier, because IP was
designed to be a very simple protocol providing an unreliable service, it is not
too unexpected that its options are limited. Indeed, it can be argued that one of
the principal reasons for IP’s success has been its relative simplicity compared to
such protocols as SNA or OSI.

Note that, of the IP options listed in Table 7.5 only the first three are
from RFC-1332 itself. The DNS and NBNS options are defined in RFC-1877,
“Name Server Addresses with IPCP.” The last option is defined in a draft
Internet standard for mobile IP [10]. This incrementalism again highlights the
extensibility of the PPP architecture.

Looking at the RFC-1332 options, the first and third concern the
exchange of IP addresses between PPP link stations, and the second is used
to select which if any IP compression protocol will be used. Option 01,
IP-Addresses, involves sending both source and destination IP addresses (for a
total of 8 octets; see Chapter 10); because of negotiation convergence problems,
this option has been, in the parlance of RFCs, “deprecated” and replaced with
option 03, IP-Address. With this replacement option an IPCP Configure-
Request packet will carry a 4-octet local IP address that the sending system
wishes to use on the PPP link. The receiving link station can accede to this sug-
gested IP address with a Configure-Ack or it can reject it, say, because of an
address conflict, by replying with a Configure-Nak.

The reason for IP compression (not to be confused with PPP compres-
sion, which we discuss in the next section) is that in many circumstances thesize
of the IP and TCP headers can be reduced from 40 octets to 3 or fewer octets;
the option does not compress the data contents of the TCP segments, and is
only applicable to IP packets carrying TCP segments. With IPCP option 2, the
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Table 7.5
IPCP Options

IP-Addresses 01

IP-Compression-Protocol 02

IP-Address 03

Primary-DNS-Address 81

Primary-NBNS-Address 82

Secondary-DNS-Address 83

Secondary-NBNS-Address 84

Mobile-IPv4 89



two PPP link stations can agree to remove certain fields that add nothing to the
functioning of the protocols under most circumstances. This compression tech-
nique is called the Van Jacobson (or VJ) protocol, after the man who developed
and documented it [11], and is the only compression protocol currently selecta-
ble using option 2. Note that when VJ compression is being used, IP traffic is
sent using three different protocol numbers depending on whether it carries
TCP compressed (protocol number 0x002D), TCP uncompressed (0x002F),
or regular IP data that were not eligible for VJ compression (0x0021, the stan-
dard IP protocol number).

The DNS (Domain Name Server) and NBNS (NetBIOS Name Server)
options are likewise used to exchange addresses over the PPP link. There is
some controversy over whether another dynamic discovery protocol such as
BOOTP or DHCP should be used instead. Readers are advised to consult [6].
Finally, the most recent IPCP option, 08 Mobile IPv4, is designed to allow a
mobile IP host to request a tunnel to its home agent; the option includes the IP
address of the home agent.

7.8.2 IPX Control Protocol

After IP, the most common internetworking2 protocol is probably Novell’s
Internetwork Packet eXchange (IPX). The IPX Control Protocol (IPXCP)
defines a total of six options, all of which are in common use except option 04)
(see Table 7.6). Of the remainder, options 01 (IPX-Network-Number) and 02
(IPX-Node-Number) contain addresses for the PPP link and the link station
sending the IPXCP Configure-Request packet, respectively. Option 03 invokes
one of several IPX header compression protocols similar to the VJ protocol
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Table 7.6
IPXCP Options

IPX-Network-Number 01

IPX-Node-Number 02

IPX-Compression-Protocol 03

IPX-Routing-Protocol 04

IPX-Router-Name 05

IPX-Configuration-Complete 06

2. That is, excluding SNA, which we treat as a terminal–host protocol.



from IPCP. Option 05 allows a link station to send the name(s) of any local
IPX servers. The last option, 06 IPX-Configuration-Complete, is an expedient
included to terminate the IPXCP negotiations should convergence between the
link stations prove elusive.

7.9 Transforming Protocols: Compression and Encryption

From NCPs we move on to look at two control protocols for configuring ancil-
lary communications tasks that have also been standardized under the PPP
umbrella, namely, compression and encryption. These are often referred to
as transforming protocols [6] since the actual client data are altered or trans-
formed. In contrast, though other network layer protocols may support
transformation options, their main task is to encapsulate data as is, that is,
without alteration.

Conceptually, encryption and compression can both be treated in terms
of the encoders and decoders. The respective encoders actuate the data, modify-
ing it either to reduce its size while retaining the information or to obscure its
content, while the decoders reconstruct the original data by reversing the effects
of the transformations. This is exactly the model we considered in Chapter 3,
with error control coding. The encoder in all instances consists, logically if not
actually, of a scheduler that decides what actuation to schedule and an actuator
that executes it; and the encoder is basically an estimator that receives the
actuated data and, since it knows the algorithm used by the scheduler, can
reconstruct the original (preactuated) data. Note that for the algorithms to
work correctly, if both compression and encryption are employed, then com-
pression must be executed first and then the compressed data can be encrypted
(Figure 7.9).

With both compression and encryption, the process is the same. The
ULP packet is compressed or encrypted and the protocol code corresponding
to the transformation protocol being executed (i.e., compression or encryption)
becomes the new (or outer) protocol type code, whereas the original protocol
type code for the affected packets, now called the inner protocol number,
is inside the new packet. If both compression and encryption are invoked,
then the process is repeated twice, first with the ULP packet being compressed,
and receiving the outer protocol number 0x00FD or 0x00FB, and then this
packet is passed to the encryption encoder, where it is encrypted and receives
yet another outer protocol number, this time 0x0053.

When a PPP link station using encryption and/or compression receives a
frame, a frame “router” (actually, workload manager) within the link station
directs the packet to one of several destinations depending on the (outermost)
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protocol type code. Figure 7.10 illustrates this process limited to the encryp-
tion, compression, and ULP type codes. Other packets, for NCPs and LCP,
would be similarly routed to the corresponding modules. If the (outermost)
protocol type code indicates the packet has been encrypted or compressed
it is sent to the appropriate module. After it has been “decoded” the frame is
sent back to the frame router with its inner protocol type code now outermost.
Note that if both encryption and compression were used then this process is
repeated twice, once for each decoding, before the ULP packet is reconstructed
and passed to the ULP state machine.
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Once the Compression Control Protocol (CCP) and/or the Encryption
Control Protocol (ECP) have reached the opened state, the packets passed down
from the ULPs are compressed and/or encrypted. The purpose of the ECP and
CCP is to allow the two PPP link stations to negotiate which encryption and/or
compression control protocols will be used on the link and with what parameters.
Given that both encryption and compression can be expensive in terms of proc-
essor cycles and memory, costs that may exceed the capabilities of smaller or less
powerful systems. With negotiation a less powerful link station can request a less
onerous transformation algorithm or even refuse to use one at all. Of course, if it
is encryption that is refused and security is essential, then the refused link station
should tear down the LCP connection and terminate the PPP link.

Both ECP and CCP use the standard set of packets (the link con-
figuration, link termination, and Code-Reject packets) augmented with two
additional packets: Reset-Request and Reset-Acknowledge. The link stations
conduct their configuration negotiation and link termination with the standard
packets. The Reset-Request and Reset-Acknowledge packets are used to coordi-
nate the encoders and decoders in ways particular to the respective protocols.

7.9.1 Compression and the Compression Control Protocol

Because it precedes the encryption process, we consider compression first. Many
different algorithms are available for compressing data. The CCP, which uses
protocol type code 0x8053, allows the PPP link stations to select which com-
pression protocol will be used. This is done with the CCP option field.

The majority of these compression protocols use the Lempel-Ziv (LZ)
algorithm [12] or some variant of it such as the Lempel-Ziv-Welch algorithm.
LZ algorithms perform a real-time substitution of patterns in transmitted data
with finite length code words, which are mapped back to the original patterns
by the estimator at the destination.

Such compression is referred to as history based because it works by ana-
lyzing past traffic for patterns that are assumed to recur and using these patterns
as shorthand to compress the data being transported. To some extent, history-
based compression is like the story of the old comedians who have heard
each other’s material so often that they no longer repeat the jokes, but merely
a shorthand numbering as in “How about number 42?” In the same way, the
LZ encoder and decoder build up a set of shared references, called a dictionary,
and use code word references to contents of the dictionary instead of the con-
tents themselves. The encoder is responsible for adding words (patterns) to the
dictionary.

Note that it is possible to use PPP compression in only one direction.
That is, PPP compression can be used in one direction of a PPP link but not

Data Link Management: The Point-to-Point Protocol 243



the other; for example, with asymmetric traffic flows, such as transaction proc-
essing with small messages going one way and large messages the opposite way,
compression may be necessary in only one direction. To quote RFC-1962, “A
different compression algorithm may be negotiated in each direction, for speed,
cost, memory or other considerations, or only one direction may be com-
pressed” [13]. Given that compression algorithms can require substantial CPU
and memory resources, such a one-way compression may be advantageous.

As with the other control protocols, the CCP can be used to select and
negotiate not just the compression protocol but also the protocol’s parameters,
to the extent these are negotiable. These parameters vary by the compression
protocol used. For history-based protocols, one group of parameters relates to
the dictionary. For example, among the parameters that describe the LZ imple-
mentation in V.42bis, negotiated in this case with LAPM XID frames, are the
following:

• N1: Maximum size of code words;

• N2: Maximum size of the dictionary (in code words);

• C2: Current size of code words;

• C3: Threshold for changing size of code word;

• N4: Number of characters in the alphabet.

An excellent overview of the LZW algorithm as used in V.42bis compression
can be found in [14].

Other parameters subject to negotiation include the granularity of the
compression: per packet versus history based, and within the latter one or more
than one history. For example, by maintaining separate histories for different
clients of the data link (ULPs), greater compression can generally be achieved
since the recurrence of patterns is likely to be higher the more coherence there
is to the stream of data from which they are drawn. On the other hand, manag-
ing multiple histories imposes considerable additional overhead in terms of
tagging compressed packets for one history or another, as well as managing
multiple dictionaries, and so on.

This brings us to an important point. Because with history-based com-
pression it is very important that the encoder and decoder maintain the same
dictionary. A lost or corrupted frame can result in a loss of “synchronization”
between the two sides of the PPP link and a subsequent propagation of errors
similar to catastrophic error propagation in sequential decoding (Chapter 3).
Compression, therefore, imposes a requirement for a more reliable transport
service than PPP is designed to provide; some compression protocols require
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the usage of reliable PPP (RFC-1663), which essentially employs HDLC/ABM
as an inner protocol within PPP to provide error recovery via retransmission,
while others implement their own sequencing and retransmission within the
compression protocol itself.

When synchronization is lost, a decoder may signal this by sending to the
encoding link station a CCP Reset-Request; the latter responds by sending a
Reset-Acknowledge packet, and restarts the dictionary construction from the
beginning. To quote from the CCP RFC-1962, “Upon reception of a Reset-
Request, the transmitting compressor [i.e., encoder] is reset to an initial state.
This may include clearing a dictionary, resetting hash codes, or other mecha-
nisms” [15]. Note that some compression protocols do not use these packets
but rather some internal mechanism to indicate loss of synchronization with
the encoder’s dictionary.

7.9.2 Encryption and the Encryption Control Protocol

As indicated earlier, encryption and the ECP parallel in many ways com-
pression and the CCP. ECP shares with CCP the same Reset-Request and
Reset-Acknowledge packets. As with CCP, their role is to signal a loss of syn-
chronization between decoder and encoder when history-based encryption is
used. And, as with CCP, such protocols may either stipulate the use of reliable
PPP or provide their own way of detecting and recovering from link faults that
would otherwise disrupt the encoder/decoder synchrony.

We touched on some of the basic ideas behind encryption when we
looked at LCP authentication protocols. There, however, it was not the actual
data being encrypted. By encrypting the packets being transported, PPP
encryption prevents so-called “man-in-the-middle” security breaches: A wire-
tapper or other collector of data exchanged would be unable to recover the
original data without knowing the encryption mechanism. Designing good
encryption is a very complicated task, and we refer the reader to [16] for more
details. Most of the encryption mechanisms in use today are proprietary and
not published, presumably for reasons of security. The only public encryption
protocol that ECP can be used to select is the U.S. Bureau of Standards DES
Encryption algorithm (ECP option 01). This is defined in RFC-1969.

7.10 PPP Multilink Protocol

All the data link protocols we have considered up to now have been designed to
manage a single physical layer transporter. Two disadvantages of such single
transporter implementations relate to their availability and bandwidth. If the
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transporter suffers a persistent fault, then its availability (and by implication its
effective bandwidth) is reduced, even eliminated if the fault is fatal, until repair
(bandwidth actuation) is effected. Likewise, if the performance of the trans-
porter becomes unacceptable as the effective bandwidth of the physical layer
transporter is exceeded by the workload (the traffic), then augmenting its
capacity will typically involve replacing one or more elements—transmitter,
channel, signal, and/or receiver, or all of these.

If a composite transporter is allowed then the situation changes. Instead
of a single transporter, two or more transporters are bundled while preserving a
single-system image to clients. Such a bundling is what we call a vertically, or
single-stage, composite transporter, in distinction to a horizontally, or multi-
stage, composite transporter, which is the result of concatenation of single-stage
transporters. As we have indicated before, we will explore multistage transport-
ers and the routing, switching, and tunneling mechanisms used to create them
in the last section of this book, Part IV.

Figure 7.11 shows a vertically composite bundling of multiple transport-
ers. There are several things to note. The first is the presence of the manager,
a workload manager that is responsible for preserving the single-system image
by mapping the RFSs to the virtual transporter to RFSs to one or more of
the component transporters. This is workload actuation of kind, which we dis-
cussed in Chapter 1.

The second thing to note is that the task sets of the composite and the
components are identical. This redundancy is the same principle behind mas-
sive parallelism in multiprocessor computers. The composite transporter has
a nominal bandwidth that is an additive function of the nominal bandwidths
of the component transporters, although due to management overhead it will
be less than the sum of the components’ bandwidth. Reliability is likewise
additive. Two of the principal benefits of these multilink transporters are grace-
ful growth and graceful degradation. If additional bandwidth is needed then a
component transporter can be added to the bundle; and if a fault disables one
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link then the bundle still can transport data as long as at least one component
transporter has not failed.

All of this brings us to the last PPP protocols we cover in this chapter,
the Multilink Protocol and the Bandwidth Allocation Protocol and its associ-
ated Bandwidth Allocation Control Protocol. Together these three protocols
allow PPP link stations to group multiple links and dynamically manage these.
We note that the use of “bandwidth” here is consistent with our definition
from Chapter 1: The Bandwidth Allocation Protocol is used to actuate the
effective bandwidth (service rate) of the composite transporter; it incidentally
actuates the composite’s reliability as well, since this is also changed as the
number of component links is increased or decreased.

7.10.1 Multilink Protocol

The PPP Multilink Protocol (MP) is defined in RFC-1990. To quote the RFC,

The goal of multilink operation is to coordinate multiple independent
links between a fixed pair of systems, providing a virtual link with greater
bandwidth than any of the constituent members…. The bundled links can
be different physical links, as in multiple async lines, but may also be
instances of multiplexed link, such as ISDN, X.25, or Frame Relay. [17]

PPP MP is actually the second effort at defining multilink support for PPP.
The first involved adapting the multilink mechanisms defined for LAPB in
ISO 7776 [18]. This was eventually rejected for several reasons. First, ISO 7776
works only with LAPB, which as we saw in Chapter 6 is a “heavy” protocol that
provides reliable transport with retransmission to prevent lost or missequenced
packets. In contrast, while PPP MP allows the use of reliable PPP (RFC-1663)
on the data links in a bundle, it is not required. The second reason that ISO
7776 was rejected is that it does not support fragmentation of ULP packets into
multiple frames for concurrent transport by component data links. (We discuss
fragmentation in detail later.)

7.10.1.1 MP Encapsulation
What the designers of MP eventually arrived at was a protocol that in many
respects resembles the compression and encryption protocols. Whereas with
standard PPP (non-MP) a ULP packet is encapsulated in a UI frame with the
corresponding protocol code, with MP the ULP’s protocol type code is moved
inside the PPP frame and the outer protocol code is changed to 0x003D, which
is MP’s protocol code. This is just as we saw with compression and encryption.
In addition, MP uses a special frame header that has fields for managing the
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segmentation and reassembly of ULP packets. This “inner” header immediately
follows the standard PPP header and consists of either two or four octets,
depending on whether 12- or 24-bit sequence numbers are used (this is one
of the MP options subject to negotiation by the PPP link stations; see later
discussion).

Figure 7.12 illustrates MP encapsulation and the two types of MP head-
ers. We will discuss this header in more detail in the next section.

7.10.1.2 MP Fragmentation
One of the design objectives for MP was support of fragmentation. An obvious
question is: “Why fragment with MP when standard PPP does not support
fragmentation?” The answer has to do with exploiting fully the added band-
width that comes with MP’s multilink implementation. Assuming that ULPs
prefer to send larger rather than smaller packets, MP fragmentation allows data
links with MTUs less than the packet size to nonetheless carry the packets. To
quote from RFC-1990, fragmentation “… offers the ability to split and recom-
bine packets, thereby reducing latency, and potentially increase the effective
maximum receive unit (MRU)” [19].

Fragmentation, however, opens the possibility of faults not possible with
standard PPP, notably lost or out of sequence fragments. The original (prefrag-
mented) ULP packet can only be reassembled if all the fragments arrive with-
out being corrupted. In addition, there must be some way to reorder fragments
that arrive out of order due, for example, to different bandwidths and latencies
of the component data links. If a fragment is lost, however, then it may not
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be possible for PPP/MP even to indicate to its ULP clients that a fault has
occurred; the only fault detection mechanism in PPP is a frame’s FCS and this
will not detect a lost fragment.

To prevent this and detect lost or out of order fragments, MP augments
PPP fault detection with two mechanisms in the MP header:

1. The Beginning-of-fragment (B) and End-of-fragment (E) bits: When
an ULP packet is segmented into fragments, MP protocol machine
sets the B bit in the MP header for the first fragment and the E bit in
the MP header for the last segment.

2. The Sequence number field: MP uses sequence numbers for reorder-
ing fragmented packet segments, much like the sequence numbers
we saw with SDLC and HDLC. By default these are 24 bits long,
allowing over 16 million sequence numbers before the field wraps
around. Some MP implementations support 12-bit sequence num-
bers, sacrificing some depth of the sequence number field in return
for saving 12 bits per MP frame header.

Together the B/E bits and sequence numbers will correct out-of-sequence faults
and detect lost fragment faults. The interested reader is advised to consult
RFC-1990 or the general reference listed in [6] for more details.

7.10.1.3 LCP Negotiation of MP Parameters
Before two PPP link stations can open a multilink bundle, they must negotiate
several options such as size of the sequence number field in the MP headers
and, for that matter, multilink capability itself. This brings us to another reason
why the MP is difficult to categorize in the PPP scheme, because it is neither an
NCP nor does it have an NCP associated with it. At the same time, notwith-
standing having a network protocol’s protocol type code (0x003D), MP is not
a true network protocol.

Whatever MP is, the configuration options for MP are negotiated with
the LCP using options defined in RFC-1990 specifically to support bundling.
These are:

• Option 11, Multilink Maximum Receive Reconstructed Unit
(MRRU): This parameter serves two purposes. First, by using it the
sending link station indicates it is capable of multilink operation. Sec-
ond, it specifies the largest ULP packet that can be reassembled at the
link station. This value is the equivalent to the MRU value in PPP,
and, like it, is used to constrain the size of ULP packets.
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• Option 12, Short Sequence Number Format: We have already dis-
cussed the fact that some MP implementations may choose to use short
(12-bit) sequence numbers rather than the long (24-bit) sequence
numbers. One downside to this is the potential for sequence number
wraps on high-bandwidth MP transporters, with the potential ambigu-
ity in reassembly this can cause.

• Option 13, Endpoint Discriminator: This is a unique system identifier
that a PPP link station sends to its partner. The standard defines a
number of candidate values, including IP address, Ethernet MAC
address, magic number, or a locally assigned address.

Note that these options superseded LCP option 0C, “Multi-link Procedure,”
which was used to configure the ISO 7776 multilink capability.

7.10.1.4 MP, Compression, and Encryption
While basic MP encapsulation indicates the presence of the MP header by set-
ting the protocol type code in the PPP header to the MP protocol type code,
which is 0x003D, this may be complicated by the use of compression and/or
encryption. Recall that in discussing compression and encryption we said that
the choice of protocol type codes for the two transforming protocols depended
on whether and how they were deployed in a PPP multilink. The difficulty is
that while compression must precede encryption, there is no fixed order for
encryption, compression, and PPP MP encapsulation. If compression and/or
encryption precedes MP encapsulation it is said to be done at the bundle level.
On the other hand, if either comes after MP encapsulation it is said to be done
on the link level. PPP link stations need to know the sequence in order to prop-
erly parse received frames, hence the fact that both compression and encryption
have two protocol type codes.

Taking these together, there are three valid encapsulation sequences:

1. A ULP packet may be compressed then encrypted then encapsulated
in one (or more if fragmented) MP header(s) for transport. The outer-
most protocol code is MP’s 0x003D, while the inner codes are
0x0053 and 0x00FD for the bundle-level encryption and compres-
sion, respectively, and finally the ULP’s “native” protocol code.

2. A ULP packet may be compressed, then receive an MP encapsulation,
with encryption done at the link-level. The sequence of protocol type
codes is 0x0055 (link-level encryption)/0x003D (MP)/0x00FD
(bundle-level compression)/“native” ULP.
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3. Finally, if both compression and encryption are done at the link-level
then the outermost protocol code is 0x0055 (link-level encryption)/
0x00FB (link level compression)/0x003D (MP)/“native” ULP.

7.10.2 Bandwidth Allocation Protocol/Bandwidth Allocation
Control Protocol

One criticism of RFC-1990 was that the standard does not adequately define
how to manage the addition of a link to an MP bundle, nor how to handle
removing one. For this reason, the IETF defined in RFC-2125 [20] a Band-
width Allocation Protocol (BAP) and an associated Bandwidth Allocation
control Protocol (BACP). With these the PPP link stations can dynamically
manage the link bundle, facilitating the insertion and deletion of component
links as conditions change. According to the RFC, the “BAP defines packets,
parameters and negotiation procedures to allow two endpoints to negotiate
gracefully adding and dropping links from a multilink bundle” [21]. For exam-
ple, with BAP a standards-based mechanism exists for vendors to implement
features such as bandwidth on demand (BOD) and dial on demand (DOD),
which augment link bandwidth to accommodate surges in network traffic; or
to implement transparent disaster recovery, allowing for example routers to use
dial connections if frame relay circuits go down without disrupting any of the
ULP clients of the PPP data link.

When two PPP link stations want to use the BAP to manage the links
between them, they first exchange Link Discriminators, 16-bit numbers that
uniquely identify the links in a multilink bundle, using LCP Option 0x17
(defined in RFC-2125). These Link Discriminators are necessary so that there
is no ambiguity as to which links are the subject of a BAP request.

Next, the two PPP link stations must use the BACP to provide necessary
configuration information. To date there is only one configuration option
defined for BACP: option 01, Favored Peer. This is necessary to determine
which PPP link station will win when both send the same BAP requests at the
same time. BACP uses protocol type field 0xC02B.

Once the BACP has successfully reached an Opened state and negotiated
the favored peer option, the BAP packets can be exchanged. The standard
groups these into three categories:

1. Request permission to add a Link to a bundle (Call-Request);

2. Request that the peer add a link to a bundle via a callback (Callback-
Request); and
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3. Negotiate with the peer to drop a link from a bundle (this implies
that the peer can refuse) (Link-Drop-Query-Request) [21].

The difference between a Call-Request and a Callback-Request is which
link station is to originate the call:

• A Call-Request packet is sent if the implementation wishes to originate
the call for the new link, and a Callback-Request packet is sent if the
implementation wishes its peer to originate the call for the new
link [21];

• The Link-Drop-Query-Request is provided to negotiate a graceful
removal of a link. If a PPP link station must drop a link, it can circum-
vent negotiation by sending an LCP Terminate-Request packet.

Table 7.7 lists the currently defined packet types of BAP. Note that BAP
packets use the protocol type code 0xC02D.

7.11 Summary

In this chapter we have covered the PPP protocol and its family of associated
control protocols. First we reviewed the motivations and design rationale
behind PPP and its modular architecture (courtesy of RFC-1547). We saw that
PPP was itself designed to be a relatively simple protocol, with the only actual
frame used being the unnumbered information (UI) frame. We placed PPP
within the management continuum alongside SDLC and HDLC: Although
connection oriented like these, PPP is a best effort protocol lacking
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BAP Packet Type Codes

Call-Request 01

Call-Response 02

Callback-Request 03

Callback-Response 04

Link-Drop-Query-Request 05

Link-Drop-Query-Response 06

Call-Status-Indication 07

Call-Status-Response 08



retransmission capabilities; likewise, flow control was omitted in order to keep
the protocol processing to a minimum.

Instead, we saw that the complexity and sophistication of PPP’s manage-
ment of the data link is realized in the ancillary control protocols. The first
is the Link Control Protocol, which we saw replaces the various management
frames used for connection actuation and configuration management in SDLC
and HDLC. Following the LCP came the Authentication and Link Quality
Monitoring protocols, selection of which is also effected via LCP options. Next
we discussed the role played by network control protocols, and illustrated it by
examining the IP and IPX network control protocols.

After the NCP exchanges occur, there may be negotiated the so-called
transformation protocols, including compression and encryption. We discussed
these in both a single-link context and with regard to multilink operation, the
last topic of this chapter. We saw that the PPP Multilink Protocol allows two or
more individual data links to be aggregated and treated as one with respect to
upper layer protocols; and that the Bandwidth Allocation Protocol allows the
management of additions and deletions to such composites, realizing dynamic
bandwidth to meet changing requirements for capacity and/or reliability.
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8
Data Link Management:
Local-Area Networks

8.1 Introduction

In this chapter we conclude our study of data link management by examining
local-area networks (LANs) and their protocols. LANs are data links that rely
on peer mechanisms to manage the execution of a shared channel by means
of closed-loop workload scheduling. In contrast to PPP and HDLC/ABM,
which are also peer protocols, LAN protocols are not limited to point-to-point
topologies. Our focus here is on the principal protocols of the IEEE 802 family
of LAN standards: the IEEE 802.3 Carrier Sense Multiple Access/Collision
Detection and IEEE 802.5 Token Ring protocols, along with the IEEE 802.2
Logical Link Control protocols, LLC1 and LLC2. Note that we explored the
physical layer signaling and interfaces for these LANs in Chapter 4; here our
primary focus is on the workload and bandwidth management mechanisms
above the physical layer.

The chapter begins with a landmark effort known as THE ALOHA
SYSTEM, an early packet-radio network that pioneered distributed manage-
ment. Next came the first commercial LAN, Ethernet, which was developed by
Xerox’s fabled Palo Alto Research Center and introduced carrier sensing as a
means of closed-loop workload scheduling. From there we consider the work of
the 802 committee, especially its division of the data link layer into two sublay-
ers, the Medium Access Control (MAC) and the Logical Link Control (LLC).
We explain what prompted this division as the IEEE 802 committee sought to
satisfy very divergent demands from the TCP/IP and SNA communities and
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the ramifications of the MAC address space with its 48-bit, globally significant
addresses.

We then turn to the IEEE 802 protocols themselves. First we explore
the 802.3 protocol and how it uses carrier sensing with collision detection to
realize random access to the channel. From there we move on to consider the
other method used to implement distributed workload management, namely,
sequential allocation via token passing, which is at the heart of the 802.5 Token
Ring protocol. As we will see, the 802.5 architecture is enormously more com-
plicated in its management than 802.3’s, in large part because of the mecha-
nisms included to manage the token—to handle, for example, faults such as
lost or duplicate tokens.

Finally, we will briefly discuss the Logical Link Control protocols LLC1
and LLC2 and their relationships to each other and to HDLC/ABM. The two
protocols are very different: LLC1 is a connectionless, best effort protocol that
is almost devoid of management apart from support for upper layer protocol
multiplexing; LLC2 is a connection-oriented, reliable protocol that is almost
identical to LAPB and its extensive management services.

8.2 Peer Management, THE ALOHA SYSTEM, and Ethernet

Recall that with serial protocols the progression from the Normal Response
Mode/Unbalanced Normal Class of Procedure (NRM/UNC) (i.e., SDLC) to
the Asynchronous Response Mode/unbalanced Asynchronous Class of proce-
dure (ARM/UAC) to the Asynchronous Balanced Mode/Balanced Asynchro-
nous Class of Procedure (ABM/BAC) entailed devolving ever more control
authority to secondary link stations. At each step we move closer to peer man-
agement and away from master/slave. The change from Normal to Asynchro-
nous eliminates polling and allows a secondary link station (SLS) to send at
will; and the change from Unbalanced to Balanced eliminates the distinction
between link stations altogether and allows either side to manage the mode of
the data link connection.

But these changes come at the expense of support for multipoint topolo-
gies: Only NRM/UNC supports more than two stations on a data link. This is
because all of the data link protocols we have considered so far rely on open-
loop scheduling of workload (traffic); in none of them does a workload sched-
uler monitor (measure and/or estimate) the current state of the channel. If any
link station could send data at will (so-called random access) then the inevitable
result would be continuous collisions. Only NRM/UNC’s primary link station,
with its ability to strictly allocate the channel to an SLS or to inhibit an SLS
from transmitting, can prevent collisions. The PLS maintains an open-loop
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estimate of the state of the channel based on its previous scheduling decisions,
and based on this, it determines if the channel is available.

Yet allowing even two stations autonomy to transmit at their own discre-
tion (i.e., self-schedule) would seem to create an impossible situation since the
open-loop estimate could not be maintained reliably—in effect, we would have
a multiple writers problem. So how do ARM/UAC and ABM/BAC, which are
also open loop yet allow autonomy, solve this problem? The answer is that most
if not all implementations of these protocols require FDX channels, which with
their concurrent multitasking are effectively two simplex channels; likewise,
PPP is limited to FDX channels.1 Consequently, these protocols are arguably
less examples of peer management than of coexisting master/slave management
mechanisms controlling decoupled components of a logically composite
transporter.

Closed-loop scheduling and peer management were not realized earlier
for several reasons. First, until the ARPANET was developed computer com-
munications were limited to terminal–host networks, in which master/slave
control was the rule. It was the management philosophy of the Internet, which
can be expressed succinctly as “distrust authority,” that elevated peer manage-
ment to its current importance. Second, closed-loop scheduling requires a level
of sophistication that could not be implemented economically before the
advent of VLSI circuits.

In the rest of this chapter we look at the milestones in the development of
peer management, starting with the ALOHA network; through to Ethernet,
the first LAN with its use of closed-loop scheduling; and finally the 802 family
of LAN protocols.

8.2.1 THE ALOHA SYSTEM

In 1968 the University of Hawaii was using an expensive network of leased
telephone lines connecting a number of terminals on distant islands to a main-
frame computer in Honolulu. As the costs of this network grew to consume
a large part of their budget, a research program was started by a team led by
Norman Abramson to replace these telephone lines with an experimental UHF
packet-radio network. This network, called THE ALOHA SYSTEM,
employed two different frequency bands to provide 24-Kbps communications
links to and from the central site. A centralized management architecture using
polling was rejected partly for cost reasons and complexity and also because
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greater efficiencies could be obtained by exploiting the bursty nature of termi-
nal traffic. Indeed, by using what was termed random access radio channel multi-
plexing, the resulting network was able to support hundreds of terminal users
simultaneously who shared the mainframe while enjoying better response times
than before.

To do this Abramson and his team devised a simple way for each site to
manage its own transmission (workload). A remote site was allowed to broad-
cast at any time (hence the “random access”) on the return channel, sending
data in packets up to 704 bits long, including a 32-bit CRC. If two or more
sites transmitted concurrently then obviously the interference would corrupt
their packets, which would be detected at the central site by comparing the
CRC of an incoming packet to the CRC it carries. If no fault was detected then
the central site would send to the remote site a positive acknowledgment. Con-
versely, if the remote site did not receive an acknowledgment within a finite
interval of time it would infer that retransmission was necessary (Figure 8.1). In
terms of our data link taxonomy, THE ALOHA SYSTEM used a connection-
less protocol that relied on positive acknowledgments with retransmission to
achieve reliable transport.

Recall that in Chapter 1 we distinguished between preventive and correc-
tive maintenance. The crucial step that Abramson took with THE ALOHA
SYSTEM was to focus not on preventing collisions by workload scheduling but
rather on correcting the collision’s consequences, and to do so by exploiting
mechanisms already present, namely, CRC fault detection and retransmission.
What Abramson, one of the pioneers of error control coding theory, did hark-
ens back to the remark in Chapter 3 that it was wasteful to build too good a
channel since it was more economical to use an error control code. Of course,
a collision is not, strictly speaking, a fault: there is no deterioration of the server
in question, namely, the physical layer transporter (channel, transmitter, and
receiver); rather, RFSs from two or more clients have interfered with each
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other, causing all to fail to be executed correctly (nominally). Nonetheless, it is
effectively a fault in that the transporter cannot transport or execute any of the
requested transport tasks. We will refer to these as workload faults.

We should note that a second-generation version, called slotted ALOHA,
combined random access and centralized scheduling in the form of a master
clock that fixed a periodic sequence of “slots”; a remote site that wanted to
transmit waited until the beginning of a slot rather than transmitting at will.
This resulted in packet collisions overlapping completely rather than partially
and approximately doubled the attainable utilization of the shared radio chan-
nel [1]. Together, ALOHA and slotted ALOHA represent an absolutely pivotal
landmark in the development of distributed protocols, most notably the crucial
protocol called Ethernet.

8.2.2 Local-Area Networks: Ethernet

We now come to Ethernet, the first true LAN. Work on Ethernet was started at
the Xerox Palo Alto Research Center (PARC) in 1972 [2], where a high-speed
communications mechanism was sought to connect the workstations being
developed. The original Ethernet used baseband signals over a coaxial cable
(called the bus) to connect up to 256 stations at speeds up to 2.94 Mbps. In
1980 DEC, Intel, and Xerox collaborated to produce an updated specification,
referred to as DIX, which increased the speed to 10 Mbps and increased the
number of stations enormously by moving from 8- to 48-bit station addresses.
In both cases the Ethernet LAN was single tasking. The channel executed only
one transport task at a time; if two or more stations transmitted at once the
result was a collision, that is, a workload fault.

From the central innovation of THE ALOHA SYSTEM—allowing ran-
dom access and employing corrective maintenance to “repair” the consequences
when this results in collisions—it was a short but critical step to Ethernet’s
principle of random access via carrier sensing with collision detection. (As
we saw in Chapter 2, baseband signals do not use a modulated carrier; but
notwithstanding this, the protocol became known as carrier sense multiple
access/collision detection.) That is, Ethernet’s architects took the random access
of THE ALOHA SYSTEM and augmented it by having each station monitor
the coaxial channel before transmitting. If the channel was idle the station was
free to start transmitting; otherwise the station waited until the channel was free.
In contrast, with THE ALOHA SYSTEM a remote site transmitted at will; there
was no management (actuation) of its workload/traffic generation.

This is closed-loop scheduling; the actuation of the arrival of traffic
(RFSs) to the transporter (the coaxial channel) is scheduled by each station
based on feedback about the state of the channel. However, if a collision
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occurred because two or more stations attempted to transmit at the same time
then the stations involved would detect the collision also by monitoring the
channel, stop transmitting, and wait a random amount of time before attempt-
ing to retransmit. Monitoring the transporter (channel) to detect if it was
already in use amounts to preventive maintenance. Although a station’s colli-
sion detection mechanism(s) can determine if a workload fault has occurred, it
is clearly preferable to avoid these (if possible without too much effort).

Figure 8.2 shows the formats of the experimental (original) Ethernet
frame and the DIX Ethernet frame. Both start with a field called the preamble,
originally 1 bit but revised in the DIX standard to be a 64-bit-long bit pattern,
which ensured that receivers could accurately estimate the clock of the
sender—to “train” the receiver’s PLL. Next are the addresses for the destination
and source stations, 8 bits in the original and 48 bits in DIX. After the
addresses, in the original Ethernet frame came the data field, which could be up
to 500 bytes long, and a 16-bit CRC. Note that, unlike the serial protocols we
considered in Chapters 6 and 7, there is no trailing flag; the absence of a carrier
(i.e., waveform) indicates the end of a frame. In addition, there is no control
field since Ethernet used only a single frame type. Without connections to be
managed, flow control, or other management tasks such as we saw with SDLC
and HDLC, no management frames were needed. In terms of our data link tax-
onomy, both the original and DIX Ethernets constituted connectionless, best
effort protocols with fault detection but with fault recovery limited to workload
faults, that is, collisions.
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The DIX frame differed in other ways from the original Ethernet frame.
The maximum data field was increased to 1500 bytes. On the other hand,
because small frames can cause difficulties with collision detection, the archi-
tects of DIX Ethernet established a minimum frame size. If the data field is too
small then the sender inserts a pad field to extend the frame length. The CRC
was correspondingly increased to 32 bits. The DIX frame, finally, has another
field not present in the original, namely, a 2-byte protocol type code. We
already discussed the introduction into Ethernet’s L2 header of a protocol type
code in Chapter 6 with respect to efforts to incorporate multiprotocol support
into HDLC and later with PPP. As we said then, the importance of this field
cannot be overstated since it is what allowed the development of multiprotocol
data links—Ethernets, for example, that can carry IP, IPX, and AppleTalk.

8.2.2.1 LANs and Serial Protocols
As we have remarked several times, a local-area network is, in fact, not a net-
work but rather a data link. And when the term LAN is used in distinction
to serial data link protocols such as SDLC, HDLC, and PPP, the potential
for confusion is compounded by the fact that most LAN protocols, including
Ethernet, token ring, and FDDI, are serial, meaning 1 bit is transmitted at a
time; the opposite of “serial” is not LAN but rather “parallel.”

8.3 The IEEE 802 Standards

Shortly after the DIX standard was released, the Institute of Electrical and
Electronics Engineers (IEEE) formed the 802 committee to standardize LAN
protocols. Almost immediately, however, a conflict broke out between the Eth-
ernet community, which wanted the 802 committee simply to ratify the DIX
standard, and IBM, which insisted that LANs be reliable rather than best effort.
This was because the design of IBM’s Systems Network Architecture (SNA)
was explicitly predicated on reliable data link protocols such as SDLC (see
Chapter 11 for more details on SNA). The Ethernet community, coming
largely from the TCP/IP world with its opposing management philosophy, was
equally unwilling to bend. The result was that the two camps had staked out
irreconcilable positions.

The only solution was a compromise that essentially allowed the two sides
to claim victory. The 802 committee split the data link layer into two sublayers:
the Medium Access Control (MAC) sublayer and the Logical Link Control
(LLC) sublayer. Within the LLC two principal LLC protocols were defined,
one called LLC1, which was best effort and connectionless like Ethernet, and
one called LLC2, which was reliable and connection oriented like HDLC
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or LAPB. Figure 8.3 shows the IEEE 802 family of standards and their
relationships.

8.3.1 IEEE 802 MAC Addressing

As we said earlier, though the original Ethernet specification used 8-bit
addresses, the DIX standard increased this to 48 bits. The 802 committee
adopted this, although they also made provision for the use of 16-bit addresses
as an option for smaller networks that did not want to incur the overhead of the
larger addresses. However, few vendors supported the smaller addresses and
48 bits became the rule.

The use of 48 bits for addresses enabled the IEEE to maintain a global
address space: No two 802 devices should have the same MAC address. As
we discussed earlier, addresses are overhead and most data link protocols prior
to Ethernet and its 802 successors attempted to minimize the overhead by
having only locally significant addresses and, with SDLC, even using only
one address in the frame header. The fact that LANs used globally significant
addresses meant that it was possible for the first time to concatenate at layer 2,
that is, without layer 3 addressing at all. Such L2 concatenation is called bridg-
ing or, if implemented in hardware, switching; we discuss this in more detail in
Part IV.

However, because it was anticipated that some protocols would embed
MAC addresses in upper layer configurations and it would be undesirable to
require these to be changed if, for example, a network interface card (NIC) had
to be replaced, the 802 committee included the ability for network administra-
tors to override the global MAC addresses and instead define their own local
addresses. In addition, provision was made for defining multicast and broadcast
addresses, although it was left to the individual MAC protocols to specify how
these were utilized.
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8.3.2 IEEE 802.3 MAC Protocol: CSMA/CD

The results of the 802.3 committee’s work was the MAC protocol officially
called Carrier Sense Multiple Access/Collision Detection, no longer Ethernet.
In terms of the 802.3 MAC frame header (Figure 8.4), perhaps the most sig-
nificant change was that the DIX protocol type code was omitted and replaced
with a 2-byte length field. (As we see later, the 802 committee did retain sup-
port for multiple upper layer protocols in the form of 1-byte service access point
identifiers that effectively function the same way and are located instead in the
LLC protocol header.) The only other change to the DIX header was that the
preamble was reduced to 7 bytes and a new field, called the start frame delimiter
(SFD), was included in place of the eighth preamble byte. The preamble pat-
tern is a repetition of the bit pattern 10101010, whereas the SFD is the bit
pattern 10101011.

8.3.2.1 Estimating the Channel State: Carrier Sensing
Recall that in Chapter 4 we looked closely at the physical layer of an Ether-
net/802.3 station, including the modularization of management decision
mechanisms between the station proper and the multistation access unit
(MAU), also called the transceiver (see Figure 4.9). A transceiver that is pow-
ered on and connected to the channel continuously measures the signals on the
channel both to monitor the state of the channel for collisions and because
the signal (waveforms) may be part of a frame that is addressed to a station that
is attached to it. The transceiver contains an estimator that, based on the
measurements it receives from the receiver circuits, continuously decides
among three choices: (1) the bus is idle, (2) a collision (or other channel
anomaly) has occurred, and (3) a valid waveform has been received,

As we saw in Chapter 4, the 802.3 standard calls for the transceiver to
send valid waveform information to the station’s physical layer signaling (PLS)
layer across the Data In circuits of the AUI cable, while its estimates of the
channel’s state are sent via the Control In circuits of the AUI cable. It may do
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this by means of three different waveforms: (1) the CS0 waveform, which car-
ries a signal_quality_error (SQE) message; (2) the IDL waveform, which carries
a mau_available message; and (3) the CS1 waveform, which carries the
mau_unavailable message, though this is optional to the 802.3 standard.

The scheduler within the transceiver decides what waveforms should be
transmitted (actuated) on to the shared channel. However, it is the scheduler
within each station’s MAC layer that manages collision recovery via retransmis-
sion. The channel state estimate is sent to this scheduler, which in turn makes
its own decision based on the state of the channel and whether it has data to
send and/or has sent data already. If it has data to send and if the bus is idle,
then it schedules transmission; on the other hand, if a collision or valid wave-
form is detected, then the scheduler waits until the channel is idle. If it has sent
data and if a valid waveform is detected, then it continues to schedule trans-
mission until the frame is transmitted or the maximum frame size is reached.
If a collision is detected then the scheduler stops scheduling additional
transmission of waveforms and enters collision recovery. Finally, if the sched-
uler neither has data to send nor has sent data then it ignores the information
completely.

Figure 8.5 shows the division of responsibility between the transceiver
and the MAC sublayer, as well as other tasks of the latter including serializing
and deserializing data between the LLC and PLS layers, channel fault detection
via CRCs, and so on. Note that, unlike THE ALOHA SYSTEM, neither Eth-
ernet nor IEEE 802.3 uses the CRC for collision detection. Indeed, since colli-
sion detection in Ethernet/802.3 occurs within the transceiver at the waveform
layer, CRCs are unnecessary.

8.3.2.2 Collision Recovery
Any station on the bus may detect a collision; it is not the sole responsibility of
a transmitting station. When a station detects a collision the 802.3 standard
specifies

[t]o ensure that all parties to the collision have properly detected it, any
station that detects a collision invokes a collision consensus enforcement pro-
cedure that briefly jams the channel. Each transmitter involved in the colli-
sion then schedules its packet for retransmission at some later time. [3]

By requiring that any station which detects a collision briefly jam the channel,
the standard increases the overall probability of successful detection.

When a collision has occurred and been detected, the transmitting sta-
tions must take additional actions above and beyond those listed above. The
standard states
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[w]hen a transmission attempt has terminated due to a collision, it is
retried by the transmitting CSMA/CD/CD sublayer until either it is suc-
cessful or a maximum number attempts (attemptLimit) have been made
and all have terminated due to collisions…. The scheduling of the retrans-
missions is determined by a controlled randomization process called “trun-
cated binary exponential backoff.” At the end of enforcing a collision
(jamming), the CSMA/CD sublayer delays before attempting to retrans-
mit the frame. The delay is an integer multiple of slot time. The number of
slot times to delay before the nth retransmission attempt is chosen as a uni-
formly distributed random integer r in the range:

0 <= r <= 2k

where
k = min(n, 10) [3]
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Note that the slot time is fixed to be larger than the sum of physical layer
round-trip propagation time and the maximum jam time. This last parameter
is set such that all stations on the LAN can detect a jam.

8.3.3 IEEE 802.5 MAC Protocol: Token Ring

Just as IBM lobbied the 802 committee to get a reliable connection-oriented
data link protocol, so, too, it pressed the case for an alternative to CSMA/CD’s
random access that would provide a more deterministic and predictable service.
Because CSMA/CD stations could theoretically be delayed for arbitrarily long
times by the exponential backoff process if two or more colliding stations chose
the same random numbers, many in the industrial control community were
unhappy with the prospect of its use in closed-loop control of real-time sys-
tems. By making common cause with large companies such as General Motors
that were interested in adopting an 802-compliant LAN for use in industrial
(i.e., factory) networks, IBM was able to get the 802 committee to sanction an
alternative that relied on sequential, token-passing mechanisms rather than ran-
dom access.

The result was that not one but two token-passing MAC protocols were
defined, the 802.4 Token Bus and the 802.5 Token Ring. Since the latter
has been much more widely adopted, especially in IBM’s customer base, we
concentrate here on the 802.5 standard and its management mechanisms. In
fact, 802.4 Token Bus’s principal distinction was that, at least initially, it was
the only 802 MAC protocol that had a broadband (carrier-modulated) physical
layer. This was again a concession to its intended operating environment, facto-
ries with high-powered electrical equipment, against which it was felt carrier-
modulated signaling would prove more robust.

8.3.3.1 Sequential Allocation via Token Passing
The Token-Ring MAC protocol defined in the 802.5 standard is at the oppo-
site end of the spectrum to CSMA/CD in terms of design philosophy and
implementation complexity. Although it, too, is a connectionless protocol,
802.5 Token Ring has perhaps the most elaborate management design of any
protocol we have discussed up to now. As we see later, the Token-Ring proto-
col uses over two dozen special frames to aid in the management of the ring and
its ring stations. (Rather than link stations, the standard speaks of ring stations.)

The focus of much of this in management is the token, which the 802.5
standard defines as “a symbol of authority that is passed between stations using
a token access method to indicate which station is currently in control of the
medium” [4]. In other words, a token indicates that the channel is free;
the token functions exactly like one of Dijkstra’s semaphores used to protect
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critical regions in an operating system (see, for example, [5, 6]). When there is a
token on the channel (ring) it passes each station in turn, indicating that the
channel is free and can be scheduled and that the station can have its task exe-
cuted by the channel. The station responds by changing/removing the token
from the channel, thereby indicating that no other station can have its task exe-
cuted at that moment.

A second reason for the token-ring protocol’s complexity is that the ring
is, in fact, a logical fiction that must be created and maintained by various
management mechanisms. Recall from Chapter 4 that while a Token Ring,
topologically, is a circular/looped concatenation of communications channels,
physically, the ring is actually realized as a star, with each ring station connected
by a pair of lobe cables to a MAU. Each channel is called a lobe ; the concatena-
tion of lobes is a ring (Figure 8.6). To facilitate knitting together the individual
stations and their lobes, the 802.5 standard defines a number of manage-
ment servers (described later) and corresponding management frames to be
exchanged between these and the ring stations.

As we see, another important aspect of the Token-Ring protocol is its
support for prioritization. The 802.5 standard defines eight levels of priority
that can be used to expedite access (workload scheduling) for important traffic
such as real-time or multimedia data; in effect this amounts to class of service
support.

Last, we should mention a small but notable difference between the 802.3
and 802.5 standards, namely, the order in which bits are transmitted on the
channel: 802.3 bytes are transmitted least significant bit first, whereas 802.5
bytes are transmitted most significant bit first. This includes MAC addresses,
which when interpreted per 802.3 are said to be in canonical format while
802.5 addresses are said to be in noncanonical format. This does not generally
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cause difficulties except for two circumstances: (1) when MAC addresses are
embedded in upper layer protocol addresses and software and (2) when transla-
tional bridging between 802.3 and 802.5 LANs is desired (see Part IV).

8.3.3.2 IEEE 802.5 MAC Frame
The format of an 802.5 frame is shown in Figure 8.7. The frame begins with
a starting delimiter that uses the two 802.5 nondata symbols J and K (see
Chapter 4) to distinguish it from ordinary data. Next comes a field called
Access Control (AC), which is at the heart of Token-Ring workload manage-
ment. After this comes the Frame Control (FC) field, which like the control
field in SDLC and HDLC is used to indicate the frame type—whether the
frame is carrying LLC data (an LLC frame) or management data (a MAC
frame). The frame’s destination and source MAC (noncanonical) address fields
are next, 48 bits each.

An optional element of the token-ring frame that follows these is called
the Routing Information Field (RIF). The RIF is used in source-route bridging
(L2 concatenation), which we discuss in more detail in Part IV. The data field,
like the data field in an 802.3 frame, carries an LLC PDU (see later discussion).
Note that, unlike 802.3, 802.5 does not define a maximum data field or frame
size; instead, each station maintains what is called the Token Holding Timer,
which in conjunction with the data rate (originally 4 Mbps, later 16 Mbps with
higher speeds under discussion) of the ring determines how large a frame can
be. This is followed by a 32-bit Frame Check Sequence Field, which is calcu-
lated using the same CRC generating polynomial as that used in 802.3.
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The 802.5 frame, however, does differ markedly from the 802.3 frame
in its remaining fields. Unlike 802.3, 802.5 frames require a trailing flag, here
called the Ending Delimiter. Like the Starting Delimiter, the Ending Delimiter
includes the nondata J and K symbols as well as two subfields called the Inter-
mediate Frame Bit (the I bit) and the Error-Detected Bit (the E bit) to indicate,
respectively, that the frame is part of a multiple frame transmission and/or that
an error such as CRC failure or nondata symbol violation has been detected.

The last field in an 802.5 frame is called the Frame Status (FS) field,
which contains two important subfields called the Address Recognized (A) bits
and the Frame Copied (C) bits. A station that receives a frame addressed to it
sets the A bits (for redundancy there are two bits for each A and C) as it for-
wards the frame downstream; if in addition the station copies the frame to its
local buffer it sets the C bits. As we see, the 802.5 architects used the A and C
bits to realize MAC layer management; however, as we see in Part IV, they also
created a thorny dilemma when it comes to concatenation of Token-Ring LANs.

As can be seen in Figure 8.7, the AC field contains four subfields, two
of which are concerned with managing the Token-Ring priority mechanisms:
a 3-bit priority subfield, which carries the currently available priority of the
token, and a 3-bit reservation field, which is used by ring stations to raise
the next available token’s priority level. That is, a token circulating on the ring
will always have a priority level ranging from 0 to 7. A station that receives the
token checks the priority level it carries in the Access Control field and com-
pares it with its own priority to see if it can claim the token and start transmit-
ting a frame or must instead wait for the token to eventually circulate with a
lower priority. The reservation subfield, on the other hand, allows a station
with high-priority data to indicate this and thus “jump the queue” in front of
lower priority ring stations that would otherwise get to use the Token Ring first
if they were “ahead” of it on the ring. With the reservation bits set, these lower
priority stations cannot claim a token because they could not meet or beat the
required priority. Obviously, stations are limited in their ability to claim higher
priorities at their own discretion.

The remaining two fields of the AC frame are the Token (T) and Moni-
tor (M) bits. A token proper is a special structure that consists of just the Start-
ing Delimiter field, an AC field with the token bit equal to 0, and an Ending
Delimiter field. After a ring station receives the bits of a Starting Delimiter it
will examine the AC field to see if the T bit is 0. If it is, then this is a token, and
the station then checks the priority field to determine if it can claim the token;
if the T bit is 1, however, then this is a frame and the station will check the des-
tination address to see if the frame is addressed to itself. In addition, a ring sta-
tion must check the source address. If it placed the frame on the ring, then it is
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responsible for removing it as well, which it does by resetting the T bit to 0 and
thus recreating the token.

Clearly, the correct operation of a Token Ring is contingent on the sta-
tions adhering to the protocol concerning the claiming and release of the token;
if a station fails to obey the protocol and does not release the token then it
could conceivably continue to send frames and monopolize the ring indefi-
nitely. Anticipating this, the 802.5 architects created a special management
mechanism called the active monitor, a ring station that has been elected as part
of the 802.5 protocol to act as a manager of the ring with responsibility for
managing the token. This is where the monitor bit comes in. The station run-
ning the active monitor uses the M bit to detect token faults and recover from
them, for example, by discarding a frame that is continuously circulating on the
ring. We discuss the role of the active monitor and other 802.5 management
servers in more detail later.

8.3.3.3 Early Token Release

As originally defined, no station on the Token-Ring LAN could begin to trans-
mit until it received a free token of usable priority, and a token was only put
back onto the LAN when the previous sending station had removed its frame.
However, this was subsequently modified with what is known as early token
release (ETR). Using ETR, a station that has finished transmitting its frame’s
end delimiter but has not yet received the frame’s header will issue a token on
the ring, enabling another station to begin transmitting its frame before the
first frame has been removed. This exploits the fact that on large Token-Ring
LANs the physical dimensions of the ring may easily accommodate two or
more frames, especially if the frames are relatively small. Put another way, while
the token-ring LAN was originally single tasking, with ETR it now supports
concurrent multitasking.

8.3.3.4 MAC Versus LLC Frames

Before continuing with 802.5 management we should discuss in more detail
the FC field and the two types of 802.5 frames, MAC frames and LLC frames.
The two high-order bits of the FC field indicate the type of frame—00 for a
MAC frame and 01 for an LLC frame (note that 10 and 11 are reserved). MAC
frames are concerned with management. LLC frames carry upper layer PDUs
encapsulated in LLC frames. The data link carries upper layer protocol data in
LLC frames; these originate in and are delivered to the LLC layer. If the 802.5
frame is carrying an LLC PDU then three of the remaining 6 bits of the FC
field may be used to carry priority information on an LLC–LLC level (not to be
confused with the priority carried in the AC field).
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Management data is carried in MAC frames in the form of 802.5-defined
records called vectors which, in some cases, have additional subvectors. These
data are exchanged largely by ring stations with those ring stations that are
hosting the 802.5 management servers (see later discussion). This is “in-band”
management signaling and the management data all stay within the MAC layer
(Figure 8.8). As with other management data, this is overhead, that is, it
displaces user data and uses transport bandwidth that could otherwise carry
user data.

Table 8.1 lists the 25 MAC frame types defined in the 802.5 standard.
The majority of these have the same FC value x’00’ and are only differentiated
by the contents of the frame, namely, the vector and (possibly) subvectors.
Note that the vectors corresponding to a number of the MAC frames in
Table 8.1 are only partly specified; the asterisks are in fact placeholders that are
filled in accordance with the function (i.e., management) class of the ring sta-
tion that sends or receives the MAC frame (more later).

The 802.5 standard defines four such function classes: an ordinary ring
station is class 0; a Configuration Report Server is class 4; a Ring Parameter
Server is class 5; and a Ring Error Monitor is class 6. Thus, for example, the
vector carried in a Request_Station_Address MAC frame that is sent by an
ordinary station is 0x000E. If the same frame is sent by the Ring Error Monitor
the vector is 0x060E.

8.3.3.5 Ring Management
Every ring station contains a component called the monitor, capable of detect-
ing and recovering from various LAN anomalies. However, only one monitor,
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called the active monitor, is allowed to exercise these responsibilities at any
given time; all the monitors in other stations are said to be in standby mode.
The role of the active monitor according to the 802.5 standard is “to recover
from various error situations such as absence of validly formed frames or tokens
on the ring, a persistently circulating priority token, or a persistently circulating
frame” [4].

To recover from these anomalies the active monitor broadcasts the
Ring_Purge MAC frame. This frame serves two purposes. First, when it returns
to the active monitor it confirms that the ring is whole and operating. Second,
it directs all other ring stations to reset their state machines and timers.

An active monitor will signal its presence on a ring by periodically send-
ing out the Active_Monitor_Present (AMP) MAC frame. (Standby monitors
may likewise send out Standby_Monitor_Present frames under certain circum-
stances.) Normally the active monitor will be the first station on the ring but
what if this station powers down or is otherwise lost? That is why every other
station on a token-ring LAN monitors the traffic for these periodic AMP
frames. If they fail to come within a certain interval (by default 18 seconds)
then it is assumed that there is no active monitor on the ring and the task of
electing a new active monitor begins.
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Table 8.1
IEEE 802.5 MAC Frames and Associated Vectors

MAC Frame FC Vector MAC Frame FC Vector

Beacon 02 0002 Request station attachments 00 0*10

Claim token 03 0003 Report new active monitor 00 4025

Ring purge 04 0004 Report SUA change 00 4026

Active monitor present 05 0005 Request initialization 00 5020

Standby monitor present 06 0006 Report neighbor notification
incomplete

00 6027

Duplicate address test 01 0007 Report active monitor error 00 6028

Lobe media test 00 0008 Report error 00 6029

Remove ring station 01 040B Response 00 *000

Change parameters 00 040C Report station addresses 00 *022

Initialize ring station 00 050D Report station state 00 *023

Request station addresses 00 0*0E Report station attachments 00 *024

Request station state 00 0*0F — — —



The process by which it is determined which station will be the active
monitor is called token claiming. This consists of broadcasting several
Claim_Token MAC frames. Though every 802.5 station is capable of becom-
ing the active monitor, the default configuration option is for a station not to
participate in the election process unless it was the first to detect the absence of
AMP frames. If two or more stations do seek election, then the station with the
lowest MAC address wins. The new active monitor signals the election is com-
plete by broadcasting a Ring_Purge frame prior to issuing a new token.

Above and beyond the management executed by monitors, the 802.5
standard discusses three additional management entities: the Ring Parameter
Server, the Ring Error Monitor, and the Configuration Report Server. Like the
active monitor, these are not statically bound to any given station but rather are
elected among these stations configured to host them. The purpose of these
servers is to assist in ring management related to actuations such as adding,
removing, or moving a station’s position on the logical ring, as well as reporting
faults and other anomalous conditions.

The Ring Parameter Server (RPS) assists when a station wants to join
the logical ring (Figure 8.9). A station will send a Request_Initialization MAC
address to the RPS functional address in order to get the operational parameters
for the ring; these include the local ring number (used in source-route bridging;
see Chapter 14). The RPS, if one is present, will respond by sending an Ini-
tialization MAC frame with the ring parameters. If no RPS is present then the
station can still join the ring but will use default values for the ring parameters.

In contrast to the RPS, the Ring Error Monitor (REM) provides a cen-
tralized repository to which stations send data. A ring station is instrumented to
monitor the ring and the station itself [4]. Eleven different counters (state vari-
ables) are maintained as part of this monitoring; these record such events as line
errors (either invalid waveforms or FCS detected), internal errors within a sta-
tion, Access Control Errors, and token errors. These measurements are sent to
the Ring Error Monitor using the REM functional address by means of the
error MAC frame (Figure 8.10).
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The presence of the REM on the ring is a twofold convenience:

1. Without the REM, stations on the ring would have to store measure-
ments indefinitely. This could require unacceptable storage capacity
at individual ring stations.

2. Without the REM, the systems management applications would
have to interrogate each ring station to obtain statistics about the
ring’s condition.

Finally, the Configuration Report Server (CRS) “can alter the configura-
tion of the ring by requesting stations to remove themselves from the ring. The
CRS can also query ring stations for various status information” [4]. Four
MAC frames are exchanged between the CRS and individual ring stations:
Remove_Ring_Station, Change_Parameters, Report_New_Active_Monitor,
and Report_SUA_Change. We discuss the last of these frames and the concept
of a stored upstream address (SUA) next.

8.3.3.6 More on Ring Operation
As we discussed in Chapter 4, a ring station is by default bypassed from the
physical ring by means of a relay in the Token-Ring MAU that is only actuated
when a station is powered on and sends a request by means of a phantom cur-
rent carried on the lobe cable; until this, the lobe cables are, in effect, looped
back—much as we saw with the V.28 serial interface. The first stage in joining
a Token-Ring LAN is that, while the lobe cables are in loopback, a station will
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first execute a loopback test to determine the condition of its lobe cables
by sending to itself Lobe_Media_Test MAC frames followed by Dupli-
cate_Address_Test MAC frames. Only if these are successfully transported by
the lobe cables does the station send the MAU the phantom current to physi-
cally join the ring.

The logical ring, however, must still be joined. Once a station has joined
the physical ring there is a finite interval of time, measured by what is called its
attachment timer T(attach), during which it expects to see an AMP, SMP, or
Ring_Purge MAC frame. If the timer expires before any of these frames arrive,
then it assumes that there is no active monitor on the ring, either because it
is the first station on the ring or because of some anomaly. In either case, the
station will attempt to become the active monitor by means of the token claim-
ing process mentioned earlier, the duration of which is limited by the
T(claim_token) timer.

Assume, however, that an active monitor is present. Then the inserting
ring station will determine if any other ring station is using its MAC address by
broadcasting a Duplicate_Address_Test MAC frame. If no conflict is detected
the next step is to find the address of the station on the ring immediately pre-
ceding it. That is, the 802.5 fault detection and recovery mechanisms require
that a station on the logical ring know the MAC address of its nearest upstream
neighbor.

The process of learning the upstream neighbor address (UNA) involves
the AMP frames sent out by the active monitor. These frames carry as a sub-
vector the UNA of the station the active monitor last determined to be its
upstream neighbor. The first downstream station that receives an AMP frame
will copy the source MAC address from the frame header and store it as its
UNA. It, in turn, will broadcast an SMP frame with this address as a subvector.
The first downstream station that receives this SMP frame will then copy the
source MAC address as its UNA and itself issue an SMP frame. This process
continues until the upstream neighbor of the active monitor sends an SMP
frame, at which point the neighbor notification process concludes.

A station’s UNA is used in fault determination and recovery. When a ring
station estimates that a severe fault such as a broken ring has occurred, it broad-
casts a Beacon MAC frame, including its UNA to aid in fault determination. A
station that receives a Beacon frame removes itself from the ring via the phan-
tom current signaling and performs self-testing, including the lobe-loopback
described earlier. If no internal fault is detected then the station reinserts itself
into the ring. To prevent a beaconing station from disabling a Token-Ring
LAN, the protocol requires a beaconing station to remove itself and perform
self-test when its nearest upstream neighbor has performed a self-test and
returned to the ring.
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8.3.4 Logical Link Control Protocols

Last we want to touch on the Logical Link Control layer and its protocols. Like
Ethernet and Token Ring, the two LLC protocols defined as part of the 802.2
standard are at opposite ends of the management spectrum. The management
of LLC1 is so minimal that it would almost constitute a pass-through layer
were it not for the presence of the SAP fields within the LLC headers. LLC2,
on the other hand, is essentially a repackaging of HDLC/ABM. The result is to
superimpose a point-to-point connection orientation on top of the inherently
broadcast connectionless Token Ring. Note that both LLC 1 and LLC 2 share
a common frame format (Figure 8.11).

The first two fields are the destination and Source Service Access Points,
each 8 bits long. These are similar to the DIX protocol type field but obviously
smaller. In fact, because 2 bits are used to indicate whether the SAP address is
global or local and individual or group, there are effectively only 6 bits to repre-
sent upper layer protocols. The inadequacy of this led to the definition of the
SubNet Access Protocol (SNAP) field, which provides an additional 5 bytes to
expand the protocol type code. If a SNAP field is used then both the DSAP and
SSAP fields are set to 10101010.

After the SNAP fields comes the control field. Because LLC2 uses 7-bit
sequence numbers some of its frames have 8-bit control fields while others need
16 bits. After this comes the data field (unless a SNAP field is included, in
which case it follows the control field and precedes the data). As we mentioned
earlier, the size of the data field depends on the MAC protocol. Whereas 802.3
limits the field to 1500 bytes, 802.5 has no fixed maximum. Instead, this is
determined by the ring speed and the token-holding timer.

8.4 Summary

In this chapter we have discussed the workload and bandwidth management
mechanisms employed in the most important elements of the 802 family of
protocols, namely, the 802.3 CSMA/CD and 802.5 Token Ring Medium
Access Control protocols; and, briefly, the 802.2 Logical Link Control proto-
cols LLC1 and LLC2. We also explored why the 802 committee divided the
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data link layer into two sublayers to meet the conflicting requirements of the
Internet community, on the one hand, and IBM and its allies, on the other.

The chapter began by reviewing the innovative random access workload
management used in Abramson’s ALOHA SYSTEM project. From this we
moved on to the Ethernet protocol developed by Xerox PARC, the first proto-
col to use true closed-loop scheduling. We discussed how Ethernet and later the
802.3 CSMA/CD protocol realized fault recovery using peer management
mechanisms. We then moved on to the more complex Token-Ring process and
explained how token passing is actually a type of open-loop scheduling, the
token constituting a semaphore indicating whether the LAN is free or busy.
Indeed, a measure of the protocol’s complexity can be seen in the large number
of management frames it requires. Along with these frames, we saw that the
802.5 protocol defines extensive mechanisms for monitoring and controlling a
Token-Ring LAN.
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9
End-to-End Management: Basics

9.1 Introduction

We now continue up the encapsulation hierarchy to look at upper layer pro-
tocols and their role in managing end-to-end communications. As with data
link protocols, there is a difference of opinion as to how much management
should be incorporated into end-to-end protocols. And, as before, the decision
is between simplicity/efficiency, on the one hand, and complexity/robustness,
on the other. However, the management trade-off with end-to-end protocols
is complicated by several factors, not least being that end-to-end management
issues extend past the scope of a single data link: Multiple data link concatena-
tions introduce new fault scenarios, where relays may fail or become congested,
necessitating mechanisms of fault detection/correction, flow control, and/or
additional management to support distributed transaction processing, for
example.

Another complication comes from the fact that the encapsulation hierar-
chy can be arbitrarily deep, the only constraint being the overhead incurred by
adding layers. At one extreme is the X.25 Packet Layer Protocol, a monolithic
end-to-end protocol in which all the management tasks, from connection man-
agement to flow control to error control, are included in the single layer. At
the other extreme is the seven-layer OSI model, which divides responsibility
for managing end-to-end communications into five upper layers. Rather than
follow either the OSI, TCP/IP, or any other model of protocol layering, in this
chapter we derive from first principles the tasks of end-to-end management and
then discuss their modularization—that is, how many layers there are above the
data link.
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As before, we decompose end-to-end management into bandwidth and
workload management; and these into the corresponding measurement,
estimation, scheduling, and actuation tasks. After defining what end-to-end
management is, we discuss why it is necessary in real-world communications
networks. We also explain why end-to-end management should be decoupled
from concatenation. Next, we present a management taxonomy for classify-
ing end-to-end protocols: connections versus connectionless operations, flow
control, fault detection and recovery, and segmentation; whether these are exe-
cuted at each stage (relay) or only the endpoints; and in how many layers. We
also examine the locus of control in end-to-end protocols, that is, whether the
management mechanisms are peer or master/slave.

In the remaining chapters of Part III we apply this framework to the
analysis of the two most important families of protocol architectures, namely,
TCP/IP and SNA (including APPN). Each of these represents different
approaches to the management of end-to-end communications and each has
strengths and weaknesses. We discuss their respective management mechanisms
and how these have been modularized within the various protocol architec-
tures. Finally, we look at the question of managing high-speed transporters,
with their large delay bandwidth products, and the implications for the types of
management mechanisms required.

9.2 End-to-End Management and Protocols

9.2.1 What Is End-to-End Management?

Although the meaning of end-to-end management may seem obvious, as we
will see in this chapter it needs some elaboration. For example, what does end-
to-end management mean if the transporter consists of a single data link? The
answer depends on the management executed by the data link protocol versus
the management desired by client(s). If the data link protocol is “light,” that is,
no retransmission, no flow control, and so on, and reliable service is desired
then an end-to-end protocol must provide this additional management. Seem-
ingly the situation is clearer if the transporter is made up of multiple data links,
that is, if it is multistage. In this case the role of an end-to-end protocol may
include management tasks that no data link protocol can effect, for example,
end-to-end retransmission to recover from relay faults. But if concatenation is
achieved via MAC bridging then the LLC protocols in fact span end to end (see
later discussion). So as we said, end-to-end management is not so simple to
define.
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First we should ask what do we mean by an end system? At the physical
layer an end system is a DTE and the channel interface module is a DCE. At
the data link layer all the link stations constitute end systems. However, once
we get above the data link layer we again distinguish between types of systems:
End systems are clients of the transport service, whereas intermediate systems
are components of the transport server. As we noted in Chapter 1, different
terminologies are in use that complicate the discussion. Synonymous with end
system are DTE (ITU/CCITT) and “host” (IP); unless otherwise specified, an
end system is both a client (i.e., source) and a destination. Likewise, synony-
mous with intermediate system, are DCE (ITU/CCITT) and “relay” (IP).

Next we must ask what we mean by an end-to-end protocol? It turns out
that there are two ways to answer this. The first is that end-to-end means end
system to end system (host to host in IP parlance), to the exclusion of those
protocol layers that are in both end systems and intermediate systems. With
this definition, the lowest end-to-end layer in the OSI model is the transport
(layer 4) [1]. Figure 9.1 illustrates the distinction, where the end system-only
definition includes the Application, Presentation, Session, and Transport pro-
tocol layers, whereas the more expansive End System/Intermediate System defi-
nition includes the Network protocol layer as well.

On the other hand, between the transport layer and the data link layer
there is another layer, namely, the network layer in the OSI model, that is inar-
guably end to end in its span and which is present in both end systems and
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intermediate systems (except layer 2 intermediate systems, i.e., MAC bridges
and switches). Again excepting L2 intermediate systems, the network layer is
absolutely essential because it manages the global address space, without which
end systems on different data links (other than 802 LANs) could not commu-
nicate with each other. For this reason, in this book we will follow the second
definition and consider any protocol above the data link layer to be an end-to-
end protocol.

With either definition, however, the management scope of an end-to-end
protocol is global, whereas the principal defining characteristic of a data link
protocol is that the scope of its management is a single stage or channel
(Figure 9.2). (Even this statement needs to be qualified, since the “single chan-
nel” in question is in fact composed of two or more channels concatenated
at the physical layer to produce the appearance of a single channel. The only
exception to this would be two DTEs directly connected over a channel, but
in most cases this is not possible, as we discussed in Chapter 4, because of
the asymmetry between DTE and DCE interfaces. Hence with serial data links
the minimal configuration involves two channels, whereas an actual connection
over a public telephone or data network may involve tens, hundreds, or even
more channels as the signals are routed over the internal switch-to-switch cir-
cuits. Likewise, with Token-Ring LANs, each station is connected with a pair
of channels (the lobe cables) to the MAU, so a LAN with k stations consists of
at least 2k channels. And the various types of Ethernet media all involve multi-
ple channels: the shared bus as well as the AUI and MDI cables, and so on.
Therefore, when we speak of data link protocols managing a “single channel” it
should be clear that this is a convenient fiction.)

In contrast, an end-to-end protocol may span a single stage (channel
or data link) or it may span multiple stages (generally speaking, data links)
concatenated together—this is why we speak of the “global” scope of an end-
to-end protocol. And it is this that drives the need for implementing an
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end-to-end protocol, to augment the management provided by the data link
protocol(s), including these tasks:

1. To define a global address space;

2. To abstract data links and isolate details from upper layer clients;

3. To manage end-to-end faults and flows; and

4. To provide additional multiplexing of upper layer clients.

We explore these tasks in the rest of this section.

9.2.1.1 Global Addressing

The first difficulty that comes with end-to-end protocols and their global scope
is that the addressing that was adequate for a single data link is likely to be
inadequate when multiple data links are connected. The reason for this is that
data link addresses generally have only local significance. This is why an early
“advanced course” on distributed systems stressed that “[e]nd-to-end protocols
(EEP), datagram or VC, are required to provide the unique address space
needed…” [2].

With all protocols, and especially data link protocols, a major concern has
been to minimize the protocol overhead (header size) by keeping the address
field(s) as small as possible. With the exception of the 802 MAC addresses,
which were defined for LANs with relatively high-bandwidth channels and in
any case are a comparatively recent development, most data link addressing is
not sufficient to identify unambiguously a set of end systems/hosts that are on
different data links. For example, SDLC only included one address field, for
the secondary link station(s). If two SDLC links are concatenated, the address-
ing fails if for no other reason than that we now have two primary link stations
which both assume the implicit address. And PPP carried minimization to the
extreme with the configuration option of eliminating address fields altogether.

When we consider end-to-end protocols, therefore, managing a global
address space is the first task. To do this, an end-to-end protocol must map
global addresses to the addresses used by the data links in the network. These,
after all, realize the end-to-end transport task(s). This is similar to employing
network address translation (NAT) or similar interconnecting gateways that
operate at an upper protocol layer; even with these, however, it is necessary
to define a mapping of a globally unique address space to, for example, the
“locally” unique network addresses in the different component networks. An
example of this in SNA is called the boundary function (see Chapter 11).

For now, however, look at a simpler scenario: the management of a single
global address space mapped to component data link address space(s). Consider
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the composite transporter composed of two data links and a layer 3 relay (i.e., a
router) shown in Figure 9.3. There are two end systems, each with global (layer
3) and local (layer 2) addresses. Client end system A has the layer 3 address AL3

and the layer 2 address AL2; the destination end system B has the layer 3 address
BL3 and the layer 2 address BL2. Just as the (local) addresses define the task set of
the data link, so the global addresses define the task set of the composite trans-
porter. In Figure 9.3 the task set of the composite transporter (i.e., the net-
work) is AL3 → BL3.

Note, however, that neither component data link has the transport task
AL2 → BL2 in its task set. Therefore, the only way to realize the transport
task AL3 → BL3 (i.e., the end-to-end transport task) is with a schedule of two
layer 2 transport tasks: AL2 → CL2 and DL2 → BL2, where CL2 and DL2 are the
layer 2 addresses of the relay corresponding to its link stations on the first and
second data links, respectively. The relay here acts as the proxy destination
for the client A and the proxy client to the second data link.1 We should also
remark here that end-to-end protocols vary according to whether an intermedi-
ate system needs global addresses for each of its local (i.e., data link) addresses
or if it suffices to have a single global address for the intermediate system. IP is
an example of the former approach, and SNA is an example of the latter.

If the layer 2 addressing used on each transporter (data link) is only
locally significant then, in the absence of the global addresses AL3 and BL3, the
relay would have no way of intelligently forwarding the data to the destination
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end system B. A station with destination address BL2 could be on one, both,
or neither data link. On the other hand, even if globally significant layer 2
addresses are used then the relay still has the dilemma when a frame with desti-
nation BL2 arrives at the relay’s link station (either CL2 or DL2), namely, that it
can only employ the relatively unsophisticated forwarding technique of broad-
casting the frame out all its other interfaces, a process otherwise known as flood-
ing. To reduce the need for such inefficient discovery, transparent bridging
relies on a cache-based learning mechanism (see Chapter 14 for more details).

This is because the IEEE 802 addressing, while globally significant,
defines a flat address space. A flat address space has no order in the assignment
of addresses. In other words, there is no spatial correlation between addresses
and the location of the addressed system. On the other hand, a hierarchical
address space implies a clustering or correlation of addresses and locations.
Human beings naturally gravitate toward hierarchical addressing, including
mail (house number, street, city, state, country) and phone (country code, area
code, branch exchange, line number). We will discuss the implications of hier-
archical address spaces with respect to routing in Part IV.

9.2.1.2 Abstracting Data Links
Just as data communications would be much easier from an addressing perspec-
tive if no data link had to be connected to another, so too would other aspects
of management be simpler if there were only a single type of data link. Once we
admit multiple types of data links. However, we are confronted by the need to
isolate implementation details beyond just the data link’s addressing structure.
This is a logical continuation of how the data link layer shielded its clients from
the details of the physical layer and of how the DCE shielded the DTE from
the channel and signals used. For example, an HDLC link station does not
need to know if its DTE is connected to a DCE via a V.35 or RS-232 interface
connector or whether the channel waveforms use phase modulation, frequency
modulation, or digital signaling.

These are all instances of abstraction. The process of global addresses ali-
asing local addresses is, in effect, just such an abstraction of data link(s). The
task of the network layer/end-to-end protocol workload manager is to map the
end-to-end RFS to the L2 RFSs that are executable by the L2 transporters (data
links) (Figure 9.4).

In practice, this means encapsulating end-to-end PDUs in L2 PDUs,
which are then sent down to the physical layer, where the bits are sent across
the DTE–DCE interface. In general, the manager in a layer will take the
L(k + 1) SDU in the L(k) PDU. The plant at the L2/L1 interface sends bits:
The bits of the L2 PDU are sent to the L1 manager, which transforms them
to the interface standard waveforms and then to the DCE. The plant sent by

End-to-End Management: Basics 287



DTEs to DCEs are standardized waveforms (V.28, V.35, and so on). Finally,
the plant carried by channels is waveforms that depend on the channel and
signaling used (Figure 9.5).

Thus, when a data link (L2) protocol machine, also known as a link
station, receives a ULP SDU from a ULP client, it encapsulates this ULP SDU
in an L2 PDU and then assumes its role as client of the physical layer (L1)
transporter. The real or ultimate client is the upper layer protocol client but the
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physical layer (L1) knows nothing of this; the transporter only deals with the
data link (L2) protocol machine, that is, the proxy client.

Splitting and Blocking
At each layer interface, the encapsulation relationship of layer k + 1 SDUs and
layer k PDUs can be one-to-one, one-to-many, or many-to-one relationships.
We are specifically looking at the layer 3/layer 2 interface, where a single L3
SDU can be encapsulated in one L2 PDU (frame); an L3 SDU can be split
or fragmented and its segments each encapsulated in its own frame; or two or
more L3 SDUs can be encapsulated or blocked together in one L2 PDU.

The choice of whether to split/fragment an L3 SDU or to block multiple
L3 SDUs together is dictated by the relative sizes of the packets and frames. As
we saw in Part II there is a wide of range of frame sizes among the data link pro-
tocols in common use. Note that not all data link protocols support fragmen-
tation (splitting) and/or blocking of packets to fit into frame sizes—PPP, for
example, allows only one packet (L3 PDU) to be encapsulated in a PPP frame.

There are thus five scenarios in which an L3 transport RFS (task) is
mapped to one or more L2 transport RFSs—the actual RFSs being L3 and L2
PDUs, respectively, and the mapping of encapsulation of the L3 PDUs in the
L2 PDUs:

1. One L3 SDU (RFSe) in one L2 PDU (RFSi): The transporter is
single-stage, and no segmentation of the L3 SDU is used.

2. One L3 SDU (RFSe) in two or more L2 PDUs (RFSi). There are two
subcases:

2a. The L2 PDUs (tasks) are different in kind—heterogeneous tasks;

2b. The L2 PDUs (tasks) are different in degree—homogeneous
tasks.

3. Two or more L3 SDUs (RFSe) in one L2 PDU (RFSi): The trans-
porter blocks two or more plant for transport within a single frame.

4. Two or more L3 SDUs (RFSe) in two or more L2 PDUs (heteroge-
neous): The transporter is multistage but nonetheless blocks two or
more L3 SDUs.

Subcase 2a corresponds to a multistage transporter consisting of two or more
data links, which we discussed earlier. Conceptually it is, in effect, a workload
actuation of kind: The end-to-end RFS is transformed into data link RFSs.
Subcase 2b occurs with the segmentation of a large L3 SDU for transport by a
single data link.
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9.2.1.3 End-to-End Reliability and Flow Control

As we saw in our discussion of data link protocols, there is no consensus over
the appropriate level of management with respect to faults and flow control
at the data link layer. At one extreme are advocates of what are essentially
“management-light” layer 2 protocols—protocols without fault recovery, flow
control, connections, and so on, while at the other extreme are advocates of
“management-heavy” protocols with all these mechanisms.

The same is true as we climb the protocol stack to end-to-end protocols.
Taking reliability first, we are confronted by the same issues as at the data link
layer: Should the end-to-end protocol attempt to detect faults? To correct faults
via forward and/or backward error control? What about clients that are sending
data such as real-time voice or video, in which the occasional lost packet is less
important than timely delivery? And what end-to-end reliability is needed if the
data link layer already employs reliability mechanisms?

Just as with data link protocols, there has been an evolution in the think-
ing about what management an end-to-end protocol should effect. One defini-
tion of end-to-end control as “… a technique for ensuring that information
transferred between two terminals [DTEs] is not lost or corrupted” [3] reflects
the thinking that management should attempt to provide additional fault
recovery by end-to-end retransmission. In addition, it may negotiate end-to-
end connections and/or other parameters and it may effect end-to-end flow
control and other management tasks we discussed apropos of data link proto-
cols in Chapter 5.

Let’s address the last question first. Clearly, if a single data link is all that
is being considered and the data link protocol managing that link includes
fault recovery via retransmission then there is little benefit to including similar
mechanisms in an end-to-end protocol above the data link layer. However,
as we saw in Part II the newer data link protocols—for example, PPP or
LLC1—are designed to defer fault recovery to an upper layer protocol.
Clearly, if the network is to offer a reliable transportation service then the
required mechanisms must be included in the end-to-end protocol. And if
an end-to-end protocol is to run over many types of data link protocols this
argues for inclusion of at least optional reliability mechanisms in end-to-end
protocols.

The same arguments apply to flow control. We saw earlier that some data
link protocols such as SDLC and HDLC employ sliding window mechanisms
to throttle a sending link station. Limiting ourselves to stand-alone data links,
this should be adequate to the task. However, other data link protocols that are
more “lightweight”—again, we note PPP and LLC1—do not include any flow
control at all. As with reliability, if such management is to be offered over these
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data link protocols then it must be included in an end-to-end protocol, at least
optionally.

We should note that, in addition to flow control, many researchers have
investigated the use of so-called rate control, by which the transporter and/or
destination can limit the rate at which the client can send data; this is, in con-
trol theoretic terms, derivative control while basic flow control is proportional
control (see, for example, [4]).

Transporter Versus Relay Faults
The other circumstance that can necessitate the inclusion of (additional) reli-
ability and/or flow control in an end-to-end protocol is the management
of multistage (composite) transporters—that is, networks composed of two or
more data links along with relay(s) to concatenate them. With multistage trans-
porters we must consider relay faults—when a relay fails to correctly forward
data from one transporter to another.

The inclusion of relays means that we must consider such faults as the
relay corrupting a PDU, misforwarding it, or simply discarding it if buffers are
not available. Consider two reliable transporters concatenated by a relay that
itself has finite bandwidth and finite reliability. Either the finite bandwidth or
the finite reliability of the relay may result in data not being forwarded. For
example, if the relay’s buffers fill up then it may, depending on the protocols
and traffic management, throw away PDUs. Likewise, errors in the software
and/or hardware of the relays can corrupt the packets.

And the point is that an L2 protocol cannot correct a relay fault unless it
involves an L2 relay (i.e., MAC bridge). That is to say, L2 (data link) retrans-
mission protocols do nothing to repair a faulty or saturated L3 relay. The link
stations were designed to manage transporter faults—that is, noise faults (faults
of traditional channels, amenable to FEC)—as well as flow control between
two link stations on a single data link. Multistage transporters require manage-
ment in an end-to-end protocol (which includes LLC2 when concatenation is
via MAC bridges).

Other Composite Transporter Faults: Out-of-Order and Multiple Packets
Another contingency that must be anticipated when we consider composite
transporters is out-of-order delivery: The sequence in which several packets
arrive at their destination is different than the sequence in which they left the
client. For such out-of-order delivery to occur, the topology of the composite
transporter must admit an alternative schedule of component transporters (i.e.,
there must be an alternative route); and there must be a change in the schedul-
ing (routing) between subsequent PDUs. (These PDUs are also known as
“birds in flight.”)
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For example, in Figure 9.6 we can see that some packets follow the
A-B-E-F schedule while others may follow A-B-C-E-F. If packets 1 and 3 fol-
low the former path and packet 2 follows the latter, then it is likely that out-of-
sequence delivery will occur due to timing mismatches between the two paths.

Likewise, sequence numbers or similar mechanisms are necessary to deal
with multiple copies of the same packet arriving at the destination. For exam-
ple, let’s assume that a simple end-to-end protocol with retransmission is run-
ning in Figure 9.6. If packet 2 is delayed in relay C for a sufficiently long time
to cause retransmission by node A but is then forwarded nonetheless from C to
E and from E to F, then F will receive two copies. This is unacceptable to the
majority of clients seeking to have data transported—imagine if the packet car-
ried financial transactions that might be duplicated, resulting in spurious debits
or credits. Thus, we see the need for additional sophistication with composite
transporters to avoid such faults.

We should note that amidst this catalog of the faults of multistage trans-
porters, that in fact there are many virtues to such realizations that make them
the best way to design highly available transporters. Multistage transporters
that have alternative routings are, in fact, generally more reliable than noncom-
posite (single-stage) transporters. Indeed, the advantage of such a network is
that single points of failure can be eliminated. We discuss this in more detail in
Part IV.

Data Link and End-to-End Management: Fault Recovery and Flow Control
As we said earlier, with a single-stage transporter retransmission at both layer 2
and layer 3 is redundant: If retransmission is used at layer 2 then the plant
is transported if transport is possible. However, employing retransmission at
layer 2 means a client that does not want reliable transport is getting it anyway
(unless the layer 2 protocol is itself subsetted) (Table 9.1).
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If every data link is managed by a connection-oriented protocol with
flow and error control then is an end-to-end protocol necessary? Consider the
scenario of a client connected to one transporter that is concatenated by some
relay to another transporter to which is connected the destination. An L2
PDU containing an L3 PDU is successfully transported by the first transporter.
However, assume the second transporter suffers a fault that is nonrecoverable.
Then the client never knows it because the first transporter has already con-
firmed the successful transport of the L2 PDU.

9.2.1.4 Multiplexing Upper Layer Clients
One question that we see come up in discussions of various upper layer proto-
col architectures is protocol multiplexing. At each layer k is only one protocol
allowed or can there be two or more protocols that the layer k − 1 protocols
must be able to encapsulate? In addition, there is the question of “openness.”
Beyond basic multiplexing does the upper layer protocol, at any or all of
its layers, allow arbitrary types of client protocols to be transported? SNA is
an example of an architecture that allows multiple upper layer protocols
but is nonetheless not open—only protocols that are part of the SNA family,
that is, those that conform to SNA formats, are allowed. TCP/IP, on the other
hand, is open: IP as well as TCP and UDP can all encapsulate many different
types of protocols and over the years dozens have been defined both for experi-
mental and for production purposes.

The key to enabling such openness is the use of protocol type fields.
Recall from Chapter 5 that with data link protocols the enabling element for
such multiprotocol transport is the presence of a protocol type field in the data
link header. When a destination link station receives a frame it uses the proto-
col type field to send the payload to the correct upper layer protocol machine
for further processing; without the protocol type field the payload is just a set of
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Layer 2
Retransmission? Transporter

Single Stage Multiple Stages

No Layer 3 retransmission useful Layer 3 retransmission useful/necessary

Yes Layer 3 retransmission not useful Layer 3 retransmission useful/necessary
for relay faults



bits. Generalizing this, for an encapsulating (carrier) layer k − 1 protocol to
encapsulate more than one type of payload layer K protocol it is necessary for
either the carrier protocol or the payload protocol to include a type field. Just as
at the data link layer, including a protocol type field in the layer k − 1 protocol
header allows a receiving protocol machine to disambiguate the payload.

Note that the same results are achieved by requiring that the payload
protocols be “self-identifying,” that is, contain a unique protocol type code at
the beginning of each packet. Such an approach, however, is much less “open”
in that it requires conformance to an a priori format, entailing modifications
to existing protocols and thus sacrificing what we might term “transparency.”
SNA achieves its multiplexing precisely in this manner. Though SDLC lacks
any protocol type field support, at the Path Control Layer (layer 3) the packet
header contains a field called the Format Identifier that identifies the type of
packet being encapsulated and with which the receiving Path Control protocol
machine (called the Path Control Element) can determine the correct destina-
tion for processing each packet that arrives. We discuss SNA’s formats and pro-
tocols in more detail in Chapter 11.

9.2.2 Additional Management

9.2.2.1 Dialog Management
After the end-to-end management tasks we have discussed so far comes the
question of whether there should be a workload management mechanism that
schedules the execution of the end-to-end transportation of data—a process
sometimes called dialog management. This amounts to treating the end-to-end
transporter in effect as a (virtual) channel. To the extent that the end-to-end
transporter is point to point, this is only an issue if it is half-duplex; otherwise,
with full-duplex transporters, just as we saw with PPP and HDLC ABM, there
is no need for this level of workload management. For example, TCP is full
duplex and management of the TCP connection is symmetric between both
sides. Likewise, if the end-to-end transporter is point to multipoint (multicast)
with only one client sending data then such management is unnecessary; the
single sender schedules itself.

With half-duplex end-to-end transporters, however, the two clients can-
not both send and receive concurrently. End-to-end transport in SNA is largely
half-duplex. This is exactly the workload management problem we examined
at great length with data link protocols, and not surprisingly the same mecha-
nisms are employed higher in the protocol stack as at the data link layer. If
control is symmetric (i.e., distributed) then either tokens or contention-based
random access are employed. On the other hand, if control is master/slave then
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some sort of polling is employed. As we see in Chapter 11, SNA employs vari-
ous techniques in its different upper layer protocols.

9.2.2.2 Transaction Support

A major reason for implementing data communications systems is to distribute
programs and their execution (processing) among two or more computers, to
exploit concurrency and/or increase reliability. When the interactions between
the distributed application components are structured and well defined, this
arrangement is often referred to as transaction processing or on-line transaction
processing (OLTP) and includes the so-called “client/server” model as a special
case. OLTP examples include point-of-sale (POS) networks and airline reserva-
tion systems.

Such distributed processing may require additional management to exe-
cute correctly in the face of the faults and other phenomena that can occur
when two or more separate computers cooperate (as opposed to multiprocessor
systems under a single executive operating system). For example, consider the
transaction processing system shown in Figure 9.7, where we have a client pro-
gram A that is sending (via a transporter, i.e., computer network) two RFSs
requesting transactions T1 and T2, respectively, to server programs B and C exe-
cuting in separate computers. It may be that transactions T1 and T2 are com-
pletely decoupled and their respective executions do not have any effect on the
other. On the other hand, T1 and T2 may be transactions that must be per-
formed together or not at all—this is an instance of what is called atomic execu-
tion. It may even be that T1 and T2 are identical transactions being executed
on replicated data being maintained on both server computers for added
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reliability. In this case there may be a requirement to keep each copy of the rep-
licated data from ever becoming out of synchronization with each other. This is
known as consistency.

Note that atomicity may be applied to the transportation of data itself.
Consider an application component (program) that wants to send a transaction
request or a case in which the amount of data is too large for a single packet
to carry. The obvious solution is to divide the message and carry its fragments
in two or more packets. However, it may be that the sending program does
not want partial delivery of its message—either all of the transaction details are
to be sent to the destination program or none. This transport indivisibility is
sometimes called quarantining (see, for example, Section 7.3 of X.200, Refer-
ence Model of Open Systems Interconnection).

Such atomicity introduces a new unit of recovery and retransmission,
namely, a set of packets that in the OSI model are called dialog units and activi-
ties while in SNA they are referred to as chains. This can be as simple to imple-
ment as 2 bits in a header indicating whether the packet is the first, last, or
both. If a single packet in a set of packets is corrupted, then either it is resent
(selective retransmission) or the set is resent as a unit. Packet ensembles may
also group related messages and treat them as a unit. Examples of such mecha-
nisms are examined later in the OSI Session layer and SNA’s Data Flow Con-
trol layer discussions.

Consistency is even stronger than atomic delivery in that it effects the
synchronization of execution among components of a distributed application.
Replicated data—for example, in distributed databases—should never be
allowed to become inconsistent. To prevent this, distributed database manage-
ment systems (DBMSs) often implement a two-phase commitment process, in
which database transactions are sent to each DBMS but are not executed until
these have all confirmed to the requesting application that they have received
the transactions. In addition, there is generally an ability to “roll back” transac-
tions if one of the component systems fails to execute correctly, in which case
the remaining systems undo their respective transactions and the whole set of
systems as well as their respective data are returned to the status quo ante.

Here we can see that distributed transaction processing places additional
responsibility on application developers, even if there are management mecha-
nisms implemented to ease their task. The heart of synchronization is the
definition of synchronization points, otherwise known as checkpoints, by
the sending client; these demarcate recovery boundaries to which rollbacks will
occur if a fault happens. Checkpoints are, in fact, the delimiters of atomic
transactions and hence define the beginning and end of packet aggregations.
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Beyond atomicity and consistency, two additional transaction properties
are called isolation and durability. Isolation means that the resources affected
by a transaction are “locked,” that is, the local operating systems prevent any
other application from accessing resources (including data) while a transaction
is being executed. Finally, durability means that, at each stage of executing a
multistage transaction (a composite RFS), the results of each stage’s execution
are secure once that stage executes; in other words, subsequent transactions
cannot tamper with the results of earlier transactions.

These mechanisms are sometimes grouped together under the rubric
ACID, which stands for Atomicity, Consistency, Isolation, and Durability.
These are four properties of distributed transactions that are desirable in terms
of robustness. What they have in common is that they all provide transaction
support in the form of workload management mechanisms to prevent certain
types of faults associated with incomplete transactions. Note that some transac-
tion support protocols implement one or more of these, for example, atomicity,
without implementing the balance. Regardless of how many of these are imple-
mented, such transaction support in effect defines mechanisms of interprocess
communication that extend past the confines of a single computer.

9.2.2.3 Presentation Services
The last upper layer of management that we touch on is presentation services.
Given the range and diversity of computer systems and software, it may not
be surprising that computers seeking to exchange data and programs are fre-
quently confounded by the absence of a uniform representation. We discussed
in earlier chapters one notable division in computers, namely, between the
world of (mainly IBM) mainframes with their 8-bit EBCDIC character set and
the rest of the world, which uses the 7-bit ASCII character set. Another division
is between big-Endian and little-Endian computers, which refers to the conven-
tion according to which computers store the bits or bytes—the most or least
significant bit/byte first, respectively.

To overcome the communication difficulties posed by these and similar
incompatibilities, some communications architects have defined additional
services that a program can invoke to translate the data it seeks to send into a
network lingua franca. To quote Tanenbaum again,

The key to the whole problem of representing, encoding, transmitting,
and decoding data structures is to have a way of describing the data struc-
tures that is flexible enough to be useful in a wide variety of applications,
yet standard enough that everyone can agree on what it means. [1]
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9.2.3 End-to-End Management: Implementation

9.2.3.1 How Much Management?

Having defined these end-to-end management tasks (global addressing, data
link abstraction, etc.), we need to discuss their implementation. The first
implementation question is how much management? Note that not all of the
management tasks we discussed in the previous sections need to be imple-
mented—this is what differentiates “light” and “heavy” end-to-end protocols.
For example, a light end-to-end protocol may omit fault detection and recovery
and leave this up to clients to implement if desired. Other management tasks
may not even be required—a case in point being global addressing, which may
be unnecessary if the L2 addresses are globally unique.

This question of how much management should be implemented within
an end-to-end protocol amounts to how “smart” to make the transporter. By
analogy, consider automatic versus manual transmissions in cars. With a man-
ual transmission, the scheduling of gear actuation is by the driver, who must
engage the clutch and select the gear desired; in contrast, an automatic trans-
mission includes a scheduler that executes this task, freeing the driver from
shifting. Of course, to automotive purists automatic transmissions are anath-
ema precisely because they dislike this delegation of control.

Such drivers are like the advocates of minimal management in upper layer
protocols. Huitema [5] cites three reasons why clients may prefer to have mini-
mal management incorporated into the transporter:

1. Very simple exchanges (a single query and reply) are short in dura-
tion—requiring connection setup and teardown would bring little
benefit and impose significant overhead.

2. Some applications are intended to run in limited memory, and the
programming logic necessary to interact with connection manage-
ment would be excessive.

3. Some applications, notably management and secure programs, do
not want to delegate any management to the transporter because its
actions may mask important information concerning faults and
other problems.

On the other hand, some clients will desire to delegate management, and not
wish any but the simplest (i.e., high-level) interfaces to a transporter. Take,
for example, reliable transportation (via retransmission, alternative routing, and
so on). Clients that want this generally do not want to be concerned with the
details of how this is effected; they just want to be ensured their data will get to

298 Protocol Management in Computer Networking



the destination or at least they will be informed if the transport fails. The work-
load manager, which is the proxy client for the actual client, is responsible for
managing the retransmission and other management tasks and hides all of this
from its clients.

9.2.3.2 How Many Layers?
This brings us to the second implementation question, namely, how end-to-
end management tasks are modularized, specifically meaning how many layers
of end-to-end protocols are needed? By way of illustration, recall the IEEE 802
architecture. We saw in Chapter 8 that the division of the management tasks of
the data link layer by the 802 architects resulted in data link management that
is realized in two sublayers: the Medium Access Control layer provides a basic
connectionless transport, whereas the Logical Link Control layer added further
management to provide either connectionless (LLC1) or connection-oriented
(LLC2) service. And LLC1 is itself a subset of the (data link) management tasks
that LLC2 implements.

When it comes to protocols for the management of end-to-end trans-
portation the issues are the same as with data link protocols. For example,
some clients desire highly reliable end-to-end transport while others are more
concerned with latency and/or jitter. Do we implement a reliable end-to-end
protocol and force all clients to use it? Or do we implement the basic transport
management and offer additional management on top of this as an option?

The challenge of providing some clients with low-level access while
affording others a high-level abstraction is most easily met with a modular
implementation of the management. That is to say, if the end-to-end manage-
ment tasks are implemented monolithically (in a single layer) then all clients are
going to get the same level of abstraction. This is not the only deficiency of
monolithic end-to-end protocols. As Piscatello and Chapin comment, survey-
ing the range of protocol management issues from data link to application
layer,

[a monolithic] protocol to deal with all these functions would be ineffi-
cient, inflexible, and inordinately complex…. Imagine, for a moment,
what the state machine would look like. [6]

A modular design, on the other hand, allows the tailoring of the management
“off loading” to the needs of several classes of clients. Because the difference
between unreliable and reliable protocols is management, a reliable transport
service may be realized by intervening with one or more managers, which then
become the proxy client(s) of an (unreliable) end-to-end transporter. That is to
say, direct access to the transporter provides connectionless service for clients
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content with best effort delivery but greater reliability service requires that a
client use connection-oriented service provided by a manager that is the client
of the best effort transporter.

This illustrates the power of modularization: Rather than constraining
all clients to a common level of service and management (a “one size fits all”
approach), modularization enables different levels of management to be made
available to meet the varied needs and sophistications of different clients.
And this is why such modular designs are employed at the data link layer—in
HDLC’s base and towers, PPP’s core protocol and ancillary/control protocols,
and the 802 division of the data link layer into MAC and LLC layers.

On the other hand, it is possible to have too many layers. Each addi-
tional layer introduces additional overhead, and as the developers of layered or
object-oriented software have discovered this can kill performance. Comment-
ing on the seven layers of the OSI Reference Model (ISO 7498/ITU X.200),
Tanenbaum writes:

They are also difficult to implement and inefficient in operation. One
problem is that some function, such as addressing, flow control, and error
control, reappear again and again in each layer … repeating [error control]
over and over in each of the lower layers is unnecessary and inefficient. [1]

Piscatello and Chapin, looking at just the top three (end-to-end) layers, echo
these comments:

Even though the OSI upper layers are formally organized in a hierarchy,
from an examination of the information passed through the presentation
layer it is obvious that a purely “clinical” interpretation of the interactions
among application, presentation, and session entities would be extremely
inefficient. Well-behaved implementations of the OSI upper layers fre-
quently lump association, presentation, and session connection manage-
ment together…. [6]

So why do so many in the networking community believe that seven is the
“right” number of layers? It is mainly a matter of conventional wisdom. How-
ever, as Tanenbaum has written, there is much to question in this:

Most discussions of the seven-layer model give the impression that the
number and contents of the layers eventually chosen were the only way, or
at least the obvious way…. This is far from true. The session layer has little
use in most applications, and the presentation layer is nearly empty. In
fact, the British proposal to ISO only had 5 layers, not 7. [1]
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What are the alternatives to the OSI Reference Model? At the other
end of the layering spectrum is the X.25 Packet Level Protocol (PLP), which is
a monolithic end-to-end protocol. PLP management tasks include connection
management, retransmission, and flow control. Some may question how robust
and/or efficient X.25 networks can be given this monolithic end-to-end protocol.
However, it is a fact that even today many public data networks in the world still
rely on just X.25’s PLP to manage the end-to-end transportation of client data.

Between these two extremes we have the principal protocol families that
dominate networking at present: TCP/IP and SNA. As we have frequently
mentioned, TCP/IP divides end-to-end management into a best effort/connec-
tionless IP and ensures end-to-end reliability in TCP providing additional
management for those clients that desire it; a third protocol, UDP, is a best
effort transport protocol that basically provides additional multiplexing for
upper layer clients but otherwise no greater management than native IP.

As for SNA, the traditional layering model has three layers above the Data
Link Control protocol. These are the Path Control layer, which is responsible
for managing end-to-end connections and data transfer across what is known as
the path control network (PCN). The Transmission Control and Data Flow
Control layers, in turn, provide additional dialog and transaction support,
notably for the aggregation of large messages and recovery from their faults.

Figure 9.8 shows the protocol stacks for X.25, TCP/IP, SNA, and OSI.
Note that the layer boundaries for TCP/IP and SNA do not align exactly with
those of the OSI Reference Model (and by extension X.25). The functionality of
the IP layer is somewhat less than the network layer, whereas the TCP transport
protocol includes some of the missing layer 3 functionality as well as the Trans-
port layer management tasks. With SNA the reverse is true, that is, the Path Con-
trol layer is more functionally rich that the OSI layer 3 protocols, whereas the
Transmission and Data Flow Control extend up into the Session layer.
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Finally we note that some experimental high-speed protocols have
returned a monolithic end-to-end protocol, sometimes called a transfer proto-
col. XTP (the eXpress Transfer Protocol) is typical. It aggregates the network
and transport layers into a single layer to increase the efficiency of the imple-
mented protocol machines. Defending this departure from the OSI model,
XTP’s advocates write:

It should be remembered that the OSI Reference Model represents only
one effort in constructing a framework for computer communication. The
OSI Reference Model is not sacred; it is under on-going review, and other
(successful) network architectures exist. [7]

9.2.4 End-to-End Transport Versus Concatenation

We should take a moment to explain why we are distinguishing between end-
to-end management and the management of concatenation; and why we are
deferring consideration of the latter until Part IV. After all, as we indicated in
Chapter 1, the traditional model of networking places in layer 3, the network
layer in the OSI model, the responsibility for concatenation and its “knitting”
of data links together. In fact, this association of concatenation with the net-
work layer was natural because, prior to the development of globally unique L2
addresses such as we have with the IEEE 802 MAC layer, concatenation did
have to take place at layer 3. It is clear that if the composite transporter is real-
ized, for example, from PPP data links or other data links without globally
unique addresses, there is no way for the two end systems to communicate
unless layer 3 addresses and relaying are employed.

But it remains that concatenation is a completely distinct task from end-
to-end management, notwithstanding that the OSI Reference Model places the
responsibility for routing in the network layer. This can be seen in innovations
such as bridging and frame relay, which allow composite transporters to be con-
structed without any L3 concatenation at all. That there are so many ways to
concatenate without involving end-to-end protocols is another indication that
the two subjects are decoupled and hence need to be treated separately.

9.3 Taxonomy of End-to-End Protocols

Before presenting our management taxonomy for end-to-end protocols, let’s
step back and look at the “big picture.” We are considering the management of
an end-to-end transporter S, which may or may not be composite; with task set
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{Tj}, where these are transport actuations, of course; and that serves a set of cli-
ents Ci to send data to destinations Dk.

With this end-to-end transporter we again confront the two basic “facts
of life” concerning all servers: finite reliability and finite bandwidth. The com-
position of multiple data links can increase the task set, reliability, and/or band-
width of the transporter, but in no case can it result in infinite reliability and/or
bandwidth. Thus all the management issues we discussed apropos of data links
in Part II are relevant to the composite or end-to-end transporter. However,
because we are no longer dealing with the management of a single server
(i.e., a data link) but rather with a (possibly) composite server, the management
“degrees of freedom” increase several fold for each of our management tasks. As
we saw in discussing concatenation, it is precisely the presence of intermediaries
that greatly complicates management of end-to-end transporters.

That said, let us move on to our management taxonomy for end-to-end
protocols. This taxonomy is, with suitable modifications, the same as the one
we first presented in Chapter 5 for classifying and understanding data link pro-
tocols. This should not be surprising since, as we have stressed several times,
the recursive nature of the transporter definition means that a transporter plus
management—such as a data link protocol machine—is still just a transporter.
End-to-end management, therefore, should not be fundamentally different
than the management we discussed in Part II. The principal difference is that
with each criterion we break it down into two and sometimes three subcatego-
ries to define the participants in the management:

1. Client and destination (end system-to-end system management);

2. Client and intermediate system (“portal” management); and

3. Intermediate and intermediate system (stage-by-stage management).

With this in mind, here are our taxonomic criteria:

• Does the end-to-end protocol require that a connection be set up prior
to transportation of data?

• Does the end-to-end protocol implement any fault management?

• Does it attempt to correct faults via retransmission (backward error
control) and/or forward error control? What about routing around
faults?

• Does the end-to-end protocol have any mechanism for throttling the
transmission of clients? Does the end-to-end protocol implement flow
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control and rate control to prevent overwhelming the transporter
and/or the destination?

• Does the end-to-end protocol use packet (L3 PDU) sizes related or
unrelated to the size of the frame (L2 PDUs)? That is, does the end-
to-end protocol support fragmentation?

• Does the end-to-end protocol support any ancillary upper layer man-
agement such as dialog, transaction, or presentation management?

In addition to these questions, to characterize end-to-end protocols we look at
workload scheduling of end-to-end transport tasks—stopping short of discuss-
ing the “how” of the concatenation mechanisms because this is being deferred
until Part IV—and its relation to the debate over virtual circuits and data-
grams. Finally, we touch on modularization: In how many layers is an end-to-
end management task realized: in a single layer or in multiple layers? If multiple
layers, is the protocol stack “top heavy” or “bottom heavy,” that is, in which
layer is the management concentrated?

9.3.1 Connection-Oriented Versus Connectionless End-to-End Protocols

The debate over connections that figured so prominently at the data link layer
persists with upper layer protocols. Indeed, at each layer in a multilayer proto-
col stack the questions of connection-oriented versus connectionless operation
need to be answered anew. As with data link protocols, with end-to-end proto-
cols the question of whether a protocol is connection oriented or connection-
less depends at its most basic on whether the client of the end-to-end
transporter can send data without prior arrangement. However, as we saw
in our earlier discussion of connection-oriented versus connectionless data link
protocols, there are many other dimensions to the question of which approach
is superior, notably the management overhead and the workload (traffic) pat-
terns exhibited. Each approach has been adopted by end-to-end protocol archi-
tects and each has advantages over the other.

With a few exceptions, most protocol stacks concede the need for sup-
porting a connection-oriented mode, if only as one of several modes of service
available to clients. However, now the question arises as to from which entity
the client end system must receive permission: the destination end system, the
intermediate system to which the client is directly attached via a data link, all
the intermediate systems that will forward the client’s data to the destination
end system, or some combination of the three?

On the other hand, if the client is allowed to send without any such per-
mission being secured then the protocol is said to be connectionless. Note that
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the fact a protocol is connectionless does not imply that a client can send data
at will. It may still be required to wait for allocation (scheduling) of the trans-
porter, as for example is the case with the 802 MAC protocols, all of which are
connectionless but which nonetheless have workload scheduling mechanisms
to allocate the transporter.

In the discussion of connectionless versus connection orientation at the
Data Link layer, we neglected to ask if there is a negotiation with the trans-
porter. The answer depends on the transporter—for example, with serial chan-
nels a dial-up (i.e., switched ) telephone connection must be established before
any data can be sent to the destination (including data link connection
requests). Put another way, if the data link protocol is connection oriented then
the connection request (e.g., an SNRM frame) cannot be sent until the channel
is “up”; on the other hand, even a connectionless data link protocol requires a
channel “connection” if the channel is a dial line.

Let’s return to connection-oriented end-to-end protocols. The simplest
form of connection orientation, as we indicated earlier, occurs if the client end
system must request permission from only the destination end system, not any
of the intermediate systems. This is the case, for example, with TCP/IP: The
IP intermediate systems (routers) will forward traffic without any connection
setup, and in fact the destination end system will receive IP packets without
any prior arrangement. However, permission for a TCP connection is granted
by the destination end system alone, and if this is denied then the client end
system will not send any TCP data.

We should note that the original ARPANET model had a two-tiered
management structure that ran a reliable protocol over a reliable protocol. The
latter, commonly called the Network Control Protocol, was connection ori-
ented with retransmission and other reliability mechanisms. This was replaced
by the Internet Protocol (IP) as part of a major design shift. Because it was
assumed that some component networks (such as packet radio) would be very
unreliable, it was felt that a reliable NCP was the wrong approach. We cover
this in detail in the next chapter.

9.3.1.1 Datagram/Virtual Circuit Versus
Connection-Oriented/Connectionless

Despite our intention to defer consideration of the internal details of concate-
nation until Part IV, we should take a moment and make clear that the ques-
tion of connection-oriented versus connectionless end-to-end protocols is
separate from another long-running debate in data communication, namely,
that over datagrams versus virtual circuits. Unfortunately, the two issues have
become conflated, and there is a considerable amount of confusion on the
topic. It is incorrectly assumed by many that a connection-oriented end-to-end
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protocol necessarily runs over a network that uses virtual circuits, and that a
connectionless end-to-end protocol necessarily runs over a network that uses
datagram.

To understand why this is incorrect, we need to discuss virtual circuits
and datagrams. In its simplest form, a virtual circuit is a sequence of transport-
ers that is followed by all the packets (end-to-end PDUs) sent from client to
destination. All the scheduling (routing) decisions are made for the first packet,
after which the remaining packets are forwarded on the basis of the virtual cir-
cuit, not on an individual level. Part of the original rationale for virtual circuit
architectures back in the 1970s was that all packets sent subsequent to the call
setup packet need only carry a virtual circuit identifier and hence could omit
destination as well as source addresses, since these would not be necessary to
forwarding, and thus save on header overhead.

The alternative to virtual circuit protocols is datagram protocols. The
essence of datagram service is that each packet is routed independently of its
predecessors or successors. Of course, because of this each packet must contain
addressing information sufficient to allow the relays to forward the packet to its
destination. At the very least this means the globally unique destination address
must be included in the header, although almost always the source address is
included if for no other reason than security and authentication.

Part of the traditional argument for datagrams over virtual circuits is
robustness. Because each datagram packet is relayed independently, if a compo-
nent transporter fails the adaptation to this is simply to forward subsequent
packets along a different path (that is, use a different schedule of transporters).
With virtual circuits, on the other hand, because the concatenation follows a
(semi)static or persistent schedule, a failure of a component transporter necessi-
tates setting up the virtual circuit all over again.

We return to virtual circuits and datagrams in Part IV. For now, let’s
summarize their relationship to connection-oriented and connectionless opera-
tion by saying that it is possible to run a connection-oriented end-to-end proto-
col over a datagram network (this, in fact, is how TCP/IP is structured) or a
connectionless end-to-end protocol over a virtual circuit network (IP over X.25
is an example).

9.3.2 Reliable Versus Best Effort End-to-End Protocols

The next taxonomic criterion is an end-to-end protocol’s fault manage-
ment—if there is any. Recall that a server with finite reliability is subject to
two broad classes of faults: transient and persistent. These require very different
solutions. As we saw in our discussion of data link protocols, recovery from
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transient faults generally involves retransmission—what we have referred to
as temporal replication or redundancy. A persistent fault, on the other hand,
requires bypassing the faulty transporter, which is possible only if there are
alternative routes (transporters). This spatial redundancy and the replication it
enables are, of course, principal reasons for implementing composite transport-
ers. We discuss these in more detail later. First, however, we review the tasks of
fault management.

9.3.2.1 Scope of End-to-End Fault Detection: Header Versus Plant
As we saw in earlier chapters, fault management is typically decomposed into
two or sometimes three tasks: fault detection, fault isolation (an estimation task
that may be aggregated with fault detection), and fault recovery. We discussed
in Chapter 3 various mechanisms of error detection and correction—from sim-
ple parity checks to sophisticated block and convolutional codes—all of which
function by introducing redundant information into the transported data; this
redundancy is then used by the decoder to detect and possibly recover from the
fault. And the larger the block of data being “covered,” the larger the overhead
in terms of redundant information that must be included.

It was to reduce such overhead that some protocol designers came to
make a distinction between faults that affect client’s data and faults that affect
the management fields in the PDU headers. In part this is based on the
fact that, while faults that corrupt the data being transported are obviously
deleterious, those faults that alter the management information in an end-to-
end PDU’s header are more troublesome since they may result in misrouting
of PDUs that must ultimately be discarded anyway—itself a waste of net-
work bandwidth. We saw earlier that this led to the decision by the designers
of broadband ISDN/ATM to limit fault detection to the cell headers
(Figure 9.9.).

Seeking to minimize bandwidth costs, this is also why the architects of IP
Version 4 (“standard” IP) included a checksum that only covers the header to
detect faults that corrupt the various fields—such as addresses—that are used
to forward IP packets. Notwithstanding the fact that IP is a best effort protocol,
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it was felt that the advantages of detecting faults in the packet headers, and thus
preventing the wasteful forwarding of corrupted packets, merited this limited
level of fault detection. Detecting faults in client data is only possible if TCP
encapsulation is employed prior to IP transport.

However, as we see in the next chapter, with IP Version 6 (IP Next Gen-
eration) even the header checksum is omitted. In part, this was because there
are other ways to detect faults beyond checksums and similar “codes.” Discuss-
ing the decision to omit header checksums in IPv6 protocol, Huitema [8]
points out that faults that corrupt one or more fields in the IPv6 packet header
can be detected by ordinary protocol processing. For example, if the version
field is altered the receiving router will discard it. Similarly, if the destination
IP address is affected then the packet will be discarded at the destination end
system that receives it, and so on.

9.3.2.2 Fault Management: End Versus Intermediate Systems

The principal rationale for eliminating the header checksum in IPv6 packet
header was to minimize the processing overhead associated with forwarding
packets at L3 intermediate systems (IP routers). Any fault detection (let alone
recovery) that requires each stage in a multistage transporter to make decisions
will significantly slow forwarding rates, particularly with high-speed data links.
Many router vendors, attempting to increase the forwarding rates of products,
were already failing to perform the header checksum calculation on incoming
IPv4 packets; so it was not difficult for the IPv6 protocol architects to eliminate
the header checksum.

A seeming contradiction is apparent if we contrast this move toward
eliminating fault detection and, as we see in a moment, flow control and other
management in intermediate systems—that is, stage-by-stage manage-
ment—with the contrary philosophy in manufacturing. After all, two of
the most prominent examples of multistage servers are assembly lines and
computer networks. Yet the conventional wisdom concerning maintenance
of the two is completely opposite. With assembly lines, the emphasis is on
repairing at each stage while with computer networks the practice is increas-
ingly becoming to repair only on an end-to-end basis.

Why this discrepancy? In part, the focus of the maintenance actuators in
the two cases is different. With assembly line servers, the focus is on repairing
the servers since few mechanical faults are transient and an unrepaired server
will likely lead to a cascade of faulty products (see, for example, [9]). With com-
puter networks, the focus is on repairing the plant since it is an accepted fact
of life that any transporter will have faults that are transient and hence self-
limiting.
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9.3.2.3 Layered Communication and Multiechelon Maintenance
When some faults are easier to diagnose and/or repair than others, it is conven-
ient to implement maintenance with a hierarchy of servers (bandwidth man-
agers): the first echelon, which fixes the most tractable problems; the second,
which fixes the problems that cannot be fixed at the first echelon; and so
on, until repair no longer is cost effective or practicable. As we have remarked
before, the fault management mechanisms of an end-to-end protocol are part
of just such a multiechelon maintenance system, where the physical layer’s
demodulation and/or decoding, as well as any fault management in the under-
lying data link protocols, constitute the lower levels of the hierarchy.

As with fault management in the data link layer, where we saw that proto-
cols ran the spectrum from the management-intensive SDLC and LLC2 to the
management-light PPP and LLC1, such is also true for end-to-end protocols:
the fault management spectrum runs from the fault management-light SNA
to the fault management-intensive TCP. How much fault management is exe-
cuted in the data link protocols will determine how much fault management
must be executed in an end-to-end protocol to meet client requirements.

SNA assumes that underlying the data link protocols assures reliable
delivery; and that its upper layer (end-to-end) protocols need be concerned
with fault management only to the extent of routing around failed links. That
is, SNA’s philosophy is to rely on fault detection and recovery via retransmis-
sion at the data link layer so that upper layer protocols can assume the reliabil-
ity of the transporter is “black and white”: Either the data link transporter
delivers the data correctly (to within the ability of the CRC to estimate the
occurrence of faults) or it is declared to have suffered a fatal fault and will no
longer be used by the upper layer protocols. This is why

[t]here are few timers in SNA, but the principle is to use them only when
absolutely necessary and at as low a layer as is possible. For example, data
link controls use an inactivity timer to recognize outages and as an
acknowledgement timer to protect against lost messages or acknowledg-
ments. The use of DLC timers is critical to SNA: because SNA requires a
reliable delivery by data link control, it can avoid high-layer timers. [10]

The TCP/IP approach is completely opposite. Because IP was designed
to be an “internetwork” protocol able to run over many different types of
networks (L2 and L3 protocols) ranging from presumably reliable X.25 to
decidedly unreliable packet radio, it is TCP that contains the principal fault
detection and recovery mechanisms, including timers for deciding when to
retransmit lost PDUs (called segments). And, just as IP is itself merely a best
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effort end-to-end protocol with only limited fault detection capability (omitted
entirely in IPv6), so are the IP-related data link protocols, notably LLC1 and
PPP, also management-light.

Each approach (traditional SNA and TCP/IP) represents a set of trade-
offs. However, as we saw in Part II and as we see in the remaining chapters of
Part III, the direction in which protocols are going is to limit management in
the lower layer protocols in order to facilitate high-speed networking and for-
warding. More intensive fault recovery is implemented in end systems where
the clients require the highest level of reliability and are willing to accept the
higher overhead that comes with it. This, again, reflects the advantage of a
modularized protocol architecture.

9.3.2.4 Spatial Replication/Routing Around Faults
All the fault management that we have discussed so far is limited to recovery
from transient faults. Recovery from faults that are persistent and fatal cannot
be effected with either retransmission (backward error control) or redundancy
(forward error correction). Attempting to resend data over a broken channel
(for example, the fiber optic cable cut by a backhoe operator) will not result
in any greater success. Likewise, forward error correction cannot improve the
situation since neither the redundant information nor the client’s data ever gets
to the destination.

In fact, short of repair, the only way to recover from a failed component
is to use alternative routing (schedules) to bypass it. This is why many large
customers insist on multiple disjoint telephone lines into their facilities. Such
disjoint connectivity is a form of spatial replication. What this means is that
a given end-to-end transport task may be realized by two or more schedules
of component transport tasks (i.e., transport tasks of component transporters).
A fault that disables a component transporter will leave the task set of the
composite unaffected if there is an alternative path.

In graph theory, this is referred to as multiple connectivity. If the graph
corresponding to a composite transporter is k connected then that means there
are k distinct schedules that realize any of its end-to-end transport tasks. Multi-
ple connectivity means that, for a given transport task, the topology of the com-
posite transporter admits an alternate path (= schedule of transporters). Then
fault recovery at the level of the composite transporter becomes the solution.

Such spatial redundancy is complementary to the temporal redundancy
of reliable end-to-end protocols. If the adaptation time is within the retransmis-
sion time window of the sending workload manager then it is even possible that
the client and destination may be shielded from any knowledge of the faults.
With best effort end-to-end protocols, spatial redundancy will allow recovery
of the end-to-end transport tasks lost when the component transporters failed.
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The client data that were sent during the failure will not be recovered, but com-
munication between the client and the destination will be restored. This is why
we remarked in Chapter 1 that fault management transcended its traditional
definition and a prime example is routing as a means of recovering from faults.

The key is that the schedule to realize a given task in the composite trans-
porter’s (end-to-end) task set will have to be changed if the current schedule
includes a task in the task set of the failed components. Some composite trans-
porters effect this bypassing (adaptation) with a routing protocol; others rely
on a central scheduler (SNA). As with our discussion of connection-oriented
versus connectionless operation, we want to defer until Part IV delving more
deeply into how workload management mechanisms effect this rerouting
around faults.

9.3.3 Flow Control in End-to-End Protocols

Just as with fault management, end-to-end flow control is similar to flow con-
trol at the data link layer. But, as with fault management, the issues that arise
at this higher level are more complicated in that, beyond the end systems, the
impact of the various flow control workload management mechanisms on
the intermediate systems (relays) must now be considered. Above all, two facts
must be kept in mind: that the longer an intermediate system holds an end-to-
end PDU, the greater the total latency; and that as enqueued PDUs approach
the storage limits of a relay, relay performance will suffer to the point that it
may be unable to receive any new PDUs, let alone forward them.

Thus we should distinguish between an end-to-end protocol that imple-
ments flow control that is confined to end systems and an end-to-end protocol
that implements flow control which is executed stage-by-stage—meaning inter-
mediate systems, if any, must also execute this throttling. Many end-to-end
protocols do not support stage-by-stage flow control for the same reason
that we saw many do not support stage-by-stage fault management: to keep the
intermediate systems unencumbered by any decision making apart from that
involved in concatenation.

However, such a strategy raises the importance of flow control as admis-
sion control in the portals. That is, those intermediate systems that consti-
tute the entry points into a composite end-to-end transporter must execute
workload management—flow and/or rate control—lest the intermediate sys-
tems become overwhelmed. Various approaches to admission control—credit
based, rate based, and so on—have been investigated, particularly with respect
to ATM, and we discuss some of the results in later chapters.

We also see the need to separate monitoring from control. Even if the
intermediate systems do not actuate the traffic directly, it is possible that
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the intermediate systems are instrumented to send state information to
the clients and/or destinations of the end-to-end transporter. This may include
estimates of round-trip delays (RTDs) as well as other parameters such as utili-
zations and queue capacities. Frame relay, for example, does not have stage-by-
stage flow control but nonetheless it includes Forward Explicit Congestion
Notification (FECN) and Backward Explicit Congestion Notification (BECN)
bits for signaling by the intermediate systems (Frame Relay switches) regarding
their respective states.

9.3.4 Segmentation of End-to-End PDUs

Another aspect of end-to-end protocols that can have a major impact on relay
performance is whether segmentation of end-to-end PDUs is supported. As we
saw in Part II, different data link protocols have a wide range of maximum
transmission unit (MTU) sizes—that is, the largest frames (L2 PDUs) that can
be sent. Given these L2 MTU size constraints, an end-to-end protocol has two
choices. The protocol can either support some segmentation mechanism allow-
ing large end-to-end PDUs to be split into sizes that can be transported across
the transporters involved and later recombined at the destination; or the proto-
col can keep its MTU size no greater than the smallest L2 MTU size of any
network or data link that transports its PDUs.

Segmentation can adversely impact relay performance in several ways.
First of all, if a large end-to-end PDU has already been segmented by an
upstream intermediate system and the protocol requires that the segmented
pieces (fragments) be reassembled before being forwarded then the forwarding
of all the pieces must await the arrival of the slowest piece. And, of course, the
fragments that arrive prior to the last one must be stored awaiting reassembly.
This results in delay and the need for large memories.

This also creates the potential for a situation known in operating systems
as a deadly embrace, where competing RFSs each have exclusive use of some
resources (in this case storage), creating a shortage of resources sufficient for any
to finish. (This is similar to what happens with congested city traffic when cars
that are too far into an intersection block cross traffic from moving when the
light changes.) In this case, if the storage of a relay is completely full because it
is holding the fragments of assorted end-to-end PDUs, none of which can be
reassembled because there is no room for the relay to receive any more frag-
ments, then the result is known as reassembly lockup. In fact, just such a situa-
tion led to a “meltdown” of the early ARPANET.

To prevent such lockups, some end-to-end protocols employ some form
of resource reservation. A notable example is SNA, where the activation of
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end-to-end connections (known variously as virtual routes or sessions, depend-
ing on the level in the SNA stack) is allowed only if sufficient storage is avail-
able in the intermediate systems through which these virtual circuits will flow.
To monitor this, SNA has defined a set of messages between these intermediate
systems and a central manager known as the Systems Services Control Point
(SSCP), which makes the decision on connection activation. We discuss this in
more detail in Chapter 11.

However, a change in thinking occurred as experience in the 1980s was
gained with high-performance networks and the routers used to build them.
Segmentation and reassembly were identified as being impediments to attain-
ing performance rates of more than 100,000 packets per second (pps). In a
way, segmentation constitutes a second or outer level of packetizing, above and
beyond the multiplexing that occurs at the data link layer, and this is pure over-
head. The conventional wisdom now is that any segmentation necessary should
be the responsibility of the end systems, not intermediate systems.

Because of this, the decision was made when designing IPv6 to eliminate
the segmentation of IP packets. IPv6 networks are expected to support a mini-
mum MTU size of 536 octets. If end systems wish to send larger packets than
this ensured minimum, then they are expected to employ MTU path discovery
to determine the largest MTU size that they can use. We cover this and other
aspects of IP in Chapter 10.

9.3.5 Workload Management: Scheduling the End-to-End Transporter

Whether an end-to-end transporter implements flow control or fault manage-
ment, there remains the issue of its tasking and the associated workload man-
agement. (We limit consideration to so-called unicast transportation—that is,
point to point between two end systems; multicast transport—point to mul-
tipoint—is considered in the next chapter.) Does the end-to-end transporter
allow concurrent sending and receiving or must the two end systems take turns?
These correspond to full-duplex (FDX) and half-duplex (HDX) transporters,
respectively.

As we saw with our examination of data link protocols such as
HDLC/ABM and PPP, with FDX transporters there is no need for global
workload management because either side can send at will. Put another way,
FDX end-to-end protocols implement peer management mechanisms. Some of
the most important end-to-end protocols such as TCP are full duplex.

On the other hand, many end-to-end protocols are half-duplex. SNA and
similar terminal-oriented protocols are half-duplex in their workload schedul-
ing; half-duplex “flip-flop” operation means there is a strict alternation between
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the two end systems, and half-duplex contention means that the two end
systems “bid” for the right to use the transporter. As with HDX serial data
link transporters, HDX end-to-end protocols may rely on either peer or
master/slave management mechanisms. With master/slave end-to-end pro-
tocols, one end system is the master and is responsible for “polling” the slave
end system; only when polled can the latter send data. This is the management
model employed in SNA, for example.

9.4 Summary

In this chapter we have covered management in the remaining layers of the
protocol stack, the so-called upper layer protocols. We identified four basic
tasks executed by all end-to-end protocols, namely, the management of a
global address space, the abstraction of the underlying (data link) transport-
ers, the implementation of end-to-end reliability and flow control (if any),
and the multiplexing of upper layer clients, particularly multiple upper layer
protocols.

We then discussed how such end-to-end management should be imple-
mented. We saw that some advocates of end-to-end protocols argue for putting
all management functions in a single layer, such as with the X.25 protocol
stack. Others have opted for two layers of end-to-end protocols, notably
the developers of the TCP/IP protocol stack. SNA’s original architects chose
a five-layer stack, with three additional layers of end-to-end protocols above
the data link layer. Last, we saw that the Open Systems Interconnect Reference
Model with its seven-layer protocol stack presents the most elaborate decompo-
sition but one widely criticized for its inefficiency and overhead.

Finally, we stressed throughout the chapter that end-to-end management
is distinct from the concatenation. Although with composite transporters there
must be some workload management mechanism(s) to map the end-to-end
transport tasks to the tasks executable by the component data links, we saw that
this is independent of the nature of the upper layer protocols carried by the
component transporters. Most notably, we saw that although a virtual circuit
implies that routing/forwarding decisions are made on the basis of circuit IDs
and that all the packets follow the same schedule, and a datagram implies
that every packet contains sufficient information (for example, addresses), this
is distinct from the general protocol question of connection-oriented versus
connectionless operation.
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10
End-to-End Management: The IP
Protocol Suite

10.1 Introduction

Having examined in Chapter 9 end-to-end management in the abstract,
this chapter will focus on TCP/IP or, more precisely, the IP protocol suite:
the Internet Protocol (IP), the Transmission Control Protocol (TCP), and the
User Datagram Protocol (UDP); and an ancillary protocol to fault and configu-
ration management, the Internet Control Message Protocol (ICMP). For each
protocol we determine the MESA tasks involved and map them onto our work-
load management/bandwidth management model.

The chapter begins by discussing TCP/IP’s antecedents in the protocols
of the ARPANET, the predecessor of today’s Internet. TCP/IP’s approach
to end-to-end management came directly from lessons learned with the
ARPANET protocols, the most important being the idea of internetting by
means of abstracting or “enveloping” underlying networks and protocols. This
led to TCP/IP’s two-tiered modularization of end-to-end management with a
host-level end-to-end protocol (TCP) running on top of an internet hop-by-
hop protocol (IP).

From this we segue to IP itself, and consider both the currently deployed
IP Version 4 (IPv4) and the next-generation IP Version 6 (IPv6). These are
end-to-end protocols with minimal management: no connections, no retrans-
mission, and no flow control. IPv4 does little more than define a global address
space and provide a uniform encapsulation to abstract the underlying trans-
porter details; IPv6, however, is more streamlined—its architects having
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abandoned, for example, such IPv4 features as fragmentation in order to
increase routing performance. Last we consider a new feature in IPv6, called
flows, which approximates certain aspects of virtual circuits for the purpose of
improving the transport of real-time traffic such as multimedia.

Next we examine ICMP. Both ICMP for IPv4 and ICMP for IPv6 are
used by the principal protocols (IP, TCP, and UDP) to send error messages for
fault management/bandwidth monitoring. Finally, we cover TCP and UDP,
the transport protocols of the IP suite. It is TCP that provides most of the end-
to-end management in the IP protocol suite. Within the context of end-to-end
connections, TCP uses retransmission to achieve high reliability and flow
control to keep from overwhelming the destination end systems. UDP, on the
other hand, adds relatively little to the (minimal) end-to-end management of
IP. It is connectionless and makes no effort at providing additional reliability or
flow control beyond that of the underlying transporters that carry the IP data-
grams. In fact, we see that UDP’s principal management task, which it shares
with TCP, is to provide multiplexing of multiple upper layer protocol clients.

10.2 The ARPANET and Its Protocols

The roots of today’s Internet and the IP protocol suite lie in the ARPANET,
so-called because its development was sponsored by the Advanced Research
Projects Agency of the U. S. Department of Defense. However, contrary to
net folklore, the ARPANET was not built to survive a nuclear war. Rather, the
ARPANET was a testbed of two related ideas: remote computing and resource
sharing; and computer–computer communications, as distinct from com-
puter–terminal data entry, to make this sharing possible. As we see, the most
significant contribution of the ARPANET was the emphasis on peer manage-
ment in its protocols; these avoided wherever possible any hint of master/slave
or centralized control.

10.2.1 Elements of the ARPANET

The ARPANET was the first packet-switched network in the world when it
came on-line with four nodes in late 1969. Crucial to the ARPANET design
was that the end systems were to communicate via intermediate systems, called
interface message processors (IMPs), which executed the actual packet switch-
ing. Although IBM and other mainframe manufacturers had previously
employed specialized processors to off-load communications from the CPU
(for example, the IBM 27XX channel processors), the concept of the IMP,
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which we would now call a router, proved enormously important not least
because it effectively modularized the transporter, isolating implementation
details from the end systems.

Hosts sent and received PDUs in the form of messages, which were up
to 8096 bits long. IMPs exchanged packets that had a maximum transmission
unit (MTU) size of 1008 bits. Allowing hosts to send and receive larger MTUs
meant that the I/O burden was lower on systems that were designed primarily
to support batch processing. Packet switching, on the other hand, stressed the
serial reuse of communications channels; and the smaller the MTU exchanged
by IMPs, the finer the “time-slice” quantum and the greater granularity of
control.

Hosts and IMPs were connected at speeds up to 200,000 Kbps with
custom-built cables at up to 2000 feet long, whereas IMPs were connected to
each other over wide-area (telephone) serial channels at rates up to 56 Kbps;
and over satellite channels to Hawaii and Norway at 56 and 10 Kbps, respec-
tively. (We should note that in the ARPANET the term links also referred to
logical end-to-end connections.) Both the host–IMP and IMP–IMP communi-
cations channels were limited to point-to-point topologies. Although multi-
dropped data links had been employed for more than a decade (for example,
in the airline industry’s SABRE technology deployed in the late 1950s), these
were all based on centralized (master/slave) management. With the technology
of the time, the ARPANET developers could not realize multidropped data
links without sacrificing peer management.1

10.2.2 ARPANET Protocols

The ARPANET had three principal protocols: the host–IMP protocol, also
known as 1822; the host–host protocol; and the IMP–IMP protocol, which
included both stage-by-stage (IMP–IMP) and end-to-end (source IMP–desti-
nation IMP) management (Figure 10.1).

10.2.2.1 BBN 1822

The host–IMP protocol was generally known in the ARPANET community
as 1822. The reason for this was that much of the original work on the
ARPANET was performed by Bolt, Beranek, and Newman (BBN); and
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the host–IMP protocol was first described in BBN report 1822, titled Specifica-
tion for the Interconnection of a Host and an IMP. BBN 1822 defined what later
became known as the host access protocol (HAP).2

Host PDUs were up to 8063 bits in length, not including a 32-bit header
(originally called a leader). The first 8 bits of the header specified control infor-
mation. The next 8 bits specified an address—the destination address if the
leader is from host to IMP, the source address if the leader is from IMP to host.
The third field is an 8-bit link identifier; as we said earlier, links are logical
end-to-end connections. Finally, the last 8 bits of the original 1822 leader were
reserved.

The 1822 messages for the host-to-IMP and IMP-to-host exchanges
included connection management messages as well as notifications of errors
and other anomalous conditions. In both the host-to-IMP and IMP-to-host
communications, client data (from and to the host, respectively) were carried
in regular messages (message type 0). All other messages were concerned with
the management of the hosts, the IMPs, and the transportation of data. One
of these was the Ready For Next Message (RFNM) message, which was used
by IMP to control the flow traffic from the host; this, of course, is workload
actuation. In addition, messages were defined that allowed host and/or IMP
to inform its partner that it was going down and to specify the reason (for
example, scheduled maintenance). Finally, a set of IMP-to-host messages was
defined that carried fault information concerning the destination host, IMP,
and so on.
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2. Not to be confused with the host access protocol specified in RFC-907, which “specifies the
network-access level communication between a host and a packet-switched satellite net-
work” [1].



10.2.2.2 The IMP–IMP Protocol
Once data had been handed off from a host to its IMP, it was up to the IMP-
to-IMP protocol to ensure that the data were successfully transported to the
destination host. The overriding design goal was to embed as much manage-
ment as possible within the subnet so as to give hosts the simplest possible
interface. In particular this meant that, with the exception of nonrecoverable
faults such as lost destinations, the ARPANET hosts did not participate in fault
recovery.

There were two parts to the IMP–IMP protocol: (1) management of the
transportation of data across a WAN line between directly connected IMPs;
and (2) management of the transportation of data between source–IMP and
destination–IMP. These were substantially decoupled and treated as point-to-
point (between any two pairs of IMPs) and end-to-end protocols (between
source–IMP and destination–IMP pairs). Thus management in the ARPANET’s
IMP–IMP protocol encompassed both the data link and network layers.

In terms of our data link taxonomy, the point-to-point management of
data transport between IMPs was of intermediate complexity: It was connec-
tionless and had no provision for parameter negotiation, but did include suffi-
cient management to detect and recover from faults. Thus, unlike the data link
protocols we examined in Part II there was no need for a multiplicity of frame
types defined for purposes of connection establishment, workload scheduling,
fault recovery, and so on. And because IMP–IMP connections were limited to
point-to-point topologies there was no need to include local addresses.

Reliability in the IMP–IMP protocol relied on a Cyclic Redundancy
Code similar to the CRC/FCS field used today with the data link protocols we
considered in earlier chapters. After an IMP calculated the CRC for an arriving
frame/packet and compared this with the CRC sent, if there was no discrep-
ancy then it was assumed that no fault had occurred, the packet was processed,
and a positive acknowledgment was sent to the sending IMP. These acknowl-
edgments were piggybacked on reverse-flow packets much the same way as we
saw with SDLC using fields in the IMP–IMP header. On the other hand, if the
two CRCs did not match then a fault was estimated to have occurred, in which
case the receiving IMP simply discarded the IMP–IMP packet. The sending
IMP relied on timers to initiate retransmission; in other words, no negative
acknowledgments were used in the protocol.

The end-to-end management part of the IMP–IMP protocol was consid-
erably more elaborate than its point-to-point (data link) management and had
three main tasks:

1. Fragmentation and reassembly of host messages longer than 1008 bits;
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2. Flow control between source–IMP and destination–IMP; and

3. Fault detection and recovery, including out-of-order and duplicate
packets.

To realize this management the protocol defined eight different packet types
sent between source and destination IMPs (Figure 10.2). Host-to-host data
were sent in Regular (type 0) packets. Additional packets were defined for the
purpose of subnet (end-to-end) control. These packets were strictly internal to
the subnet, meaning that they were never passed to or otherwise visible to hosts;
in addition, they were treated as data by the intermediate IMPs—they had visi-
bility only to the source and destination IMPs. The overhead of these control
packets was significant, comprising during one monitoring experiment in 1974
nearly half the traffic [2].

The IMP–IMP protocol also included no fewer than four packets dedi-
cated to managing the buffers of destination IMPs, reflecting the fact that
before the era of inexpensive memory (some of the earliest IMPs had as little
as 12 kbytes and consequently were severely constrained in their buffering of
packets) storage management was a major concern. While intermediate IMPs
merely forwarded packets as quickly as link bandwidth allowed, destination
IMPs were constrained by the need to reassemble the packets of a multiple
packet message before they could forward it to the destination host and thus
free up its memory.

Fragmentation and reassembly meant that end-to-end flow control was
vital to prevent overwhelming the limited buffer storage of the destination
IMP. The source IMP-to-destination IMP protocol employed feedback for
flow control: The destination IMP sent an RFNM to the source IMP to indi-
cate that it could accept another packet. This flow control implied coupling of
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the IMP–IMP and host–IMP (1822) protocols. When an RFNM IMP–IMP
packet arrived at a source IMP the source IMP sent an 1822 RFNM message as
outlined in BBN 1822:

… when all packets arrive at the destination, they are reassembled to form
the original message and passed to the destination Host. The destination
IMP returns a positive acknowledgment for receipt of the message to the
source IMP, which in turn passes this acknowledgment to the source Host.
This acknowledgment is called a Ready For Next Message (RFNM) and
identifies the message being acknowledged by name. [3]

A source IMP would therefore reserve storage by sending to the destination
IMP a request allocation packet (type 1) to ensure that buffers were available.
The destination IMP could ignore this request or it could respond with an allo-
cation packet. A source IMP could return memory it was allocated by sending a
Return Multipacket Allocation packet to a destination IMP that had previously
allocated its buffers.

In addition, because the hosts and the host–host protocol assumed that
the subnet was fault free, out-of-order delivery was unacceptable to the
ARPANET designers two of whom wrote

[t]he task of the ARPA Network source-to-destination transmission proce-
dure is to reorder packets and messages at their destination, to cull dupli-
cates, and after all the packets of a message have arrived, pass the message
on to the destination Host and return an end-to-end acknowledgment
called a Ready For Next Message (or RFNM) to the source. [4]

That is to say, the end-to-end management of the IMP–IMP protocol was
designed to detect and recover from those faults that were introduced by the
dynamic routing and datagram forwarding of the ARPANET. Finally, there
were also IMP–IMP packets with which the destination IMP could also send
explicit fault estimates. For example, if a destination host was not up then the
IMP sent a Dead Host message.

10.2.2.3 The ARPANET Host-to-Host Protocol
The last component of the original ARPANET protocol suite was the
ARPANET Host–Host Protocol (AHHP) [5]. The AHHP consisted of a set of
control messages exchanged between hosts to manage the flow of data. Three
AHHP control messages were used to start and terminate connections between
source and destination hosts. An additional three were used to actuate (reserv-
ing and returning) the buffers of the destination host; there was likewise a
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requirement for memory management similar to what we just discussed with
regard to the IMP–IMP protocol. Finally, to aid in fault detection (bandwidth
estimation) the AHHP included two messages that effected an end-to-end
“loopback.”

10.3 Internetting

Notwithstanding the success of the ARPANET and its various protocols, by the
early 1970s many had concluded a new approach was required. A particular
concern was that, while the management mechanisms of the IMP-to-IMP and
source IMP-to-destination IMP protocols resulted in the ARPANET being
a very reliable transporter of data, the fact that the AHHP was predicated on a
reliable transport service constituted a serious design flaw, one that limited the
scope of the ARPANET in terms of potential communications technologies.

And this was precisely what ARPA was funding in the early 1970s, most
notably an experimental packet-radio network developed by SRI International
for use in the San Francisco Bay area. Such networks were inherently
unreliable, and “opening” up the ARPANET to these networks had major
implications in terms of the operation of the ARPANET protocols. There
was, however, an alternative to requiring that new networks implement the
IMP-to-IMP and source IMP-to-destination IMP protocols: develop a new
protocol for internetworking or “internetting” these various networks, one that
was not predicated on any given level of reliability or service. Cerf wrote about
this some 20 years ago:

The successful implementation of packet radio and packet satellite tech-
nology raised the question of interconnecting ARPANET with other types
of packet networks. A possible to solution to this problem was proposed by
Cerf and Kahn [CERF 74] in the form of an internetwork protocol and a
set of gateways to connect the different networks. [6]

It was this protocol that eventually gave rise to TCP/IP.

10.3.1 The Transmission Control Program

What Cerf and Kahn discussed was the creation of what they called the Trans-
mission Control Program (sic) to replace the Network Control Program of the
ARPANET. The aim was to implement a “simple but very powerful and flexi-
ble protocol which provides for variation in individual network packet sizes,
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transmission failures, sequencing, flow control, and the creation of process-to-
process associations” [7].

The challenge of constructing such a protocol was to accommodate dif-
ferent networks that might vary in terms of:

1. Addressing;

2. MTU size;

3. Performance (delay, throughput, and so on);

4. End-to-end reliability, and;

5. Instrumentation (such as state information) (Figure 10.3).

To concatenate networks of varying capabilities, Cerf and Kahn placed
gateways to prepend the appropriate local headers (for example, the ARPANET
host–IMP leader). What this meant was that the ARPANET and its protocols
were not so much superseded as subsumed. The ARPANET remained an
operational network but now would be only one of many networks to be
“internetted” together with the new protocol. The philosophy behind this was
one of abstracting, or encapsulating, the details of the component networks
(transporters). To quote from an exposition of the idea:

It should be noted that this approach, known as encapsulation, has some
distinct advantages in the interconnection of networks. It is never neces-
sary to build a “translation” device mapping one network protocol into
another. The Internet layer provides a common language for communica-
tion between hosts and gateways, and can be treated as simple data by each
network. [8]

A crucial change that went hand in hand with this was the division (i.e., modu-
larization of management) of Cerf and Kahn’s monolithic end-to-end protocol
into several pieces. Credit for this is due in large part to the efforts of the late
Jon Postel, who trenchantly argued that:
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We are screwing up in our design of internet protocols by violating the
principle of layering. Specifically we are trying to use TCP to do two
things: serve as a host level end-to-end protocol, and to serve as an internet
packaging and routing protocol. These two things should be provided in a
layered and modular way. [9]

Postel argued for a basic design principle that said reliability mechanisms
should, if employed at all, be used at the highest level of the protocol stack.
And, as we saw in the last chapter, there are compelling reasons for such
an architecture. First, end-to-end transport introduces the possibility of what
we have called relay faults, from which stage-by-stage bandwidth (fault) man-
agement cannot recover. Second, eliminating retransmission and flow control
from the intermediate systems enhances their bandwidth by simplifying their
forwarding processes. In addition, not all clients desire reliable transport. Time-
liness is much more important, for example, with multimedia or other real-
time applications.

Postel prevailed in this argument and the subsequent developments owe
much to his approach. The consequence was, to quote from Cerf’s Final Report
of the Stanford University TCP Project, that, while “[o]riginally designed as a
monolithic internet protocol, the internet aspects were separated into a distinct
protocol layer in early 1979 with the publication of version 4 of TCP” [10].

The final result of this effort was the TCP/IP architecture, or as it is also
known the IP protocol suite with its four core protocols (Figure 10.4):

1. IP, which defines an end-to-end transporter that is connectionless and
which offers its clients only best effort delivery;
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2. ICMP, an ancillary protocol that complements IP by providing a
delivery mechanism for bandwidth monitoring (measurement and/or
estimation) information principally concerning faults that may occur
in an IP network;

3. TCP, a connection-oriented/reliable protocol; and

4. UDP, a connectionless/best effort protocol.

10.3.2 End and Intermediate Systems in TCP/IP

The TCP/IP architecture also erased much of the distinction between end and
intermediate systems. Recall that in the ARPANET hosts were presented with a
very reliable abstraction by the subnet, so much so that they communicated
with IMPs using different protocols than the IMPs used among themselves.
With TCP/IP, in contrast, IP is used between end systems and intermediate
systems, between intermediate systems, and between end systems directly if
they share a transporter (data link). In fact, since every IP system, end or inter-
mediate, must implement IP and ICMP, only two differences remain between
the two types of systems (Figure 10.5):

1. An intermediate system is by definition multihomed and must be
able to concatenate the IP networks (transporters) to which it is
connected. An end system, single homed or multihomed, cannot
concatenate.

2. An end system by definition has one or more upper layer protocol
clients/destinations (otherwise there are no data for the IP trans-
porter to transport). An intermediate system, on the other hand,
need not implement any upper layer protocol, although typically
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both TCP and UDP are included to support such applications as
Telnet and SNMP.

10.4 The Internet Protocol

As we said earlier, effecting basic end-to-end transport in a TCP/IP network is
the responsibility of the Internet Protocol. Whereas the IMP–IMP protocol did
not extend past the subnet and was completely hidden from the ARPANET
hosts, IP was designed to be a true end-to-end protocol by extending all the
way out to hosts. The current version is IP Version 4 (IPv4), and the next-
generation protocol, not widely deployed yet, is IP Version 6 (IPv6). Although
the most conspicuous difference between the two versions is that IPv6 defines a
larger address to help keep up with the growth of the Internet, there are others
but we postpone discussing these until we have first explored IPv4.

Another aspect of IP’s design is worth stressing at the outset: Like the
original ARPANET, the goal with IPv4 was to have any-to-any connectivity
using peer management mechanisms. The task set of an IP transporter is the
any-to-any permutation of the IP addresses. Although this may seem common-
place, many protocols such as SNA, designed primarily to support transaction
processing and terminal handling, do not support communication between
so-called outboard devices and systems, only between remote systems and the
mainframes at the center of the network.

Within the constraint of peer control the designers of IP set out to create
a protocol that was, if not management free, then at least very management
light. IP’s promise of “best effort” delivery meant that its approach to faults,
buffer exhaustion, and other anomalous conditions was to simply discard the
affected packet(s). In fact, from a management perspective it is scarcely an exag-
geration to say that the Internet Protocol was designed in the negative, that is,
more for what it would not do than what it would. As much as possible, it was
the opposite of the IMP–IMP protocol. To quote from the original RFC:

The internet protocol does not provide a reliable communication facility.
There are no acknowledgments either end-to-end or hop-by-hop. There is
no error control for data, only a header checksum. There are no retrans-
missions. There is no flow control. [11]

10.4.1 The IP Address Space

So what does IP do? According to its architects, “[t]he key feature of IP is the
Internet address, an address scheme independent of the addresses used in
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the particular networks used to create the Internet” [8]. Of course, as we said in
Chapter 9, one of the principal reasons for introducing an end-to-end protocol
is precisely to define a global address space. To say that IP does little more than
just this should not be seen as trivializing the crucial importance of the task: by
providing a global address space that aliases the local address space(s) of the
transporters (data links and networks) which it is internetting, IP achieved a
decoupling of the Internet from these component networks. While IP addresses
may be bound to local addresses by static definitions, a number of mechanisms
have been defined such as the Address Resolution Protocol for automating this;
we discuss these more in later chapters.

When the architects of IP were deciding the size of the addresses to
be used, they faced the usual dilemma of overhead versus flexibility. What
they chose was to use 32-bit addresses, which many at the time opposed as an
unnecessary extravagance. The IPv4 address is conventionally expressed in what
is known as dotted decimal notation: a.b.c.d., where each of these are 8-bit
groups converted into their decimal equivalent between 0 and 255. We will on
occasion abbreviate these as AIP, where the superscript indicates the protocol.

The ARPANET had employed a hierarchical address space, albeit of
very limited size. In their first attempt [12] at the problem, the IP architects
followed this by partitioning the 32 bits into an 8-bit network field (defining
the network number) and a 24-bit host field. This meant that there could be
a maximum of 256 networks each with up to 4 million hosts. This was not
as unreasonable as it might appear today. By 1975, the ARPANET had
approximately 50 IMPs and 70 hosts [4], and in any case the Internet itself was
intended only to connect large providers such as Transpac, Telenet, and, of
course, the ARPANET.

What changed all this and disrupted their calculations was the explosive
growth of computer connectivity that came with the arrival of LANs and
inexpensive modems with sophisticated error correction. Because of this new
demand, the IP addressing scheme was modified [13] to allow many more net-
works by using additional bits for the network field for a portion of the total
address space. This resulted in the division into three classes of addresses:
(1) those IP addresses with a = [1,126] were class A addresses, which retained
the 24-host/8-network partitioning of the 32-bit addresses; (2) those addresses
with a = [128,191] were class B addresses, which used a 16/16 partitioning to
provide networks each with up to 65,000 hosts; and (3) those addresses with
a = [192,224] were class C addresses, which is an 8/24 partitioning to pro-
vide networks each with up to 255 hosts. This later came to be called classful IP
addressing, in contradistinction to classless addressing (see Chapter 13).

A further division of the 32-bit IP address came in 1985 with the intro-
duction of subnetting, which basically consisted of taking bits from the host
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field of a classful address to define a third level of hierarchy. Subnetting
allowed the definition of two or more subnets within a regular IP network
number. However, subnetting complicated the routing of IP packets since it
entailed the distribution of additional information called subnet masks. We dis-
cuss this in Part IV.

10.4.2 IPv4 Header

Because IP was a datagram protocol this meant that every IP packet had to
contain both the source and destination IP addresses, constituting an overhead
of 64 bits per packet. Beyond this, the IP packet contained additional fields
to support IP’s limited management mechanisms, notably fragmentation and
reassembly; multiplexing upper layer protocols; and detection of faults, header
and otherwise. However, unlike the IMP–IMP protocol, there is only one type
of IP packet, so no field was needed to indicate packet type. The format of IPv4
packet headers is shown in Figure 10.6.

Let’s start with fragmentation and reassembly. Fragmentation is an
instance of workload management of degree: An RFS to transport a payload of
k bytes is transformed into two or more RFSs to transport smaller payloads.
And it was considered key to IP: “The internet protocol implements two basic
functions: addressing and fragmentation” [13].

Although IP was designed to be simpler than the IMP–IMP protocol, this
is one area where its management is more complicated. In the IMP–IMP pro-
tocol fragmentation and reassembly was performed, if at all, only at those IMPs
at the edge of the subnet, that is, those directly attached to hosts. Intermedi-
ate IMPs did not have to concern themselves with it, in part because the
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homogeneity of the ARPANET WAN links ensured that all could support
IMP–IMP PDUs 1008 bits long. On the other hand, because IPv4 was
intended to be an open protocol the design decision was made to require every
IP system be able to support fragmentation of IP packets (reassembly was only
executed by the destination host) since it could not be assumed a priori that any
given network could transport a packet of arbitrary size.

The consequence of this complexity is that no fewer than three fields in
the IPv4 header are involved in fragmentation and reassembly. First off, when
an IP packet is created it is given a unique packet number, carried in the Identi-
fication field (16 bits). When an IP intermediate system must fragment a
packet, all fragments are given the same 16-bit number to aid in their reassem-
bly at the destination intermediate system. Next, each IP header contains a
Fragment Offset field (13 bits) which indicates the position of this fragment in
the datagram; this is necessary because IP does not guarantee in-order deliver.
Finally, within the Flags field (3 bits), the third bit indicates whether this
packet is the last fragment; without this bit, the destination host cannot deter-
mine if it has received all fragments that constitute the original packet. We
should also note that another bit of the Flags field allows an IP system to pre-
vent any intermediate systems from fragmenting a packet; this do not fragment
bit is used, for example, to prevent an executable program from arriving par-
tially at a destination and causing a mishap.

Next is the question of multiplexing and supporting multiple upper layer
protocols. Toward this end every IPv4 header includes a Protocol field (8 bits)
that identifies the upper layer protocol of the PDU encapsulated in the IP pay-
load. As we noted before, ICMP (and IGMP), TCP, and UDP are all clients of
IP and each has its own protocol number (ICMP 1, IGMP 2, TCP 6, UDP 17)
carried in the Protocol field of their respective IP packets. Over the years dozens
of additional upper layer protocols, mostly experimental or of limited use, have
been defined and been assigned IP protocol numbers (see the latest version of
the Assigned Numbers RFC for a list).

The remaining fields in the IPv4 are all, in one way or another, concerned
with fault detection. The most obvious example is the Header Checksum
(16 bits) field, which provides simple fault detection for the fields in the header
and is calculated by relatively primitive means of taking the one’s complement
arithmetic sum of the header 2 bytes at a time and then the one’s comple-
ment of that (as opposed to the more sophisticated mechanisms discussed in
Chapter 3). The rationale for excluding the payload from the checksum span
was both convenience and philosophy: convenience, since a header-only check-
sum would take less computation in intermediate systems, a nontrivial factor as
this was implemented in software; and philosophy, since the IP design predi-
cate was that clients desiring reliable transport would implement the necessary
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management mechanisms in their upper layer protocols. In fact, just as with
ATM and its header-only checksum, IP’s header checksum was intended
merely to keep corrupted packets from being forwarded and consuming net-
work bandwidth.

The prospect of PDUs being forwarded endlessly like so many Flying
Dutchmen, looping around and wasting resources along the way, is a major con-
cern in any network, and this is particularly true when, as in IP, there is no cen-
tral mechanism to coordinate routing. Such faults may be caused by corrupted
headers but a much more likely source is inconsistencies in the routing tables of
IP intermediate systems. It was to detect this type of fault and to prevent the
effects from lasting indefinitely that the IP architects included in IPv4 headers
the Time to Live (TTL) field (8 bits), which was originally intended to record
the lifetime of a packet, to be decremented as it transited the IP networks by
each IP router as it was forwarded. But because time stamps were unreliable,
this was quickly converted into a hop count, measuring not the time elapsed
but the number of networks transited. In either case the effect was the same:
When the TTL field reached zero the packet was not forwarded but instead dis-
carded. A fault message could then be sent using ICMP (see later discussion).
Fault recovery, of course, requires other means such as routing updates to cor-
rect the inconsistent tables and retransmission to transport the discarded
packet(s).

The last type of fault that was considered by IPv4’s architects was the
truncation, for example by some software or hardware error, of an IP packet as
it is being forwarded. A truncated or otherwise incomplete packet would not be
detected by the header checksum. To detect these faults IPv4 includes a Total
Length field (16 bits). These data are also used to detect reassembly faults when
used in conjunction with the Fragment Offset field, to determine if the
received fragments contain all of the original IP packet.

We should not leave our discussion of IPv4 without mentioning one of
its more intriguing features, the Type of Service (TOS) field (8 bits). This was
originally included to allow end systems to select different routes according to
the delay, throughput, reliability, and precedence desired for an IP packet.
However, no router vendor ever implemented support for multiple types of
service; typically, this field was never even examined and was implicitly
assumed to be set to 0 in all IP packets. There were a number of reasons for this
disuse of what seems a very handy feature, but perhaps the most compelling was
that its use would have required that the IP routers maintain distinct routing
tables for each TOS supported, which would have consumed significant
resources. Because there was little demand (no major applications were ever
written that used different types of service), the TOS routing was never widely
implemented.
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10.4.3 IPv6

Notwithstanding the seeming extravagance of 32-bit addresses, by the early
1990s the limited quantity of network numbers provided by IPv4’s addressing
was rapidly being exhausted by the explosive growth of the Internet fueled by
traffic for the World Wide Web. In addition, experience had shown some IPv4
features to be ill suited to high-speed networking, while others, such as TOS,
were deemed not worth the benefit (if any) that they brought. Consequently,
the Internet Architecture Board started to draft a successor protocol, to be
known as IPv6 since IP Version 5 had already been used to designate ST, a
real-time streaming protocol now largely abandoned. In this section we outline
the major features of IPv6 and how it differs from IPv4. Despite the changes,
as we see IPv6 is a much less radical revision than IPv4 was relative to the
ARPANET IMP–IMP protocol.

The first and most obvious difference between the two versions of IP is
the size of addresses. As a result of the plunging prices of memory and commu-
nications bandwidth, the IPv6 architects felt free to “future-proof ” the new
protocol by using 128-bit addresses. This provides an address space so much
beyond any conceivable demand that the likelihood of having to change
addresses again is remote for the foreseeable future.

Another factor influencing IPv6’s design was to eliminate fields and cor-
responding management mechanisms that had never been embraced or had
fallen into disuse. As we can see from Figure 10.7, the IPv6 header omits the
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header checksum; in part this was because of the improved reliability of IP
networks and relays, in part because the checksum failed to detect many types
of faults, but mainly the header checksum was eliminated from IPv6 because
router vendors had, in the interest of improved performance, ceased calculat-
ing it.

At the same time, IPv6 preserved the option of including additional man-
agement information by means of an Option field. We do not discuss these
here but such extensibility recalls PPP’s mechanism for incorporating header
fields to support various control protocols.

IPv6 does, however, retain the TTL field from IPv4, now renamed the
Hop Limit (8 bits). As with its predecessor, the purpose is one of fault detection:
A routing fault that might otherwise cause a network meltdown can be detected
if the Hop Limit is exceeded.

10.4.3.1 No Fragmentation
Another casualty of the “need for speed” that came to dominate the race for the
fastest IP routers and switches was support for fragmentation. Fragmentation
disrupted the smooth processing of IP packets because a router had to decide,
based on the packet’s next hop, if an additional set of tasks (creating the frag-
ments) had to be executed, in addition to which, it then had to check if the
do not fragment bit had been set by the client. Consequently, IPv6 routers do
not fragment IP packets that are too large to be transported by the next stage
transporter. When such PDUs are received, the router simply discards them; in
addition, the router may send an ICMPv6 message (see later discussion) back
to the IP client (source end system) indicating that the packet was too big and
also information about the size of the largest packet that could be transported.
Alternatively, every IPv6 network by definition must be able to transport pack-
ets that are up to 576 bytes in length. IPv6 packets no larger than this will never
be discarded.

10.4.3.2 Priority and Flows
Despite the fact that IPv4’s TOS mechanism was never really implemented,
many in the IP community still felt that there was a need to provide clients with
different rates of service according to their needs. For example, as we saw ear-
lier, multimedia and other real-time traffic do not benefit from retransmission
and multimedia decoders (estimators), in particular, experience high fault rates
when there is jitter in the arrival of packets. File transfer, on the other hand, is
largely immune to response time and jitter and is concerned mainly with bulk
transport at the least cost.

To meet these needs the IPv6 architects included two fields in the
IPv6 header, Class (originally called Priority and with 4 bits, now 8 bits in
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the revised IPv6 standards) and Flow Label (originally 24 bits, now 20 bits in
the revised IPv6 standards). Priority/Class is largely equivalent to IPv4’s TOS
field in intent, but awaits further definition; currently the field has a default
value of all 0’s. Whether Priority/Class will be more successful than its IPv4
predecessor is uncertain.

The purpose of Flow label is to support a new forwarding mechanism,
namely, flows. A flow is defined in the IPv6 RFCs as “a sequence of packets
sent from a particular source to a particular (unicast or multicast) destina-
tion…” [14]. The idea behind flows is that conventional datagram forwarding
was never designed with a view to supporting traffic like multimedia in which
thousands, millions, or even more packets might be sent all between the same
source and destination(s); indeed, IPv4 and the IMP–IMP protocol were origi-
nally designed to support remote computing, which might entail exchanging at
most a few dozen packets for file transfer. Seeking ways to speed IP routing,
researchers came up with the idea of “tagging” these packets with a common
identifier that would then be used by intermediate systems to determine the
next hop. These identifiers are carried in the Flow label field in IPv6 headers;
note that each packet in a given flow will carry the same flow label value.

If this sounds similar to virtual circuit forwarding, it should: Flows are
de facto virtual circuits, albeit without the static definitions of earlier virtual cir-
cuit networks, notably SNA and X.25. We saw in Chapter 9 that virtual circuit
architectures allow forwarding decision making (scheduling) to be greatly
simplified: Rather than calculating the next hop according to some optimality
criterion for each packet, forwarding decisions were made based on a virtual
circuit ID.

Such virtual circuit concatenation is exactly how flows work: A flow is set
up by the initial packet and the remaining packets follow its path as long as the
topology of the composite transporter (the IP network) does not change. And
while some deny that flows are in any way similar to virtual circuits, the fact
remains that, once a flow has been established, all subsequent packets are
forwarded using their flow IDs, not their IP destination addresses. As we will
see in the next chapter, a similar mechanism has been employed by IBM’s
Advanced Peer to Peer Networking protocol for more than a decade. We
should also note the close relationship of flows and the ReSerVation Protocol
(RSVP) (see, for example, [15]).

10.5 The Internet Control Message Protocol

As we just saw, both IPv4 and IPv6 are instrumented to detect faults in a packet
and/or the IP network itself. A question confronting IP’s architects was what
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should be done with the management data (measurements and/or estimates)
that were produced. One option, of course, was to simply discard these along
with the affected packet(s). Although this would not have contradicted IP’s
goal of best effort delivery, it nonetheless would have squandered hard-won
information and, more importantly, done nothing to remedy the cause of
the fault. Instead it was decided that “[e]rrors may be reported via the Internet
Control Message Protocol (ICMP) which is implemented in the internet proto-
col module” [11]. That is to say, guided by the principles of modular design,
IP’s architects were led to the definition of a separate protocol—ICMP—to
handle many of the configuration and fault management tasks that other, more
monolithic designs have included in protocols themselves; and every IP imple-
mentation, end and intermediate system alike, was required to implement the
protocol. To quote the IPv4 ICMP RFC, “[t]he purpose of these control mes-
sages is to provide feedback about problems in the communication environ-
ment, not to make IP reliable” [16].

We should stress that ICMP is both a protocol and a set of messages that
may be sent by an IP system (end system or intermediate system) to indicate
that certain faults have occurred in the processing of IP packets. Will an inter-
mediate system that throws away a packet always send an ICMP message? No.
Will an intermediate system that cannot forward a packet always send a “desti-
nation unreachable” ICMP message? Again, the answer is no.

Note that ICMP does not implement the fault detection itself but rather
the various “fault detected” error messages shown in Figure 10.8 as well as cer-
tain configuration management requests and responses. In addition to faults
detected by the IP protocol machine, those detected by the TCP and/or the
UDP protocol machines are also reported using ICMP messages. Beyond this,
ICMP for IPv6 has been extended in the area of configuration management
(bandwidth monitoring) to include the functions of Address Resolution Proto-
col (see Part IV) for IPv4 networks and the IP Group Membership Protocol as
well, although as with much of IPv6 the last is a subject of continuing defini-
tion. Table 10.1 lists the message types for ICMP for IPv4 and IPv6.

The IPv4 and IPv6 ICMP messages listed can be categorized in terms of
bandwidth and workload/monitoring and control. We focus on some of the
more important ones in the following subsections.

Destination Unreachable
When an IP packet is discarded because an intermediate system cannot forward
it or because the destination end system does not implement the requested IP
service, then this ICMP message is sent. This is bandwidth monitoring in that
it gives the sending IP system feedback on the “topology” of the IP net-
work—for example, that the destination end system is absent. Note that in
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IPv4 this message may also be sent by an intermediate system that cannot
forward an IP packet with the don’t fragment bit set but which is too large for
any outbound network (transporter) to transport. ICMP for IPv6 defines a new
Packet Too Big message for this.

Time Exceeded
This ICMP message may be sent by an intermediate system that discards a
packet because the TTL/hop limit has been exceeded, which as we saw earlier is
an indication of a likely routing loop. In addition, an IP system that discards
packets awaiting reassembly will use this message to indicate the likely loss of
one or more fragments.

Parameter Problem
An IP packet that violates the protocol or otherwise requests unsupported IP
options will be discarded and the discarding system can use this message to
report the fault to the source.

Source Quench
An IPv4 system that discards an IP packet because it lacks the resources (such
as buffers) to process it may use this message to inform the source end system
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that it needs to reduce the rate at which it is sending. This is an attempt at
workload (flow) control; if successful it actuates the arrival rate of traffic from
the source.

Redirect
At its most elementary, an IP intermediate system that receives a packet will
check if the network address is the same as that of the transporter from which it
has been received. If it is then the intermediate system will use an ICMP Redi-
rect to the end system to send packets directly to the destination end system.
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Table 10.1
ICMP Messages: IPv4 Versus IPv6

IPv4 IPv6

Destination unreachable Destination unreachable

— Packet too big

Time exceeded Time exceeded

Parameter problem Parameter problem

Echo request Echo request

Echo reply Echo reply

Time stamp request —

Time stamp reply —

Information request —

Information reply —

Address mask request —

Address mask reply —

Source quench —

Redirect Redirect

— Group membership query

— Group membership report

— Group membership termination

— Router solicitation

— Router advertisement

— Neighbor solicitation

— Neighbor advertisement



Echo Request and Echo Reply
ICMP provides a loopback facility in the form of an Echo Request message,
on receipt of which it is mandatory that an IP system (end or intermediate)
send an Echo Reply message. This is the famous IP “ping” that many network
administrators have used for years as a tool in troubleshooting network prob-
lems. As we saw in Chapter 4 and subsequently, a loopback, in this case via
ICMP echo request/echo reply messages, is, in fact, an instance of bandwidth
monitoring, specifically fault detection and/or fault isolation, in which the
server in question is obviously the IP transporter.

The remaining IPv4 ICMP messages were not carried over to IPv6 ICMP
because they were obsolete or otherwise superfluous; these include time stamp,
information, and address mask requests and replies. For more details on
the additional IPv6 ICMP messages consult Huitema [15], Loshin [17], or the
applicable RFCs.

10.5.1 ICMP and MTU Discovery

We conclude our examination of ICMP by illustrating its use in MTU dis-
covery, particularly important in IPv6 networks since intermediate system frag-
mentation is no longer supported. When an end system sends an IP packet,
each intermediate system will attempt to forward it normally; however, if
the packet is too large then an ICMP Packet Too Big (IPv6) or Destination
Unreachable (IPv4) message is returned to the source, which must either resend
the packet after fragmenting it itself or abandon the attempt. This process is
illustrated in Figure 10.9.

10.6 TCP and UDP

The last protocols in the IP suite are TCP and UDP. UDP is a relatively simple
protocol that, like IP, is connectionless and best effort in the service it offers
its clients. Management in UDP for the most part is confined to multiplexing
and demultiplexing traffic from multiple upper layer protocols (clients) which
it does by means of ports, 16-bit numbers that uniquely identify UDP clients at
source and destination IP systems (Figure 10.10); ports are similar to protocol
type codes in IP and some of the data link protocols. Although UDP does
include a checksum, and one that covers the data payload being transported
(unlike IP’s checksum, which is header only), use of the checksum is optional
and is generally ignored. More effective for fault detection, the UDP header
includes a field that indicates the length of the UDP PDU so that if any
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fragments are lost the incomplete message is discarded. By definition, a UDP
PDU is transported with no guarantees.

It may be surprising but, despite or perhaps because of its management-
light nature, UDP is preferred by many application programmers who want
to retain management of transport execution, for example, retransmission.
Because UDP offloads so little from its clients (the upper layer protocols) it
affords developers such latitude.

At the other end of the spectrum from the laissez-faire management of IP
and UDP is TCP. All of the management that was kept out of IP was put into
TCP. It is a connection-oriented, PAR protocol with flow control and other
management designed to offer the most reliable transport service possible over
all manner of underlying networks from the least to the most reliable. TCP will
correct for out-of-order delivery and duplicate packets. In addition, TCP
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provides the same multiplexing and demultiplexing traffic from multiple upper
layer protocols (clients) as UDP by means of the same mechanism of ports, that
is, protocol type fields. Of course, TCP’s management comes at the price of a
PDU header much larger than UDP’s (Figure 10.11).

The most important of these fields are the Sequence and Acknowledg-
ment numbers, with which TCP protocol machines manage retransmission;
the Window field, used in TCP flow control; the checksum, which is used to
detect faults; and the six subfields within the Flags field (Figure 10.11(b)),
which are used to indicate, for example, if the data are urgent. Thus, they pro-
vide an “out-of-band” signaling mechanism between the TCP protocol
machines. We note that because TCP is full duplex, there is no provision for a
workload scheduling mechanism to “turn around” the connection between the
two protocol machines. That is, within the constraints imposed by flow control
each protocol machine can send without requesting permission from or being
polled by the other.
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10.6.1 TCP Connection Management

We saw in Part II that connection-oriented data link protocols such as SDLC
and HDLC used special frames (PDUs) to manage connection actuation—ini-
tiation, teardown, resetting, and so on. TCP does not use special PDUs for this
purpose but rather exchanges equivalent management requests and data using
several of the subfields of the Flag field of the TCP header. We should note
that, like the ARPANET Host–Host protocol, TCP protocol machines are
peers—either side can initiate connection setup and either can initiate connec-
tion teardown.

A TCP connection request is sent by a TCP protocol machine setting
the SYN subfield in a TCP segment. This flag is so named because, as with
any connection-oriented protocol, there is a need for the protocol machines to
exchange state information. With TCP the state information includes type of
payload data to be carried in the connection (via the source and destination
port numbers); the initial sequence numbers that each side will use; and the
maximum amount of data that each will accept. In addition, a TCP protocol
machine can specify a maximum transmission unit, called the maximum seg-
ment size (MSS), that it is willing to accept. Because the TCP protocol specifies
that there are three steps to this process (connection request, connection
request response, and acknowledgment of the response), it is commonly known
as a three-way handshake.

This brings us to another difference between TCP and the data link
protocols, namely, the sequence numbering. Instead of each TCP PDU
(called a segment) being assigned a sequence number that is one greater than
the sequence number of the preceding PDU, sequence numbers are related to
the size of the PDUs being sent. That is to say, the size of TCP’s sliding win-
dow does not measure the number of segments outstanding but rather the
number of bytes. Because the sequence numbers are 32 bits, this means that
up to 4 GB can be outstanding before sequence numbers wrap. When TCP
was designed in the late 1970s this seemed such a large number that few
could foresee difficulties ever arising. However, in today’s high-speed net-
works this is no longer the case and much research is going into solving the
problem.

The teardown actuation of a TCP connection is effected by sending a seg-
ment with the FIN flag set. This indicates to the receiving protocol machine
that no more data will be sent over the connection. However, since TCP is
symmetric it is possible that the receiving protocol machine may still have data
to send and can continue sending it.
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10.6.2 Fault Recovery and Retransmission

Fault recovery in TCP relies on the same mechanisms as, for example, we
saw with SDLC (Figure 10.12). In terms of the management we discussed
in Chapter 1, these can be decomposed into closed-loop and open-loop
maintenance:

1. Closed-loop maintenance: The sending protocol machine calculates a
checksum for the payload it wishes to transport. At the destination
the same checksum calculation is made, and a fault estimated if there
is a discrepancy, which is then returned to the sender by the absence
of a positive acknowledgment. As in SDLC, acknowledgments in
TCP specify the next byte expected.

2. Open-loop maintenance: A timer is set by the sending protocol
machine when it sends a PDU; should the receiving protocol
machine not send an acknowledgment before the timer expires then
retransmission is initiated.
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The performance of such open-loop managers with their timer-based
retransmission depends on how well the retransmission time-out (RTO) value
matches the round-trip time (RTT)3 between source and destination. If the
RTO is much greater than the RTT, then retransmission will be initiated later
than is optimal. On the other hand, if the RTO is much less than the RTT,
then retransmission will be initiated too quickly, resulting in unnecessary traf-
fic. In decision theory the former event is known as a rejection while the latter
is called a false alarm.

We saw earlier that SDLC, HDLC, and LLC2 all provide extensive
configuration parameters that can be actuated, albeit statically, to tune and
optimize performance of the data link with respect to retransmission and fault
recovery. The difficulty that confronted TCP’s designers was that, unlike the
data link protocols we considered in Part II, it was not possible to obtain good a
priori estimates of the latency of the transporter, in TCP’s case the underlying
IP network(s) over which its traffic is carried since IP networks can range in size
from a single high-speed LAN to a complex mesh of low-speed WAN circuits.
To quote from TCP’s RFC-793, “[b]ecause of the variability of the networks
that compose the internetwork system and the wide range of uses of TCP con-
nections, the retransmission timeout should be dynamically determined” [18].
Some authors refer to this as an adaptive retransmission strategy, the cornerstone
of which is an estimation of round-trip times executed by the estimator within
the timer adaptation manager in the TCP protocol machine (Figure 10.12).

Over the years a number of estimation mechanisms (algorithms) have
been proposed, starting with RFC-793 itself, which gives the following formula
for calculating an estimate of RTT that it calls the smoothed RTT (SRTT):

( ) ( )[ ]SRTT SRTT RTTnew old= ∗ + − ∗α α1

This is recursive parameter estimation. And with each updated estimate for
SRTTnew the scheduler in the timer adaptation manager actuates the protocol
machine’s retransmission timer; the original specification called for the RTO
to be twice the updated estimate for SRTTnew, but this was revised in 1989
to include take account of jitter (variance) in the RTT measurements. The new
algorithm relies on the mean variance rather than standard deviation because
the latter is more computationally intensive [19]. The new estimator is given by
a pair of equations

( )SRTT SRTT RTT SRTTnew old old= + −g
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( )Dev Dev RTT SRTT Devnew old old old= + − −h

where Dev is the mean deviation and the coefficients g and h are “gain” con-
stants, generally set to equal 0.125 and 0.25, respectively. The value of RTO is
then calculated from the equation

RTO SRTT Devnew new= + 4

Of course, to derive any of these estimates, the TCP protocol machines must
measure the RTT periodically. Conceptually, this is straightforward: Simply
set a timer to measure the elapsed duration between when a segment is sent
and when its acknowledgment is returned by the destination. However, over
the years a number of complications have been discovered concerning so-called
ambiguous acknowledgments, which occur when a segment has been retrans-
mitted and then acknowledged, a circumstance that leaves the sending TCP
protocol machine uncertain as to which copy of the segment is being acknowl-
edged. The solution to this is known as Karn’s Algorithm, named after its
author, and has two parts. First, RTT measurements should be ignored for any
segment that has been retransmitted; second, if an RTO timer expires and ini-
tiates retransmission, then the value of RTO is increased to “back off ” the
retransmission of further segments until the IP network stabilizes [20].

10.6.3 Flow Control

Recall that much of the ARPANET IMP–IMP protocol was concerned with
scheduling the flow of traffic (workload management) from a source host to
prevent overwhelming the limited buffers and processing capabilities of the des-
tination IMP and host. And whereas the ICMP Source Quench message pro-
vides limited flow control, it is too coarse to constitute really effective actuation
of the arrival of traffic from TCP/IP end systems. Therefore, much of TCP’s
initial design effort as well as subsequent modifications have been focused on
flow control to maximize throughput while avoiding congestion.

We saw in Part II that, with data link protocols such as SDLC and its
derivatives, a receiving protocol machine can actuate traffic by either explicitly
indicating its (un)willingness to receive any PDUs using Receiver (Not) Ready
frames or by withholding acknowledgments and thus exhausting available
sequence numbers. This latter approach would not be viable with TCP because
the sequence number space is so much larger. Instead, each time a TCP pro-
tocol machine sends a segment it includes in the window field the maximum
number of bytes it is willing to specify. Because the field is 16 bits, this means
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that with standard TCP the largest window is 65,535 bytes. Allowing a receiv-
ing protocol machine to indicate its maximum size flow control is an actuation
(of the size) of the sliding window.

Beyond this, however, TCP has been augmented to react to increasing
response times to prevent congestion in end and intermediate systems alike.
The two principal mechanisms are called slow start and multiplicative decrease.
Both techniques rely on each TCP protocol machine maintaining a second
flow control window, above and beyond the window advertised by its peer sta-
tion with each segment. Called the congestion limit window, in normal times
this equals the receiving protocol machine’s advertised window. However,
when congestion begins, as indicated by lost segments, the size of the
congestion limit window is reduced by half and the RTO value is increased
exponentially. This continues until either the congestion limit window equals
the maximum segment size (MSS) fixed in the connection setup or until no
further segments are lost.

Slow start, on the other hand, begins in the opposite direction. When a
TCP connection is established, slow start dictates that the congestion window
be actuated down to the MSS limit and increased gradually by one segment
size per acknowledged segment sent. The same scheduling mechanism is used
when recovering from congestion, when the congestion limit window has
been reduced but is now to be increased. An additional nuance of flow
control in TCP is that, when recovering from congestion-induced window
constriction, a TCP protocol machine will slow the rate of increase in the
congestion limit window size once the window has reached half its original
size. At this point, the protocol machine enters a congestion avoidance phase,
and the window size is incremented only when all outstanding segments have
been acknowledged.

An unforeseen consequence of TCP’s windowing management is that it is
possible for two TCP protocol machines to get stuck allowing small window
sizes: A receiving protocol machine advertises a small window size because of,
for example, a temporary buffer shortage; the sending protocol machine sends a
small segment, which is processed, and a new advertisement is sent for another
small window, ad infinitum. This final complication is called the silly window
syndrome (SWS). To prevent this, TCP’s flow control management has been
modified to prevent receiving protocol machines from advertising small win-
dows and to prevent sending protocol machines from sending a segment unless
either a full-sized segment can be sent; or a segment equal to 50% of the largest
advertised window size can be sent; or all the data that need to be sent fit in a
small segment and there is no unacknowledged segment(s).
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10.7 Summary

In this chapter we have detailed the management mechanisms used in internet-
working protocols, starting with the original ARPANET and up to TCP/IP.
We discussed how BBN 1822 specified the physical interface and signaling
used between hosts and IMPs as well as a set of messages to be used in host-to-
IMP and IMP-to-host communication. We saw that the IMP-to-IMP commu-
nication had two parts: (1) a protocol used over the serial links connecting pairs
of IMPs and (2) a protocol that was used to communicate between source and
destination IMPs. The IMP-to-IMP protocol employed positive feedback from
a receiving IMP to a sending IMP: a frame that arrived correctly (as indicated
by checksums) was acknowledged. However, negative feedback was not sent: A
corrupted frame was simply discarded by the receiving IMP, and the sending
IMP initiated retransmission by using timers to detect lost or corrupted frames.

We then moved on to the internetworking model of data transport as first
proposed by Cerf and Kahn and then modified by Postel to embrace a two-
tiered modularization of management into a management-light Internetwork-
ing Protocol and a management-heavy Transmission Control Protocol. We
saw that while IP was connectionless, offering only best effort delivery, TCP
provided the most robust management possible. However, we stress that in
this chapter we have seen nothing in TCP’s management that we have not also
encountered in the data link protocols we surveyed in Part II. This brings us
back to one of the major themes of this book: All of the management mecha-
nisms in computer networking protocols can be reduced to a relatively small set
of primitives that recur again and again. TCP is merely the highest level of this
recursion, encapsulating and managing end-to-end transport over IP.
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11
End-to-End Management: SNA and APPN

11.1 Introduction

In this chapter we conclude our examination of management in end-to-end
protocols by looking at IBM’s Systems Network Architecture (SNA). We
should study the management in SNA’s protocols for at least two reasons. First,
SNA illustrates a completely different type of network architecture than
TCP/IP, namely, a terminal–host model of communication that relies on
centralized (master/slave) management; second, SNA has a more extensive set
of mechanisms for monitoring and controlling traffic than any other protocol
architecture.

The chapter begins by discussing SNA’s antecedents in the terminal–host
networks that were deployed starting in the 1950s in such diverse areas as air
defense (SAGE) and airline reservations (SABRE). Terminal–host networks
differ from the computer–computer network model embraced by the
ARPANET and its successors, most notably in the fact that support of any-to-
any communication is not necessary because remote devices do not need to
send data to each other. Even as the ARPANET researchers were advancing
a model of peer communications and distributed management, terminal–host
networking continued to be developed, culminating in the release of SNA
in 1974.

We then introduce SNA’s rather elaborate cast of characters and their
management: network addressable units, paths and routes, path control net-
work, subareas and domains, and so on. In sharp contrast to the almost laissez-
faire management philosophy of the IP protocol suite, SNA relies on mas-
ter/slave mechanisms and centralized management to realize a granularity of
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control largely unobtainable in decentralized/distributed implementations. We
detail these management mechanisms in the three principal end-to-end proto-
cols of the SNA protocol stack, namely, the Path control, Transmission con-
trol, and Data Flow Control layers.

The chapter then moves on to discuss that management executed within
an SNA network versus that management delegated to SNA end systems. Here,
too, the contrast with TCP/IP’s modularization of management could not be
greater. Whereas the latter assumes that data links will be unreliable and that
retransmission will only be attempted by end systems using TCP, SNA’s man-
agement model is predicated on reliable data links, with fault detection in its
end-to-end protocols limited to identifying lost packets. We will also look at
one of SNA’s greatest strengths, namely, its multilevel flow control.

Finally, we will briefly outline the management direction IBM has taken
with its Advanced Peer to Peer Networking (APPN) and High Performance
Routing (HPR) architectures. We will discuss the management changes that
IBM has introduced in the new Path Control layer at the heart of APPN and
HPR. These represent an effort to move SNA more toward the dynamic model
of networking that has helped make TCP/IP so successful.

11.2 Terminal–Host Network Architectures

Like the ARPANET, the impetus behind the development of terminal–host
networking was originally provided by the U.S. Department of Defense, which
in the early 1950s implemented the SAGE (Semi-Automatic Ground Envi-
ronment) network to collect and process radar information gathered from sites
located across the United States. Soon afterward IBM and American Airlines
developed the SABRE (Semi-Automatic Business-Related Environment) net-
work to support thousands of airline reservation agents. (For more details on
SAGE and SABRE, see [1, 2].)

Terminal–host networks were designed to meet a different set of require-
ments than today’s Internet. Recall that this was the era of the mainframe com-
puter. Before VLSI and the microprocessor, almost all processing and memory
power was centralized in the data center. Terminals had little if any memory
and no CPU, and even terminal servers were severely constrained in computing
power. Given this relative abundance of computing power at the central site
where the mainframe was located, it was natural that the data communications
protocols that were developed were asymmetric in how the two ends, host and
terminal, operated. The protocol mechanisms at the host side were responsible
for scheduling access to the shared line, generally implemented in the form
of polling, for error recovery and exception handling, and for managing the
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communications process generally. The resulting asymmetry of management,
with the protocol station at the terminal side essentially a “slave” completely
under the control of the master, namely, the host, was precisely what we saw
with SDLC.

Many ramifications flow from such a design predicate but, beyond the
locus of control, the most important concerns the resulting limitations on sup-
ported topologies and corresponding traffic flows. An immediate consequence
for network design follows from such protocol design: two slaves, completely
dependent on the master station at the host for managing communication,
do not communicate directly in terminal–host networks (Figure 11.1). Again,
consider the example of SDLC, where the task set of an SDLC data link con-
sists solely of primary link station–secondary link station transport tasks, no
secondary link station–secondary link station transport tasks.

This forces terminal–host networks into a hub-and-spoke topology, but
this was no hardship in the data processing world up through the mid-1970s
with its domination by mainframe computers. In addition, the on-line trans-
action processing applications that these networks address did not require
terminal-to-terminal communications—two travel agents or bank tellers did
not need to communicate with each other, only with the database that was
located on the mainframe anyway.

At the same time as the ARPANET was beginning deployment in 1968,
IBM introduced the Binary Synchronous (Bisync/BSC) protocol. This sup-
ported both the EBCDIC and the ASCII character sets and line control for
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polling devices on multipoint links. Bisync was widely implemented by many
vendors besides IBM, and continues to be a popular protocol for basic data
communications applications such as automatic teller machines (ATMs) and
point-of-sale (POS) devices. However, Bisync was largely superseded by what
would prove to be the final word in terminal–host network protocols, IBM’s
Systems Network Architecture, which was introduced in 1974.

11.3 SNA: Concepts and Facilities

SNA is a study in contrasts to TCP/IP. Whereas the latter is highly dynamic
and relies on peer management wherever possible, SNA is permeated by
centralized management at all levels. At the heart of every SNA network, for
example, is a small set of management applications that are centralized points
of control for their respective domains, controlling and monitoring almost
every detail of resource operation and traffic flow. As an architecture intended
to service on-line transaction processing applications for largely commercial
users, SNA’s designers were less concerned about issues of survivability (recall,
for example, that this was the focus of Baran’s research on survivable networks
without a single point of failure) than efficiency and stability. For corporations
and other organizations unconcerned with hostile attacks on their data centers,
SNA’s emphasis on statically defined routes and centralized control of network
resources was an acceptable trade-off in return for lower management informa-
tion overhead.

In this section we lay out the management tasks of these control points,
SNA’s end-to-end protocols, and the various systems that make up an SNA
network.

11.3.1 SNA Protocols and PDUs

SNA embraced the idea of a layered architecture introduced by the ARPANET
designers, albeit with a different set of layers and correspondingly with a dif-
ferent modularization of management (Figure 11.2). As part of its layered
architecture, SNA has three principal end-to-end protocol layers: the Data
Flow Control, the Transmission Control, and the Path Control. A later revi-
sion of SNA split the Path Control layer into three sublayers.

In addition, above the Data Flow Control layer are two more layers of
end-to-end protocols, Presentation Services and Transaction Services, but these
are outside the scope of our survey. Finally, below the Path Control layer are
the various data link protocols over which SNA can run and, in some cases,
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other network protocols such as X.25 and Frame Relay over which SNA is
tunneled (see Part IV).

11.3.1.1 The Path Control Layer
Like most L3 protocols, SNA’s Path Control (PC) layer is responsible for con-
catenating data links and forwarding packets, which in SNA are called Path
Information Units (PIUs), between end systems. The term Path Control Net-
work (PCN) is used to refer to the collective set of PC protocol machines and
data links, much like we used the term “IP network” in the last chapter. End-
to-end transport of PIUs is the responsibility of the PCN, along with managing
the global address space (more on this later).

The original SNA PC layer was monolithic and the end-to-end connection
was called a path. In the early 1980s, however, IBM modified the PC layer
by dividing it into three sublayers to support new functionality. These sublay-
ers—Transmission Group Control (TGC), Explicit Route Control (ERC), and
Virtual Route Control (VRC)—brought with them three new transport entities:

1. Transmission groups (TGs) are composite data links similar to the
multilink PPP, in which two or more data links are bundled to
increase the bandwidth and reliability. Multilink TGs were initially
limited to similar types of data links but can now be heterogeneous,
meaning, for example, that SDLC links can be grouped with FR
circuits.

2. Explicit Routes (ERs) are one-directional point-to-point connections
composed of one or more TGs concatenated together.
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3. Virtual Routes (VRs) are composed of a pair of ERs that are comple-
mentary, going in opposite directions relative to each other.

Among its advantages, this division of the PC layer allowed an SNA net-
work to match its routing to asymmetric traffic flows or service requirements.
For example, if incoming messages to the mainframe(s) are relatively small in
size but result in much larger outgoing messages then the VR over which they
flow can be composed of two ERs with very different bandwidths, perhaps
composed of entirely different TGs. With the original SNA architecture, traffic
in either direction necessarily flowed over the same path.

SNA’s address space is hierarchical: Global SNA addresses are divided
into two parts, called the subarea and element address fields, corresponding
approximately to IP’s network/host division. SNA’s addressing has been modi-
fied over the years from an original 16-bit global address to 48-bit addresses
most recently, with up to 15 bits allowed for elements. Also defined are smaller
address formats, called local addresses, that are either 6 or 8 bits long, and
which were included in SNA to reduce the storage requirements for smaller sys-
tems such as terminal controllers. Global addresses corresponding to these local
addresses are maintained by larger systems (called subarea nodes) to which the
terminal controllers are attached, and conversion between the two formats is
called the boundary function.

A major addressing difference between SNA and IP concerns how their
respective addresses are assigned to end and intermediate systems and why. We
saw in IP that the most important aspect of IP addressing was to alias the local
addresses of the underlying component networks, and that consequently each
interface of an IP system has its own IP address. In contrast, in SNA there
was no need, at least initially, to alias local network addresses because the two
data link technologies in the initial SNA were SDLC and the S/3X0 channel; as
we saw in Chapter 6, SNA does not have link station (i.e., local) addresses.
Instead, SNA assigns addresses on a system basis to so-called network address-
able units (NAUs) within SNA systems. (We discuss NAUs in more detail
later.)

Given its evolving architecture and multiple types of addresses, it is per-
haps not surprising that SNA defines no fewer than six different PIU formats,
which can be differentiated in terms of whether the addresses carried are global
or local; whether TGs, ERs, and VRs are supported; even whether the destina-
tion is an SNA or non-SNA system. A PIU’s header, called the transmission
header (TH), contains a 4-bit field called the format identifier (FID) that carries
the packet type. When IBM divided the PC layer, for example, two new THs
were defined, called FID 4 and FID F, which included a number of new fields
to support the management of TGs, ERs, and VRs. FID 2 headers are used
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when local addresses are employed; this means that the PIU in question
involves a T2 SNA node (see later discussion).

Figure 11.3 shows the FID 4 and FID 2 transmission headers and their
most significant fields, notably FID, sequence numbers, addresses, and packet
size (reserved fields are shaded). Note the difference in addresses carried: The
FID 4 header carries (48-bit) global addresses, whereas the FID 2 header carries
(8-bit) local address. In addition, the FID 4 TH fields related to TG, ER, and
VR management, particularly VR flow control, are identified although we will
defer discussing their use until later.

Conspicuous by their absence from either FID 4 or FID 2 (or any other
SNA) THs are any fields for carrying checksums. Recall from Chapter 9 that
SNA’s architects attempted to restrict checksum and timer-based fault detec-
tion to the data link layer, which is why SNA uses reliable data link protocols
such as SDLC and LLC2; this is exactly the opposite of TCP/IP’s modulariza-
tion of management, in which only TCP maintained effective checksums and
timers of any sort, and it was assumed that the data link protocols would be
unreliable. In contrast, SNA’s end-to-end protocols (PC, TC, and DFC) will
only detect lost or missing PIUs. SNA’s end-to-end protocols assume that the
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data link protocols will detect and correct any latent faults, that is, packets that
have been corrupted but not lost.

Finally, the PC layer may execute segmentation and/or blocking of PIUs
into what SNA calls Basic Transmission Units (BTUs). Blocking combines mul-
tiple PIUs into one BTU. Segmenting, on the other hand, splits a PIU into
multiple BTUs. This is done mainly for memory-constrained peripheral nodes.
The BTU is the unit of data used that the PC layer requests the data link proto-
col transport.

11.3.1.2 The Half-Session Layers: Transmission Control and Data
Flow Control

Above the PC layer are the Transmission Control and Data Flow Control
layers, the combination of which is known as a half-session. In the grammar
of SNA, two half-sessions plus a path or VR (i.e., an end-to-end connection
through the PCN) constitute a session (more on sessions later). Half-sessions
that manage the transportation of user data reside in SNA end systems, though
we will see later that both end and intermediate system in SNA networks have
half-sessions for other management reasons. An added reason for treating these
two layers together is that in some respects they are melded, and that only one
PDU header (called the Request/Response Header) is used by the two.

The actual process of transporting data begins when the DFC layer is
handed a message to be transported by the Presentation Services layer above it.
These messages, which may be client data (for example, an ATM debit request
or an airline reservation response) or one of hundreds of management messages
that SNA’s architects have defined during the past two decades to manage con-
nections, activate resources, and so on, are called Request/Response Units (RUs).
An RU plus a Request/Response Header (RH) constitutes the uppermost pro-
tocol data unit, called the Basic Information Unit (BIU). RHs are 3 bytes long
and their fields include data allowing fault recovery and flow control.

For each RU it receives from the PS layer the DFC protocol machine
then generates a sequence number to uniquely identify the RU; this sequence
number is used by both the PC layer (where it is carried in the SNF in the TH)
and by a TC protocol machine to verify received sequence numbers. When the
PC layer segments a PIU into two or more BTUs, each segment has the same
TH, and the same sequence number; this enables the TC protocol machine at
the receiving end system to reassemble the original RU.

Besides reassembly and sequence number verification, the TC layer also
“paces data exchanges to match processing capacity [of the receiving end sys-
tem] and enciphers data if security is needed” [3]. The TC layer is rather thin
compared to other L4 protocols such as TCP and OSI’s TP4. This is why
some authors will, when comparing the protocol stacks, illustrate the relative
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management provided by showing the PC layer extending into L4 territory,
with a corresponding reduction in the TC layer’s thickness. This is understand-
able because the conventional role of the transport layer—to enhance the reli-
ability of the lower layers—is not as important in SNA because it assumes that
the underlying network is reliable. The specific options for an implementation
of the TC layer are laid out in Transmission Services (TS) profiles.

The Data Flow Control (DFC) layer manages the end-to-end connec-
tion, that is, the session, scheduling it between the two clients (sessions are
always point to point). Because a session may be half-duplex, and in fact most
are, some management mechanism must be responsible for scheduling which
end system is to send and which is to receive. This scheduling is executed by the
DFC protocol machine. In addition, the DFC protocol machine also correlates
request and response units. When a transaction request is sent in a request unit
with a given sequence number the DFC protocol machine matches it to the
subsequent response unit using the sequence number. Finally, the DFC pro-
tocol machine manages end-to-end retransmission; we discuss this in the next
section. Just as the TC options are specified in TS profiles, options for the DFC
layer are specified in Function Management (FM) profiles. Figure 11.4 shows
the request and response headers and their respective fields.

11.3.2 Systems in an SNA Network

Whereas IP has two types of systems (end and intermediate), in SNA there are
no fewer than five types of systems (or as they are sometimes called, nodes).
The most important of these is the mainframe, which alone in SNA is referred
to as a host (unlike IP, where any end system is a host); in SNA these are called
Type 5 (T5) systems or also System/3X0 or simply S/3X0. Beyond running the
very large database programs1 that support on-line transaction processing, these
T5 systems also play a crucial role in managing their SNA network(s) by means
of the centralized management mechanisms in another host program called the
virtual telecommunications access method (VTAM). In the early days of SNA
there could be only one host in an SNA network; today, when multiple hosts
can be in a network the region each manages is called a domain.

Next are SNA’s intermediate systems, known variously as communica-
tions controllers or front-end processors (FEPs); these are called Type 4 (T4)
systems. T4 systems are the layer 3 relays in SNA networks and come in two
varieties: local, meaning they are directly attached to mainframes by means of a
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special high-speed data link called the S/3X0 channel; and remote, meaning
they have no channel connection but rather are connected to other T4 systems
via SDLC, Token Ring, or newer technologies such as Frame Relay. T4 sys-
tems from IBM run a special software package called the Network Control
Program (NCP) that handles the concatenation of SNA data links. Although
many in the IP community refer to SNA as a “nonroutable” protocol, this is
emphatically untrue; the T4 systems are, in fact, the routers in SNA networks.
T5 and T4 systems are both examples of subarea systems, so-called because they
each constitute a subarea in SNA’s addressing and because PIUs exchange
global (subarea/element) SNA addresses.

Neither T5 nor T4 systems directly attach terminals, printers, and other
devices such as ATMs and POS registers. Instead, these are attached to yet a
third type of SNA system known as a cluster controller, which is a Type 2 (T2)
system. As with T4 systems, T2 systems come in local and remote versions, the
former being connected to mainframes (T5 systems) directly by means of an
S/3X0 channel and the latter being connected to a T4 system from which its
data are relayed to the mainframe. SNA also defines a Type 1 node, a small ter-
minal server, but these are seldom encountered in SNA networks today. T2 and
T1 are called peripheral systems. We should mention here that T2 systems have
been subsequently enhanced into what are called T2.1 nodes; however, these
are best discussed in the context of APPN, so we defer further explanation.

One convenient way to remember these system types is that as the type
increases so does the management sophistication. The most capable, and
indeed the central manager of an SNA network, is the T5 system running
VTAM. A T4 system offloads routing from T5 systems, and has considerable
autonomy in how it manages traffic flowing in the network. A T2 system, on
the other hand, is essentially a slave to the T5 systems with which it is commu-
nicating; its primary responsibilities are to service terminals, printers, and other
data entry/egress devices as a proxy for the mainframe, freeing up the latter
from tasks such as character echoing and screen management.

Figure 11.5 illustrates the various nodes in an SNA network along with
the span of routes (explicit and virtual) and route extension, which is the last leg
of an SNA path that occurs when one of the end systems is a T2 node. Also
shown are the subarea numbers of the T5 and T4 systems.

11.3.3 Network Addressable Units and Sessions

We mentioned in the earlier section on SNA addressing that, unlike IP, SNA
addresses do not correspond to systems or their interfaces but rather to NAUs
within SNA systems. But what is an NAU? It is, quite simply, a program that
runs in an SNA system and is responsible for managing some aspect of the
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system’s presence in the network; because of this, every system (node) in
an SNA network must contain one or more NAUs. In addition, every NAU
contains at least one half-session. In fact, we can put this more strongly: Half-
sessions exist only in NAUs. That is to say, the TC/DFC protocol machines do
not exist independently as stand-alone protocol stacks. SNA does not allow the
implementation of “naked” half-sessions.

SNA defines three different types of NAUs, depending on the nature
of the management tasks they execute. The three are system services control
points (SSCPs), which are the centralized managers to which we have referred
several times in this chapter; physical units (PUs), which are the agents used by
the SSCP to manage an SNA system; and logical units (LUs), which are respon-
sible for managing the end-to-end transport of client data. In the remainder
of this section we look at these NAUs and the roles played by their respective
management mechanisms in SNA networks.

11.3.3.1 Physical Units
Because it is arguably the simplest, we start with the physical unit. A PU is
a program that is the agent for controlling the communications resources in
an SNA system, including link stations and buffers. For example, the PU
in an SNA node is the actuator for that node’s link station(s), responsible for
actuating such link station’s status transition. When management information
concerning a node’s state is desired, it is the PU that provides it. These data are
sent in management RUs over the session maintained between the PU in an
active SNA system and the SSCP controlling its domain; likewise, management
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requests (RUs) for actuations and/or state information are sent by the SSCP to
the PU over this session. This is how an SSCP would request a link station be
turned on or off.

Just as there are five types of SNA systems, there are five types of PUs.
Mainframes each contain a PU Type 5, communications controllers each
contain a PU Type 4, cluster controllers each contain a PU Type 2.0, small
terminal servers each contain a PU Type 1, and enhanced peripheral nodes
each contain a PU Type 2.1. These PU types all have different management
capabilities and responsibilities.

11.3.3.2 Logical Units

A logical unit is the service access point for SNA applications and end users. As
with PUs, SNA has defined a number of types of LUs for different classes of
end users, notably terminals (LU 1, LU 2, and LU 4), printers (LU 3), and pro-
grams (LUs 6.0, 6.1, and 6.2). The management provided by LUs is strongly
master/slave; with the exception of LU 6.2, LUs are always either primary
(PLUs) or secondary (SLUs). PLUs are always located in the T5 systems,
whereas SLUs are located in T2 systems. Likewise, with the exception of LU
6.2, LUs cannot activate sessions on their own initiative but rather must
request permission from the SSCP managing their domain. Such LUs are said
to be dependent. This is done via the LU–SSCP session.

Beyond the restriction that a PLU can only have a session with an SLU
(and vice versa), sessions between LUs are limited to their same kind: An LU 2
can only have a session with an LU 2, an LU 3 with an LU 3, and so on. The
exception to this is that every active LU must have a current session with the
SSCP controlling its domain.

11.3.3.3 System Services Control Point

If SNA can be characterized as a network architecture built around centralized
management (monitoring and control) then the system services control point is
the realization of that management. Located within the VTAM program we
just mentioned, an SSCP is involved in almost every aspect of managing an
SNA network except for the routine transfer of end user data over LU–LU ses-
sions, which is managed autonomously by the LUs involved, and the actual
routing of PIUs, which is the task of T4 nodes.

It may be easiest to understand the role of system services control points
in an SNA network by way of analogy with the telephone company. An SSCP
is the equivalent of the phone network’s 411 (directory assistance), 611 (fault
reporting), and 911 (emergency services) rolled into one. However, the role
of an SSCP goes beyond even this: As we will see below, its configuration at
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sysgen provides the principal topology and directory information used in an
SNA network’s operations.

Within its domain the SSCP is supreme and is responsible for managing
an SNA network’s resources, for which it relies on the various PUs and LUs.
If two or more SSCPs are active in an SNA network then the network is par-
titioned into disjoint domains; an SSCP cannot share control of its domain
with another SSCP. As we just said, an SSCP that is the controlling SSCP in a
domain (as opposed to a backup SSCP, which later versions of SNA allow for
resilience) will maintain SSCP–PU sessions to every SNA node in the domain
and SSCP–LU sessions to every end system. Because sessions between depend-
ent LUs require the intervention of an SSCP to set up, in this way the SSCP
can control the total number of users in the network. If, for example, many of
the PCN intermediate systems (i.e., T4 nodes) are heavily utilized, and starting
a new session would require actuating an idle VR, then the SSCP many deny
the requesting LU the session.

We should note that several other types of control points are defined in
SNA but only the SSCP is an NAU. For example, PU Types 2 and 4 contain
what is called the physical unit control point (PUCP). A PUCP executes a part
of the SSCP’s management tasks so that it can actuate and monitor a node’s
resources (Figure 11.6).

A third type of management session occurs between SSCPs. Such
SSCP–SSCP sessions are used to coordinate cross-domain management. For
example, if two LUs seek to exchange data but one is in the domain of SSCP A
and the other is in the domain of SSCP B then the two SSCPs must coordinate
their actions by means of exchanging special SNA management RUs.

Finally we should note that end user (LU–LU) sessions are parameterized
by performance characteristics that are lumped into a single parameter called
Class Of Service (COS). Within VTAM a COS table is maintained that maps
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sessions to underlying VRs able to provide the desired bandwidth, throughput,
security, and so on. The order in a COS table reflects the priority parame-
terization of VRs. VTAM provides software-controlled parameter actuators for
modifying the ordering of VR/priority entries by writing an access method exit
routine (a type of VTAM procedure). To be invoked each time an LU–LU
session is activated, this allows LU–LU traffic to be channeled across different
VRs to control LU–LU session traffic within the same COS.

11.4 Management in the Path Control Network

Now that we have defined SNA’s components, we can look at its management
proper. As we said earlier, the main management task of the Path Control Net-
work, apart of course from concatenation of the individual S/3X0 channels,
SDLC data links, and Token-Ring LANs, is flow control or, as it is called in
SNA, pacing. We discuss pacing within the PCN in this section as well as other
management complications that arose when IBM enhanced the PC layer by
introducing transmission groups, explicit routes, and virtual routes instead of
monolithic paths.

11.4.1 Transmission Group Management

The first area of PCN management we want to look at is that associated with
transmission groups. TGs, bundling multiple data links so they appear to be a
single data link, are an instance of bandwidth management. A multilink TG
appears to its upper layer protocol (Explicit Route Control) client(s) to be a
data link with greater bandwidth and reliability than otherwise would be the
case were the client simply using one of the TG’s component data links.

But the introduction of multilink TGs also brought a potential for new
faults. In SNA as originally defined it was impossible for PIUs sent by a half-
session to arrive out of order, for the simple reason that all the PIUs flowed
along a fixed path composed of single data links. But this changed with mul-
tilink TGs: Even if the links are identical in speed, it is possible that PIUs can
arrive out of sequence due to scheduling issues, faults, retransmissions, and so
on. For example, two identical SDLC links that are used round-robin to trans-
mit PIUs can produce out-of-order delivery if one link suffers a transient fault
that occasions retransmission; in such a case, the packets will no longer be in
order.

To prevent PIUs from being delivered out of order, the TGC protocol
machines (which are within the PC layer) use TG sequence numbers (TGSNs)
carried in the FID 4 headers to resequence them. Each subarea node that
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supports multilink TGs must reorder them before sending the PIUs on to the
next stage (data link). We quote from IBM’s SNA overview:

Path control assigns transmission group sequence numbers to path infor-
mation units (PIUs) before transmitting them across a transmission group.
The assignment of sequence numbers to PIUs is called PIU sequencing.
Because data link control can route related path information units (PIUs)
over different links in a transmission group, path control in another node
might not receive the PIUs in the order in which they were sent. With the
PIUs sequenced, path control on the other side of the transmission group
can use the sequence numbers to reorder any out-of-sequence PIUs before
continuing to route the data through the network. This ensures that the
arrival order at the destination session endpoint matches the sending order
of the origin endpoint. [4]

11.4.2 Actuation of Virtual and Explicit Routes

The next area of management we want to discuss is the actuation of ERs and
VRs. When SNA’s architects defined these they made an important addition
to the FID 4 TH, namely, the inclusion of three fields called the initial ER
number (IERN), the ER number (ERN), and the VR number (VRN). Note
that the IERN and ERN to date have been treated identically (i.e., always have
the same value). These fields are 4 bits each, meaning that between any pair of
subarea nodes in an SNA network up to 16 ERs can be defined. In addition,
because VRs are identified by their VR number and their transmission priority
and because SNA allows three transmission priorities (0, 1, and 2) this means
that up to 48 VRs can be defined between any pair of subarea nodes.

Why is this so important? Because it means that SNA, a virtual circuit
architecture with statically defined routing, could at last offer alternative rout-
ing around failures much like IP. In other words, allowing up to 16 different
routes between source and destination meant that an SNA network could
theoretically suffer 16 fatal faults of TGs without disconnecting an origin
subarea/destination subarea pair. Consider that every VR is composed of a pair
of ERs (called the ER and the reverse ER or RER). The traffic of these ERs in
turn is carried by a series of TGs. If one of these TGs fails because its last (or
only) data link suffers a fatal fault, then the ER is lost and so is the VR. How-
ever, the session may not be lost, or at least it can be reestablished, if a second
VR was defined at sysgen that flows over an ER that does not use the failed TG.
The result is a degree of resilience that might surprise even the most ardent
advocate of datagram protocols.
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Actuations of ERs and VRs are initiated by the origin subarea node,
which sends the appropriate SNA management RUs to each subarea node
through which the ER, RER, and VR flow. For example, to activate an ER, the
origin subarea node sends an RU called NC_ER_ACT to the path control logic
in each of the subarea nodes through which that ER threads its way to the desti-
nation end system. This actuation of VRs and ERs is automatic, meaning no
operator involvement is needed (or allowed). In addition, the SSCPs have auto-
matic schedulers that make the decision based on session traffic flow and/or
messages indicating that a TG and consequently an ER have been lost. Such
messages are generated by the PUs in T4 (and, where applicable, T5) systems
and sent to the controlling SSCP in the domain. The SSCP likewise auto-
matically deactivates explicit routes when a PU on a component link or node is
deactivated or becomes inoperative due to fatal faults.

11.4.3 RPacing

The last area of management in the PCN that we discuss is that of pacing, that
is, flow control. The reason for flow control in the PCN is that SNA’s
architects were very worried about managing the buffers of the communica-
tions controllers (T4 systems) so as to prevent reassembly lockup, similar to
what happened to the early ARPANET. In a virtual circuit architecture like
SNA, however, the consequences would be even greater since a locked-up
subarea node would effectively disable all the virtual circuits flowing through it,
wreaking havoc in a network and defying easy attempts to isolate the cause.

The flow control solution they devised is called RPacing and operates on
a VR basis between the two terminating (subarea) nodes of a Virtual Route as
well as the subarea nodes through which the VR’s ERs flow. RPacing is auto-
matic—no operator intervention is required. The actual flow control mecha-
nism used is called a pacing window, which limits the number of PIUs that can
be sent by one of the VR endpoints before permission is granted for further
sending. This permission is called a pacing response. When one end subarea
node of a VR has sent the maximum number of PIUs allowed by its pacing
window it must block itself until it receives a pacing response from the destina-
tion subarea system. Note that pacing is independent in each direction of the
VR, meaning there are actually two pacing windows involved per VR.

A second level of flow control is effected by actuating the size of the pac-
ing window itself. When a VR is activated its pacing windows are specified in
terms of the minimum and the maximum number of PIUs that the two subarea
terminating systems can send. These can either be specified at sysgen or default
values are calculated automatically by the software. The default for the window
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sizes are minimum size = the number of TGs of the underlying ER (i.e., its hop
count); and maximum size = 3 times the minimum size. The size of the pacing
window is actuated in response to congestion encountered in the subarea nodes
through which the VR flows. If a T4 system determines it is becoming con-
gested then it will actuate a reduction in the pacing window size to reduce the
flow of PIUs into the network.

RPacing and window management are effected using certain fields
included in the FID 4 header. Recall from our earlier discussion that the FID 4
TH contains a number of fields related to managing the RPacing window for
scheduling PIUs on each VR. These include:

• VR pacing request (VRPRQ ), set by the sending subarea node to notify
the destination subarea node that this is the first PIU in a pacing win-
dow;

• The VR pacing count indicator (VRPCI), set by the sending subarea
node to notify the destination subarea node that this is the last PIU to
be sent, that is, the pacing window is now closed;

• The VR pacing response (VRPR), set by the receiving subarea node to
give permission to reopen the pacing window;

• The VR change window indicator (VRCWI), set by any subarea node
through which the VR flows to actuate the pacing window size (either
incrementing or decrementing it by 1 PIU);

• The VR change window reply indicator (VRCWRI), set by the sending
subarea node to confirm it has actuated the size of the pacing window;
and

• The VR reset window indicator (VRRWI), set by any subarea node
through which the VR flows to immediately close the pacing window
size to its minimum.

Use of the last three fields is determined by the congestion level of the various
subarea nodes through which the VR flows. Each subarea node contains a
scheduler that regulates the flow into the PCN based on feedback from the
congestion estimator. Depending on the estimate provided by the congestion
estimator, the congestion scheduler will take appropriate action:

1. No congestion → do nothing;

2. Moderate congestion → reduce pacing window size; or
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3. Severe congestion → reset pacing window size to minimum (slam
window shut).

So how is the congestion estimate determined? There are two answers
for this, depending on whether boundary function conversion is involved. For
VRs that do not involve route extension (no boundary function) the NCP in a
T4 node simply measures the queue sizes for each TG queue (there are three
queues per TG, one for each transmission priority level) as well as the total size
for all three queues. Using either congestion threshold’s defaults or values
defined at sysgen, the estimator decides that moderate congestion has occurred
if any one of the three queues for a TG hits its respective congestion threshold.
If the total count hits its threshold then the estimator decides that severe con-
gestion has occurred. Any VR with ERs that use that TG is then estimated to
be congested.

For subarea nodes that are executing the boundary function, a second
estimator is used as well. This is because such nodes must maintain a separate
storage area called the boundary pool (BPOOL) to hold PIUs destined for T2
systems. When the BPOOL exceeds its congestion threshold then any VRs
sending PIUs to these systems are deemed congested.

We should mention a local form of congestion control that complements
RPacing’s end-to-end workload management. Every T4 system has an NCP
configuration parameter called slowdown that is specified in terms of the per-
centage of its buffers that are free. When a T4 system hits its slowdown thresh-
old it will go into a mode called slow-polling, where it will issue Receiver Not
Ready messages to all the secondary link stations attempting to send it data.
This is to allow the T4 to clear some of its buffers before accepting more data.

11.5 NAU Management

11.5.1 Session Actuation

As we said earlier, when an SNA network is started up the SSCPs will seek to
establish sessions to all the PUs and LUs that are to be to activated initially;
after this, other NAUs may be activated or deactivated by network operators
or by automation features built into management applications such as IBM’s
NetView.

As for actuation of LU–LU sessions, the mechanisms involved are deter-
mined by whether the LUs are dependent or independent. Dependent LUs
require the intervention of the SSCP to actuate their sessions. An SLU will send
a management RU called Init-Self to the SSCP controlling its domain over the
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SSCP–LU session. The SSCP will consult with its directories to determine the
network address of the requested PLU. If it is in its domain, the SSCP will send
over the SSCP–LU session an RU inquiring if the PLU will accept a session
with the requesting SLU. If it accepts then the SSCP will use its COS table to
determine the optimal (VR, priority) pair and set up the session. (If the PLU is
in another domain the SSCP uses its SSCP–SSCP session to the controlling
SSCP for that domain to ask it to query the requested PLU; if the response is
acceptable then the two SSCPs cooperate to actuate the session.)

We discuss actuation of sessions between independent LUs in the later
section on APPN.

11.5.2 Fault Detection and Recovery

As we have stressed throughout this chapter, SNA expects that the primary
execution of fault detection and recovery will reside with the various data link
protocols in the network. However, there is provision for end-to-end fault
management in SNA in case PIUs are lost completely. This functionality resides
in the DFC layer, which manages recovery by means of what are called chains and
brackets. Both chains and brackets are delimited using fields in the RH. Another
task of the DFC protocol machine is to specify the nature of the response
expected to an RU; this also is indicated with fields in the RU header.

A chain is a collection of RUs that a sending half-session groups together
for atomic delivery: Either all the RUs in chain must be delivered to an upper
layer destination or none should be. A chain, therefore, is the unit of recovery
and retransmission between end systems.

Carrying this one step further, brackets are collections of chains
exchanged between the two end systems which are “related” in the sense of con-
stituting a transaction that is to be executed atomically; if any chain in a bracket
fails to be transported successfully then the effects of the previous chains must
be rolled back. This is the responsibility of another component within an LU,
the resource manager, which maintains a journal of transactions; using this jour-
nal, it is possible to roll back transactions that are incomplete.

11.5.3 Session-Level Pacing

SNA also uses a destination-to-client flow control called session-level pacing
to coordinate clients (half-sessions) from overwhelming the destinations, espe-
cially the storage. Furthermore, SNA distinguishes pacing according to its
direction, whether it is inbound or outbound pacing and whether it is one- or
two-stage pacing. Like RPacing, separate windows are maintained for the two
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directions. Two-stage pacing is used if one of the end systems is a T2 node; the
second stage of pacing is that employed on the route extension.

11.6 APPN and High-Performance Routing

In the early 1980s the commercial success of IBM’s minicomputers led to
demand for a version of SNA that would meet the needs of small systems net-
working, most notably to enable SNA networks to operate without mainframes
and the all-important SSCP. This was realized by enhancing the Control Point
in T2.1 systems, itself an enhancement of the Physical Unit Control Point
within the PU 2.0. The result was first known as Low Entry Networking
(LEN), later renamed Advanced Peer to Peer Networking (APPN). APPN itself
was subsequently modified extensively, with a new set of PC protocols designed
to accommodate the new high-speed, low-BER (bit-error rate) data links such
as ATM and FR. This redesigned APPN was first called APPN+ but later
renamed High-Performance Routing.

11.6.1 The T2.1 Architecture

We start by briefly outlining why the T2.1 management mechanisms were
devised. As we saw earlier, the PU hierarchy of management sophistication (PU
5 down to PU 2) was in large part driven by the costs of computer processing
and memory when SNA was originally designed in the early 1970s. However,
as the cost of hardware dropped and small minicomputer systems proliferated,
the original set of four system types was augmented in the early 1980s by a
fifth, a Type 2.1 (T2.1) system which could manage more of its own communi-
cations tasks independently. For example, two T2.1 systems that are directly
attached by a data link such as a Token-Ring LAN or an SLDC link can set up
LU–LU sessions (if the LUs are independent, i.e., LU 6.2) without the man-
agement services of a T5 system; this is impossible for two T2 systems.

The heart of T2.1 architecture is the ability to process a Bind RU sent by
a LU 6.2 NAU. To do this IBM enhanced the Physical Unit Control Point in
from a T2 system, renaming it the Peripheral Node Control Point (PNCP).
This was later shortened to simply the control point (CP).

LU 6.2 was developed in conjunction with the T2.1 architecture to be
able to function independently of the SSCP. LU 6.2, also known as Advanced
Program-to-Program Communication (APPC), supports distributed transac-
tion programs that could dynamically schedule workload among components
on various computers. This clearly would be incompatible with having to
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function as a dependent LU. Further evidence of the tight coupling of LU 6.2
and T2.1 is that the CPs are, in fact, written as LU 6.2 programs.

11.6.2 Advanced Peer to Peer Networking

With the T2.1 architecture in place, IBM had an extensible architecture that
it could use to develop new SNA protocols, which amounted to little more
than writing additional LU 6.2 transaction program modules. Building on the
CP foundation, additional management capabilities were implemented that
resulted in a new architecture called Advanced Peer to Peer Networking. Fore-
most among APPN’s achievements was that it allowed APPC sessions to be set
up between nonadjacent systems, eliminating T2.1’s requirement that the two
systems be directly attached. In fact, APPN replaced the SNA hierarchy of sys-
tems with a two-tiered hierarchy similar to that of TCP/IP. An APPN network
consists of end nodes (ENs) connected to network nodes (NNs) which are
responsible for relaying PIUs.

In addition to this feature, called Intermediate Session Routing (ISR),
APPN’s architects implemented a dynamic path control layer that eliminated
the need for the extensive static configurations that characterize traditional
SNA. To do this, APPN defined a set of APPC distributed transaction pro-
grams for topology management, coordinated by means of topology database
updates (TDUs) sent over the CP–CP sessions. An APPN network is actually a
collection of LU 6.2 sessions between APPN end and intermediate systems.

This new dynamism came at a price: APPN had to abandon the PC pro-
tocols of subarea SNA—there are no ERs or VRs, nor any of the associated
management mechanisms such as RPacing. In addition, while APPN retained
SNA’s virtual circuit orientation there is a major difference in how end-to-end
paths are set up and how addresses are used. When an EN requests a session to
another node the NN to which it is attached will consult its topology database
and determine the path the session will follow through the APPN network.
The NN then will send an SNA bind RU that carries a Route Selection Control
Vector (RSCV), a specification of the source-routed end-to-end path through
the APPN network. Finally we note that the APPN architects modified the
FID 2 TH to use a new addressing format: The OAF and DAF fields plus an
additional bit are put together to define a 17-bit circuit identifier.

An additional complication was that, because APPN was really designed
with APPC in mind, there was no simple way for subarea SNA traffic to
be directly transported across an APPN network. IBM was forced to devise
an inelegant tunneling mechanism called dependent LU Requester/Server
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(DLUR/S) to transport subarea Bind RUs in LU 6.2 tunnels across an APPN
network to an SSCP for session establishment.

11.6.3 High-Performance Routing

Although APPN succeeded in demonstrating that SNA could incorporate ideas
such as dynamic routing, its management mechanisms were found to have
too high an overhead to scale adequately for large networks. IBM’s architects
sought to introduce a new architecture more conducive to high-speed forward-
ing and to streamline the management. What they came up with are three new
protocols called Automatic Network Routing, Adaptive Rate-Based flow/con-
gestion control, and Rapid Transport Protocol.

11.6.3.1 Automatic Network Routing
Like APPN’s route selection mechanism, Automatic Network Routing (ANR)
uses source routing. However, ANR is a connectionless protocol that uses what
has come to be known as tag or label forwarding. The chief advantage of this is
that intermediate HPR nodes can forward an ANR PIU merely by consulting
the ANR labels (ALs) it carries; there is no need to maintain routing tables or
consult them in the forwarding. We discuss this in more detail in the chapters
of Part IV.

11.6.3.2 Adaptive Rate-Based Flow/Congestion Control
HPR’s second change to APPN’s PC layer was to alter the session-level pacing
from stage by stage to end to end. The mechanism, called Adaptive Rate-Based
(ARB) flow/congestion control, relies on estimators in the sending HPR end
system to decide when the HPR network is getting congested, which it does by
monitoring round-trip delay (similar to the TCP mechanisms we discussed in
Chapter 10). In addition, the receiving HPR end system sends feedback con-
cerning the state of its processing and buffers. This information is also used by
the sending HPR end system to schedule actuations of the rate of traffic it sends
into the HPR network.

11.6.3.3 Rapid Transport Protocol
The last part of HPR is the Rapid Transport Protocol (RTP), a connection-
oriented reliable transport protocol that executes segmentation, retransmission,
and reordering of HPR PIUs. RTP was derived from so-called lightweight
transport protocols such as XTP and, unlike traditional SNA, was designed to
accommodate unreliable data links. Like ARB, RTP only involves end systems:
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no intermediate system fault detection, reassembly, and so on are performed in
an HPR network except at the end systems.

11.7 Summary

In this chapter we examined the management mechanisms in SNA’s principal
end-to-end protocols, namely, the Path Control, Transmission Control, and
Data Flow Control layers. We traced many of SNA’s characteristics to its
inheritance from the broad class of terminal–host network architectures start-
ing with the SAGE and SABRE networks. The most important of these was
that there was neither need nor benefit realized from supporting any-to-any
communication among end systems. We contrasted this with TCP/IP and its
antecedent, the original ARPANET.

We also explored the consequences of SNA’s other principal management
decisions, namely, locating most fault management in the data link protocol
rather than higher up the protocol stack, and using a centralized management
architecture without concern for single points of failure. We documented
the evolution of SNA’s architecture and even its PIUs, the two most important
being the FID 4, used in subarea SNA, and FID 2, used to and from peripheral
SNA systems. Finally we briefly reviewed the latest changes to SNA, APPN,
and HPR.
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12
Concatenation Management: Basics

12.1 Introduction

Having considered management in the physical, data link, and end-to-end
protocol layers we now come to concatenation, the most complex area of
management in computer networking. The goal of this chapter is to use the
MESA model as a framework with which to unify various concatenation tech-
niques, including L3 concatenation (routing) and L2 concatenation (bridging).
Note that we defer discussion of specific L3 and L2 concatenation protocols to
Chapters 13 and 14, respectively.

As we will see, an enormous amount of ingenuity has been exercised by
protocol architects to devise concatenation mechanisms that can adapt to
changing network and/or traffic conditions while minimizing the attendant
overhead. Such concatenation mechanisms have ranged from the open-loop
flooding to closed-loop routing protocols, although few implementations are
purely of one type or another. In the last chapter, for example, we saw that with
SNA feedback is combined with static routing to produce a hybrid concatena-
tion management.

The chapter begins with an overview of routing and bridging, the two
principal means of concatenation used in networks today. We then discuss tun-
neling, a third type of concatenation that is being used increasingly to define
virtual private networks as well as to transport SNA PDUs over IP backbones.
We also discuss the faults to which the intermediate systems that execute these
concatenation tasks are liable; the consequences of such faults include end-to-end
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PDUs being misforwarded, proliferating without limit, or simply disappearing
into “black holes.”

We then move to construct a taxonomy of the workload management
that is at the heart of all concatenation. As we have said in earlier chapters, con-
catenation is workload actuation of kind, scheduling the realization of global or
end-to-end transport tasks by mapping these to the transport tasks of compo-
nent transporters (such as data links). Our management taxonomy for classify-
ing concatenation mechanisms examines whether or not the concatenation is
executed with respect to a model of the network and/or traffic; whether the
concatenation uses open-loop or closed-loop scheduling; whether the concate-
nation scheduling is datagram or virtual circuit in nature; and finally whether
the intermediate systems executing the scheduling decide the entire end-to-end
schedule or merely the next stage transport task.

Finally, we briefly discuss the complement of the concatenation problem,
namely, the network design problem. Whereas concatenation actuates traffic,
scheduling its execution by available servers (transporters), network design
actuates the bandwidth of transporters in response to the demand of traffic.

12.2 What Is Concatenation?

Recall that we briefly discussed in Chapter 9 the basic concepts of concate-
nation and the workload management tasks that an intermediate system (also
known as a relay) must execute to “glue” together two or more transporters
(generally speaking, data links). In this chapter we resume that discussion
and examine the management of concatenation—the mechanisms by which
two or more transporters are amalgamated into a composite whole. As we will
see, common to all forms of concatenation is scheduling: realizing the end-to-
end transport tasks out of the transport task sets of component transporters.

The scheduling decisions are complicated by the fact that, except for the
simplest network topologies (see Section 12.4), there will generally be two or
more possible schedules that can realize a given end-to-end transport task. In
these instances, the workload managers within concatenating intermediate
systems must choose among several alternatives. The optimality criteria may
range from schedule length (hop count) to effective bandwidth of alterna-
tives (favoring longer schedules composed of high-bandwidth transporters over
shorter schedules composed of low-bandwidth transporters), to response time,
security, cost, or other so-called policy routing parameters. The cost functional
based on these parameters is referred to as the metric.
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12.2.1 Routing and Bridging

Put succinctly, routing is concatenation at layer 3 and bridging is concatena-
tion at layer 2. Prior to the development of LANs and their global L2 address
spaces, a network was composed of two or more data links joined at layer 3.
This layer 3 concatenation was called routing and a layer 3 intermediate system
was called a router. The task set of this layer 3 transporter (network) was
defined by the L3 addresses, but the end-to-end transport tasks were realized in
terms of scheduling of one or more transport tasks drawn from the task sets
of the data links (L2 transporters) that were components of the network (see
Section 9.2).

However, with the development of LANs came a new type of intermediate
system, called a bridge, that operated at layer 2 and enabled a station (end sys-
tem) on one LAN to send data to a station on another LAN without routing
(L3 concatenation) coming into the picture. Consider, for example, the sim-
plified two-LAN scenario shown in Figure 12.1, where each LAN has only
two stations, namely, an end system and an interface of the L2 inter-
mediate system (i.e., bridge). The task set of the data link on the left is
{0000.1034.223A ↔ 0000.4F11.99EB}, and the task set of the data link on the
right is {AA00.0400.297E ↔ 0000.87BF.E111}. But because the L2 intermedi-
ate system forwards PDUs between the two LANs, the task set of the composite
transporter includes the task {0000.1034.223A ↔ 0000.87BF.E111}, yielding
the desired end-to-end transport.

Various bridging mechanisms have been devised over the years. Early
bridges simply forwarded arriving PDUs out every interface, other than the one
on which they arrived, what is called flooding; such operation was said to be
promiscuous. Soon, however, manufacturers added processing capabilities to
bridges, allowing them to monitor traffic on the LANs to which they were
attached and thus learn the location of various end systems from the source
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MAC addresses of the frames they received. These so-called learning bridges
would construct simple forwarding tables with which they would decide if a
frame was to be ignored (if the destination MAC address was known to be local
to the LAN on which it arrived) or forwarded.

The taxonomic challenge presented by bridging is that this is little dif-
ferent from conventional L3 concatenation. Recall that one form of workload
management, which we referred to as workload actuation of kind, changes an
RFS into one or more new types of RFS; in contrast, workload actuation of
degree merely actuates the arrival rate of RFSs and/or time slices an RFS into
two or more RFSs of the same type. Workload actuation of kind is precisely
what occurs in both routing and bridging.

Figure 12.2 shows this concept at its most abstract. We have a composite
transporter T3 composed of two-component transporters T1 and T2 and a
workload manager (within the intermediate system) that maps the tasks of the
composite to the tasks of the components. Note that the task set of the compos-
ite T3 is the Cartesian product of the task sets of the two components T1 and
T2, and it can be broken down into three disjoint subsets:

1. The tasks that map exclusively to the task set of the component T1;

2. The tasks that map exclusively to the task set of the component T2;
and

3. The tasks that map to tasks in both the task sets of the components
T1 and T2.

What is the difference between L2 and L3 concatenation? From
Figure 12.2 it is impossible to tell the protocol layer at which the workload
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manager is executing its scheduling (concatenation) decisions. And this is pre-
cisely the point: Because this scheduling can be effected at any layer where
global addressing is employed, we need a term that is neutral with respect to the
layer where the concatenation is executed. The term we have chosen is concate-
nation, which is generic enough to encompass routing, bridging, and so on. In
addition, “concatenation” harkens back to the early days of internetworking,
when Cerf adopted the term catenet to refer to networks composed of networks
internetworked together [1].

Last, we should briefly discuss the world of IP switching, including the
new standard called MultiProtocol Label Switching (MPLS). Many vendors are
promoting products they claim to be layer 3 switches. These intermediate sys-
tems range from layer 2 switches (Chapter 14) with routing supervisors that
supplement the forwarding decisions to hybrid IP/ATM products that seek to
marry the two technologies more efficiently than does simple IP over ATM
(defined in RFC-1577 [2]). Various proprietary techniques have been defined
by vendors such as IBM, Toshiba, Cisco, and Ipsilon but these have been
superseded by the IETF-sponsored MPLS. MPLS abandons ATM’s enormously
complex system of signaling (the Network–Network Interface protocol) and uses
instead the routing protocol mechanisms developed for IP networks. (We con-
sider these in Chapter 13.) For a detailed exploration of MPLS and IP switching,
please consult the book by Davie, Doolan, and Rekhter [3].

12.2.2 Tunneling

Beyond bridging and routing, there is a very different type of concatenation
that can be used, namely, tunneling. When two transporters are to be concate-
nated via a third transporter that is to remain “invisible,” traffic between the
two may be tunneled across the third. As we saw in Chapter 9, “normal” encap-
sulation implies that a layer n PDU will be placed within one or more layer n − 1
PDUs. With tunneling, however, the encapsulation may be much more varied:

• An L2 PDU may be encapsulated in an L2 PDU to create a virtual
private network (see later discussion) using tunneling protocols such
as Microsoft’s Point-to-Point Tunneling Protocol, Cisco’s Layer Two
Forwarding (L2F) protocol, or the new IETF standard called the Layer
Two Tunneling Protocol (L2TP).

• An L2 PDU such as SDLC or LLC2 frame can be encapsulated in an
upper layer PDU such as a TCP segment. This is how Data Link
Switching (DLSw) enables SNA and NetBIOS traffic to transit IP
backbones.
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• An L3 PDU such as an X.25 packet can be encapsulated in a higher
level PDU such as an SNA RU. This is how an IBM communications
product called XI lets SNA networks carry X.25 traffic in places like
Europe where many X.25 devices are deployed.

• Another early application was remote bridging (see Chapter 14), where
two Ethernet bridges were connected by an HDLC data link, with the
Ethernet frames encapsulated in HDLC frames; PPP’s Bridging Con-
trol Protocol (BCP) works the same way.

With tunneling the encapsulated PDU is called the payload protocol and
the encapsulating protocol is called the carrier. Figure 12.3 shows the choices
of carrier protocol level for encapsulating an L2 payload protocol; L2 PDUs
(frames) are received by the two tunneling intermediate systems from their
respective end systems and placed in carrier PDUs at a layer in a carrier proto-
col stack such as layer 4 (DLSw) or layer 2 (L2TP). The boundary of the tunnel
is defined by the “edge” of the carrier protocol stack. Note that within this
boundary the carrier network and its protocols are invisible to the end systems
and their payload PDUs. In fact, one of the challenges of tunneling is correlat-
ing events between the tunneled and tunneling networks for fault determina-
tion, for example.

Today one of the most important applications for tunneling is to imple-
ment virtual private networks (VPNs), which tunnel IP traffic using IP as the
carrier protocol as well; VPNs enable private IP networks, using unauthorized
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IP addresses, to be connected over the global Internet, something that would
otherwise require either readdressing or the use of IP network address transla-
tion (NAT). Because the tunneling network is invisible to the IP networks that
are outside, and likewise the tunneled traffic is merely payload data carried in
the carrier protocol’s PDUs, there is no difficulty with address spaces.

12.2.3 Concatenation Faults

Like any server, an intermediate system concatenating two or more transporters
will have finite bandwidth (forwarding rate) and finite reliability. Whatever
concatenation mechanism(s) are used, we must consider the possibility of con-
catenation faults, which may include forwarding loops, “black holes” in which
PDUs simply disappear without a trace, and explosive proliferation of PDUs
due to forwarding replication. We can define a concatenation fault quite simply
as any scheduling decision that fails to correctly forward a PDU toward its des-
tination or, if it is a multicast PDU, destinations. However, we must distin-
guish between fatal and latent concatenation faults. An example of a fatal fault
is an intermediate system discarding a PDU due to buffer constraints, whereas
an example of a latent concatenation fault is when two intermediate systems
keep sending PDUs to each other due to topology or other state information
(utilization, delay, and so on) inconsistencies.

As we saw in Chapter 9, detecting and recovering from fatal concatena-
tion faults is the province of the end-to-end protocols employed in the net-
work; mechanisms such as timer-based retransmission coupled with end-to-end
CRCs can detect and recover from end-to-end PDUs lost due to fatal concate-
nation faults. Latent faults, however, present additional complications that
defy such straightforward recovery mechanisms as retransmission. While the
end-to-end protocol mechanisms can detect latent faults, generally speaking
end systems are powerless to recover from these because they cannot actuate
the concatenation decisions of the intermediate systems. An exception to this is
source routing as employed in 802.5 Source-Route Bridging (SRB), where a
lost LLC2 connection can result in a new topology discovery (see Chapter 14
for more details).

12.3 Taxonomy of Concatenation Mechanisms

We want to unify the various approaches to concatenation such as routing,
bridging, and tunneling within the framework of the MESA model and work-
load and bandwidth management. Toward this end we will use three principal
taxonomic criteria:
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1. Does the scheduling mechanism use a model of the global discrete
event system or not? If it does, is the model’s state information
updated (closed loop) or not (open loop)? Is the model explicit or
not? If it is, is the feedback (measurements and/or estimates) strictly
local or is it global? Is scheduling centralized or is schedule creation
distributed among intermediate systems?

2. Does a schedule created for an initial PDU persist for all subsequent
PDUs (virtual circuit forwarding) or is a schedule created for each
PDU (datagram forwarding)?

3. Does an intermediate system attempt to create an end-to-end sched-
ule or merely schedule the next-stage transporter (data link)? In other
words, what is the scope of the scheduling decisions made in inter-
mediate systems?

Figure 12.4 shows the concatenation taxonomy tree that results from these
criteria.

Beyond this, concatenation management must be evaluated according to
several different and often conflicting criteria. Obviously, this should include
how vulnerable the concatenation mechanisms are to concatenation faults.
Then there is efficiency and performance. As we have stressed throughout this
book, management always comes with a price in terms of overhead, and much
of the skill in designing concatenation mechanisms and even network topology
is to maximize performance while minimizing management overhead.

We must also keep in mind the computational and storage requirements
attendant to various concatenation techniques. This, in fact, was one of the
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principal arguments between advocates of transparent and source route bridg-
ing, the two different variants used to concatenate LANs at layer 2. The former
requires more computation and storage than the latter, and source route bridg-
ing partisans pointed to cheaper bridges as one of its benefits (see Chapter 14
for further discussion of this).

For now, though, let’s turn to our taxonomic analysis.

12.3.1 Workload Management: Models Versus Feedback

On initial consideration it may seem that the first taxonomic discriminant
should be simply whether the scheduler is closed or open loop—that is, is feed-
back employed? However, a simple binary discriminant is not enough; both
flooding and static routing are open loop but nonetheless constitute very differ-
ent levels of sophistication in their respective concatenation scheduling. There-
fore, we want to use a compound discriminant that has two components:
(1) the use (or not) in concatenation of a model of the discrete event sys-
tem—the network (transporter) and its traffic (workload); and (2) the use (or
not) of feedback to update the state of the network and/or the state of the traffic
arrivals. Taking these two together results in four classes of scheduling:

1. Class 0 (stateless without feedback): open-loop scheduling without any
model;

2. Class 1 (stateless with feedback): closed-loop scheduling without any
model;

3. Class 2 (stateful without feedback): open-loop scheduling with static
model; and

4. Class 3 (stateful with feedback): closed-loop scheduling with dynamic
model.

We should note, however, that Class 1 concatenation is effectively meaningless.
Although a model can be useful without feedback (Class 2), feedback without
a model cannot; closed-loop monitoring implicitly assumes or requires that
there is a model of the server and/or workload to be updated. Recall that in
Chapter 1 when we discussed control systems we touched on the part played
by the model of the plant being managed and on the intimate relationship
between the model and feedback. Put succinctly, if no model is used by the
scheduler then there is no state information to update, hence there is no reason
to monitor the plant (the network and/or its traffic). Since with stateless (model
free) concatenation no feedback is necessary or even possible, this leaves us with
three effective classes of concatenation to consider.
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Of course, because there can be two parts to any model of a discrete event
system, there are really nine possible levels of scheduling corresponding to the
combination of the network and traffic models; we abbreviate these with
the notation (x,y), where x is the class of the scheduling with respect to the net-
work and y is the class of the scheduling with respect to the traffic. For instance,
many concatenation management implementations use scheduling that is state-
ful with feedback with respect to the network model but which is stateless
(indeed, completely ignorant) with respect to the traffic; this is (3,0) schedul-
ing. Examples of (3,0) scheduling include the principal routing protocols used
in IP networks, namely, RIP and OSPF (see the next chapter for more on these
protocols). We assume in what follows that no traffic state information is being
employed (unless otherwise specified).

Which scheduling offers optimal concatenation? The answer depends on
a number of factors, including the network topology, the reliability of the net-
work’s components, and the volatility of the traffic. The last two determine the
“load” that the concatenation management mechanisms must handle, which
in conventional control systems is referred to as the bandwidth; the more
frequently faults occur and/or traffic patterns change, the higher the required
management bandwidth. And, of course, we cannot ignore the costs of the
management overhead itself: The higher the bandwidth of the control system,
the more resources it will consume, especially if global rather than merely local
feedback is employed and intermediate systems must exchange significant
amounts of state information (see later discussion).

With Class 0 (stateless) concatenation the workload scheduler makes its
decisions without regard to the past or current state of the plant (network
and traffic). Class 0 concatenation techniques include flooding as well as
randomized forwarding (the intermediate system randomly chooses one of its
k outbound links down to forward a PDU). The great virtue of stateless con-
catenation is that it reduces the computational and storage loads placed on
intermediate systems; but its potential proliferation of PDUs makes it not only
very expensive in terms of transporter bandwidth but rules out its use for most
topologies without some mechanism like hop counts being included in the
end-to-end PDU header to constrain replication.

Flooding should not be confused with another early concatenation tech-
nique, Baran’s hot potato algorithm (see, for example, [4]), in which an inter-
mediate system schedules a PDU for transport out of the transporter with the
shortest queue. Queue lengths, as we briefly discussed in Chapter 1, are deter-
mined by the traffic and the bandwidth of the transporter involved; monitoring
queue lengths, therefore, is a proxy for monitoring both the network and its
traffic. Hot potato forwarding, therefore, is (3,3) concatenation, albeit of a very
simple sort.
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With Class 2 concatenation each intermediate system relies on a static
model of the network and/or its traffic on which to base its scheduling deci-
sions. Widely employed even today in such protocols as subarea SNA, with
Class 2 concatenation the forwarding tables are calculated at the beginning
of network operation and not changed while the network is operational. The
downside is that static topology models are vulnerable to changes in the states
of the component transporters and intermediate systems: If a component of the
network suffers a persistent fault (fatal or latent), the forwarding (scheduling)
decisions of the intermediate systems will not adapt to this, even if alternative
end-to-end paths are available.

We should note that pure open-loop concatenation is seldom encoun-
tered today because all but the simplest systems (end and intermediate) are
instrumented to monitor directly attached communications channels, data
links, and so on, meaning that at least local feedback is available. The result is
that most Class 2 intermediate systems effect a hybrid concatenation, using
static routing but with some feedback influencing the forwarding choices.

Another shortcoming of Class 2 (static) concatenation concerns growth.
The addition of data links, intermediate systems, end systems, and so on
requires taking the network down and modifying the static route definitions in
the network’s intermediate systems. This has been a deficiency, for example,
in SNA networks, where “adds, moves, and deletes” are generally limited to
weekly or even monthly sysgens. However, Class 2 concatenation is more likely
to include traffic models in the determination of the concatenation schedules
(such as forwarding tables) precisely since the generation of the intermediate
systems forwarding schedules is infrequent (see later discussion).

Finally there is the closed-loop scheduling of Class 3, in which the models
of the network and/or traffic are updated using feedback that is local and/or
from other remote systems. Figure 12.5 shows an intermediate system instru-
mented with both bandwidth (network) and traffic (workload) monitors and
receiving state feedback from other intermediate systems.

Why employ feedback? For the same reason we have seen management
required in the previous chapters of this book: Because servers, both transport-
ers and intermediate systems, have finite bandwidth and finite reliability.
Closed loop means that the scheduling (forwarding/concatenation) decisions
are made based on the state of the composite transporter and/or its traffic. In
most instances, a closed-loop workload manager bases its scheduling on topol-
ogy reconstructions created by the bandwidth monitor. Without any feedback
about such faults, the intermediate system may just attempt to forward PDUs
toward a next hop that is no longer operative.

The adaptivity of a concatenation technique determines how well the for-
warding mechanisms respond to events in the network and/or traffic that alters
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the dynamics and the discrete event (transport) system. We should stress that
not all adaptation requires feedback (Class 3) concatenation. In fact, Class 0
concatenation can be very adaptive: Flooding will discover all possible end-to-
end paths (schedules) to the destination end system, but at the cost of poten-
tially explosive replication. On the other hand, pure Class 2 (no feedback, not
even local state information) is not adaptive. Here we face a seeming paradox:
Open-loop concatenation that is model based is not adaptive, but open-loop
concatenation that is model free is adaptive. How can this be so? The answer
rests in the fact that the former by definition relies on a priori state information
(static topology and/or traffic definitions), whereas the latter is deliberately
engineered to operate without any reference to the state of the discrete event
system.

We say network is self-healing if, when a component (link or intermedi-
ate system) fails, the traffic is rerouted, assuming of course that an alternative
route exists. If we recall the definition of fault management (detection, isola-
tion, and recovery) then clearly this alternative routing recovers functionality of
the whole (task set), if not, it recovers the condition of the failed component.
Obviously, this is not true fault management in the sense that the failed com-
ponent is not repaired or replaced. Rather, it is using the network’s redundancy
to effect a work-around that bypasses the failed component. This is not main-
tainability but rather reliability. The former is concerned with (reducing) the
time to repair, the latter with increasing the time between failures in the first
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place. By introducing redundancy in the form of a multiply connected topol-
ogy, component failures can be prevented from producing system failures.
To summarize, redundancy is fault management via workload management,
whereas repair is fault management via bandwidth management.

12.3.1.1 Types of Feedback
Beyond differentiating feedback about discrete event systems into informa-
tion about the network and/or the traffic, we can further distinguish the feed-
back in terms of its scope and its nature. With respect to scope, feedback can
be divided into four categories depending on how the state information is
disseminated:

1. It is kept local; no global reconstruction of topology.

2. It is sent to a centralized estimator for reconstruction of global topol-
ogy (state).

3. It is sent to those intermediate systems that are “nearby” or adjacent,
that is, a subset of the set of all intermediate systems, for reconstruc-
tion of the regional topology.

4. It is sent to all intermediate systems for a reconstruction of the global
topology.

The first option is the minimal level of closed-loop scheduling, in which the
forwarding decisions are made in light of local conditions (data links up or
down, queue sizes, and so on), but without any other information concerning
the current state of the global discrete event system. This is also referred to as
isolated concatenation (routing) because there is no coordination between inter-
mediate systems. As we said earlier, the days of intermediate systems that are
not instrumented to even this minimal extent have long since passed; and even
otherwise open-loop concatenation uses local state information in deciding the
next forwarding stage.

Beyond local state feedback, there is the global state reconstruction of
the network or traffic state(s). Whereas local state information can be obtained
from an intermediate system’s own sensors or estimators, reconstructing (esti-
mating) the global state information (topology and/or traffic) is much more
complicated. Recall that in Chapter 1 we illustrated this with the parable of
the blind men and the elephant, each of whom could feel just one feature (the
trunk, the tail, the ears) and made correspondingly wild estimates about
the beast (thinking it a tree, a snake, and so on); only when they exchanged
their impressions (i.e., local state information) was the correct reconstruction
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achieved. These mechanisms for exchanging local topology (and, if applicable,
traffic) data are generally known as routing protocols.

Consider the two intermediate systems exchanging their local state
(topology) information in Figure 12.6. An intermediate system can measure
or estimate its local transporters but not those to which it is not connected.
For example, the Token Ring connected to the left-hand intermediate system is
invisible to the right-hand intermediate system, which knows about its local
topology (the Ethernet and the two serial links) because it is attached to these
and it can monitor its own configuration.

Similarly, the left-hand intermediate system can monitor its local con-
figuration and therefore it knows about its logical topology (the Token Ring
and the two serial links). When the two intermediate systems send their respec-
tive measurements to each other, the topology estimators in each can use these
nonlocal measurements to estimate/reconstruct the global topology. In each
case the challenge is to exchange sufficient topology information as to allow the
workload managers in each intermediate system to schedule the next compo-
nent transport task necessary to realizing the network (end-to-end) transport.

Although many mechanisms for estimating global state information have
been devised, they all amount to the blind men and the elephant, with interme-
diate systems exchanging the local state information. The question, however,
is the scope of the information exchange, which can vary radically from, at
one extreme, a single, centralized global state estimator that receives local state
information from every intermediate system in the network to, at the other
extreme, decentralized estimators located in every intermediate system that
exchange their respective state information with every other intermediate
system in the network.
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Between these two extremes are many shades of “compromise,” in which
the set of all intermediate systems is broken down into subsets, within
which there is full exchange of local state information but between which the
exchange is limited, either in frequency or in granularity (see later discussion).
As we will discuss in the next chapter, this modularization is at the heart of
the scalability of modern networks, especially IP and its hierarchy of areas and
autonomous systems, along with the division between interior and exterior
routing protocols.

Why not share state (topology and/or traffic) information as widely as
possible? Quite simply, the cost due to management overhead grows prohibi-
tive. In a network of n intermediate systems, if each intermediate system
exchanges its local topology information with every other intermediate system
then n(n − 1) updates will be sent. Another factor that helps determine the
overhead of the topology exchange is its frequency. Routing protocols can also
be differentiated into opportunistic versus periodic in their updates. With the
former an intermediate system sends a state update when something changes;
with the latter the exchanges occur regularly, irrespective of whether there
is new state information. There are advantages to each approach, although it
should be noted that with opportunistic updating phenomena such as “route
flapping” (when a link frequently goes up and down) can cause enormous
amounts of routing protocol traffic.

In addition, there is the granularity of state information. Transparent
bridges, for example, reconstruct the global topology of the transparent bridges
but not anything about end systems or downstream transporters (networks). As
we will see in the next chapter, routing protocols come in two varieties, distance
vector and link state, which use different techniques to represent the topologies.
At one extreme we have link state routing protocols such as OSPF, which
exchange explicit topology models listing IP networks (data links) and interme-
diate systems. From these topology models the workload manager calculates the
shortest schedule (sequence of transporters) to the destination network and end
system. Distance vector routing protocols, on the other hand, do not exchange
explicit topology data but rather their forwarding tables, which contain the best
estimates of shortest schedules to various destinations.

Finally, we have already noted the intersection of concatenation (rerout-
ing) with fault management. Likewise, we have the intersection of topology
reconstruction with configuration management, on the one hand, and global
traffic reconstruction with performance management, on the other. Configura-
tion management is concerned with collecting data about the network’s
resources; clearly, the topology of the network falls within this category. Like-
wise, performance management, collecting information on the utilization of the
network, overlaps with any collection of traffic statistics by the routing protocol.
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12.3.1.2 Centralized Versus Distributed Scheduling
We now come to the raison d’etre for concatenation, namely, scheduling the
next tasks that are sufficient to realize the end-to-end transport task. Every
intermediate system in a composite transporter (network) contains a workload
manager that creates the schedule for the transport tasks in either the next stage
(task) to be executed or, if source routing is employed, the entire schedule at
once. In most instances except with promiscuous forwarding (Class 0 concate-
nation), the workload manager relies on a forwarding/routing table to make its
scheduling decisions. The question is one of where and when the routing or
forwarding table is created.

To answer this, we must first note that there are in fact two echelons of
scheduling involved in concatenation. The first echelon is the actual concatena-
tion executed by intermediate systems; we refer to these first level workload
managers as concatenation managers. The second echelon, however, executes
the creation of the routing or forwarding tables/rules used by the schedulers in
the first echelon; we refer to these second-level workload managers as “route”
calculators or “route” servers, where the quotation marks are intended to indi-
cate that route should not be taken to exclude other forwarding mechanisms
such as bridging, tag switching, and tunneling. To the extent that the inter-
mediate systems are adaptive, it is this second level of scheduling that actuates
changes to the concatenation managers’ schedules in the intermediate systems.
Figure 12.7 shows this hierarchy.

Note that the two-tiered scheduling hierarchy holds for both open-loop
and closed-loop concatenation. With Class 2 concatenation (stateful without
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feedback), for example, the routing tables would be calculated a priori by a
route server and then disseminated to the individual intermediate systems.
However, the picture is even more complicated if feedback is employed (Class 3
concatenation), since it may be used in scheduling at the first echelon, the
second echelon, both, or neither.

Just as global state reconstruction can be realized with a centralized esti-
mator or with estimators in each intermediate system in the network, the same
is true with respect to creating the scheduling information (routing tables) used
by the intermediate systems in the network to concatenate the component
transporters. Indeed, since the global reconstruction is independent of the rout-
ing table calculation, it is conceivable (although unlikely) that one could be
centralized and the other distributed. For example, a centralized estimator
could reconstruct the global topology based on local state information sent to it
but then send this global topology to route servers (second-order concatenation
managers) located in each of the intermediate systems.

The question then becomes this: How is this second-order scheduler
implemented? Many early networks did rely on a centralized route server
located in a routing center to calculate routing/forwarding tables and dissemi-
nate these to the “front-line” intermediate systems. Indeed, subarea SNA still
works this way: The NCP load modules, including the path definitions that
specify the VR/ER forwarding, are generated in the sysgen process at an S/3X0
mainframe and then downloaded to the FEPs. Until the next sysgen occurs,
these forwarding tables are fixed.

However, the entire trend of concatenation in the internetworking era
has been toward distributed route servers, with each intermediate system calcu-
lating its own routing tables just as it estimates for itself the global (or, in the
case of hierarchical/modularized routing protocols, regional) state information.
As we saw in Chapter 10 part of the rationale for the ARPANET was to
research distributed mechanisms for calculating forwarding/routing tables:
Each intermediate system is its own route server. This goes back to Baran’s
RAND research on highly survivable communication networks for military
applications.

Figure 12.8 shows centralized and distributed route calculation. Note
that although in each case we indicate with dashed lines the possible exchange
of local state information, it is feasible to implement either centralized or
distributed route calculation without any such feedback.

12.3.2 Workload Management: Schedule Persistence

The next major taxonomic criterion is what we call the persistence of a con-
catenation manager’s scheduling decisions. By this we refer to whether each
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end-to-end PDU is scheduled individually or is a scheduling decision made
for one PDU applied to subsequent PDUs between the same end systems? As
we briefly discussed in Chapter 9, this difference in persistence is at the heart
of one of the enduring debates in networking, namely, the relative merits of
virtual circuit and datagram forwarding mechanisms.

With datagram protocols each end-to-end PDU is forwarded separately,
meaning any two end-to-end PDUs may take very different sequences of trans-
porters; that is why TCP/IP’s architects had to include resequencing in TCP, to
recover from out-of-order delivery. Virtual circuits, on the other hand, are pre-
determined or rely on establishing a “pattern” of forwarding with the initial
PDUs that is then followed by intermediate systems as they forward subsequent
PDUs. Virtual circuit forwarding can use various mechanisms, including
circuit identifiers, labels, or flow numbers to speed the scheduling of the next
stage by the concatenation managers in the intermediate systems. This is why
we argued in Chapter 10 that IPv6 flows, notwithstanding the rhetoric of the
IPv6 architects, are very much in the virtual circuit mode of forwarding. Virtual
circuit concepts likewise underpin many of today’s most sophisticated forward-
ing techniques, known variously as tag or label switching (including MPLS).

We need to correct another misconception about virtual circuits and
datagrams, beyond those we discussed earlier. Virtual circuit protocols tend to
be associated with static routing, on the one hand, whereas datagram protocols
are assumed to use dynamic routing. This is incorrect. It is entirely possible, for
example, to lay out an IP network entirely with static routes, and it is quite
common to use static routes in part of the network where, for example, only a
single data link connects a remote LAN to the rest of the network. A datagram
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network may be completely nonadaptive, if static route definitions (schedules)
are used in the intermediate systems; and a virtual circuit network may be very
adaptive if a routing protocol is used to update the forwarding mechanisms of
the intermediate systems.

Virtual circuits and datagrams can be “unified” as the extremes of a spec-
trum of end-to-end schedules and their persistence. Running from most to least
persistent, we have:

• Fixed virtual circuit: The scheduling of end-to-end transporters is
totally nonadaptive. They are composed of the same components for
the lifetime of the network.

• Dynamic virtual circuit 1: The transporters are adaptable between exe-
cution but fixed while running. Workload managers can reconfigure
end-to-end schedules not currently in use.

• Dynamic virtual circuit 2: The transporters can be reconfigured while
executing. The adaptation may be scheduled to be open loop or closed
loop (opportunistic or event driven, respectively).

• Datagram: The transporters are reconfigured for each PDU.

Subarea SNA is an example of fixed virtual circuit concatenation man-
agement; it allows end-to-end PDUs to be forwarded on up to 16 different
end-to-end virtual circuits (Explicit Routes) between pairs of subareas nodes
but these ERs are fixed at sysgen. An example of a Dynamic Virtual Circuit 1 is
APPN, which, as we saw in Chapter 11, establishes an end-to-end path
dynamically when a session is requested by an end node. IPv6 flows are an
example of Dynamic Virtual Circuit 2 concatenation management, where
end-to-end scheduling corresponding to a given flow label can change as the
topology of the network changes. IP with dynamic routing is the paradigmatic
example of datagram concatenation management. This continuum is shown in
Figure 12.9.
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12.3.3 Workload Management: Next-Stage Versus End-to-End Scheduling

Finally, we must look at the scope of the schedule that an intermediate system’s
concatenation (workload) manager creates. At a minimum, every concatena-
tion manager needs to determine the next stages for realizing the end-to-end
transport, and we have just discussed a wide spectrum of techniques used.
However, when source routing is desired then the initial intermediate system or
the sending end system must calculate the entire schedule. In addition, those
concatenation mechanisms that construct spanning trees to every destination
network, such as link state routing protocols, effectively create end-to-end
schedules although, generally speaking, they only use the next-stage component
of the schedules.

We should note as well that source routing with its end-to-end schedules
can be used with both datagram concatenation as well as with (dynamic) virtual
circuits. We saw, for example, with APPN that the intermediate system (net-
work node) to which an end system (end node) is attached calculates the sched-
ule of transport tasks that realizes the desired end-to-end task (APPN path); the
intermediate system then sets up the path by sending an SNA bind RU carrying
a Route Selection Control Vector (RSCV) to the intermediate systems along
the path. Similar source routing is available as an option with IP.

12.3.4 Hierarchical Versus Flat Concatenation

Before finishing with concatenation we should briefly discuss hierarchical
versus flat concatenation and the relationship between concatenation and the
address space architecture. A hierarchical address space is naturally conducive
to abstraction and “divide and conquer” modularization of the network and by
extension of both the reconstruction of global state information and the calcu-
lation of concatenation schedules. And this is the key: To reduce the nonlinear
growth of overhead as the size of the network grows, hierarchical addressing
offers natural segmentation points at each level of a hierarchy, dividing the
respective estimation and scheduling tasks into decoupled subtasks with con-
siderably less total overhead. How much less overhead? If we divide a network
of n intermediate systems into two equal component networks of n/2 interme-
diate systems each then we see that the overhead for the two new networks of a
routing protocol that scales according to O (n2) is
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As long as the routing protocol overhead between the two networks is less
than (n2/2) then the transport load will be correspondingly reduced. Note that
the advantages of such “divide and conquer” reductionism are even greater for
routing protocols that scale according to O (n3) or higher powers.

This is in part why hierarchical addressing is so common. Postal
addresses, phone numbers, even the use of first and family names, all of these
are examples of hierarchical addressing. Likewise, hierarchical concatenation is
used constantly in everyday life. When a letter is mailed out of state, the local
post office does not attempt to determine the end-to-end schedule down to
which letter carrier will handle final delivery; rather, it sends the letter to the
main post office for that state, from which it is forwarded to the next concate-
nating office, and so on. Both SNA and IP use hierarchical addressing: SNA
with its subarea/element addresses and IP with its network/host addresses. For-
warding decisions need only be made on the basis of the subarea or IP network
number, reducing the size of the routing/forwarding tables markedly.

Flat address spaces, on the other hand, are unwieldy and limit attempts at
more efficient concatenation. Take, for example, the 802 MAC address space;
excepting locally assigned addresses, the 802 address space is globally significant
but it is not hierarchical. Two end systems on the same LAN are likely to have
MAC addresses that are completely unrelated. Layer 2 intermediate systems
(MAC bridges) could build topology models, and indeed, as we said earlier,
this is how learning bridges work; but no abstraction or summarization of the
model would be possible because of the flat address space. This alone precludes
the use of a full routing protocol among L2 intermediate systems, because the
size of the topology models exchanged would be enormous. Instead, as we will
see in Chapter 14, transparent bridges make a simple estimate using their local
topology data about whether to forward a PDU, with the spanning tree algo-
rithm used to prevent loops among bridges.

The modularization that is possible with hierarchical addressing can be
likened to software module design (abstract data types). The low-level topology
information is hidden within a “module.” The high-level topology is sufficient
to get the traffic to the module interface. At the module interface the topology
information “explodes” and finishes the routing. The “what” is defined by the
set of addresses known to be within the module—that is, the transport tasks
corresponding to these addresses. One or more gateway routers would have
the topology knowledge/information to supply the “how,” the location of and
path(s) to the desired destination.

With such modular routing, the gateway router does the “information
hiding”—it abstracts the implementation details (the topology of transport-
ers and their interconnection) and merely “advertises” the tasks it can execute

Concatenation Management: Basics 395



(destinations it can reach). In this it functions like the entry point to a software
module (abstract data type). Put another way, information on the global topol-
ogy is partitioned in such a way that it exploits some aspect of its structure to
reduce the amount of information exchanged. Consider if, for example, all the
network addresses in a module are subnets of a Class B network. Assuming that
no other subnets of the network are outside this cloud then the topology infor-
mation that need be distributed/transported to other routers outside the cloud
can be abbreviated to identifying the Class B element itself. This is information
hiding by modularization.

By using abstraction to hide implementation (topology) information in a
modularization of the overall network, the scheduling task is simplified as well
as the exchange of routing information and its storage. An intermediate system
will calculate the optimal schedule not to the ultimate destination (server), but
to the module in which the destination is known to be located. Once the RFS
(PDU) arrives at an entry point to the module, the rest of the routing decision
making (scheduling) can be executed.

Hierarchical concatenation works particularly well with IP’s next-stage
scheduling because this does not require the source to specify the route com-
pletely, only to the next hop. With both distance vector and link state routing
protocols, however, each router will calculate the complete route even though
it only requires the next hop. What hierarchical routing does is hide part of
the topology and hence reduce the routing calculations. Topology information
hiding may have a negative impact on scheduling only if there are multiple
gateways/schedulers to the module in question and if one of these is better
located with respect to the destination than the others. In this situation, the
scheduling/realization of the geodesic (shortest path) by the source will be
defeated by the information hidden within the module.

We discuss IP hierarchical routing mechanisms in the next chapter.

12.4 Bandwidth Management: Network Redesign

The last topic of this chapter is the relationship of the concatenation problem
to its complement, the network design problem. With concatenation we are
given a composite transporter composed of a set of component transporters
(data links and so on) and the management task is to map the end-to-end
transport tasks (traffic) to the transport tasks of one or more of the compo-
nent transporters. With the latter, on the other hand, we are given a set of
clients and the management task is to determine the optimal bandwidth
(capacity) of the transporter(s): How much effective bandwidth should be
implemented to meet the traffic offered by the client? What trade-off should
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be made between nominal bandwidth, reliability, and maintainability? In other
words, what is the transporter’s optimal realization—its composition, topology,
and so on?

Such bandwidth actuation may occur throughout the life cycle of the net-
work. Of course, the process begins with the initial design of a network and
its topology; in this case the bandwidth actuation starts with nothing—a null
server—and creates the network and its components. However, just as dynamic
concatenation implies that the workload manager monitors the state of the
transporter and its components, and changes the end-to-end scheduling
according to changes in the transporter(s), an ideal bandwidth manager should
monitor changes in the workload arrivals (traffic) and actuate the bandwidth of
the transporter and its components to reflect these. This process is generally
known as tuning, redesign, or adaptation.

12.4.1 Bandwidth Modularization

Another parallel between the workload management of concatenation and the
bandwidth management of network redesign is modularization. Bandwidth
modularization is another way of saying that we build networks out of multiple
components. But why are transporters realized as such composites? Because
various factors preclude monolithic implementations for all but the smallest
transporters. This, indeed, is the original meaning of the term network : a
composite of two or more data links joined together. This is why the OSI
model designated as the network layer that level of the protocol stack responsi-
ble for concatenation. Some of the factors that cause us to realize transporters as
composite (i.e., with two or more components) include the following:

• Distance: We saw in Chapter 2 that as channels increase in length their
reliability falls. It is often necessary to use two or more transporters,
perhaps concatenated at the physical layer via some type of repeater,
simply to span the distance between end systems.

• Traffic intensity: As traffic loads grow, it is necessary to add bandwidth
to avoid performance degradation. However, it is not possible to
increase bandwidth arbitrarily. Generally speaking, bandwidth can be
incremented only in discrete “chunks,” and then only to some finite
maximum.

• Reliability: Even if an infinite bandwidth channel could be imple-
mented, it would still constitute a single point of failure. By
implementing a composite transporter with alternative routing
between two end systems we increase the reliability of the whole.
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• Management overhead: With multiaccess data links, for example,
the overhead from managing the contending clients grows with the
number of clients, whether the data link is scheduled with polling or
by random access. By implementing additional data links and dividing
the clients among these, this overhead can be scaled back (reduced).

• Localization: Most traffic patterns exhibit localization. For example, if
80% traffic generated by users in the accounting department is local-
ized, then by allotting them their own LAN it is possible to reduce
the workload of an intermediate system to forwarding “through” traf-
fic destined for end systems outside the accounting department.

To discuss composite transporters we need to employ some of the con-
cepts and terminology of graph theory. A graph is composed of two types of
entities: nodes (or vertices) and edges (or arcs). If a direction is associated with
an edge, then the graph is said to be directed; otherwise the graph is undirected.
End systems and intermediate systems are obviously nodes; transporters are
edges. Because we will assume that all component transporters (data links) are
duplex if the transporter is point to point or any to any if it is, multipoint, it
follows that the graph model is undirected.

The network design problem then consists of finding a set of edges that
links all the nodes in such a way as to optimize cost relative to performance
(or vice versa). Given k locations that must be serviced by a network, there are
many possible topologies of the (composite) transporter. The two edge mini-
mal topologies are linear and hub-and-spoke topologies. Figure 12.10 shows
the two minimum topologies. Conversely, there is a unique maximal topology,
namely, the completely connected graph with n(n − 1)/2 edges; this is also
known as a full mesh. The obvious goal is to find the optimum topology
between these extremes.
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The mathematics of network design are well developed but unfortunately
constraints of space preclude us from exploring them too extensively. Very
briefly, a principal parameter that estimates reliability is the connectivity of the
composite as measured by its cut-sets. This is the number of edges and/or nodes
that must be removed from the server’s corresponding graph to disconnect the
composite. Notice that the occurrence of such a set of faults does not disable
the execution of all external tasks. Strictly speaking, a cut-set must be defined
relative to an external task. A network is said to be n-connected if the removal of
n edges and/or nodes will split the network into two parts. Such a combination
is called a cut and the collection of all these is called the cut-set.

Consider, for example, the simple network in Figure 12.11: The tasks
1 → 4, 4 → 1 have the cut-set {[(1,2),(1,3)],[(1,2),(3,4)], [(2,4),(3,4)], [(1,3),
(2,4)]}. On the other hand the tasks 2 → 3, and 3 → 2 are unaffected by the
first and third sets. Cut-sets also determine the bandwidth of the network as
demonstrated by one of the central results of graph theory, the Fulkerson-Ford
theorem, in which it is proved that the maximum flow in a network (its maxi-
mum bandwidth) is determined by the minimum cut in its cut-set. For more
details on this and related topics, please consult the reference section for books
on network design such as [5–8].

12.5 Summary

In this chapter we moved into the area of internetworking proper and discussed
the various mechanisms that have been developed to concatenate transporters
and forward traffic between them. We stressed that concatenation is workload
actuation of kind. The end-to-end transport task is realized in two or more
stages using the transport tasks of component transporters (generally, data
links). As we saw, these include routing, bridging, and tunneling.
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We saw that in classifying a concatenation mechanism we must ask two
related questions: What state information does the concatenation workload
manager know and when does it know it? That is to say, what model (if any) of
the discrete event system does the intermediate system use, and how (if at all) is
this model kept current with the changing state of the network and/or traffic?
We discussed the three basic classes of concatenation that are defined by these
two discriminants; and, with closed-loop concatenation (Class 3), we saw that
reconstruction of global state information can be realized with a central estima-
tor or with decentralized estimators in every intermediate system.

We saw that the same choice applies with the creation of the forwarding
tables used in these intermediate systems: Are these created at a central site and
disseminated or is this second-order scheduling distributed? The persistence
of a scheduling decision was then examined, and we identified four distinct
levels of adaptivity ranging from pure virtual circuits to pure datagrams, with
dynamic virtual circuit architectures such as APPN in between the two. Our
examination of scheduling then concluded by looking at its close dependency
on the address space architecture (flat versus hierarchical) and the scaling
advantages of hierarchical concatenation. Finally, we briefly touched on the
network design problem and its complementary role to concatenation.

References

[1] Cerf, V., The Catenet Model for Internetworking, Internet Engineering Note 48, July 1978.

[2] Laubach, M., Classical IP and ARP over ATM, RFC-1577, Jan. 1994.

[3] Davie, B., P. Doolan, and Y. Rekhter, Switching in IP Networks, San Francisco, CA:
Morgan Kaufmann, 1998.

[4] Tanenbaum, A. S., Computer Networks, 2nd ed., Reading, MA: Addison-Wesley, p. 296.

[5] Stoer, M., Design of Survivable Networks, New York: Springer-Verlag, 1992.

[6] Cahn, R., Wide Area Network Design, SanFrancisco, CA; Morgan Kaufmann, 1998.

[7] Shier, D., Network Reliability and Algbraic Structures, Oxford University Press, 1991.

[8] Seidler, J., Principles of Computer Communications Network Design, Chichester: Ellis
Horwood, 1993.

400 Protocol Management in Computer Networking



13
Layer 3 Concatenation: Routing
and L3 Switching

13.1 Introduction

With our MESA model of concatenation management now in hand, this chap-
ter will focus on layer 3 concatenation, that is, routing and layer 3 switching,
and specifically dynamic routing realized with routing protocols. As we saw in
Chapter 12, such closed-loop concatenation is intimately coupled to the nature
of the model of the discrete event system (network and traffic) being managed.
Here we compare the different modeling and scheduling approaches used
by distance vector and link state routing protocols and discuss their respective
advantages with respect to properties such as convergence and stability. We also
consider the two by looking at IP’s Routing Information Protocol (RIP) and
Open Shortest Path First (OSPF) protocol.

The second theme that dominates any discussion of closed-loop concate-
nation and routing protocols is modularization and its role in constraining
management overhead as the network size increases. The modularization of
concatenation is effected in the first place with the division of a network into
autonomous systems and the corresponding division of concatenation tasks
between the interior and exterior routing protocols. Toward this end, exterior
routing protocols exchange state information of a reduced granularity, some-
times referred to as reachability rather than routing information. Complement-
ing our discussion of RIP and OSPF, which are interior routing protocols, we
will look at the Border Gateway Protocol, which is an example of a (distance
vector) exterior routing protocol.
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As we will see, both interior and exterior routing protocols achieve rout-
ing efficiencies by exploiting IP’s hierarchical address space to “divide and
conquer” the tasks of reconstructing global state information and updating
schedules in the routing tables of intermediate systems. We will look at the
evolution of IP addressing from “classful” to “classless” and the accompanying
development of what is called Classless Interdomain Routing (CIDR). CIDR
allows the aggregation of multiple IP networks into supernets, abstractions that
reduce the overhead of reconstruction and scheduling.

13.2 Routing Modularization

13.2.1 Autonomous Systems and the Topology of the Internet

The Internet as we know it today is highly modularized in the way traffic is
forwarded and end-to-end transport tasks are realized. In this section we want
to discuss the topology of the Internet and why its modularization proved
so important in its growth. In contrast, the Internet’s predecessor, the
ARPANET, was monolithic from the point of view of routing. There was no
partitioning of the topology nor was any hierarchical routing employed. Every
interface message processor (IMP) had in its routing table an entry for every
other IMP along with the next hop to get there. The ARPANET routing proto-
col used was the Gateway to Gateway Protocol (GGP), an early distance vector
protocol that we will discuss in more detail later.

With the introduction TCP/IP and the internetworking model of Cerf
and Kahn, however, the incorporation of disparate networks created strains.
First of all, treating these networks as part of a single routing domain was
problematic because it meant that they all had to implement and use the
ARPANET’s GGP to exchange global state information. Given that many of
these networks served as experimental testbeds for new protocols and architec-
tures (like THE ALOHA SYSTEM we discussed in Chapter 8), this was
regarded as an unacceptable constraint. Equally, however, there was the scaling
problem: The overhead of the routing was growing too quickly, with too much
network bandwidth being consumed by routing protocol exchanges. (As we
will see later, GGP’s poor scalability was one of several reasons that led to the
development in 1979 of the first link state routing protocol for deployment in
the ARPANET.)

A more fundamental change, however, came in 1982. This was the
hierarchical decomposition of the Internet into distinct routing domains called
autonomous systems (ASs), each of which was assigned a globally unique 16-bit
identifier (the AS number). Originally this was a two-tiered hierarchy with a
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core AS, built around the ARPANET, to which were connected all the remain-
ing ASs, called stub ASs. The core AS was the only transit AS, that is, the only
AS that forwarded traffic between other ASs (Figure 13.1). Later this hierarchy
was extended to encompass multiple levels but a strict tree topology was always
required—no mesh connections between ASs could be implemented. This
restriction was only lifted with the next generation of the Internet in 1989 (dis-
cussed more later).

Hand in hand with this decomposition of the Internet into ASs came the
division of concatenation between interior routing protocols such as OSPF or
RIP and exterior routing protocols such as the Exterior Gateway Protocol
(EGP) or its successor, the Border Gateway Protocol. An interior routing
protocol (also known as an interior gateway protocol) is used within an autono-
mous system. Traffic between autonomous systems, on the other hand, is for-
warded using an exterior routing protocol (also known as an exterior gateway
protocol) that exchanges less state information (see later discussion). In part,
the assumption behind this division was that most traffic originating within an
AS was likely to be destined for end systems within the AS as well, and that the
overhead of full topology exchange would be justified, whereas between
autonomous systems the lower traffic volume allowed a reduced granularity of
state information.

Such modularization is similar to the decomposition of a monolithic
application into multiple subroutines (or abstract data types) with correspond-
ing information hiding. The philosophy was that within an autonomous
system
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[t]he protocols, and in particular the routing algorithm which these
gateways [routers] use among themselves, will be a private matter, and
need never be implemented in gateways outside the particular domain or
system. [1]

We should note that over the years the criterion for creating an autono-
mous system has changed. Originally an autonomous system was an admin-
istrative unit like a corporation or government agency that was logically
integrated; however, now it is tied to the policy routing and route aggregation
(more on this later).

13.2.2 Reachability Versus Routing Information

The reduced granularity of state information that is associated with exterior
routing protocols is known as reachability. Reachability refers to state infor-
mation that specifies what networks are within an AS without specifying any
details about how to get to them, that is, topology models or routing tables.
Reachability information is exchanged by exterior gateways (routers), that is,
L3 border intermediate systems contained within their respective autonomous
systems:

[r]outing information (routes) exchanged via EGP consist of network-layer
reachability information (NLRI, expressed as a list of IP network number),
the network layer address of the IS that should be used as the next hop when
forwarding to the destinations depicted by the NLRI, and a metric. [2]

Thus, rather than knowing the topology of the entire network, intermediate
systems in a given AS know how to forward PDUs within their own AS; and
they know the other IP networks that are reachable in the other ASs and which
exterior gateways/border intermediate systems are the portals to these.

13.2.3 Classless Interdomain Routing

The abstraction that came with the introduction of autonomous systems
and reachability information proved quite successful in reducing the overall
concatenation management overhead. Nonetheless, by the early 1990s a new
problem was looming: The growth of the Internet was rapidly exhausting the
Class B address space, and the prospect of assigning multiple Class C network
addresses to meet the demand for new networks threatened to overwhelm the
core Internet routers, the size of whose routing tables had grown to the point
where performance was being affected by long look-up times.
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This proliferation of network numbers was a direct consequence of IP’s
division of the 32-bit IP address space into Class A, B, and C networks. Recall
that, in part, this addressing scheme was designed to expedite forwarding, with
the number of bits used for network addresses encoded in the most significant
bits of the most significant octet of the address. When a classful IP address is
“decoded,” the most significant bit of the most significant octet indicates if the
network address uses the next 7 bits (Class A) or more than the next 7 bits. The
next most significant bit tells if the network address uses the next 14 bits (Class
B) or more than the next 14 bits, and so on. The highest 3 bits, therefore, tell
the routing algorithm how many of the 32 bits it should treat as specifying the
network address, and this was intended to improve performance of IP inter-
mediate systems.

The difficulty with this classful addressing was that Class A networks,
which allow up to 16 million hosts, were too big while Class C networks, which
allow up to 254 hosts, were too small for most corporations and organizations.
Class B networks, which allow up to 65,000 hosts, were also too large for
all but the largest corporations but the “fit” was much better than Class A or
Class C; and as the availability of Class A networks was almost nil, the rapid
exhaustion of Class B addresses was inevitable; hence, the recourse to Class C
addresses and the pending routing table explosion. What was needed was a
technique to constrain this growth while still enabling new networks to be
deployed.

The solution was suggested by the way subnetting had been deployed
in IP networks. Recall that subnetting itself was a work-around introduced in
response to the coarse granularity of IP’s classful addressing: Few if any
networks supported 65,000 hosts but many corporations had multiple physical
networks (data links) that might have anywhere from a few to a few hundred
users each, and subnetting allowed these networks to share a single Class B IP
network number. At the same time, carefully laying out the addressing used by
these subnets allowed the details of their topology to be abstracted. Intermedi-
ate systems outside the IP network in question would route traffic to it based
on its IP network number, completely oblivious to the subnet addressing
employed within. Figure 13.2 shows an example of subnetting and route sum-
marization where variable length subnet masking (VLSM) is employed.

This technique of route summarization is also known as route aggre-
gation. Route summarization/aggregation is fundamentally about reducing the
overhead of management information exchanges by using variable granularity
of resolution. This translates into setting up a hierarchy of schedulers, with
routing (topology state) information available on a need-to-know basis. This
“aliasing” may reduce the size of the routing table drastically depending on the
extent of the respective aliases (“fan-out”). This can be seen as just continuing
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the abbreviation of routing tables that is enabled by hierarchical addressing
where, rather than having a routing entry for every host, the table has an entry
for each network address (Figure 13.3).

The full potential of route aggregation to reduce the size of IP routing
tables was, however, limited by the coarse granularity of summarization that
a three-tiered address hierarchy permitted. The solution to both this and the
exhaustion of the IP address space entailed abandoning IP’s address classes (A,
B, and C) and instead moving to so-called classless addressing. The 32 bits were
divided between a prefix, which subsumed the concepts of both network and
subnet numbers, and a host number. Thus, for example, the network addresses
in Figure 13.2 would in classless notation be written as 131.108.0.0/16,
131.108.192.0/19, 131.108.220.0/23, 131.108.221.0/26, and so on.

Classless addressing was formally introduced in 1993 as part of CIDR,
which as we will see later is not a routing protocol but rather a modification of
existing routing protocols to support classless addressing and aggressive route
aggregation. For example, RIP was modified to RIPv2, OSPF to OSPFv2, and
BGP3 to BGP4 to support CIDR addressing and aggregation.
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13.2.4 Moy’s Taxonomy

Before we discuss actual routing protocols, we want to consider a taxonomy
that John Moy, one of the principal developers of the OSPF routing protocol,
has proposed for comparing routing protocols [3]. The discriminants include
these:

• Type: Interior or exterior? Distance vector or link state?

• Encapsulation: IP, TCP, UDP, or data link?

• Path characteristics: What transporter parameters are used in schedul-
ing the next hop?

• Neighbor discovery and maintenance: How do intermediate systems
initially find and then keep track of each other?

• Routing data distribution: What state information is exchanged and
when?

• Route deletion: How does the routing protocol adapt to a lost destina-
tion prefix (network)?

• Routing table calculation: How does the second-order scheduler create
the schedules in the routing table?

• Robustness/reliability: How does the routing protocol avoid concatena-
tion faults due to hardware and/or software errors?

• Aggregation: Will the routing protocol automatically aggregate multi-
ple prefixes where possible?

• Policy controls: Can the second-order scheduling incorporate policy
considerations such as transit forwarding restrictions when calculating
routes (schedules)?

• Security: How does the routing protocol prevent deliberate tampering
(faults)?

Moy’s first criterion is whether the routing protocol is used interior or
exterior to an autonomous system, and whether it employs distance vector or
link state mechanisms to create the (first-order) schedules in the routing tables
of the intermediate systems. As we will see below, all four combinations have
been tried with various routing protocols, although some argue that distance vec-
tor mechanisms are more suited to the reduced granularity of exterior routing
protocols and link state mechanisms to interior routing protocols where extensive
topology reconstruction is advantageous if not mandatory (more later).

We can map Moy’s remaining discriminants onto the MESA work-
load/bandwidth model quite well. Path characteristics, Neighbor discovery and
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maintenance, Routing data distribution, and Route deletion all pertain to the
bandwidth management employed in the intermediate systems, specifically the
state variables (path characteristics) and mechanisms (all the rest) of the global
state reconstruction collectively executed by the bandwidth estimators. Routing
table calculation, Robustness/reliability, Aggregation, and Policy controls are
all concerned with the workload management, specifically how the scheduling
is collectively executed by the workload schedulers in the intermediate systems
that are running the routing protocol.

13.3 Interior Routing Protocols

Let’s now consider interior routing protocols, which before the Internet was
partitioned into autonomous systems were the only routing protocols. Recall
from Chapter 12 that two component tasks are executed by a routing protocol:
estimation of global state information from the local state information (meas-
urements and/or estimates) generated by bandwidth and/or workload monitor-
ing at various intermediate systems; and creating the schedules for realizing all
(source routing) or part (next-hop routing) of the end-to-end transport tasks.
In graph theory the scheduling task is called the shortest path problem.

Not all routing protocols exchange explicit topology information;
instead, some exchange their local routing tables, from which globally consis-
tent routing tables are created. The former is the approach behind link state
routing protocols, which rely on explicit topology models of the network,
whereas the latter is the approach used in distance vector routing protocols,
where no explicit model is used. For this reason, these are sometimes referred
to as the distributed database and the distributed computation methods,
respectively.

The algorithms that have been devised for finding the shortest paths
between nodes of a graph were not originally intended for distributed execu-
tion; rather, it was assumed that they would be executed “monolithically.” Of
course, we saw in the last chapter that networks with centralized estimation
and the scheduling mechanisms are possible and had even been implemented
(e.g., Tymnet), but with IP we are only interested in distributed estimation
and scheduling. Fortunately, most shortest path algorithms can be adapted for
distributed execution, and these are at the heart of the various routing protocols
in use. The obvious decomposition is to have each intermediate system find
the shortest paths from it to the other intermediate systems in the network
(or AS). Distance vector routing protocols use a distributed version of the
Bellman-Ford algorithm, whereas link state routing protocols generally use
the Dijkstra algorithm.
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We should note that there are two models of distributed computation,
namely, synchronous and asynchronous. Synchronous distributed computa-
tion requires that each intermediate system coordinate its execution with
the others, often entailing complex signaling mechanisms such as semaphores
to keep things moving in lock-step fashion. For example, with a synchronous
routing algorithm all the intermediate systems must start their computations at
the same time, clearly not feasible in a large network. Asynchronous distributed
computation, on the other hand, allows each intermediate system to execute its
calculations as it sees fit, incorporating updated state information as it arrives.
All the routing protocols that we consider here rely on asynchronous execution.

Routing protocols can be compared in terms of their convergence proper-
ties, the process of synchronizing of the routing schedules and/or concatenation
state information (e.g., topology models) of the intermediate systems. Related
to convergence are sensitivity and stability: When a link’s cost changes (for
example, if the link fails) how quickly does the routing protocol reflect this
change? Does the routing protocol converge accurately or do oscillations due to
overshoot plague the network?

In the discussion that follows we assume the network is represented with a
undirected graph. Directed graphs (digraphs) are required if any of the follow-
ing hold:

• Simplex data links (transporters) are used in the network;

• Full- or half-duplex data links with asymmetric bandwidth are used in
the network;

• The state information includes traffic (workload).

With the first two conditions, the bandwidth between two nodes can differ in
the opposing directions. The last condition, on the other hand, reflects the fact
that traffic flows are almost always asymmetrical. In addition, there is signifi-
cant volatility, which is a reason why few routing protocols include traffic state
information in their scheduling.

For purposes of illustrating the distance vector and link state approaches,
we use the example network shown in Figure 13.4 consisting of eight interme-
diate systems in a partial mesh; for simplicity we assume unit cost for each link.

13.3.1 Distance Vector Routing Protocols

As we just said, the basic idea behind distance vector routing protocols is
that the intermediate systems in an autonomous system will exchange with
each other their respective routing tables. In the network of Figure 13.4,

Layer 3 Concatenation: Routing and L3 Switching 409



intermediate system A will exchange routing tables with intermediate systems
B, C, and D; intermediate system C will exchange routing tables with interme-
diate systems D and F in addition to intermediate system A; and so on. Why
is this called distance vector ? The origin of the term is somewhat clouded and
there are at least two explanations. First is that the combination of direction
and a “cost” such as distance or delay constitutes a vector as physicists use the
term; for example, speed is a scalar but velocity, which includes direction as
well as speed, is a vector. The second explanation is that the exchanged routing
tables constitute vectors in the mathematical meaning of the term; that is, they
are multidimensional state variables.

Whatever the origin of the term, distance can be any generalized cost that
is used in the routing (scheduling) metric; it can even be a negative value,
although this is not the case in transportation problems such as those using
computer networks. Different routing protocols have parameterized links in
terms of reliability, delay, bandwidth, load, and other variables; we discuss
some of these later. If every link is assigned a cost (or weight) of 1 then the rout-
ing metric will minimize the hop count, that is, the total number of links in an
end-to-end path (schedule). On the other hand, if each link is assigned a cost
inversely proportional to its bandwidth then the end-to-end schedules created
will, traffic loading aside, be the fastest possible.

An intermediate system that is executing a distance vector routing proto-
col maintains a routing table that has entries for destination networks in which
is recorded the best current estimate of the distance to that network and the
next intermediate system to which PDUs should be forwarded (i.e., the next
hop). Some routing protocols and implementations will also store one or more
of the next best routes for either load balancing or quick cut-over in case of a
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disruption in the end-to-end path. However, the performance advantages must
be weighed against the increased table size.

When a distance vector intermediate system (DVIS) is started, it knows
of only those IP networks (data links) to which it is directly attached; these are
given the distance of 0. As it receives routing updates (or routing advertise-
ments) from other DVISs containing their respective routing tables, the IP net-
works listed will either be already known or unknown to it. If an IP network is
unknown, then the receiving DVIS will create a new entry in its routing table
and, for the distance/metric estimate, it will put the updated estimate (that car-
ried in the received table augmented by the estimate of the distance between it
and the sending DVIS). On the other hand, if the IP network is known, then
the receiving DVIS will compare its estimate to the updated estimate: If the
updated estimate is greater than that already known then it will be ignored,
unless the protocol has provision for storing multiple paths; on the other hand,
if the cost is less than that known the table will be modified accordingly to
reflect the new information.

Distance vector routing protocols illustrate that it is not the topology of
the composite that we are ultimately interested in but rather the optimal routes
between clients and destinations. Explicit topology reconstruction such as that
used by link state routing protocols is only a means to an end and is unneces-
sary with distance vector routing protocols.

13.3.1.1 Finding Shortest Paths (Optimal Routes)
The heart of the path estimation (route calculation) in a distance vector routing
protocol is Bellman’s equation from dynamic programming.1 This equation,
a cornerstone of control theory and operations research, is used to solve
multistage decision and optimization problems. (This is why distance vector
protocols are sometimes called “Bellman-Ford.”) In its basic form, Bellman’s
equation is given by

[ ]D D d ii
j
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where Dj is the estimated distance (cost) to the ith node (network) and dji is the
distance (cost) of the link from the jth node to the ith node. If there is no link
between the ith and jth nodes, then the cost is set to infinity; this is also the
case if a link goes down. The initial condition is

D1 0=

which merely indicates that the root node is at a distance of 0 from itself.
Dynamic programming rests on what is often called the principle of opti-

mality: that any subpath of an optimal path is itself optimal. For example, in
Figure 13.4 if the optimal path from intermediate system A to intermediate sys-
tem E is A–B–G–E then the optimal path from B to E must be B–G–E. Other-
wise, if another path, say, B–E, were better then the optimal path from A to E
would be A–B–E. This is a commonsense observation that nonetheless has deep
ramifications, one of which is that it allows us to “prune” the set of possible
paths as we iterate the Bellman-Ford algorithm.

The Bellman-Ford algorithm begins by calculating the optimal path
(schedule) to get to nodes (intermediate systems) that are one link away. This,
of course, is trivial: Those nodes directly connected are one link away; those
nodes that are not directly connected to the root (the local intermediate system)
are initially unknown. The process next finds optimal paths (schedules) that
consist of two edges (stages). If a two-stage path costs less than a one-stage path
then the latter is eliminated from the list of optimal paths. This pruning is an
application of the principle of optimality.

In a network with N links the process of estimating path length continues
for up to a maximum of N − 1 iterations (since no path in the network can have
more than N − 1 links in it). When it terminates, the Bellman-Ford algorithm
yields the shortest path spanning tree for each node in the graph.

The Bellman-Ford algorithm that solves the Bellman equation is typically
realized with a centralized implementation, which assumes a complete knowl-
edge of the graph’s topology. Obviously, with computer networks each node
has ready access to its local topology information, but global topology must be
explicitly reconstructed (as it is with Dijkstra’s algorithm; see later discussion).
With distance vector routing protocols, on the other hand, no explicit topology
model or topology information is exchanged, merely routing tables among
neighboring intermediate systems.2 How can this work?

412 Protocol Management in Computer Networking

2. Intermediate systems (nodes) that are one link (edge) away from each other, that is, nodes
that are directly connected, are called neighbors.



It turns out that there is a distributed, asynchronous form of the
Bellman-Ford algorithm in which every intermediate system calculates its own
shortest path spanning tree independently of each other, and which only relies
on periodic routing table exchange. Under very limited assumptions (routing
table exchange, aging out of old path length estimates, and nonnegative link
costs) it can be shown that the distributed, asynchronous form of the Bellman-
Ford algorithm will converge to the correct solution (see, for example, [5, 6]).

The performance of the Bellman-Ford algorithm is highly dependent on
the topology of the network. Worst case, distance vector routing protocols
must iterate N − 1 times to discover all of the optimal paths in an N-node net-
work, where each iteration entails N − 1 comparisons for each of N − 1 nodes.
This means that the algorithm scales according to O(N 3). However, it can be
shown that the scaling is often better than this: If A is the total number of edges
(links) in a network of N nodes (intermediate systems), then the Bellman-Ford
algorithm scales according to O(mA), where m < N is the length of the longest
shortest path in the network. Since

( )A N N≤ − 1 for directed graphs

or

( )
A

N N
≤

− 1

2
for undirected graphs

it is clear that the less fully meshed the network, the lower the overhead of exe-
cuting Bellman-Ford.

13.3.1.2 Concatenation Faults in Distance Vector Routing Protocols
Because distance vector routing protocols typically require that intermediate
systems age out their routing tables and that they recalculate routes as updates
come in from adjacent intermediate systems, inconsistencies such as routing
loops generally do not last long. However, distance vector routing protocols
can suffer from faults, with certain topologies causing particular difficulties.
One of the most nettlesome distance vector faults is called “counting to infin-
ity.” Consider the simple network shown in Figure 13.5, where we have three

Layer 3 Concatenation: Routing and L3 Switching 413

Intermediate
system

IS 1 IS 2 IS 3

Intermediate
system

Intermediate
system

Figure 13.5 Example of “counting to infinity.”



intermediate systems connected linearly (for example, nodes C, F, and I in
Figure 13.4).

Assume for simplicity that the metric is simple hop count and that each
intermediate system starts with accurate routing tables. If the link between IS 2
and IS 3 fails, then IS 2 will change its routing table to reflect the fact by setting
the distance to IS 3 as infinity. However, IS 1 may still advertise that it can
reach IS 3 in two hops (via IS 2, of course). IS 2, receiving this update, will
adjust its routing table again, advertising that it can reach IS 3 in three hops via
IS 2. As routing updates bounce between IS 1 and IS 2, the metric will increase
each time until each exceeds the maximum allowed by the routing protocol,
hence the term “counting to infinity.”

Two techniques used to prevent such faults are called split horizon and
poisoned reverse. With split horizon, an intermediate system will modify its
routing update to another intermediate system by excluding any estimates on
the cost to reach a destination if the second intermediate system is the next hop.
Poisoned reverse likewise modifies the routing table but by advertising the des-
tination as unreachable (i.e., setting its distance to infinity). A third approach
to the problem is path holddown: If a link is estimated to be lost then the rout-
ing protocol will for a time “hold down” the link’s state and ignore any routing
updates that indicate the link is usable. After the path hold down interval
expires, the routing protocol will accept new estimates of the link’s condition.

13.3.1.3 The ARPANET Gateway to Gateway Protocol

As we indicated earlier, the original routing protocol employed in the
ARPANET was a distance vector protocol called the Gateway to Gateway Pro-
tocol (GGP). Routing tables were exchanged among intermediate systems and
the distributed, asynchronous form of the Bellman-Ford algorithm was run in
each IMP to calculate the short paths to every other IMP.

The GGP did have one major departure from what we have considered
until now, namely, the metric was estimated delay as measured by the queue
length on outgoing links. From elementary queuing theory we know that
queue length is determined by the traffic intensity, itself determined by the
rates of arrival and service. It was found, however, that the inclusion of such
traffic state information in the scheduling caused major difficulties with insta-
bilities due to rapidly changing state information. The result was large oscilla-
tions. Although the successor (link state) routing protocol also used traffic state
information, the new protocol reduced the “gain” on the feedback considerably
to damp the oscillations (see later discussion). Because of this phenomenon,
subsequent routing protocols have avoided using traffic information in their
scheduling.
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13.3.1.4 Routing Information Protocol
The most common distance vector routing protocol in use today is the Routing
Information Protocol (RIP), which was developed by Xerox PARC as part
of its Xerox Network Systems (XNS) architecture. A version of RIP modified
to distribute IP routing tables was developed at the University of Illinois and
included in BSD Unix in the early 1980s, propelling the protocol to wide-
spread popularity and greatly stimulating the growth of the Internet. In fact,
RIP was widely deployed long before it was formally documented with
RFC-1058 in 1988. RIP-2, which was defined with RFC-1388 in 1993, added
support for CIDR addressing and aggregation, security, and other improve-
ments in efficiency.

Unlike the GGP, RIP takes no account of traffic in its path length esti-
mation. Instead, RIP uses a simple hop count in its path selection. Each link
is given a cost of 1, irrespective of its bandwidth. In addition, RIP limits the
maximum path to 15 hops; 16 is the value used for unreachable (i.e., 16 is
“infinity” to RIP implementations). This has proven to result in a constraint on
the size of RIP networks, limiting their diameter to at most 15 networks; in
fact, since the best route may involve more links than the “direct” path, the size
limit may be considerably more binding.

RIP sends its routing tables encapsulated in UDP, using port 520. These
tables are limited to holding the best route for each destination IP network;
multiple routes are not allowed. Entries in RIP routing tables are time-stamped
for aging. If the entries are not refreshed within 180 seconds then they will be
removed; this removal will then trigger the intermediate system to send its own
routing update. RIP routing updates are limited to 512 bytes, which given the
format of the RIP messages means that an update can only include 20 entries.
Larger tables require multiple update messages.

In addition to triggered updates, RIP requires periodic exchanges of rout-
ing tables. Every 30 seconds a RIP intermediate system broadcasts its routing
table to its neighbors. In addition, RIP updates may be triggered, if there are
any changes to the local state information (either a local interface comes up or
goes down) or if a route in the routing table ages out or if a routing table is
received from a neighboring RIP intermediate system that causes the local rout-
ing table to change one or more of its entries. Finally, RIP includes a message
that can be sent by a newly started (or restarted) router to any neighbors
requesting they send their routing tables immediately rather than waiting for
either a triggered or a periodic update.

RIP relies on split horizons to eliminate counting to infinity. We should
note that RIP’s periodic updates have been found to be a source of instability in
the Internet [7]. The problem is that RIP intermediate systems in a network
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have been found to self-synchronize to each other, resulting in all systems send-
ing their periodic updates at approximately the same time every 30 seconds.
This surge of traffic was found to adversely affect the performance of time-
critical Internet applications such as voice and video. Various measures have
been proposed for reducing or eliminating this behavior.

We should note that one of the most ambitious interior routing pro-
tocols, the Interior Gateway Routing Protocol (IGRP) developed by Cisco
Systems, is a variant of RIP. IGRP augments the state information to include
delay, bandwidth, reliability, and load for every IP network. Shortest paths can
be selected according to a metric that can be tuned by a network administrator
to give various weights to these factors. In practice, however, several of these
parameters are defaulted to zero, simplifying the calculations and limiting
the potential for traffic feedback instabilities such as were seen with the GGP.
Finally, we should note that IGRP has been superseded by Enhanced IGRP
(EIGRP), to provide CIDR support, among other modifications. EIGRP
incorporates a new routing technology referred to as diffusive routing and a
routing algorithm called the Distributed Update Algorithm (DUAL) [8, 9].

13.3.2 Link State Routing Protocols

Given that distance vector routing protocols scale in the worst case according to
O(N 3) it is not surprising that many researchers have sought a more efficient
way to find the shortest paths for a graph and hence construct routing tables. As
it happens, a more efficient algorithm was devised by Dijkstra in 1959 to find
all the shortest paths originating at a given node; this algorithm scales according
to O(N 2) or better. Like the Bellman-Ford algorithm, Dijkstra’s algorithm is
properly considered an instance of dynamic programming since it is structured
as a sequential (i.e., multistage) decision process.

However, there is a major restriction on use of the Dijkstra algorithm:
The global topology must be known before the algorithm can be executed [10].
In contrast, the Bellman-Ford algorithm only requires local state information
plus neighbors’ periodic estimates of their shortest paths to other intermediate
systems. For this reason, it is necessary to combine Dijkstra’s algorithm with an
explicit topology model of the network, reconstructed by intermediate systems
exchanging their respective local state information describing their local topol-
ogy. This is different than the state information exchanged in Bellman-Ford
algorithms, which are estimates of the shortest paths (schedules) rather than
explicit topology.

In terms of the MESA tasks, link state routing protocols execute band-
width estimation (reconstruction) of the global topology of the network and
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workload scheduling to find the shortest paths to the other intermediate sys-
tems. We now look at these two parts.

13.3.2.1 Reconstructing Global Topology
The global topology model that every link state intermediate system maintains
is variously known as the topology database or the link state database. Estima-
tion of the global topology is done by each intermediate system sending out
routing updates that consist of its local state information plus any estimates of
the global topology that it has reconstructed. Like the topology models, these
routing updates are known by various names. In OSPF they are called link state
advertisements (LSAs), in OSI’s IS-IS protocol they are called link state packets
(LSPs), in APPN they are called topology database updates (TDUs), and so on.
In most of these routing protocols, these routing updates consist of the entire
routing table, so care must be taken not to send them too often or the man-
agement overhead will crowd out user traffic. In addition, to reduce the size
of topology updates several of the most important of these routing protocols
employ hierarchical decomposition within an autonomous system, dividing it
into areas and limiting full topology exchange within these (see later section for
a discussion of OSPF’s area hierarchy).

The global topology models in a link state routing protocol can therefore
be thought of as replicated information in a distributed database system; and
a principal task of link state routing protocols is to synchronize the topology
databases of the intermediate systems. Figure 13.6 shows the topology model
maintained by one intermediate system, obviously reconstructed using local
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topology state information from the other two intermediate systems. Assuming
that the leftmost intermediate system has also sent its routing updates, these
will likewise have identical models of the network; if not, then when it does
send its routing update the remaining two intermediate systems will synchro-
nize their models.

When an intermediate system first comes up, it can do two things with
respect to exchanging topology information. First, it can send out a topology
update that typically includes the intermediate system’s identifier; the links
to which it is attached and their respective state information (cost, operational
status, bandwidth, and so on); and the network addresses of the links. Second,
it may broadcast a request to other intermediate systems to send their respective
topology updates immediately, rather than wait for periodic updates, so that it
can synchronize its model as quickly as possible. And as a link state intermedi-
ate system receives topology updates, it adds the information to its topology
model (database) and this, too, is sent out with future topology updates. To
summarize, the bandwidth monitor (sensor and estimator) in each link state
intermediate system executes three tasks:

1. Measuring local topology information (typically obtained from the
intermediate system’s configuration files listing the IP addresses in
the networks to which it is attached);

2. Reconstructing the global topology from local measurements and
the topology estimates received from other link state intermediate
systems; and

3. Sending out the global topology estimates thus created to the other
intermediate systems.

The dissemination of global topology estimates from the individual inter-
mediate systems relies on flooding. A link state intermediate system that
receives a routing update in one interface will modify its copy of the topology
model if necessary and then flood the update out of its remaining interfaces to
downstream intermediate systems. The importance of synchronizing the topol-
ogy models as quickly as possible is that it minimizes the probability of routing
faults due to inconsistent routing tables.

Much of the complexity in a link state routing protocol is to be found in
the mechanisms implemented to ensure that this flooding occurs reliably while
at the same time not slowing the process down too much. A principal concern,
particularly as the network grows in size, is that old updates do not get confused
with newer updates as they are flooded throughout a large network with a
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complicated topology. If this happens, it can be extremely difficult to straighten
matters out. Indeed, when this occurred with the ARPANET’s link state rout-
ing protocol the only remedy that worked was to power cycle all the IMPs in
the network and thus clear out the buffers of all copies of the updates.

At least two provisions are commonly made to prevent this. First is the
aging of routing updates, much like IP’s TTL field: An old routing update will
stop being forwarded when its age expires. Second is the use of a carefully man-
aged sequence number space. This allows a link state intermediate system that
receives a routing update to compare the sequence number the update carries
with the sequence number of the last update that resulted in changes to the
topology model. Both age and sequence number fields are carried in the rout-
ing update message headers.

13.3.2.2 Finding Shortest Paths (Optimal Routes)
The second part of a link state routing protocol, namely, finding the shortest
paths (i.e., schedules) and, at a minimum, the next hops for forwarding end-
to-end PDUs, is executed by the workload schedulers in the link state interme-
diate systems. We should note that though most link state routing protocols
use the Dijkstra algorithm for calculating the shortest paths, Moy points out
that other algorithms can be used as well [11]. However, just as with Dijkstra,
these other algorithms require that the global topology be known or estimated
beforehand. Their execution is predicated on the explicit topology models cre-
ated and continually maintained (updated) by the bandwidth monitor. For this
reason we concentrate here on Dijkstra’s algorithm.

Dijkstra’s algorithm begins its execution much like the Bellman-Ford
algorithm: by finding the shortest paths to nodes that are one edge away. For
simplicity let’s assume that the local node (from which the shortest paths are to
be found) is node 1. The initial conditions for the algorithm are that the dis-
tance of node 1 to itself is 0 and that the only node in set P is node 1. As it pro-
ceeds sweeping outward, every node is labeled with an estimate of the shortest
path to it. The principle of optimality is used to prune paths just as it is with
Bellman-Ford.

When the Dijkstra algorithm decides that the minimum distance esti-
mate from node 1 to a given node has been found, the node is said to be perma-
nently labeled, and added to a set P of permanently labeled nodes. For all nodes
j that are not permanently labeled, the algorithm then finds the next closest
node (call it node i ); node i is then added to set P. The algorithm’s iteration
terminates when P contains all the nodes in the network.

If nodes remain that are not in P then the distance estimates are updates
according to the formula
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where dij is the distance of node i to node j and Dj = dij. The algorithm then
iterates until all the nodes have been permanently labeled and placed in P.

The number of minimizations is proportional to N, the number of nodes
in the network; and there are N − 1 iterations. Hence the Dijkstra algorithm
scales according to O (N 2). Under certain assumptions concerning the topology
of the network and the implementation of the data structures used to store the
nodes that are in set P and those not yet in set P, the scaling of Dijkstra’s algo-
rithm can be limited to O (n log(n)) [3, 11, 12].

13.3.2.3 Concatenation Faults in Link State Routing Protocols
Because they rely on explicit topology models rather than on estimates of short-
est paths as relied on by distance vector routing protocols, link state routing
protocols are more robust. For example, they are not vulnerable to such condi-
tions as counting to infinity. However, inconsistencies in the topology models
in the various intermediate systems can cause routing loops until they are
repaired by the exchange of topology data. The robustness of a link state rout-
ing protocol is dependent on how well it maintains the topology models,
including such measures as checksums to detect faults in the updates
themselves.

13.3.2.4 Open Shortest Path First
We now examine the OSPF protocol, the most important link state routing
protocol in use today. Although the first link state routing protocol was
deployed in the ARPANET in 1976 to replace the GGP we discussed earlier, it
was not until OSPF was developed in the late 1980s that a link state routing
protocol could seriously challenge distance vector routing protocols such as
IGRP and RIP. The protocol was first defined in RFC-1131.

As with many other important Internet protocols, there is a wealth of
background material on OSPF, including its design objectives and what criteria
determined the shape of the final protocol. The overwhelming need was for a
new routing protocol that could scale with the exponential growth the Internet
was already experiencing (nearly 10 years before the explosion of the World
Wide Web). This meant, among other things, the following:

1. Efficiency: A more efficient interior routing protocol than RIP
was sought because the overhead of RIP’s routing table exchanges was
growing too great, using too much bandwidth and displacing too
much data (i.e., nonmanagement) traffic.
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2. Convergence: The convergence problem for distance vector routing
protocols was felt to be intractable without recourse to clumsy
mechanisms such as poisoned reverse, split horizons, and so on.

3. Metrics: Cisco’s IGRP had demonstrated the advantages of routing
metrics that went beyond simple hop count. In addition, the limit of
15 hops to which RIP limited network reachability was considered
unacceptable.

4. Modularization: Even within an AS it was felt there had to be some
protocol support for hierarchical routing and route aggregation.

In addition to these objectives, the new protocol was to implement some form
of security to prevent unauthorized routers from introducing spurious routing
or topology information. Support for type of service (TOS) routing was also a
goal, although as we discussed in Chapter 10 this feature has never been widely
deployed and in fact was dropped from IPv6.

The efficiency and convergence issues led to the decision to employ link
state routing in the new protocol, which was dubbed the Open Shortest Path
First because it was nonproprietary (i.e., open) and because it would employ
Dijkstra’s shortest path first algorithm. After 5 years of design and develop-
ment, OSPF was selected in 1992 as the IETF’s recommended interior routing
protocol.

Unlike RIP, which used UDP encapsulation of its routing traffic, the
OSPF architects opted to encapsulate directly in IP, using IP protocol number
89. The other options, namely, direct data link encapsulation or transport layer
encapsulation in UDP or TCP, were rejected for being too lean and too rich,
respectively. Direct data link encapsulation would have entailed the routing
protocol handling its own fragmentation of routing updates that were larger
than the maximum L2 PDU size for a given data link protocol. In addition, the
plethora of data link protocols would have made the task of interfacing
to each too onerous. Transport layer encapsulation, on the other hand, was
rejected as coming with too much overhead and offering services, such as
reliable transport, that the routing protocol was going to implement on its
own (see discussion of reliable flooding later). Thus the decision to go with IP
encapsulation.

With respect to link costs and metrics, OSPF chose to allow network
administrators maximum flexibility. Every link can have a cost from 1 to
65,535, with lower cost links being preferable to higher cost ones. If all links are
given the same cost then OSPF will minimize hop count in its routing calcula-
tions. One formula for calculating link cost is
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where x is chosen relative to the highest speed link in the network. For example,
if 100 Mbps is the fastest link, then setting x equal to 8 results in a range of link
costs from 1 (for a 100-Mbps link like FDDI) to 1785 (for a 56-Kbps WAN
link). We should note that OSPF does not take into account traffic. Although
some texts claim OSPF’s metric can be set to minimize delay, this is question-
able since delay is jointly determined by the bandwidth and traffic; and without
monitoring traffic (workload) OSPF cannot minimize delay.

OSPF continues the modularization begun earlier with the division of the
Internet into autonomous systems and the use of exterior routing protocols.
OSPF divides an AS into a two-tiered hierarchy consisting of areas, with area 0
functioning as the backbone (or transit area) connecting the remaining areas in a
hub-and-spoke topology. In some cases the connectivity to the backbone may be
through what OSPF calls virtual links, which allow areas not contiguous to the
backbone area to nonetheless be part of an OSPF network.

This modularization results in several classes of OSPF routers: internal
routers, which are entirely within a given area; and area border routers, which
are part of two areas (one of them area 0). A great deal of effort went into defin-
ing the inter-router coordination necessary to maintain synchronized topology
models (link state databases). OSPF limits full topology exchange to routers
in the same area. Routing information between areas is summarized to simple
reachability information, which effectively is a distance vector protocol. This
provides additional reduction in the routing overhead, and since OSPF
arranges its areas to hub-and-spoke topologies, the issue of loop prevention
does not arise [3].

The three different parts of the OSPF protocol are (1) the Hello protocol,
(2) the reliable flooding protocol, and (3) the exchange protocol. The OSPF
Hello protocol is used by routers to discover other routers in the same area.
Every 10 seconds a router sends Hello packets out on all of its interfaces, which
also function as keep-alives. When an OSPF router receives a Hello packet, it
sends a Hello response and the routers proceed to use the exchange protocol
to synchronize their link state databases. Routers that have synchronized their
respective link state databases are said to be fully adjacent. The reliable flooding
protocol is used among adjacent routers and is responsible for forwarding link
state advertisements; it includes such mechanisms as aging as well as acknowl-
edgments to ensure receipt of synchronization messages.

The contents of these messages are link state advertisements (LSAs).
OSPF defines five different types of LSAs: router, network, summary for IP
network, summary for border router, and external. For example, interarea
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exchanges use the summary for border router LSA to summarize routing
information.

13.4 Exterior Routing Protocols

In our earlier discussion of exterior routing protocols, it was pointed out that
the first of these, the Exterior Gateway Protocol (EGP) had limitations
that constrained the Internet’s AS hierarchy to a tree topology. Because of these
limitations, at the same time as work began on OSPF to succeed RIP as the
Internet’s interior routing protocol research was also begun on a new exterior
routing protocol called the Border Gateway Protocol (BGP). BGP was first
defined in RFC-1105 (1989) while the current version, BGP-4, was defined in
RFC-1771 (1995). As we will see in this section, BGP’s greater sophistication
removed many EGP-imposed limits on the Internet and the structure of the
hierarchy of its autonomous systems.

13.4.1 Distance Vector Versus Link State Exterior Routing Protocols

It may seem surprising after our discussion of the scaling advantages of link
state routing protocols, but the architects of BGP opted to use distance vector
routing. However, certain characteristics of an exterior routing protocol tend
to favor distance vector routing. For example, as we just remarked concerning
OSPF and the exchange of interarea routing information, summarizing routing
information naturally leads to a distance vector protocol. In fact, the increased
granularity of state information that link state routing protocols exchange is a
double-edged sword: while it makes it more suited for use as an interior routing
protocol, it makes it less suited for use as an exterior routing protocol.

13.4.2 Border Gateway Protocol

The development of BGP was prompted by the limitations of EGP, most
notably the limitation EGP placed on the Internet’s hierarchy of autonomous
systems into a strict hub-and-spoke topology. EGP also lacked security fea-
tures to prevent routers from injecting spurious routing information into the
Internet, and had no support for policy routing.

Once the decision was made that BGP would use distance vector routing,
the principal issue confronting BGP’s developers was loop prevention. Rather
than incorporating the work-arounds such as split horizon and poisoned
reverse, BGP chose a very different approach. BGP routers (called peers)
exchange complete path information rather than simple next-hop routing
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tables. These path vectors list the sequence (schedule) of ASs that provide transit
services in forwarding IP PDUs to a given destination network (in CIDR, pre-
fix). What this means is that BGP is not a next-hop routing protocol. The path
vector is, in effect, a form of source routing. As we will see in a moment, loops
are prevented by BGP peers examining the path vector advertising an AS path
to see if their own AS is listed.

As with other distance vector routing protocols, the actual creation of
path vectors is done by executing the Bellman-Ford algorithm. Recall that
although distance vector routing does not have access to a global topology
model, the Bellman-Ford algorithm nonetheless creates a shortest path span-
ning tree that gives the entire end-to-end path (schedule) necessary to reach
any node in the graph, where here the nodes are autonomous systems. How-
ever, because BGP does not list just basic network layer reachability informa-
tion (prefix and distance), calculation of the shortest paths is somewhat more
elaborate.

Several important aspects of BGP’s design were driven by the fact that
exterior routing tables, particularly as one got close to the core of the Internet,
were rapidly growing to enormous sizes, today often listing 40,000 or more
prefixes. This meant that the periodic exchange of routing tables as done
in traditional distance vector routing protocols was to be avoided. Obviously,
when two BGP routers first established contact (see later discussion) a full
exchange was required, but afterwards it was decided that BGP would only
exchange incremental updates.

The absence of the periodic full exchanges meant that BGP routers would
not have any fallback to automatically correct for lost or corrupted data in their
respective routing tables. For this reason, reliable transport was felt to be man-
datory and BGP’s designers therefore chose to use TCP encapsulation. TCP
would handle any retransmissions of BGP routing updates and ensure that
BGP routers received these uncorrupted.

A second consequence of the decision not to periodically broadcast full
routing tables in BGP was the necessity of storing backup or alternatives routes
(path vectors). Therefore, each BGP router maintains not just a routing table
listing network prefixes (and path vectors to these) but also a complete list
of alternative routes in what is called its Routing Information Base–Inbound
(RIB-In). When a BGP router receives routing tables and/or updates from its
BGP peers, all the routes (path vectors) for a given prefix are entered into the
RIB-In unless a loop is detected—that is, a path vector includes the router’s
own AS number.

Obviously, the RIB-In is a superset of the actual BGP routing table, and
in fact the latter is generated from the former.When a route in a BGP router’s
routing table becomes inoperative due to some link or router failure, the
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RIB-In is consulted to find the next best route. The mechanism in a BGP
router that selects routes (path vectors) from the RIB-In for inclusion in the
routing table is called the Decision Process. The BGP Decision Process executes
another level of workload scheduling, above and beyond that executed by
the Bellman-Ford algorithm used to generate the AS path vectors. In addition,
the Decision Process plays a crucial role in implementing routing policies
with BGP.

13.4.3 Policy Routing in BGP

The demise of the monolithic Internet and its division into a hierarchy of
autonomous systems, many of them Internet service providers offering transit
services, created a whole new set of complications. Network administrators
were confronted by restrictions on usage that were often not amenable to the
simple graph-theoretic mechanisms used in standard routing protocols. For
example, the early Internet was restricted from carrying commercial traffic,
which entailed special routing considerations separate from noncommer-
cial traffic.

Policy routing in the Internet refers to the inclusion of criteria other than
topology or traffic in the route selection process. This can include various
administrative preferences or prohibitions. BGP supports policy routing by
allowing network administrators great flexibility in specifying the factors the
decision process uses to generate the BGP routing table. A number of RFCs
have been written exploring the implementation of routing policies in the
Internet.

13.5 Summary

We saw in this chapter that any discussion of closed-loop concatenation and
routing protocols is dominated by two main themes: models and modulariza-
tion. To cope with the explosive growth of the Internet, we saw how techniques
such as hierarchical routing and route aggregation have been employed to limit
the size of routing tables, culminating in the development of Classless Inter-
domain Routing.

Following this we discussed the distinction IP makes between what are
called interior routing protocols, which provide great detail on topology and
connectedness, and exterior routing protocols, which limit their information to
reachability, that is, what IP networks can be reached in that autonomous sys-
tem without specifying any aspect of how to get there. Such details about how
are left to the interior routing protocols.
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We then moved on to examine how distance vector and link state routing
protocols operate, along with their respective strengths and weaknesses. We
discussed the Bellman equation from dynamic programming and the central
role it plays in the Bellman-Ford algorithm used in distance vector routing. To
illustrate distance vector routing, we discussed the Routing Information
Protocol as well as the Border Gateway Protocol.

Link state routing, on the other hand, though likewise grounded in
dynamic programming and sequential decision processes, is associated with the
Dijkstra equation for discovering shortest paths. The Dijkstra algorithm gener-
ally scales better but is predicated on knowing the global topology of the net-
work, whereas the Bellman-Ford algorithm merely requires exchanging local
topology information along distance estimates. This is why the two are often
referred to as the distributed computation and the distributed database
approaches, respectively. To illustrate link state routing, we examined the
Open Shortest Path First routing protocol.
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14
Layer 2 Concatenation: Local and Remote
Bridging and L2 Switching

14.1 Introduction

In this chapter we look at L2 concatenation, specifically local and remote
bridging of 802 LANs. The chapter begins by first looking at the 802 MAC
addresses, and the consequences that flow from the fact that these constitute a
flat address space. We then consider bridges and switches, bridges and routers,
and the question of bridge complexity in terms of processing and storage
requirements. As we will see, there are two very different approaches to con-
catenation used at layer 2: transparent bridging, which relies on intelligence in
the intermediate systems (bridges) to hide the details of concatenation from
end systems, and source route bridging, which uses simpler bridges but at the
price of placing more of the concatenation burden on end systems.

From there we move on to discuss remote bridging, which is an L2 con-
catenation technique used to concatenate two or more LANs by tunneling their
traffic across another data link, typically a WAN link. We will focus in particu-
lar on PPP’s support for remote bridging and will discuss the Bridging Control
Protocol (BCP). This affords us the opportunity to briefly discuss tunneling
and its management implications such as visibility of the tunneling network to
the client network(s) and their traffic that it tunnels.
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14.2 Bridging Foundations

14.2.1 IEEE 802 MAC Address Space

Recall from Chapter 5 that with the first data link protocols the addresses only
had local significance, but that this changed when Xerox decided that the
higher bandwidth of Ethernet allowed the luxury of 48-bit addressing, an
address space sufficiently large that it allowed globally significant addresses.
This decision, later embraced by the IEEE 802 committee when it defined
MAC layer addressing, was to have a deep and lasting impact on the nature
of networking and connectivity. Not least, it enabled layer 2 concatenation:
Without globally significant addressing, there was no way to determine if an L2
PDU (frame) was destined for an end system on its local LAN or if the target
was an end system on a distant LAN. In short, bridging and its related tech-
nologies like L2 (frame) switching were made possible by the global signifi-
cance of 48-bit addressing.

A complication, however, arose almost immediately. Because LANs were
intended to be “plug and play,” it was deemed imperative to keep configuration
requirements to a minimum or none at all. This meant that each LAN adapter
card had to be assigned a universal (i.e., globally unique) 48-bit address at the
factory; and although the standard does allow such universal MAC addresses
to be overridden by locally assigned addressing (LAA), outside of Token-Ring
LANs used in SNA networks this is seldom if ever employed. An immediate
consequence of this design decision is that the 802 address space defined was
flat. Two end systems on the same LAN will have MAC addresses that, unless
overridden by assigning locally defined addresses, are completely unrelated to
each other.

Why does this have such ramifications? Because a flat address space limits
the modularization that, as we saw in the last chapter, has been integral to the
scalability of IP routing protocols. In a hierarchical addressing schema, the net-
work (or, in SNA, subarea) part of the address can be thought of as aggregating
or aliasing the addresses of the end systems that are on that network. For exam-
ple, a set of one or more IP host addresses is effectively aliased by a network
address, which is all that need be stored in an IP routing table. And, of course,
there is a corresponding reduction in the granularity of information needed to
describe the topology of the network.

This flat address space is responsible for one challenge to concatenation
at layer 2, namely, the difficulty in constructing a global topology model such
as we saw in link state routing or even an implicit model such as we saw
with distance vector routing. This presents a number of challenges including
the suboptimal utilization of transporter bandwidth and, most importantly, the
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looping of frames as one bridge/switch forwards it to another. This brings us to
the second major challenge to layer 2 concatenation: Because no major data
link (L2) protocol includes any header field for recording time-to-live or hop-
count information, the danger of loops, black holes, and other concatenation
faults looms large.

14.2.2 Bridges: Simple Versus Complex

As experience was gained with primitive Ethernet bridges in the late 1970s and
early 1980s, the networking community became entangled in yet another inter-
necine conflict, this one over the amount of “intelligence,” that is, processing
power and storage, that should be required of bridges. On one side were the
advocates of the learning bridges then being deployed in Ethernet networks.
Such bridging, which was called transparent because the L2 concatenation exe-
cuted was invisible to end systems, was enhanced with the introduction of the
spanning tree protocol developed by Digital Equipment Corporation to allow
complex topologies with redundant paths.

On the other side were advocates of simpler bridges requiring less com-
putational power, who pushed for the approach called source route bridging.
Source route bridging requires that end systems participate in the topology
discovery process by sending out explorer frames to find the end-to-end route
to the destination MAC address. These explorer frames were forwarded by the
bridges using flooding constrained by a path vector known as the routing infor-
mation field (RIF).

The different levels of sophistication translated into very different costs
for the two types of bridges. Transparent bridges have to have more processing
power to execute the learning and spanning tree algorithms than source route
bridges, which simply need to forward frames according to their RIF fields.

14.2.3 Bridges Versus Switches

An L2 switch is a bridge that has had many of its tasks implemented in silicon,
with substantial improvement in bandwidth but otherwise no real functional
enhancements. Both bridges and an L2 switch contain managers executing
workload actuation of kind, transforming the requested transport task into two
or more intermediate transport tasks. A switch is basically a faster bridge.

14.2.4 Bridges Versus Routers

We should say a word about the issue of concatenation at layer 2 versus con-
catenation at layer 3. This is a complicated trade-off that has changed over time
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as ASICs and other hardware assists have been incorporated. The traditional
advantage of bridges has been their relative simplicity and lower cost per port.
L2 concatenation is also protocol independent: Because no L3 or higher layer
addressing is referenced in the bridging scheduling, the concatenation is com-
pletely independent of upper layer protocol addressing. With the development
of high-speed L2 switches, performance has also been maximized, frequently
hitting “wire speed,” that is, the maximum forwarding rate a given data link
will allow.

On the other hand, the greater management sophistication that comes
with L3 concatenation offers its own benefits in terms of optimally utilizing
network resources. The greater topological sophistication of L3 concatenation
led in the early 1990s to the maxim “route where you can, bridge where you
must.” However, when high-performance L2 switches were developed this was
changed to “switch where you can, route where you must.” Now, with L3
switches routing IP at wire speed the comparison with dumb (i.e., L2) switches
is again one of economics and price per port.

14.3 Transparent Bridging: From Promiscuous to
Learning Bridges

Before there were transparent bridges or even learning bridges, there were
bridges that promiscuously forwarded frames. Recall from Chapter 12 that
our concatenation taxonomy started by asking whether the workload schedul-
ing that realized the end-to-end transport tasks relied on a model of the global
discrete event system and if so whether feedback was employed to update the
model’s state information. Promiscuous bridging is an example of model-free
or stateless concatenation: Although a promiscuous bridge may monitor the
state of the data links to which it is attached, it is stateless with respect to
the global topology and instead relies on flooding to ensure that L2 PDUs are
forwarded to their respective destinations.

Such early bridges simply forwarded frames between its interfaces without
any discrimination; for example, if a frame arrived at a bridge that had four
interfaces then three copies of a frame would be sent out to the interfaces it had
not arrived at. (This bears some similarity to split horizons in routing pro-
tocols.) From promiscuous bridges it was a short step to bridges that could
“learn” the topology of the LANs at least to the extent of recording the
source addresses of the frames that appear on their interfaces. For example,
Figure 14.1 shows a four-port bridge along with the address caches containing
source addresses from “learned” from frames seen on the respective Ethernet
interfaces.
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With this information in their caches, learning bridges could forward
traffic more efficiently than their promiscuous cousins. For example, if a frame
arrives from Ethernet 1 with the destination address AA00.0400.297E, then
the transparent bridge (or switch) would forward it directly to Ethernet 2, since
that address had already been learned and was in Address Cache 2. Of course,
if a frame arrives with a destination MAC address that is not in any address
cache (either because it has never been learned or because it was aged out)
then the bridge/switch will revert to promiscuous concatenation, flooding
the frame out its other interfaces where it will presumably eventually find its
destination.

We should note that an area where difference can arise between bridges
and L2 switches is in the size of the address caches: So-called “single-station”
switches allow only one end system per switch port, whereas no bridge ever
built limited LANs to a single station. However, single-station switches actually
map quite well onto the topology of 10BaseT hubs, which are already limited
by the physical layer protocol to a single station per port. In fact, vendors
exploiting this symmetry helped catapult Ethernet and Ethernet switching to
an insurmountable lead over Token-Ring LANs in the mid-1990s.

What is going on with learning bridges and switches (L2 intermediate sys-
tems)? A nonpromiscuous bridge (or switch) uses information accumulated in
the course of execution to reconstruct topology information. If the bridge is
isolated (that is, there are no other bridges to which it is connected), then the
topology information reconstructed will be strictly local. However, if two or
more bridges are operating in tandem to concatenate multiple LANs, then the
picture is more complicated. A MAC frame appearing at an L2 intermediate
system’s interface may have originated with an end system on that LAN or it
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may have been forwarded to that LAN by an upstream L2 intermediate system.
To the downstream intermediate system, however, there is no way to distin-
guish one type of MAC frame from another, and the source MAC address sim-
ply gets entered in the corresponding address cache.

Thus, the topology model maintained by the estimators within the L2
intermediate system is actually a global model. Whereas L2 concatenation at its
simplest (no learning) is a way of dynamically creating composite transporters
without any knowledge of global topology existing anywhere in the network,
transparent bridges do estimate global topology in a very primitive, solipsistic
way: Stations on the network are aggregated into regions corresponding to the
bridge’s interfaces. In the preceding example, the transparent bridge with four
interfaces, for example, has constructed a global topology model which has the
network broken down into four “regions.” The transparent bridge, as it moni-
tors the MAC source addresses of frames arriving at its interfaces, records/learns
the interface on which these stations are to be found; in this way, a topology
map, albeit a crude one, is constructed.

What L2 intermediate systems do not do is exchange their topology mod-
els with each other. As we said earlier, the difficulty of even attempting to do
this is that, because of the flat nature of the 802 address space, there is no way
to summarize or aggregate the contents of the address caches. Any topology
exchange would require exchanging every MAC address in each cache, some-
thing clearly not feasible in a substantial network with a large number of end
systems.

If network designers had been content with bridged LAN networks that
were limited to simple tree topologies, then the development of transparent
bridging could have stopped with these basic learning mechanisms. However,
such network designs are vulnerable to faults since there are by definition no
redundant paths—that is the whole point of the topology restriction, after
all. But even our admittedly brief exploration of network design at the end of
Chapter 12 should have been adequate to illustrate the importance of redun-
dancy in the design of network topologies. Without redundant paths, the fail-
ure of any single data link or intermediate system will result in a disconnected
network.

The problem that arises when L2 concatenation is being used to forward
traffic is that redundant paths can introduce loops, explosive replication of
PDUs due to flooding, and other anomalies. If, for example, in Figure 14.1
there was a downstream bridge/switch attached to Ethernet 4 that was also con-
nected to Ethernet 2 then a MAC frame could circulate on the loop defined by
the two Ethernets and the two intermediate systems. Also, because there is no
time-to-live or hop-count field in an Ethernet header (or any MAC header),
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nothing would cause the looping to ever stop. When this is combined with
PDU replication from flooding, the potential for network meltdown is clear.

Any solution to this requires some form of global synchronization of
the intermediate systems, specifically of their respective models/estimates of the
global topology. Because we just said this cannot involve their respective mod-
els of the end systems (address caches), we appear to have a contradiction.
However, transparent bridges can exchange explicit global topology informa-
tion about the network, if the location of bridges relative to each other is lim-
ited. And that is what transparent bridges do: Using a special type of routing
protocol, each L2 intermediate system contains an estimator that reconstructs a
global topology of where all the bridges are in the network; and, using a short-
est path first algorithm to superimpose a spanning tree on these, they cooperate
to eliminate forwarding loops.

Let’s illustrate this using the complex mesh of Ethernet LANs and trans-
parent bridges shown in Figure 14.2. Without any mechanism to prevent
loops, frames would bounce around endlessly, multiply, and eventually cause a
meltdown. Instead, the bridges have discovered each other via this routing pro-
tocol and have constructed a spanning tree on top of the network. This begins
with one bridge being “elected” to be the root of the spanning tree, after which
the remaining bridges are arranged on the tree. (We should stress that this
is only one possible spanning tree—other trees will result from different roots
being elected, different bandwidth LANs, and so on.)

Based on the spanning tree thus determined, a transparent bridge will
then determine out of which interfaces or ports it is allowed to forward frames.
To prevent loops, the algorithm selectively disables or blocks interfaces. For
example, in Figure 14.2 the blocking of just two ports is sufficient to prevent
any loops in the network.
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As with the routing protocols we discussed in Chapter 13, the algorithm
used in transparent bridging’s spanning tree is completely distributed. The
bridges exchange their topology information in bridge protocol data units,
which are encapsulated in using the SNAP header 01000010 (= 0′x′82).
Finally, note that there are two spanning tree protocols, the original one
defined by DEC and the one defined by IEEE 802.1d bridging standard.

14.4 Source Route Bridging

Recall in our concatenation taxonomy that we said concatenation mechanisms
could be divided into those that resulted in stage-by-stage (next-hop) forward-
ing and those that created the entire schedule of transport tasks sufficient to
realize a given end-to-end transport task. The generic term for the latter is
source routing; we discussed an example of source routing in Chapter 11,
IBM’s APPN protocol. The APPN protocol uses the Dijkstra shortest path first
algorithm and a link state routing protocol to create source routed virtual cir-
cuits. The same techniques can be employed at layer 2 with suitable modifica-
tions, and indeed are at the heart of the source route bridging protocol used to
concatenate Token-Ring LANs.

The Token-Ring community rejected transparent bridging for many
reasons. Some of these were technical but the political factors cannot be dis-
counted. Just as we saw in Chapter 8 that IBM would not adopt Ethernet and
instead chose Token Ring, so too it would not accede to transparent bridging,
which like Ethernet was widely identified in the computer industry with IBM’s
rivals, most notably DEC. And so, after source route bridging was rejected by
the IEEE 802.1 committee as the official 802 MAC bridge standard, IBM took
it to the 802.5 Token Ring committee, which ratified its use with Token-Ring
LANs. This is why one never encounters source route bridging outside Token-
Ring LANs.

The difference between source route concatenation at layer 2 and source
route concatenation at layer 3 is directly attributable to the limitations of the
802 addressing schema. Just as we saw that the “flatness” of the 802 address
space precluded any effective exchange of address caches among transparent
bridges to construct a global topology model specifying end system locations,
so too it prevents source route bridges and/or switches from reconstructing
any global topology model to construct the end-to-end route. Note that with
source route bridging the schedule consists of L2 intermediate systems (source
route bridges or switches) and Token-Ring LANs, whereas with L3 source
routing the route (schedule) created consists of L3 intermediate systems and
networks.
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Even if the address space were not an impediment, using any sort of rout-
ing protocol in source route bridging would have been difficult because of its
central design predicate, namely, simple bridges without substantial processing
resources. Otherwise the argument would have gone to transparent bridg-
ing. The whole point of source route bridging is to keep bridges simple and
inexpensive. This is likewise reflected in the fact that, whereas transparent
bridges connect an arbitrary number of Ethernet LANs, the canonical token-
ring bridge is strictly a two-port device connecting two and only two Token-
Ring LANs. Of course, multiport Token-Ring bridges and switches are
common today but these rely on the fiction of creating a virtual ring within the
intermediate system to which the k Token-Ring LANs are bridged by k virtual
two-port source route bridges. This is illustrated in Figure 14.3 where the four-
port source route bridge of the left is logically composed of four two-port source
route bridges connecting the actual rings 1, 2, 3, and 4 to a virtual ring 5.

So what did the architects of source route bridging devise to support
arbitrary (i.e., meshed) topologies and allow end-to-end schedules to be con-
structed? Rather than incorporate bandwidth (topology) estimators and work-
load schedulers within the L2 intermediate system a la transparent bridging, it
was proposed to let the network “discover” itself with the source route bridges
forwarding flooding special discovery PDUs that recorded their respective
paths as they made their way to the destination end system. As these PDUs,
known as explorer frames, fan out throughout the network, the result is an
exhaustive breadth-first search of the composite network that discovers all the
concatenation schedules (i.e., the end-to-end path made up of Token-Ring
LANs and source route bridges) that will reach the destination end system.
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For source route bridging to work correctly, a certain amount of manual
configuration is necessary. After all, for explorer frames to record the paths
they take there must be some way of differentiating one Token-Ring LAN from
another and, because multiple bridges may connect a pair of rings, of identify-
ing which source route bridge was transited. Specifically, the Token-Ring
LANs must be assigned 12-bit-long ring numbers and the source route bridges
assigned 4-bit-long bridge numbers (see Figure 14.3 for an example of this).
The standard requires that ring numbers be unique but bridge numbers are
unique only within the context defined by the two rings they connect. A little
arithmetic indicates that a bridged Token-Ring LAN network can have up to
4096 rings, and that between any pair of rings there may be up to 16 source
route bridges.

When an explorer frame is issued by a source route bridging end system,
it contains a special header, inserted after the MAC header, that is called the
routing information field (RIF). A RIF records the sequence of ring and bridge
numbers (Figure 14.4). The task of source route bridges in this discovery is
minimal, consisting mainly of replicating explorer frames and, before forward-
ing the explorer frames downstream, inserting their respective bridge and ring
numbers (the globally unique identifiers for these transporters) with which they
have been (manually) configured earlier.

Once these explorer frames reach the destination end system, a special
direction bit is set in the RIF header by the destination end system indicating
that the destination has been attained; and then the destination end system
sends these explorer frames back to the source end system, where the RIF speci-
fies the exact route the returning explorers follows. In all this, the source route
L2 intermediate systems do not have to make any scheduling decision on the
creation of end-to-end concatenations. These intermediate systems merely read
the RIF in each source routed frame and forward the frame on to the next
ring (data link) indicated. Another function of the RIF’s contents is to prevent
loops, much like the BGP path vectors we discussed in Chapter 13.

Back at the source end system, there are several choices as it receives these
returning explorer frames carrying the routes they have discovered in their
respective RIFs. An obvious choice is simply to take the first RIF that is
returned, on the assumption that its explorer frame found the quickest path in
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the network. A second choice is to store two or more RIFs and either keep the
excess as backups in case connectivity to the destination end system is lost or
to divide traffic between the multiple routes, effectively exploiting the concur-
rency potential offered by redundant topology of the Token-Ring network.
However, the latter strategy can backfire if used naively. For example, if LLC2
encapsulation is employed, this protocol does not tolerate well the out-of-order
arrival of frames. In any case, it is important that an end system age its cache of
RIFs since this will “turn over” any bad paths that may have been discovered,
for example, when the network was particularly heavily loaded.

Finally we should note that an immediate consequence of this distrib-
uted, “breadth-first” topology discovery is that the overhead on the network
can reach major proportions, particularly if a large number of source route
bridging end systems seek to discover routes to their respective destinations
simultaneously. In fact, this phenomenon was noticed early on with NetBIOS
(which must be bridged and is generally run over Token-Ring LANs) clients of
Microsoft’s LAN Manager server application. Several times a day (9:00 A.M.,
after lunch, and so on) severe broadcast storms would overwhelm networks.

To reduce the overhead associated with the route discovery, the 802.5
standard defined two different types of explorer frames. These are known as all
route explorers (AREs) and specifically routed explorers (SREs). What we have
described up to now is how AREs function. SREs, on the other hand, represent
a hybrid between source route bridging and transparent bridging in which the
source route bridges run a spanning tree algorithm. When an SRE is issued by a
source route bridging end system, it will be forwarded among the source route
bridges along the spanning tree; but, once it reaches the destination end system,
the SRE will be returned by the same flooding concatenation mechanisms used
with AREs on the way to the destination end system. Thus, an SRE fans out
as it returns to discover all the possible routes and collects the RIFs exactly as
an ARE does. Most Token-Ring drivers in end systems use only AREs in part
because many source route bridges, particularly older boxes, do not run the
spanning tree algorithm.

Another feature designed to reduce the overhead of route discovery in
source route bridging is the incorporation in more sophisticated source route
bridging implementations of a cache of MAC addresses that have previously
been the subject of explorer discovery, along with the RIFs returned. This
hybrid “learning” source route bridging has the advantage of significantly
reducing the management overhead due to the proliferation of explorer traffic.
As with caches in transparent bridges, it is important to age the cache entries so
that end systems are not inadvertently given routes that are no longer correct
or, as we just mentioned, were discovered at a particularly inopportune
moment in terms of network performance.
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14.5 Remote Bridging

The last type of L2 concatenation we want to look at is remote bridging. We
start by noting that “bridging” in the context of serial protocols is different than
“bridging” used in the context of LAN protocols, where it refers to one of sev-
eral techniques (transparent, source route, and so on) for concatenating data
links at layer 2. Used in the context of serial protocols, however, the term refers
to a form of layer 2 tunneling, in which a LAN frame (L2 PDU) is encapsulated
in a serial frame (L2 PDU) for transport across a data link.

Recall that we briefly considered tunneling in Chapter 12. As we saw
there, a very wide variety of mechanisms have been devised that can be broadly
characterized as tunneling, by which we mean encapsulation of a layer N PDU
in a PDU that is not a layer N – 1 PDU. The former we referred to as the
payload protocol, whereas the latter is the carrier protocol. Although there
are numerous varieties of L2 tunneling and remote bridging, many of them
proprietary implementations that were developed prior to PPP and which used
HDLC or even SDLC, we confine ourselves to remote bridging using PPP as
the carrier protocol.

Obviously, using PPP as the tunneling protocol for remote bridges would
encourage standardization and interoperability of internetworking devices, a
major PPP goal. Toward this end, the IETF published the Bridging Control
Protocol for negotiating various encapsulation and bridging parameters. Note
that several L2 tunneling protocols have been defined that use PPP as the
carrier protocol, including Cisco’s Layer 2 Forwarding (L2F) Protocol, Micro-
soft’s Point-to-Point Tunneling Protocol (PPTP), and the Layer 2 Tunneling
Protocol (L2TP).

Figure 14.5 illustrates the difference between local and remote bridges
connecting two 802.3 Ethernet LANs. (The choice is arbitrary—other LANs
such as Token Ring and FDDI can also be remotely bridged.)
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Unlike the simple L2 intermediate system that is executing local bridging,
remote bridging entails more than a question of forwarding: The decision is
whether to encapsulate for tunneling across the WAN link, rather than merely
just taking the frame to be bridged and reissuing it on the downstream LAN.

Beyond this, there are two types of remote bridges, depending on the visi-
bility of the serial link to the bridging protocol. If the serial link is invisible
(pure tunneling) then the two PPP link stations are called half-bridges, in that
the two together combine to act as a single local bridge insofar as the bridging
protocol is concerned. On the other hand, if the serial link is visible to the
bridging protocol (which considers it to be merely another LAN data link)
the two PPP link stations are called full bridges. Remote bridging in either
case involves creating a virtual topology: With full bridges it logically appears to
involve two bridges and three (LAN) data links, whereas with half-bridges it
appears to involve one bridge and two (LAN) data links.

Remote bridging with PPP is managed with a special network control
protocol called the Bridging Control Protocol (BCP). While it may seem
unusual to call bridging a network protocol, it does indeed use the PPP link in
the same way any true network protocol such as IP or IPX does. The protocol
type code for bridging is 0x0031 and for BCP is 0x8031. BCP is used by PPP
link stations to negotiate certain parameters that define remote bridging con-
figurations. Table 14.1 lists the options that can be negotiated between two
remote bridges using PPP to encapsulate their LAN traffic.

Options 1 and 2 in Table 14.1 involve the two PPP link stations exchang-
ing a proposed 12-bit LAN segment number and a 4-bit bridge ID and nego-
tiating agreement on one or the other but not both. The split or half-bridge
approach requires that both sides of the PPP link agree on the bridge ID since
the two remote bridges are considered halves of the same bridge. This is negoti-
ated with Option 1, Bridge Identification.
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If a full-bridge approach is used, then the PPP link is visible to the bridg-
ing mechanisms and is treated as a virtual LAN segment. It thus requires a LAN
segment number that must be negotiated by the PPP link stations using BCP
Option 2, Line Identification. The reason why both LAN segment number
and bridge ID cannot be simultaneously agreed to is that full-bridges and half-
bridges are mutually exclusive. With the former, the bridge IDs cannot be iden-
tical since the two remote bridges are considered separate entities, while with
the latter the bridge IDs must be identical because the two remote bridges are
considered parts of the same entity.

Option 03, MAC Support, allows PPP remote bridges to specify which
types of the MAC addresses they will support. Option 04, Tinygram Com-
pression, exploits the fact that many Ethernet frames, in order to meet the
minimum PDU size of 64 octets, contain padding that can be removed prior
to encapsulation in the PPP frame, thus reducing the overall traffic on the
PPP link. Following deencapsulation at the receiving bridge, the padding is
reinserted.

Option 05, LAN Identification, concerns the use of LAN IDs, not to be
confused with the bridge IDs and LAN segment numbers discussed with regard
to options 1 and 2, respectively. To understand LAN IDs, consider a pair of
remote bridges (half or full) that is multiported, that is, each of which has two
LAN interfaces, as in Figure 14.6, and where it is desired to remotely bridge
LANs but at the same time not bridge the LANs locally, that is, keep the local
traffic separate (perhaps for administrative or security reasons). One way to do
this would be to use four remote bridges, two at each location, but this would
entail two serial links as well as possible disruptions to other protocols that need
to be routed rather than bridged.

The alternative is to define two bridge groups, in effect creating two virtual
remote bridges executed/instantiated by the actual remote bridges. Keeping the
traffic for the respective bridge groups separated requires that the actual remote
bridges route frames originating in bridge group 1 only to LANs in bridge
group 1, route frames originating in bridge group 2 only to LANs in
bridge group 2, and so on. This requires some form of tagging, by which frames
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can be identified as belonging to a given bridge group. This tag is the LAN ID,
which is a 32-bit number and which is appended to the PPP frame header by
the bridging protocol when it encapsulates the LAN frames. In effect, the LAN
ID is a multiplexing field. The PPP link stations negotiating the parameters of
the remote bridging protocol would include option 05 in their Link Configu-
ration packets to indicate its use (multiple bridge groups) or not (monolithic
remote bridging).

Option 06, MAC Address (not to be confused with option 03, MAC sup-
port), allows one of the remote bridges on a PPP link to either send or solicit a
MAC address (Ethernet in canonical format). It is designed to support limited
functionality Ethernet remote bridges that have just one Ethernet LAN port.

Finally, option 07, Spanning Tree Protocol, is used by the remote bridges
to negotiate which if any bridging spanning tree protocol is to be used. This is
primarily a concern with transparent bridging, although as we just mentioned
spanning tree has been incorporated in source route bridging with SREs.

14.6 Summary

In this chapter we discussed the two dominant approaches to layer 2 (L2) con-
catenation, that is, bridging and L2 switching: the spanning tree/transparent
method used in Ethernet networks and the source route method used in
Token-Ring networks. We stressed the fact that the IEEE 802 MAC address
space is flat and the pivotal role this played in the development of both trans-
parent and source route bridging. This is because of the fact that with L2 relays
network (i.e., L3) addresses never enter the picture. The end-to-end transporter
is realized as a concatenation of MAC addresses, as it is with L3 concatenation,
but with the difference that there is no way to associate a given address with a
part of the network such as an IP network or SNA subarea.

We then moved on to examine how bridging began with promiscuous
concatenation and how it is an example of model-free workload scheduling.
When learning algorithms were added, however, the concatenation ceased to be
model free; in fact, each transparent bridge/switch does maintain a topology
model in the form of tables of addresses, one table for each transporter inter-
face to which the bridge/switch is attached: taken together, these tables con-
stitute a global topology model, albeit one distorted by the centrality of the
bridge/switch in question. We then saw how simple learning bridges can fail in
redundant topologies, and how an elementary routing protocol has been devel-
oped to allow bridges to exchange local topology information and reconstruct
global topology to the extent of discovering where the other transparent bridges
in the network are relative to each other. With the limited model, the
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transparent bridges superimpose a spanning tree on the network to prevent any
looping of L2 PDUs.

In contrast to transparent bridging, we saw that source route concatena-
tion relies on a very different technique in which a source end system initiates a
search procedure that culminated in the discovery of all possible end-to-end
concatenations (data links and intermediate systems) that could connect it to
the destination end system it desired. The rationale for this approach was
to allow less expensive bridges to be implemented, because as was explained
the only function of a basic source route bridge is to read RIFs, add local ring
and bridge numbers, and forward PDUs. However, we saw that to reduce the
broadcast storms and other management overhead associated with source route
bridging’s discovery mechanisms, more sophisticated variants have been
defined that employ spanning tree protocols and/or learning bridge-style
caches.

Finally, we looked at remote bridging and saw how this is, in fact, a form
of tunneling in which the carrier protocol is itself generally an L2 protocol such
as HDLC or PPP. We explored the options offered by PPP’s Bridging Control
Protocol.
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hierarchy, 403

Backward Error Control (BEC), 145
defined, 82, 161
FEC vs., 161–65
positive acknowledgments and, 162
retransmission and, 162, 201
See also Forward error control (FEC)

Backward Explicit Congestion Notification
(BECN), 312

Bandwidth
actuation, 16, 397
channel, 44, 50
continuum of change, 18
control coordination, 24–25
effective, 14
estimator, 32
managers, 16–17, 26
modularization, 397–99
server, 13, 15
transporter, 50
WAN data link, 167
workload vs., 25

Bandwidth Allocation Control Protocol
(BACP), 220, 251–52

Bandwidth Allocation Protocol
(BAP), 220, 251–52

packet type codes, 252
requests, 251

Bandwidth management, 14–18, 66

concatenation, 396–99
defined, 4
server parameter trade-offs, 15
tasks, 38

Bandwidth monitoring, 121–25, 192–95
illustrated, 194
response frames, 194–95

Baseband channels, 52, 53
Baseband signals

channel types and, 52
illustrated, 51

Basic Information Unit (BIU), 356
Basic Transmission Units (BTUs), 356
BBN 1822, 319–20
Bellman-Ford algorithm, 411–13, 416
Bipolar waveforms, 57
Bisync, 176, 351
Bit error rates, communication channel, 159
Bit stuffing, 181
Block codes, 85, 87, 88–101

BCH code, 92–93
block size, 90
characteristics, 88–93
code rate, 90
code word weight, 91
cyclicity, 91
decoding, 98–101
encoding, 93–98
examples, 88–89, 91–93
Golay code, 92
Hamming code, 91–92
Hamming distances, 90–91
linear, 91, 99
maximum-length shift register code, 93
nonlinear, 91
parameters, 89–91
parity code, 88–89

Block encoder, 86
Blocking, 289

defined, 154
illustrated, 154

Blocks, 90
Border Gateway Protocol (BGP), 423–25

defined, 423–24
design, 424
peers, 423–24
policy routing in, 425
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RIB-In, 424–25
routers, 423, 424

Bose-Chaudhuri-Hocquenghem (BCH)
codes, 92–93

decoding, 101
syndrome, 101

Boundary function, 285, 354
Boundary Pool (BPOOL), 367
Bridges

four-port, 433
groups, 442–43
learning, 378, 433
local, 440
remote, 440, 441, 442
routers vs., 431–32
simple vs. complex, 431
switches vs., 431

Bridging, 378–79, 430–43
defined, 5, 262
efficiency, 5
foundations, 430–32
remote, 440–43
source route, 436–39
spanning tree protocol, 443
taxonomic challenge of, 378
transparent, 431, 432–36

Bridging Control Protocol
(BCP), 429, 441–42

defined, 441
options, 441

Broadband
channels, 52, 53
defined, 51

Broadband signals, 51
channel types and, 52
illustrated, 51
uses, 52

Cells, 153
Challenge-Handshake Authentication

Protocol (CHAP)
authentication process, 235
defined, 234
packet type definition, 234–35
PAP vs., 236
See also Authentication protocols

Channel capacity

defined, 44
with Error Correction Coding, 84

Channels, 42–48
actual vs. ideal, 43–45
AUI, 136–39
bandwidth, 44, 50
baseband, 52, 53
broadband, 52, 53
defined, 42–43
delay vs. frequency, 45
DMC, 41, 48
noise, 45
receiver relationship, 46
satellite, 43
transmitter relationship, 46
types of, 52
waveform, 53

Channel topologies, 46–47
many-to-one-to-many, 47
one-to-one-to-one, 46–47
point-to-multipoint, 47

Classes of procedure, 211–13
Balanced Asynchronous Class (BAC), 211
Unbalanced Asynchronous Class

(UAC), 211, 212
Unbalanced Normal Class (UNC), 211
See also High-level Data Link Control

(HDLC)
Classless Interdomain Routing

(CIDR), 402, 404–6
Client(s)

managing (workload control), 125–34
managing (workload monitoring), 134
with parameters, 12
plant, 10
proxy, 22
transport, 25–34
transporter and, 27

Clock recovery, 68–72
Closed-loop flow control, 156, 169
Closed-loop maintenance, 83, 343
Closed-loop scheduling, 257, 259, 385
Code rate, 90
Coding theory, 28
Combined Link Station (CLS), 213–14
Composite transporters, 397–98

as link stations, 288
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Composite transporters (continued)
realization factors, 397–98
See also Transporters

Compression control protocol
(CCP), 243–45

Computer networking, 35
Concatenation

adaptivity, 385–86
bridging, 378–79
Class 0, 383, 384
Class 1, 383
Class 2, 383, 385
Class 3, 383, 385–86
defined, 376–79
fault management and, 389
faults, 381, 413–14, 420
flat, 394–96
hierarchical, 394–96
isolated, 387
L2, 375, 429–44
L3, 375, 401–26
mechanism taxonomy, 381–96
network design and, 396–99
open-loop, 386
routing, 376–77
taxonomy tree, 382
tunneling, 379–81

Concatenation management, 375–444
basics, 375–400
datagram, 393
layer 2, 429–44
layer 3, 401–26

Concurrent redundancy, 83
Congestion avoidance, 346
Connection actuation

setup sequences, 192, 193
teardown, 193

Connectionless end-to-end protocols, 304–6
Connection management, 187–92
Connection-oriented end-to-end

protocols, 304–6
Consistency, 296
Constant-weight code, 91
Constraint length, 103
Control protocols, 222
Control systems, 6–9

actuator, 7, 10

closed-loop, 4, 9
estimator, 8, 10
feedback, 8
illustrated, 5
as manager, 10
model, 9–10
open-loop, 8–9
perfect-information, 9
plants, 7–8
scheduler, 8, 10
sensors, 8, 10
types of, 8–9

Convolutional codes, 85, 86, 87, 102–6
defined, 102
generating, 104–5

Convolutional decoders, 105–6
Convolutional encoders, 102–4

with closed-loop decision making, 105
constraint length, 103
trellis diagram, 106

Cut-sets, 399
Cyclic codes, 91, 94–95
Cyclic Redundancy Check (CRC), 159–60

Data Circuit-terminating Equipment
(DCE), 110–34, 283, 284

defined, 110
DTE separation, 111
illustrated, 112
interface signal standards, 113–15
interface standards, 111–13
receiver timing, 133
serial, managing, 117–34
serial interface standards, 116
signaling, 131
transmitter timing, 133

Data Flow Control (DFC), 356, 357
Datagram protocols, 392
Data Link Management, 145–218, 283, 284

basics, 145–73
HDLC, 209–18
LANs, 255–77
point-to-point protocol, 219–53
SDLC, 176–209

Data link protocols, 146–49
classification, 149
purpose, 147–48
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realization, 147
simple vs. robust, 158–59
WAN, 166

Data links
abstracting, 287–89
connectionless-oriented, 150–52
connection-oriented, 150–52
half-duplex, 168
multipoint, 177
PDUs, 153
point-to-point, 177
PPP, 224
scheduling, 167–71
TWA, 196
virtual, 172
WAN, 167

Data Terminal Equipment (DTE), 110–34
DCE separation, 111
defined, 110
IEEE 802.3, 136
interface signal standards, 113–15
interface standards, 111–13
internal signal problem, 114
manufacturers, 111
receiver timing, 133
serial, managing, 117–34
serial interface standards, 116
signaling, 131
transmitter timing, 133

Decoders, 87
Decoding

BCH code, 101
block codes, 98–101
failures, 87
hard-decision, 87–88, 106
parity, 89
soft-decision, 88
tabular, 99
See also Encoding

Demodulation, 65–76
clock recovery, 68–72
defined, 28
noncoherent, 76
signal uncertainty and, 67–68
synchronization, 68–72
task, 66
See also Modulation

Demodulators
design complexity, 67
MESA decomposition of receiver

with, 67
nature of, 67
noncoherent, 76
optimum, 73–76
PAM, 75–76
PSK, 75
structure, 75
synchronization errors, 68

Dialog management, 294–95
Dictionary, 243
Diffusive routing, 416
Digital waveforms, 56–58

bipolar, 57
Manchester, 56–57
NRZ, 56
RZ, 56
See also Waveforms

Dijkstra algorithm, 416, 419–20
Discrete event system

performance, 11
state variables, 11–14

Discrete Memoryless Channel
(DMC), 48, 109

bit error rate, 79
defined, 41, 48
encoder/decoder encapsulating, 86
faults, 80–82
illustrated, 48
maintenance, 80–83
managing, 81
See also Channels

Distance vector intermediate system
(DVIS), 411

Distance vector routing protocols, 409–16
concatenation faults in, 413–14
dynamic programming equation, 411–13
GGP, 414
RIP, 415–16

Distributed Database Management Systems
(DBMSs), 296

Distributed Update Algorithm (DUAL), 416
Durability, 297
Dynamic programming equation, 411–13
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EIA-232, 111–13, 115, 117
Encoding

block codes, 93–98
parity, 89
See also Decoding

Encryption Control Protocol
(ECP), 241, 245

End-to-end management, 281–372
APPN, 369–72
basics, 281–314
connectionless, 304–6
connection-oriented, 304–6
defined, 283–94
dialog management, 294–95
flow control, 311–12
IMP-IMP protocol, 323
implementation, 298–302
IP protocol suite, 317–47
presentation services, 297
routing around faults, 310–11
SNA, 352–63
span of data link vs., 284
tasks, 298
transaction support, 295–97
transport vs. concatenation, 302

End-to-end PDUs, 306
encapsulating, 287
segmentation of, 312–13

End-to-end protocols, 283–94
criteria, 303–4
data link abstraction, 287–89
defined, 283
fault detection, 307–8
fault management, 308
fault recovery and, 292–93
flow control in, 311–12
global addressing, 285–87
implementation, 284–85
layered communication, 309–10
multiechelon maintenance, 309–10
reliability and flow control, 290–93
reliable vs. best effort, 306–11
taxonomy of, 302–14

Error control coding, 28, 79–107
block vs. convolutional, 85–87
components, 84–88
as DMC maintenance, 79

forward error control and, 83–84
introduction, 79–80

Error detection, 88
Error locator polynomial, 93, 101
Estimator, 10

balanced interface with, 115
bandwidth, 32
defined, 8

Ethernet, 169, 259–61, 260
defined, 259
DIX, 260–61
frames, 260
remote bridges, 443

Explicit Route Control (ERC), 353
Exterior Gateway Protocol (EGP), 423
Exterior routing protocols, 423–25

BGP, 423–25
distance vector vs. link state, 423
See also Routing protocols

External clocking, 132

Fatal faults, 14, 35
Fault(s)

composite transporter, 291–92
concatenation, 381, 413–14, 420
distributed, estimation, 162, 163
DMC, 80–82
estimation decision logic, 202
fatal, 14, 35
FCS, 203–5
isolation, 100
latent, 16, 35
persistent, 81
protocol, nonrecoverable, 205–6
protocol, recoverable, 202–3
relay, 291
routing around, 310–11
SDLC, 200–207
severity vs. duration, 81
transient, 14, 82
workload, 259

Fault detection, 35, 159–61
via Cyclic Redundancy Code (CRC), 160
defined, 16
end-to-end protocol, 307–8
IPv4 and, 332
monitoring and, 159
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NAU, 368
SDLC, 200–207
TCP, 343

Fault management, 20
concatenation and, 389
defined, 386
end-to-end protocol, 308
flow control relationship with, 158
redundancy in, 387

Fault recovery, 4, 162
end-to-end protocols and, 292–93
FEC vs. BEC, 161–65
flow control relationship with, 163
NAU, 368
in response to feedback, 162
SDLC, 200–207

FCS/CRC, 160–61
calculating, 161
estimation, 161
field, 164

Feedback
control system, 8
fault recovery in response to, 162
types of, 387–89
workload managers, 169

Fixed-weight code, 91
Flat concatenation, 394–96
Flooding, 287, 377
Flow control, 154–58

closed-loop, 156, 169
at data link layer, 155
decision logic flowchart, 199
effected by withholding

acknowledgments, 198
end-to-end protocol, 290–93, 311–12
fault management and, 154, 158
fault recovery relationship with, 163
feedback-based, 155
open-loop, 156
PPP and, 226
SDLC, 196–200
“stop and wait,” 156, 157, 163
TCP, 345–46

Forward Error Control (FEC), 82, 83–84
BEC vs., 161–65
defined, 82, 161
noise faults and, 145

redundancy, 161
See also Backward Error Control (BEC);

Error control coding
Forward Explicit Congestion Notification

(FECN), 312
Frame abort condition, 203
Frame Check Sequence (FCS), 159–60

faults, 203–5
See also FCS/CRC

Framing
defined, 152
issues, 153

Frequencies
attenuation vs., 44
channel delay vs., 45
sampling, 63

Full-Duplex (FDX) transporter, 129
bidirectional, 127
end-to-end, 313

Fundamental theorem of information
theory, 50

Galois field theory, 95
Gateway to Gateway Protocol

(GGP), 402, 414
Generator matrix, 96, 97

dimension, 104
Hamming code, 97, 99
for nonsystematic code, 98
in “systematic form,” 97, 99–100

Generator polynomial, 95
Go-back-n, 164
Golay code, 92
Graph theory, 398

Half-Duplex (HDX) transporter, 127
end-to-end, 313, 314
“turning around,” 130–31

Hamming codes, 91–92
code words, 92, 97
data block, 92
defined, 91–92
error patterns for, 101
generator matrix, 97, 99
syndromes for, 101

Hamming distances, 90–91
defined, 90
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Hamming distances (continued)
formula, 90
of two code words, 91

Hard-decision decoding, 87–88, 106
Hierarchical concatenation, 394–96
High-level Data Link Control

(HDLC), 209–18
Asynchronous Balanced Mode

(ABM), 175–76, 210
Asynchronous Response Mode

(ARM), 210
bases and towers, 216
classes of procedure, 211–13
defined, 175
elements of procedure, 213–15
header, 217
locus of control, 210–11
multiprotocol support, 215–17
SDLC and, 209–10
See also Synchronous Data Link Control

(SDLC)
High Performance Parallel Interface

(HPPI), 114
High Performance Routing

(HPR), 350, 371–72
adaptive rate-based flow/congestion

control, 371
ANR, 371
RTP, 371–72

Host Access Protocol (HAP), 320
Hot potato algorithm, 384

IEEE 802.3 standard, 135–39, 263–66
AUI channels, 136–39
carrier sensing, 263–64
collision recovery, 264–66
defined, 263
DTEs, 136
early token releases, 270
frame format, 263
MAC addressing, 262
MAC frames, 268–71, 272
MAC vs. LLC frames, 270–71
MAUs, 135–36
physical interface, 135–39
ring management, 271–74
ring operation, 274–75

sequential allocation via token
passing, 266–68

IEEE 802.4, 266
IEEE 802.5 standard, 139–41

frame format, 268
MAC addressing, 262
physical interface, 139–41

IMP-IMP protocol, 321–23
end-to-end management of, 323
packet types, 322
parts, 321
reliability, 321
See also ARPANET

Information frames, 182
Interface Message Processors

(IMPs), 318, 319, 402
Interior Gateway Routing Protocol

(IGRP), 416
Interior routing protocols, 408–23

distance vector, 409–16
link state, 416–23
See also Routing protocols

Intermediate Session Routing (ISR), 370
Internet

growth, 3
topology, 402–4

Internet Control Message Protocol
(ICMP), 335–39

defined, 336
destination unreachable message, 336–37
echo request/echo reply message, 339
fault detection and, 336
messages, 338
MTU discovery and, 339
parameter problem message, 337
redirect message, 338
source quench message, 337–38
time exceeded message, 337

Internet Protocol (IP), 317
addressing, 329
address space, 328–30
forwarding table, 406
stacks, 327
suite illustration, 326
See also IPv4; IPv6

Internet Standard Point-to-Point Protocol
(ISPPP), 220–22, 237
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Internetworks, 6
Intersymbol interference, 53
IP Control Protocol (IPCP), 238–40

defined, 238–39
options, 239–40
See also Network Control Protocols

(NCPs)
IPv4, 317, 318

address, 329
defined, 318, 328
fault detection and, 332
header, 330–32
use of, 318
See also Internet Protocol (IP)

IPv6, 317, 318, 333–35
defined, 328
fragmentation and, 334
packet header, 308, 333
priority and flows, 334–35
RFCs, 335
use of, 318
See also Internet Protocol (IP)

IPX Control Protocol (IPXCP), 240–41
defined, 240
negotiation, 241
options, 240–41

Isolated concatenation, 387
Isolation, 297

Jitter, 6, 153

L2 concatenation, 429–44
bridging foundations, 430–32
defined, 375
introduction, 429
remote bridging, 440–43
source route bridging, 436–39
transparent bridging, 432–36
See also Concatenation; Concatenation

management
L3 concatenation, 401–26

defined, 375
exterior routing protocols, 423–25
interior routing protocols, 408–23
introduction, 401–2
routing modularization, 402–8

See also Concatenation; Concatenation
management

Latent faults, 16, 35
Layer 2 Forwarding (L2F) Protocol, 440
Layer 2 Tunneling Protocol (L2TP), 440
Layered communications

illustrated, 29
nature of, 30

Layering, 29–30, 38
Life cycle management, 36–37
Linear codes, 91
Line idle condition, 203
Link access procedure balanced, 215
Link Control Protocol

(LCP), 219–20, 227–33
code classes, 228
fault estimation process, 232
link configuration packets, 228–29
link maintenance packets, 231–32
link termination packets, 228, 231
loopback packets, 233
MP parameters and, 249–50
negotiation, 227
options, 230
packet structure, 227–28
See also Point-to-Point Protocol (PPP)

Link Quality Monitoring (LQM)
Protocol, 226, 227, 236

defined, 236
LQR, 236

Link Quality Report (LQR), 236
Link State Advertisements

(LSAs), 417, 422–23
Link state routing protocols, 416–23

concatenation faults in, 420
defined, 410
finding shortest paths, 419–20
global topology reconstruction, 417–19
OSPF, 420–23
topology model, 417
See also Routing protocols

Link stations
in ABM state, 210
in ARM state, 210, 211
combined (CLS), 213–14
connection request/reply, 150
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Link stations (continued)
destination, 160, 197
flow control between, 196–200
negotiation, 151
in NRM state, 211
PPP, 224, 225, 226–27
primary (PLS), 169, 178
SDLC, 180
secondary (SLS), 169, 176, 178, 186–87
sending, 155, 197
See also Data link protocols; Data links

Local-Area Networks (LANs), 126, 255–77
defined, 255
end systems, 377
Ethernet, 259–61
IEEE 802 standards, 261–76
IEEE 802.3 physical interface

standard, 135–39
IEEE 802.5 physical interface

standard, 139–41
serial protocols and, 261
signals, 135

Locally Assigned Addressing (LAA), 430
Logical Link Control (LLC), 255, 261, 276

fields, 276
header, 276
LLC1, 256, 261, 276
LLC2, 256, 261–62, 276
MAC frames vs., 270–71

Logical Units (LUs), 361
Loopbacks

defined, 120
illustrated, 120
local, 121
maintenance test, 121

LZW algorithm, 244

Management
centralized, 30–32
concatenation, 375–444
connection, 187–92
data link, 145–277
dialog, 294–95
distributed, 30–32
embedded, 29–30
end-to-end, 281–372
implementation cost, 32–34

life cycle, 36–37
NAU, 367–69
network, 37
PCN, 363–67
PPP, 225–27
protocol vs., 34–36
TCP, 341, 342
UDP, 339

Manchester encoding, 56–57
differential, 57
illustrated, 57

Maximum A Posteriori (MAP), 74
Maximum capacity, 50
Maximum-length shift register codes, 93
Maximum Segment Size (MSS), 342
Mean time between failures (MTBF), 14
Mean Time to Repair (MTTR), 14
Measurement-Estimation-Scheduling-

Actuation. See MESA model
Medium Access Control (MAC), 255, 261

destination/source address fields, 268
global addresses, 262
IEEE 802 addressing, 262
IEEE 802 address space, 430–31
IEEE 802.5 frame, 268–70
LLC frames vs., 270–71

Medium Access Units (MAUs), 135–36
components, 137
defined, 135
functions, 136
IEEE 802.3, 136
TCU, 140–41
workload/bandwidth managers, 136

MESA model
advantages, 37–38
decomposition of modulation of

waveforms, 64
decomposition of receiver with

demodulator, 67
defined, xvii, 4
modulation and, 62
server management trade-offs, 15
as “toolbox,” 38

Modems
defined, 28
eliminators, 111
null, 110
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Modulation, 61–65
amplitude, 54
as channel adaptation, 65, 66
defined, 28, 61–62
frequency, 54
Frequency Shift Keying (FSK), 62
management, 64–65
MESA model and, 62
phase, 54
Phase Shift Keying (PSK), 62
Pulse Amplitude (PAM), 62, 74
Pulse Code (PCM), 62
Quadrature Amplitude (QAM), 55, 62
task scheduling, 65
Trellis Code (TCM), 80, 105
See also Demodulation

Moy’s Taxonomy, 407–8
Multilink protocol (MP), 220, 245–51

compression/encryption and, 250–51
defined, 247
encapsulation, 247–48
fragmentation, 248
headers, 248
LCP negotiation and, 249–50
See also Point-to-Point Protocol (PPP)

Multiplexing
random access radio channel, 258
upper layer clients, 293–94

Multiprotocol Label Switching (MPLS), 379
Multiprotocol networks

data link in, 171–72
HDLC and, 215–17
PPP and, 224–25

Multistation Access Unit (MAU), 263
Multitasking

concurrent, 13
half-duplex, 178
sequential, 178
serial, 13

N-connected networks, 399
Network Addressable Units

(NAUs), 354, 359–60
defined, 359–60
fault detection/recovery, 368
illustrated, 362
logical units, 361

management, 367–68
physical units, 360–61
session-level pacing, 368–69
SSCP, 361–63
types of, 360

Network Address Translation
(NAT), 285, 381

Network Control Program (NCP), 359
Network Control Protocols (NCPs), 237–41

defined, 237
IPCP, 238–40
IPXCP, 240–41
packet types, 238
protocol numbers, 238
slowdown, 367
type code, 237
See also Point-to-Point Protocol (PPP)

Network design, 396–97
mathematics, 399
problem, 398

Network Interface Card (NIC), 262
Network-Layer Reachability Information

(NLRI), 404
Noise

AWGN, 45
channel, 45
signal, 49

Nonlinear codes, 91
Nonproductive receive condition, 202, 203
Non-return-to-zero (NRZ) encoding, 56

On-line Transaction Processing (OLTP), 295
On-off keying, 55
Open-loop concatenation, 386
Open-loop flow control, 156
Open-loop maintenance, 343
Open Shortest Path First (OSPF)

protocol, 401, 417, 420–23
defined, 420
encapsulation, 421
link costs, 421–22
LSAs, 417, 422–23
modularization, 422
parts, 422

OSI Reference Model, 283, 300
alternatives, 301
protocol stack, 301
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Pacing
response, 365
session-level, 368–69

Packets, 228–33
link configuration, 228–29
link maintenance, 231–32
link termination, 228, 231
loopback, 233
ULP, 241

Packet switching, 20
Parity check matrix, 99
Parity code, 88–89

defined, 88
encoding/decoding, 89
See also Block codes

Password Authentication Protocol (PAP)
authentication process, 235
CHAP vs., 236
packet type definition, 234
See also Authentication protocols

Path Control (PC) layer, 353–56
sublayers, 353
transport entities, 353–54

Path Control Network (PCN), 353, 363–67
defined, 301
management, 363–67

Path information units (PIUs), 364
Path problem, 408
Persistent faults, 81
Phantom circuits, 141
Phased-Locked Loop (PLL), 71

defined, 72
illustrated, 73
implementation, 72–73

Phase modulation, 54
Phase Shift Keying (PSK), 62, 75
Physical units (PUs), 360–61
Pipelines

effective depth of, 199
example, 157
nominal depth of, 198

Plants, 9
client/server, 10
defined, 7, 39
interacting with, 7–8
managing, 10–25
modulated, 65

output variable, 8
Point-to-Point Protocol (PPP), 217, 219–53

authentication protocols, 233–36
BACP, 220, 251–52
BAP, 220, 251–52
base and towers, 222–24
components, 222
configuration negotiation, 226–27
control protocols, 222
data link, 224
data link taxonomy and, 223–24
defined, 219
encryption and compression in, 242
flow control and, 226
frame format, 222
introduction, 219–20
ISPPP, 220–22, 237
LCP, 220, 227–33
link station option negotiation, 227
link stations, 224, 225, 226–27
LQM, 226, 227, 236
management, 225–27
MP, 220, 245–51
multiprotocol networking and, 224–25
NCPs, 237–41
network control protocols, 220
payload protocols, 223
remote bridging with, 441
requirements, 220–21
transforming protocols, 241–45

Point-to-Point Tunneling Protocol
(PPTP), 440

Poisoned reverse, 414
Policy routing, 425
Positive acknowledgment and retransmission

(PAR), 162
Presentation services, 297
Primary Link Stations (PLSs), 169, 178

configuring, 188
workload scheduler, 200
See also Link stations

Program Status Word (PSW), 7
Protocol Data Units (PDUs)

“birds of flight,” 291
data link, 153
defined, 147
end-to-end, 287, 306, 312–13
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fixed-length, 173
header, 147, 172, 307
illustrated, 147, 148
L2, 289
L3, 289
payload, 147
SNA, 352–57
trailer, 147
UDP, 339–40

Protocol machines
defined, 146
hierarchy, 147

Protocols
AHHP, 323–24
ANR, 371
APPN, 350, 369–70
ARPANET, 319–24
authentication, 233–36
BACP, 220, 251–52
BAP, 220, 251–52
BCP, 429, 441–42
BGP, 423–25
byte-oriented, 176
CHAP, 234, 235, 236
datagram, 392
data link, 146–49
defined, 146
distance vector routing, 409–16
EGP, 423
EIGRP, 416
end-to-end, 283–94, 302–14
GGP, 402, 414
HAP, 320
IGRP, 416
IMP-IMP, 321–23
IPCP, 238–40
IPXCP, 240–41
L2F, 440
L2TP, 440
LCP, 220, 227–33
link state routing, 416–23
LLC, 256, 261–62, 276
LQM, 226, 227, 236
MP, 245–51
NCP, 237–41
OSPF, 401, 417, 420–23
PAP, 234, 235, 236

PAR, 162
PPP, 217, 219–53
PPTP, 440
realization, 146
RIP, 401, 415–16
routing, 31–32, 388–89, 408–25
RTP, 371–72
SLIP, 221
SPAP, 234
transforming, 241–45
virtual circuit, 392–93
workload managers, 168

Proxy client, 22
Pulse Amplitude Modulation (PAM), 62

demodulators, 75–76
waveforms, 74

Pulse code modulation (PCM), 62

Quadrature Amplitude Modulation
(QAM), 62

defined, 55
scatter plot, 55

Queuing systems, 10

Random access radio channel
multiplexing, 258

Rapid Transport Protocol (RTP), 371–72
Reachability, 404
Reassembly lockup, 312
Received Line Signal Detector (RLSD), 123
Receivers

channel relationship, 46
decomposition of, with demodulator, 67
timing, 133

Reconstruction, 8
Redundancy

concurrent, 83
encoder induced, 86

Remote bridging, 440–43
with PPP, 441
See also Bridging

Request/Response Units (RUs), 356, 358
Requests For Service (RFSs), 4, 10, 19, 166

implicit, 12
mapping with composite servers, 22

ReSerVation Protocol (RSVP), 335
Response time, 6
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Return difference, 8
Return-to-Zero (RZ) encoding, 56
RFC-1547, 221
Ring Error Monitor (REM), 274
Ring Parameter Server (RPS), 273
Round-Trip Time (RTT), 344

measurements, 345
smoothed (SRTT), 344

Routing
classless interdomain, 404–6
defined, 21, 377
diffusive, 416
forwarding table, 406
high-performance, 371–72
information, reachability vs., 404
IP, 406
modularization, 34, 402–8
overhead, 33
policy, 425
tables, 392
TOS, 332

Routing Information Base-Inbound
(RIB-In), 424–25

Routing Information Field (RIF), 438–39
Routing Information Protocol

(RIP), 401, 415–16
characteristics, 415
defined, 415
split horizons, 415

Routing protocols, 31–32, 388–89, 408–25
analogy, 32
comparison taxonomy, 407–8
decomposition, 32
distance vector, 409–16
exterior, 423–25
interior, 408–23
link state, 416–23

RPacing, 365–67
defined, 365
window management and, 366

SABRE, 350
SAGE (Semi-Automatic Ground

Environment), 350
Sampling

frequency, 63
Nyquist theorem on, 64

Scheduler, 10
central, 311
defined, 8
manque, 70
master, 25

Scheduling
centralized, 390–91
closed-loop, 257, 259, 385
distributed, 390–91
end-to-end, 393, 394
end-to-end transporters, 313–14
mechanisms, 38
persistent, 306
tasks, 408

SDLC faults, 200–207
channel, 201
estimation decision logic flowchart, 202
FCS, 203–5
notification, 204
protocol, nonrecoverable, 205–6
protocol, recoverable, 202–3
sending link station origination, 201
types of, 200–201
See also Fault(s); Synchronous data link

control
SDLC frames, 180–85

abbreviations, 185
addresses, 181–82
control field, 182–84
destinations, 209
format illustration, 181
information, 182
list of, 185
loop, 207, 208
payload and trailer fields, 184–85
from PLS, 180
receipt acknowledgment, 183
response, 194–95
scheduling decision logic, 199
from SLS, 180
structure, 180–81
supervisory, 182, 198, 204
types of, 182
unnumbered, 182, 183
See also Synchronous data link control

(SDLC)
SDLC mode actuation frames, 189–92
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disconnection (DISC), 190–92
set initialization mode (SIM), 189
set normal response mode

(SNRM), 189, 214
Secondary link stations

(SLSs), 169, 176, 178
initialization mode (IM), 186
modes of operation, 186–87
normal disconnection mode

(NDM), 186
normal response mode (NRM), 186–87
See also Link stations

Selective rejection, 164
Sensors, 8, 10
Serial Line IP (SLIP) protocol, 221
Server(s)

bandwidth, 13
composite, 22
life style events, 15
with parameters, 12
plant, 10
tasking, 13
task set, 13, 17
transport, 25–34

Service data units (SDUs)
defined, 147
illustrated, 148
L3, 389

Session-level pacing, 368–69
Set Asynchronous Balanced Mode

(SABM), 213, 214
Set Asynchronous Response Mode

(SARM), 213
Shannon’s coding theorem, 84, 158
Shortest path spanning tree, 412
Signaling interval, 59
Signals, 49–61

AUI, 139
baseband, 51, 52
broadband, 51, 52
defined, 49
input vs. output, 63
LAN, 135
phantom voltage, 141
signal rates and, 50–52
waveforms, 52–61

Signal-to-Noise Ratio (S/N), 49, 64

Silly Window Syndrome (SWS), 346
Single-Error Correcting, Double-Error

Detecting (SECDED) codes, 92
Sliding window, 164
Slow-polling, 367
Smoothed RTT (SRTT), 344
SNA networks, 357–59

managing, 357
systems in, 357–59
See also Systems Network Architecture

(SNA)
Soft-decision decoding, 88
Source Route Bridging (SRB), 381, 436–39

arbitrary topology support, 437
manual configuration, 438
multiport, 437
See also Bridging

Spatial replication, 310–11
Specifically Routed Explorers (SREs), 439
Split horizon, 414
Splitting, 289

defined, 154
illustrated, 154

Star-wired ring, 140
Storage overhead, 165
Supervisory frames, 182
Switches

bridges vs., 431
learning, 433
single station, 433

Switching
defined, 5, 262
efficiency, 5
Multiprotocol Label (MPLS), 379
See also Bridging

Synchronization, 131–34
circuits, 134
demodulation, 68–72
transmitter/receiver timing, 133

Synchronizers
defined, 70
early-late, 71, 72
illustrated, 72

Synchronous Data Link Control
(SDLC), 171, 176–209, 351

actuation frames. See SDLC mode
actuation frames
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Synchronous Data Link Control (SDLC)
(continued)

addresses, 181–82
channel tasking vs., 179
connection orientation, 177
data links, point-to-point vs.

multipoint, 177
defined, 175, 176
faults. See SDLC faults
flag, 181
flow control, 196–200
frames. See SDLC frames
HDLC and, 209–10
link stations, 180
loop topologies, 207–8
mode actuations, 187
recovery parameters, 207
relationship to other layers, 208–9
state/mode transitions, 191
tasking, 178–80
task sets, 177–78
TWA, 178
TWS, 178
workload management, 195–200
with workload manager, 170
workload scheduler, 205
See also High-Level Data Link Control

(HDLC)
Syndromes

BCH, 101
for Hamming code, 101
table, 100–101

Systematic codes, 97–98
System Services Control Point

(SSCP), 361–63
defined, 361
role, 361–62
sessions, 362

Systems Network Architecture (SNA), 176,
261, 309, 310, 352–63

address space, 354
BTUs, 356
concepts and facilities, 352–63
data flow control, 356–57
half-session layers, 356–57
intermediate systems, 357
management model, 350

NAUs, 359–60
path control layer, 353–56
PDUs, 352–56
protocol layers, 353
protocols, 349, 352–57
protocol stack, 301, 350
timers, 309
transmission control, 356–57
transmission headers, 355
See also SNA networks

Systems Services Control Point (SSCP), 313

Tabular decoding, 99
Task sets

effective, 177
nominal, 178
SDLC, 177–78

TCP/IP, 309, 310, 402
end and intermediate systems, 327–28
protocol stack, 301
two-tiered modularization, 317, 355
See also Internet Protocol (IP);

Transmission Control Protocol
(TCP)

Terminal-host networks, 350–52
Three-way handshake, 342
Time slicing, 20–21

benefit, 20
illustrated, 21

Timing, 133
Token ring, 266–75

early token releases, 270
physical vs. logical topologies, 267
Ring Error Monitor (REM), 274
ring management, 271–74
ring operation, 274–75
Ring Parameter Server (RPS), 273
token passing, 266–68

Traffic shaping, 18
Transaction properties, 295–97

atomicity, 296
consistency, 296
durability, 297
isolation, 297

Transforming protocols, 241–45
CCP, 243–45
defined, 241

462 Protocol Management in Computer Networking



ECP, 243, 245
types of, 243

Transient faults, 14, 82
Transmission Control Protocol

(TCP), 317, 324–27
congestion avoidance, 346
connection management, 342
fault detection, 343
fault recovery and

retransmission, 343–45
flag subfields, 341
internetwork packet, 325
management, 341
multiplicative decrease, 346
packet header, 341
Silly Window Syndrome (SWS), 346
slow start, 346
teardown actuation, 342
See also TCP/IP

Transmission Group Control (TGC), 353
Transmission groups (TGs), 363–64
Transmitters

channel relationship, 46
timing, 133

Transparent bridging, 432–36
defined, 431
development, 434
function, 435
monitoring, 434
spanning tree and, 435
See also Bridging

Transporters
actual, 27
actuating (rate selection), 118–19
actuating (signal selection), 119
actuating (status), 117–18
actuating (switching to standby

transporter), 119
actuating (testing and

loopbacks), 119–21
allocating, 195–96
bandwidth, 50
broadcast, 47
client and, 27
composite, 288, 397–98
connectionless, 151
defined, 26

as DTE/transporter composite, 149
embedded, layered abstraction of, 288
end-to-end, 313–14
execution scheduling, 129–30
FDX, 127, 129
function of, 26
HDX, 127, 129, 130–31
mode transition diagram, 125
monitoring (mode

instrumentation), 124–25
monitoring (signal

instrumentation), 123–24
monitoring (status

instrumentation), 122–23
multilink, 246
multistage, faults, 291–92
physical, 26–29
serial interface, 115–16
task set and tasking, 126–28
time slicing, 152–54
as transmitter, channel, signal,

receiver, 27
trivial, 126

Trellis Code Modulation (TCM), 80, 105
Trivial transporters, 126
Trunk Coupling Unit (TCU), 140–41
Tunneling, 379–81

encapsulation, 379–80
L2, 380

Two-Way Alternating (TWA)
SDLC, 178, 196

Two-Way Simultaneous (TWS) SDLC, 178
requirements, 179
support, 179

Unnumbered frames, 182, 183
Upstream Neighbor Address (UNA), 275
User Datagram Protocol (UDP), 317

defined, 339
header, 340
management, 339
PDU, 339–40

V.24 standard, 115, 117
bandwidth control tasks, 118
bandwidth monitoring tasks, 122
workload control tasks, 128
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V.28 standard, 115
V.35 standard, 115
V.42bis standard, 244
V.54 standard, 120
Variable Length Subnet Masking

(VLSM), 405, 406
Virtual circuits

dynamic, 393
fixed, 393
protocols, 392–93

Virtual data links, 172
Virtual private network, 379
Virtual Route Control (VRC), 353
Virtual Telecommunications Access

method (VTAM), 357, 359
Viterbi algorithm, 106
Viterbi decoder, 105–6
Voltage-Controlled Oscillator (VCO), 73

Waveform channel, 53
Waveforms, 52–61

802.3 LAN, 56
amplitude, 54
analog, 53–56
bipolar, 57
cross-correlation between, 59–60
defined, 53
digital, 56–58
efficiency, 60–61
energy, 59
frequency, 54
illustrated, 54
normal vs. actual, 69
phase, 54
set, 58–61
size of set, 58–59
spectra and pulse shape, 61
transition, 58
See also Signals

Weight, 91
Wide-Area Networks (WANs), 166
Workload

bandwidth vs., 25
control coordination, 24–25
faults, 259
monitoring, 134, 135

Workload actuation, 19, 22, 129–34
illustrated, 132
scheduling execution of

transporter, 129–30
synchronization, 131–34
turning around half-duplex

transporters, 130–31
Workload management, 18–24

access/flow control, 18
actions, 22
connection vs. connectionless

operations, 150–52
defined, 4
distributed, 155
first-/second-level, 390
flow control, 154–58
manager, 21
next-stage vs. end-to-end scheduling, 394
reliable vs. best effort

transportation, 158–65
schedule persistence, 391–93
scheduling data link, 167–71
scheduling end-to-end

transporter, 313–14
SDLC, 195–200
tasks, 38
time slicing transporter, 152–54

Workload managers
coordinating, 26
distributed, 170
locus vs. feedback, 169
with OSI layers, 31
parameters, 168
protocol, 168
SDLC with, 170
types of, 168

Workload schedulers
coupled/decoupled, 200
in PLS, 200
SDLC, 205

Workload scheduling, 169
distributed, 170
master/slave functions, 169

X.25 protocol stack, 301
XTP (eXpress Transfer Protocol), 302
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