
Preface

"To boldly go where no man has gone before."
Mission statement for Star Trek, the original television series (TOS).

"To boldly go where no one has gone before."
Mission statement for Star Trek, the Next Generation television series (NG).

Early in the history of the development of IPv6, before a version number
had even been chosen- -abou t the time the original Star Trek televi-
sion series was being resurrected with a new series, Star Trek, the Next
Generation--members of the informally consti tuted Internet s tandards
body, the Internet Engineering Task Force (IETF), dubbed the working
group charged with designing a new version of the Internet Protocol IPng,
with the "ng" standing for "next generation."

Then, as now, most everyone used IP version 4; the first three version
numbers had apparent ly been expended in the research and development
process that resulted in IPv4, published as a s tandard in 1981. Version 5 had
been reserved for use with another protocol, 1 so once the broad outlines
of IPng were settled, so too was the version number.

1 The Internet Stream Protocol, Version 2 (ST-II), an experimental protocol that is described
in RFC 1190, "Experimental Internet Stream Protocol, Version 2 (ST-II)." Because this protocol
operated at the Internet layer (layer 3 in the OSI model), it required its own protocol version
to interoperate within TCP/IP networks.

e e

o , o

XVIII Preface

IPv6 can be considered an upgrade to IPv4 in the same sense that per-
sonal computing was an upgrade to mainframe computing. IPv4 is such
an integral part of global networking, so entrenched both in organizational
infrastructures and the products they use, that there will be no massive shift
from support to IPv6 from IPv4. Nor will there be any thought of tossing
out the older protocol entirely and replacing it with the new. Just as large
companies continue to rely on their mainframes for mission critical com-
puting facilities, so too will organizations continue to depend on IPv4 for
their networks as time goes on.

This book will help anyone involved in the process of evaluating, deploy-
ing, implementing, maintaining, or managing IPv6 for their own networks
or for network products or services. The book is divided into three
parts, the first outlining the insurmountable problems with IPv4 and the
solutions that IPv6 provides; the second, outlining the protocols that have
been devised to solve those problems; and the third, providing practi-
cal information and hands-on instructions for setting up and managing
IPv6-capable systems and networks.

About the Reader

This book is written for readers who already know something about IPv4
and TCP/IP networking in general. Although a brief refresher section on
IPv4 is included in Chapter 2, if you don' t already understand the funda-
mentals you may want to build an understanding of TCP/IP networking
using some other resource. 2 Rather than attempt to recapitulate such a
broad topic here, this book focuses on IPv6, how it works, and how to
use it.

It is also assumed that the reader knows what a Request for Comments
(RFC) document is3; if you don' t already know how to read RFCs, this
may be a good opportunity to learn. Although books and articles provide
important tools for understanding Internet protocols, there is no substitute
for reading the source documents such as RFCs, Internet-Drafts (works-
in-progress that may eventually be published as RFCs), and even working
group mailing lists.

2,,TCP/ip Clearly Explained" by Pete Loshin provides a good introduction.
3See Appendix for more details about RFCs as well as resources for finding, reading, and

understanding them.

Preface xix

About the Book

Rather than concentrating on protocol specifications, this book presents in
its first half the argument for IPv6 and shortcomings of IPv4, and only then
does it present the new and updated protocols. The second half should
prove helpful for those in the process of deploying IPv6, with chapters
on planning and using IPv6 on production networks. John Spence and
TK contribute their expertise in designing and implementing actual IPv6
networks.

For a complete introduction to the theory and history behind the need for
IPv6 networking, read Part I. For a complete introduction to IPv6 protocols,
read Part II. For a practical hands-on guide to running IPv6, read Part III.

PART I: THEORY

1:

2:

3:

The Disruptive Protocol. Disruptive technologies, as described by
Christensen in The Innovator's Dilemma, are sometimes characterized
as brilliant solutions to problems that don't yet exist, but that become
enormously successful despite the lack of existing market opportuni-
ties. This chapter explores the question of whether and how IPv6 might
come to succeed despite years of indifference from existing network
markets.

What's Wrong with IPv4. Over a quarter century, the Internet Protocol
as we know it (IPv4) has enabled growth of as much as seven or eight
orders of magnitude. Today's global and commercial Internet dwarfs
the original U.S. Department of Defense-funded ur-Internet. This chap-
ter highlights the reasons IPv4 is approaching the end of its useful life.
The very short answermlack of address space and explosion of non-
default routing table--summarizes a quarter century of unprecedented
scalability.

Patching IPv4. For the IETF, patching IPv4 has been a priority, alongside
the priority of developing a successor protocol, since the early 1990s.
The efforts to extend IPv4's useful life may have been too successful,
having pushed the imminent demise of the IPv4 addressing space from
1994 to as far out as 2011 or even further. A variety of strategies, includ-
ing conservation, rationing, and replacement, have been used over the

XX Preface

4:

5:

years, and for many network experts these efforts have succeeded far
beyond their goals of stopgap, short-term, solutions.

The Road to Next Generation. This chapter highlights the process by which
IPv6 has taken shape within the Internet community. From the time the
need for a new version of IP was first recognized to the most recent
refinement of the current Draft Standard protocols, choices have been
made in the shaping of that new protocol. This chapter examines those
options and explains why IPv6 looks the way it does now.

IPv6 Transition Issues. The Internet has always been a multiprotocol
network, being shared by systems transporting packets across a variety
of networks. This chapter examines migration and transition scenarios
as proposed in IETF working groups and RFCs.

PART I1:IPv6 PROTOCOLS

6: The IP Secltrity Protocol (IPsec). Claims that IPv4 security was neglected
by the founders are based on the argument that early IPv4 networks
were insecure things strung together on trust between naive but ulti-
mately honorable academicians. However, at the very start the Internet
Protocol was defined as a DoD Standard, and security was certainly
a consideration. Nevertheless, the IETF has given considerably more
explicit attention to IPv6 security than was accorded to IPv4 during
its development. This chapter provides an overview to the security
issues that are, and can be, addressed within the IP Security Protocol
framework.

7: IPv6 Protocol Basics. What does IPv6 look like? This chapter introduces
the new protocol, its features, and its functions.

8: IPv6 Addressing. The most obvious difference between IPv4 and IPv6
is in their addressing formats. IPv4 uses 32-bit (4-byte) addresses to
uniquely identify nodes within the global Internet; IPv6 uses 128-bit
(16-byte) addresses to uniquely identify nodes within the global
Internet. This chapter examines the IPv6 address space, how it is allo-
cated, how it is used, different types of addresses, and how to work
with them.

9: IPv6 Options and Extension Headers. One option open to IPng develop-
ers was to simply expand the IP address space and leave the rest of

Preface xxi

10:

11:

12:

13:

14:

IPv4 a lone--but that approach was rejected. As long as such a major
change, was necessary, it was reasoned, why not fix some of the things
that needed fixing in IPv4? This chapter describes how the IPv6 packet
headers differ from IPv4's. Inasmuch as the protocols themselves pro-
cess data in those headers, the behavior of the protocols are defined
by the protocol headers, so this chapter also introduces IPv6 protocol
changes.

IPv6 Multicast. Although the fundamentals of multicast are unchanged,
IPv6 offers significant improvements in the way multicast is speci-
fied and implemented. In this chapter, IPv6 multicast addressing is
examined in detail, as are the mechanisms such as Multicast Listener
Discovery (MLD) that have been introduced to improve multicast
under IPv6.

IPv6 Anycast. Something new in IPv6 is the inclusion of anycast, a type
of address that is like multicast in that more than one node can respond
to packets sent to the anycast address. The difference is that packets
sent to multicast addresses are delivered to all the nodes listening to
those addresses; nodes send packets to an anycast address when they
only need one of a group of nodes to respond. This chapter introduces
the IPv6 anycast address type as well as examines how anycast works
and what anycast can be used for.

IPv6 Internet Control Message Protocol (ICMPv6). Simpler is better, and
ICMPv6 represents a significant change in the way network meta-
data is exchanged among IPv6 nodes. This chapter introduces ICMPv6
and discusses how it differs from the versions of ICMP specified for
IPv4. ICMPv6 incorporates functions that were formerly performed by
the Internet Group Management Protocol (IGMP), Address Resolution
Protocol (ARP), and other protocols or mechanisms, and these new
functions are introduced in this chapter.

IPv6 Neighbor Discovery. One of the most important changes in IPv6 is
the inclusion of the Neighbor Discovery (ND) protocol. Using ICMPv6
messages, ND allows nodes to discover not just what nodes are on
the same local link network as themselves, but also determine when
nodes are unreachable, values for Internet parameters on their link, and
much more. This chapter introduces ND and examines how it works
and what it does.

IPv6 Routing. Scalability issues have long driven development of new
techniques for Internet routing, and some of those existing solutions

~

XXll Preface

15:

16:

17:

18:

19:

have been designed for use with IPv6. This chapter discusses how
internal and external routing protocols can be used with IPv6, as well
as issues of routing within a multiprotocol Internet.

IPv6 Quality of Service. One of the more intractable of problems with
IPv4 has been the question of how to provide different treatment to dif-
ferent packets as they are forwarded through internetworks. While an
egalitarian approach, in which all packets are treated identically, may be
philosophically appealing, in practice network service providers need
mechanisms that can allow them to assign priority (or at least mandate
levels of service) to certain subsets of the packets they handle. Despite
many years of working the problem for IPv4, IPv6 is, by design, better
adapted to provide Quality of Service differentiation--as is explained
in this chapter.

IPv6 Autoconfiguration. Network scalability requires the use of auto-
matic mechanisms rather than manual procedures for configuring and
updating the configuration of IP nodes. Again, the IPv6 specifications
provide an inherently easier approach to doing autoconfiguration than
IPv4. As will be explained in this chapter, special features of IPv6
make autoconfiguration easier.

Mobile IPv6. Nodes, whether laptop computers or devices such as
PDAs and mobile telephones, often move from network to network.
As these devices, and the networks, become more ubiquitous, the abil-
ity to transit from network to network without dropping connectivity
to a specific IP address becomes more and more useful. Mobility under
IPv6 is made simpler than under IPv4 through the use of IPv6 header
extensions and Neighbor Discovery.

IPv6 and DNS. To avoid extensive updates to related protocols, IPv6
relies on DNS to link domain names with IPv6 addresses. Despite
two different approaches to adapting DNS to work with IPv6, each
of which has a loyal following, the current status of DNS for IPv6 is
stable and reliable---and straightforward, as will be seen after reading
this chapter.

Next Generation Protocols. Some Internet protocols will have to be
adapted for use with IPv6; others can be used without any modifi-
cation. This chapter introduces the so-called next-generation protocols
and discusses how Internet protocols in general will interoperate
with IPv6.

Preface xxiii

PART nil: PRACTICE

20: IPv6 Transition Tactics and Strategies. The theory behind the knotty
problem of IPv4/IPv6 coexistence, migration, and transition was dis-
cussed in Chapter 5. This chapter offers real-world blueprints for IPv6
planning. Contributed by IPv6 and IP security expert John Spence,
this chapter gives you practical, no-nonsense approaches to supporting
IPv6 in the enterprise.

21: Configuring IPv6 on Server Operating Systems. This chapter provides
hands-on instructions for configuring IPv6 on your organization's or
your testing lab's server operating systems, including Windows NT,
FreeBSD, and Solaris 8.

22: Configuring IPv6 Routers. This chapter provides hands-on instruc-
tions for configuring IPv6 on your organization's or your testing lab's
routers, including Cisco 2611, Cisco 7200, Hitachi GR2000 series, and
NEC IX5010 series routers.

23: Practical IPv6 Security Solutions. This chapter provides hands-on
instructions for setting up working IPv6 security solutions, from
IPv4/IPv6 packet-filtering firewalls on Solaris and FreeBSD to config-
uring IPsec support and TCP wrappers on Solaris.

24: Email and DNS Under IPv6 . This chapter provides hands-on instructions
for setting up IPv6 applications, including installing and configuring
BIND, configuring a DNS server for an IPv6 networks, and setting up
an IPv6-compatible email server.

25: The Present andthe Future of IPv6. Crystal ball gazing is a risky proposi-
tion at best, but it becomes even riskier the nearer you get to the future.
In this brief chapter, we'll look at existing IPv6 implementations and
applications and at some possible futures for IPv6.

PART IV: APPENDIX

IPv6 RFCs and other Resources

xxJv Preface

Acknowledgments
This book would literally not have been possible without John Spence,
CISSP and Senior IPv6 Engineer at Native6 Inc. (www.native6.com).
Not only did he actually write important chapters, but he also helped
by making accessible work done by former Zama Networks employees
Robert C. Zilbauer, Jr., Grant Furness, Gerald R Crow, IV, Megan Ewers
Roede, Jim Van Gemert, Brian Skeen, and Steve Smith.

Thanks go also to Morgan Kaufmann staff including Karyn Johnson,
Rick Adams, Troy Lilly, and all the others who helped put this book
together. Likewise, thanks go to manuscript reviewers Adrian Farrel,
Dale Finkelson, Richard Nieporent and Peter Samuelson for their pungent
and timely comments.

Part One ~ Theory

Part I introduces the challenges facing IPv4 and the forces at work in the
development of a successor protocol. The reader should understand the
following topics after reading Chapters I through 5.

�9 How new technologies can overshadow strongly entrenched
existing technologies without ever seeming to present any
direct competition.

�9 The problems inherent in IPv4 and why they herald an end to
Internet growth.

�9 The mechanisms already designed and deployed to extend
IPv4's useful life, and the problems those mechanisms have
introduced.

�9 The steps taken in the development of IPv6.

The Disruptive Protocol

This chapter discusses one of the greatest challenges facing IPv6: market
acceptance. That this problem is economic rather than technical may be
surprising, but as technologies and the markets for them mature, those
markets start to behave just like any other commodity market. As founders
of so many Internet companies discovered in the first year or so of this
decade, it is just not possible to build a sustainable business unless the
business generates more in revenue than it costs to run.

At the same time, every once in a while the big companies manage to
miss out on a key new technology because it doesn' t fit into any exist-
ing market. IPv6 may be an example of just such a disruptive technology in
large part because it meets a need that consumers are not demanding.
A discussion of disruptive technologies and IPv6 is, therefore, appro-
priate before delving into the technical details of IPv6. Understanding first
what IPv6 will eventually make possible helps focus on the relevant parts
of the technology.

Part One ~ Theory

I . I Disruptive Technologies
The term disruptive technology comes from Clayton Christensen's book The
Innovator's Dilemma. 1 It seems as if every high-tech industry marketeer
immediately latched onto the new phrase, hoping to link their products
with the excitement that Christensen's ideas generated. Unfortunately for
most, disruptiveness is rarely recognizable except in hindsight: Disruptive
technologies are not always recognizable until after the fact, and for the
very good reason that disruptive technologies are most often adopted for
applications different from those originally intended.

Anyone working with technology can benefit from a quick read of
Christensen's book if only to better understand how technical develop-
ments can have economic impact. In large part based on studies of the hard
disk drive industry over several years and several generations of drive
technologies, the book presents a compelling argument that when engi-
neers develop a new technology they cannot always anticipate how that
technology will be used. Over and over, Christensen found, serious dis-
ruptions in the disk drive markets occurred when products were improved
in ways that previously would not have been viewed as key to increasing
sales.

For example, a hard drive manufacturer with a new, smaller disk drive
with lower power requirements would have a hard time selling it to
a workstation manufacturer--especially if the price per megabyte was
higher. But that same drive might be just the thing for someone who
is thinking about designing a powerful laptop computer. And, in fact,
the development of small, sturdy, low-power-consumption hard drives
made explosive growth in the previously nonexistent laptop market
possible.

That particular train has already left the station, but as barriers of perfor-
mance and price are broken, technologies developed for one market often
find their greatest success in some entirely different market. And many
disruptive technologies were not even developed for any existing market,
which means many will at first look just like conventional flops. These
technologies cause market disruption because they essentially create vast
new markets out of what were previously insignificant niche markets, and
disrupt the business of most of the leading firms in the industry. If your

1 Harvard Business School Press, 1997.

Chapter 1 �9 The Disruptive Protocol

business plan depends on building and selling millions of 8-inch floppy
diskette drives just as 5.25-inch drives become popular, your business will
be in serious trouble.

However, most technologies can be considered sustaining rather than
disruptive. A sustaining technology is one that, instead of disrupting
things, helps sustain the status quo. Established firms spend millions on
research and development in order to generate incremental improvements
in their products that will make them more profitable in several ways.

�9 By reducing cost of production. The same products become avail-
able at a lower cost to the manufacturer, who can either gain
market share by lowering prices or increase profit by keeping
prices steady and pocketing the savings. Sustaining technolo-
gies don't generally introduce trade-offs, such as very low
price in exchange for reduced performance, although disrup-
tive technologies may do so. Automobile manufacturers have
increasingly incorporated plastics and recycled materials in
new vehicles, thereby incrementally reducing their own costs of
production. These technologies are sustaining. A new process
for building cars for one-tenth the current cost, using inexpen-
sive plastic injection mold technologies, would be considered
disruptive.

�9 By improving performance. If 50 Mhz is good, then 100 Mhz is
twice as good and worth three times the price. Hardware,
software, and network vendors are constantly seeking ways to
improve performance that matter to customers; performance
improvements don't always matter. For example, vendors of
military GNC (guidance, navigation, and control) systems
discovered that there was little enthusiasm for enhancing
the accuracy with which nuclear missiles could be targeted.
A big one dead center on the Kremlin, they reasoned, will
be only marginally more effective than a big one that misses
by 50 yards. Yet, improved guidance systems have found
applications both in the military, which uses them for precision
targeting of conventional weapons, and in the civilian world,
where GPS systems are used for driver assistance systems,
navigation aids for back-country hikers and skiers, and dozens
of other applications.

�9 By adding features. The better a software company is at adding
features or locking in users for successive upgrades, the more
likely they are to be successful; Microsoft is superb. The more

Part One �9 Theory

features, the more likely the product will meet your needs.
And if you bought the first version because it met 80% of your
needs and the closest competitor met only 75% of those needs,
then when the upgrade comes around you'll be likely to go for
it as long as the feature list continues to expand. At the same
time, feature-rich software that uses proprietary standards is
vulnerable to software that is disruptive in support ing open
standards and allowing users to choose their own features.
By gaining early control of the operating system for computers
based on the Intel 8086/08x86 processor family, Microsoft's
Disk Operating System (MS-DOS) disrupted the way Apple
Computer did business. Apple has always been, fundamen-
tally, a software company that uses its own hardware as its
package. It took Microsoft over 10 years to offer the same
OS features that Apple did in 1983, but by then Microsoft
dominated the industry.

Thus, disruptiveness does not always mean a product that is better than
what is already offered by the leading firms in the industry. IPv6 may
very well be a far better protocol for the Internet as we know it now and
as we hope it continues to grow over the coming years. But barring some
compelling new application that requires IPv6 rather than IPv4 for use on
conventional routers, workstations, or servers, we will likely not see IPv6
used in any significant way on the Internet or out of North America for at
least a few years.

And that is the best news possible, because that's the way a truly disrup-
tive technology behaves. And disruptive technologies don' t just change
the dynamics of a market, making and breaking individual companies,
but they often create great big new markets that can dwarf the original
market.

1.2 IPv6: Disruptive or Sustaining?

Sustaining technologies advance the state of the art without radically
changing the way the state of the art is implemented. For example,
Intel and AMD keep enhancing the design of CPUs to make them faster
and faster--but the basic way computers are made and sold doesn't
change. Improving CPU performance is a sustaining technology for
computers.

Chapter 1 �9 The Disruptive Protocol

On the other hand, some new technology--let's say biological
computing--that offers no significant economic or performance advan-
tage over microprocessor would likely be a disruptive technology. After
all, why would anyone go to the trouble of creating a computer based on
this new technology when doing so would only invite trouble? You don't
have any existing infrastructure to support such computers (and you do
have a massive infrastructure for the mainstream microprocessor-based
computers). And there's no real benefit from building that infrastructure.

But let's say this biological computing technology can be used elsewhere--
not for computers but maybe some small niche. Let's say it works great
for controlling in-ground sprinkler systems because it interfaces directly
to the grass and can tell when it needs water.

Now, Intel, Microsoft, AMD, Apple, Compaq, and Gateway (among many
others) will get very interested and sponsor research into how to incorpo-
rate it into their product lines. But while the big guys are studying and
developing, the sprinkler guys are going to be actually selling it and maybe
even expanding into houseplant watering systems and from there into
household environmental control systems.

And while the big guys are still trying to figure out how to make these
things work in desktop computers or servers, the sprinkler guys will have
already created an entirely new market. And they'll have squeezed out the
big guys in the process.

At the same time, the upstart sprinkler guys may have turned these house-
hold controllers into devices that don't just keep the temperature just right
but also manage complex communications networks within and outside
the household. This is pretty much what most computing technology is all
about these days, and that means that by then the sprinkler company will
be bigger than Intel, Microsoft, et al. combined.

That's a disruptive technology.

How does IPv6 fit in? It's kind of like that brand new technology that
doesn't really provide any significant advantage over the existing state of
the art IPv4 but that can probably do lots of things you can't do with IPv4.
We don't know exactly what they are, but the one thing we do know is that
IPv6 networks can be immensely huge--so big as to almost be beyond the
imagination. This is not the same thing as the IPv4 Internet, which is quite
big, but at least we can still get our arms around the concept.

10 Part One �9 Theory

Even if everyone on earth owned a home and work PC, personal lap-
top, and a dozen or so other high-tech gadgets with connectivity, there
is no intrinsic reason we couldn ' t use various worka rounds (such as
Ne twork Address Translation and Realm-Specific IP, to be discussed in
Chapter 3) to keep IPv4 going. It might be messy, but it's pret ty safe to
suggest that the majority of the wor ld ' s populat ion is too poor for that
scenario.

But as the cost of building a networkable device continues to drop, the
potential for really big networks becomes more interesting. Compute rs
and other devices for which IPv6 is most often suggested (the most ridicu-
lous being, perhaps, the Internet Refrigerator) are expensive. There is
probably a practical ceiling on the number of networked "things "2 the
world 's economies can produce and maintain, based on the added cost of
network-enabling those things.

If the cost to network-enable a thing falls to the $100 level, $600 billion
would be sufficient to network-enable every individual in the w o r l d - -
quite a lot, but not an unprecedented sum to spend on such a huge project.
Drop the price to $1 per thing and you can network-enable everyone in
the world for the quite reasonable sum of $6 billion. A single organization
could conceivably underwri te such a venture on its own, or at least form
a consort ium to do so.

But things get really interesting the more the price drops. At the $0.01
level, all of a sudden you can start network-enabling some very interesting
things, depending on form factors and processing capabilities. Wiring the
world 's populat ion now costs only $60 million, well within the reach of
hundreds and perhaps even thousands of individuals.

At that price, though, there is almost no manufactured product that can
afford to not be wired, from produce to pencils.

The implications are staggering: Antitheft applications would not only
eliminate traditional shoplifting but would also eliminate employee

2A networked "thing" being anything to which a working network interface can be
grafted. Mostly, we think of networked things as computers cabled to a LAN or a telephone
line; increasingly, networked things can be wireless devices such as pagers, PDAs, and cell
phones. For now, though, the cost of adding connectivity hardware, software, and services
is still prohibitively expensive to consider for most of the things we use daily.

Chapter 1 �9 The DJsruptive Protocol 11

"borrowing" of corporate-owned pencils. Inventory and package tracking
systems could enable frighteningly accurate global just-in-time manufac-
turing applications. You don't need very much CPU to tell whether an
orange is ripe or rotten, to activate a radio beacon printed on the back of a
postage stamp to locate lost mail, or to arm (or disarm) a piece of military
ordnance.

Researchers continue to progress in developing devices that are cheap
(printed on paper instead of printed circuit boards), powerful enough to do
simple processing and store data statically, and small enough to be incor-
porated into almost any product or device. That's what I call a disruptive
technology.

1.3 The Value of the Network

As of early 2003, the first IPv6 production deployments have been in the
3G or third generation wireless mobile phone system. Early estimates of
the size of that network predicted hundreds of millions to a billion or more
nodes, or roughly an order of magnitude larger than the IPv4 Internet,
although so far those predictions are proving too optimistic. However,
IPv4 cannot support such large networks, and indications are that wireless
communications will only get bigger with time.

But after all, how many wireless devices can one person use? And where
else could we see IPv6 deployed any time soon? IPv6-capable toothbrushes
are still in the science fiction phase, after all. And how can we evaluate
the opportunity that IPv6 represents? Ethernet inventor and former 3Corn
chief Robert Metcalfe has written, "The value of a network grows by the
square of the size of the network." Like Moore's Law, this is more of a rule
of thumb, but it can still be quite useful in determining the relative worth
of two networks. Here's this conjecture expressed as an equation.

N e t w o r k value of X - node network = X 2

Let's say the Internet has 100,000,000 nodes and is worth X, which
according to Metcalfe's Conjecture is actually a value that equals

X = Y �9 100,000,000 2

12 Part One �9 Theory

Let's assign Y the arbitrary value of I IVU (Internet Value Unit), and we've
got a value to place on the IPv4 Internet.

10,000,000,000,000,000

or, to make it easier, 10 million billion IVU.

Let's also posit 100,000 nodes on IPv6 networks around the world today,
which, using the same formula, yields a total value for the IPv6 Internet of
10 billion (10,000,000,000) IVU, or one millionth the value of the existing
IPv4 Internet.

What happens when the 3G networks come up with 100 million users?
The value of the two networks, according to Metcalfe, would be more
or less equivalent. Although one could argue that unless IPv6 enables
more valuable communication among those nodes than is already being
transacted pre-IPv6, there has been no real value added at all.

Nevertheless, in 2002 the impact of IPv6 on existing network markets is
still negligible. The opportunities become clear only by looking to future
growth. IPv4 won' t support much more growth, and it certainly won ' t
support scalability beyond the current types of network applications.
Apply the network value conjecture to a future IPv6 network to get an
idea of the magnitude of the opportunity.

IPv6 enables much larger networks than the Internetmlarger on almost
unimaginable scales. For example, individuals and small business receiv-
ing the smallest IPv6 address allocation could easily manage networks
with 100 billion times as many nodes (and much bigger, perhaps) as the
Internet does now. And billions upon billions of organizations and
individuals could be accommodated with those network allocations.

A 10-billion-node IPv6 network uses only a minuscule fraction of the total
available IPv6 address space; its value would be roughly 10,000 times
greater than today's IPv4 Internet. Every time the IPv6 Internet grows
by a factor of ten, it becomes 100 times as valuable.

What would a 1-trillion-node (the equivalent of 10,000 Internets) network
be worth? The answer is 1,000,000,000,000,000,000,000,000 IVU, or 100
million times today's Internet.

At some point it becomes economically feasible to spend the money to
network-enable everything, even if the cost is more than $0.01 or even $1.

Chapter 1 �9 The Disruptive Protocol 13

1.4 Driving IPv6 Growth

1.4.1

Since 1994, IPv6-related hype has been accelerating. It would be hard to
imagine anyone in the networking business who has not at least heard
something about IPv6 by now. The reports never question why organiza-
tions would make the move to support IPv6, but concentrate on how IPv6
will differ from IPv4, how the technology will change, and how to go about
installing and configuring the technology.

Far less frequently does anyone talk about why an organization could
gain competitive advantage over others by migrating sooner. Not only do
network buyers fail to see any pressing need for IPv6, but the vendors
have only recently recognized that the time has come to stop stringing
along the IPv6 community with beta, evaluation, and research versions of
their products.

What will drive IPv6 growth? Organizations that migrate to IPv6 will do
so out of either fear or greedmfear of IPv4 address space exhaustion and
Internet backbone meltdowns, and greed for the new killer application
that makes IPv6 worth all the trouble it will take to deploy.

CRISIS OR BOONDOGGLE?

Migrating to an IPv4/IPv6 world implies that IPv6 offers something spe-
cial, something unavailable with IPv4. Sometime soon, the Cassandras of
IT exclaim, the IPv4 Internet will run out of address space. But even if you
have enough IP addresses, you're still facing a future where the balloon-
ing of the nondefault routing tables cause the Internet backbone routers to
melt down.

For those who believe in an IPv6 future, that is enough to start work on an
IPv6 plan. But anyone bamboozled by the drivers of the Y2K consulting
gravy train needs more than doubtful claims about falling skies. With costs
of IPv6 migrations expected to dwarf the Y2K expenditures, CIOs are going
to demand that IPv6 bring more to the table than the prospect of fending
off yet another vague threat.

IPv4 is unlikely to be sufficient to carry ~he Internet very far into the future.
Yet, few IT departments are embracing IPv6 to coexist with IPv4. Choosing
IPv6 as an enterprise solution offers organizations all the address space
they can handle, but they must still deal with IPv4 somehow. IPv6 then

14 Part One �9 Theory

1.4.2

either functions as a network address translator (NAT), isolating an IPv6-
only organization network behind a protocol translator, or else requires
that all systems support not just IPv6 but also IPv4.

KILLER APPLICATIONS

No sane person buys something he or she doesn't need, at least not usually.
Why buy IPv6 if it doesn't do any more than you can do with IPv4? People
bought into IPv4 because it allowed them to access the Internet and the
Web. Those were killer applications, and it is the applications that drive
demand for new technologies. Demand is just a nicer word that economists
use instead of greed.

There is no killer app for IPv6 in the enterprise--not yet anyway. Not only
isn't there any demand, but there is also the strong desire to keep what
you've got by not spending it on foolish things--another manifestation of
greed.

What benefits does IPv6 bring? Perhaps, it might possibly just help with
performance; maybe, it could conceivably cut down somewhat on admin-
istrative costs. Those rather vague and plausibly deniable assertions come
from experts within the IPv6 community who would rather not take the
heat when a CIO complains that she spent $100 million on IPv6 and all she
got was a lousy 4% improvement in throughput.

IPv6 is unlikely to lower costs over any but the longest time frames by
migrating, and perhaps costs will rise.

�9 Implementing IPv6 may require significant changes and
upgrades to existing systems and infrastructure.

�9 Supporting IPv4 and IPv6 during migration (perhaps over the
course of decades) is expensive.

�9 Technical staffs that are already strained must allocate time and
resources for training.

What about security? Is that the killer app for IPv6? Hardly: IPv6 is seen as
an improvement largely because the use of the IP Security Protocol (IPsec)
is mandatory for IPv6 but optional for IPv4. IPv4 can be made just as
secure simply by updating all nodes to include IPsec support.

Stateless autoconfiguration (see Chapter 16) has also been proposed
as candidate for killer IPv6 application. Although certainly useful and

Chapter 1 �9 The Disruptive Protocol 15

worthwhile, stateless autoconfiguration is hardly sufficient on its own to
drive acceptance. Clearly, some other IPv6 application that does something
unimaginably great must surface eventually or else IPv6 may be doomed.

1.4.3 PRODUCTS AND TECHNOLOGIES

It's easy for engineers and managers at leading networking vendors to
confuse technologies with products, since so many of them have been
involved in the business from the early days when the product w a s the
technology. As new technologies come to market, they often do start out as
explicit products like steam engines, electric motors, and even computers.
General-purpose implementations of new technologies are marketed as
products, to be bought and adapted for specialized or personal uses.

Until Microsoft bundled IP support into Windows 95, TCP/IP was treated
as a product too. There were a dozen or more companies selling their
own implementations of the protocol suite to be installed on Windows,
DOS, Macintosh, and other platforms. As Microsoft and other network
software vendors increasingly built their business on IP, it stopped being
a product and became a feature of other products. Although vendors still
sell IP stacks as standalone products, most people are happy to use what
comes with Windows or Linux or MacOS or Solaris or whatever OS they're
using. If you buy a box, it's almost assumed that it will run IP. Eventually,
IP support will be an assumed part of networkable devices in the same
way that optical media manufacturers don't list "electric motor included"
or "with LASER light!" on their features lists.

Distinguishing between product and technology is important because
brand new technologies are often packaged as products for early imple-
menters: Electric motors were originally sold by themselves, and you could
either build your own application or buy products into which your motor
would fit. Over time, the cost of the motors dropped and manufacturers
realized that it would be much easier to sell appliances with the motors
built in--and invisible.

Early implementers were happy to install TCP/IP stacks on their own up
through the mid-1990s because they got a real benefit: IP-enabled platform
independent interoperability, and it enabled the Internet.

However, once that killer app- - the Internet, and particularly the Web m
came on the scene, IPv4 changed. At first a disruptive technology, it

16 Part One �9 Theory

i .4.4

morphed into a sustaining technology. While IP was percolating along
its little academic research/university niche, IBM, Microsoft, Novell,
and many others were moving proprietary network products into the
marketplace. Those companies all eventually had to seriously modify
their businesses and products in order to catch up with IP. Now, those
companies all support IP in their network products; can they be blamed
for not wanting to add support for IPv6, a new protocol?

As IPv4 products started entering the marketplace, the network busi-
ness was in its infancy. Many companies had not yet added Local Area
Networks (LANs) to their IT infrastructure, and there was plenty of room
for growth. As IPv4 gained penetration, companies could build their first
networks with it at a lower cost than converting large networks to it.

Networking vendors, focused on their own existing product lines, are
incorporating IPv6 into IPv4 products. IP is a computer networking pro-
tocol, so IPv6 should, vendors seem to be reasoning, be a simple upgrade
to existing IPv4 products. Vendors should focus on their products, but
IPv6 is a hard sell. Most network vendors have not yet promoted IPv6 as
a realistic tool for production networks. Most customers are not interested
in IPv6 either, and they're certainly put off by the thought of having to
replace their already extensive infrastructure, or at least build a parallel
infrastructure to coexist with IPv4.

IPv6 AS A Sustaining TECHNOLOGY

One possibility unmentioned so far is that maybe IPv6 is a sustaining tech-
nology, something that will somehow expand and extend the embrace of
network industry giants. Some experts prefer to call IPv6 a revision or
update or upgrade of IPv4, with the implication being that it is still IP no
matter what version, and it still works the same way (more or less). That
position is at best disingenuous. Version numbers to the contrary, IPv6
really is a different protocol from IPv4; it's got a different address space,
a different header format, a different set of rules on how to handle packets,
and much more.

IPv6 could be a sustaining technology only if it met a currently unmet need
in IPv4. Need being the operative word. Customers who do not perceive
any need for IPv6 will be unlikely to buy it.

Even so, IPv6 may ultimately be viewed as a sustaining technology--if its
use extends the life of the Internet Protocol.

Chapter 1 �9 The Disruptive Protocol 17

1.5 A Possible IPv6 Future

As a classic disruptive technology, applications for IPv6 should be
expected to crop up unexpectedly; that means leading network industry
companies can be expected to completely overlook those applications.

One good candidate is everywhere in the world except North America.
With more than enough IPv4 address-allocated space for North
America, there is little frustration there when it comes to getting IPv4
network addresses. The rest of the world is not so fortunate, with Asia
particularly affected by the address shortage. As China continues to
computerize, it will be hard-pressed to effectively network with the
meager portion of IPv4 address space that it is likely to be granted. IPv6,
therefore, could be a crucial enabler to modernizing much of the world.

At the same time, until these often poorer nations can pay for expensive
routers and servers or else generate demand for lower-cost alternatives
in sufficient volume, the big vendors will continue to concentrate on
their high-ticket, high-margin products. Introduction of low-cost network
computers could spur demand in the developing areas of the world and
create greater need for IP addresses.

The result could be creation of a new, IPv6-based Internet serving the rest
of the world, working in parallel with the existing IPv4 Internet serving
the developed nations.

Perhaps mobile wireless devices will develop to the point at which they are
cheap enough to be everywhere and smart enough to give users reason to
interact with them over an IPv6 Internet. Or maybe something else entirely
will come along: small and cheap inventory tags that can display prices
and interface directly with a store's database system, massively parallel
nanocomputers, or smart paper.

Whatever the killer app turns out to be, the end result will be that the
niche-based IPv6 application will grow into a mainstream market before
the IPv4 network is eventually enfolded by it.

Right now, IPv6's best bet is to be treated as a disruptive, rather than
a sustaining, technology. Expecting existing IPv4 users to upgrade their
networks to support IPv6 without providing significant benefits is prob-
ably unreasonable. And although many organizations may actually reap

18 Part One �9 Theory

benefits through lowered costs of support (from continually fixing broken
NATs, for example), IPv6 is still more likely to gain ground through the
niches than by frontal assault.

One time line for IPv6 allows a transition period of 10 to15 years (from the
mid-1990s when the first IPv6 RFCs were first getting published). By that
timetable, something should happen between 2004 and 2009.

I plan on being ready.

What's Wrong with I Pv4?

It almost, but not quite, goes without saying: Within the Internet, every
host must have access to at least one interface to the network that can
be uniquely identified through a globally unique IP address. Once you
run out of IP addresses, you can't add any more nodes to the network.
IPv4 has a theoretical upper limit of about 4 billion (4,000,000,000) unique
addresses--but in practice IPv4 is unlikely to support a sustainable pop-
ulation of no more than about 250 million uniquely addressed nodes. To
many of those who fear the possibility that we will eventually have to do
without the Internet, IPv6 represents the last and best hope for continued,
unencumbered Internet growth; even those who prefer the status quo will
acknowledge that something must be done.

This chapter takes a look at the problems with IPv4 for which IPv6 is
considered a solution.

The imminent exhaustion of the IPv4 addressing space.
The imminent collapse of the Internet routing structure due to
explosive growth of the nondefault routing table.

19

20 Part One ~ Theory

The problem of end-to-end interoperability across routing
domains in which IP addresses may not be globally unique.

A working understanding of TCP/IP networking fundamentals is a
prerequisite for understanding these issues; the Appendix should help
whether you need a crash course or a quick refresher.

2.1 Protocol Life Expectancy

Despite an active development community and enthusiastic supporters for
over a decade, as of 2002 the vast majority of Internet traffic continues to
rely on the version (version 4) of the Internet Protocol (IP) published in 1981
in RFC 791, "Internet Protocol." Despite the rapid product lifecycles we've
become accustomed to as a result of Moore's Law and software vendors
who rely on it to inflate their products, network administrators would
much rather find a good protocol and stick with it. Patching or tweaking a
protocol makes far more sense than trying on a new one every few years.

Internet protocols tend to be long-lived, with many of the most important
ones still going strong after close to 20 years, including SMTP, TCP, UDP,
ICMP, FTP, Telnet, and others. Many implementations of those protocols
current in 1984 would likely still work in the Internet of today.

Software and hardware vendors depend on rapid change and Moore's
Law to drive a continuous cycle of highly profitable upgrades, but such
recklessness is not practical for network protocols. Although networks
cannot do without protocols, they can certainly make the ones we've got
continue to work. When some part of any Internet protocol doesn't work
as it is supposed to, the IETF is far more likely to create a workaround
than to replace it. That is why so many of these venerable specifications
are updated over the years but not entirely replaced.

For various reasons, IPv4 is approaching the end of useful life. It still
works and should continue to work for the foreseeable futuremas long as
the Internet stops growing. IPv4 is bumping against the upper limits of
its capacity. Despite (and in part because of) the best efforts of the IETF
to extend IPv4's useful life through various workarounds, patches, and
administrative efforts, the only way the Internet can continue to grow is to
introduce a new Internet layer protocol that will support growth.

Chapter 2 �9 What's Wrong with IPv4? 21

Most of the people who oppose IPv6 believe the status quo, IPv4, is just fine
for now and perfectly adequate going forward as long as proper precau-
tions are taken, and there is no good reason to change. As a result, there is
no other candidate internetwork protocol capable of supporting the kind
of growth the Internet has long experienced. If you don't like IPv6, it's
because you don't want to change from IPv4, not because you like some
other option.

IPv6 is the only practical and sustainable option.

At the same time, IPv6 will likely never replace IPv4. It must somehow
coexist with IPv4 as it gains ground. There will be no cutover date, with
all IP nodes switching from IPv4 to IPv6; IPv4 and IPv6 will likely always
coexist. The question is what share each protocol holds. While the Internet
will never cutover from v4 to v6, there will certainly be smaller networks
that do change all at once, and others that will make the complete switch
more slowly. As that happens, those networks will either maintain a con-
nection to the IPv4 Internet or just go on their own separate way. Should
that happen, parallel IPv4 and IPv6 Internets could replace today's single
interoperable and universal Internet.

Any organization that relies on the Internet for any reason should be pre-
pared for an IPv6 future. With the Internet, as well as untold numbers
of smaller, private networks using IP for its basic network infrastructure,
everyone should at least be aware of what IPv6 brings to the table and what
steps must be taken to interoperate with, implement, deploy, and support
IPv6.

IPv4 has been an incredibly successful protocol, able to scale from connect-
ing hundreds of hosts on handfuls of networks to linking the hundreds of
millions of hosts estimated to be part of the global Internet. First designed
in the mid-1970s, IP is showing its age in several ways, to be introduced
later in this chapter and examined in greater detail throughout this book.
Like a heavily used highway or bridge, IPv4 is reaching the end of its useful
lifespan and must be upgraded soon.

2.2 What's Wrong with IPv4

Saying that IPv4 has limitations and shortcomings is very much like say-
ing that the internal combustion engine is a flawed power source for cars

22 Part One �9 Theory

and trucks. Certainly, there are flaws: expensive, wasteful of nonrenewable
resources, dangerous. Yet, there is no denying that internal combustion
engines power a significant portion of the developed and undeveloped
world.

IP is an incredibly scalable protocol that has proved itself on count-
less hosts connected to networks ranging in size from two nodes to
hundreds of millions in the global Internet. However, consumers are
free to choose alternatives to internal combustion-based vehicles without
adversely affecting anyone else; a change in IP has the potential to affect
everyone connected to the Internet.

The Internet community recognized the imminent need for a revision to
IPv4 as early as the late 1980s, when it became apparent that the exist-
ing IP address space would support continued Internet growth for only a
relatively short time. This section introduces the reasons that IP must be
upgraded; the next section addresses the measures that have been taken to
fix these problems in the short-term at least. The last section of this chapter
examines why some of these measures must be considered stopgaps as
opposed to long-term fixes.

Most discussions about IPv6 focus on a laundry list of problems with IPv4
and benefits of IPv6 that should motivate everyone to demand IPv6 support
from all their vendors. Yet, if you hold their feet to a fire, IPv6 experts will
admit that there are really only three, maybe four, issues that make IPv6
inevitable.

Addresses IPv4 addresses have been in short supply since the early
1990s, when then-current growth curves showed them being de-
pleted before the end of the decade. A variety of short-term, stopgap,
and temporary measures have been instituted over the years to
successfully (so far) forestall such a depletion, but some experts have
suggested that the need to employ these measures itself is an indi-
cation that the address space has been exhausted for all practical
purposes.

Routing Although IPv4 continues to hold up well under considerable
pressures of growth, the routing tables of the Internet's nonde-
fault routers have been growing at alarming rates. These are the
backbone routers whose routing tables must reflect routing informa-
tion for every connected network in the world, and some experts
have suggested that more than any address shortage, the size of

Chapter 2 �9 What's Wrong with IPv4? 23

the nondefault routing tables will ultimately drive the acceptance
of IPv6.

End-to-Endness One of the most controversial of the patches on IPv4 has
been the use of private network address space I and network address
translators (NATs). The problem is that the end-to-end nature of IP
computing, under which all interaction between the source and des-
tination nodes is done without any intermediate mediation, is broken
when a system starts changing stuff as it passes between the nodes.
There are reasonable workarounds for most applications, but secu-
rity poses a problem because the Internet Security Protocol (IPsec)
relies on the global uniqueness of the nodes' IP addresses to ensu re
that packets are not being spoofed. And not all applications can work
around NATs. By providing plentiful new addresses, IPv6 is seen as
a way to at least reduce the number of new NATs being deployed
and, by extension, guarantee end-to-end interoperability.

I Pv6 OFFERS THREE ADVANTAGES OVER I Pv4

1. PLENTIFUL ADDRESSES

2. ROUTING SCALABILITY

3. EASIER END-TO-END SUPPORT

Any other reasons for migrating that you may have read elsewhere in books
or magazines are pure speculation. Anyone who claims that IPv6 will
be more secure, easier to administer, cheaper to manage, more efficient,
or better at brightening and whitening is on shaky ground. It is true that
the design of an updated version of IPv4 provided some opportunities to
improve on the original design.

The possible fourth advantage over IPv4 is better performance as a result
of streamlined headers, no fragmentation, and no header checksums.
"Possible" because the increases in transmission rates continue to advance
in parallel (if not in lockstep) with increases in processing power. If pro-
cessing IP packets becomes a bottleneck, then it is possible IPv6 will be

1See RFC 1918, "Address Allocation for Pr:.vate Internets," and RFC 3022, "Traditional IP
Network Address Translator (Traditional NAT)," as well as Chapter 3.

24 Part One �9 Theory

required to speed things up. However, the performance advantage may
also be solvable by upgrading system processing power.

Some of the issues that IPv6 promoters point to include the following.

Security The IPv6 specification mandates that IPv6-enabled nodes
support the IP Security Protocol (IPsec), thus making IPv6 nodes
more secure than IPv4 nodes. Although this appears to be a reason-
able argument, IPsec is specified to work with both IPv4 and IPv6
(and, presumably, other versions of IP to come in the future). IPsec
is widely implemented under IPv4 and works the same under any
version of IP.

Autoconfiguration IPv4 provides two mechanisms for configur-
ing nodes: static configuration under which nodes are assigned
IP addresses that they "own" and that don't change over time;
and dynamic configuration under which previously recognized and
authorized nodes are given IP addresses as they request them and
that may vary from session to session. Dynamic autoconfiguration
for IPv4 is sometimes referred to as stateful autoconfiguration because
some status information about configured nodes must be main-
tained (especially IEEE media access control or MAC addresses).
IPv6 includes a feature called stateless autoconfiguration that lets users
plug-and-play in networks without prior contact with the network
administrator. Although this is a powerful tool, the savings possi-
ble from stateless autoconfiguration are hardly likely to convince
any CIO to underwrite the astronomical expense of adding IPv6 to a
large network.

Mobility Another very nice feature of IPv6 is its improved handling of
mobile IP nodes, but as with stateless autoconfiguration this may
not be enough to convince anyone to migrate to IPv6.

Performance IPv4 header options vary the size of the packet header and
have often been avoided or ignored in the past. The conventional
wisdom said these oddly sized (at least, odd relative to the standard
20-octet header without options) packets would be shunted to the
side by busy routers, only to be ignored until the router is caught up
with normal traffic. In practice, however, this has not been the case
and it has not deterred anyone from deploying IPsec over IPv4 for
virtual private networks (VPNs).

Chapter 2 ~ What's Wrong with IPv4? 25

Some supporters point to improved performance in IPv6 routers over
IPv4 routers due to differences in the way addresses and routes are
handled. In fact, this is probably one area where IPv6 will provide an
advantage--but this is still speculative inasmuch as no IPv6 network
has as many routes as are found in the Internet's backbone networks.

Cost IPv6 supporters have suggested that IPv6 will reduce costs in var-
ious ways, including the reduced costs of administration, improved
security, better performance, and lower cost for actual registration
of IP addresses. Any savings would have to be balanced against the
added costs of hiring and educating staff to support organizations
during their addition of IPv6 connectivity, the costs of upgrading
and replacing hardware and software, and the unexpected costs that
invariably occur during such large projects. Perhaps IPv6 will reduce
costs over the very long term, but that is far from clear.

These areas may indeed prove to be strong selling points for IPv6; but there
is currently no evidence that IPv6 will offer significant improvements over
IPv4 in any of them.

However, IPv6 does provide relief for IPv4 networks groaning under a
shortage of addresses, an explosion in routing tables, and concerns about
end-to-end interoperability.

2.3 IPv4 Addressing Crisis

It never hurts to understand how things got to be the way they are,
and IPv4's address space is no exception. RFC 33, "New HOST-HOST
Protocol," published in 1970, described an early precursor to the Internet
Protocol that used only 8 bits for the host address but used 24 bits for the
"user number," which seems to have been used similarly to today's trans-
port layer ports. Such a small addressing space was just fine for 1970, given
the relative handful of large mainframes available to the researchers.

By the time that IP took its modern form, network addresses ranged from
fairly short (8 bits) to fairly long (48 bits or longer). Only a year or so before
RFC 791 describing this modern IPv4 was published, IPv4 used a 32-bit
address that allocated only 8 bits to the network identifierwmeaning that
no more than 256 networks could be linked in an RFC 760 IP Internet.

26 PartOne �9 Theory

But RFC 790, "Assigned Numbers," added the concept of network
classes, permitting many little networks and a few very big ones. Quite
possibly the change was made to accommodate the potentially large
new networks built from the newest technologies: personal computers
and Ethernet networks. In any case, the decision to go with a 32-bit
address space was discussed in the 1978 document "The Catenet Model for
Internetworking," in which Vint Cerf 2 described the immediate predeces-
sor to modern IP, using 32-bit addresses. According to Cerf, the notion of
variable-length addresses had been given serious consideration but was
rejected.

At one point, it appeared that addresses might be as long as 120 bits
each for source and destination. The overhead in the higher level pro-
tocols for maintaining tables capable of dealing with the maximum
possible address sizes was considered excessive. 3

At the same time, the first octet of the 32-bit addresses was used to identify
the network on which the source and destination hosts were connected,
with the remaining 24 bits used to identify hosts on individual networks.
This protocol could link no more than 256 different networks. This address-
ing scheme was carried forward into the subsequent versions of the U.S.
Department of Defense specifications for the Internet Protocol, including
RFC 760; only with the publication of the spec for the IPv4 we know and
love in RFC 791 was the notion of network classes introduced.

Figure 2-1 shows how the IP network classes were depicted in RFC 791. The
objective was to provide some mechanism for aggregation similar to that
described in IEN 46, "A PROPOSAL FOR ADDRESSING AND ROUTING
IN THE INTERNET," by David Clark and Danny Cohen, published in
1978.

Rather than insist on limiting the number of permitted networks in an Inter-
net to only 256, the proposal suggested a future in which there were many
more than 256 networks connected to a single Internet, with some of them
very large and others much smaller. The report even pointed to poten-
tial routing issues related to larger numbers of interconnected networks:
When there are only 256 or fewer networks, all routers can easily manage
the nondefault routing tables. But when there are many more networks,

2Internet Engineering Note (IEN) 48, published July 1978 and available at http://
www.isi.edu/in-notes/ien/ien48.txt

3IEN 48, p. 7.

Chapter 2 �9 What's Wrong with IPv4? 27

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+--+-+-+-+-+-+-+-+-+-+-+-+

I01 NETWORK] Local Address I
+-+-+-+-+-+--+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +--+-+-+-+-+-+--+-+

Class A Address

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

Ii 0 I NETWORK I Local Address I
+-+

Class B Address

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

]i 1 0 I NETWORK I Local Address I
+-+

Class C Address

Figure 2-1: Internet address classes, from RFC 791.

many of them with internal routers, aggregation provides a mechanism
for inferring at least part of an IP destination's route based on its address.

Thirty-two bits can represent over 4 billion unique values, so (in theory, at
least) an IPv4 Internet could grow considerably before a lack of available
addresses would force any change in the protocol. Yet, in the space of just
25 years, the Internet grew from an experiment with a few dozen networks
into a global network upon which hundreds of millions of people rely. The
growth has been astronomical, from roughly 102 to roughly 109mthat's
seven orders of magnitude. The Internet today is roughly 10 million times
the size it was in 1981.

This was a sustained rate of growth that had not been anticipated. Because
of the way the IPv4 address space was originally conceived and imple-
mented, the address space could be considered exhausted even though
the majority of the address space was not actually being used. Looking at
Figure 2-1, one reason for the IPv4 address space squeeze may become
apparent. The lower half of the address space is reserved for no more than
126 very large networks. All 32-bit values starting with "0" will be assigned
to just 1264 networks, each with enough local address space to handle

4Why 126 and not 127? The loopback interface on 127.0.0.0 ties that address up. The
all-zeroes address (0.0.0.0) is a reserved value used to indicate "all hosts on this network."

28 PartOne �9 Theory

224 nodes - -no more than 16,777,216 globally unique addresses within each
Class A network.

Assume for the moment that this is the correct size network address allo-
cation for very large organizations (of which, presumably, no more than
about 100 or so were expected in the foreseeable future). Once you 've
handed out half of the Class A networks, you've pulled a full 25% of the
entire address space out of circulation. Not only that, but even if these
huge organizations each managed to field a million nodes on every one of
their Class A nets, they would still be leaving each Class A network 94%
vacant.

By 1991, the IETF had already begun actively looking "Towards the Future
Internet Architecture" in RFC 1287. In August 1990, during the Vancouver
Internet Engineering Task Force (IETF) meeting, attendees projected that
the current rate of assignment would exhaust the Class B space by March
of 1994. 5 One result of that warning was the creation of the Classless
Inter-Domain Routing specification (CIDR) to replace the old Class A / B / C
categories 6 with a more flexible system that increased the efficiency with
which IP addresses could be allocated as well as reduced some of the bur-
den on routers as the number of Class C networks exploded. However,
attendees at the July 1994 Toronto meeting of the IETF predicted that
even with CIDR the IPv4 address space would still be exhausted sometime
between 2005 and 2011.

Class A recipients include MIT, Apple Computer Inc., General Electric
Company, Ford Motor Company, IBM, Xerox, Boeing Computer Services,
and even pharmaceutical firms Eli Lilly and Company, and Merck and
Company, Inc. By May 1993, 38% of the Class A networks had been allo-
cated, as well as 45% of the Class Bs; Class C was relatively untouched,
with only 2% of the total space allocated (over 44,000 networks). 7

Note: RFC 1715, "The H Ratio for Address Assignment Efficiency," an
Informational RFC published in 1994 by Christian Huitema, discussed
the creation of a ratio for determining how efficiently an address space is
being used; the IPv4 space was even then rapidly approaching saturation.
RFC 3194, "The Host-Density Ratio for Address Assignment Efficiency:
An update on the H ratio," revises that document with a refinement on

5RFC 1752, p. 3.
6Class D was allocated for IP multicast addresses, and Class E was reserved for future use.
7RFC 1466, "Guidelines for Management of IP Address Space," p. 3.

Chapter 2 �9 What's Wrong with IPv4? 29

the calculation of address density, reaching the conclusion that the IPv4
address space continues to draw near to practical exhaustion. Both of these
documents provide excellent insight into the growth of the Internet and
the difficulty of efficiently using the IPv4 address space.

Class A networks accounted for half of the entire IPv4 address space; Class
B networks accounted for 25% and Class C networks for 12.5%. A full one-
eighth of the address space was reserved for future use (with half of that
later allocated for IP multicast addresses), right off the top. Most firms of
any size at all wanted Class B networks, and up until the early 1990s they
could justify one as long as they had several hundred hosts, more than
could fit in a single Class C network.

But Class B networks were almost as underutilized as the Class As, and
with only 16,383 available, fully 45% had been allocated. With over two
million Class C nets available, 44,000 or so networks barely made a dent in
the total. Although the Class C allocation accounted for one-eighth of the
total space, it was likely the most densely populated with hosts.

The year 1993 was pivotal: the U.S. government started the process of
privatizing the Internet and making possible endless commercial possibil-
ities. The land rush for IP address space (not to mention domain names)
was about to begin, and IETF leaders knew that something drastic would
have to be donembut the problem was clear well before that.

The strategy for dealing with the address space crisis included two urgent
missions: First, design and deploy short-term, stopgap mechanisms that
could be used to immediately and easily slow down the rapid rate of IPv4
address consumption; and second, design and deploy a successor protocol
that would ultimately replace IPv4.

2.4 The IPv4 Routing Crisis

Although the imminent exhaustion of the IPv4 address space poses a
devastating challenge, all the IP addresses in the world will not forestall
another potential showstopper: ballooning default routing tables. IPv6
experts suggest that IPv4 routing scalability presents a more disturbing
problem than address space issues.

30 Part One �9 Theory

2.4.1 IPv4 INTERNET ROUTING

Routers determine the paths by which IPv4 packets arrive at their
destinations. IP routing protocols may use dynamic mechanisms for main-
taining information about available routes or may depend on statically
configured tables, but any packets intended for destinations across an
Internet backbone must eventually be routed through a nondefault router, 8
a router that uses a master list of all known Internet routes. These routers
run Border Gateway Protocol version 4 (BGP-4), and the nondefaul t rout-
ing table, referred to as the Routing Information Base (RIB), effectively
describes the topology of the Internet.

Each RIB entry describes a single route, a BGP route being defined as "a
unit of information that pairs a destination with the attributes of a path to
that destination", 9 and as the number of entries in the RIB increases, so too
does the complexity of the router 's task.

Most organizations use default routers, routers to which packets are sent
if they are not destined for local delivery; these routers usually have their
own default routers to fall back on when handl ing nonlocal packets. The
BGP routers have no fall-back position: If a packet 's destination network
is not in the RIB, then the packet cannot be routed.

More networks means more routes. Classless Inter-Domain Routing
(CIDR) was instituted in the early 1990s to address the problem of misalign-
ment between the Internet address class structure. As will be discussed in
Chapter 3, CIDR allows more granulari ty in the assignment of ne twork
address space.

2.4.2 IPv4 ROUTE AGGREGATION

Instead of being locked into assigning Class A (8-bit network address
with 24-bit host addresses), Class B (16-bit network addresses, 16-bit host
addresses), or Class C (24-bit network, 8-bit host addresses), CIDR allowed
the aggregation of Class C addresses to provide variable network address
allocations. In other words, with CIDR you can make allocations of any
number of bits of network space, from a single Class A on up. A 23-bit

8Also known as exterior or BGP routers, the Border Gateway Protocol being the protocol
used to route packets outside the local autonomous system.

9RFC 1771, "A Border Gateway Protocol 4 (BGP-4)," Yakov Rekhter and Tony Li, 1995.

Chapter 2 ~ What's Wrong with IPv4? 31

allocation gives you the equivalent of two Class C networks; a 22-bit
allocation gives you four Class C's; and an 18-bit allocation gives you
the equivalent of 64 Class C networks (or the equivalent of one quarter
of a Class B network). Instead of allocating network address space in only
three sizes (Classes A, B, and C), CIDR supports up to 16 different allocation
sizes, from a single Class C up to half of a Class A.

The happy result was that now a company with 400 nodes to support could
manage without getting two separate Class C networks (adding complex-
ity all around) or trying to get a Class B network address. Less salutary
was the resulting complexity added to the routing task: When all network
addresses were 8, 16, or 24 bits long, routers could more easily identify
the network portion of an address just by looking at the first few bits of
each address that indicate the network class. The network mask indicates
how much of the address is to be considered the network and how much
is reserved for local assignment to host addressing.

By the mid-1990s, the convention of expressing network addresses in the
form of 192.168.0.0/22, where the first part represents an IP address and
the second part indicates how much of that address should be treated as a
network address (the rest being reserved for host identification within that
network), came about. That network includes the four Class C networks
192.168.0.0, 192.168.1.0, 192.168.2.0, and 192.168.3.0.

This formulation allows routers to more quickly compare the relevant
pieces of the address to its routing table.

Aggregation improves matters considerably, but the situation continues
to deteriorate as more of the IPv4 address space is assigned and put
into service. The more networks there are, the longer the routing list
becomes. And the longer the routing list, the longer (on average) it
will take the router to figure out where to send the packet. This is not
a problem if you have 10, or 100, or 1000 networks to keep track of.
But when you get into the higher numbers, as we have now with
the Internet, with backbone routers routinely carrying explicit routes
for over 110,000 different network addresses, 1~ routing can become a
nightmare.

1~ Asia Pacific Network Information Centre (APNIC) maintains graphical reports on the
state of the BGP routing table at http://www.apnic.net/stats/bgp/; ARIN provides weekly
ASCII reports on its mailing list at http://www.arin.net / mailinglists / rtma/.

32 Part One �9 Theory

2.4.3 IPv4 ROUTING SCALABILITY

RFC 3221, "Commentary on Inter-Domain Routing in the Internet," pro-
vides detailed discussion of the problem. As the routing table grew from
about 60,000 entries in early 1999 to as many as 110,000 to120,000 entries
in 2002, the problem became more than simply handling the number of
entries. Geoff Huston, member of the Internet Architecture Board (IAB),
cites several disturbing trends in RFC 3221, including the following.

�9 Growth in route announcements. Measured from January 1999
through December 2000, the routing table increased at a rate of
42% per year. Drops in the size of the table during 2001 can be
attributed to instances where large numbers of more specific
network routes were aggregated into more general routesufor
example, when several contiguous Class C (/24) addresses are
aggregated into a single/20 route.

�9 The 16-bit address space for autonomous system (AS) numbering,
uniquely identifying discrete networks connected to the Inter-
net, supports only 65,535 unique values. Although work is in
progress to increase the AS address space to 32-bits, Huston
reported over 10,000 autonomous systems across the Internet
as of May 2001mthen growing at a rate of 51% per year. This
rate of growth would exhaust the 16-bit numbering space by
August of 2005.

�9 IPv4 address consumption, measured strictly in terms of how
much of the address space is being advertised as routable, has
been leveling off at a bit more than a quarter of the entire
address space. Recent growth reported by Huston showed a
7% annual increase in total address space consumption. Seen
in light of the growth in both routes and ASs, this may indi-
cate that most IP host growth is being hidden behind NATs.
Alternatively, this data can be explained by organizations
applying more specific policies on their exterior routing (i.e.,
rather than using a single exterior router to mediate all Inter-
net traffic, a multinational might have separate routers serving
separate ASs on different continents).

�9 Increasing granularity of routing entries. The amount of IPv4
address space served within the average AS or the average
BGP route is dropping. An average route in September 2001
served networks with total capacity of 10,700 IP addresses--a
considerable drop from the average 16,000 in November 1999.
The average AS in December 1999 had a capacity of 161,900 IP

Chapter 2 �9 What's Wrong with IPv4? 33

addresses; by January 2001, the average had dropped to
115,800. Increasingly detailed routing data is being pumped
into the global routing domain, in part due to an increase in
complexity resulting from decreased reliance on hierarchical
routing and increased use of multi-homing (linking to multiple
networks).
Prefix length distribution is increasing. The prefix length is a func-
tion of the specificity of the network address; a /24 (24-bit)
prefix is far more specific than a / 8 (8-bit) prefix. Huston reports
significant increases in the number of routes with a prefix length
o f /24 or more over recent years. This ties in with the increased
granularity of routing entries.
Exceptions to aggregations, or holes in an aggregation, occur
when all of the networks within a particular prefix are routed in
the same way except for one or more subsets of the aggregated
network. Huston reports that 55% of the then-current routing
table entries were of this type, and over two-thirds of those
routes used distinct AS paths.

It is not even clear that IPv6 will solve all these problems: BGP is intended
for exterior routing with IPv6 as well as IPv4, and fragmentation of aggre-
gates can occur in the IPv6 address space as easily as in the IPv4 space.
However, IPv6 does provide a better framework for aggregation than IPv4,
as we'll see later.

2.5 The End-to-End Problem

End-to-endness or transparency is what you get when endpoints in a network
are able to interoperate without any knowledge of the intervening network
and without any intervention or interference from intermediate systems.
Transparency makes network application development much simpler, for
one thing. The developer need only program an application to interface
with the network cloud; when transparency is absent, the developer must
deal with intermediate systems such as firewalls, NATs (network address
translators, see Chapter 3), and caching proxies. Security, in particular, is
sensitive to transparency.

NATs compromise end-to-endness because they modify inbound and
outbound packet headers. When packet headers are modified, network
layer security protocols become useless. There is no qualitative difference

34 Part One �9 Theory

between a NAT modifying packet headers on a secured packet and an
attacker modifying packet headers in order to spoof (send packets from
one host that purport to be from another host) the recipient. Both appear
to be attacks. In practice, the growth of the NAT-ed Internet has slowed
growth of applications that require transparency.

The reason NATs modify packet headers is that the original headers, from
inside the NAT-ed network, use the private (NET-10) addresses that are not
unique across the global Internet. Using globally unique addresses means
that there is an unambiguous way to address each and every network node,
no matter where the node is. Once you start numbering nodes ambigu-
ously, NATs and other intermediary systems must be used to prevent
confusion and allow nodes with the same addresses to communicate.

Transparency guarantees that communicating nodes communicate
directly, no matter what happens within the network cloud. When a NAT
or other intermediate system fails, the sessions it mediates also fail. There
is no easy way for hosts communicating through that NAT to route around
the failure, as there would be in the event that some intermediate router
failed.

End-to-end interoperability was a key design feature of the original Inter-
net. As the IPv4 address pool dries up and more networks rely on NAT,
proxies, and other gateway devices, the nature of the Internet is changing.
Rather than being a robust network, able to route around failures, today's
Internet is becoming less reliable while performance degrades. Rather than
being a scalable network, capable of supporting new applications with-
out requiring network infrastructure upgrades, today's Internet tends to
limit applications to piggybacking on Web services--and at the same time,
changes in the network infrastructure sometimes necessitate changes in
node software and configuration.

RFC 3424, "IAB Considerations for UNilateral Self-Address Fixing
(UNSAF) Across Network Address Translation," discusses the issues
raised when network traffic must traverse multiple NAT domains,
particularly as they relate to network transparency.

As we'll see later on, IPv6 eliminates NAT and replaces it with a con-
cept of link-local and site-local network addresses. These local addresses
can be thought of (for now) in the same way as telephone extensions
might be: Callers from outside may have to dial a country code, area
code, exchange, and extension, while callers from inside a single office

Chapter 2 �9 What's Wrong with IPv4? 35

(link-local) or organization (site-local) can reach the same destination by
dialing an extension.

It should be noted that the loss of transparency is only a symptom of
the disease--if the Internet had not grown so fast and so large, it would
still be a transparent network with end-to-end interoperability the norm.
The threat to transparency is due to the same growth that has caused
the shortage in IPv4 addresses and the increasing reliance on NAT as a
conservation tool.

2.6 Summary

There are many reasons cited by IPv6 supporters for migrating from IPv4
to IPv6, from general ones--such as reduced costs of operation, improved
performance, and increased secur i tyu to specific ones--such as support
for some "killer app" like mobile IP or plug-and-play interoperability.
However, all of them can be directly linked either to the huge demand
for and dwindling supply of IPv4 network addresses or to the problems
associated with creating a scalable routing infrastructure. The next chapter
illustrates the approaches over the past decades as short-term fixes for the
IPv4 address shortage; Part II will show how IPv6 resolves these problems
more permanently.

I I III

Patching I Pv4

Large networks with many endpoints, such as the Internet, are economi-
cally viable only if the cost of maintaining those endpoints is manageable.
Network upgrades that require modification of the endpoints are to be
avoided at all costs, if only because of the difficulty of tracking down
every node. Backward compatibility in the Internet is mandatory to avoid
the cost of maintaining IP implementations on obsolete or custom-built
computers. Even if all nodes ran the same operating system, attempting to
upgrade all of them at once with network stack updates is a daunting task.

Protocol designers, whether they've designed protocols for transmission of
electricity, telecommunications, or the Internet, must live with the shape of
their networks. That means a minimal number of options for the designers
of electrical appliance plugs, telephone cabling, or Internet applications.
If the basic interface is not suitable, the application must be adapted to
the interface rather than vice versa. To the extent that changes have been
made to IPv4 over the years, most of the changes have been in the network
routing infrastructure rather than in the way IPv4 has been implemented
on network endpoints.

37

38 Part One �9 Theory

In this chapter, we examine four basic strategies that have been used to
allow IPv4 to cope with its unprecedented growth and then look at how
those strategies have been implemented.

Many of the key features of today 's Internet landscape owe their origins to
initiatives intended to extend the usable lifetime of IPv4. These measures
fall into one or another of these four categories of responses to shortages
of limited resources.

Rat ioning When a shortage in a particular resource becomes apparent,
rationing is often the first response. Survivors on a lifeboat are well
advised to identify all their food and water resources and impose a
reasonable rationing regime on all. Once it became clear that IPv4
addresses would soon be in short supply, the IETF recommended
that regional Internet registries (RIRs) imposed more stringent con-
trols over assignment of large blocks of IP addresses. Until 1992,
organizations could relatively easily justify a Class B network allo-
cation as long as they had (or expected to have) more than a few
hundred hosts. Since then the IETF and RIRs have repeatedly raised
the bar for justification of IPv4 assignments.

Re th ink ing Conservat ion efforts are the result of rethinking the way
resources are used. Carpools are one response to gasoline shortages;
people must rethink the way they solve the problem of getting to
and from their workplaces. The IETF, network managers, and ven-
dors have all applied their creative powers to rethinking their use of
IP addresses and coming up with ways to conserve the resource.
These efforts yielded the use of subnets, 1 Classless Inter-Domain
Routing (CIDR), the Dynamic Host Configuration Protocol (DHCP),
and several versions of network address translation (NAT).

Recycling The allocation of IPv4 network addresses by class left a legacy
of vastly underuti l ized Class A networks. The IETF put out a call
to organizations with unused or underused network addresses to
return them for reuse in 1996, 2 many cable broadband providers
use such space for their home-based customers. Recycling addresses

1Arguably, the use of subnetting was instituted more as a way to improve routing
efficiency, but routing and address space exhaustion are two faces of the same coin.

2In RFC 1917 (BCP 4), "An Appeal to the Internet Community to Return Unused IP
Networks (Prefixes) to the IANA."

Chapter 3 �9 Patching IPv4 39

in this way can never offer more than a marginal improvement in
the address shortage situation. One potential problem with recycling
addresses derives from the practice of hard-coding IP addresses into
applications, rather than relying on DNS. If clients always use DNS to
reach host hostname.example.com, they'll always reach that host; if they
use an IP address that someday is recycled, the application will fail.
This problem should be insignificant unless developers try to bypass
DNS to improve performance at the cost of standards compliance.

Replacement Usually, a piece of infrastructure is replaced entirely only
after all other remedies are exhausted. It is just too expensive and
cumbersome to pull out the old and put in the new and make sure
it all works. However, IPv6 is, ultimately, a replacement for IPv4.
We'll touch on options, other than IPv6, that have been proposed to
replace IPv4.

The rest of this chapter introduces the most important responses to the
IPv4 address space shortage made by the Internet community. It is tempt-
ing to put these efforts in chronological order, but doing so can be difficult.
For example, not only was Classless Inter-Domain Routing (CIDR) devel-
oped roughly in parallel with new rationing policies, but CIDR made such
rationing more feasible.

3.1 Network Address Rationing

When demand for a necessity increases suddenly but supply stays inflex-
ibly the same with no change in sight, rationing kicks in. This was one
of the first steps taken to address address space shortage, and it resulted
in the creation of the three regional Internet registries (RIRs), which were
advised to clamp down on who gets IP address space and who doesn't.
Published in 1990, RFC 1174, "IAB Recommended Policy on Distributing
Internet Identifier Assignment and IAB Recommended Policy Change to
Internet 'Connected' Status," called for the Internet registry (IR) function
to be delegated by the IANA, so as to better manage distribution of Internet
addresses.

Further modificationsmin particular the call for creation of Regional
Internet Registries (RIRs)--followed in 1992, when RFC 1366, "Guidelines
for Management of IP Address Space," was published. RFC 1367,
"Schedule for IP Address Space Management Guidelines," was published

40 Part One �9 Theory

at the same time and defined a schedule as well as a set of guidelines for
address allocation.

RFC 1366 recommended that the remaining Class A network addresses (77)
be assigned only by the IANA and that all Class A network addresses
over 64/8 be frozen. At the time, it was expected that no Class A
addresses would be granted to anyone, but if an organization wanted one,
they would have to provide technical details of their proposed network
in their petition. As for Class B addresses, the recommendation was to
grant them only to organizations that required at least 32 subnets and over
4096 nodes.

Prior to the early 1990s, network address assignment was done on a less
formal basis; subsequent to the implementation of the RIRs and the address
space management guidelines, address space allocation followed a more
formal process under which requesting organizations were required to
justify their requests. RIRs also currently assess fees for the use of net-
work address space, adding a market-driven form of rationing. Unlike the
early days, holders of large portions of the network address space are now
under increasing financial pressure to either use their addresses or trade
them in.

3.2 IP Subnetting

The original standard for IPv4 as defined in RFC 791, "Internet Protocol:
DARPA Internet Program Protocol Specification," doesn't mention the
term subnet. As originally defined, the Internet was to be a two-level hier-
archy, in which individual nodes (the bottom level) were connected to
various networks (the upper level). The Internet was a classful network,
with smallish networks to be assigned Class C network addresses, large
networks assigned Class B network addresses, and the very largest
networks assigned Class A network addresses.

It wasn't long after RFC 791 was implemented that the flaws in this address-
ing approach became evident. Networks that used different media needed
to be treated differently; not all nodes within a network would fit on a sin-
gle cable; organizations spread across large physical plants often required
more than one physical LAN; and popular networking technologies such
as Ethernet placed limits on the number of nodes on the same network.
It was all very well to allow Class B networks 16 bits of address space

Chapter 3 �9 Patching IPv4 41

and over 65,000 uniquely addressable nodes, but the LAN technologies
most often used (Ethernet and Token Ring) limited the practical number
of nodes on a network to well under 1000.

The solution was to provide a way to subdivide Internet addresses in such
a way that a large network could be made to appear to consist of several
smaller subnetworks or subnets. As originally defined in RFC 791, IP nodes
interpreted IP addresses by comparing the higher-order bits to determine
what address class the address belonged to. Class A addresses have their
highest-order bit set to 0 (first octet is in the range of 0 to 127), Class B
addresses have their two highest-order bits set to 10 (first octet is in the
range of 128 to 191), and Class C addresses have their three highest order
bits set to 110 (first octet is in the range of 192 to 223).

Early IP routing depended on nodes interpreting IP addresses classfully
so that routers would consider only the first octet of an address as the net-
work and treat the rest of the address as a unique identifier for nodes
on that network. Clearly this approach could complicate matters for
Class A networks with many thousands of nodes, because routers within
the organization would be required to keep track of the locations of all of
them.

By 1984, when RFC 917, "Internet Subnets," was published, the two-level
approach to internetworking was proving insufficient. RFC 917 docu-
mented an approach that was being taken within larger networks, where
Class A and Class B networks were using artificial subdivisions to improve
internal routing. Published a year later, RFC 950, "Internet Standard Sub-
netting Procedure," codified an approach to subnetting based on RFC 917.

Although Internet addresses are not, strictly speaking, hierarchical, they
are interpreted as if they are. In other words, addresses sharing some
number of higher-order bits can be considered to be on the same network.
Thus, as just noted, classful network addresses sharing the first three octets,
with the first octet in the range of 192 to 223, are treated as being on the
same Class C network; network addresses sharing a first octet in the range
of 0 to 127 are treated as being on the same Class A network. Figure 3-1
shows how routing occurs to a typical Class B address: 172.16.0.0. The
external router accepts all packets destined for any node with an address
starting with 172.16.x.x.

The practice of subnetting allows the owner of a Class A address to partition
that address space and create logical subnets. A typical use of subnetting,

42 Part One �9 Theory

Figure 3-1: External routing of classful Internet addresses.

circa 1988, would see a Class B address with 8 bits of subnet. In all cases,
the first 16 bits of the Class B address would be shared by all nodes on
the network, but the third octet (bits 17-24) would be used to specify a
unique subnet within the Class B network. External routing decisions of
packets sent to any node within that Class B address would be identical, but
once the packets entered the subnetted network, routers would examine
the subnetted portion of the addresses to determine how to route them
internally.

As Figure 3-2 shows, subnets allow for more structured internal routing
in a Class B network. The internal router is configured to examine the
third octet of the network address (the 8 high-order bits of the local part of
addresses in the 172.16.x.x network) as a subnet. The external router passes
traffic to the appropriate internal router, based on the subnet. For clarity,
only one internal router is shown in Figure 3-2, but there could be many
others in a large network.

Further subnetting within each subnet is also possible, so complex rout-
ing architectures can be created within large organizations. At the same
time, it is not necessary for the outer layers of routers to be aware of the

Chapter 3 �9 Patching IPv4 43

Figure 3-2: Internal routing of classful Internet addresses.

existence of nested sub-subnets. In the example shown here, the external
router does need to be configured to route to 8 bits of internal subne t - -
but any of those subnets could further partit ion their address space,
interpreting 9 or more bits as the subnet address within their network
clouds.

Subnetting doesn ' t increase the number of IP addresses available for use,
but it does make it possible to use the address space within any network
more efficiently. 3 The idea of using parts of the local address space to
form logical subnets also led to the use of parts of the ne twork address

3Networks of any class may be subnetted, although Class C network subnetting requires
a more delicate touch to avoid wasting space or running out of subnets.

44 Part One �9 Theory

space to combine Class C networks to simplify networking in organiza-
tions too large for a single Class C but not large enough for a Class B
network.

3.3 Classless Inter-Domain Routing (CIDR)

When most computers in use were mainframes costing at least tens or hun-
dreds of thousands of dollars, Class C networks capable of supporting up
to 254 uniquely addressed nodes were originally viewed as sufficient for
all but the largest corporations. But starting in the early 1980s the growth
in popularity of networked PCs within even moderate-sized organiza-
tions meant that the concept of "large-" and "moderate-sized" networks
changed radically. A Class C network could easily accommodate most
smaller businesses, but demand for Class B addresses skyrocketed through
the 1980s, and the small supply (just over 16,000) meant that rationing of
Class B addresses started very early.

During the early 1990s, experts were concerned about rapid growth in
nondefault routing tables, and RFC 1519 includes a discussion of the impact
CIDR could have on nondefault routing tables. For example, the authors
cite a backbone router (on NSFNET) with approximately 4700 routing table
entries as of January 1992--a number that grew to roughly 8500 routes by
December 1992.

Subnetting was one way to increase efficiency in the allocation of network
addresses within large networks by partitioning large chunks of network
address space. By the time the Class B network supply was clearly being
rapidly depeleted, Class C networks were (and still are, for the most part)
plentiful. What would happen if small chunks of network address space--
for example, contiguous Class C networks--were aggregated together and
treated as if they were a single network?

The result is called Classless Inter-Domain Routing (CIDR), sometimes called
supernetting (in contrast to subnetting). CIDR has become a key mechanism
for moderating the effects of Internet growth, and it is defined in RFC
1519, "Class Inter-Domain Routing (CIDR): an Address Assignment and
Aggregation Strategy." Rather than specifying some number of bits of
subnet to be considered as the network part of an address in addition to
the official, classful, network address, CIDR masks specify how many bits

Chapter 3 �9 Patching IPv4 45

of a Class C address to consider too. The allocation size is specified using
the form

192.168.128.0/~7

to specify that the high-order 17 bits of the address identify the network,
and the rest of the address is used to identify internal nodes. Thus, classful
network addresses can be specified as follows.

Network Class Network Address Mask

Class A i0.0.0.0 /8

Class B 172.16.0.0 /16

Class C 192.168.1.0 /24

Classful addressing has long been obsolete, and this form has been used
to allow a higher degree of aggregation of routes as well as for indicating
subnets. When a number of Class C networks, for example, are aggregated
by supernetting with CIDR, routers need only examine the number of high-
order bits specified in the mask before looking for a network route to match
the address. As Table 3-1 shows, you can supernet 16 Class C networks
into a s ingle /20 network capable of support ing no more than 4096 unique
node addresses; 4 a /16 allocation gives you the equivalent of a Class B
network.

The advantage of the CIDR approach is that it delegates not just the task of
routing many smaller networks but also the task of allocating address space
to large ISPs. The large ISPs are allocated chunks of the former Class C
network address space, and they assign chunks to their customers as
needed. An organization that needs the equivalent of four Class C networks
can get that many, while organizations that only need a dozen addresses
can also be accommodated.

The ISP providing Internet backbone access can advertise itself as being
a single supernetted network instead of advertising a separate network
route for each customer. Doing this collapses the size of the nondefault
routing table, often dramatically.

4Actually, no more than 4094 addresses; all-ones and all-zeros addresses are reserved
addresses.

46 Part One �9 Theory

Mask # of Class C # of Host

Networks Addresses

/20 16 4094

/19 32 8190

/18 64 16,382

/17 128 32,766

/16 256 65,534

/15 512 131,070

/14 1024 262,142

Table 3-1: As a CIDR allocation mask decreases in size, the
number o f / 2 4 networks (equivalent to a Class C network)
and number of host addresses available increase.

Another result of the deprecation of network classes is that Class A network
space (such as 24.0.0.0, as noted earlier) can be allocated in much smaller
chunks. For example, the network address 10.4.37.0/24 may appear to be
a subnet of a Class A network, but it actually refers to the equivalent of a
Class C network using the newer orthography.

Despite the best efforts of the IETF, nondefault routing tables have grown
up to 30-fold since 1992. Although the situation would be much worse
without supernetting, CIDR can no longer be considered a long-term
solution.

3.4 Dynamic Host Configuration Protocol (DHCP)

One of the early obstacles to IP network scalability was the need to
manually configure network nodes with their IP addresses. Based on
the Bootstrap Protocol (BOOTP; see RFC 951), the Dynamic Host
Configuration Protocol (DHCP; see RFC 2131) provides an automated
mechanism for assigning and managing IP address assignment. DHCP
has become vital to the operation of large networks, particularly because
it allows nodes to "lease" IP addresses: When the lease period is up, the
node "returns" the address so it can be reused by some other node.

DHCP is mandatory for networks that may consist of more nodes than
allocated IP addresses, such as those offering dial-up access where users

Chapter 3 �9 Patching IPv4 47

log on and off the network regularly. For example, if an ISP offers dial-up
access to its Class C network with DHCP, and the average user connects
for only two hours a day (distributed evenly, an admittedly unreasonable
expectation in real life), the ISP could support roughly 3000 users with only
254 IP addresses.

Although DHCP is also an important tool for providers of "always-on"
services such as broadband Internet connectivity, it does not do anything
to improve address utilization efficiency in those networks. Every user
whose computer is always connected to the network ties up a single IP
address; there can be no sharing of addresses as with the more fleeting
connections common to dial-up users.

3.5 Recycling Unused IP Networks

RFC 1917 (BCP 4) "An Appeal to the Internet Communi ty to Return Unused
IP Networks (Prefixes) to the IANA," demonstrates a slightly different
approach to shortage: recycling. Many large chunks of the IPv4 address
space have been allocated to organizations that no longer exist or that could
never use all of their allocations. Several of these pieces have been recov-
ered, since their previous owners have done the right thing and allowed
some or all of their allocation to revert to the registries.

Over the years, Class A networks have been returned to IANA, some of
which have simply changed hands (in the 1980s), but mostly as they come
in, they are reserved. Some networks of note include the following.

10/8" originally assigned to DARPANET
31/8: originally assigned to University of California
36/8" originally assigned to Stanford University
49/8: Joint Technical Command
50/8: Joint Technical Command

The 024/8 network, at one time administered by Bolt, Beranek, and New-
man (the firm responsible for much of the original work on the Internet),
was reregistered to the IANA in 1995 and has been recovered for use as
the "ARIN Cable Block." North American cable network ISPs are now able
to assign numbers out of the subnetted 024/8 block, demonstrat ing both
the use of subnetted Class A network addresses and successful recycling
of underused addresses.

48 Part One �9 Theory

3.6 Subnetting Class A Networks

With the deprecation of classful internetworking and the gradual return of
sizable chunks of network address space in the form of recycled Class A net-
works, CIDR, and subnetting provide an excellent and efficient approach
to reusing this formerly wasted resource.

In April 1995, experimental RFC 1797, "Class A Subnet Experiment," doc-
umented the experimental use of network 39/8 for subnetting. As reported
in RFC 1879, "Class A Subnet Experiment: Results and Recommenda-
tions," during trials the approach proved successful, and in 1996, the
IANA recommended that Class A addresses be used in this way as soon
as possible.

The experiment was designed to determine whether the then-current rout-
ing software would correctly interpret subnetted Class A addresses. The
Class A network 39/8 was chosen for the experiment and divided into
two parts designated by the value of the high-order bit of the local part of
the address (see Figure 3-3). If that bit is 0, the next 15 bits of the address
are to correspond to the low-order 15 bits of the autonomous system 5
(AS) number assigned to an existing network. By using existing ASs, the
experimenters were able to populate the network quickly and without any
explicit action on the part of the owners of the ASs.

+ + - + + 4 +

I 39 I01 low 15 bits AS 1 local I
+ + - + + ~ +

^

I
\

h i g h o r d e r b i t o f t h e
l o c a l p a r t o f t h e a d d r e s s

F i g u r e 3-3: " C a s e 1" f r o m R F C 1797.

5An AS on the Internet is a backbone-routed network. In other words, there is a single,
well-defined routing policy applied when routing external traffic to and from any nodes or
networks within the AS. For example, an ISP may provide connectivity for dozens of different
customer networks, but all those networks will fall within the ISP's AS for the purpose of
routing. Packets moving from one customer network to another are routed internally, and
external packets bound for any of the customer networks are routed in the same way.

Chapter 3 �9 Patching IPv4 49

. + - + + + b

39]i I variable prefix + local]
+--+ ~ + +

A

I
\

high order bit of the

local part of the address

Figure 3-4: "Case 2" from RFC 1797.

Setting the high-order bit of the local part of the address to 1 for the pur-
poses of this experiment would have signified that the address space would
be allocated explicitly by the IANA (see Figure 3-4). This option was not
used during the experiment.

As reported in RFC 1879, existing router software was capable of handling
subnetted Class A networks and even includes examples to be used to
configure typical routers.

3.7 Network Address Translation (NAT)

By the late 1980s, a significant segment of the IPv4 market deployed their
internetworks with minimal or even no connectivity to the global Internet.
Managers of these private networks might isolate them with firewalls or
even keep them completely separate, forbidding all external contact other
than email exchanged through an application gateway with an air-gap
(when the gateway connects with the outside, the internal connection is
broken and restored only when the external link is completed).

By the early 1990s, the process of applying for an official and globally
unique IPv4 address had become sufficiently arduous, particularly for
larger networks, that an alternative came into general use. A set of private
network addresses was set aside officially in RFC 1597, "Address Allocation
for Private Internets," and RFC 1631, "The IP Network Address Translator
(NAT)," elaborated on the idea of reusing IP addresses originally suggested
by Van Jacobson.

NATs have been hailed by some as the remedy for some if not all of what
ails the Internet and IPv4, whereas others consider them the network

50 Part One �9 Theory

equivalent of kudzu: a hardy and fast-growing plant that was imported to
parts of the southeast United States to alleviate soil erosion earlier in the
20th century. Despite the lofty goals, kudzu turned out to be a superweed,
and with no natural checks on its growth, kudzu has displaced almost
everything in its path. It grows so quickly that visitors may be cautioned
not to nap on the porch unless they want to wake up tangled in the vines
that are known to grow as much as a foot or more in a day.

3.7.1 REASONS FOR NAT

There are times when it is preferable for packets not to be forwarded
directly from inside an internetwork. Network address translation (NAT)
is an approach used for those instances. The two most commonly cited
reasons for using NAT are for security and to map a large network onto a
small IP address space.

Perhaps more common is the use of NATs to preserve IP address space.
As the IP address space is depleted, more and more organizations have
been denied Class B or even Class C networks. One solution is to use
the private network space allocation to set up a private network with a
Class A, B, or C network address. Routers within the private network
can route packets within the network, and packets destined for the global
Internet are passed through a network address translator that acts on behalf
of the internal systems when interacting with Internet hosts.

NATs were originally introduced to help alleviate network address allo-
cation shortages so organizations could build their intranets as large as
they wanted without going through a lengthy and largely pointless pro-
cess of trying to get an appropriate allocation from a service provider
or regional registry. In the meantime, they have propagated across the
Internet and have been incorporated into networks as simple and small as
single-system home networks and as complicated as any that requires a
full Class A-equivalent network address.

Much of the controversy over the need for IPv6 revolves around the ques-
tion of whether NATs make things better or worse. In the meantime, people
continue to deploy private networks and NAT boxes of various types,
while the IETF continues to publish RFCs that attempt to clarify matters
or even to solve the entire problem with ever more end-to-end friendly
versions of NAT.

Chapter 3 �9 Patching IPv4 51

3.7.2 NAT BASICS

Whether you call it a network address translator or NAT box, a NAT acts as
an old-fashioned telephone operator, mediat ing all inbound and outbound
traffic through a switchboard. Inside the NAT, private IP addresses are
used for all internal communications; outside the NAT, s tandard global
Internet addresses are used. The NAT box has one interface on the internal
network with a private IP address and another interface on the global
Internet with a globally unique IP address.

When a node in the private network wants to send a packet to a node
on the outside, it creates a packet with its own private IP address as the
source and the remote node's IP address as the destination. Following
the rules of IP routing, the privately addressed node will determine that
the destination is on a different network and therefore the packet must be
sent to a router.

NAT boxes often double as routers, to both reduce costs and simplify
their function. When the NAT box/ rou te r receives the outbound packet, it
takes that packet and rewrites it so that the original source address (which
will not be usable outside the private network) is replaced with the NAT
box's own global Internet IP address. The packet is then sent along to its
destination. The destination node perceives the packet as originating with
the NAT box.

Any response to the packet is addressed to the NAT box, which keeps track
of the internal hosts for which it is serving as go-between. When a packet
comes in, the NAT box accepts it, repackages the packet for delivery on
the private network, and sends it along to the original source node.

Basic NAT poses difficulties when it is necessary to host Internet servers
within the private network: There is only one well-known port for each
service available on the NAT box, which makes it difficult when more than
one Web server is inside the network. All NAT boxes map the ports as
well as IP addresses from the external session onto appropriate ports and
addresses for the internal network.

There is another problem: dealing with a network in which more than
one server responding to requests on the same well-known port. When
there is a single NAT box in front of those servers, the Network Address
Translat ion/Port Translation (NAT/PT) adds a port translator module
onto the NAT box so it can differentiate requests to the different servers.

52 Part One �9 Theory

3.7.3

Various other developments and proposals to make NAT friendlier have
been considered and implemented over the years, more or less successfully.
Some indication of these developments can be inferred from the quantity
and titles of the NAT-related RFCs listed later in this section.

NAT ISSUES AND MISCONCEPTIONS

Rather than attempting to cover NATs exhaustively here, we list relevant
and current RFCs after a short list of NAT-related problems and concerns.

NATs break IPsec IPsec (see Chapter 6) is not made any easier by NATs,
but it is still often usable. When packets from inside the private
network are tunneled securely with IPsec (that is, IPsec secures pack-
ets, which are then encapsulated in unsecured IP packets), NATs
do not modify the tunneled packets and thus do not harm them.
However, end-to-end, untunneled authenticated packets cannot be
carried intact across a NAT. Another area where NATs affect IPsec
is in the reuse of the private IP addresses. Nonunique addresses can
result in confusion, at the least, especially when security information
is linked with IP addresses.

NATs complicate organization change NATs provide a limited number
of options for network addressing to the network designer. The odds
of having address space collisions are great. Most people naturally
assign the network address 19 2 . 1 6 8 . 0 . 0 to their small private net-
work and assign hosts to IP addresses starting at 19 2 . 1 6 8 . 0 . 1 and
increasing by one. When two such networks are merged, pandemo-
nium ensues as networked systems stop working and network engi-
neers rush madly to renumber at least one of the original networks.

NATs break applications Most NAT-related problems with Internet
applications are manageable and have been or will be imminently
resolved through one fix or another. One notorious application
broken by NAT so far has been the multiplayer game, Quake. More
relevant to corporate network administrators, FTP was originally
specified to allow inbound connections from servers to clients, and
in so doing, has broken in that type of implementation used across
aNAT.

NATs improve security IP routers are not supposed to forward data-
grams addressed in the private address ranges. If a backbone router
receives a datagram bound for one of these addresses, it is sup-
posed to drop it. However, these addresses can be used within an

Chapter 3 �9 Patching IPv4 53

organizational internetwork. Allowing outsiders access to informa-
tion about a network's host names and IP addresses can expose that
network to security risks. Some network administrators prefer to
put their entire network behind a network address translator, which
accepts datagrams from outside the internetwork and translates them
to the NAT addresses used by the hosts inside the private network.
However, NATs can often open more holes than they close, especially
when routers are not properly configured to drop packets addressed
from or to private ne tworks- -or when routers can be reconfigured by
an attacker. Likewise, network administrators typically use a fairly
predictable set of addresses for NAT-ed networks, so attac 1 ~ may
have an easier time locating sensitive systems.

N A T s are easy Solid-state NAT/ rou te r /hub / f i r ewa l l / In t e rne t appli-
ances capable of linking small numbers of systems in home office/
small office environments are widely available at reasonable prices.
These devices often include a Dynamic Host Configuration Protocol
(DHCP) server, making the NAT a plug-and-play as well as an
install-and-forget proposition.

N A T s are c o m p l i c a t e d Deploying NATs in complex Internet environ-
ments, can generate network administration nightmares, particularly
if there are other NATs already in the network (such as in branch
offices). Some engineers have reported that the actual cost of main-
taining such a network far exceeds the cost of paying for enough
globally unique Internet address space to serve the organization's
needs-- i f that address space were available.

All N A T s are pretty m u c h the s a m e As already noted, there are basic
network address-only translators as well as network and port trans-
lators; a NAT box may be an inexpensive solid-state appliance, a piece
of software running on a PC, or a dedicated router. There are many
different types of NATs, and there are many of each type already in
use throughout the world.

3.7.4 NAT AND RELATED RFCs

As of 2002, these RFCs had been published about NAT and the issues
related to its use. A good place to start is RFC 3022, "Traditional IP
Network Address Translator (Traditional NAT)," defining traditional
NAT functions. RFC 2663, "IP Network Address Translator (NAT)

54 Part One �9 Theory

3.8

Terminology and Considerations," is another good basis for discussion of
NAT issues, as are RFC 3027, "Protocol Complications with the IP Network
Address Translator," and RFC 2993 "Architectural Implications of NAT."

RFC 1631 The IP Network Address Translator (NAT)
INFORMATIONAL (obsoleted by RFC 3022)

RFC 2391 Load Sharing Using IP Network Address Translation (LSNAT)
INFORMATIONAL

RFC 2663 IP Network Address Translator (NAT) Terminology and
Considerations INFORMATIONAL

RFC 2709 Security Model with Tunnel-Mode IPsec for NAT Domains
INFORMATIONAL

RFC 2766 Network Address TranslationmProtocol Translation
(NAT-PT) PROPOSED STANDARD

RFC 2962 An SNMP Application Level Gateway for Payload Address
Translation INFORMATIONAL

RFC 2993 Architectural Implications of NAT INFORMATIONAL
RFC 3022 Traditional IP Network Address Translator (Traditional NAT)

INFORMATIONAL
RFC 3027 Protocol Complications with the IP Network Address

Translator INFORMATIONAL
RFC 3102 Realm Specific IP: Framework EXPERIMENTAL
RFC 3103 Realm Specific IP: Protocol Specification

EXPERIMENTAL
RFC 3104 RSIP Support for End-to-End IPsec EXPERIMENTAL
RFC 3105 Finding an RSIP Server with SLP EXPERIMENTAL
RFC 3235 Network Address Translator (NAT)--Friendly Application

Design Guidelines INFORMATIONAL
RFC 3257 Stream Control Transmission Protocol Applicability Statement

INFORMATIONAL

This list does not necessarily include every RFC that mentions NAT, only
those that are particularly relevant. Only one of these, RFC 2766, is pub-
lished as a proposed standard; that the rest are all either experimental or
informational RFCs shows the degree to which NAT is still very much a
topic of research and discussion.

Realm.Specific IP (RSIP)

The greatest problem with NAT is that lacking a globally unique address
to link to a privately addressed node, "end- to-endness ' - - the quality of

Chapter 3 �9 Patching IPv4 55

having data transmitted directly, without modification, and with assur-
ance of data integrity from source node to destination nodewbecomes
difficult to impossible.

Having been proposed as a method to avoid depleting the IPv4 address
space, NAT has been an easy and safe answer for some years now. The only
alternatives for much of the late 1990s seemed to be either further rationing
of IPv4 addresses or a rapid migration to IPv6 support. Neither of those
options is particularly appealing, but there was no other mechanism by
which the existing IPv4 Internet infrastructure could be preserved while
at the same time relieving the address squeeze by adding new globally
unique addresses.

That is, until the Realm-Specific IP (RSIP) protocol arrived, published in
late 2001 in a series of four experimental RFCs (see the RFC list for the titles
of RFCs 3102 through 3105). As explained in RFC 3102, "Realm Specific
IP: Framework," NAT "has become a popular mechanism of enabling the
separation of addressing spaces. A NAT router must examine and change
the network layer, (and possibly the transport layer) header of each packet
crossing the addressing domains that the NAT router is connecting. This
causes the mechanism of NAT to violate the end-to-end nature of the Inter-
net connectivity and disrupts protocols requiring or enforcing end-to-end
integrity of packets."

Rather than depending on an artificial pool of nonunique IP addresses
and the NAT to interoperate with the global Internet from inside a private
network, RSIP defines a mechanism by which a host in one addressing
realm (that is, a private network) can be allowed to use network resources
from a second addressing realm (that is, the global Internet).

RSIP gateways, which replace the NAT boxes, must have the ability to
permit the use of those resourcesw"addresses and other routing parame-
ters," according to RFC 3102mand the (private) RSIP node can interoperate
directly with an Internet node without any lower-layer protocol tinkering,
as is done by a NAT. An added benefit is that using RSIP depends on the
network edges (the RSIP gateways) rather than the interior of the network.
Nodes need not be updated to support RSIP as long as RSIP is added to
the internetworking infrastructures.

In other words, there is no longer any single, global, IPv4 network
but rather a set of networks using IPv4 addresses. Each network uses
the standard IPv4 address space, so there may be as many nodes

56 Part One ~ Theory

assigned to a single IPv4 address as there are realms (separate IPv4
networks).

On the global IPv4 Internet, any given network interface can be accessed
with the 32-bit IPv4 address assigned to that interface. On an RSIP-enabled
IPv4 Internet, two or more routing realms can be defined. In any given
realm, the 32-bit IPv4 address will be sufficient to uniquely identify any
given interface. For the interface to be globally targeted, however, requires
the use of the address of the node plus the RSIP realm identifier.

This turns out to be a possible solution to some of the problems that NATs
pose in terms of end-to-end interoperability. However, as the authors of
the specification make quite clear, RSIP is not intended to replace NAT or
to solve the IPv4 address shortage. At best, they write, RSIP is a stopgap
measure (as NAT was when it was first proposed).

However, RSIP does offer an interesting solution to the problem of interop-
erating between networks using different Internet layer protocols, such as
IPv4 and IPv6, or even IPv4 and some other as yet undetermined protocol.

When petroleum-based fuel runs out, we'll have to find a replacement.
When IPv4 stops working, we'll have to replace it too. Right now, the only
two viable options are IPv6 and, maybe, Realm-Specific IP (RSIP).

3.9 Summary

The true cost of IPv6-enabling any particular server, host, router, or net-
work is difficult if not impossible to calculate. However, experts have
predicted that enterprises can anticipate price tags for the task to be as
much as 10 times greater than the cost of their Y2K preparations. As time
goes on, the costs will only increase, yet few if any organizations have com-
mitted themselves to migrating to IPv6 suppor t - -a t least not publicly. And
IPv6 is not the only possible response to the problems posed by continued
use of IPv4, just the most widely known.

Organizations have limited options as they plan for the future.

Do nothing. Continue to use IPv4, along with all its fixes and
patches, and any additional ones that come out in the future.

Chapter 3 �9 Patching IPv4 57

NATs will help enable continued growth, and work on main-
taining end-to-end networking through NATs should yield
solutions to that problem soon enough.
Plan to deploy RSIP as a replacement for IPv4 NATs, and
continue to rely on IPv4 within internal networks.
Develop a plan for migrating to IPv6 support in a multiprotocol
environment, with the goal being to bring new networks online
that support IPv6.
Do nothing and plan on using some other protocol that will
come along to replace IPv4 (this is not recommended, consid-
ering that there aren't really any alternatives to IPv6 at this
point).

Quite a few short-term approaches to the continuing shortage of IPv4 net-
work addresses have been taken since the problem was first recognized
in the late 1980s. In this chapter, we've examined the most important of
them, including the following.

�9 Tightening of requirements for network address allocation,
effectively imposing rationing on consumers of those addresses.

�9 IP subnetting
�9 CIDR
�9 NAT
�9 Subnetting of Class A networks
�9 Recycling ofunderused/returned allocations

The degree to which each of those strategies has been successful is a
testament to the ingenuity of the implementers and deployers of the tech-
nologies as well as an indication of how well IPv4 has scaled beyond the
wildest imaginings of the early Internet engineers. At this point, however,
the only long-term solutions to Internet growth are to replace IPv4 with
IPv6 or to devise mechanisms such as RSIP to avoid wholesale system
upgrades.

At the same time Internet engineers were grappling with technologies
intended to extend the lifetime of IPv4, others were working on the next
generation of the Internet Protocol: IPv6. IPv6 is the next step for growing
IP networks, and the next chapter highlights the process by which IPv6
was created.

The Road to Next
Generation

No matter how successful IPv4 has been, in hindsight there's no denying
that it could have been a better protocol. As its popularity increased,
replacing or updating it has become increasingly more problematic. Lack
of network address space is very likely the engine driving adoption of
IPv6, but there are other reasons being proposed for moving to support
IPv6. This chapter opens with a discussion of some of the improvements
that have been proposed for the next generation of IP, followed by a brief
history of the development effort for IP Next Generation (IPng).

4.1 Early Assumptions About the Internet Environment

Once it became clear that the Internet would soon grow beyond the
capacity of IPv4, RFC 1287, "Towards the Future Internet Architecture,"
was published (December 1991). This document outlined the results of

59

60 Part One �9 Theory

a January 1991 meeting of the Internet Activities Board (IAB) 1 and the
Internet Engineering Steering Group (IESG), including the basic assump-
tions that could (it was thought) be made about the future of the Internet
and what were the most important areas for development of the Internet
protocols.

The group's four broad assumptions were meant to characterize the best
guess about what networking would be like during the next 5 to 10 years.
Agreement on what the networking environment would be like led to
appropriate planning for the future. The assumptions (and the eventual
realities) were as follows.

�9 The TCP/IP protocol suite would coexist with its main
rival, OSI, for some time. The International Organization for
Standardization (ISO) developed the Open Systems Inter-
connection (OSI) architecture (source of the famous seven-
layer OSI network protocol model). In fact, TCP/IP quickly
gained the lion's share of the internetworking market. OSI con-
tinued to have influence only insofar as it had been chosen for
use by government organizations.

�9 The Internet itself would become more complex, incorporating
more diverse and a greater number of different types of net-
working technologies. In other words, instead of settling on
one or a handful of network connectivity media, an increasing
population of network connectivity media would become
available and used over time. In fact, this is the case---
sort of. Ethernet has come to dominate the LAN market, while
a handful of other networking technologies (*ATM, Frame
Relay, wireless Ethernet) have become dominant in other
segments of the market.

�9 Access to the Internet would be provided by a variety of
different carriers, including both public and private providers,
for a wide variety of different networks. In other words, net-
works for many different types of organizations, including
corporations, government agencies, educational institutions,
and public services, will be connected through common carrier
service providers as well as by privately maintained net-
work connections. In fact, this assumption has also proven

1The IAB was later renamed the Internet Architecture Board, allowing the acronym to
remain unchanged.

Chapter 4 �9 The Road to Next Generation 61

itself with some qualification. What might be called ad hoc inter-
networkingmwhere one organization provided connectivity to
one or more other organizations or individuals by routing
those others' packetsmwas common in the early days of
the Internet. However, by the mid-1990s backbone-oriented
r o u t i n g ~ w h e r e global Internet connectivity is offered to con-
sumers, whether individuals, organizations, or government
agenciesmbecame the dominant model.
The Internet must be able to interconnect as many as one bil-
lion (109) networks, al though the consensus seemed to encom-
pass a relatively broad range of anywhere from ten million to
ten billion networks.

Even before NATs began masking untold numbers of hosts from any auto-
mated surveys, estimates of the global number of TCP/IP nodes were
best-guesses. Organizations rarely advertise host IP numbers anymore,
and with most new computers shipping with TCP/IP installed (whether
Microsoft Windows, Apple, or *nix operating systems), the number
of TCP/IP nodes can be assumed to approach the number of computers
currently in use. By 2004, I doubt anyone would argue that there are fewer
than 100 million or more than 1 billion IP nodes currently in operation.
Thus, this assumption (the need to support as many as 1 billion networks
or more) is clearly still within range.

The number of networks to be interconnected is still not entirely clear,
although it has become clear that the IPv4 address space is insufficient. On
the one hand, we could allot one network address to every computer in the
world and still be well under the high-end estimate of networks needed.
On the other hand, further rapid decreases in cost and size coupled with
increases in the distribution of personal computers could create demand
as high as (or higher than) one network for every human in the world, thus
requiring on the order of at least 10 billion networks just to be assigned to
individual people. Factoring in unforeseeable circumstances such as these
led some to call for an address space that can handle at least a trillion
globally unique networks.

4.2 Designated Areas for Internet Evolution

The January 1991 IAB/IESG meeting generated another list, this one of the
areas that were deemed most important to further architectural growth.

62 Part One �9 Theory

The intention was to identify the areas on which development efforts
should be focused. These included the following.

�9 Routing and addressing concerns
�9 Multiprotocol architecture
~ Security architecture
~ Traffic control and state
~ Advanced applications

These areas,
discussed next.

approaches to development, and other issues are

4.2.1 ADDRESSING AND ROUTING

The address space was already clearly a problem, but the issue of
ballooning routing tables was also of great concern. Another RFC pub-
lished at about the same time cited routing tables with 5000 and 7000 entries
as a looming impediment to performance on networks that were still grow-
ing rapidly. The authors of RFC 1287 suggest not only that the IPv4 address
space will be depleted but also that at some point before then IPv4 routing
algorithms will fail due to the large number of networks. They also suggest
that multiple routes between sources and destinations will make possible
type of service (ToS) variations and therefore require some mechanisms to
control route selection.

Aggregation of network routes, through some mechanism to be deter-
mined, is suggested as one possible solution to the explosion of routes.
Using some method of defining boundaries between large routing domains
would help improve routing efficiency. Another suggestion solicits some
efficient mechanism for the computation of network routes, as well as some
mechanism for routers to maintain state associated with specific streams
that are routed in some special way.

Potential addressing fixes include the use of the existing 32-bit address
space as a nonglobally unique identifier. In other words, addresses might
be reused in different parts of the network that don ' t interoperate directly.
For example, dividing the world into different routing domains would
allow a host address to be used once in each domain, with interopera-
tion between the domains mediated by protocol gateways that rewrite the
addresses as they pass over domain boundaries.

Chapter 4 �9 The Road to Next Generation 63

Another suggestion for addressing simply increased the size of the host
address. A third suggestion expands the host address field and uses the
entire field as a nonhierarchical address space, with a connection setup that
gives routers the opportunity to map a host address to an administrative
domain.

4.2.2 MULTIPROTOCOL ARCHITECTURE

Support for interoperable transmission of OSI as well as TCP/IP traffic
was thought to be an important criterion for further development.
The perception at the time (up to 1991) was that Internet connectivity meant
a host had an Internet address. If you didn't have an IP address and weren't
running IP, you weren't connected. This viewpoint was already eroding
by 1991, with the authors of RFC 1287 suggesting that connectivity could
be based on access to the Internet through email gateways or, more simply,
through some application. For example, users on NetWare networks at the
time could run Internet applications like web browsers and email clients
on their systems but use the Internetwork Packet eXchange (IPX) protocol
to transport the data on their local Novell NetWare networks.

In practice, acceptance of TCP/IP as an internetworking protocol suite
by most software and hardware vendors during the 1990s has largely
driven out competing internetworking protocol suites. Even Novell finally
deployed its NetWare network operating system as a native TCP/IP
product by 1998.

More important, at least in hindsight, was the comment that TCP/IP
could integrate or cross-pollinate with other application protocols. Inter-
operability, particularly between applications rather than at the lower
layers of the protocol stack, was deemed to be a good thing.

4.2.3 SECURITY ARCHITECTURE

Department of Defense funding of significant research and development
work that produced IP meant that the protocols were (at least according
to the authors of RFC 1287) built with military security in mind. Although
a set of vaguely military priority levels were defined for a first pass at
quality of service at the IP layer (in RFC 791), there are no mechanisms
for strong cryptographic authentication, access control, authorization,

64 Part One �9 Theory

4.2.4

4.2.5

or confidentiality evident at the IP layer until the early 1990s, when work
on the IP Security Architecture (IPsec, see Chapter 6) began.

One specific suggestion for a desired security service is the use of
distinguished names (an OSI construct used in X.500 directory specifications)
that can be authenticated in order to implement access controls. Integrity
enforcement was also suggested, with mechanisms to prevent modifica-
tion of transmissions, spoofing of transmission origins, and defense against
replay attacks (attacks in which an interceptor replays data stolen from
an authorized stream). Other services include confidentiality (encrypted
transmission), nonrepudiation (use of digital signature algorithms to
prevent a sender from denying having sent a message), and protection
from denial of service (DOS) attacks.

Other security issues raised in RFC 1287 include router/gateway protocol
filtering (in other words, packet filtering firewalls) and encryption key
management / storage.

TRAFFIC CONTROL AND STATE

IPv4 is a connectionless protocol, but some applications--audio and video,
for example--depend on some degree of traffic control to work properly.
A video stream must arrive at its destination at a relatively dependable
and predictable rate, not too fast (which might overwhelm the recipient
node's buffers) and not too slow (which would degrade the quality of the
transmission).

The authors of RFC 1287 suggest the need for some sort of packet queuing
mechanims to provide traffic control; they also state that there should
be some mechanism by which nodes can maintain status information for
different streams of packets to more readily enable real-time applications
to be carried over IP packets.

Noting that IPv4 implements a Type of Service (ToS) field, the authors
also note that not only is ToS not generally implemented, it is not even
clear how it could be implemented.

ADVANCED APPLICATIONS

Rather than suggesting new applications, the authors of RFC 1287 sug-
gest that improving and simplifying the processes involved in developing

Chapter 4 �9 The Road to Next Generation 65

new and advanced applications would be a more productive path. As
a starting point, they suggest that the creation of common data formats for
different types of data, particularly text, images and graphics, audio and
video, workstation displays, and data objects. Also important to devel-
oping advanced applications are mechanisms for the exchange of these
different types of data.

Suggested mechanisms include store and forward services, global file sys-
tems, interprocess communications, data broadcast, and a standardized
method for accessing databases.

4.3 Room for Improvement

Other areas in which IPv4 could stand some improvement have been cited
over the years as providing good reasons to upgrade the protocol. As it
became more apparent that IPv4 could use some additional, or at least
different, functionality, upgraders were faced with the opportunity to
enhance IP in ways that go beyond adding network addressing capacity.
This section highlights some of the areas where there is room for improve-
ment, from network administration and automatic node configuration to
rethinking ToS and IP options.

4.3.1 NETWORK ADMINISTRATION AND CONFIGURATION

IPv4 and most of the rest of the TCP/IP application protocol suite were
never designed, by themselves, to be easy to use. For example, raw FTP
(File Transfer Protocol) depends on what appear to be very arcane request
and reply codes and uses a set of cryptic-seeming commands. Why do I
mention this? Simply because these apparently complicated command and
control mechanisms are actually designed to be standard across all plat-
forms and to simplify access to software that understands the protocols.
A system running IPv4 must be configured, correctly, with an appar-
ently complicated set of parameters. These usually include a host name,
IP address, subnet mask, default router, and some others (depending on
the implementation). This is complicatedmit means that the person who
does the configuration must understand all these parameters or at least
be given them by someone who does understand. What it means is that
getting a system connected to an IPv4 network can be very complicated,
time-consuming, and costly.

66 Part One �9 Theory

The Boot Protocol (BOOTP) took a first step toward simplifying the process
of connecting a host to a network. This relatively simply protocol provided
a mechanism for a host with minimal preconfiguration (often simply a
terminal) to query a BOOTP server to get its IP configuration parameters.
This approach failed to solve the entire problem because it only provided
a mechanism for the BOOTP server to map IP address and other configu-
ration information to a link layer address (for example, an Ethernet card
interface address). To manage 100 hosts with BOOTP, you must assign
each host its own IP address.

Address management and host configuration pose at least two big prob-
lems. First, if it is difficult to configure hosts, it costs money; second, if
each host must tie up an IP address, whether or not it is connected, it
costs address space. It would be nice if we could make host configuration
a plug-and-play operat ionmin other words, so simple that you simply plug
the system into the network and it is automatically configured. It would
also be nice if we could figure out a way to share IP addresses among many
hosts, so that if no more than half of our 100 hosts were connected at any
given time, we could get away with sharing 50 IP addresses among them.

As it turns out, another protocol, called the Dynamic Host Configuration
Protocol (DHCP), was built on top of the BOOTP framework in an at tempt
to address these issues. Still using a cl ient/server model, clients can use
DHCP to query a server for configuration information, just as with BOOTP.
However, DHCP adds more flexibility in terms of what kind of configura-
tion information can be provided as well as how IP addresses are allocated.
There are three mechanisms for allocating addresses.

�9 Using automatic allocation, hosts request an IP address and are
given a permanent one that they use each time they connect to
the network.

�9 Using manual allocation, the server assigns specific IP addresses
to individual hosts based on a list provided by a network
administrator. These IP addresses are reserved, whether or not
the hosts request them.

�9 Using dynamic allocation, the server doles out IP addresses on
a first-come, first-served basis; hosts are allowed to use the
addresses for a specific time period after which the address
"lease" expires.

Both automatic and manual allocation will tend to inefficiently distribute
IP addresses; using automatic allocation may tend to tie up IP addresses.

Chapter 4 �9 The Road to Next Generation 67

If an organization has more hosts than users, it could burn up as many IP
addresses as it has hosts with this scheme. Manual allocation means net-
work administrators must configure an IP address for each host, whether
it connects once an hour or once a year to the network. Dynamic allocation,
however, enables a relatively large population to share a relatively small
number of IP addresses.

Unfortunately, DHCP falls short of enabling true plug-and-play configu-
ration because it is stateful. That is, DHCP maintains the status of different
IP addresses and the hosts using them. You have to explicitly set up a
DHCP server that knows about your hosts, and the host to be configured
with DHCP must know about the nearest DHCP server. True plug-and-
play, which is a big part of the portability issue, doesn' t happen with IPv4.
As we'll see following, the inability of IPv4 to adequately support por-
tability and network administration issues helps prompt the calls for
upgrade to IPv6.

4.3.2 TypF oF SERVICE (ToS)

IP uses a packet-switched network architecture. This means that a packet
might take any of a number of different routes to reach its destination.
Those routes differ: Some might cost more, some might allow greater
throughput, some might have lower latency, and some might be more
reliable than others. IPv4 provides a mechanism, the Type of Service field
(ToS) that allows applications to tell IP how to handle their data streams.
An application that needs lots of th roughputmfor example, FTPmmight
force the ToS to favor routes that have lots of bandwidth; an application
that needs fast responses--for example, Te lne tumigh t force the ToS to
favor routes that have low delays.

This was a good idea that never really caught on that well with
implementers. For one thing, it requires routing protocols to incorporate
notions of preferential routes based on costs as well as the need to
track values for latency, throughput, and reliability for available routes.
For another thing, it requires that developers implement a function in
their application that might request service that, ultimately, could affect
performance. ToS is a choice of one, so if you decide that low latency
is most important to your application, it might affect your ability to
get higher bandwidth or more reliable routes for your application's
packets.

68 Part One �9 Theory

4.3.3 IP OPTIONS

The IPv4 header includes a variable-length options field. IP options were
meant to be the way to handle certain special functions. The original speci-
fications left these options undefined, but eventually options for things like
security as well as certain routing functions were added. Routing options
include one (record route) to have each router handling the packet to record
its address and another (timestamp) to have each router record its own
address as well as the time it handles the packet. Source routing options
are also available: Loose source routing specifies a list of routers that the
packet must pass through on its way to the packet's destination, whereas
strict source routing requires that the packet be routed only by the routers
listed.

Options are an important part of IP, but the IPv4 implementation is not
ideal. Although they are not often used, it is not because they are not useful
so much as that the specification is suboptimal. Rather than throw options
out, IPv6 improves the way they are used.

The problem with options is that they are special cases. IP datagrams
without options are the vast majority and are the type of datagrams ven-
dors optimize their routers to handle. The IP header without options is
always five bytes long and is easy to process---especially when the router
design optimizes for the processing of such headers. Performance is key to
router sales, and because most traffic does not use IP options, the routers
tend to handle those packets as exceptions, shunting them off to the side
to be handled when it is convenientuand when it won't affect the router's
overall performance.

Despite the benefits of using IPv4 options, the cost in terms of performance
has been enough to keep them from being used very often.

4.4 IPng Candidates

Up to 1994, quite a few different proposals were made for the successor to
IPv4. By 1992, the three dominant proposal families that would eventually
be considered by the IETF in 1994 had already taken shape. RFC 1347, "TCP
and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet
Addressing and Routing," outlines one. TUBA can be characterized as

Chapter 4 �9 The Road to Next Generation 69

simply replacing IP with the OSI internetwork protocol, Connection-
Less Network Protocol (CLNP). CLNP uses Network Service Access (NSAP)
addresses that can be any length but that are often implemented in 20 bytes,
providing more than enough address space. Furthermore, using CLNP
would help IP and OSI to converge, while at the same time eliminating the
need to build an entirely new protocol.

Another proposed IPng candidate was first known as IPv7 in 1992, and in
1993 was described in detail in RFC 1475 under the title "TP/IXTP/IX: The
Next Internet." It is not clear what TP/IX stands for; according to Christian
Huitema in IPv6: The New Internet Protocol (Prentice Hall PTR, 1998), the
name expresses the desire of its proposer, Robert Ullman, to change not
only IP but also TCP with the upgrade. TP/IX uses 64-bit addresses
and adds an addressing layer to the hierarchy, above organizations, for
administrations.

Under IPv7, eight-byte addresses are used to allocate three bytes to admin-
istrative domain, three to the organization's network, and two bytes for
the host identifier. The IPv7 datagram header simplifies the IPv4 header,
while adding a forward route identifier to be used by intermediate routers
to determine how to handle datagrams. For example, the forward route
identifier may be associated with a particular route based on certain val-
ues relating to the route itself (throughput or value) or to be associated
with a particular datagram stream or even to be associated with data from
a mobile host - - that is, a host that moves from one network to another
while maintaining open TCP connections. TP/IX not only modified TCP
and UDP, but it also included a new routing protocol called RAP.

TP/IX later evolved into another proposal, described in RFC 1707,
"CATNIP: Common Architecture for the Internet." CATNIP seems to
have little in common with TP/IX, however, except that it retains the
IPv7 designation. In its goal of providing a common architecture, the
CATNIP specification makes allowances for the three most commonly
used internetwork architectures: TCP/IP, OSI, and IPX, as well as dis-
cussion of how to integrate a competing proposed standard for the next
generation of IP. The stated objective is to make it possible for all exist-
ing systems to continue to interoperate with **/no/** modifications,
no changes in address, and no software upgrades for individual hosts.
By making allowance for different network architectures, the CATNIP
proposal meant to minimize impact on the actual infrastructure; how-
ever, it meant adding a layer of complexity in order to implement true
interoperable internetworking.

70 Part One ~ Theory

The third proposal stream started out as something called IP in IP, or IP
Encaps (for IP encapsulation). Under this proposal, there would be two
layers of IP: One would be used for a global backbone, while the other
would be used in more limited areas. The IP to be used in limited areas
could continue to be IPv4, while the backbone would use a new layer
with different addressing. Ultimately, this evolved and merged with other
proposals to become the Simple Internet Protocol Plus (SIPP) proposal.

As explained in RFC 1710, "Simple Internet Protocol Plus White Paper,"
the SIPP working group grew from three different IETF working groups
focused on developing an IPng. The first group was working on a ver-
sion called IP Address Encapsulation (IPAE); the working group, chaired by
Dave Crocker and Robert Hinden, proposed extensions to IPv4 that would
carry larger addresses, and the group focused on developing transition
mechanisms.

Somewhat later, Steve Deering proposed a new protocol evolved from IPv4
called the Simple Internet Protocol (SIP). A working group was formed to
work on this proposal, which was chaired by Steve Deering and Christian
Huitema. SIP used 64-bit addresses, a simplified header, and options in
separate extension headers. After lengthy interaction between the two
working groups and the realization that IPAE and SIP had a number
of common elements and the transition mechanisms developed for IPAE
would apply to SIP, the groups decided to merge and concentrate their
efforts. The chairs of the new SIP working group were Steve Deering and
Robert Hinden.

In parallel to SIP, Paul Francis (formerly Paul Tsuchiya) had founded a
working group to develop the "P" Internet Protocol (Pip). Pip was a new
Internet protocol based on a new architecture. The motivation behind Pip
was that the opportunity for introducing a new Internet protocol does not
come very often and given that opportunity important new features should
be introduced. Pip supported variable-length addressing in 16-bit units,
separation of addresses from identifiers, support for provider selection,
mobility, and efficient forwarding. It included a transition scheme similar
to IPAE.

After considerable discussion among the leaders of the Pip and SIP working
groups, they came to realize that the advanced features in Pip could be
accomplished in SIP without changing the base SIP protocol as well as
keeping the IPAE transition mechanisms. In essence, it was possible to
keep the best features of each protocol. Based on this, the groups decided

Chapter 4 �9 The Road to Next Generation 71

to merge their efforts. The new protocol was called Simple Internet Protocol
Plus (SIPP). The chairs of the merged working group are Steve Deering,
Paul Francis, and Robert Hinden.

Briefly, SIPP offers several changes from IPv4, including the following.

Routing and addressing expansion SIPP specifies 64-bit addresses,
double the size of IPv4. The intention is to provide greater degrees
of hierarchy within which routing can be accomplished. Another
feature is the addition of cluster addresses, which identify regions of
the network topology. SIPP address extensions, available in units
of 64 bits, work with the cluster addresses to create the possibility
of a much larger address space.

IP header simplification SIPP does away with some IPv4 header fields,
while streamlining the structure to help improve routing efficiency.

Improvement in option implementation SIPP uses a more flexible
approach to encoding and implementing IP options.

Quality of service SIPP makes it possible to label datagrams as belong-
ing to specific data flows. Hosts can request special handling for
the routing of these flows, especially useful for applications that
depend on real-time delivery like that required by video or audio
transmission.

Authentication and privacy SIPP adds extensions for authentication,
data integrity, and confidentiality.

SIPP was the result of many people from several different groups working
together. The finished specification includes many interesting new mech-
anisms, while still not straying too far from the goal of being an upgrade
to IPv4 rather than an entirely new protocol built from the ground up.
Notable is the use of routing similar to that in IPv4, still using CIDR to
add flexibility and improve routing performance. Also important are new
routing extensions that allow choice of routes from different providers
based on various criteria (including performance, cost, provider policies
for traffic, and so on). Other routing extensions include support for mobile
hosts as well as automatic readdressing and extended addressing.

One other notable mechanism is the SIPP approach to IP options: Rather
than including them as part of the basic IP header, SIPP segregates any

72 Part One �9 Theory

IP options from the main header. The options headers, if any, are simply
inserted into the datagram after the header and before the transport layer
protocol header. This way, routers can process datagrams without having
to process the options headers unless it is necessary--thus improving
performance overall for all datagrams.

RFC 1710 provides both a technical overview to the SIPP specification and
a readable justification and narrative of the protocol. It is worth a look, if
only to see how IPv6 as we know it came to be---because SIPP, with some
modifications, was the specification recommended to and accepted by the
IESG as the basis for IPng.

4.5 I Pv6, The Next Generation

RFC 1752, "The Recommendation for the IP Next Generation Protocol,"
published in January 1995, is a fascinating document that outlines clearly
what was needed and what was available, in terms of the candidate pro-
posals for successors to IPv4. In its summary, the authors of RFC 1752
describe what IPng would look like.

This protocol recommendation includes a simplified header with
a hierarchical address structure that permits rigorous route aggregation
and is also large enough to meet the needs of the Internet for the fore-
seeable future. The protocol also includes packet-level authentication
and encryption along with plug-and-play autoconfiguration. The design
changes the way IP header options are encoded to increase the flexibility
of introducing new options in the future while improving performance.
It also includes the ability to label traffic flows.

The fifth item in a long list of specific recommendations is that IPng be
based on SIPP with 128-bit addresses. The rest of the RFC provides an
excellent resource for further historical background on how the Internet
research community identified and approached the problems associated
with IPv4, as well as detailed analysis of the three contenders, TUBA,
CATNIP, and SIPP. The RFC examines each proposal and discusses how
it meets (or fails to meet) the requirements and also presents the results of
the proposal review process.

All three proposals are praised in some way, and all ultimately con-
tributed something to the final recommendation. For example, SIPP did

Chapter 4 �9 The Road to Next Generation 73

not include a strong transition plan or a totally acceptable mechanism for
autoconfiguration, so the recommendation draws on the TUBA proposal
for those areas. And SIPP was not accepted in all its glory: The concept of
address extensions was ultimately considered too experimental and poten-
tially risky to incorporate into the IPng work, while the 64-bit address
space was replaced with a 128-bit address space to cope with any future
uncertainties.

The recommendations described in RFC 1752 include a variety of fur-
ther tasks related to the actual design of the IPng and related protocols.
SIPP and the others could be considered only as starting points, particu-
larly if IPng were to be sufficiently robust to serve the Internet for years
to come.

The first proposed standard RFCs (RFCs 1883 through 1887) to describe
IPv6 and supporting protocols were published by early 1996, but they
were not entirely complete and were soon followed by various additions
and some slight modifications. By the end of the summer of 1998, new
IPv6 RFCs were being approved for publication. In particular, RFC 2373,
"IP Version 6 Addressing Architecture," replaced RFC 1883 and RFC
2374, "An IPv6 Aggregatable Global Unicast Address Format," replaced
RFC 2073. Other newer RFCs approved for publication describe ICMPv6,
neighbor discovery, and stateless autoconfiguration for IPv6.

Even as this book is going to press, the second round of IPv6 RFCs are
being updated and in some cases replaced by a third wave of specifications.
For example, RFC 2373 has been replaced with RFC 3513; other updates
are still works-in-progress but can be expected to further hone IPv6 and
related specifications over the coming years.

4.6 Summary

Few, if any, efforts in Internet engineering history have taken so long
and involved so many different ideas, people, and groups as the project
to upgrade the Internet Protocol. The process is instructive for students
of networking history, network protocols, and the network protocol
specification process. The result, IPv6, may ultimately be considered
an improvement over IPv4mbut as the product of many committees,
there will invariably be those who feel that IPv6 could have been better
than it is.

74 Part One �9 Theory

However, before IPv6 can be fully judged, it must be implemented.
IPv6-related working groups have come up with a variety of approaches
to the process of migrating from IPv4-only environments to networks
capable of supporting IPv6. The next chapter discusses how IPv6 support
may be deployed in existing networks.

IPv6 Transition Issues

The Internet has always been a multiprotocol network, shared by systems
transporting packets across a variety of networks. This chapter examines
migration and transition scenarios as proposed in IETF working groups
and RFCs. These transition scenarios are largely theoretical in nature and
reflect proposed solutions more than reality. We will discuss the practical
aspects of rolling out support for IPv6 later in Part III.

5.1 Upgrading IP

One might imagine that moving to support IPv6 would require that
all hosts on a network be upgradedma daunting challenge to network
managers responsible for global corporate internetworks with tens of
thousands of hosts in hundreds of networks. However, this is not the
case. Migration to IPv6 support is anticipated to be a gradual process, and
mechanisms to gracefully support IPv6 in IPv4 networks have been an
important part of the IPv6 development project from the start.

75

76 Part One �9 Theory

RFC # Title

2071

2072

2185

2529

2767

2893

3056

3142

Network Renumbering Overview- Why would I

want it and what is it anyway?

Router Renumbering Guide

Routing Aspects of IPv6 Transition

Transmission of IPv6 over IPv4 Domains

without Explicit Tunnels

Dual Stack Hosts Using the Bump-in-the-Stack

Technique (BIS)

Transition Mechanisms for IPv6 Hosts and

Routers

Connection of IPv6 Domains via IPv4 Clouds

An IPv6-to-IPv4 Transport Relay Translator

Table 5-1: RFCs Addressing the IPv6 transition process.

Table 5-1 lists some of the key source documents for transition and
migration to IPv6 support.

The IPv6 transition will by necessity be gradual and not just because there
are many who believe it will be unnecessary. A massive, cutover-style
upgrade would not only be unacceptable, considering the huge numbers
of networks and nodes already connected to the Internet--it would be
impossible. It would require network administrators to find and install
new versions of networking software for every host and router on the
Internet. Considering the number of different platforms running IPv4, plus
the number of nodes connecting using IP and the lack of any central author-
ity to mandate and oversee such a transition, IPv6 is by necessity a protocol
that can be implemented only in stages and only in tandem with existing
IPv4 implementations.

The transition to IPv6 is taking place slowly, as vendors and developers
gradually introduce versions of IPv6 for different platforms and as network
managers determine that they need the functions IPv6 provides. IPv4 and
IPv6 will have to coexist for a long time, perhaps forever. Most strategies
for the transition rely on the two-pronged approach of protocol tunneling,
where IPv6 packets are encapsulated within IPv4 packets for transmission
from IPv6 islands through IPv4 oceans. At least at firstBafter the early
stages of the transition periodBmore and more of the IP population will be
IPv6-capable. Even in the later stages of the transition, IPv6 encapsulation

Chapter5 �9 IPv6Transition Issues 77

will continue to be useful for connectivity across IPv4-only backbones and
other holdout networks.

The other prong of the strategy is the dual-stack approach, in which hosts
and routers run IPv4 and IPv6 stacks on the same network interfaces. This
way, a dual-stack node can accept and transmit both IPv4 and IPv6 packets,
so the two protocols can coexist on the same networks.

5.2 The IPv6 Protocol Tunneling Approach

Tunneling requires that an IPv6 node at one end of the tunnel be capable of
transmitting IPv4 packets (dual-stack node, see next section) and that there
be another dual-stack node at the other end of the tunnel. Encapsulating
IPv6 within IPv4 is a similar process to any other protocol encapsulation:
A node at one end of the tunnel takes the IPv6 datagrams and treats them as
payload data intended to be sent to the node at the other end of the tunnel.
The result is a stream of IPv4 datagrams that contain IPv6 datagrams. As
shown in Figure 5-1, node A and node B are both IPv6-only nodes. To
get an IPv6 packet from A to B, node A simply addresses the packet to
node B's IPv6 address and passes it to router X. This router encapsulates
the IPv6 packet intended for node B and sends it to the IPv4 address of
router Y. Router Y receives the IPv4 packet or packets and unwraps them.
On finding the encapsulated IPv6 packet intended for node B, router Y
forwards the packet appropriately.

There is a set of IPv6 addresses that contain IPv4 addresses (see
Chapter 8 for details). One is the IPv4-compatible address and the other is
the IPv4-mapped address.

IPv4-compatible addresses are 128-bit addresses, of which the highest-
order 96 bits are set to zero and the last 32 bits contain an IPv4 address.
These addresses are intended to be used by dual-stack IPv4/IPv6 nodes
capable of automatically tunneling IPv6 packets through IPv4 networks.

The dual-stack node thus is able to use the "same" address for both IPv4
and IPv6 packets. IPv4-only nodes can send packets to the dual-stack
node using its IPv4 address, whereas IPv6-only nodes can send packets
to the IPv6 address (the IPv4 address padded out with zeros to make it
128 bits long).

78 Part One �9 Theory

Figure 5-1: T u n n e l i n g IPv6 across an IPv4 Internet.

The IPv4-mapped address is similar to the IPv4-compatible address, except
that only the highest-order 80 bits are set to zero, with the next 16 bits
set to 1. The low-order 32 bits are the IPv4 address of an IPv4 node;
that node does not have to support IPv6. The IPv4-mapped address is
used to represent an IPv4 node address in a format that an IPv6 node can
understand.

In general, the kind of node using these IPv4-compatible addresses would
be routers linking IPv6 networks using automatic tunnels through IPv4
networks. The router would accept IPv6 packets from its local IPv6
networks and encapsulate them in IPv4 packets intended for another dual-
stack router also using an IPv4-compatible address on the other side of the
IPv4 network. The encapsulated packets are then forwarded through the
IPv4 network cloud until they arrive at the dual-stack router at the other

Chapter 5 �9 IPv6 Transition Issues 79

end of the tunnel, where the IPv4 packets are unwrapped to reveal IPv6
packets that the router then forwards on its local IPv6 networks.

5.2.1 I Pv6 TUNNEL TYPES

The following are the different types of tunnels using the internetwork
pictured in Figure 5-2. However to differentiate the different types of tun-
neling, the entities in the figure may be IPv4-only, IPv6-only, or IPv4/IPv6
dual-stacks, depending on the type of tunneling being demonstrated.

Router-to-router tunnel ing In Figure 5-2, router X and router Y tunnel
IPv6 packets through network O, which is an IPv4-only network.
Host A can send IPv6 packets to host B transparently; neither host

Figure 5-2: Generic network devices illustrating different types of networks.

80 PartOne �9 Theory

needs to be concerned with the existence of an intervening IPv4
network (network O). In this case, both host A and host B are
IPv6-only nodes.

Router-to-host tunneling In this case, network N in Figure 5-2 is an
IPv4-only network, but host B runs IPv4 and IPv6; the rest of the
network is IPv6-only. In this case, the tunneling takes place between
router Y and host B. IPv6 packets flow freely along the rest of the
network, but router Y must encapsulate them in IPv4 in order to
deliver them across network N, which is IPv4-only.

Host-to-host tunneling In this case, only host A and host B support
IPv6 (they are dual-stack IPv4/IPv6 nodes). The rest of the enti-
ties in Figure 5-2 for this illustration are IPv4-only. The tunneling
occurs between host A and host B, the two hosts encapsulating their
IPv6 packets in IPv4 so as to pass through the IPv4-only routers and
networks.

Host-to-router tunneling Finally, consider what happens when host A
and router X are dual-stack IPv4/IPv6 nodes, network M is an IPv4-
only network, and the rest of the networks support IPv6 only. In this
case, host A must tunnel its packets only to router X; once past the
IPv4-only network M, router X can unwrap the tunneled packets and
forward them normally across the IPv6 networks.

5.2.2 EXPLICIT TUNNELING

Explicit tunneling of IPv6 through IPv4 occurs when the IPv6 packets
are encapsulated in IPv4 packets that are addressed using either IPv4-
compatible addresses or by configuring a set of IPv4 addresses (indicating
the two IPv4 endpoints of the tunnel). The first approach is called automatic
tunneling because there is no need to configure anythingmIPv6-capable
nodes will automatically encapsulate IPv6 packets with IPv4-compatible
addresses.

When IPv4-compatible addresses are not being used, IPv6 nodes can com-
municate using a configured tunnel. The endpoints of the tunnel must be
configured so that the nodes doing the IPv6 encapsulation will be able to
properly address the resulting IPv4 packets. Configured tunneling requires
that the tunnel endpoint nodes acquire their IPv4 address through some

Chapter 5 �9 IPv6 Transition Issues 81

5.2.3

other mechanism (for example, through DHCP, manual configuration, or
any other IPv4 configuration mechanism).

IPv6 OVER IPv4 WITHOUT EXPLICIT TUNNELS

The problem with tunneling is that in either case (configured or auto-
matic) some special case support must be built into the nodes linking
the IPv6 domains across the IPv4 domain. Configured tunnels require
a mechanism to configure the tunnel, whereas automatic tunnels require
IPv4-compatible IPv6 addresses. A different way to tunnel IPv6 over,
described in RFC 2529, "Transmission of IPv6 over IPv4 Domains with-
out Explicit Tunnels," requires only that IPv4 multicast be supported in
the infrastructure.

Known as 6over4, this approach allows IPv6 nodes to treat IPv4 as a link
layer protocol for the purpose of locating other IPv6 nodes. In the same
way that nodes on an Ethernet network emit broadcast or multicast pack-
ets to identify themselves or locate other nodes, an IPv6 node using 6over4
transmits IPv6 packets encapsulated in IPv4 to a multicast group whose
members are IPv6 nodes. The encapsulated packets are treated much the
same way as an IPv4 node's packets that have been encapsulated in an
Ethernet frame. Members of the IPv6 multicast group would be the only
ones accepting those packets, and they would respond (or ignore) the
encapsulated data, as appropriate.

5.2.4 THE TROUBLE WITH TUNNELS

None of the approaches to tunneling described so far is perfect.

Automatic tunnels require IPv4-compatible addresses, requiring IPv6
network administrators to acquire at least one such address for each
tunnel.

Configured tunnels require some mechanism to keep tunnel endpoints'
configurations up to date and working. They also require humans to
configure them at some level and thus are not expected to scale well.

6over4 tunnels require that the IPv4 infrastructure through which they
operate support IPv4 multicast, a specification that is often not
implemented in the public Internet. Another problem is scalability,

82 Part One �9 Theory

inasmuch as these tunnels treat the global IPv4 Internet as a broadcast
medium. Any significant deployment is likely to affect performance
on the IPv4 Internet.

In addition to tunnels, IPv6/IPv4 interoperability requires the use of nodes
that can handle both protocols at the same time, as discussed next.

5.3 IPv4/IPv6 Dual-Stack

The tenacity of legacy systems, as demonstrated by the years of prepara-
tion required to allay Year 2000 fears, should be underestimated at our
peril. IPv4 will be with us for a long time, even as some or all of the rest
of the networked world upgrades to IPv6. During that time, the upgraded
systems will need to maintain interoperability with IPv4 systems; as time
goes on, the burden of interoperability will be shifted from the early imple-
menters to the maintainers of legacy systems. In any case, systems capable
of supporting both IPv4 and IPv6 will be necessary.

The concept of dual-stack nodes is not new. Many, if not most, corporate
hosts that support connectivity to the Internet as well as connectivity to
corporate LANs using older versions of Novell's NetWare (in NetWare 5,
IP replaces IPX as the native network layer protocol), for example, already
support two disparate network stacks. Internet connectivity is provided
through the TCP/IP stack, whereas the NetWare connectivity is provided
by an IPX stack. As segments are received at the link layer and unwrapped,
the headers indicate whether the datagram is intended for the TCP/IP stack
or the IPX stack--and the packet is then passed to the appropriate stack
for processing.

IPv4/IPv6 dual-stack nodes can work much the same as other types of
multiple-stack nodes. The data link layer header contains a field in which
an ethertype (a value specifying network protocol) indicates the type of
protocol being carried in the link layer protocol data unit's payload. Just
as Novell IPX/IPv4 dual-stacks differentiated between the two protocols
by ethertype (the IPX ethertype value is 0x8137; IPv4 ethertype is 0x0800;
and IPv6 ethertype is 0x86DD).

Figure 5-3 shows an example in which dual-stack node D can interoperate
with IPv4 or IPv6 nodes on networks A and B and all IPv4 nodes on network
M, but not with any nodes on network C, which is strictly IPv6. There is

Chapter5 �9 IPv6Transition Issues 83

Figure 5-3: Dual-stack systems can interoperate with IPv4 and IPv6 nodes.

no IPv6 routing path from network A to network C. The router linking
networks A and M supports only IPv4 and thus cannot forward any IPv6
packets to network C (via network M).

Dual-stack nodes that can perform tunneling add the ability to interoperate
over IPv4 networks without any additional IPv6 routers. Tunneling IPv6
over IPv4 can change the connectivity picture in Figure 5-3. For example, if
node D is able to tunnel IPv6 over IPv4, then it can use its local IPv4 router
to forward packets to network C. If the nodes both support automatic
tunneling, the interoperability is seamless; otherwise, some configuration
of the link may be necessary.

5.4 Connecting IPv6 Domains via IPv4 Clouds

Another short-term approach to the transition from IPv4-only to IPv6 is
known as 6to4 and is described in RFC 3056, "Connection of IPv6 Domains
via IPv4 Clouds," a standards track RFC published in 2001. Rather than
require previously configured tunnels, 6to4 treats the IPv4 network as
a "unicast point-to-point link layer," through which IPv6 networks and
nodes can communicate by relay routers.

6to4 requires at least one globally unique IPv4 network address and
allocates interim IPv6 network addresses to sites using that method.
The globally unique IPv4 network address becomes a part of the network
address prefix assigned to the 6to4-based IPv6 network, and edge routers

84 Part One �9 Theory

+ - _ - + + 1 + +

I 3 I 13 I 32 I 16 I 64 b i t ~ I
+ - - - 4 + ! + +

I FP 1TLA I V4ADDR] SLA ID 1 Interface ID I

I oo l l oxooo21 I I I
4 + + ~ + +

Figure 5-4:6to4 transitional addresses take this form (from RFC 3056).

can be configured to encapsulate IPv6 packets using those addresses into
IPv4 packets.

Figure 5-4 shows how those IPv4 addresses (signified by V4ADDR) are
made a part of the interim 6to4 IPv6 addresses. Those encapsulating IPv4
packets use the protocol type 41 to indicate they are carrying IPv6 trafffic
(this is the same protocol type used to indicate the presence of tunneled
IPv6 packets).

5.5 Summary

Although there are many nontechnical issues involved in the transition
from an IPv4-only world to one in which IPv6 is an important (if not dom-
inant) protocol, the technical issues must be resolved before taking up the
task of implementing and deploying IPv6. In this chapter, we have looked
briefly at some of the technical approaches to supporting IPv6 in IPv4-only
networks.

Although it is necessary to have at least some nodes that can support both
IPv4 and IPv6, as well as mechanisms by which IPv6 packets can be car-
ried through, over, or across IPv6 networks, these are not sufficient to
enable an organization or individual to migrate to an IPv6 environment.
The chapters in Part III offer more specific and more practical advice about
this transition.

One issue often cited (generally incorrectly) as a primary reason for migrat-
ing to IPv6 support is security. The next chapter introduces the IP Security
Protocol (IPsec), an optional part of IPv4 but a mandatory protocol for all
IPv6 implementations.

Part Two �9 IPv6 Protocols 87

IPv6, like IPv4, is a protocol defined by a set of addressing protocols,
a set of protocol headers, and a set of protocol behaviors. Part II begins
with a chapter on the Internet Protocol Security Architecture (IPsec),
a protocol that is defined for use with both IPv4 and IPv6. The rest of
this section of the book details IPv6 by first defining the rules for IPv6
addressing in Chapter 7; defining the protocol headers in Chapter 8;
and discussing additional protocol behaviors as represented by routing
protocols in Chapter 9. Chapter 10 discusses the changes and additions
necessary for making existing upper- and lower-layer protocols work well
with IPv6.

After reading Part II, you will be able to do the following.

�9 Understand IP security issues and explain how IPsec works
�9 Discuss and differentiate IPv6 address types
�9 Refer to IPv6 nodes and networks by their addresses
�9 Identify IPv6 packets and use packet header information for

troubleshooting purposes
�9 Understand how the new features of IPv6 work, from Neighbor

Discovery to IPv6 autoconfiguration
�9 Understand IPv6 routing behavior
�9 Identify modifications and additions to existing protocols

necessary for IPv6 support

If you don't have the time (or need) to understand the precise differences
between IPv6 and IPv4, it is possible to summarize IPv6 as being an update
of IPv4 with 128-bit addresses, streamlined headers, and a few changes in
the information contained in the headers and the functions possible with
the protocol. However, some of the changes noted in the next chapter have
significant implications, as the remainder of Part II will demonstrate.

The I P Security Protocol
(IPsec)*

Claims that IPv4 security was neglected by the founders are based on the
argument that early IPv4 networks were insecure things strung together
on trust between naive but ultimately honorable academicians. However,
at the very start the Internet Protocol was defined as a U.S. Department
of Defense (DoD) standard, and security was certainly a consideration.
Nevertheless, the IETF has given considerably more explicit attention to
IPv6 security than was accorded to IPv4 during its early development.

The desirability and utility of authentication and security features at the
IP layer have been debated for years. This chapter discusses how authenti-
cation and security, including secure password transmission, encryption,
and digital signatures on datagrams, are implemented under IP through
the Authentication Header (AH) and Encapsulating Security Payload (ESP)
options. Before examining the IP Security Protocol (IPsec), however, we
will take a look at the IP security architecture described in RFC 2401,

*This chapter is adapted from Chapter 26 of TCP/IP Clearly Explained (4th edition).

89

90 Part Two �9 IPv6 Protocols

"Security Architecture for the Internet Protocol," and the different pieces
of that architecture.

IPv4 as originally designed offered no real security features; it was
intended simply as an internetworking protocol. While not necessarily
a problem for a networking protocol used largely in research and academic
settings, the increase in importance of IP networking to the general busi-
ness and consumer networking environments makes the potential harm
resulting from attacks more devastating than ever. This section examines
the following.

�9 Issues of security for IP
�9 Security goals defined for IP
�9 Cryptographic elements of IPsec
�9 Protocol elements of IPsec
�9 Implementing IPsec

The next section takes a look at the specifics of IPsec, as well as some of the
tools being assembled to achieve these goals.

6.1 IP Security Issues

IPsec as defined in RFC 2401 provides a security architecture for the
Internet Protocolmnot a security architecture for the Internet. The distinc-
tion is important: IPsec defines security services to be used at the IP layer,
both for IPv4 and IPv6. It is often said that IPv6 is "more secure" than IPv4,
but the difference is that IPsec is required for all IPv6, whereas it is optional
for IPv4 nodes.

The IP Security Protocol (IPsec) provides an interoperable and open
standard for building security into the network layer rather than at the
application or transport layer. Although applications can benefit from net-
work layer security, the most important application IPsec enables is the
creation of virtual private networks (VPNs) capable of securely carrying
enterprise data across the open Internet.

IPsec is often used in conjunction with tunnel management protocols,
including the Layer 2 Tunneling Protocol (L2TP), the Layer 2 Forwarding
(L2F) protocol designed by Cisco Systems, and Microsoft's Point to Point

Chapter 6 �9 The IP SecurJty Protocol (IPsec) 91

Tunneling Protocol (PPTP). RFC 2661, "Layer Two Tunneling Protocol
'L2TP,'" defines L2TP as a standards track specification for tunneling
packets sent over a PPP link.

While the tunnel management protocols offer access security services, they
don't provide authentication or privacy services, so they are often used
in conjunction with IPsecmwhich does provide those services. However,
saying that IPsec specifies protocols for encrypting and authenticating data
sent within IP packets is an oversimplification and even obscures IPsec's
full potential. IPsec enables the following.

Encryption of data passing between two nodes, using strong
public and private key cryptographic algorithms

Authentication of data and its source, using strong authentication
mechanisms

Control over access to sensitive data and private networks
Integrity verification of data carried by a connectionless proto-

col (IP)
Protection against replay attacks, in which an intruder inter-

cepts packets sent between two IP nodes and resends them after
decrypting or modifying them

Limitation of traffic analysis attacks, in which an intruder inter-
cepts protected data and analyzes source and destination infor-
mation, size and type of packets, and other aspects of the data,
including header contents that might not otherwise be protected
by encryption

End-to-end security for IP packets, providing assurance to
users of end-point nodes of the privacy and integrity of their
transmissions.

Secure tunneling through insecure networks such as the global
Internet and other public networks

Integration of algorithms, protocols, and security infrastructures
into an overarching security architecture

As defined in RFC 2401, "Security Architecture for the Internet Protocol,"
the goal of the IP security architecture is "to provide various security
services for traffic at the IP layer, in both the IPv4 and IPv6 environments."
This means security services that have the following features.

Interoperable As with all Internet protocols, interoperability is a fun-
damental goal. This means that any IP node supporting IPsec can
communicate with any other node supporting IPsec. There is a basic

92 Part Two �9 IPv6 Protocols

set of cryptographic algorithms for encryption and integrity check-
ing, which all IPsec nodes must support, although individual nodes
and implementations may support many more, optional, algorithms.
Although some nodes are configured to prefer newer or less open
algorithms, all nodes are required to support the basic ones.

High quality The baseline for security through IPsec must be set
high enough to guarantee a reasonable degree of actual security.
Algorithms and key lengths that are to be vulnerable to attack are not
acceptable. For example, data encrypted with 40-bit encryption keys
can be brute-forced or successfully and quickly decrypted by trying
every combination. The number of possible keys is 240 - 1, or roughly
1000 billion; on average, the correct key will be discovered after trying
half (about 500 billion) of those combinations. Such attacks are almost
trivially easy with commercial off-the-shelf hardware, and thus 40-bit
keys are not considered to provide "high-quality" security.

Cryptographicallybased Cryptographers work with algorithms for
encryption, secure hashing, and authentication. Encryption algo-
rithms allow regular data to be transformed into cyphertext, data
scrambled so that only the entity holding an appropriate key can
decrypt it. Secure hash algorithms operate on any size chunk of data
to generate a fixed-length sequence of bits (the hash). An entity can
confirm the integrity of the data by running the hashing algorithm on
received data; if the transmitted hash and the calculated hash agree,
the data is verified as having been sent without change. Authentica-
tion of entities through the use of digital signatures depends on public
key algorithms. Data encrypted with the public key of a public/
private key pair can be decrypted only by an entity with access to
the private key; likewise, if an entity encrypts something (such as the
text of a message) with their private key, then anyone with access to
the public key can decrypt the message and confirm that the sender
has access to that key.

By basing IPsec on cryptography rather than on any other mecha-
nisms for security, the protocol designers place limits on the security
goals possible to attain through its use while at the same time ensur-
ing that those security goals will be achieved through the use of
verifiable and reliable mechanisms.

The IP security architecture allows systems to choose the required secu-
rity protocols, identify the cryptographic algorithms to use with those

Chapter 6 �9 The IP SecurJty Protocol (IPsec) 93

protocols, and exchange any keys or other material or information
necessary to provide security services.

As may be evident from its highly qualified description, public key
cryptography-based mechanisms require that all participants can be con-
fident that public keys are issued only to the entities identified with those
keys. When a public key is published purporting to represent Microsoft
Corporation, the possibility that the key has been properly issued to
Microsoft and not to a computer criminal should approach 100% certainty.
Unfortunately, as was demonstrated in early 2001 when it was reported
that leading public key infrastructure vendor Verisign, Inc., issued two
public key certificates to an impostor claiming to represent Microsoft, this
is not always possible.

As a network layer protocol, IPsec provides security only at the network
layer. This means that packets can be protected from the point at which
they enter the IP network (the source node's IP interface) to the point
at which they leave the IP network (the destination node's IP interface).
IPsec cannot substitute for proper application or transport layer security
mechanisms, and IPsec cannot protect against attackers taking control of
the source or destination nodes or processes.

6.2 Security Goals

Computer security can be said to embody three general goals.

Authentication The ability to reliably determine that data has been
received as it was sent and to verify that the entity that sent the data
is what it claims to be. Successful authentication means preventing
attackers from impersonating an authorized entity.

Integrity The ability to reliably determine that the data has not been modi-
fied during transit from its source to its destination. Successfully
maintaining data integrity means preventing an attacker from modi-
fying authentic data without detection as well as preventing the
acceptance of data that has been corrupted somewhere in the network
clouds (as happens occasionally).

Confidentiality The ability to transmit data that can be used or
read only by its intended recipient and not by any other entity.

94 Part Two �9 IPv6 Protocols

Successfully maintaining data confidentiality means preventing any-
one other than the intended recipient(s) from being able to access
private data.

Developments in modern cryptography, specifically in the use of public
key cryptography (discussed in the next section), make possible the combi-
nation of these three goals in one set of functions. These goals--authenti-
cation, integrity, and confidentiality--are achieved through three related
functions.

Digital signatures unequivocably link the holder of a particular secret
with data represented as having been signed by that entity.

Secure hashes digitally "summarize" a sequence of data using a repeat-
able process that will produce identical results only if the data
sequence being verified matches the data sequence produced by the
sender.

Encryption is the process of performing a reversible transformation on
readable data so as to render it unreadable by anyone other than the
holder of the appropriate decryption key.

Some or all of these functions are possible in combination or individually
in protocols at every layer of the TCP/IP stack, from IP (through IPsec) to
the transport layer (through TLS, the Transport Layer Security protocol)
to security functions provided through applications.

The goal of IPsec is to provide security mechanisms for all versions of IP. 1
IPsec provides security services at the IP layer, and systems may require
other systems to interact with it securely with IPsec and a particular set
of security algorithms and protocols. While IPsec mandates support for
a basic set of algorithms, it also allows nodes to negotiate acceptably secure
interaction with other systems with optional algorithms. IPsec provides
the framework within which nodes can negotiate appropriate algorithms,
protocols, key lengths, and other aspects of secure communication.

IPsec allows maintenance of the following.

Access control IPsec allows security protocols to be invoked governing
the secure exchange of keys, allowing authentication of users for
access control purposes.

liPsec support is mandatory for IPv6 nodes, but optional for IPv4 nodes.

Chapter 6 �9 The IP Security Protocol (IPsec) 95

Connectionless integrity IPsec allows nodes to validate each IP packet
independent of any other packet. There is no need to verify sequences
of packets or even to have access to other packets exchanged by
the same nodes. Connectionless integrity is enabled through use of
secure hashing techniques, similar to the use of check digits but with
greater reliability and less likelihood of tampering from unauthorized
entities.

Data origin authentication Identifying the source of the data contained
in an IP packet is another security service provided by IPsec.
This function is accomplished through the use of digital signatures.

Defense against packet replay attacks As a connectionless protocol, IP
is subject to the threat of replay attacks, where an attacker sends
a packet that has already been received by the destination host.
Replay attacks can harm system availability by tying up receiving
system resources. IPsec provides a packet countermechanism that
protects against this ploy.

Encryption Data confidentialitymkeeping access to data from anyone
but those with proper authorizationmis provided through the use of
encryption.

Limited traffic flow confidentiality Encrypting data is not always suffi-
cient to protect systems; merely knowing the endpoints of an
encrypted exchange, the frequency of such interaction, or other infor-
mation about the transmissions can provide a determined attacker
with enough information to disrupt or subvert systems. IPsec pro-
vides some limited traffic flow confidentiality through the use of IP
tunneling, especially when coupled with security gateways.

All of these functions are possible through proper use of the Encapsulating
Security Payload (ESP) Header and the Authentication Header (AH).
A handful of cryptographic functions is specified for IPsec and is described
briefly in the next section.

Public key encryption provides a mechanism for performing almost all of
these functions with a single set of processes. AH provides mechanisms for
applying authentication algorithms to an IP packet, whereas ESP provides
mechanisms for applying any kind of cryptographic algorithm to an IP
packet including encryption, digital signature, and/or secure hashes.

96 Part Two �9 IPv6 Protocols

IPsec is aimed at eliminating certain types of attacks, including the
following.

Denial of service (DOS)attacks These occur when an entity uses net-
work transmissions to prevent legitimate users from using network
resources. For example, an attacker may flood a host with TCP SYN
requests and thereby crash a system, or the attack may consist of
repeated transmission of long mail messages with the intention of
filling up a user's or site's bandwidth with nuisance traffic.

Spoofing attacks These occur when an entity transmits packets that mis-
represent the packets' origins. For example, one type of spoofing
attack occurs when the attacker sends a mail message with the From:
header indicating the source of the message as, say, the president of
the United States. More insidious and almost as easy to engineer are
those attacks that occur when packets are sent out with an incorrect
source address in the headers.

Man-in-the-middle attacks (MITMs) These occur when an attacker
(Alice) positions herself between two communicating entities (call
them Bob and Carol) and intercepts all their transmissions. Alice
poses as Bob when communicating with Carol, and as Carol when
communicating with Bob. Alice, as a result, is able to send what-
ever data she wants to Bob instead of what Carol wants to send to
Bob. MITM attacks are relatively easy when transmissions are not
encrypted or authenticated. However, Alice can successfully attack
even a protected data stream if she is able to either gain access to
Carol's secret keys (or be issued a set of her own public/secret key
pairs that is sufficiently similar to Carol's that Bob will be fooled).

This last attack is important because it raises the issue of handling keys.
As just noted, encryption and digital signature functions require the use
of keys to decrypt a n d / o r verify data, and digital certificates are one mecha-
nism by which public keys can be distributed. Although all public key
infrastructure (PKI) providers, including Verisign, make their own efforts
to validate all applications, the problem is not a matter of technology.
As noted earlier, Verisign issued two digital certificates to someone who
improperly posed as a representative of Microsoft; a sufficiently motivated
attacker will presumably use every possible tactic to get a desired certifica-
tion. An attacker's ability to forge credentials (from letterhead on which to
type a request for a corporate digital certificate to passport, birth certificate,

Chapter 6 �9 The IP Security Protocol (IPsec) 97

or other documents submitted to support a fraudulent application) may
exceed the ability of the PKI provider to detect them.

As a result of this potential vulnerability, IPsec requires a mechanism by
which keys can be securely administered and distributed in a way that
associates public keys with the entities that are supposed to own them.

As just noted, IPsec secures IP--not the Internet and certainly not the sys-
tems connected to the Internet or the processes running on those systems.
IPsec must be considered only one part of the organizational security
strategy. While IPsec-protected traffic may pass unscathed across the
global Internet, before it leaves its source and after it arrives at its destina-
tion, that traffic will be vulnerable to attacks on local links, local systems,
processes, and the protocols used there.

6.3 Encryption and Authentication Algorithms

Rather than relying on secrecy to protect an encryption or authentication
scheme (an approach known as "security through obscurity"), TCP/IP
security protocols always specify that cryptographic algorithms be well
known and accessible. This is done for several reasons, not the least of
which is that as an open protocol suite, TCP/IP protocol specifications
must be published freely. The most important reason, however, is that
secrecy is a poor safeguard over security.

Attempting to keep an encryption algorithm secret is almost impossible,
particularly if it is being used by anyone other than the person who knows
the secret. Attackers have many cryptanalysis tools at their disposal for
breaking codes, and they need only have access to ciphertexts to break
them. Having access to the software used to encrypt and /o r decrypt data
with the secret algorithm makes the task much easier: the attacker must
only determine what the software does to the data to figure out how to
reverse the operation.

The greatest advantage that published algorithms provide is the benefit of
scrutiny by researchers and others seeking to find ways to further improve
or break the algorithms. The more trained experts examine an algorithm,
the less likely they are to overlook an "obvious" attack.

98 Part Two �9 IPv6 Protocols

Security algorithms and protocols are hard to design because there are so
many different ways to attack them--and designers can't always imagine
them all. Although national security organizations as well as corpora-
tions may have their own top-secret codes, secrets are hard to keep. Spies
and other criminals are well known for their skill at motivating (through
bribery, extortion, or other means) people who know secrets to share them.

The prevailing wisdom in security holds that a good encryption or
authentication algorithm should be secure even if an attacker knows what
algorithm is being used. This is particularly important for Internet secu-
rity, since an attacker with a sniffer will often be able to determine exactly
what kind of algorithm is being used by listening as systems negotiate their
connections.

In this section we'll cover five types of important cryptographic functions.

�9 Symmetric encryption
�9 Public key encryption
�9 Key exchange
�9 Secure hashes (message digests)
�9 Digital signature

6.3.1 SYMMETRIC ENCRYPTION

Most people are familiar with symmetric encryption, if only at a visceral,
intuitive level: Plaintexts are encrypted with a secret key and some set of
procedures, and they are decrypted with the same key and the same set
of procedures. If you have the key, you can decrypt all data that has been
encrypted with that key. Sometimes known as secret key encryption, sym-
metric encryption is computationally efficient and it is the most frequent
type of encryption for network transmission of volumes of data.

In October 2000, the National Institute of Standards and Technology (NIST)
announced that the Rijndael 2 data encryption algorithm had been selected
for the Advanced Encryption Standard (AES), replacing the outdated Data
Encryption Standard (DES) algorithm originally developed during the 1970s
by IBM. DES uses 56-bit keys, although a variation called triple DES

2According to an FAQ at the NIST Web site, "The algorithm's developers have suggested
the following pronunciation alternatives: 'Reign Dahl,' 'Rain Doll,' and 'Rhine Dahl.'" The
AES home page is http://csrc.nist.gov / encryption / aes/.

Chapter 6 �9 The IP Security Protocol (IPsec) 99

encrypts data three times with the DES algorithm, providing improved
security.

Using a secure encryption requires using sufficiently long keys. Shorter
keys are vulnerable to brute-force attacks, in which an attacker uses
a computer to try all the different possible keys. Key lengths on the order of
40 bits, for example, are considered insecure because they can be broken by
brute-force attacks in very short order by relatively inexpensive computers.
Single-DES has been brute-forced as well; in general, 128-bit and longer
keys are likely to be secure against such attacks for the immediate future.

Symmetric encryption algorithms can be vulnerable to other types of
attacks. Most applications that use symmetric encryption for Internet
communications use session keys, meaning that the key is used for only
a single-session data transmission (sometimes several keys are used in one
session). Loss of a session key thus compromises only the data that was
sent during that session or portion of a session.

These are some of the other symmetric encryption algorithms that have
been or are currently being used for Internet applications.

RC2/RC4 These commercial symmetric encryption algorithms were
developed and marketed by cryptography firm RSA.

CAST Developed in Canada and used by Nortel's Entrust products,
CAST supports up to 128-bit keys.

IDEA The International Data Encryption Algorithm supports 128-bit
keys. It was patented by Swiss firm Ascom, which granted permis-
sion for IDEA to be used for free noncommercial use in the seminal
and open source encryption program Pretty Good Privacy (PGP),
written by Philip Zimmermann and published for a time by Network
Associates, Inc.

GOST This algorithm was reportedly developed by a Soviet security
agency.

Blowfish This algorithm was developed by Bruce Schneier and released
to the public domain.

Twofish This was Bruce Schneier's submission to the AES competition.

100 Part Two �9 IPv6 Protocols

Skipjack This algorithm was developed by the National Security Agency
for use with the Clipper chip's escrowed key system.

6.3.2 PUBLIC KEY ENCRYPTION

Public key encryption, also called asymmetric encryption, uses pairs of keys:
One, the public key, is associated with the other, the secret key. The public
key is intended to be made public. Any data encrypted with the public key
can only be decrypted with the secret key and any data encrypted with the
secret key can be decrypted with the public key.

Anyone can get a public key and encrypt some data with it. That data can
be decrypted only by the holder of the secret key. As long as an entity
can keep its secret key a secret, other entities can be sure that any data
encrypted with the public key will be accessible only to the holder of the
associated secret key. The holder of the secret key can encrypt something
using that secret key and make it available to another entity. That entity
can verify the first entity as holding the secret key of a particular public
key pair by decrypting the data with the public key.

Public key encryption tends to be computationally intensive and is most
often used to encrypt session keys for network transmissions as well as for
digital signatures.

The most commonly used type of public key encryption is the RSA algo-
rithm developed by Ron Rivest, Adi Shamir, and Len Adleman. RSA
defines a mechanism for choosing and generating the secret/public key
pairs, as well as for the actual mathematical function to be used for
encryption.

6.3.3 KEY MANAGEMENT

One of the most complex issues facing Internet security professionals is
how to manage keys. This includes not only the actual distribution of
keys through a key exchange protocol but also the negotiation of key
length, lifetime, and cryptographic algorithms between communicating
systems.

An open channel (an open communication medium over which transmis-
sions can be overheard) like the global Internet complicates the process of

Chapter 6 �9 The IP Security Protocol (IPsec) 101

sharing a secret. This process is necessary when two entities need to share
a key to be used for encryption. Some of the most important cryptographic
algorithms relate to the process of sharing a key over an open channel
securely, in a way that keeps the secret from anyone but the intended
recipients.

Diffie-Hellman key exchange is an algorithm that allows entities to exchange
enough information to derive a session encryption key. Alice (the cus-
tomary entity name for the first participant in a cryptographic protocol)
calculates a value using Bob's public value and her own secret value (Bob
is the second participant in cryptographic protocols). Bob calculates his
own value and sends it to Alice; they each then use their secret values
to calculate their shared key. The mathematics are relatively simple (but
outside the scope of this book); the bottom line is that Bob and Alice can
send each other enough information to calculate their shared key but not
enough for an attacker to be able to figure it out.

Diffie-Hellman is often called a public key algorithm, but it is not a public
key encryption algorithm. Diffie-Hellman is used to calculate a key, but that
key must be used with some other encryption algorithm. Diffie-Hellman
can be used for authentication, though, and is also used by PGP.

Key exchange is integral to any Internet security architecture, and candi-
dates for the IPsec security architecture include the Internet Key Exchange
(IKE) protocol and the Internet Security Association and Key Management
Protocol (ISAKMP).

ISAKMP is an application protocol, using UDP as its transport, which
defines different types of messages that systems send to each other to
negotiate the exchange of keys. The mechanisms and algorithms for doing
the actual exchanges, however, are not defined in ISAKMPmit is a frame-
work to be used by the specific mechanisms. The mechanisms, often
based on Diffie-Hellman key exchange, have been defined in a number
of different proposals over the years. These are some of them.

Photuris Based on Diffie-Hellman, Photuris adds the requirement that
the requesting node send a cookie, a random number that is used as
a sort of session identifier. The cookie is sent first, and the server
acknowledges the request by returning the cookie. This reduces the
risk from denial-of-service attacks made by attackers forging their
source addresses. Photuris also requires all parties to sign their nego-
tiated key to reduce the risk of a man-in-the-middle attack (in which

102 Part Two �9 IPv6 Protocols

an attacker pretends to be Bob to one system's Alice, while pretending
to be Alice to the other system's Bob).

SKIP Sun Microsystems' Simple Key-management for Internet Protocols
(SKIP) is also based on Diffie-Hellman key exchange, but rather than
requiring parties to use random values to calculate their keys, SKIP
calls for the use of a secret table that remains static. The parties look up
secret values in this table and then transmit calculated values based
on some secret value from the table.

OAKLEu Although this mechanism shares some features with Photuris,
it provides different modes of key exchange for situations where
denial-of-service attacks are not a concern.

By defining a separate protocol, ISAKMP, for the generalized formats
required to do key and Security Association exchanges, it can be used as
a base to build specific key exchange protocols. The foundation protocol
can be used for any security protocol, and it does not have to be replaced
if an existing key exchange protocol is replaced.

It should be noted that manual key management is an important option
and in many cases is the only option. This approach requires individuals to
personally deliver keys and configure network devices to use them. Even
after open standards have been firmly determined and implemented, par-
ticularly as commercial products, manual key management will continue
to be an important choice.

As more research is done with IPsec, work on an IKE successor proto-
col (sometimes called Son-of-IKE) is ongoing, with IKEv2 one candidate
protocol that (as of 2002) is a work-in-progress.

6.3.4 SECURE HASHES

A hash is a digital summary of a chunk of data of any size. Simple types
of hashes include check digits; secure hashes produce longer results (often
128 bits or longer). Good secure hashes are extremely difficult for attackers
to reverse-engineer or subvert in other ways. Secure hashes can be used
with keys or without, but their purpose is to provide a digital summary
of a message that can be used to verify whether some data that has been
received is the same as the data sent. The sender calculates the hash and

Chapter 6 �9 The IP Security Protocol (IPsec) 103

includes that value with the data; the recipient calculates the hash on the
data received. If the results match the attached hash value, the recipient
can be confident in the data's integrity.

Commonly used hashes include the MD2, MD4, and MD5 message digest
functions published by Network Associates. The Secure Hash Algorithm
(SHA) is a digest function developed as a standard by NIST. Hashes may
be used on their own or as part of digital signatures.

6.3.5 DIGITAL SIGNATURE

Public key encryption, as noted previously, relies on key pairs. Digital
signatures rely on the property of public key encryption that allows data
encrypted with an entity's secret key to be decrypted with the public key
of the pair. The sender calculates a secure hash on the data to be signed
and then encrypts the result using a secret key. The recipient calculates the
same hash and then decrypts the encrypted value attached by the sender.
If the two values match, the recipient knows that the owner of the public
key was the entity that signed the message and that the message was not
modified during transmission.

The RSA public key encryption algorithm can be used for digital signatures:
The signing entity creates a hash of the data to be signed and then encrypts
that hash with its own secret key. The certifying entity then calculates
the same hash on the data being received, decrypts the signature using the
signing entity's public key, and compares the two values. If the hash is the
same as the decrypted signature, then the data is certified.

Digital signatures carry with them several implications.

�9 A signature that can be certified indicates that the message was
received without any alteration from the time it was signed to
the time it was received.

�9 If a signature cannot be certified, then the message was cor-
rupted or tampered with in transit, the signature was calculated
incorrectly, or the signature was corrupted or tampered with in
transit. In any case, an uncertifiable signature does not neces-
sarily imply any wrongdoing but does require that the message
be resigned and resent in order to be accepted.

�9 If a signature is certified, it means that the entity associated
with the public key was the only entity that could have signed it.

104 Part Two �9 IPv6 Protocols

In other words, the entity associated with the public key cannot
deny having signed the message. This is called nonrepudiation
and is an important feature of digital signatures.

There are other mechanisms for doing digital signatures, but RSA is prob-
ably the most widely used one and is implemented in the most popular
Internet products.

6.4 IPsec: The Protocols

IPsec is a security tunneling protocol, defining a mechanism that allows
a node to encrypt and /o r authenticate packets and encapsulate the
secured packets (which may now be literally indecipherable, having been
encrypted) into new packets. Figure 6-1 illustrates the basic idea behind
IPsec and other security tunneling protocols.

IPsec depends on the use of security gateways, which encapsulate IP pack-
ets on behalf of their clients. In Figure 6-1, the security gateway labeled
"X" serves, among others, hosts A', B', and C'; "Y" serves hosts A,
B, and C. The PC off on the side has its own, software, security gate-
way. In this example, the tunnel from X to Y carries all secured traffic
between the two pictured Internets. In this case, each security gateway
integrates all traffic for its local network and encrypts and /o r authenti-
cates all of it between itself and the security gateway at the other end.
If all traffic is being encrypted (a good bet), then any attacker sitting
inside the public Internet could intercept these packets but would get
relatively little information from them. At best, the attacker would dis-
cover that there is a secure tunnel between X and Y, but she would likely
learn only how much traffic was being sent between the two security
gateways.

The security gateways create secure tunnels, as shown in Figure 6-2, by
accepting IP packets sent from one node (A) to another (B). A sends off
the packets as if they were going to be delivered directly to B; the security
gateway X then takes those packets (along with any others from the same
network) and treats them as raw data to be sent to security gateway Y.
The packets sent by A are shown as open envelopes to signify that they
have not been encrypted, while the packets sent from X are shown as

Chapter 6 �9 The IP SecurJty Protocol (IPsec) 105

Figure 6-1: Security tunneling across a hostile network.

sealed envelopes to indicate that they contain the encrypted packets sent
from A.

The original IPsec specifications define security protocols for the
Authentication Header (AH) and the Encapsulating Security Payload
(ESP) IP options, as header options (for IPv4) or header extensions (for
IPv6). As their names imply, AH provides an authentication mecha-
nism, whereas ESP provides an encryption ("encapsulated security")
mechanism for privacy.

106 Part Two �9 IPv6 Protocols

Figure 6-2: Us ing a secure tunnel.

6.5 IP and IPsec

IPsec provides security services for either IPv4 or IPv6, but the way it
provides those services is slightly different in each. When used with IPv4,
IPsec headers are inserted after the IPv4 header and before the next-layer
protocol header.

IPv6 simplifies header processing: Every IPv6 packet header is the same
length, 40 octets, but any options can be accommodated in extension

Chapter 6 �9 The IP Security Protocol (IPsec) I07

headers that follow the IPv6 header. IPsec services are provided through
these extensions.

The ordering of IPsec headers, whether within IPv4 or IPv6, has signi-
ficance. For example, it makes sense to encrypt a payload with the ESP
Header and then use the Authentication Header to provide data integrity
on the encrypted payload. In this case, the AH Header appears first,
followed by the ESP Header and encrypted payload. Reversing the order,
by doing data integrity first and then encrypting the whole lot, means
that you can be sure of who originated the data but not necessarily certain
of who did the encryption.

6.5.1 SECURITY ASSOCIATIONS

The Security Association (SA) is a fundamental element of IPsec. RFC 2401
defines the SA as "a simplex 'connection' that affords security services
to the traffic carried by it." This rather murky definition is clarified by
a description; an SA consists of three things.

�9 A Security Parameter Index (SPI)
�9 An IP destination address
�9 A security protocol (AH or ESP) identifier

As a simplex connection, the SA associates a single destination with the
SPI; thus, for typical IP traffic there will be two SAs: one in each direc-
tion that secure traffic flows (one each for source and destination host).
SAs provide security services by using either AH or ESP but not both
(if a traffic stream uses both AH and ESP, it has two---or more---SAs).

The Security Parameter Index (SPI) is an identifier indicating the type of
IP header the security association is being used for (AH or ESP). The SPI
is a 32-bit value identifying the SA and differentiating it from other SAs
linked to the same destination address. For secure communication between
two systems, there would be two different security associations, one for
each destination address.

Each security association includes more information related to the type
of security negotiated for that connection, so systems must keep track of
their SAs and what type of encryption or authentication algorithms, key
lengths, and key lifetimes have been negotiated with the SA destination
hosts.

108 Part Two �9 IPv6 Protocols

6.5.2 USING SECURITY ASSOCIATIONS

As mentioned earlier, ISAKMP provides a generalized protocol for estab-
lishing SAs and managing cryptographic keys within an Internet environ-
ment. The procedures and packet formats needed to establish, negotiate,
modify, and delete SAs are defined within ISAKMP, which also defines
payloads for exchanging key generation and authentication data. These
formats provide a consistent framework for transferring this data, inde-
pendent of how the key is generated or what type of encryption or
authentication algorithms are being used.

ISAKMP was designed to provide a framework that can be used by any
security protocols that use SAs, not just IPsec. To be useful for a particu-
lar security protocol, a Domain of Interpretation, or DOL must be defined.
The DOI groups related protocols for the purpose of negotiating security
associations--security protocols that share a DOI all choose protocol and
cryptographic transforms from a common namespace. They also share
key exchange protocol identifiers, as well as a common interpretation of
payload data content.

While ISAKMP and the IPsec DOI provide a framework for authentication
and key exchange, ISAKMP does not actually define how those functions
are to be carried out. The IKE protocol, working within the framework
defined by ISAKMP, does define a mechanism for hosts to perform these
exchanges.

The sending host knows what kind of security to apply to the packet by
looking in a Security Policy Database (SPD). The sending host determines
what policy is appropriate for the packet, depending on various selec-
tors (for example, destination IP address and /or transport layer ports), by
looking in the SPD. The SPD indicates what the policy is for a particular
packet: Either the packet requires IPsec processing of some sort--in which
case it is passed to the IPsec module for processing--or it does not-- in
which case it is simply passed along for normal IP processing.

Outbound packets must be checked against the SPD to see what kind (if
any) of IPsec processing to apply. Inbound packets are checked against
the SPD to see what kind of IPsec service should be present in those
packets.

Another database, called the Security Association Database (SAD), includes
all security parameters associated with all active SAs. When an IPsec host

Chapter 6 �9 The IP Security Protocol (IPsec) 109

wants to send a packet, it checks the appropriate selectors to see what
the SAD says is the security policy for that destination/port/application.
The SPD may reference a particular SA, so the host can look up the SA
in the SAD to identify appropriate security parameters for that packet.

6.5.3 TUNNEL AND TRANSPORT MODE

IPsec defines two modes for exchanging secured data: tunnel mode and
transport mode. IPsec transport mode protects upper-layer protocols and
is used between end-nodes. This approach allows end-to-end security
because the host originating the packet is also securing it, and the des-
tination host is able to verify the security, either by decrypting the packet
or certifying the authentication.

Tunnel mode IPsec protects the entire contents of the tunneled packets. The
tunneled packets are accepted by a system acting as a security gateway,
encapsulated inside a set of IPsec/IP headers, and forwarded to the other
end of the tunnel, where the original packets are extracted (after being
certified or decrypted) and then passed along to their ultimate destination.

The packets are only secured as long as they are "inside" the tunnel,
although the originating and destination hosts could be sending secured
packets themselves, so that the tunnel systems are encapsulating packets
that have already been secured.

Transport mode is good for any two individual hosts that want to com-
municate securely; tunnel mode is the foundation of the Virtual Private
Network or VPN. Tunnel mode is also required anytime a security gateway
(a device offering IPsec services to other systems) is involved at either end
of an IPsec transmission. Two security gateways must always communi-
cate by tunneling IP packets inside IPsec packets; the same goes for an
individual host communicating with a security gateway. This occurs any-
time a mobile laptop user logs into a corporate VPN from the road, for
example.

Tunneling, shown in Figure 6-3, allows two systems to set up SAs to enable
secure communications over the Internet. Network traffic originates on
one system, is encrypted and /o r signed, and is then sent to the destination
system. On receipt, the datagram is decrypted or authenticated, and the
payload is passed along up the receiving system's network stack where it

110 Part Two �9 IPv6 Protocols

Figure 6-3: A pair of hosts using IPsec to communicate transparently across the
Internet.

is finally processed by the application using the data. This is a transparent
mode use of security associations, because the two hosts could be commu-
nicating just as easily without security headers--and because the actual
IP headers of the datagrams must be exposed to allow them to be routed
across the Internet.

An SA can also be used to tunnel secure IP through an internetwork.
Figure 6-4 shows how this works. All IP packets from system A are for-
warded to the security gateway X, which creates an IP tunnel through the
Internet to security gateway Y, which unwraps the tunneled packets and
forwards them. Security gateway Y might forward those packets to any of
the hosts (B, C, or D) within its own local intranet, or it could forward them
to an external host, like M. It all depends on where the originating host
directs those packets. Whenever an SA destination node is a security gate-
way, it is by definition a tunneled association. In other words, tunneling
can be done between two security gateways (as shown in Figure 6-4), or it
can be done between a regular node and a security gateway. Thus, host M
could create a tunneled connection with either security gateway, X or Y.
It is tunneled by virtue of the fact that datagrams sent from M are passed
first to the security gateway, which then forwards them appropriately after
decrypting or authenticating.

6.5.4 ENCAPSULATING SECURITY PAYLOAD (ESP)
Specified in RFC 2406, "IP Encapsulating Security Payload (ESP)," the
ESP Header allows IP nodes to exchange datagrams whose payloads

Chapter 6 �9 The IP Security Protocol (IPsec) 111

Figure 6--4: IP security tunneling.

are encrypted. The ESP Header is designed to provide several different
services (some overlapping with the Authentication Header), including
the following.

�9 Confidentiality of datagrams through encryption.
�9 Authentication of data origin through the use of public key

encryption
�9 Ant ireplay services through the same sequence number mecha-

nism as provided by the Authentication Header
�9 Limited traffic flow confidentiality through the use of security

gateways

The ESP Header can be used in conjunction with an Authentication
Header. In fact, unless the ESP Header uses some mechanism for authen-
tication, it is recommended that the Authentication Header be used with
the ESP Header.

112 Part Two �9 IPv6 Protocols

The ESP Header must follow any headers that need to be processed by
nodes intermediate to the destination node--all data that follows the ESP
Header will be encrypted, with the encrypted payload beginning directly
after the last ESP Header field (see following).

ESP can be used in tunnel or transport mode, similar to the Authentication
Header. In transport mode, the IP Header and any Hop-by-Hop, Routing,
or Fragmentation Extension Headers precede the Authentication Header
(if present), followed by the ESP Header. Any Destination Options
Headers can either precede or follow the ESP Header, or even both; any
Headers that follow the ESP Header are encrypted.

The result appears, in many respects, to simply be a regular IP datagram
transmitted from source to destination, with an encrypted payload. This
use of ESP in transport mode is appropriate in some cases, but it allows
attackers to study traffic between the two nodes, noting which nodes are
communicating, how much data they exchange, when they exchange it,
and so forth. All this information may potentially provide the attacker with
some information that helps defeat the communicating parties.

An alternative is to use a security gateway, much as just described for
the Authentication Header. A security gateway can operate directly with
a node or can link to another security gateway. A single node can use ESP
in tunnel mode by encrypting all outbound packets and encapsulating
them in a separate stream of IP datagrams that are sent to the security
gateway. That gateway then can decrypt the traffic and resend the original
datagrams to their destinations.

When tunneling, the ESP Header encapsulates the entire tunneled IP
datagram and is an extension to the IP Header directing that data-
gram to a security gateway. It is also possible to combine ESP Headers
with Authentication Headers in several different ways; for example,
the tunneled datagram may have a Transport-Mode Authentication
Header.

The following ESP Header format (taken from RFC 2406) includes the Next
Header field, which appears near the end of the ESP Header and indicates
the presence (and identity) of any other headers (such as AH) that may
follow. The rest of the ESP Header consists of the following.

Security Parameter Index (SPI) This is the same 32-bit value referred
to in the section on the Authentication Header. This value is used

Chapter 6 �9 The IP SecurJty Protocol (IPsec) 113

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+--+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+--+-+-+-+_+_+_+_+

Security Parameters Index (SPI)
+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+

Sequence Number
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+

Payload Data (variable)

+ +-+-+-+--+

I Padding (0-255 bytes)
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+_+-+-+_+

I Pad Length I Next Header
+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+-+-+_+_+_+_+_+_+_+

Authentication Data (variable)

+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+_+-+-+_+_+_+_+_+_+_+

^Auth.

Cov-

erage

A

I
Conf.

Cov-

erage

I
V V

by the communicating nodes to refer to a security association, which
can be used to determine how the data should be encrypted.

Sequence Number This 32-bit value is set to zero to start and is incre-
mented by one with each datagram sent. As just described for the
Authentication Header, the sequence number can be used to protect
against replay attacks, and a new security association must be set up
before this value cycles through all 232 values.

Payload Data This is a variable-length field and actually contains the
encrypted portion of the datagram, along with any supplementary
data necessary for the encryption algorithm (e.g., initialization data).
The payload begins with an initialization vector, a value that must be
sent in plaintext; encryption algorithms need this value to decrypt
the protected data.

Padding The encrypted portion of the header (the payload) must end on
the appropriate boundary, so padding may be necessary.

Padding Length This field indicates how much padding has been added
to the payload data.

114 Part Two �9 IPv6 Protocols

6.5.5

Next Header This field operates as it normally does with other IPv6
extension headers; it just appears near the end of the header (where it
can be given confidentiality protection) rather than at the beginning
so that the next layer protocol can be hidden from any unauthor ized
third parties.

Authent icat ion Data This is an Integrity Check Value (ICV) calculated
on the entire ESP Header (except for the authentication data). This
authentication calculation is optional. The ICV is discussed at greater
length following.

AUTHENTICATION HEADER

The Authentication Header can be used to do the following.

�9 Provide strong integrity services for IP datagrams, which
means the AH can be used to carry content verification data
for the IP datagram.

�9 Provide strong authentication for IP datagrams, which means
that the AH can be used to link an entity with the contents of
the datagram.

�9 Provide nonrepudiat ion for IP datagrams, assuming that
a public key digital signature algorithm is used for integrity
services.

�9 Protect against replay attacks through the use of the sequence
number field.

The Authentication Header can be used in tunnel mode or in transport
mode, which means that it can be used to authenticate and protect simple,
direct datagram transfers between two nodes, or it can be used to encap-
sulate an entire stream of datagrams that is sent to or from a security
gateway.

AH is specified in RFC 2402, "IP Authentication Header," and the header
is shown on page 115 (taken from RFC 2402).

In transport mode, the Authentication Header protects the payload of
the original IP datagram as well as the parts of the IP Header that do not
change from hop to hop (e.g., the Hop Limit field or Routing Headers).
Figure 6-5 shows what happens to a t ransport-mode IP datagram as
the Authentication Header is calculated and added to it (the Destination
Options Header may also appear before the Authentication Header).

Chapter 6 �9 The IP Security Protocol (IPsec) 115

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+--+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+

I Next Header I Payload Len I RESERVED I
+-+

I Security Parameters Index (SPI)]
+-+

I Sequence Number Field I
+-+

l I
+ Authentication Data (variable) I

l J
+-+

Datagram prior to calculating AH

I dest IP hdr I ext headers I ~c~ I Data I

Datagram after inserting AH

I dest IP hdr I ext headers I AH I dest options I TCP I Data I

I < authenticated except for fields that change >I

Figure 6-5: Adding an Authentication Header to an IP datagram in trans-
port mode.

The destination IP address and extension headers are protected only
insofar as they do not change from hop to hop.

When the Authentication Header is used in tunnel mode, however, it is
used differently. Figure 6--6 shows the difference. The original destination
IP address, along with the entire original IP datagram, is encapsulated
into an entirely new IP datagram that is sent to the security gateway. Thus,
the entire original IP datagram is fully protected, as are the portions of the
encapsulating IP Headers that don't change.

AH header fields include the following.

Payload length This 8-bit field indicates the entire length of the
Authentication Header in units of 32-bit words, minus 2.

116 Part Two �9 IPv6 Protocols

Original IP datagram

I orig IP hdr I ext hdrs I TCP I Data I

IP datagram for tunneling to security gateway (GW)

] GW IP hdr I ext hdrs I AH I orig IP hdr I ext hdrs I TCP I Data I

Figure 6-6: Adding an Authentication Header to an IP datagram in tunnel mode.

As originally defined, the Authentication Header consisted of 64 bits
of header, with the rest devoted to authentication data (see the fol-
lowing). Thus, the payload length field merely indicated the length
(in 32-bit words) of the authentication data. With the addition of the
Sequence Number field (see the following), this value now equals
the length of the authentication data plus the length of the Sequence
Number field.

Reserved The next 16 bits are reserved for future use; at present, they
must be set to all zeros.

Security Parameter Index (SPI) This 32-bit value is an arbitrary number.
Together with the destination IP address and security protocol (in this
case, AH to indicate the Authentication Header), the SPI uniquely
identifies the security association to be used for the Authentication
Header. An SPI value of zero is for local use only and should never be
transmitted; values from 1 through 255 are reserved by the Internet
Assigned Numbers Authority dANA) for future use.

Sequence N u m b e r This 32-bit value is a mandatory counter; it is also
included by the sender, although it may not always be used by
the recipient. Starting from zero, this counter is incremented with
every datagram sent and is used to prevent replay attacks. When
the recipient is using it for antireplay purposes, it will discard any
datagrams that duplicate a sequence number that has already been
received. This means that when the counter is ready to cycle through
(when 232 datagrams have been received), a new security association
must be negotiated--otherwise, the receiving system will discard all
datagrams once the counter is reset.

Chapter 6 �9 The IP Security Protocol (IPsec) 117

Authentication Data This field contains the Integrity Check Value (ICV),
which is the heart of the Authentication Header. The contents must
be a multiple of 32 bits in length and may contain padding to
attain that length. Calculation of this value is discussed in the next
section.

6.5.6 CALCULATING THE INTEGRITY CHECK VALUE (ICV)

The Authentication Data fields in the AH and ESP Headers are variable-
length fields, each of which contains an Integrity Check Value (ICV). The
field is variable length to accommodate variations from ICV algorithms,
and the length is specified by the selected function. This is an optional field:
It is included only when an authentication service is in use for the SA that
corresponds to the header, and information about the ICV function in use
is maintained along with the rest of the SA data.

The ICV calculation is a bit tricky in that some of the data being authenti-
cated may be modified en route, such as IP header hop counts. According
to RFC 2402 the AH ICV is computed on the IP header fields that either
don't change in transit or whose values on arrival can be predicted, the
AH header itself (though the Authentication Data field is set to zero for the
calculation), and the upper-level protocol data that is being authenticated
(this is assumed to be unchanged in transit).

The ESP ICV, according to RFC 2406, is computed on the entire ESP
packet, excluding the Authentication Data field. This includes the SPI,
Sequence Number, Payload Data, Padding (if present), Pad Length, and
Next Header; the last four fields will be in ciphertext form, since encryption
is performed prior to authentication.

These are the suggested algorithms for ICV.

Message Authentication Codes (MACs), the results of which are then
encrypted with an appropriate symmetric encryption algorithm (for
example, AES)

Secure hash functions,
of SHA)

such as MD5 or SHA-1 (an updated version

To comply with the standard, implementations must support MD5 and
SHA-1 keyed hashing, at least.

118 Part Two �9 IPv6 Prolocols

6.5.7 IPSEC HEADERS IN ACTION

IPsec security services are provided through the AH and ESP Headers in
conjunction, of course, with appropriate and relevant key management
protocols. The AH protocol is specified in RFC 2402, "IP Authentication
Header"; ESP is specified in RFC 2406, "IP Encapsulating Security Payload
(ESP)."

Either security header may be used by itself, or both may be used together
in various combinations of transport or tunnel modes. When used together
with AH encapsulating ESP, packet authentication can be checked prior
to decrypting the ESP Header payload. These headers can also be nested
when using IPsec tunneling: An originating node can encrypt and digi-
tally sign a packet, and then send it to the local security gateway. That
gateway may then reencrypt and resign the packet as it sends it off to
another security gateway.

The ESP and AH authentication services are slightly different: ESP
authentication services are ordinarily provided only on the packet
payload, whereas AH authenticates almost the entire packet including
headers.

The Sequence Number field is mandatory for all AH and ESP Headers and
is used to provide antireplay services. Every time a new packet is sent, the
Sequence Number is increased by one (the first packet sent with a given
SA will have a Sequence Number of 1).

When the receiving host elects to use the antireplay service for a par-
ticular SA, the host checks the Sequence Number: if it receives a packet
with a Sequence Number value that it has already received, that packet is
discarded.

The Authentication Data field contains whatever data is required by the
authentication mechanisms specified for that particular SA to authenti-
cate the packet. The ICV may contain a keyed Message Authentication
Code (MAC) based on a symmetric encryption algorithm (such as AES or
Triple-DES) or a one-way hash function such as MD5 or SHA-1.

The most obvious difference between ESP and AH is that the ESP Header's
Next Header field appears at the end of the security payload. Of course,
since the header may be encapsulating an encrypted payload, you don't
need to know what next header to expect until after you've decrypted the

Chapter 6 �9 The IP Security Protocol (IPsec) 119

6.6

payloadmthus, the ESP Next Header field is placed after rather than before
the payload.

ESP's authentication service covers only the payload itself, not the IP
headers of its own packet as with the Authentication Header. And the
confidentiality service covers only the payload itself; obviously, you can't
encrypt the IP headers of the packet intended to deliver the payload and
still expect any intermediate routers to be able to process the packet. Of
course, if you're using tunneling, you can encrypt everything, but only
everything in the tunneled packet itself.

Implementing and Deploying IPsec

IP layer security protects IP datagrams. It does not necessarily have to
involve the user or any applications. This means users may be merrily
using all of their applications without ever being aware that all their data-
grams are being encrypted or authenticated before being sent out to the
Internet (of course, that situation will only occur as long as all the encrypted
datagrams are properly decrypted by hosts at the other end).

As a result, one question that comes up is how to implement IPsec. RFC
2401 suggests several strategies for implementing IPsec in a host or in
conjunction with a router or firewall.

Integrated implementation Integrate IPsec into the native IP implemen-
tation. This approach is probably the best, but also the most difficult,
as it requires rewriting the native IP implementation to include
support for IPsec. Integrating IPsec into the IP stack adds security
natively and makes it an integral part of any IP implementation.
However, it also requires that the entire stack be updated to reflect
the changes.

"Bump-in-the-stack" (BITS) Implement IPsec "beneath" the IP stack
and above the local network drivers. The IPsec implementation
monitors IP traffic as it is sent or received over the local link, and
IPsec functions are performed on the packets before passing them
up or down the stack. This works reasonably well for individual
hosts doing IPsec.

This approach inserts special IPsec code into the network stack
just below the existing IP network software and just above the local

120 Part Two �9 IPv6 Protocols

6.7

link software. In other words, this approach implements security
through a piece of software that intercepts datagrams being passed
from the existing IP stack to the local link layer interface. This soft-
ware then does the necessary security processing for those datagrams
and hands them off to the link layer. This approach can be used to
upgrade systems to IPsec support without requiring that their IP stack
software be rewritten.

"Bump-in-the-wire" (BITW) Implement IPsec in a hardware crypto-
graphic processor. The crypto processor gets its own IP address;
when used for individual hosts, the bump-in-the-wire acts much like
a BITS implementation, but when the same processor provides IPsec
services to a router or firewall, it must behave as a security gateway m
meaning that it must do IPsec security protocols in tunnel mode.

This approach uses external cryptographic hardware to perform the
security processing. The device is usually an IP device that acts as a
sort of a router or, more accurately, security gateway for all IP data-
grams from any system that sits behind it. When such a device is
used for a single host, it works very much like the BITS approach,
but implementation can be more complex when a single BITW device
is used to screen more than one system.

These options differ more in terms of where they are appropriate than in
subjective terms. Applications that require high levels of security may be
better served with a hardware implementation. Applications that run on
systems for which new IPsec-compliant network stacks are not available
may be better served by the BITS approach.

Summary

Network security is probably the subject of as many books and chapters
within technical books as IP. This chapter provides a concise introduction
to IP security issues and security goals, starting with the definition of the
challenges facing security managers and the tools at their disposal. IPsec
provides authentication services through the use of public key encryption,
digital signature, and secure hashing tools; it provides privacy services
through the use of public and secret key encryption as well.

On top of these cryptographic tools, however, IPsec requires additional
protocols to handle the secure and verifiable distribution and management

Chapter 6 �9 The IP SecurJty Protocol (IPsec) 121

of encryption keys. IPsec combines these cryptographic and security pro-
tocols with IP, using security associations to link packets with hosts and
a pair of optional IP security headers (ESP and AH) to transmit IP packets
securely.

IPsec is often linked to IPv6 because while IPsec support in IPv4 is optional,
it is mandatory for all IPv6-capable hosts. Although some cite "security"
as a reason to prefer IPv6 over IPv4, to a great degree the same level of
security is possible if IPsec were mandatory for all IPv4 nodes.

IPv6 protocols are introduced in the next chapter.

IPv6 Protocol Basics

IPv6 embodies change in several important areas.

�9 Expanded addressing
�9 Simplified header format
�9 Improved extension and option support

These changes to IP succeed at achieving most of the goals originally
charted by the IAB back in 1991 (see RFC 1287, "Toward the Future Internet
Architecture"). The expanded IPv6 address space means IP can continue
to grow without concern about depletion of resources; the addressing
architecture helps improve the situation for routing efficiency.

The simplified header format improves routing efficiency by requiring
less processing of packets, whereas the improvements in extension and
option support mean that special needs can be accommodated without
significantly affecting performance either of routing of normal packets or
of the special-needs packets. Flow labeling provides another mechanism
for treating streams of packets efficiently, particularly useful for real-time
applications. Required support of IPsec, providing authentication and

123

124 Part Two �9 IPv6 Protocols

privacy, also makes IPv6 a more desirable protocol for commercial uses
that require special treatment of sensitive information or resources.

7.1 The IPv6 Address Space

The designers of IPv6 could have simply grafted a larger address space
onto the existing IPv4 addressing architecture---but doing so would cause
us to miss out on a huge opportunity for improving IP. Changing the
entire addressing architecture provides an incredible opportunity not only
for improving efficiency of address allocation but also for improving IP
routing performance.

The IPv4 address space was divided into several different classes based
on the values of their high-order bits. The IPv6 address space is also
divided into different categories based on high-order bits, as shown in
Table 7-1, although most of the address space is unassigned as of yet. The
global unicast address space takes up fully one-eighth of the entire address
space, with all global unicast addresses sharing the three high-order
bits 001. Other allocations are discussed later. All these allocations still
leave roughly 85% of the IPv6 address space unassigned, with no current
plans to assign them for now. At the same time, the allocations that have
been made should be more than ample for the foreseeable future.

As of 2003, the Regional Internet Registries (RIRs) are allocating/32 net-
work prefixes to organizations requesting them, and those allocations may
be expanded in the future if necessary. So far, there is no provision for
suballocations of network blocks smaller than /48, although there are
proposals on the table that would permit such "micro-allocations."

7.1.1 PROVIDER-BASED AGGREGATION

In 1995, RFC 1884, "IP Version 6 Addressing Architecture," allocated
a full quarter of the address space for two different types of unicast
addresses: one-eighth for provider-based unicast addresses and one-eighth
for geographic-based unicast addresses. The intent was to offer addresses
that could be assigned based either on who provided network service to
the address holder or where the subscribing network was located. Provider-
based aggregation would have required networks to take on aggregatable
IP addresses based on the source of their Internet access. However, this

Chapter 7 �9 I Pv6 Protocol Basics 125

Allocation Prefix

(binary)

Fraction of

address space

Unassigned

Unassigned

Reserved for NSAP Allocation

Unassigned

Unassigned

Unassigned

Global Unicast

Unassigned

Unassigned

Unassigned

Unassigned

Unasslgned

Unassigned

Unass•

Unasslgned

Unassigned

Unasslgned

Link-Local Unicast Addresses

Site-Local Unicast Addresses

Multicast Addresses

0000 0000 1/256

0000 0001 1/256

0000 001 1/128

0000 Ol 1/64

0000 1 1/32

0001 1/16

001 1/8

010 118

011 1/8

i00 1/8

i01 1/8

ii0 1/8

iii0 1/16

Iiii 0 1/32

iiii i0 1/64

iiii ii0 1/128

iiii Iii0 0 1/512

Iiii iii0 I0 1/1024

iiii iii0 ii 1/1024

iiii iiii 1/256

Table 7-1: Initial IPv6 address space allocation map, from RFC 3513.

approach was seen to be less than a perfect solution for very large organi-
zations with far-flung branches, some of which would require service from
different providers. Provider-based aggregation would add even more IP
address management headaches for these large organizations.

7.1.2 GEOGRAPHIC-BASED AGGREGATION

Steve Deering proposed geographic-based allocation as an alternative in the
Simple Internet Protocol (SIP, a precursor to SIPP, see Chapter 4). These
addresses, unlike provider-based addresses, would be allocated on a per-
manent basis much as IPv4 addresses have been allocated. These addresses
would be based on geographic location, and providers would have to main-
tain additional routes to support these networks outside the aggregatable
portion of the IPv6 address space.

126 Part Two �9 IPv6 Protocols

The ISP community dislikes geographic-based allocations because it means
significantly more complexity (and cost) to manage geographic address
allocation. Since most objections to provider-based allocation grew out of
difficulties of configuring and reconfiguring nodes with provider-based
addresses, geographic address allocation has been dropped in favor of
developing improved automatic and dynamic host configuration under
IPv6mincluding the ability to automatically renumber entire networks
when providers are changed.

7.1.3 IPv6 AGGREGATION

With the goal of avoiding complicating the IPv6 routing tables, the cur-
rent approach to aggregation is based on having routes aggregated by the
service providers. The addition of stateless autoconfiguration and renum-
bering protocols to IPv6 will serve to make some types of aggregation
unnecessary.

7.2 IPv6 Header Format

Network protocols can be said to consist of the set of rules that govern
exchanges of information between nodes and the information itself. IP
packet headers contain the information and constrain that information in
most cases to valid values. Once it is clear what information is contained in
the headers and what values are valid, the rules of the exchanges become
self-evident.

Figure 7-1 shows the IPv4 packet header structure, and Figure 7-2 shows
the IPv6 packet header structure. Compare the two, and it becomes clear
that IPv6 should be a simpler protocol if only because they carry less infor-
mation. However, the fields that have been dispensed with are either no
longer needed or wanted, and IPv6 provides at least as much functionality
to network nodes as IPv4.

IPv6 headers consist of 8 fields (2 of which are source and destination
addresses) spread over 40 bytes. Contrast this with IPv4 headers, which
contain at least 12 different fields and may be as short as 20 bytes if no
options are in use or as long as 60 bytes if options are being used. Routing
is thought to be more efficient with a uniformly sized header and with
fewer fields to examine and process.

Chapter 7 �9 IPv6 Protocol BasJcs 127

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+_+_+_+_+_+_+_+_+_+

Version 1 IHL IType of Service I Total Length I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+

Identification IFlagsl Fragment Offset I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+

Time to Live I Protocol I Header Checksum I
+--+-+-+-+_+_+_+_+_+

Source Address I
+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+

Destination Address I
+-+--+-+-+-+-+-+-+--+--+--+-+-+-+--+-+-+--+-+-+--+--+--+_+_+_+_+_+_+_+_+_+

Options I Padding I
+-+_+_+_+_+_+_+_+

Figure 7-1:IPv4 packet headers (from RFC 791).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+_+

Version DS ECN I Flow Label
+-+-+-+-+-+-+-+_+-+-+_+

Payload Length I Next Header Hop Limit
+-+-+-+-+-+-+-+-+-+-+-+_+

+ +

+ Source Address +

+ +

+-+-+-+-+-+-+-+-+-+-+-+_+

+ +

+ Destination Address +

+ +

+ - - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + _ + _ + _ + _ + _ + _ + _ + _ + _ +

Figure 7-2:IPv6 packet headers (from RFCs 2460 and 2474).

128 Part Two �9 IPv6 Protocols

The header could be simplified as a result of some changes in the way
IP works. For one thing, making all headers the same length eliminates
the need for the header length field. For another, by changing the rules
about packet fragmentation, several fields can be removed from the header.
Fragmentation in IPv6 may only be done by source nodes: Intermediate
routers along the packet's path can no longer fragment them. Finally, while
eliminating the IP header checksum will definitely improve performance,
it shouldn't affect reliability in any way, particularly because header
checksums are performed by higher-level protocols (UDP and TCP).

7.3 I Pv4 Versus I Pv6

The IPv4 header shown in Figure 7-1 is superficially similar but only the
version field is completely unchanged in IPv6. The version field must
remain unchanged to allow IPv4 and IPv6 to coexist in the same local
link. The rest of the header fields have been changed or modified in IPv6
as follows.

Version is a four-bit value, and for IPv4 must be equal to four.

Header length is irrelevant to IPv6 because all IPv6 headers are the same
length. IPv4 requires this field because its headers can be as short as
20 bytes and as long as 60 bytes to accommodate IP options.

Type of Service (ToS)/Differentiated Services Unlike most other IPv4
header fields, the IPv4 ToS field has changed significantly since it
was originally specified in 1982 to be used to tag packets for different
kinds of handling by routers (see RFC 791). As of 1989, when RFC
1122, "Requirements for Internet Hosts---Communications Layers,"
specified host requirements, the ToS field had yet to be used to any
significant degree. Further modification came when an additional
flag bit was assigned in 1992 in RFC 1349, "Type of Service in the
Internet Protocol Suite."

However, in 1998 the ToS field became the Differentiated Services field,
to be used in both the IPv4 and IPv6 headers. The DS field consists of
6 bits that are used to specify, broadly, how a packet should be treated
by routers to provide it an appropriate Quality of Service (QoS).
RFC 2474, "Definition of the Differentiated Services Field (DS Field)
in the IPv4 and IPv6 Headers," defines how the field works for both

Chapter 7 �9 IPv6 Protocol Basics 129

IPv4 and IPv6. This specification calls for replacing both the IPv4 ToS
and the IPv6 Traffic Class fields with the DS field. 1

Datagram length becomes the payload length field in IPv6. IPv4's data-
gram length field specifies the length of the entire datagram, includ-
ing the IP headers. Thus, routers can calculate the length of the IPv4
datagram payload by subtracting the header length from the data-
gram length; this calculation is unnecessary in IPv6 because the IPv6
payload length includes extension headers.

Datagram identification is used to identify a datagram as being part of
a fragmented source packet. This is useful only in instances where
packet fragmentation is permitted, as in IPv4; because IPv6 does not
permit intermediate node fragmentation this field is unnecessary.

Flags are also used to enable fragmentation.

Fragment offset is also used to enable fragmentation.

Time-to-live (TTL) has morphed slightly into the IPv6 hop limit field. TTL
was originally meant to be an upper bound, in seconds, of the lifetime
of a packet in the Internet cloud. IP packets must be assigned a finite
lifetime in order to avoid undeliverable packets clogging networks
as they shuttle back and forth among routers. If the IPv4 time-to-live
counter reaches zero, the packet is discarded. The rationale was that
packets might be caught in circular routes, and if they did not expire
in some way, they would continue to be routed forever (or until
the network crashed). The original specification called for routers to
decrement this value by the number of seconds it took from receipt
of a packet until the packet was forwarded. In practice, most routers
have been implemented to simply decrement this value by 1 rather
than attempting to measure the actual time spent in the router.

Protocol field refers to the next-higher-layer protocol encapsulated
within the IPv4 packet. The values for different protocols are avail-
able through IANA. This field evolved into the next header field in
IPv6, where it specifies the next header, whether an IPv6 extension
header or another layer's protocol header.

1RFC 3168, "The Addition of Explicit Congestion Notification (ECN) to IP," traces the
development of the ToS field.

130 Part Two �9 IPv6 Protocols

Header checksum is a reasonably robust approach to avoiding the pro-
cessing of packets that have had their headers mangled en route
to their destination. However, with upper-layer protocols like TCP
and UDP calculating their own checksums on headers, the IPv4
header checksum was deemed superfluous. The cost of checking
the checksum en route is outweighed by the ease with which the
destination node can quickly determine that a packet has been
damaged by using transport or application layer checks. For those
applications that do actually require content authentication at the net-
work layer, the much more robust authentication header is available
in IPv6.

Source/destination addresses
each for IPv6 packets.

go from 32 bits for IPv4 packets to 128 bits

IP options in IPv4 are replaced in IPv6. IPv6 options exist as separate
headers after the main IPv6 header but before the packet payload.

Although all the IPv4 header fields were thought to be useful as defined
originally (and as tested in early experiments with IP networking), almost
all of them have undergone changes of one kind or another in IPv6. The
fragmentation-related fields are out, as are the header checksum and
IP options. Likewise, the TTL, protocol, and header length fields have
mutated to a greater or lesser degree. And the rest have been modified to
support IPv6 addresses and functions.

7.4 IPv6 Header Fields

The IPv6 header is clearly new and improved, if only because it has fewer
fields. As just noted, the version field is unchanged from IPv4, and the
Differentiated Services field (which replaces the original IPv6 Traffic Class
field) is defined identically for IPv4 and IPv6.

IPv6 header fields include the following.

Version is a 4-bit value, and for IPv6 it must be equal to 6.

Differentiated Services (DS) contains a 6-bit value (2 bits are reserved
for future use). Since 1994, this field has evolved from the 4-bit

Chapter 7 �9 IPv6 Protocol Basics 131

Priority field; later, the name was changed to Traffic Class. See
Chapter 15 for more about differentiated services and IPv6.

ECN These 2 bits are used as Explicit Congestion Notification (ECN) flags
(see Chapter 15 for more about ECN and IPv6).

Flow label is a 20-bit value used to identify packets that belong to the
same flow (see the next section for more about flows). A node can be
the source for more than one simultaneous flow. The flow label and
the address of the source node uniquely identify flows. This field
was originally (in RFC 1883) set to 24 bits, but when the DS field
was increased in size to 8 bits, the flow label field was decreased to
compensate (see Chapter 15 for more about IPv6 flows).

Payload length is a 16-bit field containing an integer value equal to the
length of the packet payload in bytesmin other words, the num-
ber of bytes contained in the packet after the end of the main IPv6
header, including any IPv6 extension headers. This means that IPv6
extensions are included as part of the payload for the purposes of
calculating this field.

Next Header indicates what protocol is in use in the header immediately
following the IPv6 packet. Protocols are identified with standard 8-
bit values defined and managed by the IANA. The value of this field
may refer to a higher-layer protocol like TCP or UDP, or indicate the
existence of an IPv6 extension header.

The value 59 in the Next Header field of an IPv6 header or any exten-
sion header indicates that there is nothing following that header.
This field will otherwise contain ethertype values (see Chapter 5)
specifying the next header's protocol.

Hop limit Every time a node forwards a packet, it decrements this 8-
bit field by 1. If the hop limit reaches zero, the packet is discarded.
Unlike in IPv4, where the time-to-live field fulfills a similar purpose,
sentiment is currently against putting a protocol-defined upper limit
on packet lifetime for IPv6. That is not to say that packets with infinite
lifetimes will be permitted, but rather that the maximum hop limit
can vary from network to network.

Source address
packet.

is the 128-bit address of the node originating the IPv6

132 Part Two �9 IPv6 Protocols

Destination address is the 128-bit address of the intended recipient of
the IPv6 packet. This address may be a unicast, multicast, or anycast
address. If a routing extension is being used (which specifies a partic-
ular route that the packet must traverse), the destination address may
be one of those intermediate nodes instead of the ultimate destina-
tion node.

The Differentiated Services field and the concept of IPv6 flows are dis-
cussed in greater depth in Chapter 15. In the absence of support for
intermediate IP fragmentation, determining the Path MTU becomes more
important than ever to ensuring that IPv6 packets are no biggermand
no smaller--than necessary. Path MTU discovery is discussed at greater
length later in this chapter.

7.5 Option Headers

IPv4 options change the shape of the IP headers: A packet with an IPv4
option has as much as 40 octets more data in its header than an unoptioned
header. This physical difference between regular packets and packets using
options means the optioned packets must be treated as special cases by
routers, which are usually optimized to handle standard packets. As a
result, datagrams with options tend to be delivered more slowly, not so
much because they require special processing as because they tend to be
shunted off to the side to be handled when the router is not busy forwarding
normal packets.

IPv6 extension or option headers can drastically reduce the performance hit
on packets that use options. Except for Hop-by-Hop Options, which by
definition must be processed by each forwarding router, options on IPv6
packets are hidden from intermediate routers and thus can have no effect
on how the packets are forwarded.

Another of the benefits of IPv6 is that it simplifies the process of defining
new options. As of 2003, a number of options have been defined.

Hop-by-Hop Options Header This header always appears immediately
after the main IPv6 header and contains optional data that every node
on the packets path must examine. So far, two Hop-by-Hop Options
have been specified: the Jumbo Payload Option and the Router Alert
Option.

Chapter 7 �9 IPv6 Protocol Basics 133

The Jumbo Payload Option identifies the payload of the packet as
being longer than 65,535 octets (including the Hop-by-Hop Option
Header). If a router is unable to handle a jumbogram, it returns an
ICMPv6 error message.

The other Hop-by-Hop Option is the Router Alert Option. This is
used to notify routers that information inside the IPv6 datagram is
intended to be viewed and processed by an intermediate router even
though the datagram is addressed to some other node (for example,
control datagrams that contain information pertaining to bandwidth
reservation protocols).

Routing Header This header causes the packet to visit specific nodes,
specified in the header, on its route to its destination. The initial
destination address of the IPv6 header is not the same as the ulti-
mate destination of the packet, but rather the first address in the
list contained in the Routing Header. When that node receives
the packet, it processes the IPv6 header and the Routing Header
and resends the packet to the second address listed in the Routing
Header. This process continues until the packet reaches its ultimate
destination.

Fragment Header The Fragment Header contains all the information
about IP fragments that formerly would be stored in the main IPv4
header fields. This extension includes fields for a fragment offset, a
More Fragments flag, and an identification field; it is used to allow a
source node to fragment a packet too large for the path MTU between
the source and the destination.

Destination Options Header This header stands in for the IPv4 options
field. At present, the only destination options specified are padding
options to fill out the header on a 64-bit boundary if the (future)
options require it. The Destination Options Header is meant to carry
information intended to be examined by the destination node.

Authentication Header (AH) This header provides a mechanism for cal-
culating a cryptographic checksum on some parts of the IPv6 header,
extension headers, and payload.

Encapsulating Security Payload Header (ESP) This header will always
be the last, unencrypted header of any packet. It indicates the rest of

134 Part Two �9 IPv6 Protocols

7.6

the payload is encrypted, and provides enough information for the
authorized destination node to decrypt it.

Chapter 9 provides more complete details about what IPv6 options are
and how they are used.

IPv4 Packet Size Limits

7.6.1

IPv4 packet size is restricted by a number of factors, including the
following.

Total length field This IPv4 header field is 16 bits, restricting the total
size of any IPv4 packet to 65,575 octets or fewer.

Up to 576 octets The IPv4 specification in RFC 791 requires that all nodes
be capable of accepting packets of any size up to 576 octets. Thus,
although there is an upper bound on packet size, very small packets
(even packets with no payloads) are permitted. Packets with a
maximum-sized IPv4 header (60 octets) are thus able to carry a
512 octet payload, that number of octets representing a manageable
block of data (512 = 29 octets).

Over 576 octets RFC 791 recommends that datagrams larger than
576 octets only be sent if the source is assured that the destination
will accept larger datagrams.

While IPv4 packets are limited based on the length of the entire packet, IPv6
packets are limited on the payload length. When IPv6 extension headers
are present, the packet header can be considerably longer than the standard
IPv6 header length (40 octets)--but the header extensions are considered
to be part of the payload when calculating payload length. A new set of
factors govern the length of IPv6 payloads, as described next.

IPv6 MTU R QUIREMEmS

Requiring nodes to assume that the maximum transmission unit (MTU)
of the Internet is 576 octets affects performance to the extent that systems
capable of handling more are forced to accept less. IPv6 changes that by
requiring every link in the Internet to have an MTU of 1280 octets or more.
Where the MTU on a local link is less than 1280 octets, there must be some

Chapter 7 �9 IPv6 Protocol Basics 135

7.6.2

7.6.3

link-specific fragmentation and reassembly mechanism incorporated into
a link layer protocol.

While 1280 octets is the required minimum MTU for links carrying IPv6
traffic, RFC 2460 recommends that wherever possible the MTU should be
set to 1500 octets or more. The higher the MTU, the less likely the need for
fragmentation will arise when IPv4 (or other protocols) are encapsulated
within IPv6 packets.

FRAGMENTATION

Although IPv6 forbids intermediate nodes from fragmenting packets that
are too large for the local link, end-to-end fragmentation is permitted.
Source nodes may fragment packets that are reassembled only by the
recipient when using the Fragment Header (see Chapter 9).

However, implementors are urged to use Path MTU discovery (PMTUD;
see Chapter 12) to determine an appropriate MTU rather than fall back on
fragmentation. Where minimal implementations are desired, such as for
booting a node from the network, RFC 2460 suggests using the minimum
MTU of 1280 octets rather than attempt to implement either PMTUD or
fragmentation support.

JUMBOGRAIVlS

IPv6 adds support for extra-large packets called jumbogranls, having a
payload larger than 65,575 octets. Documented in RFC 2675, "IPv6 Jum-
bograms," jumbograms are considered useful and relevant only for nodes
connected to local links whose MTU is 64K octets or larger. Jumbograms
are implemented in an IPv6 extension header (see Chapter 9).

7.7 Other IPv6 Features

The changes in IPv6 go beyond the larger address space and streamlined
packet headers. As private IPv4 Internets as well as the global Internet have
grown, shortcomings in the ability of IPv4 to scale have arisen. The lack
of automatic tools for configuring and maintaining IP nodes and networks
has held back IP deployment and required untold expenditures of network
support time and effort.

136 Part Two �9 IPv6 Protocols

Although some of the updates to IPv6 have been tried in IPv4, the improve-
ments in the base protocol mean that the new functions work better. This
section introduces these functions, all of which will be discussed at greater
length later on.

7.7.1 AUTOCONFIGURATION

The original automatic IP configuration protocol was the Boot Protocol
(BOOTP), specified in RFC 951, "Bootstrap Protocol (BOOTP)," back in
1985. This protocol defines a mechanism for nodes to query their local
link with broadcasts requesting an address from which they can load
boot images over from BOOTP servers. The Dynamic Host Configuration
Protocol (DHCP), specified in RFC 2131, "Dynamic Host Configuration
Protocol," is based on BOOTP but provides a mechanism by which nodes
can load their configurations from DHCP servers.

Both BOOTP and DHCP are considered stateful autoconfiguration protocols
because they require that nodes on a network be configured by a
BOOTP/DHCP server that maintains state about the address allocations
it makes. In other words, the configuration server is allocated a block of
addresses from which to assign addresses to nodes requesting them. If the
configuration server offering IP addresses on a network is unavailable,
hosts are not able to connect at all. As networks grow larger, redundant
configuration servers must each be allocated its own block of addresses
to assign, creating new problems of balancing demand across those
servers.

A stateless autoconfiguration protocol, in which nodes can connect to a net-
work without depending on any server, can permit much greater flexibility
and scalability as networks grow in size or as network nodes move around
more frequently.

As will be made clear in the next chapter and in Chapter 13, IPv6 addresses
make stateless autoconfiguration easier because node interface identifiers
are unique on each link (as well as, usually, globally unique).

IPv6 features a Stateless Autoconfiguration Protocol, specified in RFC 2462,
"IPv6 Stateless Address Autoconfiguration," as well as an updated version
of DHCP, called DHCPv6, that is still (officially, at least) a work-in-
progress.

Chapter 7 �9 IPv6 Protocol Basics 137

7.7.2 NETWORK RENUMBERING

One of the ongoing problems with IPv4 results from the way network
addresses are allocated to networks: Most organizations are assigned their
network addresses by their network service providers. If the organization
wishes to change providers, they must either transfer their network with
addresses intact from one provider to another. In that case, aggregated
routing is defeated. While the original provider could aggregate routes
to that network with all its other customers' networks, the new provider
cannot--a new route must be added for that single network. Figure 7-3
shows what happens using IPv4 addresses in this way.

As already noted, automatic network renumbering as well as autoconfigu-
ration allows IPv6 to use a single type of route aggregation. In Figure 7-3,
before the customer switches ISPs, the nondefault router table includes
two routes for ISP A and ISP B: All packets addressed to 10.X.X.X go to
ISP A, and all packets addressed to 192.168.X.X go to ISP B. But when the
customer switches ISPs while retaining its original network address, non-
default Internet backbone routers must add an extra route to indicate that

Figure 7-3: Changing network providers means either adding complications to
the default routing table or renumbering the customer's network.

138 Part Two �9 IPv6 Protocols

packets going to network 192.168.X.X are routed through ISP B except for
packets addressed to 192.168.200.X.

7.7.3 NEIGHBOR DISCOVERY

RFC 2461, "Neighbor Discovery for IP Version 6 (IPv6)," is a draft s tandard
that specifies, according to the abstract, a mechanism for IPv6 nodes on the
same link to "use Neighbor Discovery to discover each other's presence, to
determine each other's link-layer addresses, to find routers and to maintain
reachability information about the paths to active neighbors."

The Neighbor Discovery for IPv6 protocol, by adding new messages for
ICMPv6, effectively replaces the Address Resolution Protocol (ARP) for
associating link layer network addresses with IPv6 addresses, as well as
some router-related ICMP messages used with IPv4. At the same time, it
adds new features such as neighbor unreachability. Neighbor Discovery
is discussed in greater detail in Chapter 13.

7.7.4 ANYCAST

Although specified in RFC 2373, "IP Version 6 Addressing Architecture,"
in 1998, the anycast address is still a relatively murky concept. A unicast
address points to a single network interface; a multicast address points
to a group of network interfaces, with packets addressed to that address
delivered to all group members. In contrast, an anycast address is indis-
tinguishable from a unicast address except that a group of two or more
interfaces can be configured to respond to packets sent to the any-
cast address- -wi th only one of the group members responding to any
particular anycast packet.

Packets sent to a multicast address are delivered to multiple nodes (all
members of the multicast group identified with the address). Packets sent
to an anycast address are sent to any one (but only one) of the group of
nodes that are members of the anycast group.

The "closest" anycast member node responds to anycast packets, with
closeness determined by the shortest route between the requesting and
responding nodes. Figure 7-4 shows how anycast might work in an IPv6
internet. When Node X sends out a packet to an anycast address, any of the
anycast nodes could respondmbut if all the anycast nodes are available,

Chapter 7 �9 IPv6 Protocol Basics 139

/
Node

X

NET A

Anycast
Node M

Anycast
Node O

NET B

J J
J

J i

Anycast
Node N

NET C

Anycast
Node P

NET D

Figure 7-4: Anycast function in an IPv6 internet.

Nodes M and O would normally be the only ones to respond to Node X
(because they are "closest," being on the same link). If those nodes are
unavailable, Node N would probably respond to an anycast from X; if N is
unavailable as well, then Node P becomes the closest anycast responder.

A more detailed discussion of IPv6 anycast (and IPv4 precursors) is
provided in Chapter 11, including the fundamentals of anycast, limita-
tions placed on anycast in its original specification, perceived problems
with implementing anycast in usable applications, and possible future
directions for IPv6 anycast.

7.7.5 MOBtLE IPv6

The desktop computer is, in many instances, giving way to laptops, note-
books, and palmtops. Given the degree to which these end-user computers
are mobile, how can they be connected to an IP network and responsive

140 Part Two �9 IPv6 Protocols

to a single IP address even as they are moved from one subnet to another?
This problem is distinguishable from that of cellular mobile nodes, which
must be capable of maintaining a virtual circuit as the nodes move from
one cell to another, in several important ways. First, the mobile IP node
must be able to support a more formal definition of a virtual circuit, capa-
ble of transmitting data with error detection. Also, the mobile IP node is
not expected to be quite as continuously or rapidly mobile as a mobile
telephone, for example.

The problem of mobility for IPv4 was first addressed in a standards track
specification, RFC 2002, "IP Mobility Support," in 1996. Not long after,
work on extending IP mobility to IPv6 was begun- -bu t as of early 2003,
the IPv6 mobility specification, while considerably more mature, is still a
work-in-progress.

In simple terms, the mobile IP node receives packets sent to its home
address from anywhere. When the mobile node is on its home network,
it behaves like any other IP node. When the mobile node is "away," the
mobile node stays in touch with its mobility agent, letting it know where it is
(a care-ofaddress) when it is not attached to the home network. The mobility
agent sits on the mobile node's home network and resends packets sent to
the mobile node's home address to the mobile node out on the road.

Unfortunately, IP mobility turns out to be somewhat more complicated,
especially as requirements for performance, robustness, and security
increase. IPv6 mobility is defined in a separate protocol, using IPv6 option
headers, and will be discussed in greater detail in Chapter 17.

7.8 Summary

After reading this chapter, you should have a good overall picture of how
IPv6 works, from its address space and architecture to special features and
functions that have been added or updated in IPv6. Keeping in mind this
overview of the IPv6 header, option headers, and the differences between
IPv4 and IPv6, the next chapter probes more deeply into IPv6 addressing,
from address representation to address types to the addresses each IPv6
node must recognize.

IPv6 Addressing

One might suppose that the most obvious difference between IPv4 and
IPv6 is the address space: IPv4 addresses are only 32 bits long, and IPv6
addresses are 128 bits long. And there are more differences in the way IPv6
uses those addresses. However, in another sense, address length will be the
least obvious change because it will be invisible to most users. Applications
carried over IPv6 networks must rely completely on the Domain Name
System (DNS) to correctly link IP host names to IPv6 addresses and
networks. DNS and IPv6 will be discussed in detail in Chapter 18.

In this chapter, we begin with a discussion of the IPv6 addressing architec-
ture, as designed by the original IPng working groups. Next, we look at the
IPv6 address space, address formats, and the way in which addresses are
intended to be allocated. IPv6 does away with broadcasts and relies instead
on unicast and multicast, and adds a new category: anycast addresses.

The IPv6 addressing architecture was first published as a proposed stan-
dard in 1995, in RFC 1884, "IP Version 6 Addressing Architecture."
As originally formulated, IPv6 addresses were defined to be "128-bit

141

142 Part Two �9 IPv6 Protocols

identifiers for interfaces and sets of interfaces." Three types of addresses - -
unicast, multicast, and anycastmwere defined, with unicast defined as "an
identifier for a single interface. A packet sent to a unicast address is deliv-
ered to the interface identified by that address." Multicast and anycast
addressing will be discussed later in this chapter and in more detail in
later chapters.

Since 1995, the IPv6 addressing architecture specification has been updated
twice, first in 1998, with the publication of RFC 2373, "IP Version 6 Address-
ing Architecture," and later with RFC 3513 in mid-2003. This section begins
with the basics as first defined in RFC 2373, followed by a discussion of
the current s tandard as defined in RFC 3513.

8.1 IPv6 Address Types

There are three types of IPv6 address.

Unicast An identifier for a single interface. A packet sent to a unicast
address is delivered to the interface identified by that address.

Multicast An identifier for a set of interfaces (typically belonging to dif-
ferent nodes). A packet sent to a multicast address is delivered to all
interfaces identified by that address.

Anycast An identifier for a set of interfaces (typically belonging to differ-
ent nodes). A packet sent to an anycast address is delivered to one of
the interfaces identified by that address (the "nearest" one, according
to the routing protocols' measure of distance). Any unicast address
could be specified as an anycast address, as long as all nodes con-
figured to respond on that address are aware of its status as anycast
rather than unicast.

Broadcast addresses have been deprecated, their functions having been
replaced by multicast and anycast.

Broadcast created problems for IPv4 networks almost from the start.
Intended to carry information destined for more than one node, 1 broadcast

1As when a node attempts to request network booting information and has not been
configured for the local link.

Chapter 8 �9 IPv6 Addressing 143

can place a drag on network performance. As the number of broadcasts
on a local link increases, the burden on every node on the link to pro-
cess all broadcasts also increases. And as networks become larger, the
number of such burdened nodes not only increases but so too does the
likelihood that any individual node will ever have to actually process any
particular broadcast packet. Finally, the practice of improperly forwarding
broadcasts across subnets can overwhelm routers.

With IPv6, the broadcast function is accomplished by sending packets
to the all nodes multicast address. More limited sets of multicast groups,
such as "all routers on the local link," provide broadcast functionality
much more efficiently. Nodes interested in the traffic formerly carried
in broadcasts can subscribe to a multicast address; all other uninterested
nodes can ignore packets sent to that address. Broadcasts never adequately
solved the problem of propagating information across the Internet--for
example, routing informat ionBbut multicast permits a more scalable, and
acceptable, solution.

8.1.1 NETWORK AND NODE ADDRESSING

IPv6 addresses are usually divided into two equal parts with the high-
order 64 bits usually identifying a network address and the low-order
64 bits usually identifying the node with a modified EUI-64 address. This
extended unique identifier is defined by (and is a t rademark of) the IEEE
and is based on the IEEE Registration Authority 's 24-bit Organizationally
Unique Identifier (OUI), plus a 40-bit extension identifier assigned by the
organization assigned the OUI. These values are based on the same data
used to generate 48-bit Media Access Control (MAC) addresses associated
with Ethernet and other LAN interface cards.

Interface addressing and the EUI-64 address are discussed in greater detail
later on in this chapter, as are IPv6 address types that don' t conform to the
typical 64/64 address division.

8.1.2 AGGREGATABLE ADDRESSING

IPv6 addresses are aggregatable in the same sense that Classless
InterDomain Routing (CIDR) addresses are aggregatable: addresses
sharing the same prefixes can be forwarded over the same routes. RFC 2374

144 Part Two �9 IPv6 Protocols

8.1.3

defines a fairly strict regime for this aggregation, setting up three levels
at which aggregation can be accomplished (aggregation and aggregation
entities will be discussed later in this chapter). However, these predefined
aggregation levels were made obsolete with publication of a revision to
RFC 2374, RFC 3587, "IPv6 Global Unicast Address Format," published as
this book went to press.

RFC 2374 also defines two types of aggregatable addresses. Provider-based
aggregatable addresses have to be changed when the provider is changed, but
exchange-based addresses are allocated directly by an IPv6 exchange entity
that is independent of the network provider. The exchange entity provides
an address block, while the subscriber contracts with a separate provider
for actual network access. The network access is provided either directly,
through the provider, or indirectly, through the exchange, but routing is
done through the exchange. This makes possible arrangements by which
the subscriber can change providers without address renumbering. It also
allows the subscriber to use more than one Internet service provider to
handle a single block of network addresses.

As with the detailed aggregation entity layers, exchange-based addresses
are likely to disappear in IPv6 standards after 2003.

I Pv6 ADDRESS REPRESENTATION

IPv4 addresses are typically represented in dotted quad format, four decimal
values (0 through 255) separated by periods, as in the following.

i0.0.0.i

192.168.1.50

IPv6 addresses, four times as long as IPv4 addresses, are four times as
cumbersome and potentially confusing. In RFC 3513, three approaches
to representing IPv6 addresses are suggested. The preferred method is to
represent them as a sequence of eight 16-bit values, separated by colons.

XXXX : XXXX : XXXX : XXXX : XXXX : XXXX : XXXX : XXXX

Here is an example.

FEDC : BA98 : 7654 : 3210 : FEDC : BA98 : 7654 : 3210

1080 : 0 : 0 : 0 : 8 : 800 : 200C: 417

Chapter 8 �9 IPv6 Addressing 145

Address type Standard representation Compressed

Unicast address

Multicast address

Loopback address

Unspecified addresses

1080 : 0 : 0 : 0 : 8 : 800:200C : 417A

FF01:0:0:0:0:0:0:I01

0:0:0:0:0:0:0:i

0:0:0:0:0:0:0:0

1080: :8"800"200C:417A

FF01 " : i01

::i

: �9

Table 8-1: Standard and compressed IPv6 address representations (from RFC 3513).

Due to some methods of allocating certain styles of IPv6 addresses, it will be
common for addresses to contain long strings of zero bits. In order to make
writing addresses containing zero bits easier, a special syntax is available
to compress the zeros. The use of "::" indicates multiple groups of 16-bits
of zeros. The "::" can only appear once in an address; the number of bits
being compressed can be easily inferred if it is used once, but if it is used
more than once, there is no way to tell how many bits are compressed in
each use. The "::" can also be used to compress the leading a n d / o r trailing
zeros in an address. Table 8-1 lists the addresses provided in RFC 3513 as
examples of the compressed representation.

Further confusing matters, al though offering some amusement, is RFC
1924, "A Compact Representation of IPv6 Addresses," which defines a set
of rules for writing out IPv6 addresses using base85 encoding. Published
on April 1, 1996, the joke was that base85 allowed all IPv6 addresses to be
fully expressed in precisely 20 characters, considerably fewer than most
other representations.

An IPv6 unicast address identifies a single IPv6 interface. As with IPv4,
any given IPv6 node may have more than one network interface, but each
interface must have its own unicast address associated with it. Unicast
addresses can be viewed as containing a single piece of information, con-
tained in a 128-bit field: an address that completely identifies one particular
interface.

An anycast address, as already noted, is a unicast address to which two
or more interfaces are configured to respond. In this chapter, we look
at unicast addresses in greater detail, followed by an introduction to the
concept of IPv6 anycast, including a discussion of anycast address allo-
cations and reservations, anycast routing, and analysis of the anycast
function.

146 Part Two �9 IPv6 Protocols

8.2 Unicast Address Types

Several types of unicast addresses have been defined for use with IPv6.

Global unicast Formerly known as aggregatable global unicast, these
addresses can be routed across the global IPv6 Internet and are
globally unique.

Link local unicast These addresses are for addressing on a single link for
purposes such as auto-address configuration, neighbor discovery, or
when no routers are present. Packets sent to this address are never
supposed to be forwarded across local links.

Site local unicast These addresses are for addressing packets within an
entire site (or network or organization). Packets addressed to site-
local addresses must never be forwarded outside the site. Although
internal network traffic routing can be done on complete IPv6
addresses, allowing site-local unicast may allow greater routing effi-
ciency. Site-local addresses may include up to 54 bits in the network
half of the address to indicate a subnet address.

Unicast addresses with embedded IPv4 addresses or encoded N S A P
addresses IPv6 supports interoperability with other network layer
protocols, not just IPv4. For example, a range of addresses was set
aside for Novell's NetWare/IPX addresses in RFC 2373. Although the
IPX allocation has been dropped in RFC 3513, support for embedding
both IPv4 and Network Service Access Point (NSAP) addresses used
with the OSI Connectionless Network Protocol (CLNP) is provided in
RFC 3513.

Table 8-2 shows how to identify different types of IPv6 addresses, includ-
ing multicast and the unspecified and loopback address. The type of an
IPv6 address is identified by the high-order bits of the address, as shown.

Unlike in IPv4, which usually works on one or two interface identifiers for
each network connection, in IPv6 a single interface may be required to have
several (sometimes many) interface identifiers to which it must respond.
All interfaces must respond to a link local address as well as to a glob-
ally unique address, and many will have to respond to a third, site-local,
address. For systems that are subscribed to multicast or anycast groups,
the number of identifiers can be significantly higher (see Chapter 10).

Chapter 8 �9 IPv6 Addressing 147

Address type Binary prefix IPv6 notation

Unspecified
Loopback
Multicast
Link-local unicast
Site-local unicast
Global unicast

00. . .0 (128 bits) --/128
00...I (128 bits) --1/128
iiiiiiii FF00::/8
iiiiiii010 FE80::/10
Iiiiiii011 FEC0::/10

(everything else)

8.3

Table 8--2: Identifying IPv6 address types (from RFC 3513).

Special Unicast Address Types

8.3.1

8.3.2

Several different types of special unicast addresses are defined in
RFC 3513. They are briefly discussed in this section.

UNSPECIFIED ADDRESS

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It must never
be assigned to any node because it indicates the absence of an address. One
example of its use is in the Source Address field of any IPv6 packets sent
by an initializing host before it has learned its own address.

The unspecified address must not be used as the destination address of
IPv6 packets or in IPv6 Routing Headers. An IPv6 packet with a source
address of unspecified must never be forwarded by an IPv6 router.

LOOPBACK

The unicast address 0:0:0:0:0:0:0:1 is called the loopback address. It may be
used by a node to send an IPv6 packet to itself. It may never be assigned to
any physical interface. It is treated as having link-local scope and may be
thought of as the link-local unicast address of a virtual interface (typically
called "the loopback interface") to an imaginary link that goes nowhere.

The loopback address must not be used as the source address in IPv6 pack-
ets that are sent outside of a single node. An IPv6 packet with a destination
address of loopback must never be sent outside of a single node and must
never be forwarded by an IPv6 router. A packet received on an interface
with destination address of loopback must be dropped.

148 Part Two �9 IPv6 Protocols

8.3.3 ENCODED NSAP ADDRESSES

NSAP addressing is used for OSI CLNP networks, and a mechanism for
encoding NSAP addresses into IPv6 addresses (as well as for encoding
IPv6 addresses within NSAP addresses) is defined in the experimental
RFC 1888, "OSI NSAPs and IPv6." However, due to the relative scarcity
of CLNP networks and the recommendation that existing CLNP networks
should reimplement their addressing to support IPv6 directly, the NSAP-
encoded IPv6 allocation may suffer the same fate as the IPX allocation.

8.4 I Pv6 Address Format

At 128 bits, IPv6 addresses can carry much more information than 32-bit
IPv4 addresses. An IPv4 address signifies little more than a unique network
layer interface; other than a unique local identifier coupled with a unique
network identifier, there is no information implicit in the address. IPv6
addresses, on the other hand, are capable of carrying more data.

The most basic representation of an IPv6 unicast address looks like this.

I 128 bits I
+ +

I node address I
+ +

Any IPv6 node must be able to interpret an IPv6 address as a series of
128 bits and determine whether the address refers to itself or not. Every
IPv6 unicast address is 128 bits long and represents a unique node network
interface.

A slightly more sophisticated IPv6 implementation would be able to
identify IPv6 addresses as divisible into at least two separate parts.

I n bits I 128-n bits I
4 ~ +

I subnet prefix I interface ID I

In this case, the subnet prefix, defined by some number ("n ') of bits, is
identifiable as the local link to which the node is attached. A node capable

Chapter 8 �9 IPv6 AddressJng 149

of making this distinction could perform a very simple routing function,
transmitting packets destined for the local subnet locally and forwarding
nonlocal packets to some default router.

A more detailed general representation of the IPv6 address provides
three parts: a global routing prefix (identifying a nondefault route for the
address), a subnet ID, and an interface ID.

I n bits I m bits I 128-n-m bits J
+ ~ 4 +

I global routing prefix I subnet ID I interface ID I

+- ~ +

This structure bears a superficial resemblance to the use of subnets in IPv4
addresses, in which a single IPv4 network is subdivided into subnets.
However, the IPv6 unicast addressing architecture was intended to be
an aggregatable architecture. IPv6 network service providers maintain
nondefault routers for their customers to handle external routing, accept-
ing all packets whose addresses' first n bits match the provider's global
routing prefix, the same prefix being incorporated into all their customers'
IPv6 addresses. Within the service provider's network, internal routers
distribute packets based on their destination address subnet ID.

8.4.1 I Pv6 ADDRESS AGGREGATION FIELDS

In RFC 2374, the aggregatable unicast IPv6 address format is defined with
a great deal of precision, splitting the 128-bit addresses in half, with the
low-order 64 bits representing the interface ID and the high-order 64 bits
divided into several fields, in which routing structure information can be
recorded.

I 31 1B I 8 I 24 I 16 I
+--+ 4 ~ ~ 4

l~Pl TT,A I R~.Sl N~,~ I S~,A I
I l I D 1 I ID I ID I
+--+ +---4 ~ 4

64 bits

Interface ID

In this definition, taken from RFC 2374, the Format Prefix (FP) refers to the
three high-order bits of the address; when these bits are 001, the address is
considered an aggregatable global unicast address. The other fields refer
to routing aggregation: Top Level, Next Level, and Site Level Aggregation
identifiers, with an octet reserved for future use.

150 Part Two �9 IPv6 Protocols

As defined in RFC 2374, these fields were to be used as follows.

FP The format prefix is the 3-bit prefix to the IPv6 address that identifies
where it belongs in the IPv6 address space. The value 001 in this field
identifies it as a global unicast address.

TLA ID The top-level aggregation identifier contains the highest-level rout-
ing information of the address. This refers to the grossest level of
routing information in the internetwork, and as currently defined
(at 13 bits), there can be no more than 8192 different top-level routes.

RES The next 8 bits are reserved for future use, perhaps to expand the
top-level or next-level aggregation ID fields.

NLA ID The next-level aggregation identifier is 24 bits long, and it is meant
to be used by organizations that control top-level aggregation IDs
to organize that address space. In other words, those organizations
(probably to include large Internet service providers and others pro-
viding public network access) can carve that 24-bit field into their own
addressing hierarchy. Such an entity might break itself down into
four top-level routes (internal to the entity) by taking 2 bits for those
routes and leave itself 22 bits of address space to allocate to other enti-
ties (likely to be smaller-scale, more local, service providers). Those
entities, in their turn, could also subdivide the space they are allocated
in the same wayMif there is enough room.

SLA ID The site-level aggregation identifier is the address space given
to organizations for their internal network structure. With 16 bits
available, each organization can create its own internal hierarchi-
cal network structure using subnets in the same way they are used
in IPv4. As many as 65,535 different subnets are available using all
16 bits as a flat address space. Using the first 8 bits for higher-level
routing within the organization would allow 255 high-level subnets,
each of which has as many as 255 sub-subnets.

Interface ID This 64-bit field uniquely identifies the node.

Although as of 2003 this is the proposed standard documented in RFC
2374, this entire structure of aggregation identifiers is unlikely to be carried
forward. The replacement drafts for RFC 2374 dispense entirely with this
structure, mostly because its approach to aggregation is similar to the use

Chapter 8 �9 IPv6 Addressing 151

of network classes in IPv4. By restricting how IPv6 addresses should be
used well in advance of any significant deployment, such a structured
approach puts IPv6 at risk for restricting the way it can be used. Rather
than attempting to impose some "likely" framework for IPv6 aggregation,
the update to RFC 2374 will dispense with these layers and define IPv6
unicast more generally, like this.

I n bits I m bits I 128-n-m bits I
4 ~ + --+
I global routing prefix I subnet ID I interface ID I

4 t + t-

Except for special situations (see following), all IPv6 unicast addresses will
be considered aggregatable addresses where the value of n + m always
equals 64. (Unless the 3 high-order bits of the address are 000, the interface
ID part of the address is required, by RFC 3513, to be 64 bits long and in
the modified EUI-64 format.)

8.4.2 GLOBAL ROUTING PREFIX AND SUBNET ID

IPv6 addresses are half interface ID, with the other half identifying routing
information. For standard global unicast addresses, the two parts are equal
in length: 64 bits. The network part of the address consists of two parts.

Global routing prefix The highest-order bits of the network part of the
address function as an external routing prefix for the global IPv6
Internet. These prefixes can be allocated to individuals, companies,
service providers, and any other entity requesting an IPv6 network
address space. The global routing prefix carries enough information
to allow packets to be routed to the site using the address.

Subnet ID The remaining, lower-order bits of the network part of the
IPv6 address are used to identify subnets within an IPv6 network.
With the smallest current assignment of a 48-bit IPv6 global rout-
ing prefix, the assignee can allocate up to 16 bits of internal subnets
(as many as 216or 65,536 separate subnets). However, when a packet
is being routed across the global IPv6 Internet, the subnet ID can
be safely ignored. It is used only for internal routing purposes.
Entities requesting IPv6 address blocks directly from RIRs are being
g iven /32 blocks, with the smallest suballocation currently limited
t o / 4 8 prefixes.

152 Part Two �9 IPv6 Protocols

IPv6 address prefixes are represented in a manner similar to that used for
IPv4 addresses, in CIDR notation, like this.

ipv6-address/prefix-length

The IPv6 address can be in any of the defined formats, and the prefix-
length is the number of bits used in the address as the global routing
prefix, in decimal. The following examples are taken from RFC 3513. First,
some valid representations of an IPv6 address using a 60-bit prefix (the
hexadecimal value 12AB00000000CD3) include this.

12AB:0000:0000:CD30:0000:0000:0000:0000/60

12AB::CD30:0:0:0:0/60

12AB:0:0:CD30::/60

Using the same prefix, the following are not permitted representations,
along with the reasons for their invalidity.

12AB-0-0-CD3/60

12AB- :CD30/60

12AB- :CD3/60

may drop leading zeros, but not

trailing zeros, within any 16-bit

chunk of the address

address to left of "/" expands to

12AB:0000:0000:0000:0000:000:0000:CD30

address to left of "/" expands to

12AB:0000:0000:0000:0000:000:0000:0CD3

RFC 3513 also notes that a node's full IPv6 address and its prefix (the
subnet prefix) can be combined in this way.

node address-

subnet number-

abbreviated as:

12AB:0:0:CD30"I23"4567"89AB:CDEF

12AB:0:0:CD30:'/60

12AB:0:0"CD30:I23"4567"89AB:CDEF/60

8.4.3 MODIFIED EUI-64 INTERFACE ADDRESSING

All IPv6 unicast addresses, other than those starting with the 3 high-order
bits of 000, are required (by RFC 3153) to use the Modified EUI-64 format
for the lower 64 bits of interface address. 2 The exceptions are discussed in
the next section.

2RFC 2374, page 7: "Interface IDs used in the aggregatable global unicast address format
are required to be 64 bits long and to be constructed in IEEE EUI-64 format."

Chapter8 �9 IPv6Addressing 153

f0
10

+

As just noted, EUI-64 interface identifiers are assigned to link layer network
interfaces, usually by manufacturers who are assigned OUIs by the IEEE.
Each OUI is a 24-bit value that is linked to one and only one entity (usually a
manufacturer of networking equipment). Manufacturers of Ethernet (and
other network link layer) interfaces burn into each interface a globally
unique identifier usually known as a Media Access Control (MAC) address.
The high-order 24 bits is the OUI, and the rest of the address (another 24 bits
for Ethernet) is assigned by the OUI entity. The result is that all Ethernet
cards have a globally unique MAC address 3 that is 48 bits long (MAC-48).

The IEEE defines the EUI-64 interface identifier as consisting of the 24-bit
OUI value in the high-order bits followed by 40 low-order bits such that
the entire sequence identifies an instance of the implementation (e.g., a
network interface card) globally uniquely. However, there are millions of
Ethernet cards in use that have only MAC-48 addresses. RFC 3513 speci-
fies methods for supporting IPv6 interface addresses with modified EUI-64
interface identifiers for interfaces with the following types of interface
identifiers.

EUI-64 interface identifier If an EUI-64 identifier exists, it can be
used as an IPv6 interface identifier simply by inverting the "u"
(universal/local) bit of the OUI value (the bit identified as "X"
here). The "c" bits represent the OUI, and the "m" bits represent
the vendor-supplied (unique) part of the interface ID.

i I 313 414 61

516 x12 718 31
+ + -+ +

+ + -{ + +

MAC-48 interface identifier MAC-48 identifiers can be transformed
from their standard format

I0 111 313 41

lo 516 i12 71
+ + -~ +

ocooooOgoooooooo I c o o o o o o o ~ l ~ l

+ t- 4 +

3There are reports that some unscrupulous vendors have sold Ethernet cards manufac-
tured with nonunique MAC addresses.

154 Part Two �9 IPv6 Protocols

to this format

I0 IIi 313 414 61

Io si6 112 vl8 31
+ + 4- + +

I ccc~cclgcccccccc I cccccccc11111111111111110~~mm I ~ I
+ + 4- + +

where the value 0xFF FE is inserted between the OUI and the
vendor-supplied part of the interface identifier; the u bit is also
inverted (from 0 to I in this case).

Nonglobal interface identifier Some link layer protocols, such as ARCnet
and Apple's LocalTalk, don' t use globally unique addresses but
rather allow each link to assign whatever addresses it wants. An
EUI-64 formatted identifier can be generated by taking the link
address (unique only on that link) and prefix it with zero so that it is
64 bits long. For example, an 8-bit node identifier whose hexadecimal
value is 0x4F becomes the following.

Io l l l 313 4[4 6I
Io sI6 112 ,18 31

4 + + + +

I oooooooooooooooolooooooooooooooooloooooooooooooooolooooooooo~oom~m~l
+ + + + +

Note that the universal/ local bit (the seventh bit) will always be
set to 0 in this type of identifier, resulting in clarification to other
IPv6 nodes that this node's interface address is unique only on its
own link.

Security identifier RFC 3041, "Privacy Extensions for Stateless Address
Autoconfiguration in IPv6," addresses the concerns of security and
privacy experts who point out that the permanent use of the same
interface identifier, such as is done with IPv6 addresses based on
IEEE MAC 48 addresses, can result in detailed mapping of a user's
Internet activities. Cross-referencing of Web server logs with existing
information-gathering techniques can produce very precise profiles
of these users, from their names, addresses, and credit card and other
personal information to inferences made about their personal inter-
ests based on the Internet resources they use. Corporate users can
also be targeted by attackers seeking to track usage or map networks
for criminal activity.

Chapter 8 �9 IPv6 Addressing 155

In RFC 3041, a mechanism is defined for randomly generating
addresses that conform to the modified EUI-64 format. Hosts using
this mechanism may change their interface identifier every time they
connect to the network or, more frequently, to thwart illicit (as well
as licit, but unwanted) information-gathering activities.

No interface identifier Point-to-point links and any other configured
tunnel links do not need interface identifiers (there are only two end-
points, so each node can differentiate itself from the other end node
based purely on whether data is going in or out). The only require-
ment for interface identifiers in these cases is that they be unique on
the link. RFC 3513 suggests that in these cases the node assign an
identifier that is based on (but not the same as) a globally unique
identifier associated with the node in some way--e i ther the identi-
fier of another of that node's interfaces or some identifier defined for
the node. Such identifiers may be configured manually, created with
a random number generator, based on some other system identifier
(serial number) or some other method.

The authors of RFC 3513 recommend strongly that to avoid dupli-
cation of identifiers on a link, a collision detection algorithm be
implemented for links that do not use their own interface identifiers.
Collision detection is a function of neighbor discovery, discussed in
Chapter 13.

RFCs specifying "IPv6 Over X" should be consulted for more detail about
how to generate the IPv6 interface identifier for any particular link layer
protocol. Table 8-3 lists the link layer specifications current as of 2003.

RFC # Title

2590

2497

2492

2491

2472

2470

2467

2464

Transmission of IPv6 Packets over

Frame Relay Networks Specification

Transmission of IPv6 Packets over ARCnet Networks

IPv6 over ATM Networks

IPv6 over Non-Broadcast Multiple Access (NBMA) Networks

IP Version 6 over PPP

Transmission of IPv6 Packets over Token Ring Networks

Transmission of IPv6 Packets over FDDI Networks

Transmission of IPv6 Packets over Ethernet Networks

Table 8-3: Specifications for transmitting IPv6 packets over various link layer protocols.

156 Part Two �9 IPv6 Protocols

8.4.4 I Pv4-COMPATIBLE ADDRESSES

When IPv4 addresses are encapsulated within IPv6 addresses, a "mixed"
format is allowed, in which the IPv4 portion of the address can be
represented in standard dotted quad form, while the rest of the address is
formatted as a standard IPv6 address, resulting in this form.

XXXX : XXXX : XXXX : XXXX : XXXX : XXXX : d dd. d dd. d dd. d dd

These addresses were originally defined to fall into two categories.

IPv4-compatible IPv6 address The IPv6 transition mechanisms (see RFC
2893, "Transition Mechanisms for IPv6 Hosts and Routers") include
a technique for hosts and routers to dynamically tunnel IPv6 packets
over IPv4 routing infrastructure. IPv6 nodes that use this technique
are assigned special IPv6 unicast addresses that carry a global IPv4
address in the low-order 32 bits.

IPv4-mapped IPv6 address A second type of IPv6 address that holds an
embedded IPv4 address is also defined. This address type is used to
represent the addresses of IPv4 nodes as IPv6 addresses.

As of 2003, the IPv4-mapped address appears ready to be deprecated in
response to work in progress being done by Jun-ichiro itojun Hagino and
Craig Metz, both longtime contributors to the IPv6 effort. The two have
determined that IPv4-mapped addresses can be subverted by attackers to
trick IPv4 nodes into believing that an attacker's packet actually originated
locally.

8.5 I Pv6 Node Self-Awareness

The IPv6 address architecture specification defines a set of addresses that
every node must be able to recognize as referring to itself. The task is
somewhat more complicated under IPv6 than IPv4 because IPv6 nodes
must be able to recognize every network interface as being a node on
a link, a node within a site, and a node on the global IPv6 Internet.
Under IPv4, nodes need only be able to recognize themselves by respond-
ing to the loopback address and to addresses configured for any IPv4
interface.

Chapter 8 �9 IPv6 Addressing 157

As defined in RFC 3513, a host is required to recognize the following
addresses as identifying itself.

�9 A link-local address for each interface
�9 All assigned unicast addresses
�9 The loopback address
�9 All all-nodes multicast addresses
�9 Solicited-node multicast address for each of its assigned unicast

and anycast addresses
�9 Multicast addresses of all other groups to which the host

belongs

A router is required to recognize all addresses that a host is required to
recognize, plus the following addresses as identifying itself.

�9 The subnet-router anycast addresses for the interfaces it is
configured to act as a router on

�9 All other anycast addresses with which the router has been
configured

�9 All-routers multicast addresses
�9 Multicast addresses of all other groups to which the router

belongs

NOTE: Addressing and routing of multicast packets, including definitions
of the multicast-related addresses cited here, will be discussed at greater
length in Chapter 10.

Another related issue is which addresses an IPv6 implementation should
predefine for all nodes. The specification makes clear that only the
following address prefixes should be predefined in an implementation.

�9 Unspecified address
�9 Loopback address
�9 Multicast prefix (FF)
�9 Local-use prefixes (link-local and site-local)
�9 Predefined multicast addresses
�9 IPv4-compatible prefixes

All implementations should assume all other addresses are unicast unless
specifically configured as anycast addresses.

158 Part Two �9 IPv6 Protocols

8.6 Summary

Although this chapter includes considerable detail about how to differen-
tiate different types of special IPv6 addresses, as well as how to represent
them in written documents, the most important facts relate to the way that
IPv6 addresses can be aggregated for routing purposes (see Chapter 14 for
more on routing) and the general IPv6 unicast address format using the
IEEE EUI-64 interface identifier.

The next chapter returns to the IPv6 header, specifically detailing the use
of IPv6 header extensions to enable IP options. Unlike IPv4 options, which
are limited to no more than 40 octets of data in a special-case header field,
IPv6 options work more efficiently and provide greater function than their
predecessors.

IPv6 Options and Extension
Headers

This chapter discusses the implications of the IPv6 extension headers, how
they work, and how they differ from the IP option headers used with IPv4.
Particular attention will be paid to the proper order and use of header
extensions, as well as discussion of the use of jumbograms, hop-by-hop
options, destination options, routing, and fragmentation headers.

The most important IPv6 options, the IP Security Protocol (IPsec) headers,
have already been introduced in Chapter 6. The ESP and AH headers look
the same, whether used in IPv4 or IPv6, but the way those headers are
attached to the IP header differs significantly. This chapter introduces
the concept of using extension headers to carry optional Internet-layer data--
information about handling packets at the Internet layer that is not always
needed but often required for particular applications. Security headers
provide one set of examples. Not all packets need to be authenticated or
encrypted, but when nonrepudiation or privacy is required, packets must
carry additional security information.

159

160 Part Two �9 IPv6 Protocols

Rather than making the length of the IPv6 headers variable, depend ing on
whether optional Internet-layer data must be carried along with the packet
(as in IPv4), IPv6 optional data is carried in these supplementary extension
headers that are inserted in the packet after the main IPv6 headers.

This chapter provides an introduction to the concept of extension headers,
along with the following.

�9 IPv6 extension header placement in the packet
�9 IPv6 extension header ordering in the packet
�9 IPv6 extension header format
�9 IPv6 extension header creation and modification
�9 Current IPv6 extension headers

Because the IPv6 specification allows creation of new extension headers as
the need arises, the list of current extension headers may be incomplete.
The interested reader should check the IANA Web site (www.iana.org) for
current values of available IPv6 options.

9.1 IPv6 Options and Extension Headers

RFC 2460 specifies IPv6 extension headers as the mechanism by which
"optional Internet-layer information is encoded in separate headers that
may be placed between the IPv6 header and the upper- layer header in
a packet." Each different type of extension header (the RFC defines five
of them, and two others are defined for IPsec) is identified with an 8-bit
protocol identifier in the Next Header field of the previous header. 1

As of early 2003, seven IPv6 extension headers have been defined. Table 9-1
lists all of the valid values for IPv6 Next Header fields. Extension header
identifiers are listed in the table along with other valid values.

9.1.1 ADDING EXTENSIONS TO IPv6 HEADERS

Figure 9-1 (from RFC 2460) shows how IPv6 extension headers are incor-
porated into the packet. The first example shows a TCP/IPv6 packet with

1 If there is only one extension header, the type of header is identified in the Next Header
field of the IPv6 packet; if there are two or more extension headers, the second extension
header is identified in the Next Header field of the first extension header.

Chapter 9 �9 IPv6 Options and Extension Headers 161

Next Header type Value Notes

Hop-by-Hop Options 00

IPv6 41

Routing 43

Fragment 44

Authentication 51

Destination Options 60

Encapsulating Security Payload 50

No Next Header 59

For tunneling IPv6 in IPv6

No header follows this header

Table 9-1: Valid values for IPv6 Next Header fields.

IPv6 header I TCP header + data

I
Next Header = I

TCP [

+

IPv6 header I Routing Header

I
Next Header = I Next Header =

Routing I TCP
+

TCP header + data

I IPv6 header I Routing Header I Fragment Header I Fragment of TCP

I I I I header + data

I Next Header = I Next Header = I Next Header = I

I Routing I Fragment I TCP I
+ + + +

Figure 9-1: Inserting IPv6 extension headers into IPv6 packets (from RFC 2460).

no extension headers. The next example also shows a TCP/IPv6 packet
with an added extension header (the Routing Header). Finally, the third
example shows a TCP/IPv6 packet with two extension headers, the first a
Routing Header and the second a Fragment Header.

The Next Header field is present in all IPv6 headers; the value for this field
will indicate "TCP" for all TCP/IPv6 packets that do not use any extension
headers. When extension headers are being used, the Next Header field of
the last header will always indicate "TCP" for TCP/IPv6 packets.

162 PartTwo �9 IPv6 Protocols

These are some current (mid-2003) IPv6 extensions.

Routing Similar in purpose to the Loose Source and Record Route Option
defined for IPv4, the Routing Option allows the node sending a packet
to specify one or more routers that must process the packet en route
to its destination.

Hop-by-Hop Some IPv6 options are logically constrained to being used
only by the source and destination nodes. For example, the ESP
header, which indicates that the rest of the packet is encrypted, can be
safely ignored by intermediate routers. Likewise, other IPv6 options
are logically required to be processed by intermediate nodes. For
example, the Routing Header requires that at least some intermedi-
ate routers examine it. The Hop-by-Hop Header is used when one or
more options are present that must be examined by every node in the
delivery path from source to destination.

Fragment Although IPv6 prohibits intermediate nodes from fragment-
ing packets, end-to-end fragmentation is permitted when the source
node determines it needs to send packets that are larger than the
path MTU (see Chapter 12). The Fragment Header contains informa-
tion regarding packet fragmentation, intended only for the packet's
destination node.

Destination Just as the Hop-by-Hop Header is defined to specifically
require all intermediate nodes to process the header, the Destina-
tion Header is defined to limit the use of the enclosed options to the
destination node only.

Authentication When strong (cryptographic quality) authentication is
required, the Authentication Header is used (see Chapter 6).

Encapsulating Security Protocol When strong encryption is required,
the ESP Header is used (see Chapter 6).

Clearly, there are issues related to the order in which extension headers
are added to a packet header, to be discussed next.

9.1.2 EXTENSION HEADER ORDERING

When an IPv6 packet is transmitted with two or more extension headers,
a choice must be made about the order in which the headers are placed

Chapter 9 �9 IPv6 Options and Extension Headers 163

after the main IPv6 header. The goal of this order is to make sure that all
optional data that must be processed by the destination node, as well as
by any intermediate nodes, is available, while at the same time allowing
those nodes to efficiently process packets with options.

For example, the Hop-by-Hop Header should be placed directly after
the main IPv6 header because it must be processed by all intermediate
nodes (routers) that process the packet. On the other hand, the Destination
Options Header should be placed last, after all other extension headers
and just before the upper-layer protocol header. Intermediate nodes do
not need to process these options, and other end-to-end options such as
fragmentation or security must be processed before the packet's payload
can even be interpreted correctly. Taken from RFC 2460, Table 9-2 shows
the recommended extension header ordering.

The only header extension that should appear more than once in any given
IPv6 packet is the Destination Options Header, and that is permitted only
when the extension headers are processed by intermediate nodes. In those

Recommended extension header order

IPv6 header

Hop-by-Hop Options Header

Destination Options Header (note i)

Routing Header

Fragment Header

Authentication Header (note 2)

Encapsulating Security Payload Header (note 2)

Destination Options Header (note 3)

Upper-layer header

Note i- For options to be processed by the first

destination that appears in the IPv6

Destination Address field plus subsequent

destinations listed in the Routing Header.

Note 2- Additional recommendations regarding the

relative order of the Authentication and

Encapsulating Security Payload Headers are

given in [RFC-2406].

Note 3- For options to be processed only by the

final destination of the packet.

Table 9-2: Recommended extension header order (from RFC 2460).

164 Part Two �9 IPv6 Protocols

cases, a set of options can be at tached for the in termedia te "dest inat ions"
that the packet visits en route to its final des t ina t ion - -where a second
Destination Options Header can be processed only by the end-node.

Again, the r ecommended restriction on having only one of each extension
header is based on logic. For example, all Hop-by-Hop Options should be
incorporated into a single extension header for efficiency. Likewise, only
one each of a Routing, Fragment , or Security Header makes sense for each
packet.

It should be noted that the order specified in Table 9-2 is a r ecommenda t ion
and not a requirement . 2 Al though IPv6 implementa t ions should 3 conform
to these recommendat ions , they are not required to do so. And in keeping
with the fundamenta l Internet l ibera l /conservat ive principle ("Be liberal
in wha t you accept, and conservative in what you send"; see RFC 791), IPv6
nodes are required to accept and a t tempt to process wha tever extension
headers occur in a packet, whether in the r ecommended order or not and
whether there is only one of each type or more.

9.1.3 IPv6-1N-IPv6 TUNNELING

The IPv6 Next Header type is included in Table 9-1, and when it appears,
it indicates that IPv6 packets are being tunneled within another s t ream of
IPv6 packets. Protocol tunneling happens when da tagrams from one pro-
tocol are encapsulated within da tagrams of another protocol. A concrete
example of protocol tunnel ing might occur when a person has postal mail
forwarded from her home office to her branch office by having each piece
of mail placed in a new envelope with the branch office address as the new
destination. The original piece of mail is unchanged, and it will eventual ly
be delivered to the appropr ia te person, but it was w r a p p e d (encapsulated)
in a different packet before it arrived at its in tended destination.

Conceptually, IP-in-IP tunnel ing is quite similar, and it is often linked with
the similar function of mobile IP delivery when a mobile node notifies
its home network of a forward-to address. Then, any packets sent to the

2The exception is the Hop-by-Hop Header, which must appear only immediately after the
main IPv6 header. See section 9.4 for more about this type of header.

3The term should is defined for use in an RFC (see RFC 2119, "Key Words for Use in RFCs
to Indicate Requirement Levels") to indicate "that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications must be understood and
carefully weighed before choosing a different course."

Chapter 9 �9 IPv6 Options and Extension Headers 165

9.1.4

9.2

mobile node's home address can be encapsulated in a new IP packet for
redelivery to the mobile node's current location (see Chapter 17 for more
about Mobile IPv6).

When an IPv6 packet is encapsulated within another IPv6 packet, the
encapsulated packet may have one set of extension headers that are pro-
cessed only after the packet arrives at the other end of the tunnel. At the
same time, the encapsulating packet can have its own set of extension
headers that are added by the node at the transmitting end of the tunnel
and processed only by intermediate nodes within the tunnel and /o r by
the node at the receiving end of the tunnel.

IPv6 EXTENSION HEADERS AND OPTIONS

The IPv6 extension headers are intended to carry optional Internet-layer
data, so all extension headers are considered to be optional. Two of
the originally defined extension headersmthe Hop-by-Hop Options and
Destination Options Headersmcan carry one or more options to be inter-
preted by the appropriate recipient(s). Unlike the other IPv6 extension
headers, which enable specific functions (fragmentation, encryption, etc.)
while at the same time being optional (there is no requirement to encrypt
packets, for example), the Hop-by-Hop and Destination Option extensions
are generalized headers that are distinguished only by the way they are
processed.

In other words, Hop-by-Hop Option Headers carry options that are pro-
cessed at every hop; Destination Option Headers carry options that are
processed only at the destination.

In some cases, there is confusion about the nomenclature of IPv6 extension
headers. It should be noted here that extension headers contain optional
data but are not necessarily options headers. Only the Hop-by-Hop
Options and Destination Options Headers are actually "options headers"
because they carry unspecified options to be processed by, respectively,
nodes at each hop or the destination node(s).

Routing Header

The IP routing architecture is designed to allow interoperation among
nodes without having to program internetwork structure into those nodes.

166 Part Two �9 IPv6 Protocols

9.1.1

Once a packet is transmitted by a node into a network cloud, the interme-
diate nodes doing routing within the cloud make simple decisions about
how to forward the packet. Sometimes it is possible that those decisions
can produce an unwanted result, in which case it is possible for the sending
node to make a better decision about how its packets should be routed.

Source Routing Options allow nodes to specify one or more routers through
which the packet must pass on its way to its destination. IPv4 defines a
Loose Source Routing Option, in which all listed routers must handle the
packet, but the packet may pass through other routers as well. This is
opposed to Strict Source Routing, in which the packet must pass through
all the routers listed in the option and only those routers. Strict Source
Routing is rarely used, and Loose Source Routing is controversial because it
can be used to avoid passing through security gateways. However, Source
Routing is still useful for routing around network faults, forcing packets
through preferred routers, and for trouble-shooting specific routers.

The IPv6 Routing Header is defined in RFC 2460; the value 43 in the Next
Header field specifies that a Routing Header follows.

I Pv6 ROUTING HEADER FORMAT

The IPv6 Routing Header is similar to the IPv4 Loose Source/Record Route
Option, in which the routers on the list decrement a field in the header
extension to record that they processed the packet. Figure 9-2 shows the
general format for this header extension.

After the Next Header 4 and header extension length 5 fields of the Rout-
ing Header are the routing type and segments left fields. Although different
types of Routing Headers are possible, as of 2003 only two have been rec-
ognized by the IANA: the Source Route type defined in RFC 2460 (Type 0)
and another type that was defined in the mid-90s to support the Nimrod
network architecture (Type 1).

The Segments Left field holds an 8-bit value from 0 to 255 that indicates
how many of the nodes listed in the header remain to be visited before
the packet arrives at its final destination. For example, if three routers are
listed in the header when the packet is sent, the value of the segment 's left
field will be set to 3.

4indicates protocol contents of the header following this one.
5Indicates number of 8-octet words in the header, not including the first 8 octets.

Chapter 9 �9 IPv6 Options and Extension Headers 167

+ - + - + - - + - + - + - + - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - + - + - + - + - +

I Next Header I Hdr Ext Len I Routing Type I Segments Left I
+--+-+-+-+

I I
�9 o

�9 t y p e - s p e c i f i c d a t a

I I
+--+-+-+-+-+-+-+-+-+

9.2.2

Figure 9-2: Routing Header extension format (from RFC 2460).

SOURCE ROUTE (TYPE O)

The Source Route Routing Header is indicated by the value 0 in the routing
type field. Specified in RFC 2460, the format for this header is shown in
Figure 9-3 and is similar to the format used by the IPv4 source route option
(see RFC 791), consisting of the standard IPv6 Routing Header fields, a
32-bit reserved field (filled with 0 and ignored; these bits pad out the initial
8-octet word of the header extension), and the IP addresses of the nodes
through which the packet must be routed.

The destination address of a packet sent with a Source Route Routing
Header is initially set to the first node the sender wants the packet to
traverse, and the Segments Left field is set to equal the number of addresses
in the Routing Header extension. The IPv6 address of the packet's final
destination is the last address in the list. The values of the address list
items change as the packet passes through the listed nodes; the way they
change is discussed later (see Figure 9-4).

The Routing Header is processed only when the packet arrives at the first
address in the list; all nodes between the source and that first destination
node ignore the Routing Header. When the packet does arrive at the first
destination, that node processes the Routing Header by following these
steps:

Check value in the Segments Left field

�9 If Segments Left - 0, meaning the packet has arrived at its final
destination, the node can skip the Routing Header and go on
to the next header.

�9 Otherwise, go on to the next step.

168 Part Two �9 IPv6 Protocols

+-+

Next Header I Hdr Ext Len I Routing Type=0 i Segments Left
+-+

Reserved
+-+

+ Addr e s s [1] +

+ +

+-+

+ Address [2] +

+ - + - + - + - + - + - + - + - + - - +

I I
+ +

I I
+ A d d r e s s [n] +

I I
+ +

I I
+ - +

Figure 9-3: Source Route Routing Header extension format (from RFC 2460).

Check the parity of the Header Extension Length field

�9 If the header length is an odd number (there should be an
even number of 8-octet words in the header because all IPv6
addresses are 128 bits, or 16 octets long), send an ICMP error
message to the source address, and discard the packet.

�9 If the header length is an even number, determine how many
addresses are in the field by div iding the header length value

Chapter 9 �9 IPv6 Options and Extension Headers 169

SOURCE

Node A I

Source (A)

Dest (B)

Hd Extn=6

Seg Left=3

Node (C)

Node (D)

Node (E)

T
Source (B)

Dest (C)

Hd Extn=6

Seg Left = 2

Node (B)

Node (D)

Node (E)

"1
J

Source (C)

Dest (D)

Hd Extn=6

Seg Left = 1

Node (B)

Node (C)

Node (E)

DEST

Source (D)

Dest (E)

Hd Extn=6

Seg Left=0

Node (B)

Node (C)

Node (D)

Figure 9-4: Source routing in action, as a packet is moved from Node A to
Node E.

by 2 to determine how many IPv6 addresses are carried in the
header extension. If the Segments Left field is greater than this
computed number of IPv6 addresses, it means the packet head-
ers are not properly formed; an ICMP message must be sent
back to the source and the packet discarded. Otherwise, do the
following.
Decrement the Segments Left value by 1, figure out which of the
destinations in the list should be the packet's next stop, check
to make sure that address is not a multicast address (forbidden
in the Routing Header), and then switch the main header desti-
nation address with the address of the packet's next stop. Then
check the Hop Limit of the main header, if it has been exceeded,
send an ICMP error back to the source, and drop the packet.

This algorithm allows intermediate nodes on the list to indicate which
nodes have already been traversed and which remain to be traversed.
Node A (in Figure 9-4) has a list of nodes for a packet to be routed through
on its way to Node E, starting with Node B and going through Nodes C
and D. The initial packet is sent to the first node in the list, Node B. Note
that Node A does not have to include Node B's address in the Routing
Header list of nodes.

When the packet arrives at Node B, it is processed" the Segments Left field
is decremented from 3 to 2, and the original destination address (Node B)

170 Part Two �9 IPv6 Protocols

trades places with the first node on the Routing Header list (Node C). Once
this packet is received at Node C, the Segments Left field goes from 2 to 1,
and Node C's address goes back to the Routing Header to be replaced by
Node D's address. The process repeats for Node E, the final destination,
where the Routing Header list contains just the nodes that were originally
specified to be stops en route from Node A to Node E.

Routers may be required to modify Routing Headers of the packets they
process, but some header extensions may not be modified at all, like the
Fragment Header.

9.3 Fragment Header

To send a payload that is too large to be accommodated in a single packet
(because the resulting packet would be larger than the path MTU from
source to destination), IPv6 permits nodes to break up the packet into two
or more pieces and then send each piece (fragment) as a separate packet.

The Fragment Header in IPv6 allows only source nodes to fragment packets
for reassembly only by the destination node---end-to-end fragmentation.
It is useful to understand how IPv4 fragmentation works before looking
at IPv6 fragmentation.

9.3.1 IPv4 FRAGMENTATION

IPv4's datagram Fragmentation Option has long caused controversy: It
squanders IPv4 header real estate, accounting for 20% of the basic IP
header (the datagram ID, fragmentation flags, and fragment offset field).
Fragmentation adds a computational burden on routers and destination
nodes. Fragmentation makes IPv4 more complicated to implement, as well.
IPv6 permits only end-to-end fragmentation--in other words, the source
and destination nodes that are communicating are permitted to negotiate
the use of fragmentation by the source only. In IPv4, packets could be frag-
mented by intermediate routers to allow packets larger than the maximum
transmission unit or MTU for some link.

Ultimately, this kind of fragmentation in IPv4 was permitted because the
alternatives seemed even less appealing. Placing an upper limit on IP data-
gram size lower than the smallest allowed PDU on any network medium

Chapter 9 �9 IPv6 Options and Extension Headers 171

using IP would unreasonably limit the PDU size for media that can handle
very large chunks of data efficiently. Limiting the IP datagram length to
under 1500 octets (the maximum allowed size for Ethernet frames) or to
576 octets (MTU for the X.25 wide area network protocol) would likewise
limit more efficient network media.

Alternatively, placing a lower limit on the size of PDU of any network
medium using IP and thus requiring all network media to support some
minimum PDU size determined by the IETF would unnecessarily restrict
the types of media capable of carrying IP. Since one of the most basic tenets
of IP networking is that it is a universally interoperable protocol, this option
is also unacceptable.

IPv4 packets can potentially be fragmented any time they cross different
types of network media. For example, a 1492-octet-long IP datagram is
just long enough to fit inside an Ethernet frame, but it would have to
be fragmented in order to cross an X.25 network, which can handle only
datagrams as large as 576 octets.

A node sets the length of its datagrams based on its local MTU. IPv4 has an
upper limit on datagram size of 65,535 octets, since the IP header field
for datagram length is 16 bits long. However, most common network
media have much smaller maximum network frame sizes, as discussed
in the previous chapter. When there are several different networks across
which network traffic passes, there will be a path MTU. This is the largest
unit that can pass unfragmented across all the intervening networks in
a datagrams route-- in other words, the smallest MTU of any of those
networks.

9.3.2 IPv6 FRAGMENTATION HEADER FIELDS

The IPv6 header is considerably simplified by the absence of
fragmentation-related headers, thus simplifying the task of processing
the standard IPv6 header. When fragmentation occurs, the source node
inserts a Fragmentation Header (signified by a value of 44 in the preceding
header's Next Header field). Figure 9-5 shows the format for this header
extension.

The header extension carries the appropriate data for fragmentation but
only when it is needed. The fields in this header extension include the
following.

172 Part Two �9 IPv6 Protocols

+ - - + - + - + - + - + - + - + - +

1 Next Header I Reserved I Fragment Offset lReslMl
+-+

1 Identification 1
+-+

Figure 9-5:IPv6 Fragmentation Header (from RFC 2460).

Next Header The standard next header field, an 8-bit value identifying
the protocol contained in the headers following this one.

Reserved Initialized to zero for transmission; ignored on reception.

Fragment Offset A 13-bit integer that indicates, in units of 8 octets, the
relative position in the unfragmented packet of the data that follows
the header. A Fragment Offset value of 0 means the first fragment of
a packet; a value of 100 means that the following fragment follows
800 octets of data carried in some other fragment(s).

Res A 2-bit reserved field that is initialized to zero for transmission and
ignored on reception.

M flag When set to 1, this flag indicates that there are more fragments
on their way; when set to 0, it indicates that this fragment is the last
fragment.

Identification This 32-bit field identifies every fragmented packet
uniquely- -dur ing the lifetime of the packet. All fragments from
the same packet share the same value in this field, allowing the
destination node to identify different pieces of the same packet for
reassembly, as well as to quickly discard fragments that have already
been received.

The lifetime of the packet is considered to include the time it takes to
transmit the network from source to destination as well as whatever
time is required to wait for the rest of the original packet fragments.
Since this field is limited to more than 4 billion unique values, it
should be capable of support ing even high-performance network
links for any reasonable packet lifetime.

Chapter 9 �9 IPv6 Options and Extension Headers 173

9.3.3

By shifting the Fragment Offset field to the left (and the More flag to the
right), the header becomes easier to process. The Fragment Offset is a value
specifying the number of 8-octet words to be offset; that value is stored in
a 13-bit field. Ignoring the low-order 3 bits of that part of the header (that
is, the 2 reserved bits and the More flag) allows the 13-bit Fragment Offset
field to be expressed as a 16-bit value and interpreted as the number of
octets specified by the offset.

PACKET FRAGMENTATION

The original packet (before fragmentation) contains two parts.

Unfragmentable Part The IPv6 header, plus any extension headers that
must be processed by nodes other than the final destination node.
For example, the unfragmentable part of a packet with Routing
and /o r Hop-by-Hop Headers would include the IPv6 header plus
the Routing and /o r Hop-by-Hop Headers.

Fragmentable Part Everything else. This means any extension headers
to be processed by the destination node and the upper-layer headers
and data.

The packet can be thought of as looking like this.

+ ~ / /

I U n f r a g m e n t a b l e I F r a g m e n t a b l e

J Part l Part
+ t- / /

Fragments are created by dividing the unfragmentable part up, like this.

+ + ~ +--II--+ +
l Unfragmentable J first l second I J last l
l Part l fragment J fragment I l fragment l

+ + ~ +--II--+ +

With each fragment incorporated into its own packet, the resulting pack-
ets duplicate the unfragmentable part of the original packet and add a
Fragment Header, resulting in a sequence of packets that look like this.

4 + t +

I Unfragmentable I Fragment I first I
I Part I Header I fragment I
4 4 ~ +

174 Part Two �9 IPv6 Protocols

4 4- 4-

I Unfragmentable l Fragmentl second I
Part l Header I fragment l

+ 4.-

o

O

O

+ + 4 +

I Unfragmentable IFragmentl last I
I Part] Header I fragment I
+ ~ 4 +

Each of the fragment-carrying packets has the same unfragmentable part,
with the Next Header field of the last header of that part set to 44, indicating
that the next header is a Fragment Header.

At the destination node, the process is reversed as fragment packets begin
arriving; if all the fragments have not been received within 60 seconds, the
packets that have been received are discarded, and if the first (offset = 0)
fragment was received, the receiving node sends an ICMP error message.

9.4 Hop-by-Hop and Destination Options Headers

Unlike the other header extensions discussed so far, the Hop-by-Hop and
Destination Options Headers are generalized extensions that carry options
intended to be processed either at every stop that the packet makes en
route to its destination (Hop-by-Hop) or only on receipt at the packet's
destination. The various different options that have so far been defined
are discussed in the next section; other options will invariably be defined
in the future.

9.4.1 OPTIONS HEADERS FORMAT

Both options headers share the same general format, as shown in
Figure 9-6. The only fields required for all options headers are the Next
Header (8 bits indicating the protocol of the header that follows) and the
Hdr Ext Len (8 bits indicating the length of the header in 8-octet words,
excluding the first 64 bits). The Options field is left wide open and can be
filled with up to 2040 octets of option data (the Hdr Ext Len maximum
value 255 eight-octet units).

Chapter 9 �9 IPv6 Options and Extension Headers 175

+--+-+-+-+-+-+-+-+-+--+--+--+-+

I Next Header I Hdr Ext Len I
+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+

I

. options

I I
+ - +

9.4.2

9.4.3

Figure 9-6: General Options headers format (from RFC 2460).

The Next Header field value of 0 indicates that a Hop-by-Hop Options
Header follows; a value of 60 indicates that a Destination Options Header
follows.

DESTINATION OPTIONS FUNCTIONS

If a Destination Options Header option type is not recognized by the des-
tination node, the default behavior is to discard the packet and send an
ICMP message to the sender. If the destination address is a multicast, the
packet is discarded silently.

Optional data carried in a Destination Options Header may sometimes be
just as easily carried in some other type of header extension. For example,
it is possible to define a Fragmentation Option for the Destination Option
Header that accomplishes the same function as the Fragmentation Header.
The authors of RFC 2460 note that the choice may depend on which
approach uses fewer octets or is easier to process. However, when the
implementation requires that nodes not recognizing the option do some-
thing other than the default (discard and then send an ICMP message 6 if
possible), the Destination Options Header extension must be used. As will
be explained in the next section, Destination Options may be encoded with
three alternative responses to unrecognized options.

OPTIONS SPECIFICATION AND ENCODING

The options in the options extension headers are encoded in a standard
format, where the type, length, and value are defined for each option.

6Unrecognized Type message, see Chapter 12.

176 Part Two �9 IPv6 Protocols

0 7 8 15 16
+-+-+-+-+- +-+-+-+-+-+-+-+-+-+-+-+

1 Option Type I Opt Data Len I Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9-7: Format for options carried in IPv6 options extension headers (from
RFC 2460).

Figure 9-7 shows how these values are formatted, as specified in
RFC 2460.

The first octet identifies the option using an 8-bit option type value. These
values are maintained by the IANA, and values identified by the IANA as
valid as of early 2003 are shown in Table 9-3.

The second octet, opt data len, is an 8-bit unsigned integer that defines the
length of the option data field in octets. The option data field is a variable-
length field in which optional data for that option type is carried.

The option type octet is further subdivided to allow the use of the three
high-order bits to specify how nodes should handle the attached packet
in certain circumstances. The two highest-order bits indicate what a node
should do with the packet if the node doesn't recognize the option type.

00 skip the option, but continue processing the rest of the header
normally

01 discard the packet
10 discard the packet entirely and, for multicast and nonmulticast

packets, send an ICMP message 7 to indicate that the option type
is unrecognized

11 discard the packet and, for only nonmulticast packets, send an
ICMP message 8 to indicate that the option type is unrecognized

For some options, the option data may be modified en route. The third-
highest-order bit is used to specify whether an intermediate node can
modify this data: 0 in this position indicates that option data does not
change, whereas 1 in this position indicates that option data may be
changed. When an Authentication Header is present in the packet, for

7ICMP Parameter Problem, Code 2
8ICMP Parameter Problem, Code 2

Chapter 9 �9 IPv6 Options and Extension Headers 177

any option whose data may change en route, its entire Option Data field
must be treated as zero-valued octets when computing or verifying the
packet's authenticating value.

9.4.4 OPTION PADDING

Protocol headers and options often must be aligned precisely (for example,
IP headers typically align on a 32-bit boundary). IPv6 header extensions
are typically padded--extra space is inserted between parts of the headers,
usually set to 0into be aligned on 8-octet multiples. The very first options
defined for IPv6 extension headers solve this problem.

The Pad1 option is the simplest: The value of 0x00 (binary: 0000 0000) is
inserted into the option after the main option body to take up a single
octet. This option is recommended for use only when a single octet must
be padded.

The PadN option is two or more octets long, depending on the amount
of padding required. This option is identified by the value 0x01 followed
by the option data length and the appropriate padding option data (some
number of octets that should be set to 0, but that should be ignored in any
case), like this.

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

1 1 1 Opt Data Len 1 Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The first 8 bits of this option are set to 0x01 (binary: 0000 0001), with the
next octet used to specify how many octets of data follow. When only two
octets of padding are needed, this option would have the value 0x01 00 to
indicate the option type (PadN), where required the option fields (option
id and option data length) are sufficient to pad out the option.

When more than two octets of padding are required, the option data length
field contains an integer with a value from 1 to 5, indicating how many
octets are needed to make the entire option contain some multiple of eight
octets. 9

9Adding six octets of padding would make the entire option eight octets long, indicating
that padding was not needed in the first place; seven octets of padding would be equivalent
to a single octet of padding.

178 Part Two �9 IPv6 Protocols

9.4.5 CURRENT VALID OPTIONS

Only a few options have been defined for use in IPv6 extension headers
that can carry options. Table 9-3 lists those valid as of 2003.

In addition to the padding options, valid IPv6 extension header options
include the following.

Jumbo Payload (RFC 2675) "IPv6 Jumbograms."

A "jumbogram" is an IPv6 packet containing a payload longer
than 65,535 octets. This document describes the IPv6 Jumbo
Payload option, which provides the means of specifying such
large payload lengths. It also describes the changes needed to
TCP and UDP to make use of jumbograms. Jumbograms are rel-
evant only to IPv6 nodes that may be attached to links with a link
MTU greater than 65,575 octets, and need not be implemented
or understood by IPv6 nodes that do not support attachment to
links with such large MTUs.

NSAP Address RFC 1888: "OSI NSAPs and IPv6" (experimental) for
carrying encapsulating a complete NSAP (Network Service Access
Point, see Chapter 8) address in the IPv6 header.

HEX BINARY

act chg rest

0 00 0 00000

1 00 0 00001

C2 Ii 0 00010

C3 ii 0 00011

4 00 0 00100

5 00 0 00101

C6 ii 0 00110

7 00 0 00111

8 00 0 01000

C9 II 0 01001

8A i0 0 01010

Padl

PadN

Jumbo Payload

NSAP Address

Tunnel Encapsulation Limit

Router Alert

Binding Update

Binding Acknowledgment

Binding Request

Home Address

Endpoint Identification

Table 9-3:IPv6 Option Types (from IANA).

Chapter 9 �9 IPv60ptJons and Extension Headers 179

Tunnel Encapsulation Limit
IPv6 Specification.

RFC 2473, Generic Packet Tunneling in

A tunnel entry-point node may be configured to include a
Tunnel Encapsulation Limit option as part of the informa-
tion prepended to all packets entering a tunnel at that node.
The Tunnel Encapsulaton Limit option is carried in a Destina-
tion Options extension header [IPv6-Spec] placed between the
encapsulating IPv6 header and the IPv6 header of the original
packet. (Other IPv6 extension headers may also be present pre-
ceding or following the Destination Options extension header,
depending on configuration information at the tunnel entry-
point node.)

The Tunnel Encapsulation Limit option specifies how many
additional levels of encapsulation are permitted to be pre-
pended to the packet--or, in other words, how many further
levels of nesting the packet is permitted to undergo---not count-
ing the encapsulation in which the option itself is contained.
For example, a Tunnel Encapsulation Limit option containing
a limit value of zero means that a packet carrying that option
may not enter another tunnel before exiting the current tunnel.

Router Alert RFC 2711 published in 1999.

New protocols, such as RSVP, use control datagrams which,
while addressed to a particular destination, contain informa-
tion that needs to be examined, and in some case updated, by
routers along the path between the source and destination. It is
desirable to forward regular datagrams as rapidly as possible,
while ensuring that the router processes these special control
datagrams appropriately. Currently, however, the only way
for a router to determine if it needs to examine a datagram is to
at least partially parse upper-layer data in all datagrams. This
parsing is expensive and slow. This situation is undesirable.

This document defines a new option within the IPv6 Hop-by-
Hop Header. The presence of this option in an IPv6 datagram
informs the router that the contents of this datagram are of inter-
est to the router and to handle any control data accordingly. The
absence of this option in an IPv6 datagram informs the router
that the datagram does not contain information needed by the

180 Part Two �9 IPv6 Protocols

router and hence can be safely routed without further data-
gram parsing. Hosts originating IPv6 datagrams are required
to include this option in certain circumstances.

Binding Update/Acknowledgment/Request
IPv6 mobility support; see Chapter 17.

Originally identified with

Home Address Mobile IPv6 defines a Home Address destination option
in a work-in-progress on IPv6 mobility.

The Home Address option is carried by the Destination Option
extension header (Next Header value = 60). It is used in a packet
sent by a mobile node while away from home, to inform the
recipient of the mobile node's home address.

Endpoint Identification Based on a feature used with Nimrod ("a scal-
able internetwork routing architecture" from the mid-1990s) to
determine endpoints in IPv4/v6 networks.

Others can be expected. One work-in-progress defines a new approach to
path MTU discovery (see Chapter 12 for more on PMTU):

IPv6/PMTU Option Header Draft

This document presents a new method for the PMTU discovery
for IPv6. To discover the PMTU of a path, a source node mea-
sures its actual PMTU using the newly defined Hop-by-Hop
Option Header, whereas a source node initially assumes that
the PMTU of a path is the known MTU of the first hop in the
path in the previous one [1981]. In order to measure the actual
PMTU, the source node sends the IP packet with the newly
defined Hop-by-Hop Option Header to the destination node
with the first data packet when the node is beginning. This can
eliminate the chance of occurrence of several iterations of the
somewhat complex discovery cycle (sending a packet, receiving
a Packet Too Big message, reducing a packet size). Most of all,
since existing PMTU has a weak point for security and denial-
of-service attacks, this document suggests a security function
when PMTU is going on.

Chapter 9 ~ IPv6 Options and Extension Headers 181

9.5 Summary

Although IPv4 options have been defined from the very beginning, their
use has never been widespread. IPv6 option header extensions have been
designed to remedy the flaws in IPv4 options, and, as demonstrated in
this chapter, should gain wider acceptance. Although so far only a few
options have been defined, they may be applied in a number of different
ways to enable protocol tunneling, routing options, security options,
fragmentation, and more.

As we'll see in Chapter 17, the IPv6 mobility protocol uses an extension
header, but in the next chapter we examine another function--multicast m
that, while present in IPv4, is designed for greater effectiveness and ease
of use under IPv6.

I Pv6 Mul t icast

Multicast for IPv6 is based on the same principles as multicast in IPv4 or,
for that matter, mult icast in link layer protocols like Ethernet.

�9 Nodes that are members of a mult icast group receive packets
t ransmit ted to the mult icast group address.

�9 The original sender of a mult icast packet sends it only once, but
the packet will be repeated so as to be delivered to all g roup
members .

�9 When a multicast packet is t ransmit ted on a multiaccess net-
work, in which all nodes can detect all t ransmissions but ignore
those addressed to nodes other than themselves, group mem-
bers all process the same packet t ransmit ted by the original
sender.

�9 When a multicast packet is t ransmit ted on a nonbroadcast ,
multiaccess (NBMA) ne twork like ATM or Frame Relay, an
in termediary node accepts the mult icast and then repeats it to
all nodes subscribed on the network.

183

184 Part Two �9 IPv6 Protocols

Although the fundamentals are quite similar to multicast in IPv4, IPv6
protocols depend to a great degree on the use of multicast for functions
such as neighbor discovery (see Chapter 13), node autoconfiguration (see
Chapter 16), mobile IPv6 (see Chapter 17), and more.

As part of the renovation and simplification of IPv4-generation protocols,
and to improve the efficiency with which the functions just cited are per-
formed, IPv6 multicast has also been streamlined. The Internet Group
Management Protocol (IGMP) used in parallel with ICMP in IPv4 has been
dropped for IPv6. Instead, IPv6 multicast recipients are detected with the
Multicast Listener Discovery (MLD) protocol, which is actually a set of
ICMPv6 messages.

This chapter provides a brief look at the IPv6 specifications for multi-
cast, including the multicast address format, multicast scopes, transient/
permanent multicast groups, and multicast address allocation. Also
covered here are the Multicast Listener Discovery (MLD) protocol and
multicast routing under IPv6.

10.1 IPv6 Multicast Address Format

Like all IPv6 addresses, IPv6 multicast group addresses are 128 bits long,
but multicast addresses are identifiable because the high-order 8 bits of the
address are all ls. The IPv6 multicast address format, shown in Figure 10-1,
consists of four "fields."

High-order octet This will always be 11111111 for multicast addresses.

Flags The first three of these four single-bit flags are reserved; the fourth
bit specifies whether the multicast group is a well-known address
(permanently assigned to a defined group of nodes) or transient
(an address used temporarily with no permanently defined set of
members).

Scope This field contains a value from 0 through 0xF. The multicast
address scope indicates the relative size of the domain over which
the multicast packet should be propagated (see Table 10-1).

Group ID The remainder of the multicast address is given over to the
group ID.

C h a p t e r l O . IPv6MultJcast 185

I 8 I 4 I 4 I 112 b i t ~ I
+ + + + +

llllllllllflgslscopl group ID I
+ + + + . +

A

i
\

+ - + - + - + - +

flgs is a set of four flags, the 1010101T I
the first three reserved and set +-+-+-+-+
to 0; the fourth indicating
whether the address is a "well-known" multicast address
(T=0) or a "transient" (T=I) multicast address.

Figure 10-1:IPv6 multicast address format (from RFC 3513).

Value Scope

0 reserved

1 interface-local scope

2 link-local scope

3 reserved

4 admin-local scope

5 site-local scope

6 (unassigned)

7 (unassigned)

8 organization-local scope

9 (unassigned)

A (unassigned)

B (unassigned)

C (unassigned)

D (unassigned)

E global scope

F reserved

Table 10-1:IPv6 multicast address scope values.

10.2 Multicast Scope Definitions

The scop field of the multicast address is used to limit the multicast group
scope. Table 10-1 lists the values defined for multicast group scope.

186 Part Two �9 IPv6 Protocols

The most local scope, interface-local, specifies a single network interface
to be used to transmit multicast packets over the loopback address. The
scope can expand to the local link, site, organization, or global IPv6 Inter-
net. As shown in Table 10-1, the all-zeros (0) and all-ones (0xF) values
are reserved, with half of the rest of the values unassigned (but available
for administrators who want to assign their own regions). Site-local and
link-local scopes correspond to the unicast definitions for those scopes (see
preceding section).

Beyond the link- and site-local scopes that can be automatically defined
by physical connectivity lie the admin-local and organization-local scopes
that are administratively configured and can span separate networks. The
organization-local scope is meant to be able to cross site boundaries within
a single organization.

Most important is the group ID field, which identifies the multicast group
within the group's defined scope. As with IPv4 multicast groups, there
are permanently assigned IPv6 multicast groups whose IDs have specific
meaning. For instance, permanently assigned group IDs of the form : :2
specify "all routers" within the defined scope. So the following addresses
specify three different multicast groups that consist of all the IPv6 routers
in different scopes.

FF01:0:0:0:0:0:0:2

F F 0 2 : 0 : 0 : 0 : 0 : 0 : 0 : 2

FF05:0:0:0:0:0:0:2

The first group includes IPv6 routers within scope 1 (the local interface),
the second includes all routers within scope 2 (the local link), and the
third includes all routers within scope 5 (site-local). If the high-order octets
w e r e FFOE, the group (if it was used) would consist of all IPv6 routers in
the global IPv6 Internet. Those packets, however, would not likely be
forwarded throughout the IPv6 Internet.

10.3 Reserved and Permanent Multicast Addresses

The group ID has meaning for permanently assigned groups, but tran-
sient group IDs have meaning only within their scope. The same transient,

ChapterlO �9 IPv6Multicast 187

site-local, multicast address may be used at any n u m b e r of separate sites.
And FF15- �9 101, a transient site-local address, does not have any relation
to the similar pe rmanen t site-local scope address FF0 5 �9 �9 101.

There are other reserved and pe rmanen t mult icast address allocations. For
example, under no circumstances is the "all-zeroes" address a valid one
for multicast, no mat ter wha t the scope. RFC 3513 explicitly reserves these
addresses and states that can never be used.

FF00:0:0:0:0:0:0:0

FF01:0:0:0:0:0:0:0

FF02:0:0:0:0:0:0:0

FF03:0:0:0:0:0:0:0

FF04:0:0:0:0:0:0:0

FF05:0:0:0:0:0:0:0

FF06:0:0:0:0:0:0:0

FF07:0:0:0:0:0:0:0

FF08:0:0:0:0:0:0:0

FF09:0:0:0:0:0:0:0

FFOA:0:0:0:0:0:0:0

FFOB:0:0:0:0:0:0:0

FF0C:0:0:0:0:0:0:0

FFOD:0:0:0:0:0:0:0

FFOE:0:0:0:0:0:0:0

FFOF:0:0:0:0:0:0:0

This list of reserved addresses should be filtered on all IPv6 routers, just
to ensure that packets sent to or from those addresses are not forwarded.

Another set of multicast addresses that have been pe rmanen t ly assigned
are the All Nodes Addresses for interface-local and link-local scopes.

FF01-0-0-0-0-0-0-1 all IPv6 nodes, within scope 1

(interface-local)

188 Part Two �9 IPv6 Protocols

FF02:0:0:0:0:0:0:I

(I ink- 1 ocal)

all IPv6 nodes, within scope 2

These groups are defined as consisting of all IPv6 nodes, within the scope
defined.

The All Routers Addresses are defined as follows.

FF01:0:0:0:0:0:0:2 all IPv6 routers,

within scope 1 (interface-local)

FF02:0:0:0:0:0:0:2 all IPv6 routers,

within scope 2 (link-local)

FF05:0:0:0:0:0:0:2 all IPv6 routers,

within scope 5 (site-local)

The Solicited-Node Address is used with ICMPv6 to determine whether an
IPv6 node is configured with a particular IPv6 address. All nodes are
required to subscribe to the solicited-node address for every unicast and
anycast address that node responds to. This is the format of this address.

FF02 : 0 : 0 : 0 : 0 : 1 : FFXX : XXXX

Solicited-node multicast addresses are computed as a function of the node's
unicast and anycast addresses; the address is formed by taking the low-
order 24 bits of an address (unicast or anycast) and appending those bits
to the prefix FF02:0:0:0:0:I:FF00::/104, resulting in a multicast address in
the following range.

FF02:0:0 : 0 : 0 : I:FF00:0000

t o

FF02 : 0 : 0 : 0 : 0 : 1 : FFFF : FFFF

Solicited-node addresses and their use are discussed in the next section.

Fixed-scope multicast addresses are permanently assigned over specific
scope values. The most current assignments are available through the
IANA Web site; those available as of mid-2003 are listed in Table 10-2.

ChapterlO. IPv6Multicast 189

Node-local scope

FF01-0-0-0-0-0-0"I All nodes address

FF01-0-0-0-0-0-0-2 All routers address

Link-local scope

FF02:0:0:0:0:0:0:I All nodes address

FF02:0:0:0:0:0:0:2 All routers address

FF02:0:0:0:0:0:0:3 Unassigned

FF02:0:0:0:0:0:0:4 DVMRP routers

FF02:0:0:0:0:0:0:50SPFIGP

FF02-0-0-0-0-0-0-60SPFIGP designated routers

FF02:0:0:0:0:0:0:7 ST routers

FF02:0:0:0:0:0:0:8 ST hosts

FF02:0:0:0:0:0:0:9 RIP routers

FF02:0:0:0:0:0:0:A EIGRP routers

FF02"0-0-0-0-0-0-B Mobile-agents

FF02:0:0:0:0:0:0:D All PIM routers

FF02:0:0:0:0:0:0:E RSVP-ENCAPSULATION

FF02:0:0:0:0:0:I:I Link name

FF02:0:0:0:0:0:I:2 All-dhcp-agents

FF02:0:0:0:0:I:FFXX:XXXX Solicited-node address

Site-local scope

FF05-0-0"0-0"0"0"2 All routers address

FF05-0-0-0-0"0"I-3 All-dhcp-servers

FF05-0-0-0-0-0-1"4 All-dhcp-relays

FF05-0-0-0-0-0-1-1000 Service location

-FF05 �9 0 �9 0 �9 0 �9 0 �9 0- 1 �9 13FF

Table 10-2: Permanently-assigned fixed-scope multicast addresses.

There are also a number of multicast addresses that are permanently
assigned in all scopes; values assigned as of mid-2003 are listed in
Table 10-3.

10.4 Solicited-Node Multicast

As part of the neighbor discovery protocol (see Chapter 13), IPv6 nodes are
required to join a special multicast group for every IPv6 unicast and anycast
to which the nodes have been configured to respond. These addresses

190 Part Two �9 IPv6 Protocols

All scope multicast addresses

FF0X-0"0"0"0-0"0"0 Reserved multicast address

FF0X:0:0:0:0:0:0:I00 VMTP managers group

FF0X-0-0-0-0-0-0-101 Network time protocol (NTP)

FF0X-0-0-0-0-0-0-102 SGI-Dogfight

FF0X:0:0:0:0:0:0:I03 Rwhod

FF0X:0:0:0:0:0:0:I04 VNP

FF0X-0-0-0-0-0-0-105 Artificial Horizons -- Aviator

FF0X-0-0-0-0-0-0-106 NSS -- name service server

FF0X-0-0-0-0-0-0-107 AUDIONEWS -- Audio news multicast

FF0X-0-0-0-0-0-0-108 SUN NIS+ information service

FF0X-0-0-0-0-0-0-109 MTP--Multicast transport protocol

FF0X:0:0:0:0:0:0:IOA IETF-I-LOW-AUDIO

FFOX:0:0:0:0:0:0:IOB IETF-I-AUDIO

FF0X:0:0:0:0:0:0:IOC IETF-I-VIDEO

FF0X:0:0:0:0:0:0:IOD IETF-2-LOW-AUDIO

FF0X:0:0:0:0:0:0:IOE IETF-2-AUDIO

FFOX:0:0:0:0:0:0:IOF IETF-2-VIDEO

FF0X:0:0:0:0:0:0:II0 MUSIC-SERVICE

FF0X:0:0:0:0:0:0:III SEANET-TELEMETRY

FF0X:0:0:0:0:0:0:II2 SEANET-IMAGE

FF0X:0:0:0:0:0:0:II3 MLOADD

FF0X-0-0-0-0-0-0-114 any private experiment

FF0X:0:0:0:0:0:0:II5 DVMRP on MOSPF

FF0X:0:0:0:0:0:0:II6 SVRLOC

FF0X:0:0:0:0:0:0:II7 XINGTV

FF0X:0:0:0:0:0:0:II8 microsoft-ds

FF0X:0:0:0:0:0:0:II9 nbc-pro

FF0X:0:0:0:0:0:0:IIA nbc-pfn

FF0X:0:0:0:0:0:0:IIB imsc-calren-i

FF0X:0:0:0:0:0:0:IIC imsc-calren-2

FF0X:0:0:0:0:0:0:IID imsc-calren-3

FFOX:0:0:0:0:0:0:IIE imsc-calren-4

FF0X-0-0-0-0-0-0-11F ampr-info

FF0X:0:0:0:0:0:0:I20 mtrace

FF0X:0:0:0:0:0:0:I21 RSVP-encap-i

FF0X:0:0:0:0:0:0:I22 RSVP-encap-2

FF0X:0:0:0:0:0:0:I23 SVRLOC-DA

FF0X:0:0:0:0:0:0:I24 rln-server

Table 10-3: Permanently assigned variable-scope multicast addresses.

ChapterlO. IPv6Multicast 191

All scope multicast addresses

FF0X-0"0-0"0"0"0"125 proshare-mc

FF0X-0-0-0-0-0-0-126 dantz

FF0X-0-0.0-0-0-0-127 cisco-rp-announce

FF0X-0-0-0-0-0-0-128 cisco-rp-discovery

FF0X-0-0-0-0-0-0-129 gatekeeper

FF0X-0-0-0-0-0-0-12A iberiagames

FF0X-0-0-0-0-0-0-201 "rwho" Group (BSD) (unofficial)

FF0X-0-0"0-0-0-0-202 SUN RPC PMAPPROC_CALLIT

FF0X-0-0-0-0-0-2"0000-FF0X-0-0-0-0-0-2-7FFD multimedia

conference calls

FF0X-0-0-0-0-0-2-7FFE SAPvl announcements

FF0X-0-0.0-0-0-2-7FFF SAPv0 announcements (deprecated)

FF0X-0"0-0-0-0-2-8000-FF0X'0-0-0-0-0-2-FFFF SAP

dynamic assignments

Table 10-3: Continued

are based on the low-order 24 bits of each anycast /unicast address, which
in most cases will correspond to the unique portion of any interface's MAC
address (if present).

Any node attempting to configure itself with an IPv6 address is required
to send out a neighbor discovery solicitation on the solicited-node
multicast address for that IPv6 address. In that way, if the address is
already being used, the node using it will respond to the solicitation, and
the requesting node can avoid address collision with the existing node.

The solicited-node multicast address is designed to fulfill this function in
the most efficient way possible.

�9 First, by using the low-order 24 bits of each IPv6 address,
each node will likely have to subscribe to only one solicited-
node multicast address per IPv6 interface. The same single
address can serve for any and all EUI-64-based anycast /unicast
addresses, regardless of scope.

�9 Second, although solicited-node multicast addresses for inter-
faces owned by two different nodes on the same link are
possible, they are minimized by the use of the 24-bit address
space. With over 16 million unique addresses, the chance of two
IPv6 interfaces on the same link colliding on those bits is low.

192 Part Two �9 IPv6 Protocols

10.5

The solicited-node multicast address is also used for other neighbor
discovery purposes, allowing nodes to more quickly map an IPv6 address
to a link layer network address.

Multicast Listener Discovery (MLD) for IPv6

IPv4 multicast group membership is managed through the use of a
separate protocol, the Internet Group Management Protocol (IGMP).
Considered part of IPv4, IGMP works much like ICMP in that it permits
nodes to exchange network metainformation. IPv4 nodes exchange IGMP
messages, usually with routers, to indicate the multicast groups to which
they wish to subscribe.

Under IPv6, multicast group management is accomplished with a set of
ICMPv6 messages that comprise the Multicast Listener Discovery (MLD)
protocol. Like Neighbor Discovery, MLD can be considered a subprotocol
of ICMPv6. As stated in the introduction to RFC 2710, "Multicast Listener
Discovery (MLD) for IPv6," the purpose of the protocol is to allow a router
"to discover the presence of multicast listeners (that is, nodes wishing to
receive multicast packets) on its directly attached links, and to discover
specifically which multicast addresses are of interest to those neighboring
nodes. This information is then provided to whichever multicast routing
protocol is being used by the router, in order to ensure that multicast
packets are delivered to all links where there are interested receivers."

MLD uses three different types of messages.

Multicast Listener Query The Query message type has two subtypes.
The General Query is used by routers to discover all the multicast
groups that listeners on the link are subscribed to; the Multicast-
Address-Specific Query is used by routers to discover whether there
are any local link subscribers (listeners) to a particular multicast
address. Only routers send queries, and usually there is only one
router that acts as a querier on each link.

Multicast Listener Report An unsolicited Report message is sent by any
node when it begins listening to a multicast address; Report messages
are generated in response to a Query message sent by a router (either
a query for a specific multicast address or a general query).

Multicast Listener Done The Done message should be sent by a node
when it stops listening to a multicast address.

ChapterlO. IPv6Multicast 193

It should be clarified that MLD is not used to identify every node subscrib-
ing to every multicast address or to associate link layer addresses with all
subscribers, but rather to notify routers of which multicast addresses are
of interest to one or more nodes on the local link. In that way, the routers
have a simple mechanism for keeping track of multicast addresses they
must monitor on their other links.

The protocol itself defines a set of behaviors for routers and multicast
listeners, with routers periodically sending General Queries to ascertain
which multicast addresses they must forward to each of their links, and
with multicast listeners sending Reports in response to router queries as
well as unsolicited Reports when they begin monitoring a multicast
address.

The protocol incorporates a set of timers that multicast listeners use to
determine when they must respond to router Queries as well as how fre-
quently a sending router must send General Queries. MLD allows routers
to monitor all relevant multicast addresses- -but only relevant multicast
addresseswso ideally there will be only one node sending one Report for
each multicast address.

As described in RFC 2710, MLD messages are sent with a link-local IPv6
Source Address, an IPv6 Hop Limit of 1, and an IPv6 Router Alert option
in a Hop-by-Hop Options Header. (The Router Alert Option is necessary
to cause routers to examine MLD messages sent to multicast addresses
in which the routers themselves have no interest.) The message format is
shown in Figure 10-2.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type I Code I Checksum
+-+-+-+- +-+-+- +- +-+-+-+-+-+-+-+-+-+- +-+- +-+-+-+-+-+-+-+-+-+-+-+-+

Maximum R e s p o n s e D e l a y I R e s e r v e d
+ - +

+ Multicast Address +

Figure 10-2: Multicast Listener Discovery (MLD) message format (from
RFC 2710).

194 Part Two �9 IPv6 Protocols

10.6 Summary

The use of scope, especially to differentiate between the local network and
the global IPv6 Internet, is an important reason why multicast can be so
much more useful in IPv6 networks than it has been in IPv4 networks.
An integral part of IPv6 protocols, we will see how multicast performs
important functions in ICMPv6 in Chapter 12, as well as related protocols
such as Neighbor Discovery (Chapter 13), Mobile IPv6 (Chapter 17), and
elsewhere.

Though related to multicast, IPv6 anycast addressing differs in important
ways. As will become clear in the next chapter, anycast has the potential
to improve IPv6 network efficiency.

IPv6 Anycast

One of the more surprising features of IPv6 was the inclusion of an entirely
new communication model, anycast, to join the existing unicast and mul-
ticast models. Where unicast communication permits the transmission of
packets to one specific node, and multicast permits transmission of the
same packet to one or more nodes, anycast adds the ability to send a packet
to any one--and only one--of a group of one or more destination nodes.

Although first specified in the IPv6 specification in 1995 (RFC 1884, "IP
Version 6 Addressing Architecture"), the anycast concept had been around
before then. However, despite the longevity of the idea, as of 2003 there
has been very little experience with anycast and related applications.

Starting with an overview, including a brief look at the history of anycast,
this chapter introduces the current state of the IPv6 anycast specifica-
tion, followed by summary of some of the work that is currently being
undertaken to make anycast work and to exploit anycast for useful
applications.

195

196 Part Two �9 IPv6 Protocols

I!.1 Anycast Overview

An experimental specification for IPv4 anycasting was defined in RFC 1546,
"Host Anycasting Service," in 1993. That document suggested that another
address class could be carved out of the IPv4 address space for anycast
addresses. In that way, nodes could identify anycast packets simply by
looking at their destination addresses and treating them appropriately.

The motivation behind the RFC 1546 anycast experiment was to provide
nodes with a simpler way to reach any of a group of interchangeable
application servers. For example, rather than requiring a user to choose
a particular FTP server from a list, anycast (it was suggested) would allow
the user to simply specify the group of FTP servers, any of which would
be satisfactory.

Although an interesting idea, RFC 1546 anycast never gained much trac-
tion, and it is unlikely that any networks currently support it (if any ever
did). However the use of a single unicast address by two or more nodes
is considered a type of pseudo-anycast, such as when multiple nodes are
assigned the same address for the purpose of load balancing or for handling
high-demand applications.

Pseudo-anycast can be achieved by distributing servers across the Internet
and assigning a provider-independent prefix to the address they all share.
Routers local to each of the servers can then advertise different routes to the
same prefix, and routers delivering packets to the pseudo-anycast address
can then choose the most appropriate route---the "nearest" route, usually.

There are significant differences between IPv6 anycast and pseudo-
anycast, including a difference in the problem each tries to solve. Pseudo-
anycast was devised as a way to distribute high-demand servers around
the global Internet in order to serve DNS data or HTTP content more effi-
ciently using BGP. IPv6 anycast was devised to be a more general solution
to reaching any one of a group of servers that exist on the site or even the
link, a well as (perhaps) across the global Internet.

!1.2 Anycast Motivations

To a certain extent, the problem of choosing the nearest server (described
as the motivation for RFC 1546 anycast) has been solved by using

Chapter 11 �9 IPv6 Anycast 197

pseudo-anycast to distribute servers for load-balancing and responding
to high-demand global applications. That did not end the interest in defin-
ing an anycast service in IPv6, but it also took away one of the more obvious
problems to which anycast offered a potential solution. RFC 2373 states the
following.

One expected use of anycast addresses is to identify the set of
routers belonging to an organization providing Internet service. Such
addresses could be used as intermediate addresses in an IPv6 Routing
Header, to cause a packet to be delivered via a particular service
provider or sequence of service providers.

Some other possible uses are to identify the set of routers attached
to a particular subnet, or the set of routers providing entry into a
particular routing domain.

These functions might be similar to those provided by multicast (see
Chapter 10) groups, but there is no reason why anycast could not allow
individual nodes to send packets to the nearest gateway or DNS server.

Another suggested use for anycast is cited in RFC 2526, "Reserved IPv6
Subnet Anycast Addresses."

[A]n anycast address may be used in a source route to force routing
through a specific Internet service provider, without limiting routing
to a single specific router providing access to that ISP.

Whether or not anycast-based solutions are sufficiently compelling to
motivate their deployment for these purposes has yet to be seen.

11.3 Anycast Architectural Issues

IPv6 nodes can differentiate multicast addresses from unicast addresses,
and as a result they are able to take certain actions that don' t make sense
or are not permitted, like not attempting to open a TCP connection with
a multicast address. Anycast addresses, when they are indistinguish-
able from unicast addresses, provide the benefit of transparency to nodes
attempting to open communications with anycast nodes- -bu t they also
bear the burden of having to deal with the statelessness of the IPv6 (or
IPv4) protocol.

198 Part Two �9 IPv6 Protocols

When a node sends an IPv6 packet to an anycast address, the packet will be
delivered to the nearest node configured to respond to that address. When
a node sends 10 or 100 or 1000 packets to an anycast address during an
exchange of stateful higher-layer protocols (like TCP), there is always the
possibility that more than one node configured to respond to that anycast
address will respond. For example, if one anycast node becomes congested,
then another anycast node may be temporarily "nearer"; the same goes for
congestion over intermediate routes between the requesting node and the
anycast nodes.

11.3.1 I Pv4 ANYCAST ISSUES

The authors of RFC 1546 concluded that raw IPv4 anycasting should be
used only by applications that were themselves stateless and sending pack-
ets containing UDP messages. In that way, there would be no problem
if one anycast node responded to an anycast packet from a client while
another anycast node responded to the next request from the same client.
For stateful interactions, the authors suggest adding a mechanism that
guides all subsequent anycast packets to the first node that responds to a
TCP request by allowing only anycast packets carrying a TCP SYN (syn-
chronize) segment requesting that a connection be opened. Once an anycast
node responds, it responds using its own unicast address.

The problem with this approach is that it only works when anycast
addresses are identifiable as such. The result is that IPv6 anycast faces
the same problems (having two different servers/routers responding to
two or more sequential packets addressed to a single address) with the
added limitation that the node sending those packets is not aware that
there is anything special about the address to which it is sending.

i l .3 .2 IPv6 ANYCAST ISSUES

As with IPv4 anycast, IPv6 anycast is also hobbled by the nondeterministic
delivery of packets: An anycast packet can be delivered to any of the
nodes configured to respond to the anycast address. As a result, all anycast
nodes must provide a uniform service, including the same kind of perfor-
mance as well as the same service. This makes anycast especially suitable
for load-balancing and other content delivery functions, but it also com-
plicates matters by requiring that mechanisms be added to allow stateful
higher-layer protocols to operate across a group of servers.

Chapter 11 �9 IPv6 Anycast 199

Because IPv6 anycast addresses are drawn from the unicast allocation,
nodes sending packets to anycast can't tell when they are sending a single
packet to a single, unique node (unicast) and when they are sending a
single packet to any single node of a group (anycast). As a result, fragment
reassembly, as well as any other end-to-end functions like encryption or
authentication, becomes all but impossible.

I I .3.3 IPSEC AND ANYCAST

As with fragmentation, IPsec requires that the same two nodes be end-
points: Security Associations are based on data exchanged by the source
and destination nodes, and (by definition) that precludes the ability of two
or more anycast nodes to respond on each other's behalf. All the same
reasons that make it possible for IPsec to secure packets sent from node
to node also make it extremely difficult if not impossible to secure packets
sent from one node to any one of a group of nodes.

11.3.4 ANYCAST ADDRESS ASSIGNMENT

As currently specified, only routers should be configured to respond to
anycast addresses. Maintaining this restriction simplifies the problem of
routing anycast packets, because no additional routing entries are required
and there will already be routes existing to the networks served by those
routers. When an anycast packet is transmitted, it is simply processed
by intermediate routers and forwarded on an appropriate route based on
the network prefix. Any router that has been configured to respond to a
particular anycast address will do so when it receives a packet sent to that
address.

Thus, because global anycast addresses are likely to be restricted, if not
forbidden entirely, there is little or no need for exterior routes to be added
for anycast, either.

Allowing regular hosts to respond to anycast addresses would complicate
matters. Not only would explicit routes to those nodes have to be added
to routers, but a new mechanism would have to be added to allow the
hosts to advertise their willingness to accept anycast packets, while at
the same time prevent them from acting as or being perceived as routers
themselves.

200 Part Two �9 IPv6 Protocols

Note: The set of nodes that responds to a single anycast address is
referred to as an anycast group. This term helps emphasize the ways in
which anycast and multicast are similar, even though anycast addresses
can be indistinguishable from unicast.

11.4 I Pv6 Anycast Specification

So far, only a few protocol specifications specifically address IPv6 anycast.
Defined as part of the IPv6 addressing architecture in RFC 3513, anycast
addresses are taken from the IPv6 unicast address space and are other-
wise indistinguishable from IPv6 unicast addresses. These are the primary
attributes and rules relating to anycast described in RFC 3513.

Configuration A unicast address becomes an anycast address whenever
it is assigned (on purpose) to more than one network interface. Nodes
with such network interfaces must be configured to respond on that
interface as an anycast node; the anycast node must be "aware" of its
anycast interface.

Scope All interfaces configured with anycast addresses will share some
network prefix in common. For example, consider the case of a group
of nodes each configured with the same anycast address within a typ-
ical /48 IPv6 network. If those nodes have interfaces configured with
the anycast address located on all the network's subnets, the shared
prefix will be the network's full /48 network address. That prefix
(/48) identifies the network area within which the anycast address
routes must be advertised, with a separate route advertised for each
network interface across the en t i re /48 network.

In the event that the shared prefix is nul l - -meaning there is no
common identifiable routing prefix in common- - the anycast address
would be advertised across all routers in the global IPv6 Internet.
In general, global anycast addresses would be a severe strain on the
routing infrastructure of the Internet and, due to the difficulty of
scaling, are expected to be available only on a very restricted basis, if
at all.

Restricted use Until there is more experience using anycast, RFC 3513
restricts the use of anycast addresses in two ways. First, only routers
are permitted to have interfaces configured with anycast addresses;

Chapter 11 �9 IPv6 Anycast 201

[n bits I 128-n bits I
+ }

[subnet prefix [00000000000000 [

Figure 11-1: Subnet-Router anycast address format (from RFC 3513).

second, anycast addresses may not be used as the source address of
a packet.

Required anycastaddress The Subnet-Router anycast address (see
Figure 11-1) is required to allow nodes to send out packets that are
to be delivered to one router on the subnet indicated in the desti-
nation address prefix. The format is shown in the Figure. Routers
are required to be prepared to respond to anycasts sent to the
Subnet-Router anycast address for any subnets to which they are
linked.

11.5 Reserved IPv6 Anycast Addresses

Although specifications for IPv6 anycast, from the original IPv6 address-
ing architecture defined in RFC 1884 through to the current version in
RFC 3513, define anycast addresses as being structurally identical to IPv6
unicast addresses, several specifications define specific, reserved, anycast
addresses that have an explicit meaning and are not to be used for unicast
transmission.

The first such address, the Subnet-Router anycast address, is defined in
RFC 3513 itself. One potential use for anycast is suggested for the Subnet-
Router address, which allows a node to directly interact with one router
located on any specified subnet. When mobile nodes that are away from
their home networks need to get back in touch with their mobility agent,
they can use this anycast address to send packets directly to any router on
their home network.

Another anycast address has been reserved for Mobile IPv6 Home-Agents;
this address and a group of other addresses that are being reserved for
use as anycast addresses are described in RFC 2526. When mobile IPv6
nodes are away from their home network, they may need to discover the

202 Part Two �9 IPv6 Protocols

addresses of their home network agents (the hosts that coordinate connec-
tivity with the mobile nodes that are away from home). Another anycast
address has been reserved for this specific use.

All mobile home agents are required to respond to the anycast address
defined for Mobile IPv6 Home-Agents when received on any subnet to which
they provide mobile services (see Chapter 17 for more about Mobile IP).

The basic format for these reserved anycast addresses when using the basic
(EUI-64) IPv6 unicast format is shown in Figure 11-2, along with the more
general format for addresses that don't require the EUI-64 format. The
7-bit anycast ID field identifies the type of anycast address in use; there
are 128 different values for this field, of which all but the Mobile IPv6
Home-Agents address are reserved for future use (that is, they haven't yet
been assigned).

Another reserved anycast prefix is introduced in RFC 3068, "An Anycast
Prefix for 6to4 Relay Routers." The 6to4 anycast address simplifies the con-
figuration and use of 6to4 relay routers and sets aside another reserved
prefix to indicate a special anycast address (6to4 routing is discussed in
Chapter 20).

EUI-64 anycast format:

I 64 bits
+

I subnet prefix
+

I 57 bits I 7 bits I
+ b +

I iiiiii0111...iii I anycast ID I
+ ~ +

I interface identifier field I

General anycast format:

4 + + +

I n bits I 121-n bits I 7 bits I
+ + 4- +

I subnet prefix I iiiiiii...iiiiii I anycast ID I
+ + ~ +

I interface identifier field I

Figure 11-2: Formats for EUI-64 and other reserved IPv6 anycast addresses (from
RFC 2526).

Chapter 11 �9 IPv6 Anycast 203

11.6 Making Anycast Work

Anycast seems to be a fairly straightforward new service, until one
recalls that while a node can send a packet to an anycast address, no
packets whose source address is an anycast may be sent. Using anycast
addresses that cannot be distinguished from unicast further complicates
matters.

As with unicast and multicast, anycast addresses must be routed from
source to destination; anycast adds these further restrictions.

�9 Packets must be delivered to one, and only one, of the nodes
accepting packets at that anycast address.

�9 The node to which those packets are delivered must be the
"closest" one to the sender.

Using an anycast address as the source of an IPv6 packet poses several
difficulties, mostly derived from the need to differentiate "any one node
of a group of nodes" from "one and only one specific node." While the
destination node may be one of a number of interchangeable nodes, the
source (the originator of the packet) can be only the specific node that sent
the packet.

This section examines anycast implementation, from routing to determin-
ing the appropriate response to anycast packets to using anycast with
stateful upper-layer protocols (such as TCP) and stateless upper-layer
protocols (such as UDP).

11.6.1 ANYCAST ROUTING

The IPv6 specification suggests (strongly) that only routers be configured
to respond to anycast addresses. This restriction simplifies the problem
of anycast routing: The packet will be routed as if it is a normal unicast
address, and as soon as the packet arrives at a router that is a mem-
ber of the anycast group (that is, the "nearest" router), it will have been
delivered.

No additional routing entries are requiredmthe routers already advertise
their willingness to accept packets, including anycast packets, sent to their
own network prefix.

204 Part Two �9 IPv6 Protocols

11.6.2

11.6.3

In fact, such a mechanism has been proposed. RFC 2710, "Multicast
Listener Discovery (MLD) for IPv6," defines a mechanism used by nodes
and routers to report their membership in a multicast group. 1 A work-
in-progress extends the MLD mechanism to support reporting of anycast
group membership. Routers would then be able to act on behalf of anycast
nodes in the same way they behave for multicast (see Chapter 10 for more
about multicast).

RESPONDING TO ANYCAST PACKETS

Using anycast as a source address results in obviously illogical scenarios
such as sending a response or an error message to the wrong node.

More troublesome, perhaps, is that with nodes barred from using anycast
addresses as the source of a packet, anycast servers responding to packets
from clients must use their own unicast address that is associated with their
anycast network interface. Thus, as shown in Figure 11-3, a client sending
a packet to "Server X" (acutally one of a number of nodes responding
to the anycast address associated with that server) would receive back a
packet whose source was Server A. As a result, any upper-layer protocol
(such as TCP) that uses source and destination IP addresses would require
modification to support anycast.

The problem of how to differentiate anycast from unicast addresses is
crucial to implementing anycast because of this problem. Various solu-
tions to the problem of restricting anycast addresses from the IP source
header field over the years are discussed in the next section.

In practice, anycast nodes use their unicast addresses when responding
to anycast packets. This poses a security risk unless there is some way to
authenticate the responding server as being a member of the anycast group.

IDENTIFYING UNICAST ADDRESSES

Although anycast and unicast addresses are by definition structurally
indistinguishable, increasingly special anycast addresses are being re-
served. In this way, anycast packets can be distinguished from unicast

1MLD performs the same function that the Internet Group Management Protocol (IGMP)
performs for IPv4 and that was previously incorporated into the Internet Control Message
Protocol for IPv6 (ICMPv6). MLD is discussed at greater length in Chapter 10, and ICMPv6
is covered in Chapter 12.

Chapter 11 �9 IPv6 Anycast 205

Figure 11-3: Responses from an anycast node arrive with a source address
different from what the sender might expect.

and treated appropriately. Already described in this chapter are the any-
cast prefix for subnet routers, the set of reserved anycast addresses that
includes the mobile IPv6 home agent anycast, and the 6to4 relay router
anycast.

Other alternatives that have been suggested include the following.

Modifying the anycast definition so that anycast addresses
can be differentiated from unicast addresses. That way, nodes
sending to those addresses will expect to receive a packet from
an address different from the one they sent to.

206 Part Two �9 IPv6 Protocols

�9 Extend DNS to include resource records that identify anycast
addresses.

�9 Modify upper-layer transport protocols (such as TCP and
SCTP) to accommodate unicast source addresses in reply to
requests sent to anycast addresses.

�9 Add a mechanism that allows anycast nodes to respond to
anycasts but transfer the session to a unicast interface address.

�9 Allow the client to continue using the anycast destination
address, but use the IPv6 Routing header to specify the address
of the server that initially responded.

So far the most manageable solution is to reserve anycast addresses and
thereby identify them. It is possible that other protocols such as TCP, SCTP,
or DNS will be extended (that is, have new options defined) to enable
anycast, but that approach has not yet been specified in any RFC.

11.6.4 THE FUTURE OF ANYCAST

As of 2003, use of IPv6 anycast is limited not just by the difficulty of
applying it to stateful upper-layer protocols, but also by a relative lack
of infrastructure for deploying anycast applicationsmand a shortage of
applications. A number of proposals have been drafted by individuals as
well as IETF working groups to help improve the situation.

Here are some suggestions for improving the way anycast is implemented.

Anycast binding In their draft "IPv6 Anycast Binding Using Return
Routability," Brian Haberman and Eric Nordmark, two long-time
contributors to the development of IPv6 and related protocols, pro-
posed using the Mobile IPv6 Return Routability and Binding Update
mechanism to allow TCP/SCTP and stateful protocols using UDP to
map a unicast address from the anycast address to which a node is
sending.

Anycast Address Resolving Protocol Another approach was outlined in
the draft "A Protocol for Anycast Address Resolving," in which an
Anycast Address Resolving Protocol (AARP) is defined to permit a
unicast address to be mapped to an anycast address prior to begin-
ning the communication. The goal of the protocol--to permit the use
of anycast addresses without modifying any existing protocols--is
accomplished by having nodes begin all Internet communications

Chapter 11 �9 IPv6 Anycast 207

with an ICMPv6 probe to the destination address. The sender waits
for a response, by which it determines the actual unicast address of
the node responding.

Although this would permit nodes to identify themselves as
anycast group members, it would likely open up vulnerabilities to
denial of service and man-in-the-middle attacks by making it easier
for a hostile node to misrepresent itself as a legitimate member of an
anycast group.

Furthermore, this approach would also tend to minimize the
benefits of using anycast in the first place, since it immediately shifts
anycast transmissions to a single unicast address.

Adapting multicast mechanisms to anycast A number of proposals
have been made to adapt mechanisms originally designed for mul-
ticast for use with anycast. Doing so leverages extensive experience
with multicast for use with the less familiar anycast. The difference
between multicast and anycast lies mainly in that anycast packets
need only be delivered to one node of a group, whereas multicast
packets need to be delivered to all members of a group. Protocol
Independent Multicast-Sparse Mode (PIM-SM) mechanisms are readily
adapted for use with anycast.

In some ways more important than infrastructure, useful applications help
drive demand for support of any new protocol. These are some other
works-in-progress that define ways to use anycast.

Anycast and DNS Masataka Ohta, of the Graduate School of Informa-
tion Science and Engineering of the Tokyo Institute of Technology
and working with the IETF working group on DNS operation,
proposed using anycast (though not specifically IPv6 anycast) as a
solution to reducing the demand on root DNS servers and allowing
the closest DNS server to respond on behalf of the root servers for
some requests.

Fault tolerance and load balancing Another work-in-progress, "Fault
Tolerance and Load Balance Services using IPv6 Anycast," proposes
an algorithm by which an anycast client node can maintain commu-
nications with an anycast group without interruption by network
or system problems. Interestingly, the author, long-time IPv6 con-
tributor and Intel employee Ettikan Kandasamy Karupiah, notes
that the application of this algorithm presupposes the existence of
some mechanism for managing anycast group membership and that

208 Part Two �9 IPv6 Protocols

a mechanism is in place for mapping a unicast address to the closest
member of the anycast group.

Further work with anycast infrastructure and applications will likely con-
tinue to grow, and the interested reader is urged to keep tabs on anycast
by reading the latest Internet-Drafts and RFCs as they are published.

11.7 Summary

This chapter provided an overview to the history, use, and problems
related to the use of IPv6 anycast. Although widespread use of anycast
in the global Internet is unlikely ever to happen, chances are good that
anycast will eventually become a useful mechanism within organizations
and service providers as support for it grows within IPv6. Fundamental
to that kind of support is the need for network control and packet routing
mechanisms, such as those used for unicast as well as multicast. The next
chapter introduces IPv6 control messages and unicast routing.

I Pv6 I nternet Control
Message Protocol (ICMPv6)

Most networking protocols require some channel for the exchange of
network meta-data, and IPv6 is no exception. The Internet Control Message
Protocol for IPv6 (ICMPv6) is built largely on ICMP as used with IPv4.
Unlike ICMP for IPv4, ICMPv6 provides a more complete set of tools for
the exchange of meta-information about the Internet layer among nodes.
This chapter outlines how ICMPv6 works and how it is used.

12.1 A New Control Message Protocol

IP nodes need a special protocol to exchange messages that pertain to
IP-related conditions. The Internet Control Message Protocol (ICMP)
defines a set of messages and requests used to report error and informa-
tional conditions, as well as for use with diagnostic functions. ICMPv6 is
based on ICMP but adds new messages to support IPv6. The specification

209

210 Part Two �9 IPv6 Protocols

for ICMPv6 was first published in 1995 in RFC 1885, "Internet Control
Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification," and upda ted in 1998 with RFC 2463.

Originally, ICMPv6 incorporated IPv6 multicast group management func-
tions provided in IPv4 by the Internet Group Management Protocol
(IGMP), but these functions are now performed by the Multicast Listener
Discovery (MLD) mechanism discussed in Chapter 10. This chapter focuses
on ICMPv6 message definitions, requests and responses, and how ICMPv6
is used.

ICMPv6 represents a fundamental ly changed protocol from ICMP. Not
only is MLD implemented completely as a subprotocol of ICMPv6, but
so is Neighbor Discovery (Chapter 13); many of the other features made
possible with IPv6, including stateless IPv6 addressing (Chapter 16) and
Mobile IPv6 (Chapter 17), are implemented through the judicious use of
ICMPv6.

12.1.1 ICMPv6

IPv6 nodes use ICMPv6 messages to report error conditions encountered
when processing IPv6 packets or to solicit a response from a node to
gather information. Network diagnostic functions such as ping and trace-
route are based on the use of ICMP messages, 1 and other functions such
as Path MTU Discovery and Neighbor Discovery are also based on ICMP.
Although not an explicit part of the ICMPv6 specification, these functions
can operate only with ICMPv6 and are discussed later.

ICMP is an integral part of IP insofar as it provides a channel for nodes
to communicate about problems, but ICMP messages are encapsulated
within IP packets, and ICMPv6 messages are identified in the IPv6 Next
Header field by the value 58. 2

The format for ICMPv6 messages is shown in Figure 12-1.

1 Ping uses the ECHO and ECHO REPLY messages to determine whether a node is respond-
ing on a particular IP address; traceroute depends on manipulating the Time to Live value of
a stream of packets to determine the path taken by those packets from source to destination.

2In contrast, ICMP for IPv4 is identified by the value 1.

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 211

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+--+-+

I Type I Code I Checksum J
+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+--+

I J
+ Message Body +

I J

Figure 12-1:ICMPv6 message format (from RFC 2463).

12.1.2

There are only three required ICMPv6 message header fields.

Type This 8-bit value indicates the specific type of ICMPv6 message
being carried. ICMPv6 allows two categories of message type, iden-
tified by the value of the high-order bit of the value. A 0 indicates
an error message (all values from 0 to 127), and a 1 indicates an
informational message (all values from 128 to 255). Specific message
types and their uses are discussed in the next section.

Code The meaning of this 8-bit value varies depending on the message
type and can be used to fine-tune message meanings.

Checksum This 16-bit field is used to detect corruption of the message.
As defined in RFC 2463, "The checksum is the 16-bit one's comple-
ment of the one's complement sum of the entire ICMPv6 message
starting with the ICMPv6 message type field, prepended with
a 'pseudo-header ' of IPv6 header fields, as specified in (RFC 2460,
section 8.1). The Next Header value used in the pseudo-header is 58."
The checksum field itself is set to 0 when calculating the checksum.

The message body contains whatever data is appropriate for the message
type being used, which may include additional protocol parameters or
parts of packets that caused the problem being reported by the message.

INTERNET CONTROL MESSAGES

In general, ICMP messages are generated as a result of some error condi-
tion. 3 For example, if a router is unable to process an IP packet, it might

3They can also be generated to solicit information about a link.

212 Part Two �9 IPv6 Protocols

send an ICMP message back to the sender. The sending node could then
remedy the error condition being reported. For example, if a router is
unable to process an IP packet because it is too large to be sent out on
a ne twork link, the router generates an ICMP error message indicating
that the packet is too large. The source host, on receiving this message, can
use it to determine a more appropria te packet size and resend the data in
a series of new IP packets.

The messages defined for ICMPv6 as of 2003 are listed in Table 12-1, with
a reference to the document in which each is described. RFC 2463 defines
six types of ICMPv6 messages.

Dest inat ion Unreachable A Destination Unreachable message should
be generated by a router or by the IPv6 layer in the originating node
in response to a packet that cannot be delivered to its destination

Type Name Reference

1 Destination Unreachable [RFC2463]

2 Packet Too Big [RFC2463]

3 Time Exceeded [RFC2463]

4 Parameter Problem [RFC2463]

128 Echo Request [RFC2463]

129 Echo Reply [RFC2463]

130 Multicast Listener Query [RFC2710]

131 Multicast Listener Report [RFC2710]

132 Multicast Listener Done [RFC2710]

133 Router Solicitation [RFC2461]

134 Router Advertisement [RFC2461]

135 Neighbor Solicitation [RFC2461]

136 Neighbor Advertisement [RFC2461]

137 Redirect Message [RFC2461]

138 Router Renumbering [RFC2894]

139 ICMP Node Information Query [RFC2894]

140 ICMP Node Information Response [RFC2894]

141 Inverse Neighbor Discovery [RFC3122]

Solicitation Message

142 Inverse Neighbor Discovery [RFC3122]

Advertisement Message

Table 12-1: Valid ICMPv6 message types (from IANA).

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 213

address for reasons other than congestion. (An ICMPv6 message
must not be generated if a packet is dropped due to congestion.)

Packet Too Big A Packet Too Big must be sent by a router in response to
a packet that it cannot forward because the packet is larger than the
MTU of the outgoing link. The information in this message is used
as part of the Path MTU Discovery process.

Time Exceeded If a router receives a packet with a Hop Limit of zero, or
a router decrements a packet's Hop Limit to zero, it must discard the
packet and send an ICMPv6 Time Exceeded message with Code 0 to
the source of the packet. This indicates either a routing loop or too
small an initial Hop Limit value.

Parameter Problem If an IPv6 node processing a packet finds a prob-
lem with a field in the IPv6 header or extension headers such that it
cannot complete processing the packet, it must discard the packet
and should send an ICMPv6 Parameter Problem message to the
packet's source, indicating the type and location of the problem.

Echo Request Every node must implement an ICMPv6 Echo responder
function that receives Echo Requests and sends corresponding Echo
Replies. A node should also implement an application-layer interface
for sending Echo Requests and receiving Echo Replies, for diagnostic
purposes.

Echo Reply Every node must implement an ICMPv6 Echo responder
function that receives Echo Requests and sends corresponding Echo
Replies. A node should also implement an application-layer interface
for sending Echo Requests and receiving Echo Replies, for diagnostic
purposes.

12.2 ICMPv6 Messages

All ICMPv6 messages must be processed in much the same way as IPv4-
based ICMP messages, and in this section we examine the six basic
ICMPv6 messages defined in RFC 2463. It should be noted that ICMPv6
error messages should never be generated when a router or link is
congested because doing so could only make things worse (by tying up

214 Part Two �9 IPv6 Protocols

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

I Type I Code I Checksum I
+-+

I Unused I
+-+

I As much of invoking packet I

+ as will fit without the ICMPv6 packet +

] exceeding the minimum IPv6 MTU [IPv6] I

Figure 12-2:ICMPv6 Destination Unreachable Message format (from RFC 2463).

additional router resources). Other mechanisms, typically at the transport
or application layers, are available for detecting and remediating network
congestion.

Destination Unreachable Message When a router receives a packet that
it cannot deliver, it should generate a Destination Unreachable Message.
The format for this message is shown in Figure 12-2 (from RFC 2463).
This message is identified by the value I in the Type field.

The value in the Code field indicates the reason the destination was
unreachable, with five values defined, each of them indicating a different
condition.

No route to destination. This message occurs when a router does not
have a route defined for the destination address of the IP packet. This
message can only be generated by a router without a default route.
The default route is used to route packets being sent to networks that
have not been explicitly defined in the router 's routing table.

Communication with destination administratively prohibited. This message
may be generated by a packet-filtering firewall when a prohibited
type of traffic is sent to a host inside a firewall.

2 Not currently assigned.

Address unreachable. This code signifies that there is some other problem
with delivering the packet, perhaps with resolving the destination
address into a link layer (network) address or reaching the destination
at the link layer on the destination network.

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 215

Port unreachable. This code is generated by the destination node when
an upper-layer protocol (e.g., DP) is not listening for traffic on the
packet's destination port but only if the transport protocol doesn't
have some other mechanism for notifying the source of this problem.

The unused section of the message is padded out with zeros so that the
rest of the message begins on an eight-octet boundary.

12.2.1 PACKET TOO BIG

Routers are required to send a Packet Too Big message (identified by type
value 2) whenever they receive a packet that cannot be forwarded because
it is larger than the MTU of the link onto which it should be forwarded. The
message format is similar to that of the Destination Unreachable message,
except that the second four octets of the header contain the maximum
transmission unit (MTU) of the link for which the packet is too large.

12.2.2 TIME EXCEEDED

Two distinct types of Time Exceeded message (Type value 3) are defined
for ICMPv6. The first (defined by Code value 0) is for packets that have
been bouncing around the network for too long; the second (defined
by Code value 1) is for packets that have exceeded their fragment
reassembly time.

Stale packets are purged from the network when their hop limit is
exceeded. Routers processing inbound packets whose hop limit field
contains a 1 (meaning they've just completed their last permitted hop)
or 0 (meaning the packet has been mistakenly forwarded despite having
timed out) must drop the packet and generate a Time Exceeded message.

Time Exceeded messages generally indicate either that the default hop
limit count is set too low for the network or that there is a routing loop
causing the packet to bounce from router to router without arriving at its
destination address.

This message is useful for building the traceroute function. This function
allows a node to identify all routers along the path that a packet takes
between the source and the destination. It works like this: First, a packet is

216 Part Two �9 IPv6 Protocols

sent to the destination with a hop limit of one. The first router it reaches will
decrement the hop limit and respond with a Time Exceeded message, and
the source node will have identified the first router in the path. The source
resends the packet with a hop limit of two, and if the packet must pass
through a second router, that router will decrement the hop limit to zero
and generate another Time Exceeded message. This continues until the
packet eventually reaches its destination; in the meantime, the source node
has received a Time Exceeded message from each intermediate router.

12.2.3 PARAMETER PROBLEM

When there is a problem with some part of the IPv6 header or extension
headers that keeps a router from completing the processing of the packet,
the router must discard the packet. It is recommended that the router
implementation should generate an ICMP parameter problem message
that indicates the type of problem (bad header field, unrecognized next
header type, or unrecognized IPv6 option), with a pointer value that
indicates at which byte of the original packet the error condition was
encountered.

12.2.4 ICMPv6 ECHO FUNCTION

ICMPv6 includes a function that is not related to error conditions. Two
types of messages, the Echo Request and Echo Reply, are required for
all IPv6 nodes. The Echo Request message can be sent to any valid IPv6
address and can include an echo request identifier, a sequence number,
and some data. The Echo Request identifier and sequence may be used
to differentiate replies to different requests, al though both are optional.
The data is also optional and can be used for diagnostic purposes.

When an IPv6 node receives an Echo Request message, it is required to
respond by sending an Echo Reply message. The reply must contain the
same request identifier, sequence number, and data as were contained in
the original request message.

The ICMP Echo Request /Reply message pair is the basis of the "ping"
function. Ping is an important diagnostic function because it provides
a method of determining whether a particular host is connected to the
same network as some other host.

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 217

12.3 Fragmentation and Path MTU

The original IPv4 specification allows nodes to fragment packets when
a packet arriving on one interface is too large to be transmitted as a single
protocol data unit (PDU) on the outgoing interfaces. Figure 12-3 shows
an example of where a router accepts packets from a network where the
maximum transmission unit (MTU) is 1500 octets but has to forward those
packets across a network with an MTU of 576 octets.

The router in this example could notify the sending node that its MTU is
too small to handle the large packets, but doing so means the router might
have to devote significant resources to notifying nodes all over about the
situation; further, the situation might be transient, in which case it would
have to notify nodes when the MTU goes back to normal. To avoid sending
messages to nodes all over the Internet, it could discard oversized packets
quietly (e.g., no messages back to the sender), or it could break the packets
up itself to be rebuilt on delivery.

Figure 12-3:IPv4 packet fragmentation.

218 Part Two �9 IPv6 Protocols

The process of determining a path MTUmto determine the largest packet
that can be carried intact from one node to another--is defined for IPv4 in
RFC 1191, "Path MTU Discovery."

12.3.1 FRAGMENTATION AND PATH MTU DISCOVERY

Fragmentation in IPv6 is permitted only between the originating node
and the destination; this simplifies the header and reduces overhead for
routing. IPv6 nodes may, however, do end-to-end fragmentation if neces-
sary, using the fragmentation option (see Chapter 9), but intermediate
routers (or other nodes) are not permitted to break up packets that are too
large for their link.

Hop-by-hop fragmentation is considered harmful. For one thing, it can
generate more fragments than end-to-end fragmentation. For another, the
loss of a single fragment means all the fragments must be retransmitted.
IPv6 does support fragmentation through an extension header, though, as
described next. Understanding how IPv4 fragmentation works will clarify
why it has been changed in IPv6.

IPv4 packet fragmentation happens when the unfragmented packet is too
long to traverse a network link along its route from source to destination.
To illustrate, a source node may create a packet of 1500 bytes and send it
to a remote destination somewhere on the Internet. The packet is transmit-
ted on the source's link layer network to the default router for that node.
This router forwards the packet on its link to the Internet, which may be
a point-to-point connection with an Internet service provider. Somewhere
inside the Internet cloud, or somewhere closer to the destination node,
there may be a network link that cannot handle data in chunks that large.
In that case, the router using that network link would have to break up
the 1500-byte datagram into fragments no larger than the next network's
MTU maximum transmission unit (MTU) size. So if the next link could
handle packets no larger than, say, 1280 bytes, the router would break up
the original packet into two pieces. The first would be 1256 bytes long,
leaving 24 bytes for the IPv4 header. The second fragment would be the
length of the remainder of the original packet, 244 bytes, plus another
20 bytes for another IPv4 header (plus four octets for padding out the
packet to end on an eight-octet word boundary).

Fragmentation in IPv4 is done as needed by intermediate routers along
a packet's path. The fragmenting router modifies the packet's header

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 219

as necessary to include the original packet's datagram identification,
as well as setting the fragmentation flags and the fragment offset field
appropriately. When the resulting fragmented packets are received by
the destination node, that system must reassemble the packets using the
fragmentation data in the IPv4 headers of each packet fragment.

Using fragmentation, it is possible to interoperate between nodes that exist
on very different types of networks, with any kind of network in between.
The source node doesn't need to know anything about the destination
node's network, nor does it need to know anything about the networks in
between. This has always been considered a relatively good thing, since
not requiring nodes or routers to store information or maps of the entire
Internet helps make the Internet very scalable. On the other hand, it also
poses a performance problem for routers: Fragmenting IP packets costs
processing power and time along the route as well as at the destination.
There is the overhead of keeping track of IP datagram identifiers, calcu-
lating fragment offsets, and actually dividing up a packet into fragments
and then reassembling it at its destination.

The problem is, although in any given route the source may know the
link MTU, it cannot know ahead of time the path MTU. The path MTU, of
course, is the size of the largest packet that can be carried over any network
along the route between the source and the destination without having to
fragment it.

There are, however, two ways to reduce or eliminate the need for frag-
mentation. The first, which is available in IPv4, is to use a method called
path MTU discovery. With this approach, a router can send out a packet the
size of the link MTU to the destination for the router. If the packet reaches
a link at which it must be fragmented, the fragmenting router sends back
an ICMP message indicating how much smaller the fragmenting router's
link MTU is. This process can be repeated until the router can determine
the path MTU.

The other way to cut down on the need for fragmentation is to require
that all links supporting IP be able to handle packets of some reasonable
minimum size. In other words, if a link MTU could be anything from
20 bytes on up, then all nodes would have to be prepared to do a con-
siderable amount of fragmenting of packets. On the other hand, if you
could come up with some reasonable size that all network links could
accommodate and set that as the absolute min imum permitted packet size,
you could eliminate fragmentation.

220 Part Two �9 IPv6 Protocols

12.3.2 I Pv6 PATH MTU DISCOVERY

IPv6, in fact, uses both these approaches. In the original RFC, the IPv6
specification calls for every link to support an MTU of at least 576 bytes.
The resulting payloads for these packets would then be 536 bytes, allowing
40 bytes for the IPv6 headers. Since RFC 1883 was published in 1995, com-
pelling arguments have been made for a larger MTU. Christian Huitema
reports (in "IPv6: The New Internet Protocol," 2nd ed., Prentice-Hall) that
as of 1997, Steve Deering was campaigning for an MTU of 1500 bytes.
By 1998, with publication of RFC 2460, the min imum MTU permitted for
IPv6 was set at 1280 bytes.

In part to compensate for what may turn out to be a shorter MTU, the IPv6
specification also strongly recommends that all IPv6 nodes implement path
MTU discovery. Described first in RFC 1191, "Path MTU Discovery," this
mechanism uses the Don't Fragment bit in the fragment flags field to cause
intermediate routers to return ICMP error messages indicating that the
packet is too large.

The IPv6 version of path MTU discovery is described in RFC 1981, "Path
MTU Discovery for IP version 6." This upgrade is largely based on the orig-
inal RFC 1191 specification, but some changes have been made to make
it work with IPv6. Most important, because IPv6 doesn't support frag-
mentation in its header, there is no Don't Fragment bit to set. The node
doing the path MTU discovery simply transmits the largest packet per-
missible on its own network link to the destination. If an intermediate link
cannot handle packets of that size, the router attempting to forward the
path MTU discovery packet will return an ICMPv6 error message back
to the source node. The source node will then send another, smaller,
packet. The process is repeated until no ICMPv6 error messages are
received, and the source node then can use the most recent MTU as the
path MTU.

12.3.3 PMTU IMPLEMENTATION ISSUES

The path MTU between any two nodes on a network may vary depending
on the routes available and the conditions on those routes at any given
time. A path MTU calculated half an hour ago may have been significantly
smaller or larger than the value as calculated now. Although the protocol
can almost immediately precipitate a recalculation of the path MTU when
it becomes smaller (the node sending a packet will receive an ICMPv6

Chapter 12 �9 IPv6 Internet Control Message Protocol (ICMPv6) 221

"packet too big" message), there is no obvious way to detect a change that
increases the path MTU.

To remedy the situation, RFC 1981 recommends that implementations
cache PMTU values and have the values time out after some moderate
amount of time (10 minutes is the duration suggested). At that point, the
PMTU value can be recalculated.

In this way, packet size efficiency can be maximized. However, there are
some situations in which the path MTU value will never change. For
example, a node connecting to an FDDI network that is attached to the
global Internet through a small MTU fixed serial link will never discover
a path MTU greater than the MTU of the serial link. As a result, implemen-
tations should incorporate a mechanism for changing the maximum age
of cached PMTU values that includes an option for never timing them out.

12.4 Other ICMPv6 Functions

As already noted, ICMPv6 provides a framework for other protocols to
operate. The Multicast Listener Discovery (MLD) protocol uses ICMPv6
messages, as discussed in Chapter 10; likewise, ICMPv6 messages are
used to perform the functions defined under the Neighbor Discovery (ND)
protocol, to be discussed in the next chapter.

12.5 Summary

Although it resembles ICMP in many ways, ICMPv6 has been made more
powerful than its predecessor at the same time it has been simplified. The
judicious use of multicast, as defined for IPv6, and the elimination of IGMP
as a separate protocol make ICMPv6 an even more important part of IPv6.
Of particular note is the inclusion of the neighbor discovery protocol as
part of ICMPv6.

IPv6 Neighbor Discovery

One area in which IPv4 networking is made more complicated is in locating
servers, routers, configuration data, and generally in making it possible
for nodes to determine what other nodes are nearby (on the same link)
and what nodes are remote (off-link). Neighbor Discovery (ND) for IPv6
is defined in RFC 2461, "Neighbor Discovery for IPv6," and it provides
an important tool that not only simplifies network administration and
management but also enables a much greater degree of scaling in IPv6
network size.

This chapter compares how ND is specified and implemented in IPv4 and
IPv6, followed by a discussion of some of the roles that ND fulfills for IPv6.
The rest of the chapter outlines how ND works, with some example ND
messages and protocol interactions.

223

224 Part Two �9 IPv6 Protocols

13.1 The Neighbor Discovery Protocol

As noted in the abstract of RFC 2461, "IPv6 nodes on the same link
use Neighbor Discovery to discover each other's presence, to determine
each other's link layer addresses, to find routers and to maintain reach-
ability information about the paths to active neighbors." Five types of
ICMPv6 messages to be used in neighbor discovery are defined in RFC
2461, including a pair of messages for router solicitation and router adver-
tisement, a pair for neighbor solicitation and advertisement, and a redirect
message.

By defining neighbor discovery functions in terms of ICMPv6 messages,
additional protocols (such as ARP) are unnecessary--and without a mech-
anism for doing broadcast (as in IPv4), those protocols would not work
anyway. As a mandatory part of any IPv6 implementation, ICMPv6 offers
an ideal transport for neighbor discovery messages.

ICMPv6 messages, particularly requests, are usually multicast, whereas
responses may be unicast to the requesting node or multicast to the
all-nodes multicast address group (equivalent, functionally, to the IPv4
concept of broadcast). Although the neighbor discovery requests may be
multicast to the all-nodes group, they can also be restricted to subsets of
the all-nodes group such as all-routers on the local link.

The messages defined in RFC 2461 for neighbor discovery are described in
that specification as having the following functions.

Router Solicitation When an interface becomes enabled, hosts may send
out Router Solicitations that request routers to generate Router
Advertisements immediately rather than at their next scheduled time.

Router Adver t i s ement Routers advertise their presence together with
various link and Internet parameters either periodically or in response
to a Router Solicitation message. Router Advertisements contain
prefixes that are used for on-link determination and /o r address
configuration, a suggested hop limit value, and so forth.

Neighbor Solicitation Sent by a node to determine the link layer address
of a neighbor or to verify that a neighbor is still reachable via a cached
link layer address. Neighbor Solicitations are also used for Duplicate
Address Detection.

Chapter13. IPv6 Neighbor Discovery 225

13.2

Neighbor Advertisement A response to a Neighbor Solicitation mes-
sage. A node may also send unsolicited Neighbor Advert isements
to announce a link layer address change.

Redirect Used by routers to inform hosts of a better first hop for
a destination.

These five sets of messages solve quite an array of networking problems,
as discussed next.

Solving Networking Problems

IP nodes on the same local link are neighbors on two separate and distinct
networks: the local link network, and the Internet on which the nodes are
distinguishable through their globally unique IP addresses. Under IPv4,
the process of mapping an IP address to a local link layer address was
straightforward, with ARP, but limited in scope.

The neighbor discovery protocol in IPv6 allows nodes on the same local
links to map their IP addresses to their link layer addresses, but it also
allows for the solution of more complicated problems, as described in
RFC 2461.

Router Discovery Hosts need a mechanism for locating a local router.

Prefix Discovery Hosts need a mechanism for discovering the set of
address prefixes that define which destinations are on-link for an
attached link. Nodes use prefixes to distinguish destinations that
reside on-link from those only reachable through a router.

Parameter Discovery Hosts need a mechanism for discovering local link
network parameters, such as the link MTU, or IP network parameters,
such as the hop limit value, to place in outgoing packets.

Address Autoconfigurat ion Hosts need a mechanism for configuring an
IPv6 network interface address automatically.

Address Resolution Hosts need a mechanism for determining a link
layer address of a neighboring host, given only the destination's IP
address. This function is performed by ARP in IPv4.

226 Part Two �9 IPv6 Protocols

Next-hop Determination When sending a packet, a host must determine
where to send it. That decision is made based on the destination's IP
address; hosts need a way to decide whether the packet should be
sent to a router or directly to the destination. The packet is sent to
a router if the destination is not local; otherwise, the packet is sent
directly to its (local) destination.

Neighbor Unreachability Detection Hosts need a mechanism by which
they can determine that a neighbor is no longer reachable. For neigh-
bors used as routers, alternate default touters can be tried. For both
routers and hosts, address resolution can be performed again.

Duplicate Address Detection Hosts need a mechanism by which they
can verify that an address is not already in use by another host.

Redirect Routers must have a mechanism by which they can notify
a host that there is a better-positioned router to be used as the
first-hop node to reach some particular destination.

In addition to these basic functions, IPv6 neighbor discovery can solve
more complicated problems, as described in RFC 2461.

Link layer address change A node that knows its link layer address has
changed can multicast a few (unsolicited) Neighbor Advertisement
packets to all nodes to quickly update cached link layer addresses
that have become invalid. Note that the sending of unsolicited adver-
tisements is a performance enhancement only (e.g., unreliable). The
Neighbor Unreachability Detection algorithm ensures that all nodes
will reliably discover the new address, although the delay may be
somewhat longer.

Inbound load balancing Nodes with replicated interfaces may want to
load-balance the reception of incoming packets across multiple net-
work interfaces on the same link. Such nodes have multiple link
layer addresses assigned to the same interface. For example, a single
network driver could represent multiple network interface cards as
a single logical interface having multiple link layer addresses.

Load balancing Handled by allowing routers to omit the source link
layer address from Router Advertisement packets, thereby forcing
neighbors to use Neighbor Solicitation messages to learn link layer

Chapter 13 �9 IPv6 Neighbor Discovery 227

addresses of routers. Returned Neighbor Advertisement messages
can then contain link layer addresses that differ depending on who
issued the solicitation.

Anycast addresses Anycast addresses identify one of a set of nodes pro-
viding an equivalent service, and multiple nodes on the same link
may be configured to recognize the same anycast address. Neighbor
Discovery handles anycasts by having nodes expect to receive multi-
ple Neighbor Advertisements for the same target. All advertisements
for anycast addresses are tagged as being nonoverride advertise-
ments. This invokes specific rules to determine which of potentially
multiple advertisements should be used.

Proxy advertisements A router willing to accept packets on behalf of
a target address that is unable to respond to Neighbor Solicitations
can issue nonoverride Neighbor Advertisements. There is currently
no specified use of proxy, but proxy advertising could potentially
be used to handle cases like mobile nodes that have moved off-link.
However, it is not intended as a general mechanism to handle nodes
that, for example, do not implement this protocol.

13.3 IPv6 Neighbor Discovery Compared with IPv4

Strictly speaking, there is no single, explicit neighbor discovery protocol
defined for IPv4. A variety of protocols, including the Address Resolution
Protocol (ARP) and parts of the Internet Control Message Protocol (ICMP)
for IPv4, serve the function of mapping local link addresses to IP addresses
of neighboring nodes.

For example, the ICMP Router Discovery protocol defined in RFC 1256,
"ICMP Router Discovery Messages," specifies a mechanism by which IPv4
nodes may multicast (or broadcast) a request on their local link to discover
local routers offering forwarding beyond the local link. IPv4 nodes with
an IP address known to be local can map a local link network address by
querying the local link using an ARP request.

Having supplied such wants with a pastiche of protocols, protocol
extensions, and protocol modifications, IPv4 still lacks a standard mech-
anism for performing many basic functions. For example, no standard
mechanism for detecting when a neighbor is unreachable has been defined

228 Part Two �9 IPv6 Protocols

for IPv4. Likewise, some reachabili ty/unreachabili ty functions can be
accomplished under IPv4 only by eavesdropping on routing protocol
messages exchanged by local routers.

As described in RFC 2461, Neighbor Discovery offers "a mult i tude
of improvements" over the existing solutions in IPv4, including the
following.

�9 Router Discovery is part of the base protocol set; there is no
need for hosts to "snoop" the routing protocols.

�9 Router Advertisements carry link layer addresses; no addi-
tional packet exchange is needed to resolve the router 's link
layer address.

�9 Router Advertisements carry prefixes for a link; there is no need
to have a separate mechanism to configure the "netmask."

�9 Router Advertisements enable Address Autoconfiguration.
�9 Routers can advertise an MTU for hosts to use on the link,

ensuring that all nodes use the same MTU value on links lacking
a well-defined MTU.

�9 Address Resolution multicasts are "spread" over 4 billion
(232) multicast addresses, greatly reducing address resolution-
related interrupts on nodes other than the target. Moreover,
non-IPv6 machines should not be interrupted at all.

�9 Redirects contain the link layer address of the new first
hop; separate address resolution is not needed upon receiving
a redirect.

�9 Multiple prefixes can be associated with the same link. By
default, hosts learn all on-link prefixes from Router Advertise-
ments. However, routers may be configured to omit some or
all prefixes from Router Advertisements. In such cases, hosts
assume that destinations are off-link and send traffic to routers.
A router can then issue redirects as appropriate.

�9 Unlike IPv4, the recipient of an IPv6 redirect assumes that
the new next-hop is on-link. In IPv4, a host ignores redirects
specifying a next-hop that is not on-link according to the link's
network mask. The IPv6 redirect mechanism is expected to be
useful on nonbroadcast and shared media links in which it is
undesirable or not possible for nodes to know all prefixes for
on-link destinations.

�9 Neighbor Unreachability Detection is part of the base sig-
nificantly improving the robustness of packet delivery in the
presence of failing routers, partially failing or partitioned links,

Chapter13 �9 IPv6 Neighbor Discovery 229

and nodes that change their link layer addresses. For instance,
mobile nodes can move off-link without losing any connectivity
due to stale ARP caches.

�9 Unlike ARP, Neighbor Discovery detects half-link failures
(using Neighbor Unreachability Detection) and avoids send-
ing traffic to neighbors with which two-way connectivity is
absent.

�9 Unlike in IPv4 Router Discovery the Router Advertisement
messages do not contain a preference field. The preference
field is not needed to handle routers of different "stability";
the Neighbor Unreachability Detection will detect dead routers
and switch to a working one.

�9 The use of link-local addresses to uniquely identify routers
(for Router Advertisement and Redirect messages) makes it
possible for hosts to maintain the router associations in the
event of the site renumbering to use new global prefixes.

�9 By setting the Hop Limit equal to 255, Neighbor Discovery
can be made immune to off-link senders that accidentally
or intentionally send ND messages. In IPv4 off-link senders
can send both ICMP Redirects and Router Advertisement
messages.

�9 Placing address resolution at the ICMP layer makes the proto-
col more media-independent than ARP and makes it possible
to use standard IP authentication and security mechanisms as
appropriate.

As of mid-2003, the IANA reports 10 different ND option format types, as
shown in Table 13-1. The complete specifications for each type of option
can be found in the relevant protocol specifications.

�9 Types I through 5 are defined in RFC 2461.
�9 Type 6, the NBMA Shortcut Limit option, is defined in RFC

2491, "IPv6 over Non-Broadcast Multiple Access (NBMA)
networks."

�9 Types 7 and 8 are defined in "Mobility Support in IPv6,"
a work-in-progress.

�9 Types 9 and 10 are defined in RFC 3122, "Extensions to IPv6
Neighbor Discovery for Inverse Discovery Specification."

Rather than reproduce the complete specifications for all these message
types, the next section provides an example of a typical and representative
ND message exchange: Router Solicitation.

230 Part Two �9 IPv6 Protocols

IPv6 Neighbor Discovery Option Formats

The IPv6 Neighbor Discovery has options that are

identified by an option format type field [RFC 2461].

Type Description

6

7

8

9

i0

Source Link-layer Address

Target Link-layer Address

Prefix Information

Redirected Header

MTU

NBMA Shortcut Limit Option

Advertisement Interval

Home Agent Information

Source Address List

Target Address List

Table 13-1:IPv6 Neighbor Discovery option formats (from www.iana.org).

13.4 Router Solicitation

When a node joins a network, one of the first things it needs to do is discover
the address of the nearest router. One way is to wait for the local router
to advertise itself on the link, as it must do periodically. However, the
Router Solicitation mechanism allows a node to request a router to transmit
a Router Advertisement immediately. In this way, the node can record the
IPv6 address and, optionally, the link layer address of the router. This
transaction illustrates both the Router Solicitation message and the Router
Advertisement message.

13.4.1 ROUTER SOLICITATION MESSAGE

The Router Solicitation message format is shown in Figure 13-1. This
message is encapsulated in an IPv6 packet that is usually addressed to
the all-routers multicast address with the link local or site local scope.

The Message Type field value is set to 133 to indicate the ICMPv6 message
is of the Router Solicitation type; the Code value is set to 0 (the only valid
value for Router Solicitation messages).

Chapter 13 �9 IPv6 Neighbor Discovery 231

The only valid option defined in RFC 2461 is the Source Link-layer Address
option; while not mandatory, the node sending the message should include
this option with the sender's link layer address. If the sender uses the
unspecified address (e.g., no link layer address is available), the sender
must not use this option.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

] Type 1 Code I Checksum I
+-+

I Reserved I
+-+

I Options . . .
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 13-1: Router Solicitation message (from RFC 2461).

13.4.2 ROUTER ADVERTISEMENT MESSAGE

The Router Solicitation is multicast to all the routers in whatever scope was
specified in the IPv6 destination address; all the routers in that scope are
supposed to respond with their standard Router Advertisement message.
Normally, routers transmit advertisements on a regular schedule (accord-
ing to RFC 2461, the elapsed time between advertisements "MUST be no
less than 4 seconds and no greater than 1800 seconds [30 minutes]").

The router will transmit this message once during the prescribed period
addressed to the all-nodes multicast address, but if the message is being
sent in response to a Router Solicitation message, the packet is addressed to
the node making the request. The Router Advertisement message format
is shown in Figure 13-2.

The message type is 134 (indicating Router Advertisement), and the only
valid Code value is 0. The advertisement includes this other information.

Current Hop Limit An 8-bit integer indicating the local default value for
the Hop Count field in the IPv6 header. The value 0 indicates that the
hop limit is unspecified for the router sending the message.

232 Part Two �9 IPv6 Protocols

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I Type I Code I Checksum I
+-+

I Cur Hop Limit]MIO I Reserved I Router Lifetime I
+-+

] Reachable Time I
+-+

I Retrans Timer I
+-+

I Options ...
+-+-+-+-+-+-+-+-+-+-+-+-

Figure 13-2: Router Advertisement message (from RFC 2461).

Managed Address Configuration Flag (M) When this flag is set to 1, it
indicates that nodes are supposed to use stateful IPv6 autoconfig-
uration (see Chapter 16) to assign an address to the interface in
addition to any statelessly configured IPv6 addresses that have been
automatically configured.

Other Stateful Configuration Flag (O) When this flag is set to 1, it indi-
cates that nodes are supposed to use stateful IPv6 autoconfiguration
to configure nonaddress parameters for the interface.

Reserved These 6 bits are unused and must be set to 0 by the sender and
ignored by the recipient.

Router l i fet ime This 16-bit integer indicates the number of seconds in the
usable lifetime of the advertiser as a default router. The maximum
value (2 TM) is a bit over 18 hours, while a value of 0 indicates that the
router is not a default router.

Reachable time This 32-bit integer indicates the number of milliseconds
that a node can assume a neighbor to still be reachable after a reach-
ability confirmation has been received. This value must be no greater
than 3,600,000 milliseconds (1 hour); it is used for the Neighbor
Unreachability Detection algorithm used with Neighbor Discovery.

Retrans Timer This 32-bit integer indicates the number of milliseconds
between retransmitted Neighbor Solicitation messages. This value is

Chapter 13 �9 IPv6 Neighbor Discovery 233

used for Neighbor Unreachability Detection as well as for address
resolution functions.

Options defined in RFC 2461 for the Router Advertisement message
include the source link layer address, the MTU value, and prefix
information (indicating which prefixes are local and which are not).

13.5 Summary

An ongoing challenge for IP networking has always been the need to
define mechanisms to allow nodes to interoperate across local link net-
works that are fundamentally different. The use of ARP and its various
different flavors on broadcast and nonbroadcast media has required the
creation of a whole family of services on nonbroadcast networks.

With the creation of special ICMPv6 messages designed for neighbor dis-
covery functions, IPv6 networking can be accomplished with significantly
less interaction between link layer and Internet layer protocols. Not only
are there more functions possible using Neighbor Discovery in IPv6, but
the ones that have always been necessary for locating routers, neighbors,
and configuration parameters are more easily accomplished.

Neighbor Discovery makes it possible for nodes to more easily determine
which network prefixes should be considered local and which are not.
When nodes send packets to any of the nonlocal prefixes, they must pass
them along to a router for routing. As we'll see in the next chapter, IPv6
routing is very much like IPv4 routing--but with some twists.

I Pv6 Routing

The primary difference between an ordinary host and a router is that the
router is configured to accept packets intended for another destination
and to forward those packets to what the router determines is the best
next hop. The router usually also supports at least one routing protocol
through which it can acquire current information about network routes.
In this chapter, after an overview of IP routing in general, we'll introduce
the changes necessary to support IPv6 routing.

14.1 IP Routing Fundamentals

The simplest of routers are those serving a single network with two inter-
faces: one for the local network and the other for sending all other traffic.
These routers function as gateways for the local network. Local hosts
recognize two types of destinations: those hosts that are on the local logical
IP subnet (LIS) and that can be reached directly over the local link and
those hosts that are not local (everywhere else). Hosts on this network

235

236 Part Two �9 IPv6 Protocols

Figure 14-1: Simple local gateway router architecture.

are configured to deliver local packets directly, on their own, over the link
layer, and all other packets are sent to the IP gateway system (the local
router), which forwards them along its "other" interface.

The typical small office/home office (SOHO) network uses a simple gate-
way like this, as do almost all networks connected to the Internet via
broadband services. The local router (or gateway) will typically be con-
figured to accept inbound packets destined for the local network and
to forward any packets it receives from within the network to its own
upstream router. If the gateway is on a point-to-point link, as is frequently
the case, the gateway does nothing more than pass along packets from the
local network to the system on the other end of that link (see Figure 14-1).

14.1.1 ROUTED NETWORKS

As intranets become more complex with more than one internal LIS span-
ning multiple LANs, MANs, or WANs, internal routers become necessary.

Chapter14. IPv6Routing 237

These routers provide connectivity to hosts within the intranet as well as
(perhaps) the rest of the global Internet. The number and type of routers,
as well as the number of networks each router links, all depend on the
intranet's design and organization's goals and requirements for that net-
work. Figure 14-2 shows a simple multirouter intranet, in which internal
routers must decide how best to forward packets not intended for the local
network.

Using the example in Figure 14-2, it becomes clear that packets sent from
a host on network A and destined for a host on network D would have to
be sent to Router1, which would then forward it to Router5 on network E;
from there the packet is forwarded to Router4 on network D. Router4 then
forwards the packet directly to the destination host.

When that same packet is to be delivered but Router5 is unavailable for
some reason, Router1 will have to forward the packet to another router
that is capable of, ultimately, delivering the packet to network D. The only

Figure 14-2: Increasingly complicated intranet routing domain.

238 Part Two �9 IPv6 Protocols

other options open in that case are to forward the packet to the global
Internet (not acceptable) or to Router2 on network B. Router2 forwards the
packet to Router3, which forwards the packet to Router4, which delivers
the packet to its destination. Router/ is the Internet gateway, forward-
ing packets to and from the global Internet; Router1 is a backup Internet
gateway.

With five internal LISs, plus the global Internet, there are six different
LISs to contend with; fully interconnecting them all so that all networks
are reachable from each other in one hop requires 15 dedicated links. By
permitting more than one hop between local LISs, full interconnectivity
can be achieved with fewer links.

However, the routers need informationmwhich of their own links are up
and which down, what portions of the network the other routers can reach.
The exchange and update of this information are the primary goals of
Internet routing protocols; in support of this goal is the corollary need to
avoid propagating false information or acting on faulty information, while
at the same time optimizing performance (by minimizing the number of
hops it takes from source to destination).

The routers in Figure 14-2 are interior routers because they route packets
inside an AS or other routing domain; inside that domain, the LISs are
separate administrative domains (ADs). An AD is comparable to an AS,
except on a smaller scale. As we'll see, exterior routing, which occurs
between routers linking different ASs through a backbone, requires a
different approach to the exchange of information and determination of
optimal routes.

14.1.2 INTERIOR AND EXTERIOR ROUTING PROTOCOLS

The two basic routing tasks are, first, making sure that all networks within
Internets route traffic appropriately among themselves (interior routing)
and second, making sure that all internetworks connected to a large
Internet (such as the global Internet) are able to route reliably between
each other (exterior routing). Simple routing strategies like default gate-
ways and ICMP route advertising will be sufficient to move network traffic
inside most intranets.

However, routing protocols do not define the routing process--they define
the process by which routers exchange information about the network.

Chapter14 �9 IPv6Routing 239

Routing table information must be kept current, and routers are constantly
communicating with each other to announce their own connectivity.

Typically, hosts acquire routing information either as part of their static
configuration or through the Dynamic Host Configuration Protocol
(DHCP). The host uses ARP to acquire a physical address for all local
Internet traffic, and everything else is passed to the default gateway router.
In smaller networks, that router connects directly to the ISP's router, con-
nected in turn to an Internet backbone, a network linking more than one AS.
Routers on backbone networks must maintain far more comprehensive
routing tables because they must route between and among all networks.
They don' t usually have a default gateway specified, and backbone routers
are sometimes referred to as nondefault routers.

Exterior or backbone routing protocols must allow communicating routers
to report frequent changes in conditions and connectivity, quickly and
efficiently. An interior routing protocol enables routers within smaller
Internets to report their own conditions and connectivity but generally
support less complicated routing architectures. The interior routing proto-
col supported by a router is often referred to as its Interior Gateway Protocol
(IGP), where "gateway" is used as a synonym for router; an exterior routing
protocol is likewise called an Exterior Gateway Protocol (EGP).

14.1.3 ROUTING ALGORITHMS

The simplest formulation of a routing strategy is to opt for the shortest-path
route whenever there is a choice. How to determine which is the shortest
path presents the greater challenge. There are two dominant strategies
for determining the shortest path for interior routing, each of which is
implemented in its own protocol. The distance-vector routing algorithml is
described in RFC 1058, "Routing Information Protocol," which also defines
the RIP routing protocol for IP networks. Another approach to interior
routing is called Dijkstra's Algorithm, and it is also known as the link state
or open shortest path first algorithm. Open Shortest Path First (OSPF) is
also the name of the interior routing protocol defined in RFC 2328, "OSPF
Version 2," which is also STD 54.

1This algorithm may also be identified as Bellman-Ford or other combinations of the names
of the researchers who did the original work on it.

240 Part Two �9 IPv6 Protocols

Together, RIP and OSPF represent the IGPs you are most likely to find on
an Internet or intranet.

14.1.4 EXTERIOR GATEWAY PROTOCOLS

In today's global Internet, the most important exterior routing protocol
is the Border Gateway Protocol (BGP), defined in RFC 1771 "A Border
Gateway Protocol 4 (BGP-4)." Unlike interior routing, exterior routing is
complicated by the need for backbone routers to connect many different
autonomous systems; if those routers were to advertise route availability,
packets might be forwarded almost at random to a router connected to
almost any AS, whether or not the destination is actually within the AS.

Internet exterior routing protocols have evolved over the years to accom-
modate increasingly large and complex routing environments. An early
such protocol, the Gateway to Gateway Protocol (GGP), was described in
RFC 823, "The DARPA Internet Gateway," in 1982. GGP uses a distance-
vector routing algorithm similar to that incorporated in RIP: Gateways
boot up assuming that all their links are down and no networks are reach-
able, but as they test out their own links and receive routing updates from
other gateways, they are able to build up their routing tables to reflect
the current state of the Internet. RFC 823 has been assigned "Historic"
status.

Also historic is the Exterior Gateway Protocol (EGP), formally specified
in RFC 904, "Exterior Gateway Protocol Formal Specification," in 1984.
GGP failed to address the issue of organizational Internets that could not
be connected directly to a core or backbone router. Extra hops were often
added when noncore routers would send traffic to their own local default
routers instead of forwarding them to a more appropriate Internet router
that might be closer to the destination. Figure 14-3 illustrates the problem.

The figure shows a noncore router that is connected to a backbone on which
various core routers are available. All of the core routers are, in theory
at least, equally capable of routing any packets from any other routers
connected to the backbone. Node X wants to communicate with node Y;
ideally, the noncore router sends packets directly to Core Router C, but
that can only happen if there is a way for the core routers to advertise their
routes directly to noncore routers. EGP provides such a mechanism, by
which EGP routers, as they come online, at tempt to acquire some other
router to act as a peer; peers exchange routing information about which

Chapter14 �9 IPv6Routing 241

Figure 14-3: Inefficient routing across a backbone.

networks they can reach. One of EGP's flaws was that it provided no way
to compare two or more advertised routes to the same destination.

14.1.5 ROUTING IN I Pv6

The three most important routing protocols--RIP, OSPF, and BGP--are
all used for routing in IPv6 networks with little or no modification, as
will become clear by the end of this chapter. Routing in an IP net-
work, whether IPv6 or IPv4, is accomplished using the same mechanisms;
the biggest differences are the greater reliance on aggregation and the

242 Part Two �9 IPv6 Protocols

longer addresses. Once those two factors are accommodated by a routing
protocol, IPv6 routing can be accommodated.

14.2 RIP and RIPng

Routing protocols can use two basic methods to measure connectivity
across internetworks, as exemplified by the RIP and OSPF protocols.
We begin with RIP, which uses the distance-vector approach: Routers share
their routing tables and make additions and corrections based on reports
from other routers.

The distance-vector algorithm takes its name from the way routers share
their routing tables. A router expresses each route as a pair of values,
the vector or destination network, and the distance from that router to that
network (usually measured in hops, or the number of intermediate routers
a packet would have to traverse to arrive at the destination network).

A router sends advertisements of its routes, containing all the routes
(vectors) and distances to those routes, to neighboring routers. In this
way, routes can be propagated across an Internet as can changes in
available routes.

14.2.1 THE DISTANCE-VECTOR ALGORITHM

A distance-vector router begins with no knowledge of the Internet other
than the networks to which it is directly connected. When it first boots, this
router will have a routing table that consists of only as many entries as the
router has network interfaces; it might look like this.

Destination Distance Route

i0.0.0.0 0 direct

192. 168. i00.0 0 direct

The router then begins building up its routing table by listening to other
router announcements that are broadcast on whatever network interfaces
each router is connected to. In other words, routers advertise their routes
to any neighboring router, where "neighboring" means connected to the
same link.

Chapter14 ~ IPv6Routing 243

For example, consider what happens when this router (let's call it router X)
receives an announcement from router Y. The announcement lists routes
as pairs of destination and distance values, like this.

Destination Distance

192.168.200.0 0

10.5.0.0 0

i0.i0.0.0 3

i0.0.0.0 4

192.168.100.0 4

Router X can now update its own routing table by comparing it to the
distance-vector data supplied by router Y. The first two distance-vector
pairs are not already in router X's routing table, so they can be added; the
distance to those networks is 0 hops from router Y, which means they are
only one hop from router X (router Y is a neighbor to router X, so it is only
one hop away). Router X adds those networks to its routing table, with
a distance value of 1.

The third pair is also for a network heretofore unknown to router X, but
at a distance of 3 hops from router Y; router X adds this network to its
routing table, with a distance value of 4.

The last two routes are the only networks that router X started out with
in its routing table; after comparing the distance value, router X ignores
those pairs. Router X's routing table now looks like this.

Destination Distance Route

I0.0.0.0 0 direct

192. 168. i00.0 0 direct

192.168.200.0 1 router Y

i0.5.0.0 1 router Y

i0.i0.0.0 4 router Y

Distance-vector routers may be thought of as street hawkers who adver-
tise their routes by shouting them out to their neighbors; in the preceding
example, router Y in effect yelled out, "I can reach 192.168.200.0 in zero

244 Part Two �9 IPv6 Protocols

hops; I can reach 10.5.0.0 in zero hops; I can reach 10.10.0.0 in three hops;
I can reach 10.0.0.0 in four hops; I can reach 192.168.100.0 in four hops!"

Router X, listening to this advertisement, could be an th ropomorph ized to
be thinking, "Y can reach 192.168.200.0 in zero hops, so now I can reach it
in one hop; Y can reach 10.5.0.0 in zero hops, so now I can reach it in one
hop; Y can reach 10.10.0.0 in three hops, so now I can reach it in four hops;
Y can reach 10.0.0.0 in four hops, but I can reach it directly; Y can reach
192.168.100.0 in four hops, but I can reach it directly."

When Router X sends out its route advert isement, router Y will undoubt -
edly amend its own routes for 10.0.0.0 and 192.168.100.0, changing the
distance from those networks from 4 to 1.

14.2.2 BASIC RIP

All systems on an internetwork can use RIP, but hosts generally are
passive participants, listening to the routing information and updat ing
their routing tables, whereas routers can both listen to routing broadcasts
and transmit routing information. Routes can be propagated on request
by a router that has just booted up, a l though routers typically broadcast
their routes every 30 seconds.

Routes are broadcast as distance-vector pairs: a ne twork and a hop count.
Other routing protocols use the convention that a hop indicates a trans-
mission to another router, so the hop count from a gateway to a ne twork
to which the gateway is connected directly would be 0. RIP counts that as
one hop, so the lowest number of hops possible with RIP is one; with other
protocols zero hops are possible.

The rules for RIP are fairly simple.

1. Active routers broadcast their routes every 30 seconds by
default (although this may vary if the network administrator
wishes).

2. All listening systems compare these broadcasts to their own
routing tables and update their routing tables IF

(1) there are routes to new networks previously unlisted,
(2) there are better (e.g., shorter) routes to existing networks,
or (3) a route is reported unreachable (it should be removed).

3. A route is kept until a better route is reported.

Chapter14 �9 IPv6Routing 245

4. If there are two equivalent routes (same hop count), the first
received goes into the routing table.

5. Routes are timed out if they are not updated after three minutes;
in other words, a route must be assumed down if it is not being
reported.

6. Routers broadcast route changes as they occur, without waiting
(triggered updates).

7. A hop count of 16 is considered unreachable (which means RIP
is unusable in any intranet wider than 15 hops).

RIP tends not to propagate corrections to routing tables very quickly,
although errors are passed along more quickly. RIPs relatively low maxi-
m u m hop count and the use of triggered updates help minimize some of
the inherent problems with the distance-vector method of sharing routing
information as described in the next section.

14.2.3 ROUTING WITH RIP

Implemented for IP before any actual s tandard specifications had been
agreed upon, RIP is currently documented in RFC 2453, "RIP Version 2"
(also published as STD 56). RIP's success has more to do with the way it
was implemented- - in the routed program that was a part of the original
BSD/UNIX distr ibut ions-- than with its technical merits.

RIP is a protocol implementation of distance-vector routing: RIP messages,
encapsulated in UDP datagrams, are sent out with a header and at least
one and no more than 25 RIP entries. The header has three fields (followed
by I to 25 RIP entries).

Command A one-octet field, whose value may currently contain either
1, indicating a request for all or part of a routing table; or 2, indicat-
ing a response, containing all or part of a router 's routing table. An
advertisement is a response, even though it may not have been sent
in response to a particular request.

Version RIP versions I and 2 are valid values for this one-octet field.

The RIP entry itself is 20 octets and consists of the address family identifier,
or AFI field, a two-octet value indicating the type of address family (that is,
Internet addresses or some other type of address), and a second two-octet

246 Part Two �9 IPv6 Protocols

field that, for RIPvl, is left set to 0. In RIPv2, this field is the route tag field,
and it contains a tag that can differentiate internal routes (those pertaining
to the local routing domain) from external routes (those imported from
adjacent interior or exterior routing domains).

RIPvl uses the next four octets for network destination IPv4 address,
followed by eight octets set to 0, followed by a four-octet metric field
containing a value from 0 through 15 indicating the "distance" of the
route.

This is an important limitation, and it is imposed on RIP rather than
imposed by RIP: The field is large enough at 32 bits to accommodate
huge distances, but the protocol designers felt that RIP should not be
used for networks that have a diameter greater than 15 hops. Routing
changes take too long to propagate across a larger RIP network, and the
volume of router network traffic also becomes a burden as the Internet
grows larger.

The RIP headers are shown in Figure 14-4, from RFC 2453.

As is clear from the differences in the RIP entry formats for RIPvl and
RIPv2, RIPv2 can transmit considerably more information about each
route, including a subnet mask value and a next hop value (to be used in
concert with the route tag). RIPv2 incorporates an extension facility, and
in addition to transmitting more routing information, it uses an algorithm
for multicast routing and improved security.

RIP headers:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I command (i) I version (i) I must be zero (2) I

4 + ~- +

I I
- RIP Entry (20) -

I i
-~ + ~- -~ +

Figure 14-4: RIP headers and RIPvl/v2 message formats.

Chapter14 �9 IPv6Routing 247

RIPvl entry:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I address family identifier (2) I must be zero (2) I

+

I IPv4 address (4) I

4 F

I must be zero (4) I

4 +

I must be zero (4) I

+ +

I metric (4)]

+ +

RIPv2 entry-

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

I address family identifier (2) I Route Tag (2) I

+ + +

I IPv4 address (4) I

+ k

I Subnet Mask (4) I

+ +

I Next Hop (4) I

+ k

I metric (4) I

+

Figure 14-4: RIP headers and RIPvl/v2 message formats. (Continued)

RIP does not send subnet mask information in routing updates, so there
is the potential for routing problems in internetworks that are highly sub-
netted, particularly if more than one subnetworking scheme is being used
in the internetwork. RIP-2 addresses many of the shortcomings of RIP and
adds support for subnetsnsomething that the original RIP lacks simply
because subnets had yet to be accepted as part of the IP networks at the
time that RIP was first designed.

248 Part Two �9 IPv6 Protocols

Despite RIP's flaws, development of RIP-2 continued for several reasons.
RIP is widely implemented on many different platforms, partly because
it is an easy protocol to implement. On small intranets, RIP can be a very
efficient routing protocol, making few demands on system overhead and
bandwidth. Finally, RIP is relatively easy to configure and manage.

14.2.4 RIPNG

RFC 2080, "RIPng for IPv6," defines the protocol for use in IPv6 networks.
The RIPng routing table contains an entry for each reachable destination;
each entry contains at least the following information (as defined in RFC
2080).

�9 The IPv6 prefix of the destination.
�9 A metric, which represents the total cost of getting a datagram

from the router to that destination. This metric is the sum of
the costs associated with the networks that would be traversed
to get to the destination.

�9 The IPv6 address of the next router along the path to the
destination (i.e., the next hop). If the destination is on one of
the directly connected networks, this item is not needed.

�9 A flag to indicate that information about the route has changed
recently. This will be referred to as the "route change flag."

�9 Various timers associated with the route, in particular related
to when announcements should be sent out and when routes
should be timed out.

Routers using RIPng send and receive UDP messages on UDP port 521;
the RIPng message is formatted as shown in Figure 14-5.

RIPng Route Table Entries (RTEs) take the format shown in Figure 14-6.
These entries carry routing information, specifically the route tag, prefix
length, and routing metric for each routed IPv6 prefix. An RIPng message
can carry as many RTEs as the local MTU permits. To determine the maxi-
mum number of RTEs for a particular MTU, the following steps may be
taken.

1. Take the MTU size, in octets.
2. Subtract the IPv6 header size from that value.
3. Subtract the UDP header size from that value.
4. Subtract the RIPng header size from that value.

Chapter14 �9 IPv6Routing 249

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - + - + - + - - + - + - + - + - + - + - - + - + - + - + - + - + - + - + - +

command (i) I version (i) I must be zero (2) I
+ - +

I
Route Table Entry 1 (20)

I
+ - +

I
�9 . .

I
+--+-+--+--+-+--+--+-+-+-+--+-+--+--+-+--+-+--+--+--+-+--+--+-+--+-+-+-+--+--+--+--+

I
Route Table Entry N (20) -

I
+ - + - + - + - + - + - + - + - + - + - +

Figure 14-5: RIPng message format (from RFC 2080).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+ - +

I I
- IPv6 prefix (16) -

I I
+ +

I route tag (2) I prefix len (i) I metric (i)]
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

Figure 14-6: RIPng Route Table Entry format (from RFC 2080).

5. Divide that result by the size of the RTE, and round d o w n to
neares t integer.

Thus, using a s t anda rd set of headers for IPv6 (40 octets), UDP (8 octets),
and RIPng (4 octets) headers , we m u s t subtract 52 octets f rom the local
MTU. In the event that securi ty headers are also used, the size of those
headers wou ld also be subtracted. The RTE length is 20 octets. To illustrate,
for a link MTU of 1500 octets the calculat ion wou ld be as follows.

1500 - 40 - 8 - 4 -- 1448

1448/20 -- 72.4

250 Part Two �9 IPv6 Protocols

Thus, as many as 72 RTEs could be transmitted with each RIPng routing
message.

The operation of the RIPng protocol is similar to that of RIP; there are two
commands defined for the RIPng header.

Request (command type 1)
their routing tables.

are used to ask routers to send some or all of

Response (command type 2) are used to send all or part of a router 's
routing table. The message may be a response to a particular request,
or it may be a regularly scheduled update sent out by the router.

The route tag field in the RIPng header is intended to be used to differentiate
among routes that are internal to the RIPng routing domain and routes
that are imported from other routing domains, including other internal
routing domains as well as external routing protocols such as BGP.

Another important feature of RIPng is the ability to specify an IPv6 next
hop address for any route table entry. This is a feature incorporated into
RIP-2 in the form of a next hop field in the RTE, but including a next hop
address in RIPng routing table entries would increase the size of the RTE
from 20 octets to 36 octets and thus reduce the number of RTEs a router
can forward on any given link. The solution is to define a special next hop
RTE, shown in Figure 14-7.

The next hop address RTE indicates that all subsequent RTEs until the
end of the RIPng message (or until another next hop address RTE is
encountered) use the specified next hop address.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+- +-+-+-+-+-+-+

I I
- IPv6 next hop address (16) -

I i

I must be zero (2) Imust be zero(1) I 0xFF I
+-+

Figure 14-7: RIPng Next Hop address RTE format (from RFC 2080).

Chapter14 �9 IPv6Routing 251

14.3 OSPF and OSPFng

Defined in RFC 2328 (STD 54) "OSPF Version 2," the current version of the
Open Shortest Path First (OSPF) protocol uses the link state method to let
routers create their own internetwork maps. Developed partly in response
to some of the shortcomings of RIP, OSPF propagates routing informa-
tion more quickly and stably than RIP, handles subnets appropriately, can
balance loads where equivalent routes are available, supports type of
service routing, and uses mult icast ing--al l advantages over RIPvl.

Link state routing protocols, of which OSPF is an example, mandate that
each router in an AS maintain a link state database. This database represents
a map of the entire AS's topology, a map that is shared by all routers in
the AS. Each router floods the AS with its own reachable neighbors and
usable network interfaces--known as the router 's local state. In short order,
all routers in the AS can build their own map by aggregating the data in
these advertisements and connecting the dots. If router A announces that
it is directly connected to routers B, C, and D, on network 10.0.0.0, and
router E on network 192.168.100.0, then any router in the AS can start
assembling the map. Routers A, B, C, and D all have interfaces on 10.0.0.0;
routers A and E have interfaces on 192.168.100.0.

Once the map is assembled, each router calculates the shortest paths to any
given route by walking the map from its own location in the network.
Figure 14-8 shows how a simple network map can be created. The link
state approach to routing keeps the volume of information passed along
to other routers to a minimum. Each router periodically checks on the
status of neighboring routers, reporting which links are alive to all other
participating routers. With this information, each router can then create its
own map of the internetwork.

Link state routing addresses most of the problems posed by distance-
vector protocols like RIP. OSPF adds features not available in RIP, and
calculating routes based on the link state database is easier than mapping
routes based on periodic RIP advertisements. Link state routing proto-
cols even have less impact on the network because they generate a lower
volume of data and because that data is passed to neighboring routers,
which pass it on to other routers. By virtue of being a link state protocol,
OSPF also makes changes propagate in a more orderly and reliable fashion.
Since a link is either up or down, there is no reason for hosts to retain looped
routes.

252 Part Two �9 IPv6 Protocols

Figure 14-8: Routers using a link state routing protocol can deduce the structure
of their AS.

OSPF allows routing decisions to be made explicitly in cases where there
are equivalent alternate routes, as is required for applications such as
load balancing. Under RIP, the first of any group of equivalent advertised
routes is the route that will be recorded; OSPF allows network managers
to distribute traffic across these equivalent routes.

Another OSPF feature that offers greater flexibility is the use of separate
routes for different types of IP services. For example, it supports routing
of FTP traffic over one route (perhaps a faster link, to give better overall
file transfer performance) and Telnet over a different route (perhaps a link
with lower latency or roundtrip time for better interactive response).

Support of subnet addressing is an important feature, as is the use of multi-
casting to routers. OSPF also includes an authentication mechanism that
prevents routers from accepting routing information from unauthenticated
sources.

Chapter14 �9 IPv6 Routing 253

14.3.1 DIFFERENCES FROM OSPF FOR IPv4

RFC 2740, "OSPF for IPv6," provides the specification for adapting OSPF to
use with IPv6. For the most part, OSPF for IPv6 uses the same mechanisms
used in OSPF for IPv4 (defined in RFC 2328, "OSPF Version 2"). As with any
IP routing protocol, OSPF was modified for use with IPv6 to accommodate
128-bit (rather than 32-bit) addresses; other changes were required as well.
These differences are spelled out in RFC 2740 and include the following.

Link v e r s u s s u b n e t processing Under IPv6, link means "a communica-
tion facility or medium over which nodes can communicate at the
link layer" (RFC 2460). IPv4 routing protocols tend to operate on
a per-subnet basis, even though a single link can comprise more than
one, unrelated, subnet. OSPF for IPv6 routers connect to the link, not
the subnet, so a single interface may suffice for more than one subnet.

Address ing semantics removed For the most part, IPv6 addresses do
not appear in OSPF protocol packets. This allows routers to use OSPF
without reference to the network layer protocol (IPv4 or IPv6) in use.
Rather than identifying neighboring routers by IP address, they are
identified by a Router ID.

Flooding scope OSPF for IPv6 adds three different scopes for floods,
including a link-local scope, an area scope that is valid across links,
and an autonomous system (AS) scope, valid across an entire AS.

Several other changes listed in RFC 2740 refer to modification in the way
IPv6 works or to the modifications necessary to support IPv6 addresses,
but otherwise the protocol works very similarly to OSPF for IPv4.

14.4 IPv6 and BGP

If routing across a single backbone can be complicated, imagine routing
over multiple backbones--some of which overlap, and many of which
offer routes to the same destination networks. Figure 14-9 illustrates some
of the entities involved, as well as the problems.

RFC 2545, "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain
Routing," is a brief document because BGP (and path vector routing proto-
cols in general) is "mostly independent of the particular Address Family for

254 Part Two �9 IPv6 Protocols

Figure 14-9: Modem Internet topology with multiple backbones.

which the protocol is being used." "Multiprotocol Extensions for BGP-4,"
RFC 2283, defines a pair of BGP attributes to be used in multiprotocol net-
works of all kinds; RFC 2545 discusses how IPv6 systems should use those
attributes to exchange IPv6 routing information.

In this section we introduce BGP and then take a brief look at how IPv6
interdomain routing is enabled through the use of multiprotocol extensions
for BGP.

14.4.1 BGP BAsics

By 1989, a version of today's core Internet routing protocol was published
in RFC 1105, "A Border Gateway Protocol (BGP)," as an experimental
specification; BGP version 4 is currently an Internet draft standard (one
step away from full standard status) and specified in RFC 1771, "A Border

Chapter14. IPv6Routing 255

Gateway Protocol 4 (BGP-4)," and RFC 1772, "Application of the Border
Gateway Protocol in the Internet."

Backbone Z is operated by a backbone service provider and offers a transit
service, meaning that they carry packets to and from client networks, such
as the Internet service providers I and J. Backbone Z is called a transit AS,
because it is an autonomous system that moves packets from one AS to
another. This implies that it has connections to at least two other ASs.
Traffic from one AS to another is called transit traffic, to be distinguished
from local traffic, or traffic that remains within a single AS.

In the modern Internet topology, a routing entity may also be a multi-
homed AS, which differs from a transit AS because it does not carry transit
traffic but it does carry local traffic. For example, network X in Figure 14-9
might represent a large organization that maintains connections to several
backbone networks but that carries traffic only intended for network X.

Finally, a stub AS (like network Y in the figure) is one that can carry only
local traffic; a stub router connects a single AS to one other AS.

EGP worked reasonably well, but was unable to differentiate between
advertised routes: A router notified other routers only whether or not it
could reach an AS. With no basis for comparing directness of routes offered
by two or more routers, a border router could only guess at which router
was better for a particular packet. Neither the link state nor the distance-
vector routing approaches will work well for this kind of network. The
complexity is too great for any single router to handle all of the routes
between all of the networks.

BGP addresses the problem by extracting the inter-AS routing issues from
the intra-AS routing issues. In a BGP-routed network, each AS is connected
to the rest of the network by at least one each of two different entities.

BGP speaker Every AS in the network needs at least one BGP repre-
sentative to exchange reachability information with speakers for the
other ASs.

BGP gateway Every AS in the network needs to be connected to the
network through at least one BGP gateway.

A gateway and a speaker may be deployed on the same system, but they
may be deployed separately. And unlike RIP or OSPF routers, which

256 Part Two �9 IPv6 Protocols

exchange information about their own connectivity only, BGP routers
exchange complete routes. With a RIP-like protocol, a router in network I
(Figure 14-9) would have a routing table full of entries from every other
router it can reach directly for all the other networks on backbone A.
Network X would be reachable in two hops through networks M and J,
even though network I can reach X in a single hop on its own.

By including not just the number of hops but also the specific path for each
route, BGP routers can eliminate routing loops. Using speakers, separate
from routers, to communicate reachability information allows BGP net-
work administrators to implement routing and forwarding policies that
affect how packets are routed to and from particular networks that would
otherwise be indistinguishable.

The Border Gateway Protocol (BGP) replaced EGP as the current solution
to Internet routing. Routers pass along distance-vector reachability infor-
mation, but instead of just including networks and distances, BGP includes
the actual route needed to reach each destination. This allows the router
to lay down the distance-vector routes into an actual map of the Internet
and eliminate the routing loops to which distance-vector protocols are
prone.

14.4.2 BGP MULTIPROTOCOL EXTENSIONS

Originally, BGP was designed to exchange IPv4 routing information only.
RFC 2283, "Multiprotocol Extensions for BGP-4," defined a type of data
structure that permitted the use of any network layer protocol, not just
IPv4. The key is to define a set of network layer reachability information (NLRI)
that specifies the following.

Address Family Information Which network layer protocol addresses
are being indicated. This could be IPv4, IPv6, IPX, or some other
network layer network addressing scheme.

Next Hop Information The address of the appropriate next hop associ-
ated with the BGP route for which the NLRI is being attached.

Network Layer Reachability Information One or more network
addresses associated with the attribute for which the NLRI is being
used to advertise.

Chapter 14 �9 IPv6 Routing 257

The Multiprotocol Reachable NLRI and Multiprotocol Unreachable NLRI
attributes contain one or more records that contain these three pieces of
information. BGP routers can use the Multiprotocol Reachable NLRI to
advertise the availability of a route to a BGP peer, to advertise a network
layer address for the router that should be used as the next hop for certain
destinations, or to report on Subnetwork Points of Attachment (SNPAs
are basically link layer addresses associated with the network layer
addresses).

14.4.3 IPv6 INTER-DOMAIN ROUTING WITH BGP

BGP routing in IPv6 networks is accomplished, basically, in the same way
as in IPv4 (or any other type of) networks. Noting this, RFC 2545 addresses
the use of scoped IPv6 addresses--for BGP, the most significant difference
between IPv4 and IPv6--with BGP.

Because BGP defines the exchange of routing information across domains,
the use of link-local addresses is sometimes necessary but also potentially
damagined. As a result, RFC 2545 defines rules to govern the use of link-
local addresses when advertising connectivity for IPv6 network addresses.

14.5 IPv6 Routing Issues

Even though interior and exterior routing protocols have been adapted for
use in IPv6 networks, and even though there are decades of widespread
experience with those protocols in their IPv4 incarnations, it would be
presumptuous to suppose that IPv6 routing will hold no surprises. To
the contrary, experts anticipate that there will be significant issues to
be resolved with IPv6 routing; the unanticipated problems may be even
greater.

Subnetting Network managers must keep in mind that the smallest net-
work allocation currently being made by RIRs is a /48 block. That
means IPv6 networks will have 16 bits (or more) of subnet space to
play around with. Currently, in IPv4 networks, that much subnet
space is available only to networks with the equivalent of a Class
A network address block. With the potential for as many as 65,000
or so subnets, network designers must be careful to build their net-
works and subnetworks in a way that will keep the size of the routing

258 Part Two �9 IPv6 Protocols

table manageably small. If subnets are assigned haphazardly, they
may cause routing structures beyond the capacity of existing interior
routing protocols to handle.

Hardware Many departmental and branch level routers are quite capable
of handling typical IPv4 routing needs, but the possibility of having
very large routing tables (as just noted) could overwhelm the routers
themselves as well as the interior routing protocols.

Mult ihoming When an organization receives two or more IPv6 net-
work address allocations from different ISPs, they are said to be
multihomed. The goal is to have the network behave as if it is
a single system, both when interacting with nodes within the network
and when interacting with nodes exterior to the network. A further
complication is the desire to minimize the number of routing table
entries for each network; solutions proposed so far focus on the
use of tunneling between the different allocated networks and
incorporating alternate routes within each routing table entry.

As more IPv6 networks are joined together in a global IPv6 Internet,
experience with these issues will suggest appropriate solutions.

14.6 Summary

In this chapter, we have introduced the basics of Internet routing, including
link state and distance vector routing algorithms, interior and exterior
routing, RIP, OSPF, and BGP routing, and how those protocols are adapted
for use with IPv6.

In the next chapter we look at how Quality of Service (QoS) is implemented
over IPv6 networks.

IPv6 Quality of Service (QoS)

Providing Quality of Service (QoS) in IP networks has long been an impor-
tant but elusive goal for IETF working groups. The original IPv4 header
specification included a Type of Service (ToS) field that was rarely if ever
implemented: It would have required implementers to make judgments
about which of their packets were to be given worse-than-normal treat-
ment. This simplistic approach has been replaced over the years with the
Differentiated Services (Diffserv) approach, and the ToS field has been
renamed the Differentiated Services (DS) field in RFC 2474, "Definition of
the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers."

Diffserv allows the use of the DS field for data that indicates how a packet
should be treated by routers. Rather than assigning a priority, the DS field
is used to assign membership in a group that has a set of policies associated
with it. These diffserv behavior aggregates (groups of packets that are to be
treated in the same way by a router at network boundary) work the same
way in both IPv4 and IPv6.

259

260 Part Two �9 IPv6 Protocols

In an effort to remedy the faults of the Type of Service approach used
in IPv4, an early goal of the IPv6 effort was to replace ToS with the
concept of flows, which were to behave somewhat like behavior aggre-
gates. The Flow Label field in the IPv6 header was first discussed in the
early 1990s with RFC 1809, "Using the Flow Label Field in IPv6." This
specification was published half a year before the original IPv6 specifica-
tions in 1995. At that time, the field raised more questions than it
answered, 1 including how to determine which packets should be assigned
a flow and how routers should handle flows that they didn ' t have flow
routing information for.

By 1998 and the revised IPv6 specification in RFC 2460, the Flow Label field
was still considered experimental as the questions regarding its use had
yet to be resolved through extensive implementation and experimentation.
As of 2003, a new specification that explains appropriate use of the Flow
Label in IPv6 is still a work-in-progress but should be published soon as
a proposed standard.

Up to the late 1990s, applications that depended on underlying network
protocols relied on Transmission Control Protocol (TCP) to respond to net-
work congestion. However, in January 1999, the experimental RFC 2481,
"A Proposal to Add Explicit Congestion Notification (ECN) to IP," was
published detailing an approach to congestion management that could
include the network layer protocol, IP. Updated to proposed standard
in September 2001, RFC 3168, "The Addition of Explicit Congestion
Notification (ECN) to IP," updates some of the mechanisms discussed in
this chapter.

In this chapter we cover the IPv6 approach to QoS, including the use of
the diffserv field in IPv6, followed by discussion of IPv6 Flow Labels and
the use of Explicit Congestion Notification with IPv6.

15.1 QoS Basics

The IP model is a democratic one: All packets are (in theory) treated
equally, getting a "best effort" delivery service from the systems in

1 Including length: Prior to 1995, the Flow Label field was 28 bits long; by 1995 it had
shrunk to 24 bits, and in 1998 it reached its current specified size of 20 bits.

Chapter 15 �9 IPv6 Quality of Service (QoS) 261

the Internet. This has several implications for application performance and
in some cases limits applications in a number of ways.

1. Packets may be delivered in order or out of order.
2. Packets may be delivered smoothly or in spurts.
3. Packets may or may not be delivered.

In the case of real-time applications, this can require that receiving hosts
buffer data as it comes in, adding delay on top of whatever network delay
exists. Instead of passing incoming network data directly to the application,
the incoming data is stored temporarily as the host waits for all data, includ-
ing out of order data and data that may be temporarily delayed, to arrive.

The unpredictability of the IP datagram service is due to the way routers
handled traffic: Packets come in from various sources, arriving at the router
on different interfaces with different networks, and the router processes
those packets in the order they are received.

Despite the first pass at the problem through assignment of Type of
Service values, IP as originally defined lacks mechanisms for differen-
tiating between packets that have quality of service requirements and those
that don't.

�9 Transient congestion, such as caused by a surge of packets
from one source, can cause unpredictable results. A packet
surge may delay other traffic passing through a router. Or it
might not.

�9 All datagrams are created equal, which means that there is no
way to give one datagram priority over another.

�9 Individual routers can be configured to favor packets being
sent to or from some particular network interface, but once the
packet is routed, it will be treated just like any other packet by
other routers. IP lacks a mechanism for flagging packets at their
source and indicating that they should be treated differently in
some way from source to destination.

�9 Even if packets can be flagged for special treatment, IP lacks the
mechanisms for tracking packets and monitoring performance
and resource use.

QoS protocols are intended to differentiate between packets on an end-
to-end basis and adding the mechanisms necessary to allocate resources
throughout a path for packets that require them.

262 Part Two �9 IPv6 Protocols

15.1.1 APPROACHES TO QUALITY

The two basic approaches to adding QoS to the Internet are the Integrated
Services (intserv) and Differentiated Services (diffserv) models. Introduced
and defined in 1994 in RFC 1633, "Integrated Services in the Internet
Architecture: an Overview," the intserv effort grew out of implementa-
tion experience with multicast of IETF meetings. According to RFC 1633
authors, real-time applications work poorly across the global Internet
"because of variable queueing delays and congestion losses."

In addition to QoS for real-time applications, the intserv model would
allow network service providers control over how bandwidth is shared.
Allowing all the available bandwidth to be allocated among different
classes of traffic even when the network is under a heavy load means
that applications can count on having a minimum amount of bandwidth
to work with even when the network is congested--instead of being
summarily cut off when packets are dropped silently and the hosts on
the other end drop the connections.

The ability to control which traffic categories are allowed how much of the
available bandwidth is called controlled link sharing. The intserv approach
defines a service model in which best-effort and real-time services (services
over which there is some control of end-to-end packet delay) coexist and
are facilitated through controlled link sharing.

Whether or not overly influenced by their experiences with multicast,
the intserv working group has agreed that any QoS solution would have
to support multicast: Real-time applications such as videoconferencing
require the ability to handle multiple recipients of the same packets.

15.1.2 RESERVING RESOURCES

QoS generally requires network resources--specifically, network band-
width and reliable routes--to ensure a uniform quality of service. The
process of provisioning circuits, as in ATM and other telecommunication-
oriented network protocols, is necessary before any communication can
occur between a source and a destination. The Resource ReSerVation
Protocol (RSVP), defined in RFC 2205, "Resource ReSerVation Protocol
(RSVP)--Version 1 Functional Specification," defines a mechanism by
which hosts can, in effect, provision a connection across the connection-
less IP Internet. RSVP, a required part of the intserv model, also requires

Chapter 15 �9 IPv6 Quality of Service (QoS) 263

intserv-capable routers in the network over which services are to be
provided.

This reservation infrastructure can be dispensed with when services are
provided to more general categories of packet, rather than the very spe-
cific intserv flows. Diffserv does not specifically require any mechanism
on hosts, but vests the responsibility for managing bandwidth with the
network itself. Diffserv packets are marked for special treatment by their
applications, but the specific way in which those packets are treated is left
to routers.

15.1.3 INTSERV IN A NUTSHELL

Central to intserv is the concept of the flow: If packets share source and
destination IP addresses as well as source and destination ports, then one
can assume that those packets are all part of an application's stream of data
flowing between source and destination, with all that entails.

The intserv approach requires that routers keep track of all these flows,
examining each packet to determine whether it belongs in a flow and then
computing whether there is enough available bandwidth to accept the
packet. In other words, intserv requires the following functions.

Admission control Can the router, or the network at large, provide
service to the flow? Can it provide service to the individual packets
that comprise the flow? What about other, non-QoS packets?

Packet classification Every packet that is admitted must be classified.
What flow does it belong to? What level of QoS does it get? The
three options are to treat the packet "normally" giving it best-effort,
controlled load for allocating some portion of an uncongested network,
and guaranteed service for real-time delivery with delays minimized
to within preset levels of service.

Packet scheduling Once a packet is classified, how is it scheduled?
Should some packets jump ahead of others? How are packets within
a queue treated when the queue exceeds its limits?

Combined with RSVP, intserv tends to be cumbersome to implement and
it certainly is not scalable to the global Internet--but it is quite good at
managing flows of data within smaller networks.

264 Part Two �9 IPv6 Protocols

Ultimately, intserv has proven inadequate to the task of providing a single
solution to the QoS problem: The intserv mechanisms are not seen as being
scalable to the global Internet, and they can be difficult to implement.

The next pass at the problem became known as diffserv to differentiate
it from intserv. Cursory examination of the RFCs may not shed much
light on the differences between the two, but there are considerable differ-
ences. Where intserv is focused on ways of sharing available bandwidth
among unique flows (series of packets with the same source and destination
IP and port addresses), diffserv approached the problem by suggesting
that a less granular classification of packets could provide the desired
result.

15.1.4 DIFFSERV IN A NUTSHELL

There is no way that Internet backbone routers could contend with the
demands of tracking individual flows in an intserv-enabled global Internet,
but network customers and service providers both increasingly demand
some form of QoS that can scale well in the global Internet. Differentiated
services, diffserv, answers the call by streamlining the process. Diffserv
over IP is documented in RFC 2474, "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers."

Rather than building an elaborate infrastructure for emulating a circuit-
based network on top of IP, diffserv allows communicating endpoints to
classify their packets into different treatment categories. These categories
are identified with a per-hop behavior, or PHB. The PHB is the action that
a diffserv routing node can be observed to take when it receives a packet.
When a PHB is defined, diffserv routers are supposed to treat packets
marked with that value in a certain way.

For example, the Expedited Forwarding (EF) PHB (specified in RFC 2598,
"An Expedited Forwarding PHB") is billed as "premium service" and
indicates that the packets in that behavior aggregate (BA) should all be
processed as they are received, rather than be queued or dropped. Unlike
intserv with its traffic flows, the diffserv model calls for the use of BAs at
each diffserv router: These are associated with a PHB that indicates how
the router will treat the packet.

Aggregates or aggregated flows may also be referred to as classes of
packets; routers are configured to respond to these different classes in

Chapter 15 �9 IPv6 Quality of Service (QoS) 265

different (appropriate) ways. Routers may also be configured to break
up these classes into subaggregations to be treated slightly differently.
For example, a router might be configured to forward premium-service
packets from preferred customers over links that are more reliable
than premium-service packets coming from customers subscribing to
a "budget-premium" service.

Diffserv brings with it the ability to create network service policies specific
to a single router, some part of a network, or an entire diffserv routing
domain. As long as their policies don't affect the ability to provide guar-
anteed QoS, network providers can fine-tune their diffserv routers to
differentiate how they treat packets.

The diffserv model distributes the task of allocating resources to the routers
within a diffserv domain, providing greater flexibility as well as more
efficient routing. A backbone router could process diffserv traffic far more
easily than it can process intserv traffic: There is no need to negotiate RSVP
reservations with all intermediary routersmand no overhead necessarily
associated with failure to maintain an RSVP session with one particular
router. With diffserv, the PHB mandates how the packet is treated, and
different routers can provide the same service without having to maintain
state for a particular connection, as with intserv.

15.1.5 DIFFSERV VERSUS INTSERV?

At first glance, diffserv and intserv may seem to be competing with each
other. However, the two models are complementary, with intserv work-
ing best within smaller domains, whereas diffserv provides somewhat
less precise handling of packets across much larger networks; the two can
even be used together, as documented in RFC 2998, "A Framework for
Integrated Services Operation over Diffserv Networks."

In this informational document, the authors see intserv, RSVP, and diffserv
as "complementary technologies," each of which is intended to achieve
end-to-end quality of service. "Together," they write, "these mechanisms
can facilitate deployment of applications such as IP-telephony, video-
on-demand, and various non-multimedia mission-critical applications.
Intserv enables hosts to request per-flow, quantifiable resources, along
end-to-end data paths and to obtain feedback regarding admissibility of
these requests. Diffserv enables scalability across large networks."

266 Part Two �9 IPv6 Protocols

15.2 Differentiated Services and IPv6

The behavior defined for the Differentiated Services field in both IPv4
and IPv6 is the same, so an unders t and ing of diffserv for IPv4 should
carry over to diffserv for IPv6. In both protocols, the Differentiated Services
field is defined for the six bits following the version in the IP header. 2

RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers ," spells out how diffserv works for both protocols.
The following are some other RFCs of interest for diffserv.

RFC 2963 "A Rate Adapt ive Shaper for Differentiated Services"
RFC 2998 "A Framework for Integrated Services Operat ion over

Diffserv Networks"
RFC 3086 "Definition of Differentiated Services Per Domain Behav-

iors and Rules for their Specification"
RFC 3260 "New Terminology and Clarifications for Diffserv"
RFC 3290 "An Informal Managemen t Model for Diffserv Routers"
RFC 2430 "A Provider Architecture for Differentiated Services and

Traffic Engineering (PASTE)"
RFC 2474 "Definition of the Differentiated Services Field (DS Field)

in the IPv4 and IPv6 Headers"
RFC 2475 "An Architecture for Differentiated Service"
RFC 2638 "A Two-bit Differentiated Services Architecture for the

Internet"
RFC 2983 "Differentiated Services and Tunnels"

Closely related to the issue of differentiated services is the use of flows
in IPv6, as will be seen in the next section.

15.3 IPv6 Flows

The Flow Label field in the IPv6 header was originally designed as a 28-bit
field (see notes in RFC 1809), reduced to 24-bits by 1995, and ul t imately to
20 bits, as defined in RFC 2460. RFC 2460 states the following.

2Those bits were originally specified for IPv4 as the Type of Service field in RFC 791 and
originally specified as Traffic Class field for IPv6 in RFC 2460.

Chapter 15 �9 IPv6 Quality of Service (QoS) 267

The 20-bit Flow Label field in the IPv6 header may be used by a source
to label sequences of packets for which it requests special handling by
the IPv6 routers, such as non-default quality of service or "'real-time"
service Hosts or routers that do not support the functions of the
Flow Label field are required to set the field to zero when originating
a packet, pass the field on unchanged when forwarding a packet, and
ignore the field when receiving a packet.

In an appendix to RFC 2460, a flow is defined as "a sequence of packets sent
from a particular source to a particular (unicast or multicast) destination for
which the source desires special handling by the intervening routers." That
"special handling" might be specified by a resource reservation protocol
or by some data within the flow packet headers such as a hop-by-hop
opction. As to the specifics of the implementat ion of flows, however, RFC
2460 is silent other than to specify the characteristics of the value of the
flow header field.

�9 Packets that don' t belong to flows must have the flow header
set to zero.

�9 Each flow is assigned in a random or pseudo-random man-
ner and (in combination with source address) is uniquely
identifiable.

�9 The flow label is assigned by the source of the flow.
�9 Packets that belong to the same flow must all originate from

the same source address, must be addressed to the same des-
tination, and must be sent with the same value in the flow
label header field. Flows are traditionally also identified by the
transport layer protocol in use, as with TCP.

As of 1998, the flow label was considered an experimental portion of the
IPv6 specification; five years after, the IETF had not yet published the
IPv6 flow label specification as a proposed standard RFC. Although still
officially a work-in-progress as of mid-2003, publication of an RFC titled
"IPv6 Flow Label Specification" may already have occurred by the time
this volume is published.

The definition of a flow, meanwhile, has changed.

A flow is a sequence of packets sent from a particular source to
a particular unicast, anycast, or multicast destination that the source
desires to label as a flow. A flow could consist of all packets in

268 Part Two �9 IPv6 Protocols

a specific transport connection or a media stream. However, a flow
is not necessarily 1:1 mapped to a transport connection.

One change from RFC 2460 is that flows can be specified without reference
to the destination address or transport layer protocol type. These values
may not always be available in the IPv6 header, particularly if the packet
is fragmented or encrypted.

The flow label may not be changed from the value assigned by the sender,
unlike the diffserv value, which may be modified to reflect the appropriate
behavior aggregate for a particular router or network as it traverses the
Internet. Routers that don' t offer flow-related handling are required to
ignore the flow label and treat the packet as any other.

IPv6 nodes that use flow labeling should assign separate flows for dif-
ferent and unrelated transport layer connections as well as for different
and unrelated application layer data streams. Thus, a multi-user host with
multiple telnet sessions from different users to the same remote host should
assign a separate flow to each of those sessions.

15.4 Explicit Congestion Notification in IPv6

Quality of Service specifications are largely intended to address the prob-
lem of how to guarantee a particular level of service for a particular set
of packets. For example, an ISP may want to offer its customers a level
of service that uses only their premium, high-performance networks. To
achieve that level of service, the ISP would need to be able to differentiate
packets coming from subscribers to that service and assign those packets
to a behavior aggregate for which the routing policy is to always route on
the most expensive link.

Network congestion can occur on any link as a result of high-demand
conditions or router malfunctions, and in most cases nodes sending
packets that encounter congestion are only able to detect the condi-
tion as a result of some t imermusual ly in the transport or application
layer protocolsmtiming out. Explicit Congestion Notification was first
proposed as an experiment for the transport layer in RFC 2481, "A Proposal
to Add Explicit Congestion Notification (ECN) to IP," in 1999, and quickly
moved to the standards track in 2001 when it was published as RFC 3168,
"The Addition of Explicit Congestion Notification (ECN) to IP."

Chapter 15 �9 IPv6 Quality of ServJce (QoS) 269

Using ECN and a Congestion Manager implementation, nodes are able
to negotiate the use of ECN. The ECN field in the IPv6 (and IPv4 header,
as well), consists of the two bits after the Differentiated Services field.
Unlike in earlier proposals, the two bits are used together as codepoints
rather than as separate flag bits. The four different values possible for these
two bitsm00, 01, 10, and 11mindicate whether the end-nodes (sender and
destination) are using an ECN-Capable Transport as well as whether there
is congestion at the sender (though not so much congestion that would
cause the node to have dropped the packet). These are the four codepoints
and their uses.

00 When a node is not using ECN, it puts zeroes in the ECN field.

01/10 These two codepoints are treated in the same way and are also
called ECT(0) [for the value 01] and ECT(1) [for the value 10]. These
values are set by the sender to indicate that ECN is supported at
both ends of the transmission.

11 Routers that are just beginning to experience congestion, or that are
experiencing mild congestion, can signal their state by setting the
codepoint to 11 in outgoing packets.

The following current RFCs provide more information about Explicit
Congestion Notification and congestion control in general.

RFC 2481 "A Proposal to Add Explicit Congestion Notification
(ECN) to IP"

RFC 2914 "Congestion Control Principles"
RFC 3124 "The Congestion Manager"
RFC 3168 "The Addition of Explicit Congestion Notification (ECN)

to IP"
RFC 2884 "Performance Evaluation of Explicit Congestion Notifica-

tion (ECN) in IP Networks"

15.5 Summary

Quality of Service, IPv6 Flows, and Explicit Congestion Notification are
all related to the quest for better service over an Internet in which, by
definition, all packets are supposed to be treated equally. As we've seen in
this chapter, Quality of Service is designed to offer consumers of Internet

270 Part Two �9 IPv6 Protocols

connectivity options for guaranteed levels of service, while IPv6 flows and
Explicit Congestion Notification are designed to provide improved routing
and connectivity for any nodes on the Internet.

Ultimately, the goal of providing improved performance becomes more
important as the network grows larger. An important part of network
management that can grow unwieldy in larger networks is the task of
configuring nodes. As we'll see in the next chapter, IPv6 provides some
new tools as well as improvements on existing tools for configuring and
reconfiguring networks and nodes.

IPv6 Autoconfiguration

Neighbor Discovery, as discussed in Chapter 13, coupled with the use
of local- and site-scoped addresses, makes it possible for IPv6 nodes and
networks to use a far wider set of autoconfiguration behaviors than with
IPv4. As IPv6 makes it possible to network almost unimaginable numbers
of nodes, the need for automated configuration tools becomes ever more
important. Anyone who has ever been involved in renumbering an IP
network by hand can attest to the difficulty. 1

In this chapter, we will look at three sets of autoconfiguration tools.

Stateful autoconfiguration (DHCPv6) The Dynamic Host Configura-
tion Protocol (DHCP) grew out of the Boot Protocol (BOOTP), which
allowed nodes (usually diskless nodes) to boot themselves from a
network server. DHCP and DHCP for IPv6 (DHCPv6) allow nodes

1 In the early 1990s, the author was one of about a dozen full- and part-time employees
at an organization who helped renumber an IP network of about 2000 IP nodes distributed
across two buildings and about a dozen subnets. All nodes had to be reconfigured by hand,
and the entire project took approximately half a year to complete.

271

272 Part Two �9 IPv6 Protocols

to configure themselves using DHCP servers. The protocols are con-
sidered stateful because the D H C P / D H C P v 6 servers maintain tables
containing the IP addresses and link layer addresses of all the nodes
that use their services. The servers use that state to prevent two or
more nodes from using the same IP address.

Stateless autoconfiguration In less formally composed networks, IPv6
allows nodes to configure themselvesmthat is, assign themselves
their own IPv6 addressesmwithout the aid of a server. There is no
central or authoritative repository for IPv6 addresses assigned
through stateless autoconfiguration.

Router and network renumbering The use of locally scoped network
addresses means that networks can be shifted from one connectivity
provider to a n o t h e r u w i t h new global IPv6 Internet addresses m
relatively easily. Internal routing can be achieved using the site-local
addresses, while external routing can be accomplished by reconfig-
uring gateway routers. The process is more easily said than done, as
will be seen.

In this chapter, we look at the difference between stateful and stateless
autoconfiguration, how DHCPv6 works, how IPv6 stateless autoconfigu-
ration works, and how router and network renumbering can be done in
IPv6 networks.

16.1 Stateful and Stateless Autoconfiguration

With the wide deployment of DHCP clients, as well as the inclusion of
DHCP server software in virtually every kind of network server, from the
simplest home office firewall network appliance on up, it should be safe
to say that the vast majority of IP nodes in use today are either configured
with DHCP or could be configured with DHCP.

DHCP servers are crucial for any network in which the number of nodes
that must be concurrently connected at any given time approaches the
number of available IP addresses. The DHCP server can allocate addresses
in three ways.

Automatic allocation
client.

DHCP assigns a permanent IP address to a

Chapter16. IPv6Autoconfiguration 273

Dynamic allocation DHCP assigns an IP address to a client for a limited
period of time (or until the client explicitly relinquishes the address).

Manual allocation A client's IP address is assigned by the network
administrator, and DHCP is used simply to convey the assigned
address to the client.

In all cases, the DHCP server maintains state about the clients that use
DHCP to configure themselves. ISPs providing broadband services to con-
sumers (and other network providers) may configure their DHCP servers
to allocate addresses only to nodes with a particular link layer address to
prevent unauthorized use of their service. However, DHCP can be used for
ad hoc networking, in which a node not previously known to the DHCP
server can be allocated an address.

Stateless autoconfiguration allows nodes to configure themselves com-
pletely independently of any central authority because servers to maintain
addressing states are unnecessary.

This is not to say that stateful and stateless autoconfiguration are mutu-
ally exclusive; quite the reverse is the case, in fact. Neighbor Discovery
incorporates features that allow the two types of autoconfiguration to
complement each other in an IPv6 network. For example, stateless auto-
configuration is useful because it permits a node to allocate its own IPv6
address that is valid for local-scope network. At the same time, it can
query for stateful autoconfiguration services on the local network to allow
it to determine its own global IPv6 address, network prefix, and default
routers.

16.2 IPv6 Stateful Autoconfiguration: DHCPv6

DHCPv6 is the latest iteration of an autoconfiguration protocol published
in RFC 951, "Boot Protocol," in 1985. The following are some RFCs that
can provide further information about BOOTP, DHCP, and DHCPv6.

RFC 3397 "Dynamic Host Configuration Protocol (DHCP) Domain
Search Option"

RFC 3118 "Authentication for DHCP Messages"
RFC 2132 "DHCP Options and BOOTP Vendor Extensions"
RFC 2131 "Dynamic Host Configuration Protocol"

274 Part Two �9 IPv6 Protocols

RFC 1542 "Clarifications and Extensions for the Bootstrap Protocol"
RFC 1534 "Interoperation Between DHCP and BOOTP"
RFC 0951 "Bootstrap Protocol"

The specification for DHCPv6 is still, as of mid-2003, a work-in-progress.
Although in many ways quite similar to DHCPv4, DHCPv6 is different
enough that the protocol specification does not include specific information
about interoperability between the two.

16.2.1 DHCP MESSAGES

DHCP clients and servers communicate by sending DHCP protocol mes-
sages using UDP. The client, which (at least to start with) has no valid IP
address for itself or for the local DHCP server, sends DHCP requests to the
multicast address reserved for DHCP servers in the link scope. These are
the two valid addresses for sending DHCPv6 queries.

All_DHCP_Relay_Agents_and_Servers (FF02::1:2) A link-scoped mul-
ticast address used by a client to communicate with neighboring (i.e.,
on-link) relay agents and servers. All servers and relay agents are
members of this multicast group.

All_DHCP_Servers (FF05::1:3) A site-scoped multicast address used by
a relay agent to communicate with servers, either because the relay
agent wants to send messages to all servers or because it does not
know the unicast addresses of the servers. Note that in order for a
relay agent to use this address, it must have an address of sufficient
scope to be reachable by the servers. All servers within the site are
members of this multicast group.

As long as these addresses are available to the DHCP client, it can configure
itself with DHCP.

The client can send UDP messages without an IPv6 address but must pro-
vide some link layer address (otherwise, the responses from the servers
can't be delivered). The default behavior for DHCP clients is to continue
sending all DHCP messages to the multicast addresses reserved for DHCP
services rather than directly to a specific DHCP server's unicast address.
The reason for this is to allow the use of DHCP relay agents to pass

Chapter16. IPv6AutoconfiguratJon 275

messages from clients to a remote DHCP server; in certain cases, it may
be more efficient (faster, less overhead) to allow clients to send unicast
messages directly to a DHCP server. In those cases, a client unicast option
may be enabled by the server.

Two types of exchanges are defined, those involving two messages and
those involving four messages exchanged between the client and the
server. These are the DHCPv6 message types.

SOLICIT Clients send this message to locate a DHCPv6 server.

ADVERTISE A server sends this message in response to a Solicit
message to indicate it is offering DHCP service.

REQUEST A client sends this message to request configuration param-
eters, including IP addresses, from a specific server.

C O N F I R M A client sends this message to any available server to deter-
mine whether the addresses it was assigned are still appropria te to
the link to which the client is connected.

RENEW A client sends this message to the server that originally provided
the client's addresses and configuration parameters to extend the
lifetimes on the addresses assigned to the client and to update other
configuration parameters.

REBIND A client sends this message to any available server to extend the
lifetimes on the addresses assigned to the client and to update other
configuration parameters; this message is sent after a client receives
no response to a Renew message.

REPLY A server sends this message, which contains assigned addresses
and configuration parameters, in response to a Solicit, Request,
Renew, or Rebind message received from a client. A Reply message
with configuration parameters is sent in response to any Information-
request message. The server sends this message in response to
Confirm messages, confirming or denying that the addresses
assigned to the client are appropriate to the link to which the client is
connected. A server sends a Reply message to acknowledge receipt
of a Release or Decline message.

276 Part Two �9 IPv6 Protocols

RELEASE A client sends this message to the server that assigned
addresses to the client to indicate that the client will no longer use
one or more of the assigned addresses.

DECLINE A client sends this message to a server to indicate that the
client has determined that one or more addresses assigned by the
server are already in use on the link to which the client is connected.

RECONFIGURE A server sends this message to a client to inform the
client that the server has new or updated configuration parameters,
and that the client is to initiate a Renew/Reply or Information-
request /Reply transaction with the server in order to receive the
updated information.

INFORMATION-REQUEST A client sends this message to a server to
request configuration parameters without the assignment of any IP
addresses to the client.

RELAY-FORW A relay agent sends this message to relay messages to
servers, either directly or through another relay agent. The received
message, either a client message or a Relay-forward message from
another relay agent, is encapsulated in an option in the Relay-forward
message.

RELAY-REPL A server sends this message to a relay agent containing
a message that the relay agent delivers to a client. The Relay-reply
message may be relayed by other relay agents for delivery to the
destination relay agent. The server encapsulates the client message as
an option in the Relay-reply message, which the relay agent extracts
and relays to the client.

16.2.2 CLIENT-SERVER EXCHANGES INVOLVING TWO MESSAGES

A number of DHCP interactions can be completed with the exchange of
two messages, a request from the client and a response from the server.

Request for configuration information The simplest interaction occurs
when a client does not need an IPv6 address from the server, but
just needs some other configuration information (for example, a
list of DNS servers). The client sends a DHCP Request message

Chapter16 �9 IPv6Autoconfiguration 277

requesting the information it needs to the All_DHCP_Relay_Agents_
and_Servers multicast address; the servers that are listening to that
address respond with a DHCP reply that contains the requested
information.

Request to extend address l ifetime The client sends a Renew message,
and the server sends a Reply message, with the new lifetimes
specified so the client can continue using the address.

IPv6 address allocation Normally, this is a four-message interaction, but
it is possible for a client and server to transact an IPv6 address
allocation in just two messages when the server already has con-
figuration information assigned to the requesting client and stored
in its database. The client can send a DHCP Solicit message to the
All_DHCP_Relay_Agents_and_Servers multicast address to request
both an address assignment and configuration information, specify-
ing that an immediate Reply message from the server is desired. If
there is a server listening to that multicast address that is capable of
committ ing an address in response to that request, it can reply with
the address and configuration information.

The more typical IPv6 address allocation process requires four messages,
as described next.

16.2.3 CLIENT-SERVER EXCHANGES INVOLVING FOUR MESSAGES

When a node needs to request an IPv6 address as well as configuration
information from a DHCP server, the process normally takes an exchange
of four messages from client to server, as follows.

Solicit The client sends a Solicit message to the All_DHCP_Relay_
Agents_and_Servers multicast address to locate available DHCP
servers.

Advert ise Any server that is able to respond to the client Solicit does so
by sending the Advertise message.

Request The client sends a Request message to the server it chooses.
More than one server may respond to the original Solicit request, so
the client may have to choose one server in particular to respond to.

278 Part Two �9 IPv6 Protocols

The Request message indicates what configuration parameters the
client needs.

Reply The server responds to the Request message with a Reply message
containing the configuration parameters requested by the client.

16.3 IPv6 Stateless Autoconfiguration

Unlike IPv4 nodes, IPv6 nodes are capable of configuring themselves
entirely on their own. This is by design and is the result of a considerable
amount of thought and effort.

First, the standard method of addressing an IPv6 interface uses the EUI-64
mechanism to uniquely identify the node on the local link; the use of link-
local unicast addressing means that all nodes will properly process packets
sent to and from the link-local unicast address that a node assigns to itself.
However, those packets cannot be forwarded outside the local link.

The use of Neighbor Discovery, however, means that individual nodes that
are configured on a link can solicit information about routers and servers
on the link. Part of that discovery process can also include identifying the
global IPv6 network prefix as well, so the node can, using basic IPv6 pro-
tocols, discover all the information it needs to be fully configured without
the intervention of a stateful configuration server.

The process of self-configuring includes a number of different steps.

1. Creating a link-local address for the self-configuring node
2. Verifying the uniqueness of the link-local address on the link
3. Determining what information should be autoconfigured and

how that information should be obtained

The first and second steps of this process are described in RFC 2462, "IPv6
Stateless Address Autoconfiguration." The third step, that of determining
how further configuration information should be acquired, uses mech-
anisms defined for Neighbor Discovery as well as DHCPv6. RFC 2462
explains it this way.

Stateless autoconfiguration requires no manual configuration of hosts,
minimal (if any) configuration of routers, and no additional servers.
The stateless mechanism allows a host to generate its own addresses

Chapter16. IPv6Autoconfiguration 279

16.3.1

using a combination of locally available information and informa-
tion advertised by routers. Routers advertise prefixes that identify the
subnet(s) associated with a link, while hosts generate an "interface
identifier" that uniquely identifies an interface on a subnet. An address
is formed by combining the two. In the absence of routers, a host can
only generate link-local addresses. However, link-local addresses are
sufficient for allowing communication among nodes attached to the
same link.

In the stateful autoconfiguration model, hosts obtain interface
addresses and~or configuration information and parameters from
a server. Servers maintain a database that keeps track of which
addresses have been assigned to which hosts. The stateful autoconfig-
uration protocol allows hosts to obtain addresses, other configuration
information, or both, from a server. Stateless and stateful autoconfig-
uration complement each other. For example, a host can use stateless
autoconfiguration to configure its own addresses but use stateful auto-
configuration to obtain other information

The stateless approach is used when a site is not particularly concerned
with the exact addresses hosts use, so long as they are unique and
properly routable. The stateful approach is used when a site requires
tighter control over exact address assignments. Both stateful and state-
less address autoconfiguration may be used simultaneously. The site
administrator specifies which type of autoconfiguration to use through
the setting of appropriate fields in Router Advertisement messages

DESIGN GOALS

To some extent, stateless and stateful autoconfiguration can be used to
achieve similar results. By looking at the design goals for IPv6 state-
less autoconfiguration, as stated in RFC 2462, one can gain a better
understanding of the value added by the newer approach.

Eliminate manual configuration prior to connection Individual nodes
should not have to be preconfigured before they are connected in
order to be able to plug-and-play. An important goal is to provide a
mechanism "that allows a host to obtain or create unique addresses
for each of its interfaces. Address autoconfiguration assumes that
each interface can provide a unique identifier for that interface (i.e.,
an 'interface identifier'). In the simplest case, an interface identifier
consists of the interface's link layer address. An interface identifier
can be combined with a prefix to form an address."

280 Part Two �9 IPv6 Protocols

16.3.2

Eliminate stateful server/router requirement on small networks
Although DHCP implementations are widely available, small net-
works consisting of nodes on a single link should not be required
run a "stateful server or router" as a prerequisite to being connected
to an IPv6 internetwork. "Plug-and-play communication is achieved
through the use of link-local addresses. Link-local addresses have a
well-known prefix that identifies the (single) shared link to which a
set of nodes attach. A host forms a link-local address by appending
its interface identifier to the link-local prefix."

Eliminate stateful address configuration server requirement on large
networks Multiple-network sites with multiple routers should not
be requried to maintain a special stateful configuration server unless
they so desire. "In order to generate site-local or global addresses,
hosts must determine the prefixes that identify the subnets to which
they attach. Routers generate periodic Router Advertisements that
include options listing the set of active prefixes on a link."

Facilitate graceful site renumbering Renumbering a network of any
size should be reasonably simple--for example, when "a site may
wish to renumber all of its nodes when it switches to a new network
service provider. Renumbering is achieved through the leasing of
addresses to interfaces and the assignment of multiple addresses to
the same interface. Lease lifetimes provide the mechanism through
which a site phases out old prefixes. The assignment of multiple
addresses to an interface provides for a transition period during
which both a new address and the one being phased out work
simultaneously."

Control over autoconfiguration method "System administrators need
the ability to specify whether stateless autoconfiguration, stateful
autoconfiguration, or both, should be used. Router Advertisements
include flags specifying which mechanisms a host should use."

These goals are intended to facilitate the use of IPv6 in networks that
continue to grow in size and scope.

CREATING A LINK-LOCAL ADDRESS

This part of the process of stateless autoconfiguration is simple: The node
simply uses its own network interface link layer address (or other value, if

Chapter16. IPv6Autoconfiguration 281

a link layer address is not appropriate or available) to generate a modified
EUI-64 address (see Chapter 8). This value is then concatenated to the
well-known link-local prefix (1111 1110 10; see Chapter 8).

Before the node can use this address, however, it must determine that the
address it has created is not already in use on the local link; if the address
is already being used by another node, there is an address collision and
the node must not attempt to use the address.

16.3.3 COLLISION DETECTION

Neighbor Discovery (Chapter 13) becomes important here: The process
of checking for nodes already using the desired IPv6 address begins by
sending a Neighbor Solicitation message to the address in question. If
some other node is using the address, it will respond to the configuring
node's solicitation, and the process of autoconfiguration comes to an end.
At that point, the node must be configured by hand (presumably, a system
administrator will be able to provide an alternate, and unique, value for the
link layer address so that the node can autoconfigure without additional
assistance).

Once the node determines its proposed IPv6 address is unique on the link,
it can configure its network interface with that address. The node can now
interoperate with all other nodes on the same link.

16.3.4 ROUTER ADVERTISEMENTS

As noted in Chapter 14, routers are required to periodically announce
themselves through advertisement messages. These messages include
information about the router sending them as well as about how nodes
on the link should configure themselves. In particular, routers advertise
to their link whether nodes are required to use stateful or stateless auto-
configuration and for what portions of the configuration. For example,
routers may specify that nodes are to use stateless autoconfiguration to
obtain an IPv6 address but use stateful autoconfiguration (e.g., DHCPv6)
to determine other network configuration data.

Although the routers advertise only periodically, a node in the process
of autoconfiguring sends Router Solicitation messages to the all-router
multicast group. The Router Advertisement response(s) the node gets

282 Part Two �9 IPv6 Protocols

16.3.5

will indicate how the configuration should be completed. RFC 2462
explains as follows.

A "managed address configuration" flag indicates whether hosts
should use stateful autoconfiguration to obtain addresses. An "other
stateful configuration" flag indicates whether hosts should use state-
ful autoconfiguration to obtain additional information (excluding
addresses).

If no routers are responding on the local link, the node should a t tempt
to invoke stateful autoconfiguration. The Router Adver t i sement message
may also include ne twork prefix information, in which case the node can
statelessly configure its own site-local and global addresses.

PRIVACY ISSUES

The use of IPv6 addresses that are based on the link layer MAC address of
a node 's ne twork interface results in some interesting side effects.

1. Assuming that the MAC address is a valid Ethernet address
(as most end user nodes are likely to be using), then the IPv6
address that is based on that address is likely not only to be
unique on the local link but also globally unique across the
entire IPv6 Internet. The IEEE MAC addresses are designed
to be globally unique, so therefore any address that uses them
in their entirety will also be globally unique.

2. Assuming that any given IPv6 address is globally unique, pack-
ets sent to and from the interface using that address can be
traced unambiguous ly to a specific host. Unlike in IPv4, where
it is not easy to link IP addresses with link layer addresses out-
side the local link, in IPv6, the link layer address is inseparable
from the IP address.

Shortly after the use of modified EUI-64 addresses for IPv6 was decided,
microprocessor vendor Intel announced that it would begin shipping CPUs
with globally unique identifiers accessible to applications running on those
processors. The step was taken for a number of reasons, 2 including the
ability to trace stolen CPUs as well as to allow owners of intellectual prop-
erty (such as software and content) to manage how their content was used

2Those reasons are unrelated to IPv6.

Chapter16 �9 IPv6Autoconfiguration 283

by linking their licenses to the CPU ID of a single computer. Microsoft
has taken similar steps in terms of limiting how their software is installed,
even when it is being installed to recover from disk crashes on the originally
licensed system.

A constituency of privacy advocates, possibly with reinforcements from
anti-IPv6 parties, noted that the same potential for misuse of any static and
system-specific identifier, including the modified EUI-64 identifiers used
in IPv6, exists.

The resultant uproar, with headlines like "IPv6 Extinguishes Privacy," gen-
erated a response in the form of RFC 3041, "Privacy Extensions for Stateless
Address Autoconfiguration in IPv6," which suggests an alternate method
for generating interface identifiers that don't uniquely and consistently
map to the same link layer and global-scope addresses.

The privacy problem stems from the widespread practice of using Web
cookies, especially when advertising, and Web tracking exchanges insert
seemingly harmless cookies that permit the trackers to connect a single
user to some or all of the Web sites she visits. Although it is possible to
deny Web sites the ability to set cookies on a system, if the IP address itself
is uniquely identifiable with a node, it becomes impossible for a user to
stop anyone with access to Web server logs from correlating visits across
Web sites.

To avoid the problem, the authors of the RFC suggest two approaches.

1. Use stateful autoconfiguration, by which a node is assigned an
address by a central server. The server can be configured to
deliver random or pseudo-randomly generated addresses that
change periodically.

2. Use stateless autoconfiguration but generate a random/pseudo-
random interface ID portion of the address, and periodically
change it to a new value. The changed addresses should be
selected randomly to prevent attackers from figuring out which
addresses belong to the same node over time.

RFC 3041 "proposes the generation of a pseudo-random sequence of inter-
face identifiers via an MD5 hash. Periodically, the next interface identifier
in the sequence is generated, a new set of temporary addresses is cre-
ated, and the previous temporary addresses are deprecated to discourage
their further use. The precise pseudo-random sequence depends on both

284 Part Two �9 IPv6 Protocols

16.4

a random component and the globally unique interface identifier (when
available), to increase the likelihood that different nodes generate different
sequences."

Renumbering

As we've seen in Part I, the practice of allocating addresses on a permanent
or semipermanent basis, especially when allocations are made by ISPs
rather than by central authorities, has caused an ongoing explosion in
the size of nondefault routing tables. When an ISP allocates a portion of
its own allocation, packets addressed to the ISP's customers are easily
aggregatable. However, when a customer changes ISPs, the customer must
either give up his IPv4 address and renumber their entire network or have
his suballocation go with him to the new ISP. In the latter case, backbone
routers must now incorporate a separate route for that customer's network,
whereas before, packets addressed to the customer's network would be
aggregated into the route for the ISP.

Part of the solution in IPv6 is to make renumbering easier, whether renum-
bering individual nodes, routes, or entire sites. The following protocols
have been proposed to simplify the process.

Site renumbering Discussed as part of IPv6 stateless autoconfiguration
in RFC 2462, automatic site renumbering solves the problem of how
to keep a lid on the expansion of nondefault routing tables as net-
works move from one connectivity provider to another as well as the
problem of reducing (or even substantially eliminating) the costs of
renumbering networks by hand when providers are changed.

DNS support for renumbering The controversial A6 resource record
(see Chapter 18) constitutes an extension to DNS aimed at improving
support for renumbering of IPv6 networks. Although it is rela-
tively easy to renumber nodes and routers, the propagation of DNS
information that reflects the new IPv6 addresses associated with a
domain name poses more of a problem. RFC 2874 "DNS Extensions
to Support IPv6 Address Aggregation and Renumbering," although
currently considered experimental, proposes one approach to solving
the problem. This protocol is discussed in Chapter 18.

Router renumbering As long as only connectivity within the link-local
scope address is required, nodes and routers can function fine

Chapter16 �9 IPv6AutoconfJguration 285

without any global IPv6 addresses or prefixes. However, external
routing is almost always required, and any support for renumbering
of networks must include a mechanism for rapidly updating router
prefix configurations at the same time that nodes are renumbered.
RFC 2894, "Router Renumbering for IPv6," defines a protocol that
allows routers to reconfigure themselves rapidly and with minimal
difficulty.

The last part of this section summarizes the approach to network renum-
bering described in a work-in-progress titled "Procedures for Renumber-
ing an IPv6 Network Without a Flag Day." The term "flag day" is used to
refer to the day (or moment) at which some aspect of an entire network (or
any other system) is changed. Flag days imply that all changes are made
simultaneously because the configuration that works on F - 1 will not
work on F + 1, and vice versa. If your system is not changed prior to the
flag day, your system will not work after the flag day; if your system is
changed before the flag day, it will not work until after the flag day.

With IPv6 deployment in production networks still far from widespread,
the protocols for renumbering are bound to be changed as more experience
is gained in using them. For now, however, they offer a good starting point
for experimentation.

16.4.1 SITE RENUMBERING

When addresses are leased (meaning, allocated for a discrete time period
rather than assigned for all time), sites can be renumbered more easily. At
the end of a lease, interfaces must get new addresses at which time they
can be given addresses with a new network prefix. The length of time that
an address is valid can be specified in router advertisements, so that when
a site is about to be renumbered, the routers can be configured to begin
advertising the new prefix at the same time specifying that the old prefix
is to be deprecated.

As described in RFC 2460, if a node's IP address changes during an inter-
action with another node, there is no way for the transport layer to handle
the change gracefully. TCP circuits cannot survive such a change, and even
UDP exchanges usually require using the same IP address throughout.

By differentiating between preferred and deprecated addresses, upper
layers (transport and application protocols) can use the information.

286 Part Two �9 IPv6 Protocols

The existence of two classes of addresses can be used to more gracefully
deal with addresses that suddenly become invalid; the upper-layer pro-
tocols can also use the two classes to choose the preferred address when
opening a connection with a remote node.

Further, administrators planning to renumber a network can at tempt to
schedule the renumbering procedure for a time when the fewest open
connections are likely a n d / o r for when the open connections with least
impact on organizational function are likely.

16.4.2 ROUTER RENUMBERING FOR IPv6

Renumbering of routers can be relatively simply done as long as there is
a way to notify routers of the network prefix for the links to which they
are connected. Under IPv4, network prefixes would rarely change---for
example, when a network is renumbered or when a router is connected
to a different link. Router renumbering in IPv6 networks is expected to
occur more frequently, and in order to support such changes, RFC 2894,
"Router Renumbering for IPv6," defines a set of ICMPv6 messages for
router renumbering.

The set of Router Renumbering Command messages containing sequences of
Prefix Control Operations (PCOs) can be sent to routers to notify them of
how to update prefixes. Each PCO contains instructions relating to router
prefixes, with the router processing the PCOs to determine whether they
refer to any of the router's interfaces and, if so, updating the interface con-
figuration. The RR Commands are ICMP message of type 138; the standard
format is shown in Figure 16-1.

Router renumbering requests are multicast to the all-routers scoped
address, and routers respond to them with Router Renumbering Results mes-
sages containing a Match Report (as part of the ICMPv6 message body) for
each prefix match with the RR Command. Those replies may indicate that
there were no matches with the router 's interface prefixes.

RR Commands contain Command Messages, comprised of a Match-Prefix
part (the part that indicates what prefix is to be modified by the RR
Command), and optionally one or more Use-Prefix parts (to indicate
new data to be used for the prefix). Following the Match-Prefix part of
the RR Command message, one or more Use-Prefix parts may follow, if
appropriate.

Chapter16. IPv6AutoconfJguration 287

+ - +

/ IPv6 header, extension headers /

+ - - + - + - + - + - + - + - + - + - + - - + - - + - + - +

/ ICMPv6 & RR Header (16 octets) /

+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + - + - + - + - - + - + - + - + - + - + - + - + - + - + - + - +

I
/ RR M e s s a g e B o d y /

+ - -+ -+ -+ - -+ -+ -+ - -+ - -+ -+ - -+ -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ -+ - -+ -+ -+ -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ -+ - -+

Figure 16-1: Router Renumbering Command format (from RFC 2894).

16.4.3 RENUMBERING AN IPv6 NETWORK WITHOUT A FLAG DAY

A work-in-progress, "Procedures for Renumbering an IPv6 Network With-
out a Flag Day," outlines some of the issues involved in renumbering IPv6
networks without disrupting the operation of the networks and without
requiring an all-at-once procedure such as are involved with flag day con-
versions. Rather than defining any specific protocols, the authors of this
document suggest a method of evaluating the progress of the process in
six different stages, followed by a discussion of the difficulties that may
ensue as well as security issues related to network renumbering.

The process of renumbering itself is accomplished using the mechanisms
already described to reconfigure router, node, and network. The phases of
renumbering are as follows.

1. The network is using the old prefix and is currently stable.
Everything works as it should in terms of routing, servers, and
all other network nodes.

2. The new prefix is added while the old prefix is still in use. Bar-
ring the ability to simultaneously and completely update all
nodes with the new prefix, there will be parts of the network
that correctly use the new prefix and other parts that will not be
able to use the new prefix. Reconfiguring all routing to the new
prefixes across all subprefixes (subnets) is estimated to take "a
period of time varying from minutes to hours depending on

288 Part Two �9 IPv6 Protocols

the size of the network and the degree of automation used in
reconfiguration."

3. Once the network has been reconfigured with the new prefix,
with all routing stabilized, every interface on the network will
have two valid addresses, one for the old and one for the new
prefixes. At this point, the old addresses are still being used
as the default when opening new network sessions; the new
addresses are not yet being used.

4. The process of shutting down the old prefix begins. This
includes modifying DNS records to reflect the new prefix and
reconfiguring by hand any nodes that still need to be changed
to use the new prefix. As the old prefix is taken out of service,
the individual nodes should be notified by the various autocon-
figuration and neighbor discovery functions that the old prefix
should be replaced by the new one for new sessions.

5. The old prefix is removed. As all sessions that still use the
old prefix are closed, the old prefix can be removed from each
node's configuration.

6. The network is using the new prefix and is currently stable.
Everything works as it should in terms of routing, servers,
and all other network nodes. Just as at the beginning, when
everything was stable, but using the old prefix.

The devil is in the details, of course, and some difficulty, according to
the authors of this document, will arise from nodes that are not directly
controlled by the network administrator or require manual configuration.
These devices are likely to be "unusual" in that they are not typical end-user
PCs but rather as follows.

VolP telephones with static configuration of boot or name servers,
scanning devices used by manufacturing partners in support of "just
in time" purchasing, manufacturing, or shipping activities, the boot
servers of routers and switches, and so on. Application designers fre-
quently take short-cuts to save memory or increase responsiveness,
and a common short-cut is to use static configuration of IP addresses
rather than DNS translation to obtain the same. The downside of such
behavior should be apparent; such a poorly designed application can-
not even add or replace a server easily, much less change servers or
reorganize its address space. The short-cut ultimately becomes very
expensive to maintain and very hard to replace.

In addition to citing security-related problems that can arise when nodes
are designed to use network addresses outside of the normal protocols

Chapter16. IPv6Autoconfiguration 289

for acquiring addresses (that is, software or hardware that has been
hard-coded to use a particular network prefix or address), the authors
also describe an attack that is possible during the renumbering process.

Attacks are also possible. Suppose, for example, that the new prefix has
been presented by a service provider, and the service provider starts
advertising the prefix before the customer network is ready. The new
prefix might be targeted in a distributed denial of service attack, or
a system might be broken into using an application that would not
cross the firewall using the old prefix, before the network's defenses
have been configured. Clearly, one wants to configure the defenses
first and only then accessibility and routing.

Mostly, though, the authors suggest that while IPv6 network renumber-
ing can be significantly easier than IPv4 network renumbering, it is not
child's play, nor should it be undertaken without due consideration of the
potential problems that can arise in the process.

16.5 Summary

IPv6 protocols for renumbering networks, nodes, and routers without
doing it manually fulfill an important design goal of the next generation
protocol. More important is the ability to do renumbering using a small set
of standard ICMPv6 messages and the standard tools provided by neigh-
bor discovery, rather than devising any new client-server protocols, as is
so often the solution chosen to provide new features or functions within
IP networks up to now.

Another important goal, and one that is related in a way to rapid renum-
bering, has been the ability to network mobile nodes, to be discussed in
the next chapter.

Mobi le I Pv6

When an IP node moves from one network to another, as when a notebook
computer is used in more than one location, one way to accommodate the
changes in the network is to use two or more sets of ne twork configuration
to match each location. However , another solution is to use a mobile IP pro-
tocol to allow the computer to use one IP address for all its communicat ions
across any network to which it is attached.

Mobile IP, however, should not be confused with the mechanisms required
to allow fast handovers in cellular wireless networks. In that type of
network, the handovers are handled at the link layer rather than at the
network layer. With a rapidly moving node and a ne twork using small
cels, the node would likely remain in the same link layer ne twork even as
it moved from one cel to another, thus obviating any need to change IP
addresses.

However , mobile IP is most useful for nodes that change location as well as
link layer network somewhat less rapidly. At the risk of oversimplifying,
an IPv4 mobile node is configured with an IP address on its home network.
When the mobile node connects to a network, it listens for a mobility agent

291

292 Part Two �9 IPv6 Protocols

advertisement to determine whether it is on its home network or some
other network. If it is on a foreign network, it requests a care-of address
from the mobility agent and then notifies a mobility agent on its home
network of the care-of address. Communication to and from the mobile
node can then be accomplished by tunneling through the remote network
using the care-of address.

As we'll see, under IPv4 the process of enabling mobility requires adding
special agents and servers, as described in RFC 3344, "IP Mobility Support
for IPv4." However, the careful design of IPv6 protocols, especially the
use of neighbor discovery functions, means that IPv6 mobility does not
require any special infrastructure to be set up to enable mobility.

17.1 IP Mobility

Mobility was from the start an important part of the IPng effort, at least
judging by the 1994 publication of RFC 1688, "IPng Mobility Consid-
erations." Here is a list of source documents on mobile IP; IP mobility
is still not widespread in part because it can be cumbersome to deploy
under IPv4.

RFC 1688 "IPng Mobility Considerations"
RFC 2005 "Applicability Statement for IP Mobility Support"
RFC2794 "Mobile IP Network Access Identifier Extension for

IPv4"
RFC 2977 "Mobile IP Authentication, Authorization, and

Accounting Requirements"
RFC 3012 "Mobile IPv4 Challenge/Response Extensions"
RFC 3344 "IP Mobility Support for IPv4"
RFC 3519 "Mobile IP Traversal of Network Address Translation

(NAT) Devices"

IPv4 mobility, as defined in RFC 3344, "IP Mobility Support for IPv4,"
requires three things to work properly.

1. The mobile node must be able to move from one link layer net-
work to another (that is, change link layer network addresses)
without having to change its IP address.

2. The mobile node must be able to interoperate with all other
IP nodes, without any modifications required to communicate

Chapter17 �9 MobilelPv6 293

with a mobile node. In other words, the mobility-enabled node
must be backward compatible with the rest of the Internet.

3. The mobile node must be authenticated whenever it tries to
update its location. This is to prevent attackers from "imper-
sonating" the mobile node in order to gain access to the mobile
node's home network.

IPv4 mobility defines three entities, which exchange mobility information
in ICMP messages.

Mobile node A node (host or router) that can move from one network
or subnetwork to another without changing its IP address and that
can maintain, without interruption, sessions that were begun while
connected on one network after the node is moved to another network
(with the assumption that there is no noticeable disruption to the
node's connectivity during the shift).

Home agent A router that acts on behalf of the mobile node on its home
network. Packets sent to and from the mobile node when it is away
from the home network are tunneled through the home agent. The
home agent also keeps track of the mobile node's remote location(s).

Foreign agent A router that provides routing services to visiting mobile
nodes. Mobile nodes must register with the foreign agent when they
first connect to the foreign network. The foreign agent router acts as
the other end of an IP tunnel for the mobile node, and the foreign
agent is recommended for use as the default router for mobile nodes
registered on a network.

The IPv4 mobility protocol offers Agent Discovery services, with foreign
and home agents periodically announcing their presence on a network as
well as responding to solicitations for agents sent by mobile nodes in the
process of connecting to a network. The protocol also requires the mobile
node - -when it first connects to a ne twork- - to register with its home agent
(sometimes directly or sometimes through the foreign agent, depending
on how the connection is made).

Figure 17-1 shows how the IPv4 mobility protocol works. Mobility agents
periodically transmit advertisements, addressed either to the all-nodes
multicast address or the limited broadcast address (255.255.255.255, mean-
ing "all nodes on this subnet ') . The advertisements include the agents'

294 Part Two �9 IPv6 Protocols

Figure 17-1:IPv4 mobility protocol operation.

IP addresses, so mobile nodes can address packets to the agents. The
adver t isements also include information about the care-of address(es) that
the agent offers, as well as other mobili ty information such as whether
registration is required, how long the registration is valid (lifetime), and
whether the agent is accepting new registrations. Optionally, ne twork
prefix length information may also be included.

When a mobile node first connects to a new network, it can also solicit
adver t isements (rather than wait ing for the periodic advert isement) by
sending out a Router Solicitation ICMP message, with the TTL field set
to 1. When it receives a mobility advert isement , the mobile node checks to
see whether it is connected on its own home ne twork or not; if it is on a
foreign network, it gets a care-of address.

Chapter17 �9 MobilelPv6 295

Once the mobile node has its care-of address, it must register that address
with its home agent, this time by sending a special mobility message
(Registration Request) in a UDP datagram sent to port 434. This message
includes the node's home address, home agent, care-of address, and other
information; the agent confirms the request with another UDP message
(Registration Reply).

The care-of address may either be an address provided by the agent in its
advertisement, or it may be acquired on the local network by using some
other mechanism such as DHCP to obtain a co-located care-of address. In
the latter case, the mobile node is configured with an IP address on the
foreign network (it must, in order to configure itself with DHCP). When
using a co-located care-of address, the mobile node acts as its own tunnel
endpoint, unlike in regular care-of addresses, where the tunneling is done
through the foreign and home agents. Figure 17-2 shows how the two
situations differ; whereas a foreign agent acts as the tunnel endpoint for
the transmission of packets to and from the mobile node, when a co-located
care-of address is used, the mobile node acts on its own behalf as the tunnel
endpoint.

HOME
AGENT

HOST

TUNNELS 1

)) FOREIGN
AGENT

' ROUTER
(Configured as

I co-located care-of
address)

1 4

))))

MOBILE
NODE (A)

MOBILE
NODE (B)

Figure 17-2: Co-located care-of addresses can be used w h e n a mobi le node has

local connectivity on a foreign network.

296 Part Two �9 IPv6 Protocols

This is merely an overview of the IPv4 mobility protocol, and it omits
details as well as important aspects of mobility security. It is provided
purely as background for discussion of mobility in IPv6.

17.2 Mobility Support in IPv6

As of mid-2003, the specification for mobility support in IPv6 is still a work-
in-progress, even though it has been revised almost two dozen times. The
objective of mobile IPv6 is still to allow a mobile node to move from link to
link while retaining the same, home, IPv6 address. This allows connectivity
to the mobile node transparently, no matter where the node is linked to
the network.

Unlike in IPv4, where mobility registration uses a separate protocol carried
in UDP datagrams, IPv6 mobility is defined as a separate protocol carried
in IPv6 extension headers. Although similar to mobility support in IPv4,
IPv6 mobility builds on the experiences of IPv4 mobility research as well
as new features of IPv6 itself (such as the reliance on extension headers for
IP-layer applications like mobility).

The IPv6 approach uses concepts such as binding of a mobile node's
home address with its care-of address and more rigorous authorization
procedures. The basics of the protocol are described in this section.

17.2.1 IPv6 MOBtUTY BASICS

Mobile nodes attached to their home networks send and receive packets
just as would any IPv6 node; there is no functional or observable difference
between a mobile node on its home network and any other node. When
the mobile node moves, however, it needs to acquire one or more care-of
addresses at which it can be reached. The care-of address is uniquely linked
to the mobile node, but it has the subnet prefix associated with the foreign
network to which the mobile node is attached.

As described in Chapter 16, IPv6 nodes of any kind can acquire valid IPv6
addresses when they connect to a new network through standard IPv6
procedures, whether stateful or stateless autoconfiguration. Mobile nodes,

Chapter17 �9 MobilelPv6 297

therefore, use these procedures to acquire local addresses that they then
can use as their care-of addresses.

To use a local address as a care-of address, the mobile node must be able to
bind its home address and the care-of address together. The mobile node
registers its care-of address by sending a Binding Update to its home agent,
which responds by sending a Binding Acknowledgment message.

A big difference between IPv4 and IPv6 mobility occurs by the inclu-
sion of the definition of a correspondent node: any node that communicates
with a mobile node (the correspondent node may also be a mobile node
itself). Mobile IPv6 nodes can notify correspondent nodes of their current
locations through a process of correspondent registration.

17.2.2 MOBILE/CORRESPONDENT NODE MODES

Two modes for mobility support are provided in the document "Mobil-
ity Support in IPv6" for communication between a mobile node and a
correspondent node.

Bidirectional tunneling This mode is available for communication
between a mobile node and any IPv6 node, whether or not it has
explicit support for IPv6 mobility. In addition, the mobile node does
not have to register a binding, either. The mobile node tunnels pack-
ets intended for the correspondent node through its home agent; the
home agent then intercepts packets addressed to the mobile node's
home address and tunnels those packets back to the mobile node via
its care-of address.

Route optimization This mode, so-called because it allows the optimal
route between mobile node and correspondent node, works by hav-
ing the mobile node register its current address binding with the
correspondent node. The correspondent node can thus send packets
directly to the mobile node's care-of address. In addition to optimiz-
ing the path between nodes, this option also reduces the possibility
of congestion at the mobile node's home agent (which would other-
wise have to mediate all traffic between the two) as well as any risk
of connection failure due to circumstances in the mobile node's home
network.

298 Part Two �9 IPv6 Protocols

Mobile IPv6 can be expected to support additional features such as
permitting mobile nodes to use more than one home network.

17.3 Mobile IPv6 Versus Mobile IPv4

These are some important differences between Mobile IPv4 and Mobile
IPv6, as cited in the draft specification for IPv6 mobility.

�9 There is no need for foreign agents; no special local support is
necessary to allow a mobile IPv6 node to operate correctly.

�9 IPv4 mobility defines the default mode of operation through
the agency of the mobile node's home network. This tends to
stress the mobile node's home agent; the ability to redirect a
correspondent node to the mobile node's current address is
implemented only as an extension of the IPv4 mobility speci-
fications. IPv6 mobility incorporates route optimization as a
fundamental aspect of the protocol.

�9 Rather than encapsulating packets in tunnels as in IPv4 mobil-
ity, most IPv6 packets sent to a mobile node include IPv6 header
extensionsma significant difference in terms of processing (no
need to encapsulate/decapsulate packets for tunnels).

�9 Use of IPv6 Neighbor Discovery eliminates the need to rely on
ARP or other link layer mechanisms; it also enables functions
such as unreachability detection and agent discovery.

Other differences include the way that authentication is accomplished
between mobile nodes and their agents or correspondents, as well as how
mobile nodes can be accommodated even when they are attached to a
network that is behind a firewall or NAT.

17.4 Summary

The early visions for mobile IP included millions of workers connecting
their laptop PCs to geographically and organizationally distributed net-
works, all able to interoperate as if they were still connected to their home
networks. Even without mobility, business travelers as well as individuals
enjoy relatively simple mobile interoperability, whether they connect via
wireless networks in coffee shops or via broadband in hotels.

Chapter17 �9 MobJlelPv6 299

The greater challenge for mobile IPv6 will undoubtedly prove to be in
enabling mobility for non-PC devices, from allowing the use of mobile
telephones anywhere to serving Web data from highly mobile platforms.
For example, automobile manufacturers might incorporate wireless Web
servers to provide access to car diagnostics from anywhere in the world.

Another important aspect of portability is the close correlation between
IPv6 and DNS. Where IPv4 nodes could, conceivably, operate without
a mechanism for linking domain names to IP addresses, IPv6 insists on
applications relying on DNS to translate the applications' domain names
to IPv6 addresses, as will be seen in the next chapter.

IPv6 and DNS

One of the most pressing challenges facing anyone who wishes to deploy
IPv6 is that of deploying Domain Name System (DNS) servers that are
able to correctly respond to requests for domain name resolution for both
IPv6 and IPv4 nodes. As long as DNS can be relied on to provide accu-
rate linking of IP addresses for domain names, IPv6 nodes can be linked
seamlessly and transparently to the application layer and the end user
(and, to a great extent, to the transport layer).

DNS is a very distributed database system that defines a variety of different
resource records (RRs) to correspond to different types of data. For example,
the A RR contains an address and the MX RR contains mail exchange
information. Two different RRs were defined for use with IPv6 addresses:
the AAAA and A6 RRs.

In this chapter, we begin with a brief look at how DNS works, followed by
an introduction to the two different IPv6 RR types and a discussion of the
pros and cons of using each, including a look at the prospects for which of
the two is likely to become prevalent in the IPv6 Internet.

301

302 Part Two �9 IPv6 Protocols

18.1 DNS Resource Records

No database can exist wi thout records, and DNS was defined to store
name and address information as well as provide the capacity to store
other information as well. DNS data is stored in resource records (RRs).
As defined in the internet s tandard for DNS, 1 "A domain name identi-
fies a node. Each node has a set of resource information, which m a y be
empty. The set of resource information associated with a part icular name
is composed of separate resource records."

In this section, we look at the basics of DNS RRs, including those origi-
nally defined for use with IPv4, how new ones can be added, and the two
different RRs that have al ready been specified for use with IPv6.

Figure 18-1 is a graphical representat ion of the fields compris ing an RR;
those fields include the following.

NAME The domain name where the RR is found; the owner may be
implied by the contents of the RR.

TYPE An encoded 16-bit value specifying what kind of abstract resource
is referred to in the RR. RFC 1034 ment ions several types, including
A to indicate a host address, C N A M E for the canonical name of an alias
used to simplify access to the resource, HINFO for the CPU and OS
used by the host, M X to identify the resource as a mail exchange
for the domain, 2 NS to indicate the authori tat ive nameserver for
a domain, PTR to indicate a pointer to another part of the domain
name space, and SOA to indicate the start of a zone of authority.

CLASS Another encoded 16-bit value, the class specifies "a protocol
family or instance of a pro tocol" - - for example, the IN class,
specifying the Internet system. This value is rarely used.

TTL The time to live of the RR. A 32-bit integer, TTL specifies the number
of seconds before the RR should expire. This is used most ly after
a resolver has retrieved an RR to indicate how long the cached value
should be saved and used before discarding it as out of date.

1STD 13, which includes RFCs 1034 and 1035.
2See Chapter 24 for more about how email works with DNS in IPv6.

Chapter 18 �9 IPv6 and DNS 303

i i i i i i

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I
/ NAME /

f I
+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+

1 TYpE I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

1 class l
+-+--+-+--+--+-+-+-+--+-+-+-+--+-+-+--+

l ~TL I

I I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

I RDLENGTH I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ RDATA /

/ /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 18-1: Layout of fields within an RR (from RFC 1034).

R D L E N G T H A 16-bit value indicating the length of the resource data, in
bytes, limiting the amount of data stored in any RR to no more than
65,535 bytes.

RDATA The data associated with the RR. The composition and length
of this field may vary, depending on the RR type.

Different types of RR have been defined for different purposes, although
we'll look here only at the types defined in RFC 1034. Domain nameservers
store all their information in these RRs, making the definition of each RR
roughly equivalent to a database's design or schema.

Although DNS is most often associated with the process of matching
hostnames with IP addresses, DNS makes other data available, for other
purposes. One of the most important of these other purposes is mak-
ing mail exchange (MX) information available. MX records allow Internet
mail addressed to one address to be redirected for delivery to some other
address for a variety of reasons: to keep private details of an organization's

304 Part Two �9 IPv6 Protocols

intranet and internal mail systems, to avoid going through a security
firewall, or to provide a standard corporate address format (e.g.,
"firstname.lastname@example.com") while allowing users to receive mail
at other addresses.

A number of RRs have been defined for use with DNS security exten-
sions; these include the SIG (security signature), KEY (security key), and
NXT (next domain) RRs defined in RFC 2535. Other special purpose RRs
include the NAPTR (naming authority pointer) type defined in RFCs 2168
and 2915 and the AAAA and A6 types defined for IPv6 address resolution;
there is even an RR defined simply for storing text strings (TXT).

18.2 DNS Extensions for IPv6

IPv6 support under DNS should be straightforward: define a new resource
record type for maintaining IPv6 addresses and linking them to domain
names. The first specification for DNS support of IPv6 published as RFC
1886, "DNS Extensions to Support IP Version 6," proposes these actions.

Add AAAA Resource Record The AAAA RR maps a domain name to an
IPv6 address. The "quad A" designation is derived from the A RR,
which maps a domain name to an IPv4 (32-bit) address; with IPv6
addresses four times the length of IPv4 addresses, the corresponding
resource record is four As.

New IPv6Reverse Lookup Domain One of the functions of DNS
enables reverse lookups, where an IP address is known rather than
the domain name. DNS support for this function for IPv6 addresses
requires the addition of a similar reverse lookup domain.

Update Queryformats Queries for IPv4 addresses are updated to
perform additional processing to recover both IPv4 and IPv6
addresses, if present. The details of the RFC 1886/AAAA proposal
are examined in this section.

18.2.1 THE AAAA RESOURCE RECORD

The AAAA resource record stores a single 128-bit IPv6 address in the
RDATA field. When a DNS AAAA query is made by a client node, the

Chapter 18 �9 IPv6 and DNS 305

DNS server responds with a list of all the AAAA resource records
associated with the domain name.

18.2.2 REVERSE LOOKUP DOMAIN

RFC 1886 specifies a reverse-lookup domain at IP6.INT (for looking up
the domain associated with a particular address rather than an address for
a particular domain name). That domain (IP6.INT) has been deprecated
and replaced by the more s tandard IP6.ARPA, as defined in RFC 3152,
"Delegation of IP6.ARPA." The IP4.ARPA domain is used for finding a
domain name to match an address, and ARPA is considered an acronym
for "Address and Routing Parameters Area";3 thus, the change for IPv6 is
to maintain consistency.

The IPv6 address to be looked up is converted into a name in the IP6.ARPA
domain by reversing the order of the hexadecimal digits of the address,
separating each digit by a dot ("."), and then adding the suffix "IP6.ARPA"
to the end. RFC 1886 provides the example on which this one is based.

4321 : 0 : 1 : 2 : 3 : 4 : 567 : 89ab

becomes:

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.IP6.ARPA

18.2.3 MODIFIED QUERIES

DNS query types, such as name server (NS) and mail exchange (MX)
queries, have to be modified to allow them to return both type A and
type AAAA results. Doing so allows name servers to send clients all the
relevant results for a particular domain name request, including both IPv4
and IPv6 addresses.

3The acronym ARPA originally derived from the Advanced Research Projects Agency,
part of the Department of Defense and an original funding organization of much of the work,
including the networks, supporting the original Internet Protocol. The IP4.ARPA domain
was originally intended for the use of that agency, but with the release of the program to
the public, the domain was already being used, and changing it would have been more
complicated than changing the meaning of the acronym.

306 Part Two �9 IPv6 Protocols

18.3 DNS and IPv6 Aggregation

Controversy arose from the publication of RFC 2874, "DNS Extensions
to Support IPv6 Address Aggregation and Renumbering," as a proposal
standard. Apparently, this new specification was to have been con-
sidered an alternative to AAAA but in RFC 3363, "Representing Internet
Protocol Version 6 (IPv6) Addresses in the Domain Name System (DNS),"
the situation was clarified with the A6 proposal (as the protocol defined
in RFC 2874 is known) reclassified as experimental.

The A6 resource record solves some problems but also creates other prob-
lems as will be made clear in this section. By design, A6 allows the
segmentation of host addressing information into multiple A6 records,
one of which contains only an IPv6 address, and the other(s) of which
specify a domain name for which network prefix information is available.

The result is that any A6 query may require additional lookups: one lookup
for the specific host and one or more lookups for domains associated with
that host.

By separating the DNS records for node addresses from DNS records
for domain names, the A6 proposal makes it possible to more quickly
propagate changes in network numbering. If all nodes retain their
64-bit host part addresses and only change the 64 high-order bits of
their network addresses when a network is renumbered, then the split
makes sense. DNS entries for individual nodes do not need to be
changed when the network is renumbered-- jus t the parent domain name
entries.

18.3.1 A6 RESOURCE RECORD

The A6 resource record, shown in Figure 18-2 (along with field definitions),
can, when combined with other A6 records, carry complete information
about the address associated with a particular domain name. The pre-
fix length indicates what portion of the address suffix is contained in the
record. If the prefix length is 64, it means that the address suffix field will
contain the low-order 8 octets of an addressmin other words, the host-part
of an IPv6 address. Following the address suffix field, the prefix name
field contains a domain name under whose A6 record more addressing
information can be found.

Chapter 18 �9 IPv6 and DNS 307

4 + + +

I Prefix len. J Address suffix I Prefix name I

I (i octet) I (0..16 octets) I (0..255 octets) I

4 + + +

o A prefix length, encoded as an 8-bit unsigned integer with

value between 0 and 128 inclusive.

o An IPv6 address suffix, encoded in network order (high-order octet

first). There MUST be exactly enough octets in this field to

contain a number of bits equal to 128 minus prefix length, with

0 to 7 leading pad bits to make this field an integral number of

octets. Pad bits, if present, MUST be set to zero when loading

a zone file and ignored (other than for SIG verification)

on reception.

o The name of the prefix, encoded as a domain name

this name MUST NOT be compressed.

Figure 18-2:A6 resource record format (from RFC 2874).

When the prefix length is zero (meaning that the entire 128-bit address is
included in the address suffix field), the prefix name field is not present.
In this case, the A6 record looks much like an A A A A record (it consists of
a single 128-bit IPv6 address).

When the prefix length is 128 (meaning that the address suffix field would
have to be 0 bits long), there is no address suffix field, and there is only
a domain name in the resource record.

18.3.2 A6 DOMAIN NAME RESOLUTION

Unlike more typical name resolution with A and A A A A records, A6 name
resolution requires the requesting node to compile a chain of A6 records.
To illustrate, consider what happens when a DNS client queries a server
for the IPv6 address for the domain name.

node. example.net

The first response might be an A6 record for the node itself, with a prefix
value of 8 (64 bits), and the domain name where more information may be
acquired.

example.net

308 Part Two �9 IPv6 Protocols

The next step would be to query the DNS for that domain name, in which
case the response might be an A6 record containing just an IPv6 network
address; that is, the prefix length would be 0, and there would be no
domain name at all, and the address itself would be zeroed out in the
less-significant 64 bits.

The client making the request could then concatenate the host part of the
address (from the first A6 record) with the network part of the address
(from the second A6 record), with the result being the proper IPv6 address
for the node named node.example.net.

18.3.3 AAAA VERSUS A6

As already noted, the coexistence of the AAAA and A6 proposals on
the standards track was confusing, especially since the AAAA protocol
had been the only DNS solution that was widely implemented before A6
came along. The situation was finally clarified with the publication of RFC
3363, "Representing Internet Protocol Version 6 (IPv6) Addresses in the
Domain Name System (DNS)," in which the A6 approach was reclassified
as experimental. RFC 3364, "Tradeoffs in Domain Name System (DNS)
Support for Internet Protocol Version 6 (IPv6)," is a companion document
that explains why the choice was made for AAAA over A6, as summarized
in the next section.

18.4 Choosing the Next Generation DNS RR

As may be supposed from the two different proposals, the A6 protocol
was moved off the standards track at this time because, ultimately, it is too
complicated. AAAA records allow simple request/response interactions
for DNS clients and servers; the A6 record requires that DNS clients and
servers interact more than once for each query, with clients required to
collect and verify A6 records as being part of a chain.

RFC 3364, "Tradeoffs in Domain Name System (DNS) Support for Internet
Protocol Version 6 (IPv6)," goes into considerably more detail about the
trade-offsmincluding the potential benefits in terms of improved address
and domain name aggregation and faster network renumbering with A6.
This section lists some of the criteria considered during the debate.

Chapter 18 ~ IPv6 and DNS 309

18.4.1 ADVANTAGE: A6

18.4.2

As explained in RFC 3364, A6 has one clear advantage over AAAA.

A6 RRs can represent addresses in which a prefix portion of the
address can change without any action (or perhaps even knowledge)
by the parties controlling the DNS zone containing the terminal por-
tion (least significant bits) of the address. This includes both so-called
"rapid renumbering" scenarios (where an entire network's prefix may
change very quickly) and [some] routing architectures... (where the
"'routing goop'" portion of an address may be subject to change with-
out warning). A6 RRs do not completely remove the need to update
leaf zones during all renumbering events (for example, changing ISPs
would usually require a change to the upward delegation pointer),
but careful use of A6 RRs could keep the number of RRs that need to
change during such an event to a minimum.

Also, an A6 resource record of the zero-length prefix format is identical to
an AAAA resource record for the same address. This means that anything
you can do with AAAA, you can do with A6. Thus, AAAA shouldn' t have
any functions that are unavailable to A6, and thus A6 could easily replace
AAAA.

ADVANTAGE: AAAA

Although AAAA provides only a subset of the features supported by A6,
there are some other considerations to contend with.

�9 The AAAA resource record differs from the A resource record
only in the length of the addresses they contain. Having 15 or
more years of experience with what is essentially the same
protocol is a considerable advantage for AAAA. A6, by com-
parison, is an unknown quanti ty in terms of how it behaves,
how it works, and how it fails in the field.

�9 AAAA resource records are designed for simplicity of data
retrieval. The DNS query transaction with AAAA records is
simple and straightforward. While A6 records make it easier to
update the DNS system with renumbered network data, AAAA
records make it easier to retrieve the data.

The RFC includes many other arguments, including less compelling ones
in favor of and against each proposal, and discussion of the problems and

310 Part Two �9 IPv6 Protocols

potential problems inherent in A6. However, ultimately, the choice seems
clear: Since data retrieval is a much more frequent task than data update,
and since AAAA simplifies retrieval, for the moment the IPv6 Internet will
continue to support AAAA as the default resource record for DNS.

18.5 Naming IPv6 Domains

No discussion of IPv6 and DNS would be complete without a brief
discussion of the issues of naming IPv6 domains. Depending on how
the domains are to be used, decisions must be made regarding how
IPv6 domains should be named, particularly in relation to existing IP4
domains.

One option is probably more appropriate if the domains will be IPv6-
enabled to allow IPv6 nodes to access the same resources as IPv4 nodes - -
in other words, if all resources in the example.com domain are to remain
accessible both to IPv4 and IPv6 nodes. In those cases, AAAA resource
records for the existing domains should be added in parallel to the existing
A records for those domains.

The other option is probably more appropriate when the IPv6-enabled
domains are to host services and resources that are targeted only at IPv6
nodes. In this case, a set of domains such as ipv6.example.com are set aside
for IPv6 use only. The IPv6-only domains would be entered into the DNS
with their own AAAA records, while the IPv4-only domains would remain
unchanged.

When, and even if, such distinctions are best made will depend on what
your networking goals are, as well as on further research into the operation
of large IPv6 networks.

18.6 Summary

As often happens, the interoperation of IPv6 and DNS will rest on tried
and true results and a straightforward protocol, AAAA, rather than the
more feature-full but less-tested alternative, A6. Ultimately, IPv6 relies to

Chapter18 ~ IPv6andDNS 311

a great extent on the use of DNS to eliminate or at least minimize the impact
it will have on other protocols.

Although some of these other protocol interactions with IPv6 have been
mentioned in previous chapters, the next chapter summarizes the work
that has been done to date on integrating IPv6 with the rest of the TCP/IP
protocol suite and other related protocols.

Next Generation Protocols

Contrary to many expectations, IPv6 will have relatively little impact on
other protocols considered to be a part of the TCP/IP network protocol
suite. That is by design: It is hard enough to update such a widely deployed
protocol as IPv4. Imposing the additional requirement of a whole set of
new protocols to work with IPv6 would doom the project from the start.

Although there are over a dozen different specifications related to running
IPv6 over [something], 1 those specifications largely explain the approaches
implementers should and /o r must take when implementing IPv6 over
those link layer protocols.

In this chapter, we take a brief look at how IPv6 implementations inter-
operate with related protocols, including the transport layer protocols,
application layer protocols, and link layer protocols. We will also revisit
the modifications necessary to infrastructure-related protocols that will be
affected by IPv6, especially DNS and routing protocols.

1 For example , "IPv6 ove r Etherne t , " "IPv6 over ATM," and so on.

313

314 Part Two �9 IPv6 Protocols

0 7 8 15 16 23 24 31
+ + ! +

I Source I Destination t

I Port I Port I
+ + 4 +

I I I
I Length I Checksum I

+ + 4 ~ +

I
I data octets . . .

4 . . .

19.1

Figure 19-1: UDP headers have no reference to IP version (from RFC 768).

IPv6 and Transport Layer Protocols

Transport layer protocols need to be made IPv6-aware only to the extent
that those protocols must process some or all of the IP headers. For exam-
ple, UDP and TCP checksums are calculated based on the IP source and
destination addresses. Thus, UDP and TCP implementations would need
to be patched to allow them to determine the difference between IPv4 and
IPv6 packets and the different locations of the addresses in IPv4 and IPv6
packet headers.

For example, the UDP header, from RFC 768, "User Datagram Protocol,"
is shown in Figure 19-1. Other than the checksum, there is no dependence
on an IP version.

The same goes for Transmission Control Protocol (TCP) headers, as shown
in Figure 19-2.

The newest transport layer protocol, Stream Control Transmission Protocol
(SCTP), is defined in the eponymously titled RFC 2960, and it includes
explicit support for initiating streamed sessions with either IPv4 or IPv6
nodes.

19.2 IPv6 and Link Layer Protocols

The following RFCs contain specifications for "IPv6 over X," where X
is some type of link layer network. Other specifications that are still

Chapter 19 �9 Next Generation Protocols 315

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+_+_+_+_+

i Source Port I Destination Port]
+-+

I Sequence Number I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+

I Acknowledgment Number I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+

I Data I IUIAIPIRISJFI J
I Offsetl Reserved IRICISISiYIII Window I

J I IGIKJHITININJ f
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - - + - - + - + - + - + - + - - + - + - + - - + - + - + - + - + - + _ + _ + _ + _ +

I Checksum] Urgent Pointer I
+ - + _ + _ + _ +

I Options I Padding J
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+

] data I
+ - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + - + - + - + - + - + - + - + - + _ + _ + _ + _ + _ + _ + _ + _ + _ +

Figure 19-2: The TCP headers contain no direct reference to IP addresses (from
RFC 793).

works-in-progress include IPv6 over MAPOS, Mobile IPv4, and Fibre
Channel.

RFC 2464

RFC 2467
RFC 2470

RFC 2472
RFC 2491

RFC 2492
RFC 2497
RFC 2529

RFC 2590

RFC 3146

"Transmission of IPv6 Packets over Ethernet
Networks"
"Transmission of IPv6 Packets over FDDI Networks"
"Transmission of IPv6 Packets over Token Ring Net-
works"
"IP Version 6 over PPP"
"IPv6 over Non-Broadcast Mult iple Access (NBMA) Net-
works"
"IPv6 over ATM Networks"
"Transmission of IPv6 Packets over ARCnet Networks"
"Transmission of IPv6 over IPv4 Domains Without
Explicit Tunnels"
"Transmission of IPv6 Packets over Frame Relay Net-
works Specification"
"Transmission of IPv6 Packets over IEEE 1394
Networks"

316 Part Two �9 IPv6 Protocols

RFC 3572 "Internet Protocol Version 6 over MAPOS (Multiple
Access Protocol Over SONET/SDH)"

In general, these specifications define how IPv6 is expected to work over
a specific link layer protocol. Key points include how IPv6 packets are
encapsulated in the link layer protocol data unit, how IPv6 multicasts and
unicasts are directed on the local link, and how IPv6 interface identifiers
(e.g., the 64-bit host part of the IPv6 address) are derived from link layer
addresses.

19.3 IPv6-Enabled Applications

As of 2003, most IPv6-enabled applications are still oriented toward the
UNIX/Linux/BSD world, although many have been ported to multiple
platforms. This section lists applications that have IPv6 support (or have
been reported to have IPv6 support).

BitchX (http://www.bitchx.com/) This popular IRC client has been
ported to Windows and Macintosh OSs as well as most popular *NIX
platforms.

BIND 9 (http://www.isc.org/products/BIND/bind9.html) The Internet
Software Consortium (ISC) publishes the BIND software for DNS
servers and includes support for IPv6 (with A6 RRs) as well as
DNSSEC.

Trick or Treat Demon (http://www.vermicelli.pasta.cs.uit.no/ipv6/
software.html) According to the Vermicelli Project (actually, Feico
Dillema, its creator), "TOTD is a small DNS proxy nameserver that
supports IPv6-only hosts/networks that communicate with the IPv4
world using some translation mechanism."

WWW6to4 (http://www.vermicelli.pasta.cs.uit.no/ipv6/software.html)
This is a lightweight HTTP proxy for use as an IPv4/IPv6 application
layer gateway, also created by the Vermicelli Project (Feico Dillema).

IPFilter(http://cheops.anu.edu.au/-avalon/ip-filter.html) IPFilter is a
software package that can be used to provide network address
translation (NAT) or firewall services. It can either be used as a
loadable kernel module or incorporated into your UNIX kernel;

Chapter19 �9 Next Generation Protocols 317

using it as a loadable kernel module where possible is highly rec-
ommended. Scripts are provided to install and patch system files, as
required.

LFTP (http://lftp.yar.ru/) A command-line client for file download via
FTP and HTTP that supports IPv6.

Quake for IPv6 (http://www.viagenie.qc.ca/en/ipv6/quake/ipv6-quake.
shtml) An IPv6-capable Quake client, published by the Canadian
research and consulting firm, Viagenie.

FreeS/WAN with IPv6 support (http://www.ipv6.iabg.de/
downloadframe/index.html) IPv6-enabled version of the FreeS/
WAN IPsec-based VPN software for Linux.

Java for IPv6 (https://doc.telin.nl/dscgi/ds.py/View/Collection-188)
Code that makes it possible to read and write in IPv6-sockets and
IPv6-multicast sockets within Java, as long as you have IPv6 enabled
on your Windows (9x/NT) computer.

19.3.1 OTHER APPLICATIONS

Many other applications are being adapted for use with IPv6, including
the popular Apache Web server; Mozilla and Lynx browsers; mail
agent programs Exim, qmail, Sendmail, and Fetchmail; as well as net-
work monitoring and network conferencing programs. A good place to
start looking for IPv6-enabled applications is the IPv6 Forum Web site,
www.ipv6forum.com. In addition to links to applications, the IPv6 Forum
serves as a clearinghouse for information about IPv6 internationally.

19.4 Adding IPv6 Support

KAME is the premier IPv6 implementation (see Chapter 21), written
for the FreeBSD operating system, and used by Apple for their OS X
server (Jaguar) that supports IPv6. The leader of the KAME project,
Jun-ichiro itojun Itoh, is also a prolific developer and writer, and he
wrote an excellent guide for programmers who'd like to add IPv6
support to their network applications. The document is available at

318 Part Two �9 IPv6 Protocols

http: / / www.kame.net / newsletter / 19980604/. Anyone interested in port-
ing existing applications or writing new ones that support IPv6 should be
required to read this article.

19.5 Summary

To the greatest extent possible, IPv6 interactions with lower- and higher-
layer protocols have been minimized to ease the process of migration to
support for IPv6 in a global Internet. This chapter ends the "protocols"
section of the book. The next chapters elucidate the "practice" of IPv6.

Part Three ~ IPv6 Pradice 321

This section provides real-life, hands-on guidance for using IPv6. Starting
with a chapter that covers strategies and tactics for planning the transi-
tion to an IPv6-enabled network, Part III continues with a chapter offering
real-life guidance on enabling IPv6 support on popular network and server
operating systems including Windows, Solaris, FreeBSD, and Cisco's IOS.
Other chapters offer step-by-step instructions for deploying email and
DNS servers under IPv6 and for implementing security through firewalls
and IPsec.

The final chapter addresses the issues of the current and future state of the
art and science of IPv6 networking.*

*Chapter 20 was written by John E. Spence. Chapters 21-24 are adapted from materials
published by Zama Networks, Inc., and written by Robert C. Zilbauer, Jr., Grant Furness,
Gerald R. Crow, IV, Megan Ewers Roede, Jim Van Gemert, Brian Skeen, and Steve Smith.

IPv6 Transition Planning and
Strategies

The IETF is putting almost as much effort into developing a smooth
transition process as they are into developing the protocol itself, and with
good reason. The IPv6-enabled networks of the near future will offer many
advantages over today's ne tworksmadvantages that are sorely needed as
the network platform takes on new applications and millions of new users.
But with IPv4 widely deployed and running business-critical operations
today, a smooth transition must be assured. Without a good transition tool
set, IPv6 networks would not arrive until much later.

This chapter describes a general methodology for transitioning networks
to IPv6, after considering many of the "high-level" considerations, and
looks at transition tools available to network professionals to get the job
done. The chapter ends with a case study of a hypothetical enterprise and
its course of action to manage the transition.

Although the case study offers an example, there is no "standard"
transition--all enterprises are unique, and each will manage its transition

323

324 Part Three �9 IPv6 Practice

20.1

differently. Still, this simple example offers an idea of some of the major
steps involved in moving to an IPv6-enabled world. Our hypothetical
enterprise is a multinational corporation with 4000 users spread across
eight sites in the United States, Asia, and Europe, with a fully deployed
IPv4 network. Although the specifics of each network are different, our
example should offer something to which almost everyone can relate.

Start Now

20.1.1

IPv4 will be with us for a long time: The sheer number of IPv4 nodes in the
world ensures that we will live in an environment where interoperability
is mandatory. Some enterprises will move early to IPv6--typically, those
enterprises that can capitalize on the advanced features of IPv6. Other
enterprises will wait to let their peers work out the "transition kinks," and
they will adopt later in the transition cycle and benefit from the experiences
of the early implementers.

Almost without exception, however, regardless of when you plan to tran-
sition, today is the right time to start learning about IPv6, training your
staff in v6 networking, and reviewing your capital equipment upgrade
and service provider plans.

THE I Pv6 DISCOVERY LAB

It is true that IPv6 is much like IPv4 in many aspects: Routing, routing
protocols, and steps for device configuration are logical extensions of well-
understood IPv4 concepts. However, in IPv6 the address space is larger,
the service set richer, and the on-link autoconfiguration and neighbor dis-
covery processes are different. The ideal place to learn these new concepts
is in a test environment.

The first step that any IT department should take toward IPv6 support
is building an IPv6 "Discovery" lab modeled on the enterprise's network.
Network engineers and IT personnel can learn about the new protocols, the
transition tools and techniques, and practice the transition steps utilized
in migrating the enterprise's production network.

The important thing is that you get started as soon as possible so you can
plan and manage a transition that does not risk major self-inflicted network
trouble.

Chapter 20 �9 IPv6 Transition Planning and Strategies 325

20.1.2

20.1.3

TRANSITION PROJECT MANAGEMENT

Whoever manages the transition to an IPv6-enabled network must keep in
mind the following series of goals and objectives.

�9 Set up a lab at the company 's technology headquarters, prefer-
ably at the same site where network designers and managers
work. Fill the lab with network devices, servers, and clients that
are representative of the overall company to create a miniature
version of the corporate network.

�9 Allow the technical staff to learn about IPv6 capabilities and
deploy them throughout the lab, use IPv6 transition tools, and
stage mock transitions to get hands-on experience with the
process of rolling out IPv6 support to corporate resources.

�9 Distribute IPv6 knowledge to technical staff, and work with
them to develop their transition strategy and processes.

�9 Upgrade DNS to support IPv6 addresses and (if possible)
provide DNS resolution over an IPv6 transport.

�9 Enable IPv6 in the network fabric throughout the enterprise,
making sure there is no impact on servers, clients, or current
business processes.

�9 Install dual IPv4/IPv6 stacks on internal servers so they run
both protocols, and make sure all applications support IPv6.

�9 Install dual IPv4/IPv6 stacks on internal clients.
�9 Deploy IPv6 internally with the aid of DNS records that allow

IPv6-capable clients to use IPv6 services. IPv4 will probably still
be the most common protocol outside the firewall, so dual-stack
IP will continue to be required for external communication.

�9 Once testing of applications, systems, and networks is com-
plete, begin moving services to the IPv6-enabled infrastruc-
ture. As acceptance generally increases, beyond-the-firewall
support for IPv6 may also be expected.

�9 Remove remaining IPv4 configurations, support contracts, and
enabling services and run on a pure IPv6 network.

The rest of the chapter provides more detail about the tools, strategies, and
processes that will make for a smooth transition within your enterprise.

THE TRANSITION TOOLBOX

The set of tools available for transitioning to IPv6 support continues to
expand. Whether intended to solve general transition problems or to enable

326 Part Three �9 IPv6 Practice

nodes to communicate in a mixed IPv4/IPv6 environment, these tools can
help make the task of support ing IPv6 easier.

�9 Native IPv6 connectivity
�9 Tunnel-based IPv6 connectivity
�9 Automatic tunnels (6to4)
�9 Intra-site automatic tunnels (ISATAP)

Protocol tunneling has long been used to allow nodes and networks to
bypass barriers to interoperability, and IPv6 tunneling is already helping
early implementers to use the global IPv4 Internet as a transport for IPv6
packets.

20.1.4 NATIVE IPv6 CONNECTIVITY

This is the simplest and most straightforward way to get IPv6 connectiv-
ity: Choose a service provider that offers IPv6 addresses and upstream
connectivity. Just as you might be assigned a block of IPv4 addresses with
your service, a native IPv6 connectivity provider would assign you a block
of IPv6 addresses. Unlike IPv4--under which sufficiently large blocks of
addresses are rarely available--IPv6 providers can deliver sufficient IPv6
address space for any foreseeable application.

For example, consider a new enterprise with 400 employees that has been
spun off from an established company. The new organization needs to
initiate its own connectivity: They could lease a T3 line from a provider,
and they still might only get a / 2 4 IPv4 address block (254 addresses).

If that company chooses to enable IPv6 natively, it can get a /48 alloca-
tion, the standard for enterprises using IPv6. That allocation is enough
to address 216 (65,536) networks, with each network supporting up to 264
(over 1.8 �9 1019) devices. 1 Each of these "/64" networks form the basic
network building block since they support autoconfiguration. The block
of IPv6 addresses will be "owned" by your ISP. Remember, IPv6 supports
only hierarchical route aggregation, but network renumbering in the event
of a change in ISP is simplified under IPv6.

1 At this time, there are no networks this large, let alone link layer protocols that could
support them. If they are ever built, however, IPv6 will be able to handle them.

Chapter 20 �9 IPv6 Transition Planning and Strategies 327

With native IPv6 connectivity and continuing IPv4 support, an organiza-
tion would have direct connectivity for both IP protocols.

20.2 IPv6 Tunneling

As of 2003, most commercial ISPs claiming to offer IPv6 connectivity still
do not offer native IPv6 connectivity, so for networks where such service is
not available, tunneling offers a next best choice. Tunneling allows isolated
IPv6 networks or IPv6 end nodes to communicate with other IPv6 nodes
across the IPv4 Internet. There are different types of tunneling, including
configured and automatic, but they all work in the same basic way as any
tunneling protocol.

IPv6 tunneling is the process of encapsulating an IPv6 packet inside an
IPv4 packet and forwarding it across the IPv4 Internet, where it is then
decapsulated and forwarded on to its IPv6 destination. Tunneling can also
work in reverse to move IPv4 packets across an IPv6 Internet, with an edge
gateway encapsulating IPv4 packets inside IPv6 packets and forwarding
them across the IPv6 infrastructure. However, given the relative rarity of
IPv6 Internets, this type of tunneling is much less common. Tunneling of
any form requires dual-stack routers at either end of the tunnel.

20.2.1 STATIC TUNNELING

Consider the scenario shown in Figure 20-1, with two isolated v6 end
nodes, two dual-stack routers, a v4 infrastructure, and a tunnel. End nodes
A and B, both IPv6 nodes, are separated by an IPv4-only network. For A
and B to exchange IPv6 packets, they would require a 6over4 static tunnel
between the dual-stack routers located at either end of the IPv4 network.
The term 6over4 refers to the process of tunneling IPv6 packets over an
IPv4 infrastructure. Node A could then send IPv6 packets destined for
node B to the local dual-stack router, Y, which encapsulates A's IPv6
packets into IPv4 packets. These packets can then be routed across the
IPv4 network to router Z, which strips off the IPv4 headers to restore the
original IPv6 packets and forward them to their original IPv6 destination
(Node B).

Static tunnels require that the dual-stack routers be capable of encapsulat-
ing and decapsulating IPv6 packets in IPv4 packets; for tunnels that cross

328 Part Three �9 IPv6 Practice

Figure 20-1: Static tunnel ing of IPv6 across IPv4 infrastructure.

the global IPv4 Internet, each endpoint of the tunnel must be associated
with at least one public, globally routable IPv4 address.

Static tunnels are often built between routers under separate administra-
tive control, in which case the administrators of the tunnel endpoint routers
can exchange IPv4 and IPv6 tunnel endpoint information and configure
their routers appropriately to establish the static tunnel.

Static tunneling can be a valuable mechanism for building bridges allowing
IPv6 traffic to flow across IPv4 networks. Static tunnels are easy to con-
figure and require very little administrative overhead, but they do require
separate tunnel configurations for each isolated IPv6 network destination.
As a result, static tunnels don' t scale well. Automatic tunneling solutions
are more appropriate for linking more than a handful of IPv6 locations.

Chapter 20 �9 IPv6 Transition Planning and Strategies 329

20.2.2 AUTOMATIC TUNNELING (6TO4)

Static tunnels require human intervention to record and configure tunnel
endpoints. An automatic tunneling solution known as 6to4 allows access to
native IPv6-based networks from within an IPv4-only provider network.
Any IPv6 node capable of sending and receiving IPv4 packets, and with
a globally routable IPv4 address, can use 6to4 to reach IPv6 nodes and
networks.

IPv6 nodes can interoperate using 6to4 in two fundamental ways.

6to4 node to 6to4 node Any standalone 6to4 node (defined as a single
machine running IPv6 with 6to4 functionality) can exchange packets
with another 6to4 node over an IPv4-only network.

6to4 network to native IPv6 node 6to4 node on an IPv4 network can
communicate directly with a node on a native IPv6 connection.

Not only does 6to4 support single node interoperability, but it can also
support up to a / 4 8 network behind the node.

Consider again the scenario illustrated in Figure 20-1: two single-node
6to4 islands that wish to exchange IPv6 packets but are connected only by
an IPv4 network (see Figure 20-2). Examine the simple network drawing
showing nodes "Karlene" and "Alexander."

"Karlene" has an IPv4 address of 200.150.100.30 (please note that this
is a real allocated IPv4 addressmnever use this address yourself), and
"Alexander" has the IPv4 address 220.120.80.40 (also a real address). The
6to4 function will "automatically" allocate IPv6 address blocks for these
two nodes by using the IPv4 address as the "middle bits" of a new IPv6
address.

An example is the best way to explain. Karlene will autoconfigure the IPv6
address "2002:c896:641e::1."

The "2002" portion of the address is set aside by the IETF specifically
for use with 6to4. Every IPv6 packet that starts with the "2002::/16"
prefix is, by definition, a 6to4 packetmit contains an IPv4 address. The
"c8" is the hex equivalent of "200," the "96" is the equivalent of "150,"
"64" is the equivalent of "100," and "le" is the equivalent of "30." The "1"
is completely arbitrary but is typically configured as the 6to4 node itself.

330 Part Three ~ IPv6 Practice

Figure 20-2: Automatic tunneling (6to4).

Essentially, then, each 6to4 packet (that is, any packet that starts with
"2002::/16") has an IPv4 address inside. If you look at the address lengths,
you see that that the portion of the address space consumed to specify the
6to4 mechanism and the IPv4 address is "2002:c8:96:64:1 e::/48."

The v6 address for "Alexander" would be "2002:dc78:5028::1."

Now, both nodes have globally unique, fully routable IPv6 addresses in
addition to their routable IPv4 addresses. If Alexander sends a "ping"
packet to Karlene, the 6to4 function on Alexander will recognize the
"2002::/16" prefix as a 6to4 address and will--knowing the IPv4 addresses
that can effect delivery of the packet are inside--automatically tunnel the
packet (encapsulate the packet in IPv4) to Karlene at 200.150.100.30. The
"packet type" field of the IPv4 packet will specify "IP-in-IP." When the
(IPv4) packet arrives at Karlene, the node will, upon finding the IP-in-IP
flag, unencapsulate the packet and effect delivery of the IPv6 packet to
"2002:c896:641e::1"--Karlene's IPv6 address.

This mechanism will work, automatically, for any number of 6to4 nodes
on an extended IPv4 network. The power of the mechanism is the ability to
automatically allocate a unique IPv6 address from a unique IPv4 address.
The real power, though, is that--since the IPv6 address space is 128 bits

Chapter 20 �9 IPv6 Transition Planning and Strategies 331

Figure 20-3:6to4 network to 6to4 network.

where the IPv4 address space is 32 bi ts - -an entire unique IPv6 network
can be generated from a single unique IPv4 address.

20.2.3 6T04 NETWORK TO 6T04 NETWORK

Recall that the v6 network address derived for Karlene was
"2002:c896:641e::1," and recall that only the leftmost 48 bits are required
to uniquely describe Karlene as a 6to4 node operating at IPv4 address
200.150.100.30. We could then address an entire network "behind" Karlene,
and that network would be represented as "2002:c896:641e::1::/48."
Remember that the "/48" specifies how many bits are being used by
the prefix, so this leaves a "::/80" for the network. We have, then, actu-
ally configured the network "2002:c896:641e::1::/48" as being reachable
via Karlene at IPv4 address 200.150.100.30, and we've assigned the IPv6
address "2002:c896:641e::1" to Karlene. The remaining addresses in the
block are free to be assigned within a large IPv6 network "behind" Karlene,
and Karlene will act as an edge-router to deliver those packets to other
6to4 networks (see Figure 20-3).

This is where the real power in the 6to4 mechanism becomes apparent.
Simply allowing two individual nodesmnodes that must, by definition,
each have a globally routable (i.e., non-NAT) IPv4 address- - to exchange
IPv6 packets within a tunnel would not be a worthwhile achievement.

332 Part Three �9 IPv6 Practice

But allowing two "::/48" IPv6 networks to be able to exchange packets
via two IPv4 nodes is a powerful transition mechanism. Recall that a
":: / 80" network implies that each network can be made up of 216 individual
networks, where each network can support 264 - 2 devices.

That 's a big network! At the time of this writing, the IETF IPv6 address
allocation plan is to allocate a "::/48"-size block to enterprises as a s tandard
allocation. So an enterprise with a single routable IPv4 address can "self-
allocate" the same size block for transition as they are likely to hold when
they have moved to native v6 addresses.

20.2.4 6TO4 NODE TO NATtVE-IPv6

What about 6to4 nodes or 6to4 networks exchanging packets with native
IPv6 nodes? Since native IPv6 nodes do not reside "behind" an IPv4-
address and don' t use the 6to4-reserved address prefix "2002::/16," how
are packets delivered to those nodes? The IETF has designed that capa-
bility in the 6to4 mechanism--nat ive IPv6 packet delivery is provided by
devices called "6to4 relays" (6to4 relay).

A 6to4 relay is typically a dedicated machine with multiple network
interfaces---one on the IPv4 network (where 6to4 nodes and networks
would be deployed) and one on the native IPv6 network. The 6to4 relay
must implement the 6to4 relay function. Here's how it works.

6to4 relays are located at a well-known IPv4 address--"192.88.99.1" (pro-
posed RFCk3068). We'll see in a moment how this works, but there will
be many 6to4 relays operating during the transition. When the IPv6 stack
on a 6to4 node (or ne twork- -our example uses the simple case) at tempts
to send a packet to an address beginning with 2002::/16, the previous
case is used- - the 6to4 function delivers the packet to the IPv4 address
encoded in the IPv6 destination address field. If the destination IPv6
address is not in the 2002::/16 ne tworkmsay the destination address is
"2001:2d0:80:ee::6"--the 6to4 node's 6to4 function will recognize that the
address is not a 6to4 address, and assume that the address is reachable via
a 6to4 relay, and will deliver the packet---encapsulated in IPv4-- to the 6to4
relay at 192.88.99.1. The 6to4 relay unencapsulates the packet and sends
the v6 packet to the native v6 host.

6to4 relays also provide packet transit from the v6 network to 6to4 nodes
and networks located on the v4 network. A native v6 node will send all

Chapter 20 �9 IPv6 Transition Planning and Strategies 333

packets destined for the 2002::/16 network to a nearby 6to4 relay, which
will encapsulate the packet in v4 and send it to the IPv4 address encoded
within the v6 address.

20.2.5 6T04 $CALABILITY

There will be many 6to4 relays operating at the intersection of the "old"
IPv4 network (the Internet) and the "new" IPv6 network (let's call it the
"v6net"). If a 6to4 node on the Internet wishes to deliver a packet to a
node on the v6net, there will be multiple 6to4 relays that could be used to
effect transit. Likewise, any v6net node sending a packet to a 6to4 node
(i.e., 2002::/16) can use the services of a number of 6to4 relays. The nodes
choose the "best" 6to4 relay, using exterior routing protocols that deter-
mine the best path between networks.

We'll just touch on thismthis is standard BGP network routing. Each 6to4
relay will advertise a route to the entire 2002::/16 network into the v6net.
BGP optimization will determine, for each node or network, the logically
closest 6to4 relay to deliver packets to that network. Similarly, each 6to4
relay will advertise the well-known network address 192.88.99.0 (mask
255.255.255.0) into the Internet, and 6to4 nodes will choose the logically
closest 6to4 relay to deliver their packets to the v6net.

Each network looks like a large multihomed network to the peer network
(i.e., the v6net looks like a multihomed network to the Internet, and vice
versa).

Two last important points: 6to4 relays are stateless--they don't track ses-
sions to streams of packets, they provide delivery on a packet-by-packet
basis, and each packet contains all the information the relay needs to effect
delivery. This is important because the multirelay environment implies
that as the networks change over time (including in real-time, during a
internetwork session) different 6to4 relays can be used in a given session.
In fact, if you consider the complex topologies of these networks, it is
very likely that two machines exchanging packets across the v6net-Internet
boundary will use the services of different 6to4 relays. As an example, a
packet originating from nodeA on the Internet bound for nodeB on the
v6net will transit via relayQ. Packets flowing in the other direction will
use the services of relayU. In midsession, if there are changes to the BGP+
routing environment within the v6net, packets may shift to transit via
relayV (Figure 20-4).

ovm
l

lm
l

c~

c~

~

o
l-q

~
 s~

c~

c~

Chapter 20 �9 IPv6 Transition Planning and Strategies 335

The last important point is we assume that the Internet and v6nets are both
"fully meshed." In other words, we assume that any 6to4 relay has connec-
tivity to every 6to4 node and native v6net node. This is a requirement (and
not a bad assumption) if we are to allow multiple 6to4 relays to advertise
reachability to the entirety of both networks.

20.3 ISATAP

Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) is a comple-
mentary transition tool to 6to4. Whereas 6to4 provides a mechanism for
v6-capable nodes or networks existing within a larger IPv4-only network
to gain access to other IPv6 networks, ISATAP provides v6 connectiv-
ity within an enterprise where the internal network fabric is not entirely
IPv6-capable. ISATAP is another form of "automatic tunnel."

ISATAP is currently an IETF draft, so there may still be changes in how
the mechanism works.

Let's look at an example. Figure 20-5 shows an enterprise that has
obtained a ::/48 network prefix (3ffe:80f0:0004::/48). We see that there
are three internal routers and five hosts shown. We see that HostE has a
native v6-address. RTRz (Router Z) is v6-enabled, so HostD has a native
v6-address. We see that RTRy and RTRx are v4-only routersmfor whatever
reason they are not deployed with a v6 capability. ISATAP allows us to
extend a global v6 address and global v6-capability to HostC, HostA, and
HostB. Addresses and other notes on the diagram will be used throughout
the example.

As you recall, 6to4 allows a node with a globally routable v4 address
to construct a globally routable v6 ne twork- - the v4 address of the 6to4
node (or edge-node) makes up the low-order 32 bits of the 48-bit 6to4
prefix (2002::/16 making up the highest-order 16 bits). The remaining
address bi ts-- the lowest 80 bi ts--are used for v6 addressing inside the
6to4 site.

For ISATAP, the high-order 48-bits are obtained as a globally routable
v6-address block for the enterprise, and ISATAP uses the lower 80 bits
to construct addresses inside the enterprise. In fact, the IPv4 addresses of
the ISATAP hosts are used to construct the lowest 32 bits of the ISATAP
address.

336 Part Three �9 IPv6 PractJce

Figure 20-5: Deploying ISATAP.

The ISATAP host uses the services of an "ISATAP router"-- typical ly a
router that has a native v6-interface and a v4-only interface designated
as the ISATAP interface. The network administrator assigns an "ISATAP
prefix" to the router (in our case 3ffe:80f0:4:300::/64). The IPv4 address
of the router is also added to the enterprise DNS under the well-known
name "ISATAP." The ISATAP router will then forward v6-packets onto
the native v6 network from ISATAP hosts using the router as its ISATAP
tunnel-endpoint.

Here's how it works. HostA is configured with an IPv4-address (you
can see that does not need to be routable) to run the ISATAP mecha-
nism. When HostA enables its network link, seeing that it is an ISATAP
host, it asks the DNS for the address of "ISATAP." The DNS replies
with the v4-address of RTRy. Next, HostA tunnels a router discovery
packet (IPv6-in-IPv4) to RTRy, and RTRy responds with a router advertise-
ment (including the network prefix for HostA to use--3ffe:80f0:4:300::/64).
Upon receipt of the prefix, HostA constructs its globally unique IPv6
address, 3ffe:80f0:4:300:0:5efe:172.16.13.5 (the "0:5efe" in the address is a
reserved value that specifies an ISATAP address). At this point, HostA
has obtained full IPv6 capability via the services provided by the ISATAP
router RTRy.

The ISATAP specification makes arrangements for the graceful transition
to native v6 capability. Only ISATAP nodes that do not receive multicast

Chapter 20 �9 IPv6 Transition Planning and Strategies 337

router advertisements (RA) for IPv6 will configure and use ISATAP inter-
faces. When an ISATAP machine receives its first unsolicited native RA, it
will deprecate the ISATAP interface in favor of its newly acquired native
v6 interface. In this fashion, ISATAP traffic will automatically give way to
native v6 traffic as additional enterprise routers are configured with v6.

Our example is for a simple enterprise network where all ISATAP hosts use
the same ISATAP router. In a larger enterprise, multiple ISATAP routers
can be deployed, and some scheme of load-balancing DNS can direct dif-
ferent hosts to different ISATAP routers. One possibility would be simple
round-robin DNS processing, where the load would be balanced between
however many ISATAP routers were configured on the network and in
the DNS. More effective techniques to distribute traffic between multiple
ISATAP routers may be introduced.

20.4 Preparing for Transition

The first steps to a successful transition is to make sure your staff is well
trained and that the enterprise has a place to test out equipment and
concepts. A little training will go a long way for IPv4-savvy engineers.

20.4.1 IPv6 TRAINING

IPv6 and IPv4 are alike in many ways, and learning IPv6 concepts nor-
mally comes easily to current network practitioners. Conceptually, packet
generation and formatting, routing, and packet handling are similar but
not identical.

It is time consuming, however, for network practitioners to make the leap
to IPv6 without some formal training. New concepts, like autoconfig-
uration, neighbor discovery, address planning and subnetting, and the
extensions to the routing protocol are unfamiliar at first but are easily mas-
tered when explained by an experienced IPv6 engineer. Reinforcing these
concepts in a lab setting is critical, and having a "sandbox" environment
to experiment in back at the students home-enterprise is also important.

Training should span a number of different disciplines. Network engineers
that will be designing the IPv6 network need to understand it at all levels.
This includes a general overview of the protocol, transition strategies and

338 Part Three �9 IPv6 Practice

methods, and any areas of specialty instruction appropriate for that engi-
neer (i.e., routing protocols, DNS, address architecture). Like the network
engineer, network administrators will need general knowledge of IPv6m
but also hands-on experience with network devices' (routers, switches,
firewalls, servers, etc.) configuration and support procedures.

So whereas it is important that your network staff receive structured IPv6
training, it is important not to overlook the large base of common ground
upon which your existing engineers can build. They will quickly master
the new protocol with some training and time to experiment.

20.4.2 THE LEAR.I.G LAB

There are a number of things to consider when designing your IPv6
Learning Lab. First and foremost is the requirement of knowing your
own business and building the lab to help your people understand the
components and architectures you'll be dealing with most often. If your
organization will be buying IPv6 technology and deploying it internally,
your lab should reflect the products and services you will be purchasing
as well as the internal network environment; if your organization will be
reselling IPv6 technologies, your lab should incorporate the products and
services you intend to sell as well as the environments into which you will
be selling.

Here are some other suggestions for designing and building a learning lab.

Flexibility Build independent areas in the lab so different types of testing,
on different components or software versions, can take place at the
same time. Some projects will be long lived, so make sure you don't
have to disrupt tests-in-progress for "right now" exercises.

Isolation The lab should always be separate from any production envi-
ronment. Your lab is an environment for learning, and that means
being able to change configurations and try things that might not
work. Isolating the lab environment ensures that experiments will
not produce any problems on your organization's production
network, and vice versa.

Partnerships You can leverage your lab investment by offering to do
testing for companies with whom you have relationships, whether
they be customers or suppliers. This is a great way to build a win-win

Chapter 20 �9 IPv6 Transition Planning and Strategies 339

relationship with a key provider and gives you the benefit of early
insight into their products and experience for your staff while giving
them early feedback on their products.

Interoperabili ty IPv6 is a feature-rich protocol, and you'll want to ensure
that all the components, particularly components from different ven-
dors, all work smoothly together. Vendors tend to concentrate on
interoperability within their own product lines, so it is important to
stock the same components that your organizational network uses so
you can test in your own lab.

The learning lab should incorporate testing facilities for three major areas.

Network Infrastructure The lab should, at a minimum, include core and
edge routers, switches, firewalls, and other relevant devices. At the
very least, you should have one core router, one edge router, two or
three multilayer switches, and one v6-capable firewall.

Network Operating Systems In addition to the operating systems
already in use in your network environment, you may want to con-
sider adding other OSes to test for interoperability. A great deal of
experimentation with IPv6 has been done with various flavors of
BSD and Linux; Microsoft's IPv6 support under the latest versions
of Windows will undoubtedly be superior to that of earlier versions.

Network Services In addition to any network services DNS (Static and
Dynamic), DHCPv6 (HP-UX11i, W2K2), HTTP (Apache), Security
(IPF, Checkpoint, Router ACL), Printing, Network Management
(HPOV), and so on.

The key thing is to build a learning lab that fits your business needs.

20.5 Planning

Planning is critical for a trouble-free transition. There are many variables,
but two are particularly important. One is planning for long-lived phys-
ical and software assets that will affect the pace of transition, and the
other is an architectural decision about traffic flows in your transitioning
network.

340 Part Three �9 IPv6 Practice

20.5.1 PLAN CAPITAL PURCHASES

Many network component providers are planning their IPv6 product line,
and some are deploying products today that support IPv6 either beta
or true production-ready versions. Several of these vendors (Cisco, for
example) have published "product roadmaps" that lay out their plans for
IPv6 support. Some products will be "dead-ended" before v6 support is
added.

So an enterprise needs to carefully plan its network and system capital
purchases to avoid a situation where a new component has been purchased
(i.e., a core router) that has significant depreciable life left but does not
support IPv6 when the enterprise is ready to transition.

These types of costly mistakes are easily avoided. Talk to your network
vendors, and ask to see their roadmaps, or be briefed by their product
development people on their plans. Get firm commitments for product
plans and milestone dates. The transition to IPv6 provides an excellent
opportunity to review your network plans--and change strategies or your
favored vendor providers--if that works to your advantage.

20.5.2 TRANSLATION

Whether or not an enterprise plans to use packet translation during the
transition has a major impact on how the new network is deployed.

A firm can choose to not use translation--you simply lose the ability for
v4-only and v6-only nodes to talk to each other. If the network fabric is
v6/v4 enabled, and the network servers (i.e., any machine that multiple
clients exchange packets with) are v4/v6 enabled (i.e., running "dual
stack"), then new computer clients can be deployed with only v6 con-
nectivity, while "old" systems can continue to run IPv4. In this manner, no
protocol translation is neededmsystems exchange packets via the "highest
common denominator" protocol, choosing v6 if they both support it, and
v4 if one endpoint is not v6-ready.

Alternatively, all new client systems can be deployed dual-stack. This gives
complete backward-compatibility with deployed systems that can only
support v4, and yet new applications that can take advantage of v6 can
use v6 when communicating with newly deployed systems. Typically, in

Chapter 20 �9 IPv6 Transition Planning and Strategies 341

environments where clients greatly outnumber servers, deploying both
protocols on clients is not the best strategy.

The enterprise can also install a translator. Translators provide the most
complete interoperability for the network. Any machine can talk to any
other, and as more and more network nodes become v6-enabled, traffic
migrates to an all-v6 base. This is a good implementation choice for envi-
ronments that are more peer-to-peer oriented than client-server oriented.
The problem with translation is that it is slow (translation--especially soft-
ware translation takes time) and can create a bottleneck in the network for
translation traffic. Yet, the delay caused by translation may be offset by the
ability to access content or services that exist only in the v4 world.

Translation devices are not yet widely available, so it is hard to quantify the
network efficiency affects of translation on a network. Nonetheless, it is an
important consideration you will need to evaluate when your enterprise
makes the migration to v6.

20.5.3 APPLICATIONS

Applications must be v6-capable to support the enterprise transition.
Although most v6 changes are isolated at the network layer, many appli-
cations that use network services do validation checking on inputs (i.e.,
when a node rejects an IPv6 address because the node has been configured
to allow only valid IPv4 addresses) or results from DNS.

At the least, any network application will need to be recompiled using
the v6-capable link libraries. For purchased applications, make sure the
vendor verifies v6-support before you buy.

20.5.4 PUBLIC INTERNET SITES WILL LAG

Commerce and nontechnology sites on the Internet will likely be midphase
adopters of IPv6. Much in the way that Web site builders optimize their
designs for the "middle" of the market in terms of browser compatibility
and bandwidth requirements, Internet sites that have a mass market appeal
will not support IPv6 until there is a critical mass in the user community m
especially if translation becomes a commonly deployed transition tool.
Once critical mass is achieved, or as the volume of IPv4 packets diminish

342 Part Three �9 IPv6 Practice

in favor of an accelerating IPv6 packet count, network service providers
will move into the v6 environment in an effort to "chase the money."

For these reasons, an enterprise may choose to deploy translation--not
inside the network (which we described before as an option) but at the
network edgemto provide v4-capability for workstations to communicate
with lagging Internet-based systems. Proxy services, where your internal
clients talk to the proxy via v6, but the proxy talks to the Internet site via
v4, may also become available.

20.5.5 IPv6 ROUTING

While IPv6 has been under development for many years, it is only in
the recent few that support for v6 has been incorporated into the equip-
ment that comprises the Internet's infrastructure. Currently, IPv6 packet
forwarding (routing) is being handled in two ways. The first, and most
common, is via "software-based forwarding." In a software-based system,
the network engineer or administrator downloads and installs a new image
(operating system) onto the existing router (IPv4-only) that identifies how
to handle IPv6 packets. When packets (IPv6) come through the router that
cannot be handled by the hardware, they are passed along to the operating
system and processed.

The second method is by hardware-based forwarding. Unlike software-
based forwarding, the instructions for handling IPv6 packets are "hard
coded" into the chip sets on the routers (much like the CMOS on a PC).
Almost all routers today do hardware-based forwarding for IPv4 packets.
Hardware-based forwarding is very efficient and generally trouble free.

The significant difference between the two methods is in performance. In a
software-based implementation, every IPv6 packet must be handled by the
operating system, which requires additional time. While that time may
be relatively small on a per-packet basis, it makes a dramatic difference
in a production network. Production network routers may handle bil-
lions of packets per day, making software-based forwarding inefficient
for practical purposes. Unfortunately, many of today's routers cannot
be "upgraded" to handle IPv6 in the hardware and must be replaced to
support IPv6.

Additionally, there are other factors that will affect the performance and
efficiency of IPv6 routing. As previously mentioned, two IPv6-enabled

Chapter 20 �9 IPv6 Transition Planning and Strategies 343

routers can pass packets through an IPv4 cloud by utilizing tunnels.
However, the process of encapsulation and decapsulation increases the
amount of time it takes to handle each packet. And by encapsulating the
packet within an IPv4 packet, many of the improvements and benefits of
IPv6 are lost.

The actual protocols utilized to provide IPv6 packet routing are very sim-
ilar to those available today for IPv4. Routing protocols, such as RIP and
OSPF, are available, and at the time of this writing the following routing
protocols have been enhanced or developed for IPv6:RIPv2 to RIPng,
OSPFv2 to OSPFv3, BGP4 to BGP4+, and ISIS. Other protocols, such
EIGRP, may be enhanced to support IPv6 in the future.

Of course, one of the most important aspects of the transition process is that
each piece of equipment handles the IPv6 packet uniformly. The IETF and
the IPv6 working groups have spent a great deal of time and energy stan-
dardizing IPv6. However, not all equipment manufacturers will support
every aspect of IPv6 at the same time. Many of today's IPv6-enabled router
manufacturers support IPv6 at some level but don't necessarily support all
of the more advanced features or routing protocols. As IPv6 matures the
level of interoperability between vendors will increase.

20.5.6 OBTAINING AND PLANNING FOR I Pv6 ADDRESSES

Planning for IPv6 addressing is largely a matter of allocating addresses
wisely throughout your enterprise, v6 addresses are made to summarize
wellmthat is, to be hierarchical. If your address blocks are well planned
for summarization, your network will be more efficient, easier to manage,
and cheaper to implement.

Plan for the future. Leave plenty of "reserved" space in your address-
ing scheme to account for future growth. In this way you avoid having
to add noncontiguous blocks of addresses throughout the network as it
grows.

Use address scoping (link-local, site-local, global) where feasible. For
example, for a directly connected Ethernet link between two routers, use
only the link-local addresses of the routers. Or for an isolated v6 network
that does not need to route outside the "site," utilize site-local addressing
only.

344 Part Three �9 IPv6 Practice

Most enterprises will obtain v6 allocations from your current v6 ISP
(ISP would provide a block from their current v6 allocation). Unlike
IPv4 allocations, where enterprises can "own" their own addresses and
move them from ISP to ISP, v6 addressing--since it is designed to be
hierarchicalmworks differently. Large ISPs receive large IPv6 address
blocks and allocate them to smaller ISPs and large enterprises. Your v6
addresses will almost always be part of a larger block allocated to your ISP.

You can also get a block for your enterprise from a test allocation. The
6Bone (www.6bone.com--addresses in the 3ffe::/16 range) will provide
addresses to most any enterprise wanting to gain early experience with
IPv6. This is, however, very much a "do-it-yourself" project, and it is a
much larger project recommended only for companies who want to be a
bit ahead of the leading edge.

Last, if your enterprise is going to be an ISP, after you've managed your
business well with a test allocation from the 6Bone, you can seek a large
block of production addresses from a public Internet registry like IANA,
ARIN, or APNIC for production v6 address blocks.

20.6 Migration

At this point the enterprise is ready to begin the gradual transition to an
all-IPv6 network. The goal is to migrate the network to IPv6 with no
disruption to current v4 operations. The following steps form a logical
process of enabling the base infrastructure, network fabric, and finally, the
server and client nodes on the network.

20.6.1 UPGRADE YOUR DNS ENVIRONMENT

Two important distinctions on v6 DNS functionality need to be made up-
front. Some newer DNS implementations provide support for v6 address
records (AAAA and A6 records) but do not answer DNS queries via
the IPv6 protocol. Other implementations provide bothmthe v6 records
and the ability to respond to queries via IPv6. We will not discuss DNS
configuration in detail here.

A properly configured DNS can contain both v4 and v6 records for a given
hostname. For example, the host "bob.pretend.dog" (note that "dog" is

Chapter 20 �9 IPv6 Transition Planning and Strategies 345

not a real domain) can be resolved by the DNS as either 10.20.30.40 or
3ffe:4b0::2. In fact, if both records are available, both are returned to the
DNS client. The client then chooses which address to use, based on the
protocols available on the client.

You see that this is an ideal situation for transition. IPv6-capable clients,
seeking access to IPv6-capable applications on the network will use the v6
address returned by the DNS (we assume that the server in this example
is dual-stacked). As long as there is also an IPv4 address associated with
the server, IPv4-only clients will access the application via IPv4~us ing the
v4 address returned by the DNS. As the transition progresses and more
network services move to dual-stack (and more clients move to dual-stack),
traffic will migrate to IPv6. Complete transition will be marked by the
removal of all v4 address records from the DNS.

20.6.2 UPGRADE THE NETWORK FABRIC

At this point, all the components that make up the fabric of your network
must be upgraded to be IPv6 compatiblemas well as IPv4 capable, since
there will be a transition period during which both protocols will be active
on the network. The upgrade task can be divided into three steps.

1. Determine specifically how each component needs to be
upgraded, and outline a detailed transition planmincluding a
recovery/backout procedure.

2. Obtain the hardware and software components needed, and
test them together in a nonproduction environment.

3. Complete the transition plan.

20.6.3 OUTLINE THE PLAN

Begin by outlining the transition plan. Consider the specific components
that will be upgraded, and consult the vendor on the proper procedures.
Make sure a backout plan exists for each component in the network and
for the transition plan as a whole.

Consider the following for each component.

Do the network routers support hardware- or software-based
IPv6 packet handling?

346 Part Three �9 IPv6 Practice

20 .6 .4

�9 If IPv6 is handled in software, what device image is required
for IPv6 support?

�9 Are there additional hardware requirements to support IPv6 m
or the new software image--l ike additional memory or
storage?

�9 If this is a multivendor network, carefully compare the compo-
nents for hardware support capabilities (i.e., one vendor may
support gigabit Ethernet for IPv6, whereas another vendor will
not).

�9 Verify that the routing scheme used on the network will sup-
port IPv6. Verify that the layer 3 switches in the network
support IPv6.

�9 Layer 2 switches, since they do not examine or act upon IP
headers, should support IPv6 without any modification.

�9 Examine the network edge devices like firewalls and intrusion
detection systems to ensure they support IPv6, and plan for
their upgrade.

OBTAIN UPGRADE COMPONENTS

Once the plan is in place, collect the hardware components and software
images needed to begin the transition. In some cases, this will be as simple
as downloading a new device image from your vendor. In other cases, a
complete "forklift upgrade" will be required.

Test everything in a nonproduction environment. The learning lab
should easily adapt to this new level of testing. Conduct a systemmnot
componentmtest before beginning the transition. Be systematic in testing,
and remember to test for performance as well as for functionality and inter-
operability. Make changes to the network under test as you would in your
production environment to ensure that the operational procedures in place
are also sufficient to support the new IPv6-capable network.

20.7 Transition

At this point, the network is ready to transition to dual-protocol capabil-
ity. Plan the specific upgrades by scheduling network outages, and leave
yourself plenty of time to handle the unforeseen problems that inevitably
arise. If too many problems arise to complete the transition successfully,
use the backout plan.

Chapter 20 �9 IPv6 Transition Planning and Strategies 347

20.7.1 DUAL-STACK THE SERVERS

Once you have completed these steps, you are ready to enable server
platforms with IPv6 in addition to IPv4. The applications available at the
server must also be IPv6 compatible and configured properly.

In a typical enterprise, servers should be given assigned IPv6 addresses.
Clients should autoconfigure---that feature is one of the great strengths
of IPv6. When the addressing scheme is developed, provisions should be
made to reserve consistent blocks for servers (i.e., in each ::/64 network
use the addresses 200 to 2000 for servers).

The process, then, is simple. Configure IPv6 on each server, using a static
address from the block set aside for that purpose, and add that v6 address
to the DNS---in addition to the IPv4 address already associated with the
server name.

20.7.2 DEPLOY IPv6-CAPABLE CLIENTS

At this point, new client workstations can be deployed with v6-support
only. v6-capable workstations will self-select v6 connectivity to v6-capable
hosts in your network by choosing the v6-address returned by the DNS,
while older v4-only workstations will continue to use IPv4 (assuming that
the specific host has both IPv4 and IPv6 entries in the DNS).

20.7.3 PHASE OUT IPv4

Over time, as older workstations are retired, the enterprise will complete its
transition to IPv6. Network engineers monitoring the network will detect
when IPv4 traffic is gone. At that time, new servers can be deployed as
v6-only systems. Eventually, v4 support can be dropped at every point in
the network--servers, network devices, ISP upstream--everywhere.

20.8 Summary

The keys to a successful migration are preparing your staff, planning
ahead, starting early, and being patient. The transition for large enter-
prises will take years, since new capital equipment purchases supplant

348 Part Three ~ IPv6 Practice

older systems, new application development and deployment takes place,
and critical-but-not-upgradeable applications and systems are replaced.

IPv6 transition will follow the adoption path of network-effect systems. It
will be slow at first, since there are few IPv6-enabled peer machines to talk
to, but then, as the number of v6-capable machines increases, deployment
plans will "turn the corner" and proceed rapidly toward an all-IPv6 system.
You don't want your enterprise to be caught off guard.

Configuring IPv6 on Server
Operating Systems

This chapter includes step-by-step instructions for configuring IPv6 on the
Windows NT, FreeBSD, and Solaris operating systems.

21.1 Configuring IPv6 on Windows NT*

This section provides step-by-step instructions for configuring IPv6 on
Windows NT (versions 4.0, 5.0/2000, and 5.1/XP).

21.1.1 MICROSOFT SUPPORT

Microsoft first publicly released a technical preview IPv6 stack for devel-
opment purposes in March 2000 to work with Windows NT 4.0 and

*This section is adapted from a document written by Jim Van Gemert, �9 Zama Networks.

349

350 Part Three �9 IPv6 Practice

Windows 2000. Microsoft did not publish Windows 9x support and later
acknowledged it will only develop and support IPv6 for Windows NT
releases.

Microsoft has released three versions of IPv6 for Windows NT includ-
ing "Research IPv6 Protocol," "IPv6 Technology Preview," and "IPv6
Developer Edition." Research IPv6 Protocol installs and works on
Windows NT 4.0 and 5.0. IPv6 Technology Preview installs and works
only on Windows NT 5.0 (2000). IPv6 Developer Edition is integrated with
Windows NT 5.1 (XP) but not activated by default after install.

Microsoft has published a number of documents introducing IPv6 to
Windows developers and early adopters, available at their IPv6 Web
sites.

21.1.2 MICROSOFT IPv6 TECHNOLOGY PREVIEW

Microsoft's IPv6 Technology Preview I can be obtained from msdn.
microsoft.corn / downloads / sdks / platform / tpipv6 / download.asp.

System Requirements

�9 Windows 2000 SP1
�9 Ethernet network adapter (any Ethernet adapter supported by

Windows 2000 should work with the IPv6 Technology Preview)
�9 IPv4 protocol (the Internet Protocol [TCP/IP] supplied with

Windows 2000 must be installed)

Installing the IPv6 Technology Preview for Windows 2000

1. Log on to the Windows 2000 computer with a user account that
has local administrator privileges.

2. Using Windows Explorer, run the Setup.exe program from
the location where you extracted the IPv6 Technology Preview
files.

1 As of 2003, Microsoft incorporates IPv6 support in its Windows Server 2003 family,
Windows XP, and Windows CE.NET version 4.1 operating systems. IPv6 support in
Windows XP is a developer release version, whereas a production-quality version is
incorporated into Windows XP Service Pack I (SP1).

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 351

3. From the Windows 2000 desktop, click Start, point to Settings,
and then click Network and Dial-up Connections. As an
alternative, you can right-click My Network Places, and then
click Properties.

4. Right-click the Ethernet-based connection to which you want to
add the IPv6 protocol, and then click Properties. Typically, this
connection is named Local Area Connection.

5. Click Install.
6. In the Select Network Component Type dialog box, click

Protocol, and then click Add.
7. In the Select Network Protocol dialog box, click Microsoft IPv6

Protocol, and then click OK.
8. Click Close to close the Local Area Connection Properties

dialog box.

The Microsoft IPv6 Protocol is automatically added to all Ethernet inter-
faces on your computer.

21.1.3 MICROSOFT WINDOWS INTEGRATED IPv6 RELEASE

Support for IPv6 was first incorporated into a production Microsoft prod-
uct in Windows XP. To enable IPv6, the operating system must first be
installed normally, with IPv6 support; then install the IPv6 Developer
Edition from the Network Configuration, as follows.

1. Log on to the Windows XP computer with a user account that
has local administrator privileges.

2. From the Windows XP desktop, click Start, point to Settings,
and then click Network and Dial-up Connections. As an alter-
native, you can right-click My Network Places, and then click
Properties.

3. Right-click the Ethernet-based connection to which you want to
add the IPv6 protocol, and then click Properties. Typically, this
connection is named Local Area Connection.

4. Click Install.
5. In the Select Network Component Type dialog box, click

Protocol, and then click Add.
6. In the Select Network Protocol dialog box, click Microsoft IPv6

Developer Edition Protocol, and then click OK.
7. Click Close to close the Local Area Connection Properties

dialog box.

352 Part Three �9 IPv6 Practice

The Microsoft IPv6 Protocol is automatically added to all Ethernet inter-
faces on your computer.

21.1.4 INSTALLER COMMENTS

At a command line enter IPv6 if to determine your IPv6 address. Sample
output from the IPv6 if command is shown in Table 16-1. Interface #1 is
a pseudo-interface used for loopback. Interface #2 is a pseudo-interface
used for configured tunneling, automatic tunneling, and 6to4 tunneling.
Other interfaces are numbered sequentially in the order in which they are
created. The number on your IPv6 network interface is not static and can
be any number above 2.

A key indicator is the link-level address of your NIC, with a MAC address
like 00-01-02-e8-ec-31. In Table 21-1, Interface 3 is connected to an IPv6
network. It has the preferred address 3ffe:80f0:10:2:201:2ff:fee8:ec31, a
combination of site information (3ffe:80f0:10:2) and local information
(201:2ff:fee8:ec31). If only one preferred address is supplied, your NIC has
not received site broadcast information, and the preferred address will be
still set to default (fe80::201:2ff:fee8:ec31).

Internet Protocol (IPv4) is needed for name resolution even if an IPv6 DNS
address can be supplied. (I have tested Internet Explorer 5.0 with SP1,
5.5, and 6.0 Beta release on Windows 2000. I have also tested IE 5.6 on
Windows XP Beta 1.) If Internet Explorer is updated, the Microsoft stack
must be reinstalled to access IPv6 sites.

21.2 Configuring IPv6 on FreeBSD**

This section provides step-by-step instructions for configuring IPv6 on the
FreeBSD operating system. Here 's a brief list of what you' l l need for this
project.

An Intel-based machine with network connectivity. My recom-
mendat ion on bare min imum requirements would be a Pen-
t ium machine with 1GHz hard drive space and 64MB of RAM.

**This section is adapted from a document written by Gerald R. Crow IV, �9 Zama
Networks.

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 353

Interface 3 (site i)- Local Area Connection

uses Neighbor Discovery

link-level address- 00-01-02-e8-ec-31

preferred address 3ffe:80f0:10:2:201:2ff:fee8:ec31,

2591896s/604696s (addrconf)

preferred address fe80::201:2ff:fee8:ec31,

infinite/infinite

multicast address ff02::l, 1 refs, not reportable

multicast address ff02::l:ffe8:ec31, 2 refs,

last reporter

link MTU 1500 (true link MTU 1500)

current hop limit 128

reachable time 23500ms (base 30000ms)

retransmission interval 2000ms

DAD transmits 1

Interface 2 (site 0) : Tunnel Pseudo-Interface

does not use Neighbor Discovery

link-level address: 0.0.0.0

preferred address ::172.16.12.183,

infinite/infinite

link MTU 1280 (true link MTU 65515)

current hop limit 128

reachable time 0ms (base 0ms)

retransmission interval 0ms

DAD transmits 0

Interface 1 (site 0) : Loopback Pseudo-Interface

does not use Neighbor Discovery

link-level address:

preferred address ::I, infinite/infinite

link MTU 1500 (true link MTU 1500)

current hop limit 1

reachable time 0ms (base 0ms)

retransmission interval 0ms

DAD transmits 0

Table 21-1: Sample output from Microsoft Windows command, ipv6 if.

�9 If a static address is being used, you should have the gate-
way address, netmask, and IPv6 address (obtain this from the
Network Administrator or your IPv6 ISP).

�9 The FreeBSD 4.2 software. FreeBSD can be downloaded free
from ftp:/ / f tp.freebsd.org/ , or the CDs can be purchased from
Walnut Creek (ht tp: / /www.osd.bsdi .com) for $40.

354 Part Three �9 IPv6 Practice

21.2.1 KERNEL CONFIGURATION

Thanks to the KAME Project (h t tp : / /www.kame.ne t) , FreeBSD's default
installation comes with IPv6 support built into the kernel. If someone has
changed the kernel on your machine or you would like to enable more
options, here is a list of IPv6-related kernel entries (all kernel options can
be found in / sys / i 386 /con f /L INT) .

options

�9 . .

pseudo-device

pseudo-device

pseudo-device

�9 . .

INET6

gif

faith

stf

IPv6 communications protocols

IPv6 and IPv4 tunneling

IPv6-to-IPv4 relaying (translation0

6to4 IPV6 over IPv4 encapsulation

The default kernel configuration file is / sys / i386 /conf /GENERIC and
by default is configured with all the preceding options except 6to4
encapsulation. For documentation on building a FreeBSD kernel, go to
h t tp : / /www.f reebsd .org / handbook.

The first thing you need to decide is how to assign the IPv6 IP address. Static
requires a little more configuration but will ensure our address information
never changes. The automatic configuration is quite painless but should
only be done on a host machine where a change of IP address will not be
catastrophic.

21.2.2 AUTO-CONFIGURATION

To obtain the IPv6 IP address through Auto-Configuration, merely follow
this simple three-step procedure.

The first step will be to put an entry into the /e t c / r c . conf file so FreeBSD
knows at boot time to be on an IPv6 network. Make the following entry
with your favorite text editor into the /e t c / r c . conf file.

ipv6_enable:"YES"

Step number 2 will be to insert any outside (if not using DNS) and local
host information. T h e / e t c / h o s t s file is still being used for both IPv4/IPv6

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 355

host resolution and should look similar to the following example. At a
bare min imum you should make an entry for the IPv6 loopback address.
(Comments are noted with a #.)

127.0.0.i localhost.mydomain.com localhost # IPv4 loop back address

192.168.25.5 myhost.mydomain.com myhost # IPv4 local host IP address

::i localhost # IPv6 loop back address

3ffe:80f0:l:l:201:2ff:fe00:2112 ahost # entry for an outside host

Finally, reboot the machine. When the machine comes back up, it should
obtain an IPv6 address using neighbor discovery. To make sure it obtained
an IPv6 address, run the command ifconfig < interface >. You should see
two INET6 lines under the interface name that look similar to the following.
(Comment noted with a #.)

>ifconfig xl0

xl0: flags=8843<UP,BROADCAST,RUNNING, SIMPLEX,MULTICAST> mtu 1500

inet 192.168.25.5 netmask 0xffffffe0 broadcast 192.168.25.31

inet6 feS0::201:2ff:fe3b:a30%xl0 prefixlen 64 scopeid 0x2

inet6 3ffe:80f0:l:l:201:2ff:fe3b:a30 prefixlen 64 # IPv6 Network information

ether00 : 01 : 02:3b: 0a: 30

Now, using the ping6 command and the IPv6 address of a machine on your
network, test the machine's IPv6 connectivity. If your results look similar
to the following example, then IPv6 is configured and working properly
on your FreeBSD 4.2.

> p i n g 6 3 f f e : 8 0 f 0 : 1 : 1 : 2 0 1 : 2 f f : f e 0 0 : 2 1 1 2

P I N G 6 (5 6 = 4 0 + 8 + 8 b y t e s) 3 f f e : 8 0 f 0 : l : l : 2 0 1 : 2 f f : f e 3 b : a 3 0 - - >

3 f f e : 8 0 f 0 : 1 : 1 : 2 0 1 : 2 f f : f e 0 0 : 2112

16 b y t e s f r o m 3 f f e : 8 O f O : l : l : 2 O l : 2 f f : f e O 0 : 2 1 1 2 , i c m p _ s e q = 0 h l i m = 2 5 5 t i m e = 0 . 4 9 5 ms

16 b y t e s f r o m 3 f f e : 8 0 f 0 : l : l : 2 0 1 : 2 f f : f e 0 0 : 2 1 1 2 , i c m p s e q = l h l i m = 2 5 5 t i m e = 0 . 3 3 5 ms

16 b y t e s f r o m 3 f f e : 8 O f O : l : l : 2 O l : 2 f f : f e O 0 : 2 1 1 2 , i c m p _ s e q = 2 h l i m = 2 5 5 t i m e = 0 . 3 2 1 ms

16 b y t e s f r o m 3 f f e : 8 0 f 0 : l : l : 2 0 1 : 2 f f : f e 0 0 : 2 1 1 2 , i c m p s e q = 3 h l i m = 2 5 5 t i m e = 0 . 3 3 8 ms

16 b y t e s f r o m 3 f f e : 8 0 f 0 : l : l : 2 0 1 : 2 f f : f e 0 0 : 2 1 1 2 , i c m p s e q = 4 h l i m = 2 5 5 t i m e = 0 . 3 0 3 ms

356 Part Three �9 IPv6 Practice

3ffe:80f0:l:l:201:2ff:fe00:2112 ping6 statistics

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.303/0.358/0.495 ms

If connected to the Internet with IPv6 capability, you need to test the con-
nectivity and routing to the outside world. This can be done using the
ping6 command on a known working IPv6 address out on the Internet,
such as the following.

>ping6 3ffe:80f0:l:l:201:2ff:fee8:efal

PING6(56=40+8+8 bytes) 3ffe:80f0:l:l:201:2ff:fe3b:a30 -->

3ffe:80f0:l:l:201:2ff:feeS:efal

16 bytes from 3ffe:80f0:l:l:201:2ff:feeS:efal, icmp_seq=0 hlim=255 time=0.476 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fee8:efal, icmp seq=l hlim=255 time=0.455 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:feeS:efal, icmp_seq=2 hlim=255 time=0.379 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fee8:efal, icmp_seq=3 hlim=255 time=0.343 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:feeS:efal, icmp seq=4 hlim=255 time=0.359 ms

3ffe:80f0:l:l:201:2ff:fee8:efal ping6 statistics

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.343/0.402/0.476 ms

21.2.3 STATIC CONFIGURATION

If a static address is what you're after, then configuration will be similar,
and it is still a three-step procedure. Before continuing make sure you have
obtained an IPv6 static IP, netmask, and default route from your network
administrator or IPv6 ISP.

The first step is to make the appropriate IPv6 entries in t h e / e t c / r c . c o n f
file with your favorite text editor. Make sure that these entries are in the
listed order, or there will be problems (comments noted with a #).

ipv6_enable:"YES"

Ipv6_network_interfaces:"xl0" # xl0 is interface name

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 357

ipv6 ifconfig xl0="3ffe:80f0:l:l:201:2ff:

fe00:2113 prefixlen 64"

ipv6 defaultrouter="fe80::204:28ff:febf:

b000%xl0"

IPv6 address and netmask

IPv6 router address/interface

127.0.0.1

192.168.25.5

-:i

Step number 2 is to insert any outside (if not using DNS) and local host
information. The / e t c / h o s t s file is still being used for both IPv4/IPv6
host resolution and should look similar to the following (comments noted
with a #).

localhost.mydomain.com localhost

myhost.mydomain.com myhost

localhost

IPv4 loopback address

IPv4 local host address

IPv6 loopback address 3ffe:80f0:

l:l:201:2ff:fe00:2113

my6host.mydomain.com my6host

IPv6 local IP address

3ffe:80f0:l:l:201:2ff:fe00:2112

ahost # entry for outside host

Finally, reboot the machine. When the machine comes back up, it should
configure the IPv6 network connection from the /etc/rc.conf. To make
sure everything went as planned, take a look at your interface config-
uration using the ifconfig <interface> command. You should see the
second occurrence of inet6 with the value of the static IP (comments noted
with a #).

>ifconfig xl0

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 192.168.25.5 netmask 0xffffffe0 broadcast 192.168.25..31

inet6 fe80::201:2ff:fe3b:a30%xl0 prefixlen 64 scopeid 0x2

inet6 3ffe:80f0:l:l:201:2ff:fe00:2113 prefixlen 64 # static address

ether 00:01:02:3b:0a:30

media: autoselect (10baseT/UTP) status: active

supported media: autoselect 100baseTX <full-duplex> 100baseTX 10baseT/UTP

<full-duplex> 10baseT/UTP 100baseTX <hw-loopback>

358 Part Three �9 IPv6 PractJce

Next, make sure that the default route was configured correctly using the
netstat rn command. There will be much more information, but the IPv6
default setting is all you should be concerned with.

>netstat -rn

Internet6:

Destination Gateway Flags Netif

default fe80::204:28ff:febf:b000%x10 UGSc xl0

As a final test ping a remote machine that you know to be up and running
with the ping6 command. If the output ~ o m the command looks similar
to the following, IPv6 is configured and working properly.

>ping6 3ffe:80f0:l:l:201:2ff:fe00:2112

PING6(56=40+8+8 bytes) 3ffe:80f0:l:l:201:2ff:fe00:2113 -->

3ffe:80f0:l:l:201:2ff:fe00:2112

16 bytes from 3ffe:80f0:l:l:201:2ff:fe00:2112, icmp_seq=0 hlim=255 time=0.461 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fe00:2112, icmp_seq=l hlim=255 time=0.357 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fe00:2112, icmp_seq=2 hlim=255 time=0.319 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fe00:2112, icmp_seq:3 hlim=255 time=0.478 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fe00:2112, icmp_seq=4 hlim=255 time=0.368 ms

3ffe:80f0:l:l:201:2ff:fe00:2112 ping6 statistics

5 packets transmitted, 5 packets received, 0% packet loss round-trip

min/avg/max = 0.319/0.396/0.478 ms

If connected to the Internet with IPv6 capability, you need to test the con-
nectivity and routing to the outside world. This can be done using the
ping6 command on a known working IPv6 address out on the internet,
such as the following.

>ping6 3ffe:80f0:l:l:201:2ff:fee8:efal

PING6(56=40+8+8 bytes) 3ffe:80f0:l:l:201:2ff:fe00:2113 -->

3ffe:80f0:l:l:201:2ff:fee8:efal

16 bytes from 3ffe:80f0:l:l:201:2ff:fee8:efal, icmp_seq=0 hlim=255 time=0.483 ms

16 bytes from 3ffe:80f0:l:l:201:2ff:fee8:efal, icmp_seq=l hlim=255 time=0.356 ms

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 359

16 bytes from 3ffe:8OfO:l:l:2Ol:2ff:fee8:efal, icmp_seq:2 hlim:255 time=0.362 ms

16 bytes from 3ffe:8OfO:l:l:2Ol:2ff:fee8:efal, icmp_seq=3 hlim=255 time=0.483 ms

16 bytes from 3ffe:8OfO:l:l:2Ol:2ff:fee8:efal, icmp_seq=4 hlim=255 time=0.352 ms

3ffe:8OfO:l:l:2Ol:2ff:fee8:efal ping6 statistics

5 packets transmitted, 5 packets received, 0% packet loss

round-trip min/avg/max = 0.352/0.407/0.483 ms

21.2.4 DNS CONFIGURATION

Configuration for DNS is still located in /e tc / reso lv .conf , with the added
bonus of using IPv6 addresses instead of IPv4 address if need be. The
following is the configuration for /e tc / resolv .conf to make the request
over IPv6 for the pr imary DNS server and over IPv4 for the secondary
DNS server.

domain

nameserver

nameserver

mydomain, com

3ffe-80fO-i-i-201-2ff- feO0-2112

192.168.25.254

21.2.5 TROUBLESHOOTING

If any of the preceding configurations a n d / o r tests do not work for you,
here are some things to check.

�9 Make sure that all IPv6 IP addresses have colons (:) and not
semicolons C).

�9 Make sure the addresses we are using for configuration and
ping testing are correct.

�9 Make sure the network you're connected to is IPv6-capable.

21.3 Configuring Solaris 8 for IPv6 t

This section provides step-by-step instructions for configuring IPv6 on the
Solaris 8 operating system. Here is what you'll need for this project.

tThis section is adapted from a document written by Robert C. Zilbauer Jr., �9 Zama
Networks.

360 Part Three �9 IPv6 Practice

�9 A platform capable of support ing Solaris 8. A Sun Sparc-based
system would work quite well. Also, most modern Intel or
Intel-compatible systems will fit the bill. I'd recommend at least
1.5GHz of disk space (for a comfortable OS install plus any
third-party niceties you may want) and at least 128MB of RAM.
Of course, in the case of disk space and RAM, more is always
better.

�9 Network information such as gateway address, netmask, and
the IPv6 address assigned to your new system (if a static
address is desired), and so forth.

�9 Sun Solaris 8, available for download from Sun Microsystems
for free (h t tp : / /www.sun .com/so f tware / so l a r i s /b ina r i e s /
get.html), or can be purchased for a media fee of $75 (as of
this writing).

�9 Solaris 8 system correctly configured for use with IPv4.

At this point, we'll assume you have Solaris 8 installed, you chose to
enable the IPv6 stack during the OS installation, and your IPv4 network
connectivity is configured and working.

The first thing you'll need to decide is how you want your IPv6 address
defined. You have two choices: You can either have it automatically con-
figured via the Neighbor Discovery protocol or you can define your IPv6
address statically. We'll describe the automatic configuration method first,
since that's the easiest.

21.3.1 AUTOCONFtGURATtON

On the Solaris side of things, this is the easiest way to configure your
IPv6 address. Of course, this presupposes that there's a router on your
network running the Neighbor Discovery protocol and advertising the
correct IPv6 address prefix. Assuming you have such a beast available,
automatic configuration of your IP address is as simple as using the touch
command.

You'll need to know the name of the interface over which you want to
use IPv6. The primary interface on a Sun machine is often hme0. On an
Intel-based machine it is often elxl0. However, if you don' t know, you can
usually use the ifconfig-a command to check. The output of that command
will look something like this.

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 361

io0: flags=I000849<UP,LOOPBACK,RUNNING,MULTICAST, IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000

hme0: flags=I000843<UP,BROADCAST,RUNNING,MULTICAST, IPv4> mtu 1500 index 2

inet 192.168.25.5 netmask ffffff00 broadcast 192.168.25.255

znb0: flags=I000843<UP,BROADCAST,RUNNING,MULTICAST, IPv4> mtu 1500 index 3

inet 192.168.0.2 netmask ffffff00 broadcast 192.168.0.255

This example is from a Sun machine with two Ethernet interfaces. The
first entry, lo0, is the loopback interface. The second entry is the primary
interface, hme0, and the third entry is an additional interface, znb0. In our
case, we'll be using the primary interface for our IPv6 traffic, but the same
steps would apply to any other interface on the machine. You'd just use the
name of your chosen interface wherever hme0 is referenced in this paper.

Now that we know the name of the interface we want to use, setting up
autoconfiguration of your IPv6 address is simple. Just create an empty file
called /etc/hostname6.<interface name>, and you're done. The easiest
way to do this is by using the touch command. In our case, we'd do the
following.

flotsam# touch /etc/hostname6.hmeO

Then reboot. The "neighbor discovery protocol daemon" (see the
in .ndpd(lm) man page for more information) will get the IPv6 prefix from
your router, tack on your machine's 64-bit Extended Unique Identifier
(EUI-64) address, and set the resulting address as the IPv6 address for the
interface you specified.

21.3.2 DEFINING A STATIC IPv6 ADDRESS

If a static address is what you're after, don' t go anywhere just yet. You've
still got some work to do. As with automatic configuration, you still need
an/etc/hostname6.<interface> file. However, when using a static address,
this file is not empty.

In keeping with our example (using hme0 as our IPv6 interface), you 'd
need y o u r / e t c / h o s t n a m e 6 . h m e 0 to contain one line with the following
format.

addif host.name.domain/mask up

362 Part Three �9 IPv6 Practice

In our case, we want our new machine, f lotsam.mydomain.com, to come
up with the IPv6 address 3ffe:80f0:l:3:a00:20ff::5. To do this we would edit
/e tc /hos tname6.hme0 and give it the following contents.

addif flotsam.mydomain.com/64 up

Then, i n / e t c / i n e t / i p n o d e s , we would add an entry for the static IP we
want our machine to be known by.

3 ffe- 80fO �9 1 �9 3 �9 aO0 - 2Off - �9 5 flotsam, mydomain, com flotsam

(Note: If you're familiar with configuring an IPv4 interface, you'll notice
that the relationship between /e tc /hos tname6.hme0 and / e t c / i n e t /
ipnodes is very similar to their IPv4 counterparts: / e tc /hos tname.hme0
and / e t c /hos t s .)

Where your IPv6 default route is concerned, you should be fine with the
autoconfigured value. Even though you have your IP address defined stat-
ically, the Neighbor Discovery process should retrieve a valid IPv6 default
route from your properly configured router.

Finally, reboot the machine. When it comes up, you should have both your
IPv4 and your IPv6 interfaces configured. When you take a look at your
interface configuration using i f c o n f i g -a , you should see something
similar to the following.

lo0: flags=I000849<UP,LOOPBACK,RUNNING,MULTICAST, IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000

hme0: flags=I000843<UP,BROADCAST,RUNNING,MULTICAST, IPv4> mtu 1500 index 2

inet 192.168.25.5 netmask ffffff00 broadcast 192.168.25.255

ether 0:l:2:c4:d:ee

io0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST, IPv6> mtu 8252 index 1

inet6 ::1/128

hme0: flags=2000841<UP,RUNNING,MULTICAST, IPv6> mtu 1500 index 2

ether 0:l:2:c4:d:ee

inet6 fe80:-201:2ff:fec4:dee/10

hme0:l: flags=2000841<UP,RUNNING,MULTICAST, IPv6> mtu 1500 index 2

inet6 3ffe:80f0:l:3:a00:20ff::5/64

Chapter 21 �9 Configuring IPv6 on Server Operating Systems 363

In addition, you should use the n e t s t a t - r n command to verify that
your routing tables are configured correctly. They should look something
like this.

flotsam# netstat -rn

Routing Table: IPv4

Destination Gateway Flags Ref Use Interface

192 . 168 . 25 . 0 192 . 168 . 25 . 5 U 1 172 hme0

224.0.0.0 192.168.25.5 U 1 0 hme0

default 192.168.25.1 UG 1 545

127 . 0.0 . i 127 . 0 . 0 . i UH 3 12 io0

Routing Table: IPv6

Destination/Mask Gateway Flags Ref Use If

3ffe:80f0:l:3::/64 3ffe:80f0:l:3:a00:20ff::5 U 1 0 elxl0:l

fe80::/10 fe80::a00:20ff:fec5:6fa0 U 1 0 hme0

ff00:-/8 fe80:-a00:20ff:fec5:6fa0 U 1 0 hme0

default fe80::a00:20ff:fec5:6fa0 U 1 0 hme0

:'i ::i UH i 0 io0

Now, make sure your IPv6 connectivity is working. Ideally, you have
another machine on your network configured for IPv6 to test against. Try
to ping that other machine's IPv6 address (assuming that you know it will
return a ping). If that works, then you've got IPv6 properly configured for
your interface.

21.3.3 DNS CONFIGURATION

One more step to take is to configure your new machine to use DNS to
look up IPv6 hosts on the network. This step is not required for net-
work connectivity, but it does make life easier. You'll need to edit your
/ etc/nsswitch.conf file to do this.

364 Part Three �9 IPv6 Practice

Just like with IPv4 and the hosts entry, you should add dns to the ipnodes
entry to allow DNS lookups for IPv6 addresses. After making that change,
your hosts and ipnodes lines in/etc/nsswitch.conf will look like this.

hosts : files dns

ipnodes : files dns

You've just completed the configuration for an IPv6 interface on a
Solaris 8 machine.

21.4 Other Resources

Increasingly, commercial operating systems ship with IPv6 support. Users
of Linux can find information about using IPv6 in the IPv6 HOWTO doc-
ument at ht tp: / /www.t ldp.org/HOWTO/Linux+IPv6-HOWTO/. The
Apple Macintosh OS X 10.2 server OS incorporates the KAME IPv6 stack
as well.

21.5 Summary

Configuring an operating system for IPv6 support is just the first step in
building an IPv6 network. The next step, described in the next chapter, is
to configure IPv6 routers to enable your network to connect to other IPv6
networks.

Configuring IPv6 Routers

This chapter includes step-by-step instructions for configuring IPv6 on
Cisco, Hitachi, and NEC routers.

22.1 Configuring a Cisco 2611 Router for IPv4/v6*

Cisco Systems is shipping IPv6-capable IOS versions, and now is the time
to get yourself an inexpensive Cisco router (such as a 2611) and learn the
configuration techniques you'll be using soon on your production routers.

This section describes the beta version of Cisco IPv6 support. Check with
Cisco for more current releases. You need to be a Cisco customer and have
access to "Cisco Connection Online" (CCO) to obtain the IOS images.

*This section is adapted from a document written by John E. Spence, �9 Zama Networks.

365

366 Part Three �9 IPv6 Practice

This section provides instructions to configure a Cisco 2611 router, running
IOS "Version 12.2(0.5)T." Our topology is fairly simple, but not trivialm
about what one would expect for a medium- to large-size enterprise. We
assume that you'll have an upstream connection from your router to the
IPv4/IPv6 world, a small network directly connected to an internal firewall
device, and a network (this might be a number of networks) that is inside
your firewall device (which is acting as a smart router). We use static routes
in this example, and we focus on IPv6-related issues.

22.1.1 GATHERING THE PIECES

To complete this configuration, you'll need a Cisco 2611 (or similar) router
with at least two network interfaces, access to Cisco "beta" IOS images, a
terminal for configuration, and a network into which to drop your router.
One network is your "upstream" connection to an IPv6-capable device.
Another network is the connection between your 2611 and your firewall (if
you want to really emulate an enterprise network, you should implement
an IPv6-enabled firewall, discussed in [ZAMAFW]). The last network is a
"downstream" network--on the inside of your firewall (and therefore not
connected directly to your 2611) with an IPv6-capable device connected,
from which you can test your router configuration.

The early images are pretty big. For the image we'll use you need 16MB of
"flash" memory (static memory that stores the image) and at least 32MB of
"main" memory (in which to run the image). Many 2611s come with less
memory than you'll need.

You'll need some specifics about the network topology you are going to
build, as well as the topology you'll be meshing with. Here's what you
need to plan for ahead of time, starting with general network information.

A physical connection to an upstream IPv6- and IPv4-capable
device (router or switch) that is routing IPv6 and IPv4 packets
your way.
Primary and secondary DNS that serves IPv4 and IPv6 records.
Assume we're getting this service from our provider, and
they've specified 192.168.201.4 and 192.168.201.5 as primary
and secondary, respectively. Initially, you'll want this service,
but later you'll want to experiment with building and running
your own.

Chapter 22 �9 Configuring IPv6 Routers 367

(Optional) pr imary and secondary NTP servers, also from
your ISP.

You'll also need IPv6 network configuration information.

�9 An IPv6 network to use behind your router. We'll use
3ffe:80f0:10::/48, which was allocated to us by our ISP. This
is the recommended enterprise allocation, according to ARIN.
We'll subnet this in a moment for use for the connector-network
with the firewall as well as behind the firewall.

�9 An IPv6 address to use at the outside interface of the router (the
provider will route all your v6 traffic via this address). Your ISP
will specify this as well; we'll use 3ffe:80f0:1:2::101/64.

�9 An IPv6-address that will be your router 's default route, also
from your ISP. We'll use 3ffe:80f0:1:2::1/64.

And you'l l need IPv4 network configuration information.

�9 Two IPv4 ne tworks - -bo th allocated by your ISP. First, a net-
work to use behind your firewall. We'll use 192.168.200.32/27
(that's mask 255.255.255.224---32 addresses). Let's also assume
we 've been given network 192.168.200.252/30 (mask
255.255.255.252) to use. You'll see these again shortly. You'll
notice that your ISP will allocate you quite a large number of
IPv6 addresses but not many IPv4 addresses.

�9 An IPv4 address to use at your router 's outside interface (as
with IPv6, your provider will send all your v4 traffic via this IP
address). We'll use 192.168.200.2/27.

�9 An IPv4 address that will be your router 's default route. We'll
use 192.168.200.1 / 27.

22.1.2 PLANNING YOUR NETWORK

Now that you 've got the information you need from your IPv6-capable ISP,
we can plan your network. Here, we'll plan on having a network segment
"downst ream" from our router, directly attached, that connects to another
device (this would be, typically, either a "core router" for your enterprise
or an IPv6-capable firewall). So both sides of the Cisco 2611 will be point-to-
point networks. Beyond the firewall (I'm going to make that assumption)
we'll have an IPv6 network and an IPv4 network. The topology used for
this example is shown in Figure 22-1.

368 Part Three �9 IPv6 Practice

Figure 22-1: Network and system topology and interfaces for Cisco 2611 IPv6 configuration.

For our router, let's choose the interface addresses. First, we'l l do IPv4.
We'll use the address we got from our provider for our "outside" address
(we use interface "e0/0") , and that 's 192.168.200.2, mask 255.255.255.224.

For our "connector network" (that 's the two-node network connecting our
routers "inside" interface to the firewall), let's use the little ne twork we got
from our ISP: 192.168.200.252/30 (that 's mask 255.255.255.252). We'll use
192.168.200.253/30 for our router 's "inside" interface (we use " e0 / l ") . For
the firewall interface on this ne twork (we won ' t configure the firewall, but
we need to choose that address), let's choose 192.168.200.254/30.

The ne twork behind the firewall inside our network, will use the 32-
address network we got from our providerm192.168.200.32/27.

Now, let's design the IPv6 network, which, of course, has the same phy-
sical topology as the IPv4 network. In the case of our IPv6 addresses,
we received a single " /48" block from our provider.

Chapter 22 �9 Configuring IPv6 Routers 369

Our "outside" interface is set by our provider. We'll be using
3ffe:80f0:1:2::101/64 on e0/0 (static, since we don' t want to have to change
the routes in the upstream router if we change our hardware).

Inside, we need to think about that "connector network." The analogous
IPv6 network would be 3ffe:80f0:10::2/127. Our e0/1 interface will be
3ffe:80f0:10::2/127, and the same network interface at the firewall would
be 3ffe:80f0:10::3/127. Behind the firewall, we'll assume we've allocated
part of our h u g e / 4 8 ne tworkn le t ' s say 3ffe:80f0:10:l::/64 (just perfect for
a single network support ing IPv6 autoconfiguration).

22.1.3 INSTALLING THE lOS IMAGE

The first step is to get the IOS image. Connect to h t tp : / /www.c i sco . com/
warp /pub l i c /732 / ipv6 / index .h tml , and click on "Obtain IOS IPv6 Beta
Software." Find the right image for your router--we' l l use "c2600-is-
mz.122-0.5.T." Click on the image name, review and approve the license
agreement, and download the image. Put the image onto a TFYP server
you can access from the current location of the 2611.

Assuming that you are bringing your 2611 to life from an unused state,
you'll need to use the "tftpdnld" facility to get the image onto the machine
from your TFTP server. This is nothing special; it is very well covered
in the Cisco 2600 documentation. You can also use the image that comes
installed on the device, put it on the network, and tftp the IPv6-capable
image to the machine.

22.1.4 CONFIGURING THE ROUTER

When you've got the image loaded on your router, you'll finish up by
doing a "reload." The router will ask you to confirm that you really want
to do that. Say "Yes." The router will reload and come up with the basic
dialog. This is where you answer basic questions about your router 's name,
IP-address, netmask, and a couple of other things. This is a very standard
Cisco dialog, so we won' t go into it here.

Once you've run through the basic setup, get into the routers privi-
leged level and run these commands. These are "best practice" settings
for an early experience IPv6 router under test. You can review these

370 Part Three �9 IPv6 Practice

commands using the "Cisco Command Lookup Tool"; the output should
look something like this.

service timestamps debug uptime

servlce timestamps log datetime msec localtime

service password-encryption

logglng buffered 16384 debugging

logging rate-limit console i0 except errors

logglng console informational

clock timezone PDT-8

clock summer-time PDT recurring

no ip bootp server

no ip dhcp-client network-discovery

no ip finger

no ip http server

ip subnet-zero

no ip source-route

ip classless

The next step is to configure the interfaces. We've got two interfaces
to configure on our router: the outside interface (e0/0) and the inside
interface (e0 / 1).

First, assign an IPv4 address to the outside interface, e0/0 , by going into
configuration mode, accessing the interface, and entering the command to
assign the v4 address.

cisco2611# config terminal

cisco2611 (config)# interface Ethernet0/0

cisco2611(config-if)# ip address 192.168.200.2

255.255.255.224

The Cisco 2611 only supports 10Mbit interfaces, but it can run at half-
duplex or full-duplex. In our case, we were seeing errors on the interface,
so we forced both sides (our router and the upstream ISP's router) to half-
duplex and eliminated IP-redirects with these commands.

cisco2611(config-if)# half-duplex

cisco2611(config-if)# no ip redirects

Chapter 22 �9 Configuring IPv6 Routers 371

Now we'll configure the IPv6 capability and address, like this.

cisco2611(config-if)# ipv6 enable

cisco2611(config-if)# ipv6 address 3ffe:80f0:l:2::101/64

Exit this configuration level with the exit command.

cisco2611(config-if)# exit

Finally, copy the changes you've made to the startup configuration.

copy running-config startup-config

The external interface configuration is now complete, and the internal inter-
face can be configured. Configuring the internal interface is different from
the external configuration in two ways.

�9 The config command is unnecessary (the system is already in
configuration mode, so we omit that command).

�9 The internal interface does accept "IP redirects," so that
configuration command can be omitted.

The configuration session for interface e0/1, including saving and exiting
the configuration session, is as follows.

cisco2611 (config)# interface Ethernet0/l

cisco2611(config-if)# ip address 192.168.200.253

255.255.255.252

cisco2611(config-if)# ipv6 enable

cisco2611(config-if)# ipv6 address 3ffe:80f0:10::2/127

cisco2611(config-if)# exit

cisco2611 (config)# exit

cisco2611# copy running-config startup-config

22.1.5 SITE-SPECIFIC AND IPv6-SPEClFIC ROUTER CONFIGURATION

Let's configure the site-specific parameters. You'll need to specify your
domain name.

ip domain-name zama6, com

372 Part Three ~ IPv6 Practice

You'll need to specify your nameservers. These should return both IPv4
and IPv6 records, a l though you' l l note that you must specify an IPv4
address for the DNS servers at this time (with this version of IOS).

ip name-server 192.168.201.5

ip name-server 192.168.201.4

You need to enable unicast-routing for IPv6mthis enables IPv6 routing.

ipv6 unicast-routing

As with any router, you need to specify your default route---or "route of
last resort" for the router. This is where any traffic for which the router has
no explicit routing information will be forwarded. Specify IPv4 and IPv6
default routes.

ip route 0.0.0.0 0.0.0.0 192.168.200.1

ipv6 route : :/0 3FFE:80F0:I:2: :i

You also need to specify the static route for the network behind your
firewall, both IPv4 and IPv6.

ip route 192.168.200.32 255.255.255.224 192.168.200.254

ipv6 route 3FFE:80F0:I0:I: :/64 3FFE:80F0:I0::3

Set your NTP servers. Set two; the router will use the first one that works.
This is the only way to get time synchronized to the accuracy needed to
troubleshoot networking issues.

ntp server 192.168.202.5

ntp server 192.168.202.4

22.1 .6 TESTING CONNECTIVITY

Let's make sure we can "ping" (IPv4 and IPv6) our ups t ream default route
and a known IPv6 address on the 6Bone-- then our downs t ream explicit
route. You see we use "ping ip." You can just say "ping" on a Cisco router,
and it will assume you mean IPv4, but I 'm explicitly telling the IOS I want

Chapter 22 �9 Configuring IPv6 Routers 373

an IPv4 ping. The IPv6 ping uses the parameter "ping ipv6." From the
2611, these should look like this.

ping IPv4 of upstream default interface

(by IP-address)

ent-firewall# ping ip 192.168.200.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.200.1,

timeout is 2 seconds:

!!!!!

Success rate is i00 percent (5/5),

round-trip min/avg/max = 1/2/4 ms

ping IPv6 of upstream default interface

(by IP-address)

ent-firewall#ping ipv6 3ffe:80f0:l:2::l

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 3FFE:80F0:I:2: :i,

timeout is 2 seconds:

[[![[

Success rate is i00 percent (5/5),

round-trip min/avg/max = 1/2/4 ms

You get the idea. I'll just show the IPv6 pings for the other interfaces.

ping IPv6 of www.zama6.net (by IP-address)

ent-firewall#ping ipv6 3ffe:80f0:l:l:b0c:20ff:fed9:idd2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to

3FFE:80F0:I:I:b0c:20FF:FED9:IDD2, timeout is 2 seconds:

!!!!!

Success rate is i00 percent (5/5),

round-trip min/avg/max = 1/1/4 ms

ping IPv6 of downstream interface (by IP-address)

ent-firewall#ping ipv6 3ffe:80f0:10::3

Type escape sequence to abort.

374 Part Three �9 IPv6 Practice

Sending 5, 100-byte ICMP Echos to 3FFE:80F0:I0: :3,

timeout is 2 seconds:

!!!!!

Success rate is i00 percent (5/5) ,

round-trip min/avg/max = 1/2/4 ms

22.1.7 TESTING DNS OPERATION

Let's make sure the DNS is working right--especially for IPv6 records.

ping IPv4 of www.zama6.net (by name)

ent-firewall#ping ip www.zama6.net

Translating "www.zama6.net"...

domain server (192.168.201.5)

[OK]

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.201.10,

timeout is 2 seconds:

!!!!!

Success rate is i00 percent (5/5),

round-trip min/avg/max = 1/2/4 ms

ping IPv6 of www.zama6.net (by name)

ent-firewall#ping ipv6 www.zama6.net

Translating "www.zama6.net"...

domain server (192.168.201.5)

[OK]

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to

3FFE:80F0:I:I:b0c:20FF:FED9:IDD2,

timeout is 2 seconds:

!!!!!

Success rate is i00 percent (5/5),

round-trip min/avg/max = 1/2/4 ms

Chapter 22 �9 Configuring IPv6 Routers 375

22.1.8 TESTS FROM IHSIDE YOUR NETWORK

Let's put the machine inside our network to work--ent-cl ient. Ideally, this
machine will be a full-function IPv4/IPv6 machine. ZAMA has written a
HOWTO for setting up an IPv6-enabled Sun Solaris 8 system that would
be ideal [ZAMASOL8].

Let's do a traceroute through our 2611 to w w w . k a m e . n e t - - w e l l outside our
network. This will show that our router is correctly configured and passing
traffic, since we'll do DNS via IPv4 and "traceroute" via IPv6 (both through
the 2611). Note the "-A inet6" qualifier on the "traceroute" command. This
is a common (but not consistent) flag for Solaris network commands for
"use the IPv6 stack."

traceroute

ent-client# traceroute -A inet6 www.kame.net

traceroute- Warning- kame212.kame.net has multiple addresses- using

3 ffe- 501- 4819- 2000- 5054- ff- fedc-50d2

traceroute- Warning- Multiple interfaces found;

using 3ffe-80f0-10-l-b0c-20ff-fefd-92bb @ hme0-1

traceroute to kame212.kame.net

(3ffe-501-4819-2000-5054-ff'fedc-50d2) ,

30 hops max, 60 byte packets

slatel.zama6.com (3ffe-80f0:10-1--l) 0.841 ms

i0

3ffe:80f0:10::2

3ffe:80f0:l:2: :i

3ffe:c00:e:13: :I

3ffe:401:0:l: :16:2

3ffe:8000-ffff:5::2

1.380 ms * 1.677 ms

2.496 ms * 2.805 ms

29.772 ms 28.332 ms *

209. 622 ms 206. 875 ms

439.288 ms 458.564 ms

0.450 ms 0.379 ms

3ffe:501:0:1802:2e0:18ff:fe98:a28d 426.839 ms

pc2.fujisawa.wide.ad.jp(2001:200:0:1001:2a0:24ff:fe83:8b33)

436.466 ms 432.816 ms 439.956 ms

paradise.v6.kame.net (3ffe:501:4819:2000:2e0:18ff:fe98:f19d)

435.030 ms 440.840 ms 436.413 ms

pine.v6.kame.net (3ffe:501:4819:2000:5054:ff:fedc:50d2)

436.626 ms 434.037 ms 434.600 ms

end

204. 944 ms

434. 740 ms

434.244 ms 426.978 ms

376 Part Three �9 IPv6 Practice

22.1.9 CLOSING TOPICS

That's about it. We've built an IPv6-capable Cisco 2611 from the ground up
and tested IPv4 and IPv6 functionality. It won ' t be f a s t - -ye tmbut now you
can get to work trying other IPv6 applications and utilities. The testbed is
ready.

Warning- Until you unders tand the various support protocols for IPv6
(i.e., ndpd.conf), be careful about configuring ACL or firewalls. It is
suggested you start with relatively "open" rules and watch how the sys-
tem communicates using tools like "snoop" (Solaris) or " tcpdump," then
tighten down your security stance.

22.2 Configuring a Cisco 7200 Router**

This section describes in detail how to configure the Cisco 7200 Series
Routers for Native IPv6 and IPv6 tunneling.

22.2.1 GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 Cisco 7200 Series Router
�9 Cisco IOS 12.1
�9 IPv6 address space from your Internet Service Provider, native

or tunnel.

To run IPv6, either at the Enterprise or backbone level, it is necessary to
have IPV6-capable routers. Many organizations working with IPv6 are
using software-based routers built on the Solaris or BSDI UNIX Operating
Systems. While this is a workable solution for small networks, it is not a
scalable solution that will grow with the users' needs.

Cisco currently has production and beta IPv6 images for their 7200 series
routers, as well as several others. The 7200 is simple to configure for

**This section is adapted from a document written by Grant Furness and Brian Skeen,
�9 Zama Networks.

Chapter 22 �9 Configuring IPv6 Routers 377

IPv6, particularly if one is already familiar with the Cisco product line
and command line interface.

The Cisco IOS 12.1 image, which can be downloaded from Cisco
Connection Online, is required to run IPv6. Several images can be found
at h t tp : / /www.cisco .com/ ipv6/ . If you have any questions regarding the
proper selection of an image or downloading the newest image, contact
ipv6-support@cisco.com. We are using the 12.1(20001029) beta image. This
release is stable, sitting in front of our production IPv6 network. We have
not experienced any serious problems with routing or subnetting issues.

22.2.2 AUTOCONFIGURATION

IPv6 is simple to configure on the 7200, particularly if you are familiar with
the Cisco Command Line Interface. First, you must be in enable mode and
then configure terminal mode.

IPv6 on the Cisco product line is run at an interface level, meaning that you
must enable IPv6 on each interface you wish to operate an IPv6 network.
From the command line, enter this interface to configure its address and
network information, and enter the command ipv6 enable to turn IPv6 on.
The command ipv6 unicast-routing will enable IPv6 routing.

Once IPv6 is enabled, you can assign the interface's address. Probably the
simplest way to do this is to assign the network portion that the router will
broadcast, followed by ::1. In the following example, the network portion
of the address is 3FFE:80F0:1:1::/64. Simply place a value after the double
colon (::) and before the /64 in the address assignment, and you now have
an IPv6 address assigned to your interface.

ipv6 address 3FFE:80F0:I:I: :i/64

With the address assigned, you can now configure the router discovery
protocol information for the router to advertise to its clients. The following
command gives the router all the information it needs to broadcast network
information to the clients under it.

ipv6 nd prefix-advertisement 3FFE:80F0:I:I: :/64

86400 86400 onlink autoconfig

378 Part Three ~ IPv6 Pradice

The ipv6 nd prefix-advertisement is defining the function of the command
as broadcasting the network prefix information, 3FFE:80F0:I:I::/64. Note
that the network address being broadcast is a / 6 4 , which comprises half
of the 128-bit IPv6 address. The number following the / in a network
address broadcast refers to the number of bits in the network portion of
the address, in this case 64 bits. The other half is composed of the client's
MAC address. This idea is analogous to 192.168.12 being the network
portion of a private Class C address space.

The next two fields indicate when the client is to check back for the
network information in case it has changed. The first is valid lifetime in
seconds, here 86400, which is 24 hours. The client must check back with the
router within the timeframe to verify its network information. The second
is preferred lifetime, or when the router prefers that the clients check back
to verify network information. This is also set to 86400 seconds, as indicated
by Cisco documentation.

According to RFC 2462, when the preferred lifetime of an IPv6 address
is expired, that address is deprecated, and "should not be used in any
new communications if an alternate (nondeprecated) address is available
and has sufficient scope." However, the client should continue to use the
deprecated address for communications already under way. In no case can
the address be used for either outgoing or incoming new communications
after the valid lifetime is expired.

The onlink designation says that the IPv6 address allocation will only occur
on nodes attached to that particular network link.

The autoconfig command tells the clients that their addresses are to be
automatically configured. The network portion of the address is to be taken
explicitly from the router, as just outlined. The host portion of the address
will be derived from the MAC address.

The entire configuration looks like this.

cisco-router> enable

cisco-router# configure terminal

cisco-router# interface e2/l

cisco-router# ipv6 enable

cisco-router# ipv6 address 3FFE:80F0:I:I: :i/64

Chapter 22 �9 Configuring IPv6 Routers 379

cisco-router# ipv6 nd prefix-advertisement

3FFE-80F0-1-1- -/64 86400 86400

onlink autoconfig

22.2.3 TUNNEL CONFIGURATION

Cisco IOS 12.1 can also connect IPv6 devices via tunnels through IPv4.
The information required to configure a static tunnel is different from the
information required for a static network autoconfiguration. The admin-
istrator will need to know the destination router 's IPv6 address and IPv4
address, the client's IPv4 address, and the tunnel mode.

Do not assign an IPv4 address directly to the interface for tunneled IPv6
traffic. Instead, assign the IPv4 address to the tunnel endpoint, which is
tied to the interface.

As in the static network configuration, enable IPv6 on the tunnel interface.

cisco-router#

cisco-router#

cisco-router#

int Tunnell0

ipv6 enable

ipv6 address 3FFE-80F0-2. -8/126

Note that the address assignment being made here is a /126, meaning that
the network portion of this address is comprised of 126 of the 128 bits of
the address. The reason for this is that the tunnel is a PPP link, and only
two addresses are needed to form the link, and one is reserved for the
anycast address. The IPv4 waste of two addresses, one for the network
and one for the broadcast, are no longer necessary with IPv6.

The addresses for both sides of the tunnel are statically configured, not
automatic. The router administrator will need to set aside the address
space of this network to ensure that the tunnel recipient will have globally
unique addresses.

Now that the IPv6 information is configured in the Tunnel interface,
the tunnel requires the IPv4 information. The tunnel will need to know
its source and destination addresses. From the viewpoint of the router,
the source address will be applied to the router side of the tunnel and the
destination address will be applied to the client side of the tunnel. It is

380 Part Three �9 IPv6 Practice

22.2.4

also necessary to dictate what type of tunnel the interface is-- ipv6ip in
this case.

cisco-router# tunnel source 192.142.129.2

cisco-router# tunnel destination 192.31.7.104

cisco-router# tunnel mode ipv6ip

The complete IPv6 through IPv4 tunnel configuration looks like the
following example.

interface Tunnel 10

description connection to client's side of tunnel

3ffe:80f0:f:4::/64

no ip address

ipv6 enable

ipv6 address 3FFE:80F0:2::8/127

tunnel source 192.142.129.2

tunnel destination 192.31.7.104

tunnel mode ipv6ip

The client side of the tunnel will need to be given an address range,
preferably in the form of a network address assignment. In the preceding
example, the client's network is 3ffe:80f0:f:4::/64. If the client side of the
tunnel is a router or a UNIX computer, it can be configured to broadcast this
address range to the machines on his LAN, just as in the first section of this
document--exceptions being made for platform differences, of course. It is
important to keep record of this address assignment to ensure the global
uniqueness of each address on that network (description connection to
client's side of tunnel 3ffe:80f0:f:4::/64).

BGP4+

One of the more common ways to perform routing on the external side of
the router is by using BGP with IPv6, or BGP4+. The first step is to identify
that BGP will be working on IPv6 with the command: no bgp default ipv4-
unicast. Then, simply identify your AS number and your BGP neighbors'
IPv6 addresses and AS numbers.

router bgp <your as number>

neighbor <neighbor's IPv6 address> <neighbor's as number>

Chapter 22 �9 Configuring IPv6 Routers 381

Here is an example of a BGP4+ configuration.

router bgp 9340

neighbor 3FFE:82EI:8000::12 remote-as 8102

This configuration shows one BGP entry, but having multiple entries is
simply a matter of adding more entries to the configuration. You can also
log all BGP neighbor changes with this command.

bgp log-neighbor-changes

22.2.5 STATIC ROUTING

The addition of static routes in IPv6 is as simple as in IPv4. This is the
command.

ipv6 route <destination IPv6 network><IPv6 interface>

Here is an example from my routing table.

ipv6 route 3FFE:80F3:I:4::/64 3FFE:80F3:I:2:A01:20ff:FED9:52B4

Routing your tunnel clients' networks is the same, only you need to direct
all traffic bound for the network through your end of the tunnel interface,
which can be done by simply referring to the name of the tunnel.

ipv6 route 3FFE:80F0:F:4::/64 Tunnell0

Since we are connected to the 6Bone via a tunnel, we need a command
to direct all IPv6 traffic out through our end of the tunnel interface to our
upstream provider. This is done via the same static route command.

ipv6 route 3FFE: :/16 Tunnell0 120

The number at the end of the command--120 in this case--is the Admin-
istrative Distance. The Administrative Distance is the level of trust that
can be placed on the source of routing information in the BGP and OSPF
routing protocols. The value is an integer between 1 and 255. The higher
the value, the lower the trust level to be placed on that source. A value of
255 means the source should be ignored.

382 Part Three �9 IPv6 Practice

The preceding information is all that is necessary to configure a Cisco 7200
router for IPv6. The configurations shown will enable users to communi-
cate with both Native IPv6 and Tunneled IPv6.

22.3 Configuring IPv6 on Hitachi GR2000 Series Routers f

This section describes the necessary steps for configuring a Hitachi GR2000
series router to communicate over IPv6. Many of the commonly used fea-
tures of IPv6, including Static Neighbor Discovery (NDP) configuration,
Address Auto-configuration, Ripng, BGP4+, and 6over4 tunneling, are
included to provide configuration and command reference.

22.3.1 GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 Hitachi GR2000 Series Routers
�9 Hitachi OS 05-00-AA/OS6
�9 IPv6 address space from your Internet Service Provider, native

or tunnel.

22.3.2 BACKGROUND

To run IPv6 either at the Enterprise or Backbone level, it is necessary to have
IPv6-capable routers. The Hitachi GR2000 Series Router, built on the BSDI
UNIX Operating Systems, currently supports software-based forwarding
of all IPv6 packets. The procedures listed in this document were tested
using Fast Ethernet and Gigabit Ethernet interfaces, but Hitachi does cur-
rently offer IPv6 support on their ATM and Packet Over Sonet (POS) line
cards as well.

This router has a three-tier user interface to provide different levels of
administrative security: Command, Admin, and Config. The Command-
and Admin-level interfaces have read-only permission and are used for
command verification and low-level troubleshooting. The Config-level

tThis section is adapted from a document written by Brian Skeen, �9 2001 Zama Networks.

Chapter 22 �9 Configuring IPv6 Routers 383

22.3.3

interface has read-write permission and is used to perform all router
configuration commands.

REQUIRED lOS IMAGE

The procedures listed here were tested on Hitachi OS release, 05-00-
AA/OS6, which at the time of this writing, is the most current beta image
available for testing. We have found this release to be stable and have not
experienced any serious routing or subnetting issues related to the current
OS revision.

22.3.4 DEFINING THE ETHERNET LINE

Before any configuration can be assigned to a router interface, you must
first create the interface line configuration for the physical port to be used.

The following example shows how to define a 100MB, full-duplex Ethernet
line named to_gr2000b. Note that you must first access the Config-
level interface and open the configuration file prior to issuing the first
configuration command.

*** Welcome to the Router ***

GR2000A/command : admin

GR2000A/admin- config

GR2000A/config- open

GR2000A/config- set line to gr2000b ethernet 1/2

GR2000A/config> line to gr2000b ethernet 1/2 type 100m full_duplex

GR2000A/config>apply

GR2000A/config>save

To verify the previous line configuration, the show line <linename>
command is used as follows.

GR2000A/config: show line to_gr2000b

line to_gr2000b ethernet 1/2 {

type 100m_full_duplex;

};

384 Part Three �9 IPv6 Practice

22.3.5 DEFINING A STATIC IPv6 ADDRESS TO THE LINE

N o w that the line configuration has been completed, the IP command can
be used to set an IPv6 address on the configured line. Once IPv6 has been
configured on the line, the router will also generate a link-local Unicast
address on the line by prepending the predefined fe80::2 prefix with the
interface's 64-bit interface identifier.

The following example shows how to define a static Unicast address with
a 64-bit prefix length to the line to_gr2000b.

GR2000A/config: ip to_gr2000b 3ffe:80f0:3:3000::l -prefixlen 64

GR2000A/conf ig>apply

GR2000A/conf ig> save

To verify the previous ip configuration, the show ip <linename> command
is used as follows.

GR2000A/config: show ip to_gr2000b

ip to gr2000b {

3ffe:80f0:3:3000: :i prefixlen 64;

};

To verify the entire IPv6 interface configuration, the interface <linename>
command is used at the Admin-level interface as follows.

GR2000A/admin: interface to gr2000b

to_gr2000b:

flags=80e3<UP,BROADCAST,NOTRAILERS,RUNNING,NOARP,MULTICAST>

mtu 1500

inet6 3ffe:80f0:3:3000::i/64

inet6 fe80::240:66ff:fe10:8931%to_gr2000b/64

NIFl/Line2: UP media 100BASE-TX full 00:40:66:10:89:31

Time-since-last-status-change: 2,04:44:52

Last down at: 04/28 04:39:25

To verify that the interface is up and configured, the ping6 <IPv6 address>
command can be used as follows.

GR2000A/admin: ping6 3ffe:80f0:3:3000::l

Chapter 22 �9 Configuring IPv6 Routers 385

22.3.6

22.3.7

PING6(56:40+8+8 bytes) 3ffe:80f0:3:3000::l --> 3ffe:80f0:3:3000::l

16 bytes from 3ffe:80f0:3:3000::l, icmp_seq=0 hlim=64 time=0.42 ms

16 bytes from 3ffe:80f0:3:3000::l, icmp_seq=l hlim=64 time=0.343 ms

^C

3ffe:80f0:3:3000::l ping6 statistics

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 0.343/0.381/0.42 ms

DEFINING AN IPv6 STATIC ROUTE

The static command is used to define a static IPv6 route on the GR2000
series router. Static routes can be used instead of, or in addition to, a
dynamic routing protocol to specify the path to a destination network.

The following example shows how to define an IPv6 default route using a
next-hop gateway address of 3ffe:80f0:3:3000::2.

GR2000A/admin : config

GR2000A/config: static : : prefixlen 0 gateway

3ffe-80f0:3:3000::2

GR2000A/config>apply

GR2000A / con fig> save

To verify the previous IPv6 Static Route configuration, the show static
command is used as follows.

GR2000A/config: show static

static {

:: prefixlen 0 gateway

};

3ffe-80f0-3-3000- -2;

DEFINING A STATIC NEIGHBOR DISCOVERY ENTRY

The NDP command is used to define a static Neighbor Discovery (ND)
entry in the router's IPv6 neighbor cache table. The Neighbor Discov-
ery protocol is used by nodes (hosts and routers) to determine the link
layer addresses for neighbors known to reside on attached links, to quickly
purge cached values that become invalid, to actively keep track of which

386 Part Three �9 IPv6 Practice

neighbors are reachable, and to detect changed link layer addresses within
the network.

In most cases, the process of defining a static Neighbor Discovery entry
will not be required, but it has been included here as reference. Defining a
static ND entry in IPv6 is similar to defining a static ARP entry in IPv4 and
may be useful if you needed to create a virtual IPv6 address to virtual MAC
address mapping that could not otherwise be negotiated dynamically by
the router.

The following example shows how to define a permanent static entry that
maps IPv6 address 3ffe:80f0:3:3000::3 to MAC address 00:0b:0c:0d:0e:03
on line to_gr2000b.

GR2000A/config- ndp 3ffe-80f0-3-3000" -3 to_gr2000b

-mac address 00-0b-0c-0d-0e-03

GR2000A/config>apply

GR2000A/config>save

To verify the Static NDP Entry configuration, the ndp -a command is used
as follows.

GR2000A/admin- ndp-a

Neighbor Link layer Addr

3ffe-80f0"3"3000--3 0-b-c-d'e'3

Netif Expire S Flgs P

to_gr2000b permanent R S

22.3.8 DEFINING AN IPv6 ROUTER ADVERTISEMENT

The RA command is used to define specific Router Advertisement param-
eters on a given interface. Router Advertisements (RA) can be configured
to provide on-link prefix information to be used by local hosts for Address
Autoconfiguration and may also be used to define the amount of time, in
seconds, that information on the reachability of adjacent nodes is valid.

The following example shows how to define a 64-bit prefix with lifetime
values of 24 hours on interface gr_2000b. The valid-lifetime value speci-
fies the length of time (in seconds) that the configured address remains
in the valid state. The preferred-lifetime value specifies the length of
time (in seconds) that the configured address is preferred, or the time

Chapter 22 �9 Configuring IPv6 Routers 387

until deprecation. The valid lifetime value must be greater than or equal
to the preferred lifetime value.

GR2000A/config: ra interface to_gr2000b enable

GR2000A/config> ra interface to_gr2000b prefix 3FFE:80F0:3:3000::

prefixlen 64 valid-lifetime 86400 preferred-lifetime 86400

GR2000A/config>apply

GR2000A/config>save

To verify the Router Advertisement configuration, the show ra command
is used as follows.

GR2000A/config: show ra

ra yes {

interface to_gr2000b enable {

prefix {

3ffe:80f0:3:3000:: prefixlen 64 valid-lifetime 86400

preferred-lifetime 86400;

};

reachable-time 1800-

.

} ;

22.3.9 DEFININGA CONFIGURED 6OVER4 TUNNEL INTERFACE

Configured 6over4 tunneling is a transition mechanism that provides a
method for isolated IPv6 hosts to communicate across an IPv4 transport
network. With 6over4 tunneling, an IPv6 packet originating at one end of
the tunnel is encapsulated within an IPv4 packet and transmitted across
the IPv4 network, where it is then decapsulated back to an IPv6 packet
and forwarded to its IPv6 destination. A dual-stack router, one that can
communicate both via IPv4 and IPv6, is required at each end of the tunnel
to perform the encapsulation process.

The following example shows the router configuration steps required
at both ends of the tunnel to define a 6over4 tunnel named test-6over4
(Figure 22-2). An IPv4 address must first be assigned to the encapsulating
interface on each router. A static route is also defined using a next-hop
address of the remote tunnel endpoint.

388 Part Three �9 IPv6 Practice

* * * * * * * * * * * * * ON GR2000A*************

GR2000A/config: ip to_gr2000b 172.16.16.2 mask 255.255.255.252

GR2000A/config> tunnel test-6over4 172.16.16.2 remote 172.16.16.1

GR2000A/config> ip test-6over4 3ffe:80f0:3:5000::2

destination_ip_address 3ffe:80f0:3:5000::l

GR2000A/config> static :: prefixlen 0 gateway 3ffe:80f0:3:5000::l

GR2000A/config> apply

GR2000A/config> save

************* ON GR2000B *************

GR2000B/config: ip to_gr2000a 172.16.16.1 mask 255.255.255.252

GR2000B/config> tunnel test-6over4 172.16.16.1 remote 172.16.16.2

GR2000B/config> ip test-6over4 3ffe:80f0:3:5000::l

destination_ip_address 3ffe:80f0:3:5000::2

GR2000B/config> static :: prefixlen 0 gateway 3ffe:80f0:3:5000::2

GR2000B/config> apply

GR2000B/config> save

To verify the 6over4 Tunnel Configuration on router GR2000A, the config
show tunnel and config show ip <tunnel name> commands are used as
follows.

GR2000A/admin- config show tunnel

tunnel test-6over4 {

172.16.16.2 remote 172.16.16.1-

};

GR2000A/admin. config show ip test-6over4

ip test-6over4 {

3ffe-80f0.3-5000--2 destination_ip_address 3ffe.80f0-3-5000--l;

};

To verify that the tunnel interface is up and configured, the ping6 <IPv6
address> command can be used as follows.

GR2000A/admin- ping6 3ffe:80f0-3-5000-'l

PING6(56=40+8+8 bytes) 3ffe-80f0-3-5000- :i --> 3ffe-80f0-3-5000. -i

16 bytes from 3ffe-80f0.3-5000--l, icmp_seq=0 hlim=64 time=3.052 ms

Chapter 22 �9 Configuring IPv6 Routers 389

16 bytes from 3ffe:80f0:3:5000::l, icmp seq=l hlim:64 time:2.894 ms

^C

3ffe:80f0:3:5000::l ping6 statistics

2 packets transmitted, 2 packets received, 0% packet loss

round-trip min/avg/max = 2.894/2.973/3.052 ms

22.3.10 ENABLING THE RIPNG PROTOCOL

RIPng is an Interior Gateway routing protocol supported in IPv6 on the
GR2000 series router. RIPng uses a hop count metric to determine the best
route to a particular destination network.

The following example shows how to enable RIPng on the GR2000 router
and how to define RIPng routing updates to be sent and received on
interface to_gr2000b.

GR2000A/config: ripng yes

GR2000A/config> ripng interface to_gr2000b ripin ripout

GR2000A/config>apply

GR2000A/config>save

To verify the RIPng configuration, the show ripng command is used as
follows:

GR2000A/config: show ripng

ripng yes {

1 interface to_gr2000b ripin ripout;

};

22.3.11 ENABLING THE BGP4+ PROTOCOL

BGP4+ is an Exterior Gateway Routing Protocol supported in IPv6 on the
GR2000 series router. BGP4+ is used to exchange loop-free routing table
information between routers located on different autonomous systems.

The following example shows how to enable BGP4+ on the router, how
to set up a BGP4+ peering relationship with a remote router located in
AS 65002, and how to export (advertise) all directly connected routes
to AS 65001 via the BGP4+ protocol. Prior to BGP4+ configuration, the

390 Part Three ~ IPv6 Practice

22.4

au tonomous system number and router-id for the local router must be spec-
ified. Note that the configuration file is closed after the final configuration
command has been entered.

GR2000A/config: autonomoussystem 65001

GR2000A/config>routerid 203.142.143.45

GR2000A/config> bgp4+ yes

GR2000A/config> bgp4+ externalpeeras 65002 peer 3ffe:80f0:3:4000::l

GR2000A/config>export proto bgp4+ as 65001 proto direct

GR2000A/config>apply

GR2000A/config>save

GR2000A/config:close

To verify the BGP4+ Configuration, the show bgp4+ and show export
commands are used as follows.

GR2000A/config> show bgp4+

bgp4+ yes {

1 group type external peeras 65001 {

peer 3ffe:80f0:3:4000::l;

};

};

GR2000A/config> show export

export proto bgp4+ as 65001 {

proto direct;

};

The preceding information is all that is necessary to configure a Hitachi
GR2000 series router for IPv6. The configurations shown will enable users
to communicate with both Native IPv6 and Tunneled IPv6.

Configuring NEC IX5010 Series Routers for IPv6

This section describes the necessary steps for configuring a NEC IX5010
series router to communicate over IPv6. Many of the commonly used

~This section is adapted from a document written by Brian Skeen and Steve Smith, �9
Zama Networks.

Chapter 22 �9 Configuring IPv6 Routers 391

features of IPv6, including Static Neighbor Discovery configuration,
Address Autoconfiguration, Configured 6over4 tunneling, RIPng, and
BGP4, are included to provide configuration and command reference.

22.4.1 GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 NEC IX5010 Routers
�9 NEC OS 5.1.07
�9 IPv6 address space from your Internet Service Provider, native

or tunnel.

22.4.2 BACKGROUND

To run IPv6 at the Enterprise or Backbone level, it is necessary to have IPv6-
capable routers. The NEC IX5010 Router currently supports hardware-
based forwarding of all IPv6 packets. The procedures listed in this
document were tested using Fast Ethernet interfaces, but NEC does cur-
rently offer IPv6 support on their Gigabit Ethernet, ATM, and Packet Over
Sonet (POS) line cards as well.

This NEC router has a two-tier user interface to provide different levels
of administrative security: operator-mode and supervisor-mode. The
operator mode has read-only permission and is used for command verifi-
cation and low-level troubleshooting. The supervisor mode has read-write
permission and is used to perform all router configuration commands.

The procedures listed here were tested on NEC OS release 5.1.07, which at
the time of this writing is the most current beta image available for testing.
We have found this release to be stable and have not experienced any
serious routing or subnetting issues related to the current OS revision.

22.4.3 DEFINING VLAN CONFIGURATION

Before any IPv6 configuration can be assigned to a router interface, you
must first configure the VLAN parameters for the specific port(s) to be
used. By default, all ports on the NEC IX5010 router are assigned to a
default VLAN-- in this case, VLAN 2. In order to assign a port currently

392 Part Three �9 IPv6 Practice

22.4.4

in the default VLAN to a new VLAN, it must first be removed from the
default VLAN.

On the IX5010 router, there are two VLAN modes that allow you to change
and activate VLAN configuration parameters. The command vlan-mode
change is used to change the VLAN status to permit configuration changes.
Once configuration data has been changed, the command vlan-mode active
is used to activate the newly registered VLAN data.

The following example shows the necessary steps to define a new VLAN
(VLAN-ID 200) named NECI-to-NEC2; assign port 25 to the new VLAN,
and then activate the VLAN for use. Note that you must first access the
supervisor mode prior to issuing the first configuration command. Also
note that port 25 must be removed from the default VLAN (VLAN-ID 2)
before it can be assigned to VLAN 200. The session should appear as
follows.

*** Welcome to the Router ***

�9 necl> supervisor

�9 Password: **********

�9 necl# vlan-mode change

�9 necl# no vlan port 2 25

�9 necl# vlan register 200 NECl-to-NEC2 25

�9 necl# vlan-mode active

�9 necl# save configall

To verify the previous VLAN configuration, the show v l a n r e g i s t e r
command is used as follows.

necl# show vlan reg

VLAN ID : 200

VLAN Name : NECI-to-NEC2

Ethernet Port : 25

LEC ID

PPP ID

ENABLING IPv6 ON A CONFIGURED VLAN

Once the VLAN configuration has been completed, the IPv6 com-
mand must be used to enable IPv6 functionality on the configured

Chapter 22 �9 Configuring IPv6 Routers 393

VLAN. By default, once IPv6 has been enabled on the VLAN, the
router will also generate a link-local Unicast address on the interface by
prepending the predefined fe80::2 prefix with the interface's 64-bit interface
identifier.

The following example shows how to enable IPv6 on the configured
VLAN 200.

necl# ipv6 interface enable vlan 200

necl# ipv6 interface status vlan 200 up

To verify the previous IPv6 configuration, the show i p v 6 i n t e r f a c e
v l a n < ID> command is used as follows.

vlan 200 (default site)

LowerLayer

Mtu Size

Reassemble Size

Frame Type

Interface ID

Phys. Address

Admin. Status

Last Change time

necl# show ipv6 interface vlan 200

: vlan 200
w

: 1500

: 65535

: dix

: 02:00:4c:ff:fe:94:9b:55

: 00:00:4c:94:9b:55

: up Operation Status : up

: 3 Days 15 Hours 15 Min. 5 Sec.

22.4.5 DEFINING A STATIC IPv6 ADDRESS TO THE INTERFACE

N o w that IPv6 functionality has been enabled on VLAN 200, the IPv6
address-table command can be used to set an IPv6 address on the
configured VLAN.

The following example shows how to define a static Unicast address with
a 64-bit prefix length to VLAN 200.

�9 necl# ipv6 address-table vlan 200 3ffe-80f0-3-e" -i 64

To verify the previous IPv6 configuration, the show ipv6 address-table
command is used as follows.

394 Part Three �9 IPv6 Practice

22.4.6

�9 necl# show ipv6 address-table

3ffe-80f0-3-e-:@vlan 200 64

Anycast Stateful Preferred

3ffe-80f0:3-e--l@vlan_200 64

Unicast Stateful Preferred

fe80:-200-4cff-fe94-9b55@vlan_200 64

Auto Stateful Preferred

To verify that the VLAN interface is up and configured correctly, the ping6
<IPv6 address> command can be used as follows.

�9 necl# ping6 3ffe-80f0.3-e-:l

Pinging 3ffe-80f0-3-e-:l with 56 bytes data

O

.... ping statistics

1 packets transmitted, 1 packets received, 0% packet loss

round-trip (ms) min/avg/max = 2/2/2

DEFINING AN IPv6 STATIC ROUTE

The ipv6 routing-table command is used to define static IPv6 routes on the
NEC IX5010 router. Static routes can be used instead of, or in addition to,
a dynamic routing protocol to specify the path to a destination network.

The following example shows how to define an IPv6 default route using a
next-hop gateway address of 3ffe:80f0:3:e::2.

�9 necl# ipv6 routing-table - - 0 3ffe-80f0-3.e. -2

To verify the previous IPv6 Static Route configuration, the show ipv6
routing-table command is used as follows.

�9 necl# show ipv6 routing-table

5 routing entries in tables.

Static 3ffe-80f0-3-e- -/64 [I] never aged

via 3ffe-80f0-3.e. -2@vlan 200

Direct 3ffe-80f0-3-e--/128 [i] never aged

Chapter 22 �9 Configuring IPv6 Routers 395

22.4.7

via �9 : l@loopback_0

Direct 3ffe:80f0:3-e-:1/128 [i]

DEFINING A STATIC NEIGHBOR DISCOVERY ENTRY

never aqed

The ipv6 nd and vlan mac-table commands are used to define a static
Neighbor Discovery (ND) entry in the router's IPv6 neighbor cache table.
The Neighbor Discovery protocol is used by nodes (hosts and routers)
to determine the link layer addresses for neighbors known to reside on
attached links, to quickly purge cached values that become invalid, to
actively keep track of which neighbors are reachable, and to detect changed
link layer addresses within the network.

In most cases, the process of defining a static Neighbor Discovery entry will
not be required, but it has been included here as reference. This process of
defining a static ND entry in IPv6 is similar to defining a static ARP entry
in IPv4 and may be useful if you need to create a virtual IPv6 address
to virtual MAC address mapping that could not otherwise be negotiated
dynamically by the router.

The following example shows how to define a permanent static entry that
maps IPv6 address 3ffe:80f0:3:e::3 to the MAC address 0a:0b:0c:0d:0e:0f on
VLAN 200.

�9 necl# ipv6 nd cache register vlan 200 3ffe:80f0:3:e::3

0a:0b:0c:0d:0e:0f

�9 necl# vlan-mode change

�9 necl# vlan mac-table 2 0a:0b:0c:0d:0e:0f ether 25

�9 necl# vlan-mode active

�9 necl# save configall

To verify the Static ND entry configuration, the show ipv6 nd cache
s t a t u s command is used as follows.

�9 necl# show ipv6 nd cache status

Interface �9 vlan 200

Ipv6 Address status Expire type Link Layer Address

3ffe-80f0-3-e: -2 REACHABLE 3773 D 00-00-4C-94-AI.DB

3ffe-80f0-3-e- "3 REACHABLE 0 R 0A.0B-0C-0D-0E-0F

396 Part Three �9 IPv6 Practice

22.4.8 DEFI.I.G A. IPv6 ROUTER ADVERTISmEm

The nd ra command is used to define specific Router Advertisement
parameters on a given interface. Router Advertisements (RA) can be con-
figured to provide on-link prefix information to be used by local hosts for
Address Autoconfiguration and may also be used to define the amount of
time, in seconds, that information on the reachability of adjacent nodes is
valid.

The following example shows how to define a 64-bit prefix with lifetime
values of 24 hours on VLAN 200. The valid-lifetime value (86400) spec-
ifies the length of time (in seconds) that the configured address on the
host should remain in the valid state. The preferred-lifetime value (86400)
specifies the length of time (in seconds) that the configured address on the
host is preferred, or the time until deprecation. The valid lifetime must be
greater than or equal to the preferred lifetime value.

�9 necl# ipv6 nd ra prefix vlan 200 3ffe-80f0-3-e--

64 86400 86400

�9 necl# ipv6 nd ra send vlan 200

To verify the Router Advertisement configuration, the show ipv6 nd ra
command is used as follows.

�9 necl# show ipv6 nd ra

Interface : vlan 200

Send Router Advertisement : yes

Max RA Interval : 600

Managed Config Flag : off

Reachable Time : 0

RA Lifetime

Link MTU

Link Layer Address

Prefix

Site Prefix Length

Valid Lifetime

Preferred Lifetime

OnLink Flag

Min RA Interval : 198

Other Config Flag : off

NS Interval : 0

: 1800 Hop Limit : 64

: 1500

: 00:00:4C:94:9B:55

: 3ffe:80f0:3:e::/64

:0

: 86400 Valid Lifetime Mode : fix

�9 86400 Preferred Lifetime Mode : fix

: on Autonomous Flag : on

Chapter 22 �9 Configuring IPv6 Routers 397

22.4.9 DEFININGA CONFIGURED 6OVER4 TUNNEL INTERFACE

Configured 6over4 tunneling is a transition mechanism that provides a
method for isolated IPv6 hosts to communicate across an IPv4 transport
network. With configured 6over4 tunneling, an IPv6 packet originating at
one end of the tunnel is encapsulated within an IPv4 packet and transmitted
across the IPv4 network, where it is then decapsulated back to an IPv6
packet and forwarded to its IPv6 destination. A dual-stack router, one that
can communicate both via IPv4 and IPv6, is required at each end of the
tunnel to perform the encapsulation process.

The following example shows the router configuration steps required at
both ends of the tunnel to define a configured 6over4 tunnel with tunnel-
ID 1 (Figure 22-2). Note that an IPv4 address must first be assigned to the
encapsulating interface on each router.

************* ON NECI*************

�9 necl# ip address-table vlan 200 192.168.0.1 255.255.255.252

�9 necl# tunnel register tun64 1 192.168.0.1 192.168.0.2

�9 necl# ipv6 interface enable tun64 1

Figure 22-2: Defining a 6over4 tunnel.

398 Part Three �9 IPv6 Practice

�9 necl# ipv6 interface status tun64 1 up

�9 necl# ipv6 address-table tun64 1 3ffe:80f0:3:f::l 126

************* ON NEC2 *************

. nec2# ip address-table vlan 200 192.168.0.2 255.255.255.252

�9 nec2# tunnel register tun64 1 192.168.0.2 192.168.0.1

- nec2# ipv6 interface enable tun64 1

�9 nec2# ipv6 interface status tun64 1 up

�9 nec2# ipv6 address-table tun64 1 3ffe:80f0:3:f::2 126

To verify the 6over4 tunnel configuration on router NEC1, the show tunnel
register command is used as follows.

necl# show tunnel register

tun64 1
m

IPsec �9 off

Eventlog �9 disable

lowerlayer �9 vlan_200

ope status - UP

src addr �9 192.168.0.1

dst addr �9 192.168.0.2

MTU size - 1480

Reachability-monitor �9 enable

To verify that the tunnel interface is up and configured, the ping6 <IPv6
address> command can be used as follows.

�9 necl# ping6 3ffe:80f0:3:f::2

Pinging 3ffe:80f0:3:f::2 with 56 bytes data .

o

.... ping statistics

1 packets transmitted, 1 packets received, 0% packet loss

round-trip (ms) min/avg/max = 8/8/8

22.4.10 ENABLING THE RIPNG PROTOCOL

RIPng is an interior gateway routing protocol supported in IPv6 on the
IX5010 router. RIPng uses a hop count metric to dynamically determine
the best route to a particular destination network.

Chapter 22 �9 Configuring IPv6 Routers 399

22.4.11

The following example shows how to register (enable) RIPng on VLAN 200,
how to enable RIPng routing updates to be sent and received on VLAN 200,
and how to specify a default route to be sent from the VLAN 200 interface.
Note that the receive default route parameter is disabled by default.

�9 necl# ipv6 ripng register vlan 200 enable enable

�9 necl# ipv6 ripng send default-route vlan 200

To verify the RIPng configuration, the show ipv6 ripng register command
is used as follows.

�9 necl# show ipv6 ripng register

Interface

Send Config

Receive Config

Split Horizon Mode

Poisoned Reverse Mode

Send Metric Offset

Receive Metric Offset

Send Default Route

Receive Default Route

Default Route Nexthop

Inbound Distribute List

Outbound Distribute List

[Security Config]

Transport

Tunnel

: vlan 200

: Enable

: Enable

: Enable

: Enable

:0

:i

: Enable

: Disable

: localhost

: Not Set

: Not Set

�9 (AH) None (ESP) None

�9 (AH) None (ESP) None

ENABLING THE BGP4+ PROTOCOL

BGP4+ is an exterior gateway routing protocol supported in IPv6 on
the IX5010 router. BGP4+ is used to exchange loop-free routing table
information between routers located in different autonomous systems.

The following example shows the basic steps to enable BGP4+ on the IX5010
router, to set a BGP4+ neighbor peering relationship with a remote router
located in AS 65002, to advertise a specific network using BGP4+, and

400 Part Three �9 IPv6 Practice

finally, to advertise an IPv6 default route to a specific neighboring router.
Note that the BGP4+ peering session is shut down and reset after finishing
the configuration to initialize BGP4+ routing.

�9 necl# ipv6 bgp enable 65001 192.168.0.1

�9 necl# ipv6 bgp neighbor remote-as 3ffe:80f0:3:e::2 65002

�9 necl# ipv6 bgp network 2001:2d0::/35

�9 necl# ipv6 bgp originate default 3ffe-80f0-3-e- -2

Reset and shut down BGP sessions with a specific neighbor.

�9 necl# ipv6 bgp neighbor shutdown 3ffe-80f0-3.e.-2

�9 necl# ipv6 bgp neighbor reset 3ffe-80f0-3-e- "2

To verify the BGP4+ configuration, the show ipv6 bgp neighbor,
show ipv6 bgp speaker andshow ipv6 bgp network commands

are used as follows.

�9 necl# show ipv6 bgp neighbor

Address State

3ffe:80f0:3:e::2 Established

�9 necl# show ipv6 bgp speaker

BGP Protocol: Enabled

AS Number: 65001

BGP Identifier: 192.168.0.1

TCP-Segment Size: 1024

BGP load-sharing: Disabled

Synchronization: Yes

Export-Internal: No

Default Local Preference: i00

Ignore AS-Path: No

Always-Compare-MED: No

Import routes: None

�9 necl# show ipv6 bgp network

Network:

Index Network/Prefixlen

1 2001:2d0::/35

AS BGP-ID Up Time

65002 192.168.0.2 000-00-01-59

Chapter 22 �9 Configuring IPv6 Routers 401

22.4.12 CONCLUSmN

The preceding information includes all the basic steps necessary to config-
ure an NEC IX5010 router for IPv6. The configurations shown will enable
users to communicate with both native IPv6 and tunneled IPv6 hosts.

22.5 Summary

Although your router of choice may not have been included in this chap-
ter, having configured several different routers for use with IPv6 you
should be able to extend the lessons to any other router that supports IPv6.
In the next chapter, we look at some practical solutions to security problems
applied to IPv6 networks.

Practical IPv6 Security
Solutions

This chapter includes step-by-step instructions for setting up an IP firewall,
IPsec, and TCP wrappers for Solaris IPv6 systems. Pointers to other IPv6
security resources are included at the end of the chapter.

23.1 IPv6/v4 IP Filtering Firewall on Solaris 8*

Commercial firewalls protecting network assets of companies and insti-
tutions around the world are commonplace. In fact, few "interesting"
network systems are not behind a firewall. Currently, there are no (at least
none we could find) commercial firewalls that provide IPv6 support. This
leaves an interesting dilemma; deploy systems undefended or restrict your
IPv6 test-and-deployment efforts to isolated internal test networks. In
today's connected world, neither of these options is acceptable.

*This section is adapted from a document written by John E. Spence, �9 Zama Networks.

403

404 Part Three �9 IPv6 Practice

This section describes in detail how to obtain, build, install, configure,
and operate an IPF-based IPv6-capable firewall on Sun Solaris 8 (SPARC
architecture). IPv4 is also configured (routable IPv4 addresses have been
changed to nonroutable addresses). As this machine will act as a "smart
router," IPv6 router concepts are discussed as well. With an IPF firewall
deployed, your enterprise will be enabled to join IPv6 networks (like the
6bone).

23.1.1 COMPONENTS YOU'LL NEEO

You'll need a modern Sun Sparc-based system with at least two network
interfaces. You'll need information about your network and upstream
connections.

�9 Routable IPv4 addresses for behind your IPF firewall.
Alternatively, you can use nonroutable devices and use IPF
NAT, but you won' t be able to connect into the network for
services (i.e., SSH to a specific address). You can skip IPv4
support entirely if you wish.

�9 An IPv6 network for behind your firewall. In order to allow
machines inside your firewall to use the autoconfigure fea-
ture to obtain their IPv6 addresses, this must be at least a
/64 network (more information on this follows). The point
at which you'll connect your firewall's outside interface--
whatever is "upstream" from your device--will supply this
block of addresses.

�9 Obtain the IPv4 and IPv6 addresses for your outside (unpro-
tected) interface. I 'm assuming that you'll have a static
IPv4 address and that you'll autoconfigure the IPv6 address
of your outside interface. This means that your upstream
router must be running the "neighbor discovery" protocol
and providing your firewall with the IPv6 prefix to use for
autoconfiguration.

�9 Obtain the IPv4 and IPv6 (if available) DNS information
for your ne twork- -your upstream provider usually supplies
this.

You'll need the Sun Solaris C compiler. The gcc compiler won' t work. You
must obtain and license the real Sun C compiler. You'll also need the gzip
program.

Chapter 23 �9 Practical IPv6 Security Solutions 405

23.1.2 CONFIGURING IPv6/IPv4 INTERFACES

Sun Solaris 8 has native IPv6 support--you just have to select that "Install
IP Version 6 Support" feature at install time. If Solaris 8 is already installed,
you can enable IPv6 support by creating the/etc/hostname6.<interface
index> file by using "touch/etc/hostname6.<interface index>." When the
machine is rebooted, it will boot up with IPv6 support enabled.

To install from scratch, load Sun Solaris 8 with IPv6 support enabled.
Partway through the installation of Solaris, after you've entered some of
your IPv4 information, the program will ask if you want IPv6 support.
After installation completes, run the command "netstat-rn." You should
have two routing tables--one for IPv4 and one for IPv6. If you do, you've
got IPv6 support successfully installed.

Let's enable the IPv6 interface and check the IPv4 interface. You need
to know the names of your two interfaces. Let's assume that the inside
interface is called "hmel" and the outside interface is called "hme0." Create
four files.

"/etc/hostname. hmeO"

ipfw-o

(That is, filename "/etc/hostname.hme0," with the single line in it
"ipfw-o".)

"/etc/hostname. hmel"

ipfw-i

"/etc/hostname6. hmeO"

"/etc/hostname6. hmel"

(empty file)

(empty file)

Now check the entries you have in your "/etc/hosts" file. You should have
an entry for each of the lines that appear in your "/etc/hostname.hmeX"
files--like this.

192. 168. 140.48 ipfw-o, zama6 .net ipfw-o loghost

192.168.200.1 ipfw-i, zama6, net ipfw-i

Note that nonroutable addresses have been substituted for the public-side
routable addresses.

406 Part Three ~ IPv6 Practice

This is what will tell your two interfaces how to configure themselves for
IPv4. The empty "/etc/hostsname6.hmeX" files tell your two interfaces
to autoconfigure from the neighbor discovery announcements from the
routers.

Make sure you've got the right entries in your " /e tc /ne tmask" file. They
ensure that the new interfaces have the right netmasks.

" / etc/netmasks"

192.168.200.0

192.168.140.32

255.255.255.0

255.255.255.224

At this point, reboot to have the interfaces configured for IPv4.

Make sure IPv4 is happy. Ideally, you have a machine on the inside of your
new network configured for IPv4 to test against. If you don't, set up one
now. Try to "ping" a machine outside your interface that you know will
return a ping. If that works, then you've got IPv4 properly configured for
your external interface (my ipfw-o interface). If you can ping internally,
then that interface is properly configured (my ipfw-i interface).

23.1.3 CONFIGURE NEIGHBOR DISCOVERY ADVERTISEMENTS FOR THE INTERNAL INTERFACE

Your firewall is acting as a smart router, and it must be running the Neigh-
bor Discovery protocol--and advertising the right IPv6 address prefix--to
allow machines inside the firewall to autoconfigure their interfaces. Edit
the " /e tc / ine t /ndpd.conf" file as shown.

ifdefault AdvReachableTime 30000 AdvRetransTimer 2000

if hmel AdvSendAdvertisements on

prefix 3ffe-80f0-1-5- "/64 hmel

This shows that our inside network is "3ffe:80f0:1:5::/64" on the "hmel"
interface. That leaves 64 bits of the address for machines to autoconfigure
their interfaces. So all machines inside this firewall will have addresses like
"3ffe:80f0:1:5:a00:20ff:fed9:21ea/64," which is the prefix we are advertising
plus the EUI-64 address based on the 48-bit MAC address of the host's
Ethernet card.

Chapter 23 �9 Practical IPv6 Security SolutJons 407

Reboot one more time. When the machine comes up, you should have
all your interfaces configured. The IPv4 addresses are configured via the
static addresses we assigned to them. The IPv6 interfaces should both
autoconfigure---the outside interface using the Neighbor Discovery prefix
advertised by the upstream router and the inside interface (hmel) by the
Neighbor Discovery prefix the firewall is advertising.

Your interfaces should look something like this.

ipfw-o# ifconfig -a

io0: flags=I000849<UP,LOOPBACK,RUNNING,MULTICAST, IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000

hme0: flags=I000843<UP,BROADCAST,RUNNING,MULTICAST, IPv4> mtu 1500 index 2

inet 192.168.140.48 netmask ffffffe0 broadcast 192.168.140.63

ether 8:0:20:d9:21:ea

hmel: flags=I000843<UP,BROADCAST,RUNNING,MULTICAST, IPv4> mtu 1500 index 3

inet 192.168.200.1 netmask ffffff00 broadcast 192.168.200.255

ether 8:0:20:d9:21:ea

io0: flags=2000849<UP,LOOPBACK,RUNNING,MULTICAST, IPv6> mtu 8252 index 1

inet6 ::1/128

hme0: flags=2000841<UP,RUNNING,MULTICAST, IPv6> mtu 1500 index 2

ether 8:0:20:d9:21:ea

inet6 fe80::a00:20ff:fed9:21ea/10

hme0:l: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF,IPv6> mtu 1500 index 2

inet6 3ffe:80f0:l:2:a00:20ff:fed9:21ea/64

hmel: flags=2100841<UP,RUNNING,MULTICAST,ROUTER, IPv6> mtu 1500 index 3

ether 8:0:20:d9:21:ea

inet6 fe80::a00:20ff:fed9:21ea/10

hmel:l: flags=2080841<UP,RUNNING,MULTICAST,ADDRCONF, IPv6> mtu 1500 index 3

inet6 3ffe:80f0:l:5:a00:20ff:fed9:21ea/64

Your routing table should look like this.

ipfw-o# netstat -rn

Routing Table: IPv4

408 Part Three �9 IPv6 Practice

Destination

.

192.168.140.32

192.168.200.0

224.0.0.0

default

127.0.0.1

Routing Table: IPv6

Destination/Mask

Gateway Flags Ref Use Interface

192.168.140.48 U 1 495 hme0

192.168.200.1 U 1 1027 hmel

192.168.140.48 U 1 0 hme0

192.168.140.33 UG 1 2017

127.0.0.1 UH 2 474 io0

Gateway Flags Ref Use If

3ffe:80f0:l:5::/64

3ffe:80f0:l:2::/64

fe80::/10

feB0::/10

ff00::/8

default

::i

3ffe:80f0:l:5:a00:20ff:fed9:21ea U 1 9

3ffe:80f0:l:2:a00:20ff:fed9:21ea U 1 4

fe80::a00:20ff:fed9:21ea U 1 3

fe80::a00:20ff:fed9:21ea U 1 1

fe80::a00:20ff:fed9:21ea U 1 0

fe80::290:92ff:fe5c:223f UG 1 i0

::i UH 1 0

hmel:l

hme0:l

hmel

hme0

hme0

hme0

io0

Test these interfaces for IPv6. You should be able to ping IPv6 machines
on both sides of your soon-to-be-firewall, like this.

ipfw-o# ping -I 1 -A inet6 3ffe:80f0:l:l:a00:20ff:fed9:da43

PING 3ffe:80f0:l:l:a00:20ff:fed9:da43: 56 data bytes

64 bytes from catera.zama6.net (3ffe:80f0:l:l:a00:20ff:fed9:da43) :

icmp_seq=0, time=l, ms

64 bytes from catera.zama6.net (3ffe:80f0:l:l:a00:20ff:fed9:da43) :

icmp_seq=l, time=l, ms

(You can see this machine is on the public side of our firewall.)

ipfw-o# ping -I 1 -A inet6 3ffe:80f0:l:5:2e0:18ff:fed8:45ab

PING 3ffe:80f0:l:5:2e0:18ff:fed8:45ab: 56 data bytes

64 bytes from machl (3ffe:80f0:l:5:2e0:18ff:fed8:45ab) :

icmp_seq=0, time=l, ms

Chapter 23 �9 Practical IPv6 Security Solutions 409

64 bytes from machl (3ffe-80f0:l:5-2e0-18ff-fed8-45ab)-

icmp_seq=l, time:0, ms

(You can see this machine is inside our ne tworkmby the "3ffe:80f0:l:5"
part of the address.)

23.1.4 MAKE SURE THE/VL~CHINE IS ROUTING PACKETS

The Sun machine may or may not think it is a router, and it should forward
packets not addressed to itself. It's supposed to make itself a router, by
default, if it detects that it has multiple network interfaces. Mine didn't,
but you can check- -and then make it. Use these commands to check the
status of these settings.

ipfw-o# ndd-get /dev/ip ip6 forwarding

1

ipfw-o# ndd-get /dev/ip ip_forwarding

1

In each case, these are set to 1, which means "on." If they had returned "0"
they would have been off. To turn them on if they are off, use the command
(use the similar form of the command for the other two settings).

ipfw-o# ndd-set /dev/ip ip6 forwarding 1

N o w you should be routing. Go to the machine inside your network and
see if you can "ping" (or otherwise connect) to a machine outside your
firewall, using IPv4 and IPv6. Here are my traceroutes.

machl# traceroute -A inet6 www6.zama6.net

traceroute: Warning: Multiple interfaces found;

using 3ffe:80f0:l:5:2e0:18ff:fed8:45ab @ iprb0:l

traceroute to www6.zama6.net (3ffe:80f0:l:l:a00:20ff:fed9:da43), 30 hops max,

60 byte packets

1 3ffe:80f0:l:5:a00:20ff:fed9:21ea 0.681 ms 0.487 ms 0.374 ms

2 3ffe:80f0:l:2::l 0.987 ms * 1.678 ms

3 catera.zama6.net (3ffe:80f0:l:l:a00:20ff:fed9:da43) 1.943 ms 2.552 ms 1.916 ms

410 Part Three �9 IPv6 Pradice

machl# traceroute -A inet www.zama6.net

traceroute to catera.zama6.net (192.168.170.10), 30 hops max, 40 byte packets

1 192.168.200.1 (192.168.200.1) 0.535 ms 0.398 ms 0.310 ms

2 192.168.140.33 (192.168.140.33) 0.759 ms 0.781 ms 0.708 ms

3 catera.zama6.net (192.168.170.10) 1.207 ms 1.166 ms 1.069 ms

The system can now function as a router; the next step is to turn it into a
firewall.

23.1.5 OBTAINING, BUILDING, AND INSTALLING IPF

Get the IPF package. Our firewall is built using IPF v3.4.16. The best place to
get the source code (yep--no precompiled binar iesmwe 're going to build
this from scratch) is from the genius that wrote (and still actively manages)
the IPF effort: Darren Reed. Start with this page, and download the most
recent software from h t tp : / / coombs .anu .edu .au /~ 'ava lon / .

Once you have the software, uncompress it using the "gzip" utility, and
then use the "tar" utility to expand the archive and make the directories.

gunzip ip-fi13.4.16.tar.gz

tar -xvf *.tar

To support IPv6, you must un-comment the line in the Makefile that reads
the following.

#INET6=-DUSE_INET6

Then make the software according to the directions in "INSTALL.Sol2."
Essentially, you run the "configure" script, then run "make solaris," then
"cd SunOS5," then run "make package" (as root). This will end with an
installation of the software.

make solaris cd SunOS5 make package

For me it worked very smoothly once I had the Solaris compiler. When
you are done, check to make sure it's really there.

ipfw-o# pkginfo I gre p ipf

Chapter 23 �9 Practical IPv6 Security Solutions 411

system ipf IP Filter

system ipfx IP Filter (64-bit)

Most of the good stuff is installed i n t o / u s r / s b i n , so make sure that is on
your PATH. Other components are installed into "/etc /rc2.d'; you'll want
to check those.

23.1.6 CONFIGURING IPF RULES FOR IPv4 AND IPv6

N o w you need some rules. This is very well covered on a number of
Internet sites, starting with the preceding URL to "coombs" in Australia.
Rules can be quite complex. Our setup is fairly simple, but it provides a
nice start. I've created my files in the " /e tc /opt / ip f" directory. Review
my rules, including the comments. You'll see I'm logging almost every-
thing (we'll talk more about logging later), which is a good way to
start. The level of logging can be reduced as you put your firewall into
production.

IPv4 ruleset (/etc/opt/ipf/ipf.conf)

ipfw-o# cat ipf.conf

hme0 is unprotected side

hmel is private side

by default block all outside traffic

block in log level local4.info on hme0 all

eliminate frags and shorts

block in log level local4.info quick on hme0 from any to any with short frag

block in log level local4.info quick on hme0 proto tcp all with short

by default pass all traffic coming from the inside interface to the firewall

pass in on hmel all

block all inbound non-routable IPv4 addresses at the outside interface

block in log level local4.info quick on hme0 from 192.168.0.0/16 to any

block in log level local4.info quick on hme0 from 172.16.0.0/12 to any

block in log level local4.info quick on hme0 from 10.0.0.0/8 to any

block in log level local4.info quick on hme0 from 127.0.0.0/8 to any

block all non-routable (except 192.168 - ours) IPv4 addresses on the

inside interface

block in log level local4.info quick on hmel from 172.16.0.0/12 to any

block in log level local4.info quick on hmel from 10.0.0.0/8 to any

block in log level local4.info quick on hmel from 127.0.0.0/8 to any

allow all outbound tcp, udp, and icmp traffic using KEEP STATE ...

412 Part Three �9 IPv6 Practice

pass out quick on hme0 proto tcp/udp from any to any keep state

pass out quick on hme0 proto icmp from any to any keep state

allow inbound from the world these services - telnet, ssh, and ftp

pass in log level local4.info quick proto tcp from any to any port = 22

pass in log level local4.info quick proto tcp from any to any port = 23

pass in log level local4.info quick proto tcp from any to any port

= 21 flags S keep state

pass out log level local4.info quick proto tcp from any to any port

= 21 flags S keep state

end IPv4 ruleset

IPv6 ruleset (/etc/opt/ipf/ipf6.conf)

ipfw-o# cat ipf6.conf

hme0 is outside

hmel is inside

block in log level local6.info on hme0 all

pass in log level local6.info on hmel all

anti-spoofing v6 style

block in log level local6.info quick on hme0 from 3ffe-80f0:l-5:-/64 to any

outbound - very permissive - use KEEP STATE

pass out log level local6.info quick on hme0 proto tcp from any to any keep state

pass out log level local6.info quick on hme0 proto udp from any to any keep state

pass out quick on hme0 proto icmp from any to any keep state

pass out quick on hme0 proto ipv6-icmp from any to any keep state

pass in quick on hmel proto ipv6-icmp from any to any

need rule below to make outbound IPv6 pings work - I think you should not need it

pass in quick on hme0 proto ipv6-icmp from any to any

allow SSH and telnet

pass in log level local6.info quick proto tcp from any to any port = 22

pass in log level local6.info quick proto tcp from any to any port = 23

end IPv6 ruleset

23.1.7 CONFIGURING IPF NAT FOR IPv4

We want this to be an IPv4/IPv6 firewall, so we've configured both inter-
faces for both protocols. I've configured IPv4 NAT (IPv6 NAT will rarely,
if ever, be usedmthink about it) to support "one-to-many" NAT. You need
this if you want people inside your protected network to be able to get to
sites on the public side. Your internal system (perhaps at 192.168.200.10)
will hit Web sites on the Internet looking like it came from the outside IPv4
address of your firewall (192.168.140.48).

Chapter 23 �9 Practical IPv6 Security Solutions 413

If you want to be able to run an IPv4 Web site, internally, you have to
configure "one-to-one" NAT. Then a machine outside your firewall (say
on the Internet) can make connections into your protected network. The
address you use to represent the internal device (say a Web server) must
be a routable address. Here's what this looks like.

IPv4 NAT (/etc/opt/ipf/ipnat.conf)

this line is required to support active ftp's

map hme0 0/0 -> 0/32 proxy port 21 ftp/tcp

provides one-to-many internal NATing for inside -to-outside connections

map hme0 192.168.200.0/24 -> 0/32

allow outside systems to make connections into our 192.168.200.10 system

bimap hme0 192.168.200.10/32 -> 192.168.140.169/32

end IPv4 NAT (/etc/opt/ipf/ipnat.conf)

Loading and Veri fy ing that IPF Is Active Again

The best documentat ion for this topic is at the IPF site at
h t tp : / /www.obfusca t ion .org / ip f / ip f -howto .h tml#TOC_29 . You may
want to do this at the system conso le - -or at least make sure you have access
to the system console. In brief, you manipulate your IPF rules with the "ipf"
and "ipnat" commands . The s imple method is to explicitly load the rules
you want to use. Here are the commands I use (for IPv4, IPv6, and NAT).

ipf-Ef /etc/opt/ipf/ipf.conf

ipf-6-Ef /etc/opt/ipf/ipf6.conf

ipnat-CF-f /etc/opt/ipf/ipnat.conf

The "-6" option, in the second command, specifies that you are working
with the IPv6 ruleset. To see if you have IPF loaded properly, use the
"ipfstat" commands . Here's what I show when I check my rules (this is
the same as "ipfstat 6").

ipfw-o# ipfstat

dropped packets:

non-data packets:

no-data packets:

non-ip packets:

in 0 out 0

in 0 out 0

in 0 out 0

in 0 out 0

414 Part. Three �9 IPv6 Practice

bad packets:

copied messages:

IPv6 packets:

input packets:

output packets:

input packets logged:

output packets logged:

packets logged:

log failures:

fragment state(in) :

fragment state(out) :

packet state(in) :

packet state (out) :

ICMP replies: 0

TCP RSTs sent: 0 Invalid source(in) :

Result cache hits(in):

IN Pullups succeeded:

OUT Pullups succeeded:

Fastroute successes:

TCP cksum fails(in):

Packet log flags set:

in 0 out 0

in 0 out 3520

in 1468 out 1154

blocked 139 passed 165017 nomatch 36 counted 0

short 446

blocked 0 passed 162826 nomatch 386 counted 0

short 360

blocked 139 passed 5917

blocked 0 passed 5874

input 0 output 0

input 42 output 49

kept 0 lost 0

kept 0 lost 0

kept 167 lost 0

kept 2062 lost 128

0

753 (out): 293

0 failed: 0

5 failed: 0

0 fai lures :

0 (out): 0

(0) none

23.1.8 TESTING IPv6 RULES

The best testing method is to get on your internal machine and work on
the Internet. See if you can still "ping," ftp, and make telnet and Web
connections to external hosts. See if you can make TCP connections from
machines (i.e., see if you can hit a Web site) outside your firewall to internal
machines. Check the logfiles. Do all the tests for IPv4 and IPv6.

You can monitor the traffic to your site interactively by running the
"ipmon" command. This command shows you traffic transiting the fire-
wall. You can also set up ipmon to run in the background and capture
packets using the UNIX syslog facility, and that's what I have done.

Chapter 23 �9 Practical IPv6 Security Solutions 415

My logging is done to two files--one for IPv4 packets and one for IPv6
packets. This is accomplished by configuring the rule files with "log
level" clauses, creating the target logfiles, and configuring the syslog
configuration files. Specifically, follow these steps.

Make sure your " / e t c /op t / ip f / ip f . conf" and " /e tc /op t / ip f / ip f6 .conf"
rule files contain log statements that specify the log level and facility you
will use. Look back in this paper to the rule files. A typical statement looks
like this (IPv6).

pass in log level local6.info quick proto tcp from any to 3ffe-80fO-l-5-

2eO:18ff:fed8:45ab port = 80

This statement says "log this traffic using local6.info as the syslog facility."

Next, decide where you want the IPF logfiles to live (mine are in
" /va r / l og / ip fw") . Use the "touch" command to create the files.

"touch /var/log/ipfw/ipfw4.1og", then "touch /var/log/ipfw/ipfw6.1og"

Now configure "/etc/syslog.conf." This file can be pretty tricky; just copy
what I have here. Make sure you use TAB, not SPACE, between the fields,
or it won' t work. The relevant part of my file is as follows. (You can put
these lines anywhere. Mine are in the middle.)

local4, info

/var/log/ipfw/ipfw4.1og local6.info

/var/log/ipfw/ipfw6. log

We're getting close. Now restart syslog. I just use the scripts already in
" /etc / rc2.d." Run these commands.

"/etc/rc2.d/S74syslog stop", then "/etc/rc2.d/S74syslog start"

Now you need to start ipmon. I use the command "ipmon s."

That should do it. Send some packets (for which you are logging) through
the firewall, and check the files we set up. They should have lines in
them.

416 Part Three �9 IPv6 Practice

Examining the IPF logfiles

The logfiles are pretty straightforward. Here are a few lines from each of
my IPv4 and IPv6 files.

IPv4

Jan 18 09:44:06 ipfw-o ipmon[18509] : [ID 702911 local4.info] 09:44:06.328225

hme0 @0:16 p 192.168.130.74 -> 192.168.200.10 PR icmp len 20 60 icmp 8/0 IN

Jan 18 09:44:06 ipfw-o ipmon[18509] : [ID 702911 local4.info] 09:44:06.328225

hme0 @0:16 p 192.168.130.74 -> 192.168.200.10 PR icmp len 20 60 icmp 8/0 IN

Jan 18 09:44:09 ipfw-o ipmon[18509] : [ID 702911 local4.info] 09:44:09.451586

hme0 @0:15 p 192.168.130.74,1916 -> 192.168.200.10,80 PR tcp len 20 48 -S IN

Jan 18 09:44:09 ipfw-o ipmon[18509] : [ID 702911 local4.info] 09:44:09.474124

hme0 @0:15 p 192.168.130.74,1916 -> 192.168.200.10,80 PR tcp len 20 234 -AP IN

end IPv4

This segment shows four packets. The first two are ICMP pings from out-
side the network through to the internal Web server, for which we have
set up static NAT (routable 192.168.140.169 is nonroutable 192.168.200.10).
The next two packets are HTTP connections from the same external
IPv4-address to the internal Web server. The entire portion shown here
is from syslog i tse l fAnot IPF.

Jan 18 09-44-09 ipfw-o ipmon[18509]- [ID 702911 local4.info]

The IP portion of that same line is as follows.

09"44:09.474124 hme0 @0-15 p 192.168.130.74,1916 ->

192.168.200.10,80 PR tcp len 20 234 -AP IN

The logfile format is as follows.

time packet received

interface packets processed on

group and rule number (I'm not using groups, so this is rule 15)

action ("p" for passed, "b" for blocked)

source address and port, arrow symbol, and destination address and port

"PR tcp" means that the protocol is TCP

Chapter 23 �9 Practical IPv6 Security Solutions 417

"len 20 234" means that the packet header length is 20 bytes, and total packet

length is 234 bytes

"-AP" are flags set on the rule (A says this was an "ACK" packet)

"IN" means the packet was inbound on the interface

IPv6

Jan 14 06:28:44 ipfw-o ipmon[16863] : [ID 702911 local6.info] 06:28:43.390833

hme0 @0:4 p fe80::290:92ff:feSc:223f -> ff02::l PR ipv6-icmp len 40 (56) IN

Jan 14 06:28:44 ipfw-o ipmon[16863] : [ID 702911 local6.info] 06:28:43.390833

hme0 @0:4 p fe80::290:92ff:feSc:223f -> ff02::l PR ipv6-icmp len 40 (56) IN

Jan 9 08:22:35 ipfw-o ipmon[16598] : [ID 702911 local6.info] 08:22:35.153816

hmel @65535:0 p 3ffe:80f0:l:l:a00:20ff:fed9:da43,telnet ->

3ffe:80f0:l:5:2e0:18ff:fed8:45ab,32835 PR tcp len 40 20 -A K-S OUT

end IPv6

23.1.9

Here we see three packets - - two ICMP packets and a "telnet" packet.
Except for the address format and length, the format is identical. Note
the "-A K-S OUT" ending. This was an ACK packet, for which we were
keeping state (via "keep state") and was outbound on the interface.

CLOSING ToPiCS

That pretty much completes your firewall build. There are a few more
housekeeping things to do, but just a few. The most important thing
is to make sure that your firewall will restart upon reboot, and you
should test that now. First, consider some new "/etc/rc2.d" files that
will run these commands upon startup, or consider putting them into
"/etc / rc2.d / S69inet."

ndd-set /dev/ip ip_forwarding 1

ndd-set /dev/ip ip6_forwarding 1

ndd-set /dev/ip ip forward_directed_broadcasts 0

ndd -set /dev/ip ip_forward src_routed 0

ndd-set /dev/ip ip_respond_to echo_broadcast 0

Check the "/etc/rc2.d/S65ipfboot" file to make sure it points to your
ruleset and that it does all the things you want it to do.

Play around with the ipfstat commands, using these parameters, to get
useful information.

418 Part Three �9 IPv6 Practice

Ipfstat -6

ipfstat

ipfstat

ipfstat

ipfstat

ipfstat

ipfstat

ipfstat

ipfstat

ipfstat

i - n

6 i -n

0 -n

6 o n

i h

6 i h

o - h

6 o -h

S

23.2 IPv6/v4 IP Filtering Firewall on FreeBSD**

This section provides step-by-step instructions for setting up a firewall
using a system running FreeBSD 4.2.

23.2.1 GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 An Intel-based machine running FreeBSD 4.2 configured and
running with IPv4 and IPv6 network connectivity. (Refer to
ZamaDoc #1012 for configuration.)

�9 The GNU gcc compiler and gzip, which should have been
installed with FreeBSD 4.2

�9 IPF 3.4.16 package, which can be obtained at f tp: / /coombs.anu.
edu.au/pub/net/ip-fi lter/ip-fi13.4.16.tar.gz.

You can also download it from the Zama ftp site at ftp: / / 203.142.143.7 / pub /
ipv6/src/.

"*This section is adapted from a document written by Gerald R. Crow IV, �9 Zama
Networks.

Chapter 23 �9 Practical IPv6 Security Solutions 419

23.2.2 BUILDING AND INSTALLING IPF

Like most source packages, ipf comes compressed and bundled into a tar
file. If you're using the GNU version of tar, you can un-tar the package at
the same time that you're uncompressing it. The following command will
accomplish this.

>tar xvfz ip-fil3.4.16.tar.gz

Otherwise, change to the directory where you have placed the file
ip-fi13.4.16.tar.gz and unzip it using the gzip command.

>gzip d ip-fil3.4.16, tar.gz

Use the tar command on the file ip-fi13.4.16.tar.

>tar xvf ip-fi13.4.16.tar

Change the directory to ./ip_fi13.4.16, and use your favorite text editor to
uncomment this line from the Makefile.

#INET6:-DUSE INET6

Within the ./ip_fi13.4.16 directory, run these commands as root.

>make freebsd4 >make instal l-bsd

Change the directory to ./ip_fi13.4.16/FreeBSD-4.0/, and use the cp com-
mand to copy the file ipv6-patch-4.1 to ipv6-patch-4.2. Even though the
patch in the following step is written for FreeBSD 4.1, there should be
no issues using it for 4.2. What it does is patch the files ip6_input.c and
ip6_output.c.

>cd ./FreeBSD-4.0 >cp ipv6-patch-4.1 ipv6-patch-4.2

Now run the kinstall script in the current directory to apply the patch
and update your kernel with IPF options. Substitute your kernel name for
GENERIC if needed.

>./kinstall

Installing ip fil.c ip_fil.h ip_nat.c ip_nat.h ip_frag.c ip_frag.h ip_state.c

420 Part Three ~ IPv6 Practice

ip_state.h fil.c

ip_proxy.c ip_proxy.h ip_ftp_pxy.c ip_rcmd_pxy.c ip_raudio_pxy.c mlf_ipl.c

mlfk ipl.c ipl.h ip_compat.h

ip_auth.c ip_auth.h ip_log.c Linking /usr/include/osreldate.h to /sys/sys/

osreldate.h

Patching ip6_input.c and ip6_output.c Hmm...

Looks like a new-style context diff to me...

The text leading up to this was:

I*** ip6 input.c.orig

Sat Jul 15 07:14:34 2000

I--- ip6_input.c

Thu Oct 19 17:14:37 2000

4.2

Patching file ip6 input.c using Plan A...

Hunk #i succeeded at 118 (offset -2 lines).

Hunk #2 succeeded at 287 (offset -4 lines).

HiThr~...

The next patch looks like a new-style context diff to me...

The text leading up to this was:

I I*** ip6_output.c.orig

I--- ip6_output.c

Sat Jul 15 07:14:35 2000

Thu Oct 19 17:13:53 2000

Patching file ip6_output.c using Plan A...

Hunk #i succeeded at 104 with fuzz 2 (offset -2 lines).

Hunk #2 succeeded at 787 with fuzz 1 (offset -2 lines).

Done

Kernel configuration to update [GENERIC] Rewriting GENERIC...

You will now need to run config on GENERIC and build a new kernel.

This script will copy your current running kernel configuration file in the
/ s y s / i 3 8 6 / c o n f directory to the same name with a .bak extension before

Chapter 23 �9 Practical IPv6 Security Solutions 421

any editing takes place. For example, GENERIC will be copied over to
GENERIC.bak.

Now we need to copy the file osreldate.h to a place where IPF's kernel code
can find it.

>cp /usr/include/osreldate.h /usr/src/include

Since FreeBSD 4.2 comes with an IPv4-only version of ipmon in t h e / s b i n
directory, we need to copy the new IPv6 enabled binary there from the
/ u s r / s b i n directory.

>cp /usr/sbin/ipmon /sbin

Installation of IPF is complete, and you now need to rebuild the kernel to
implement your changes.

23.2.3 REBUILDING A KERNEL WITH IPF

The following are the steps needed to rebuild a kernel with the IPF options
enabled. If for any reason you have changed the name of your kernel,
substitute your kernel's name for GENERIC in the following steps.

Change directories to where the kernel configuration file is located and
execute the following commands.

>cd /sys/i386/conf

>config GENERIC

Now execute the following commands in this order to compile and install
the kernel.

>cd . ./../compile/GENERIC

>make depend

>make

>make install

Reboot the machine, and the kernel will come up with IPF enabled.

422 Part Three �9 IPv6 Practice

23.2.4 CONFIGURE IPF RULES

N o w that the machine is up and running with IPF enabled, your next
step will be to create the configuration files. A firewall is only as secure
as you configure it, so if you have never configured your own firewall,
good resources can be found at h t t p : / / c o o m b s . a n u . e d u . a u / - a v a l o n / a n d
in Zama Doc #1008.

You need to create separate IPv4 and IPv6 configuration files for the two
firewalls to coexist. The following example is for a FreeBSD 4.2 machine
with one interface. This configuration will only allow SSH connections and
ICMP traffic from the outside world (comments noted with #s).

..... IPv4 rule set (/etc/ipf.rules)

Block all by default.

block in log level local4.info all

Eliminate frags and shorts

block in log level local4.info quick from any to any with short frag

block in log level local4.info quick proto tcp all with short

Allow the following in through the filter: SSH and ICMP.

pass in proto tcp/udp from any to any port : 22 keep state

pass in proto icmp from any to any

Allow all outbound TCP, UDP, and ICMP traffic.

pass out quick proto tcp/udp from any to any keep state

pass out quick proto icmp from any to any keep state

..... End of IPv4 rule set

..... IPv6 rule set (/etc/ipf6.rules)

Block all by default.

block in log level local6.info on xl0 all

Allow the following through the filter: SSH and ICMP.

pass in on xl0 proto tcp from any to any port = 22 keep state

pass in on xl0 proto ipv6-icmp from any to any

Allow all outbound TCP, UDP, and ICMP traffic

pass out quick on xl0 proto tcp from any to any keep state

pass out quick on xl0 proto udp from any to any keep state

pass out quick on xl0 proto icmp from any to any keep state

..... End of IPv6 rule set

Chapter 23 �9 Practical IPv6 Security Solutions 423

23.2.5 CONFIGURING ~YSLOG FOR IPF LOGGING

Using the ipmon command, you can specify where you would like IPF to
log activity. If you would like to use syslog to do all IPF logging, follow
these steps.

Open /e tc / sys log .conf with your favorite text editor and insert the follow-
ing just above the line that says "!startslip." Make sure all white spaces are
tabs or syslog will not work.

IPv4 IPF log local4.info

IPv6 IPF log local6.info

/var/log/ipf4. log

/var/log/ipf6. log

Now that we have configured IPF logging to use syslog, all we have
to do is create the log files we will be using by running the following
commands.

>touch /var/log/ipf4.1og

>touch /var/log/ipf6.1og

Restart the syslog process so it will reload the syslog.conf file.

23.2.6 START AND TEST IPF

The ipf command works with the same switches, except you need to use
a "-6" before any commands that are pertaining to the IPv6 configuration.
Now that everything is configured correctly, run the fol:owing commands
to start IPF with the IPv4 and IPv6 rules.

>ipf

>ipf

f /etc/ipf.rules

6f /etc/ipf6.rules

Now we need to start IPF's logging utility, ipmon. The D option tells it to
run as a daemon, and the s option tells it to use syslog for logging.

> ipmon Ds

424 Part Three �9 IPv6 PradJce

To make sure that the rules were loaded, run the following commands.
I have included my machine's output in the following examples.

>ipfstat io

..... IPv4 running rules output

pass out quick proto tcp/udp from any to any keep state

pass out quick proto icmp from any to any keep state

block in log level local4.info from any to any

block in log level local4.info quick from any to any with short frag

block in log level local4.info quick proto tcp from any to any with short

pass in proto tcp/udp from any to any port = ssh keep state

pass in proto icmp from any to any

>ipfstat 6io

..... IPv6 running rules output

pass out quick on xl0 proto tcp from any to any keep state

pass out quick on xl0 proto udp from any to any keep state

pass out quick on xl0 proto icmp from any to any keep state

block in log level local6.info on xl0 from any to any

pass in on xl0 proto tcp from any to any port : 22 keep state

pass in on xl0 proto ipv6-icmp from any to any

Testing the firewall configuration should be done to ensure everything is
working properly. The best way is from a remote machine. Make sure
services you have open are working and try to utilize services you have
blocked. The following is an example of blocked telnet attempts to my
machine over both IPv4 and IPv6.

>tail f /var/log/ipf4.1og

Mar 27 05:52:22 news6 ipmon[50] : 05:52:22.331336 xl0 @0:i b 192.168.25.5,32953 ->

192.168.25.6,23 PR tcp len 20 48 -S IN

Mar 27 05:52:26 news6 ipmon[50] : 05:52:25.692845 xl0 @0:i b 192.168.25.5,32953 ->

192.168.25.6,23 PR tcp len 20 48 -S IN

Mar 27 05:52:32 news6 ipmon[50] : 05:52:32.442338 xl0 @0:i b 192.168.25.5,32953 ->

192.168.25.6,23 PR tcp len 20 48 -S IN

>tail f /var/log/ipf6.1og

Mar 27 06:09:44 news6 ipmon[50] : 06:09:44.772488 xl0 @0:i b 3ffe:80f0:l:l:201:2ff:

Chapter 23 �9 Practical IPv6 Security Solutions 425

fe00:2112,32955 -> 3ffe:80f0:l:l:201:2ff:fe00:2113,23 PR tcp len 40 28 -S IN

Mar 27 06:09:48 news6 ipmon[50] : 06:09:48.135094 xl0 80:i b 3ffe:80f0:l:l:201:2ff:

fe00:2112,32955 -> 3ffe:80f0:l:l:201:2ff:fe00:2113,23 PR tcp len 40 28 -S IN

Mar 27 06:09:54 news6 ipmon[50] : 06:09:54.884650 xl0 @0:i b 3ffe:80f0:l:l:201:2ff:

fe00:2112,32955 -> 3ffe:80f0:l:l:201:2ff:fe00:2113,23 PR tcp len 40 28 -S IN

23.2.7 CONFIGURE FREEBSD TO BOOT IPF

Configuring ipmon and IPF for IPv4 at startup is already supported by the
/etc /rc .network file and will be activated by inserting the following lines
into /etc /rc .conf .

ipfil ter_enable= "YES"

ipfilter_program="/sbin/ipf -Fa -f"

ipfilter_flags=""

ipmon_enable= "YES"

To get the IPv6 option of IPF to come up at boot time, you will need to
tweak some startup scripts. Here is an example of how I got it to work
using existing startup scripts. First, we need to back up the files we will be
editing.

>cp /etc/rc.conf /etc/rc.conf.old

>cp /etc/rc.network /etc/rc.network.old

Insert these lines into the / e tc / rc . conf file with your favorite text editor.

ipfilter6_program="/sbin/ipf -6f"

ip f i I t er6_enabl e: "YES"

ipfilter6_rules="/etc/ipf6, rules"

N o w all we need to do is insert the following into our /e tc / rc .ne twork file
and we are finished. The earlier in the /e tc /rc .ne twork file you place this,
the earlier it is executed in the network startup sequence. I have inserted
this right after the ipfilter script block for IPv4 to ensure it comes up in the
beginning of the network configuration.

426 Part Three �9 IPv6 Practice

case "${ipfilter6_enable}" in [Yy] [Ee] [Ss])

if [-r "${ipfilter6_rules}"]; then

${ipfilter6_program} "${ipfilter6_rules} "

fi

; ; esac

23.2.8 TROUBLESHOOTING

If the installation does not work or breaks your current kernel configu-
ration, change directories to where you have IPF's package source and
follow these steps to revert all changes made (substitute GENERIC with
your kernel name if needed).

>cd ip fil3.4.16/FreeBSD-4.0/

>./kuninstall

>cd /sys/i386/conf

>cp GENERIC.bak GENERIC

Now rebuild the kernel with IPF.

23.3 Implementing IPsec on Sun Solaris (IPv4) t

IPsec provides IP-layer security for packets traversing a ne twork- -
particularly useful when the network in question is insecure---like the
Internet. The protection provided includes encryption (providing confi-
dentiality), data-origin authentication (the receiving node can be sure the
traffic originated at the node shown in the source address), data integrity
(the data was not changed in transit), and antireplay (the traffic cannot be
regenerated later and accepted as current by the receiver).

Native IPsec support is a key advantage of IPv6 over IPv4. Whereas in
IPv4 IPsec support was an option, it is mandated in IPv6. There will
be no IPv6-compliant (i.e., commercially marketable) network protocol
implementations that do not support IPsec.

tThis section is adapted from a document written by John E. Spence, �9 Zama Networks.

Chapter 23 �9 Practical IPv6 Security Solutions 427

As we learned from the rapid adoption of the Internet--which followed
the widespread adoption of IP networking--when technology is widely
supported, the "network-effect" causes prolific growth in its use. I believe
the growth of IPsec will be the same. Near-term future networks based
on IPv6 will make widespread use of IPsec-based data security. The days
where most traffic is carried unencrypted may, eventually, come to an end,
and it will be a rare packet that will not be encrypted and authenticated. Just
as you can't imaging sending important (read "most all") paper documents
in "postcard" form through the mail, data on networks will be treated in
the same way.

For now at least, most packets will still be transmitted in the clear. Although
not all network data is confidential, traffic analysis attacks depend on hav-
ing some volume of encrypted and /o r unencrypted data to analyze. The
absence of certain types of data in the unencrypted flows can be used to
infer what the encrypted packets are carrying. Furthermore, encrypting
only the confidential data simplifies the task of any attackers: They don't
have to worry about trying to decrypt anything but the most valuable
packets.

This section describes in detail how to obtain, install, and configure IPsec
on Sun Solaris 8 (SPARC and Intel architecture) over IPv4.

23.3.1 KEY IPsEc CONCEPTS IN A NUTSHELL

IPsec provides two major components, ESP and AH. ESP stands for
"Encapsulating Security Payload," which provides confidentiality, data
integrity, and data source authentication of IP packets. AH stands for
"Authentication Header," which provides data integrity and data source
authentication of IP packets--but no confidentiality. We'll use ESP so we'll
get all the protection we can.

Also required for IPsec are "Security Associations" (SAs). These specify
the particular security association (called an SPI), packet destination, and
protocol. SAs are unidirectional, so each host participating in an IPsec
conversation must have at least two (and sometimes more) SAs.

Sun's current implementation only supports "manual SAs." That means
we must create the SAs manually and manage them manually. Future
releases will incorporate automatic systems for key management (notably
Internet Key Exchange, or IKE).

428 Part Three �9 IPv6 Practice

23.3.2 ESTABLISH A BASELINE

We'll use "telnet" to test our IPsec connection, so, before we start make sure
you can telnet in both directions between your machines. This will give us
confidence if we have problems later that there are no non-IPsec-related
problems with interface configurations, routes, cables, or anything else.

Set a performance baseline too. For my machines, I was able to achieve 3715
Kbytes/second while ftp'ing a 98MB file "in the clear." While using IPsec
(DES encryption and MD5 authentication) my performance was reduced
to 1601 KB / second.

23.3.3 COLLECT THE COMPONENTS YOU'LL NEED

You'll need the following.

�9 "Solaris 8 Supplemental Encryption Packages" from Sun,
www.sun.com / software/solaris / get.html get the distribution
you need for your platform.

�9 Regardless of which flavor of Solaris 8 you're using (SPARC or
Intel), we need two machines to set up IPSec. Throughout this
document we'll call them "sea-machl" and "sea-mach2."

23.3.4 INSTALLING THE IPSEC COMPONENTS

After you have the packages on your machine, untar them. Change into
the local directory "sparc/Packages." You'll be left with a directory that
looks like this.

sea-machl# is

NSCPcomdo

NSCPfrcdo

SUNWamid SUNWcrman SUNWcry64 SUNWcryrx SUNWk5pkx SUNWk5pux

SUNWamidx SUNWcry SUNWcryr SUNWk5pk SUNWk5pu

Run the "pkgadd" command as "pkgadd -d .," and you'll see this.

sea-machl# pkgadd -d .

The following packages are available:

1 NSCPcomdo Netscape Communicator

(sparc) 20.4.70,REV=I999.10.13.17.55

Chapter 23 �9 Practical IPv6 Security Solutions 429

2 NSCPfrcdo French Netscape Communicator (U.S. security)

(sparc) 20.4.70,REV=I999.11.05.13.36

3 SUNWamid Authentication Management Infrastructure (domestic version)

(sparc) II.8.0,REV=I999.12.07.04.22

4 S[RfWamidx Authentication Management Infrastructure

(64 bit domestic version)

(sparc) II.8.0,REV=I999.12.07.04.22

5 SUNWcrman Encryption Kit On-Line Manual Pages

(sparc) 6.0,REV=I

6 SUNWcry Crypt Utilities

(sparc) II.8.0,REV=I999.12.07.04.22

7 SUNWcry64 Prototype package for Crypt Library (64-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

8 SUNWcryr Solaris Root Crypto

(sparc) II.8.0,REV=I999.12.07.04.22

9 SUNWcryrx Solaris Root Crypto (64-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

i0 SUNWk5pk kernel Kerberos V5 plug-in w/auth+privacy (32-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

... 3 more menu choices to follow;

<RETURN> for more choices, <CTRL-D> to stop display:

ii SUNWk5pkx kernel Kerberos V5 plug-in w/auth+privacy (64-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

12 SUNWk5pu user Kerberos V5 gss mechanism w/auth+privacy (32-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

13 SUNWk5pux user Kerberos V5 gss mechanism w/auth+privacy (64-bit)

(sparc) II.8.0,REV=I999.12.07.04.22

Select package(s) you wish to process (or 'all' to

process all packages). (default: all) [?,??,q] :

Choose 3, 4, 5, 6, 7, 8, and 9. We don't need the Kerberos products for
IPsec. All the packages should install fine.

23.3.5 CONFUGURUNG IPSEC

Initial configurations for both machines are identical. We'll show details
for sea-machl, but sea-mach2 is similar. Later, we'll set up the

430 Part Three �9 IPv6 Practice

IPsec parameters and static SAs, and we'll show both machines for
clarity.

Let's lay some groundwork. DNS can provide a security vulnerability. If
a system relies on DNS to translate system names into IP addresses, and
that DNS has been compromised, all kinds of problems can occur. For
this reason, it is usually best to put entries in " /e tc /hos t s" for machines
that are using IPsec. You'll also want to make sure that the machines
"/etc/nsswitch.conf" file has this entry for "hosts."

hosts : files dns

This means the machine will check the " /e tc /hos t s" records first when
matching a name--before using DNS for address resolution. Here's our
" /e tc / hosts" file.

sea-machl# cat /etc/hosts

Internet host table

127.0.0.1

192.168.210.34

192.168.210.51

localhost

sea-machl.zama6.com sea-machl ipv6sl.zama6.com ipv6sl loghost

sea-mach2.zama6.com sea-mach2

You'll want a s imilar--but not identical--file on your IPsec partner system.

Next, we have to tell the machine to load the IPSec modules at boot-time.
There should be a file in " /e tc / ine t" called "ipsecinit.sample." Copy this
file to "ipsecinit.conf." To begin, the file can contain nothing (or nothing
but comments). Just the fact that it exists will get IPsec loaded.

23.3.6

Create a place to put your IPsec config files. I 'm using "/etc/ipsec-conf."
You'll need two files--one to contain the SAs and one to contain the IPsec
configuration.

CREATE THE SECURITY ASSOCIATIONS

Create the file "keys-all" (this file should have permissions 600--the keys
must be kept private). This file will contain our SAs. Here's what mine
looks like.

sea-machl# cat keys-all

add esp spi 0x4444 src sea-mach2.zama6.com dst ipv6sl.zama6.com auth_alg md5 encr_alg

des \

Chapter 23 �9 Practical IPv6 Security Solutions 431

authkey 1234567890abcdef1234567890abcdef encrkey 1234567890abcdef

add esp spi 0x5555 src ipv6sl, zama6.com dst sea-mach2, zama6.com auth_alg md5

encr_alg

des \

authkey 1234567890abcdef1234567890abcdef encrkey 1234567890abcdef

Let's examine each line. The first line adds an SA for traffic headed for our
IPsec partner. Let's look at each field in the first l ine--you can figure out
the second line.

add means we're adding an SA.
esp specifies that this is an ESP SA, as opposed to an

authentication-and-integrity (AH) SA.
0x4444 is the "SPI," which uniquely identifies this SA.
src sea-mach2.zama6.com specifies the source for this SA is

sea-mach2.
dst ipv6sl.zama6.com specifies the destination for this SA.
auth_alg md5 specifies the authentication method we are

u s i n g ~ m d 5 in this case.
encr_alg des specifies the encryption method we are using---des

(3des is also available).
authkey 1234567890abcdef1234567890abcdef 128-bit md5 key
encrkey 1234567890abcdef 64-bit des key

Put this file on both machines--exactly like this. Each encrypted packet
will carry the "SPI" number used for the encryption/authenticat ion, so
the recipient machine must have the same keys associated with the same
SPI. (By the way, these are lousy keys, used only for ease of demonstration.
Choose a very random key.)

To enable these keys, use the command "ipseckey -f keys-all." To flush the
keys, you can use "ipseckey flush" and then reload them.

23.3.7 CREATE THE SECURITY POLICIES

Now we'll create our IPsec configuration. Create the file "both-all." Here's
what mine looks like.

sea-machl# cat both-all

{

saddr ipv6sl.zama6.com

432 Part Three �9 IPv6 Pradice

} apply {

}permit {

daddr sea-mach2, zama6, com

ulp tcp

encr algs des

encr_auth_algs md5 sa shared

saddr sea-mach2, zama6, com

daddr ipv6sl, zama6, com

ulp tcp

encr_algs des

encr_auth_algs md5

Let's take this file apart. There are two policies in this file, each protecting
traffic in one direction. The top policy is for ipv6 to sea-mach2. The "ulp
tcp" says that we are only using IPsec for TCP traffic--UDP and ICMP traf-
fic will not use IPsec. The "apply" statement simply says "Use IPsec for this
traffic." The next line "encr_algs des" specifies the encryption algorithm
to use; this has to match an SA (in our keys-all file). The last line in this
policy specifies to use the "md5" authentication cipher. The "sa shared"
tells IPsec to use any SA on the system that matches the parameters speci-
fied (source, destination, protocol, encryption cipher, and authentication
cipher).

The second policy allows traffic returning from sea-mach2 to be decrypted
and authenticated properly when it arrives back at ipv6sl.

To load the security policy, use the command "ipsecconf-a both-all." To
unload them, use "ipsecconf-f," and then you can load them again. If the
load goes well (no errors), you'll probably see this dialog.

sea-machl# ipsecconf -a both-all

WARNING : New policy entries that are being added may

affect the existing connections. Existing connections

that are not subjected to policy constraints may be

Chapter 23 �9 Practical IPv6 Security Solutions 433

subjected to policy constraints because of the new

policy. This can disrupt the communication of the

existing connections.

This looks pretty good so far. Let's just check our work by displaying the
configurations for these machines to the terminal. The commands for that
are "ipseckey dump" and "ipsecconf," as shown.

sea-machl# ipseckey dump

Base message (version 2) type DUMP, SA type ESP.

Message length 152 bytes, seq=l, pid=1064.

SA- SADB_ASSOC spi=0x5555, replay=0, state=MATURE

SA- Authentication algorithm = HMAC-MD5

SA- Encryption algorithm = DES-CBC

SA" flags=0x80000000 < X_USED >

SRC- Source address (proto=0/<unspecified>)

SRC- AF_INET- port = 0, 192.168.210.34 (sea-machl.zama6.com).

DST- Destination address (proto=0/<unspecified>)

DST- AF INET- port = 0, 192.168.210.51 (sea-mach2.zama6.com).
m

AKY" Authentication key. AKY-

EKY- Encryption key.

EKY:

LT:

CLT:

CLT:

CLT:

CLT:

1234567890abcdef1234567890abcdef/128

1334577991abcdef/64

Lifetime information

52336 bytes protected, 0 allocations used.

SA added at time Fri Mar 02 10:05:55 2001

SA first used at time Fri Mar 02 10:06:16 2001

Time now is Fri Mar 02 16:04:47 2001

Base message (version 2) type DUMP, SA type ESP.

Message length 152 bytes, seq=l, pid=1064.

SA- SADB_ASSOC spi=0x4444, replay=0, state=MATURE

SA- Authentication algorithm = HMAC-MD5

SA: Encryption algorithm = DES-CBC

SA- flags=0x80000000 < X_USED >

SRC: Source address (proto=0/<unspecified>)

SRC: AF_INET- port = 0, 192.168.210.51 (sea-mach2.zama6.com).

434 PartThree �9 IPv6 Practice

DST" Destination address (proto=0/<unspecified>)

DST: AF_INET: port = 0, 192.168.210.34 (sea-machl.zama6.com).

AKY: Authentication key.

AKY: 1234567890abcdef1234567890abcdef/128

EKY- Encryption key.

EKY: 1334577991abcdef/64

LT- Lifetime information

CLT: 15400 bytes protected, 0 allocations used.

CLT: SA added at time Fri Mar 02 10:05:55 2001

CLT: SA first used at time Fri Mar 02 10-06:16 2001

CLT: Time now is Fri Mar 02 16-04:47 2001

sea-machl# ipsecconf

INDEX 1

{

} apply {

}

INDEX 2

{

} permit

saddr ipv6sl.zama6.com

daddr sea-mach2, zama6, com

ulp tcp

encr_algs des

encr_auth_algs md5 sa shared

saddr sea-mach2, zama6, com

daddr ipv6sl, zama6, com

ulp tcp

encr_algs des

encr_auth_algs md5

You'll know if these don't look right.

Configuring IPsec on Machine 2 (Solaris 8 on Intel machine) is similar;
everything works just the same---almost. I noticed that the "ipsecinit.conf"

Chapter 23 �9 Practical IPv6 Security Solutions 435

file was placed in the "/etc/ inet" directory by the install program, so you
can skip this step (well--check it to be sure) on Intel.

Configure this machine as you did ipv6sl. The "keys-all" file should be
exactly identical. The "both-all" file is similar, but the src/dest fields
are flipped. I'll show the contents of both files but omit the detailed
instructions.

keys-all file

sea-mach2# more keys-all

add esp spi 0x4444 src sea-mach2.zama6.com dst ipv6sl.zama6.com auth_alg md5 encr_alg

des \

authkey 1234567890abcdef1234567890abcdef \

encrkey 1234567890abcdef

add esp spi 0x5555 src ipv6sl.zama6.com dst sea-mach2.zama6.com auth_alg md5 encr_alg

des \

authkey 1234567890abcdef1234567890abcdef \

encrkey 1234567890abcdef

both-all file

sea-mach2# more both-all

{

saddr sea-mach2.zama6.com

daddr ipv6sl.zama6.com

ulp tcp

}apply {

}permit {

encr_algs des

encr_auth_algs md5 sa shared

saddr ipv6sl.zama6.com

daddr sea-mach2.zama6.com

ulp tcp

encr_algs des

encr_auth_algs md5

}

ipseckey dump

436 Part Three �9 IPv6 Practice

sea-mach2# ipseckey dump

Base message (version 2) type DUMP, SA type ESP.

Message length 152 bytes, seq=l, pid=336.

SA: SADB_ASSOC spi=0x4444, replay=0, state=MATURE

SA: Authentication algorithm = HMAC-MD5

SA: Encryption algorithm = DES-CBC

SA: flags=0x80000000 < X_USED >

SRC: Source address (proto=0/<unspecified>)

SRC: AF_INET: port = 0, 192.168.210.51 (sea-mach2.zama6.com).

DST: Destination address (proto=0/<unspecified>)

DST: AF_INET: port = 0, 192.168.210.34 (ipv6sl.zama6.com).

AKY: Authentication key.

AKY: 1234567890abcdef1234567890abcdef/128

EKY: Encryption key.

EKY: 1334577991abcdef/64

LT: Lifetime information

CLT: 912 bytes protected, 0 allocations used.

CLT: SA added at time Fri Mar 02 10:50-18 2001

CLT: SA first used at time Fri Mar 02 10:50:43 2001

CLT- Time now is Fri Mar 02 16:12:58 2001

Base message (version 2) type DUMP, SA type ESP.

Message length 152 bytes, seq=l, pid=336.

SA: SADB_ASSOC spi=0x5555, replay=0, state=MATURE

SA: Authentication algorithm = HMAC-MD5

SA: Encryption algorithm = DES-CBC

SA: flags=0x80000000 < X_USED >

SRC: Source address (proto=0/<unspecified>)

SRC: AF_INET: port = 0, 192.168.210.34 (ipv6sl.zama6.com).

DST: Destination address (proto=0/<unspecified>)

DST: AF_INET: port = 0, 192.168.210.51 (sea-mach2.zama6.com).

AKY: Authentication key.

AKY: 1234567890abcdef1234567890abcdef/128

EKY: Encryption key.

EKY: 1334577991abcdef/64

LT: Lifetime information

CLT: 928 bytes protected, 0 allocations used.

Chapter 23 �9 Practical IPv6 Security Solutions 437

CLT: SA added at time Fri Mar 02 10:50:18 2001

CLT: SA first used at time Fri Mar 02 10:50:43 2001

CLT: Time now is Fri Mar 02 16:12:58 2001

Dump succeeded for SA type 0.

ipsecconf

sea-mach2# ipsecconf

#INDEX 1

{

saddr sea-mach2.zama6.com

daddr ipv6sl.zama6.com

ulp tcp

}apply {

}

INDEX 2

{

}permit {

23.3.8

encr_algs des

encr_auth_algs md5 sa shared

saddr ipv6sl.zama6.com

daddr sea-mach2.zama6.com

ulp tcp

encr_algs des

encr auth_algs md5

GWE IT A TRY

Let's use "snoop" on the box that is the target of your telnet--just to con-
vince ourselves IPsec is really working. Run the command "snoop host
sea-mach2" on the target machine.

Now, at the source machine, run the command "telnet ipv6sl." If you
get the telnet login herald, then it works. Here's what you should see in
your "snoop" window (this is just for the login herald, not the whole login
process--I did a CNTRL-D).

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=53

sea-machl.zama6.com -> sea-mach2.zama6.com ESP SPI=0x5555 Replay=389

438 PartThree �9 IPv6 Practice

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=54

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=55

sea-machl.zama6.com -> sea-mach2.zama6.com ESP SPI=0x5555 Replay=390

sea-machl.zama6.com -> sea-mach2.zama6.com ESP SPI=0x5555 Replay=391

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=56

sea-machl.zama6.com -> sea-mach2.zama6.com ESP SPI=0x5555 Replay=392

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=57

sea-mach2.zama6.com -> sea-machl.zama6.com ESP SPI=0x4444 Replay=58

sea-machl.zama6.com -> sea-mach2.zama6.com ESP SPI=0x5555 Replay=393

You can see that the packets are tagged "ESP" and give the "SPI" number
in our "keys-all" file. You also see the "Replay" f ie ld- - these are sequential
for each machine's source packets.

You learn even more if you use the c o m m a n d "snoop -v host sea-mach2."
This is the "'verbose" output, and it gives you much more insight. Here
you see the details of the IP Header, ESP (Payload), and Ethernet Header.
Note the line that says "ESP: ENCRYPTED DATA " ~ t h a t ' s where
your encrypted data lives.

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP:

IP Header

Version : 4

Header length = 20 bytes

Type of service = 0x00

xxx 0 (precedence)

...0 normal delay

.... 0... = normal throughput

..... 0.. = normal reliability

Total length = 72 bytes

Identification = 22733

Flags = 0x4

.i = do not fragment

..0 = last fragment

Fragment offset = 0 bytes

Time to live = 64 seconds/hops

Chapter 23 �9 Practical IPv6 Security Solutions 439

IP:

IP:

IP:

IP:

IP:

IP:

ESP:

ESP:

ESP:

ESP:

ESP:

ETHER:

ETHER:

ETHER:

ETHER:

ETHER:

ETHER:

ETHER:

ETHER:

Protocol = 50 (ESP)

Header checksum = 2e44

Source address = 192.168.210.51, sea-mach2.zama6.com

Destination address = 192.168.210.34,

sea-machl.zama6.com

No options

Encapsulating Security Payload

SPI = 0x4444

Replay : 71

.... ENCRYPTED DATA

Ether Header

Packet 12 arrived at 16:26:8.41

Packet size : 102 bytes

Destination = 0:e0:18:d8:13:59,

Source = 8:0:20:fd:92:bb, Sun

Ethertype : 0800 (IP)

Try to telnet the other way-- that should work too!

If the telnet session just hangs, use snoop to make sure that the ESP pack-
ets are making it to the target machine. If they are, you may have a
problem with your SAs. If, for example, your ESP packet carries an SPI
that doesn't exist on the target machine (i.e., if the source machine says
"use SPI 0x2222" to the target machine), you'll see a message like this in
" / v a r / a d m / m e s s a g e s . "

ESP- No association found for spi 0x4444, dst cb8e8e22

That pretty much does it. We've collected, installed, configured, and
enabled encrypted, authenticated telnet services machine-to-machine. One
thing we haven't done is to set this up so that the IPsec configuration is
recovered if you reboot your machine. The "ipseckey" and "ipsecconf"
configurations are not saved through a reboot cycle.

440 Part Three �9 IPv6 Practice

To configure the security policy to rebuild at boot-time, create a file called
" /e tc / rc2 .d /S99IPSec-conf igure" that looks like this.

#/bin/ksh

ipseckey -f /etc/ipsec-config/keys-all

ipsecconf -a /etc/ipsec-config/both-all

Reboot your machine to check that it works.

23.4 Building TCP Wrapper for IPv6 on Solaris 8T

This section describes in detail how to obtain, compile, and configure TCP
Wrapper for use with IPv6.

23.4.1 Gathering the Pieces

Here 's a brief list of what you' l l need for this project.

�9 The ability to compile binaries from source code. This usual ly
means a working gcc installation coupled with the necessary
compilation utilities (e.g., make, ld, etc.).

�9 The ability to uncompress files with gzip.
�9 The ability to un-bundle file packages with tar.
�9 The IPv6-enabled TCP Wrapper source code. Version 7.6-ipv6.1

is the most recent version and can be found on Wietse Venema 's
Web site (h t tp : / /www.porcup ine .o rg) .

23.4.2 BUILDING TCP WRAPPER

On the Internet today, whether you ' re communica t ing over IPv4 or IPv6,
installing addit ional security measures on your system is never a bad
thing. TCP Wrapper adds another layer of authenticat ion to just about
any service that 's controlled by inetd. In addit ion, TCP Wrapper makes

~This section is adapted from a document written by Robert C. Zilbauer Jr., �9 Zama
Networks.

Chapter 23 �9 Practical IPv6 Security Solutions 441

its authentication library available to any other application wishing to use
Wrapper-style access control.

The first thing you need to do is to obtain the latest TCP Wrapper source
code from the preceding Web site. For use with IPv6, you'll need the
source package that contains the IPv6 modifications made by Casper Dik
(version 7.6-ipv6.1).

Like most source packages, TCP Wrapper comes compressed and bundled
into a tar file. If you're using the GNU version of tar, you can un-tar the
package at the same time that you're uncompressing it. The following
command will accomplish this.

% tar fxz tcp_wrappers_7.6-ipv6.l.tar.gz

Otherwise, you'll have to uncompress the package first and then proceed
with the tar command.

% gzip d tcp_wrappers_7.6-ipv6.l.tar.gz

% tar fx tcp_wrappers_7.6-ipv6.l.tar

Once you've uncompressed and extracted the source from the tar file, the
process of compiling the code may be a little different from what you're
used to. Unlike many source distributions, TCP Wrapper doesn't come
with any automated configure script to set up your compilation environ-
ment for you. All this means is that you have to edit the Makefile by hand
to suit your needs.

Drop down into the directory created by the preceding tar command
and, using your favorite text editor (e.g., emacs or vi - not pico!), open
the Makefile for editing. First, skip down to the "Advanced Installation"
section and look for the "SysV.4 Solaris 2.x OSF AIX" definition. Uncom-
ment (i.e., remove the # symbol from the beginning of the line) the
definition for REAL DAEMON DIR so that it is set t o / u s r / s b i n . Once

_ m

you've made this change, your REAL_DAEMON_DIR line will look like
this.

REAL DAEMON DIR=/usr/sbin

Now, move down quite a ways in the file until you come to the section
entitled "System dependencies: selection of non-default object libraries."

442 Part Three �9 IPv6 Practice

Here, again, you'll want to uncomment the "SysV.4 Solaris 2.x" definition
so that your LIBS looks like this.

LIBS = -isocket insl # SysV.4 Solaris 2.x

This next step is the reason you started reading this document in the first
place. Skip down another few sections until you get to the one labeled
"System dependencies: whether or not your system has IPV6." Since we're
working with Solaris 8, uncomment the first definition of IPV6 so that it
looks like this.

IPV6 = -DHAVE IPV6

As far as enabling IPv6 in the code, that's all you have to do. As a matter
of fact, you're done with all of the necessary changes to the Makefile as
well. As a personal preference, I usually make one more change. In the
"Optional: Changing the default disposition of logfile records" section, I'll
change the FACILITY definition to LOG_LOCAL0. What this allows you
to do is add a line like this

local0.info /var/adm/tcpd. log

to your /e tc / sys log .conf file which will then record all messages coming
from TCP Wrapper in their own log file (/var /adm/ tcpd . log) . This makes
checking for security incidents a little easier. Of course, as the title of the
section says, this is just an optional change. If you don't want to do it,
I promise not to take it personally.

Once you've made all of the necessary, and any of the optional, changes
to the Makefile, save the file and exit out of the text editor. Back at the
command prompt, begin the compilation process with the appropriate
make command. Since we're building the binaries for Solaris, you should
use this command.

% make sunos5

23.4.3 INSTALLATION

Assuming that all goes well during compilation, you're ready to install the
resulting binaries into their final resting places. The installation process,

Chapter 23 �9 Practical IPv6 Security Solutions 443

like the configuration you had to do, must be done by hand. Currently,
there is no automated way to install the binaries after compiling. However,
installation is as simple as a series of cp commands.

If you haven't already done so you'll have to become root to do the
installation. First, install the actual executables in the standard directory,
/usr/local/sbin. There are five executables that you'll want to copy in this
step: tcpd, tcpdmatch, try-from, safe_finger, and tcpdchk. The command
line to do this would look something like this.

cp tcpd tcpdmatch try-from safe_finger tcpdchk /usr/local/sbin

tcpd is the actual wrapper program, tcpdmatch and try-from are both
used in testing your installation once you have TCP Wrapper fully con-
figured, safe_finger is a wrapper for the finger command and can be used
if you want to do automatic fingering of questionable connections. The
safe_finger wrapper makes the finger command more robust and secure
for such use. Last, the tcpdchk program checks through your configuration
files for errors.

Should another program wish to easily include TCP Wrapper-style
authentication, it can use the libwrap.a library that was built during the
compilation process. To make this library available to other packages,
you need to put it in a standard directory for libraries. A good choice
would be /us r / l oca l / l i b . To get the functionality out of this library the
tcpd.h file must also be available. A standard place for header files like this
one i s /us r / loca l / inc lude . Therefore, your next two commands will look
something like this.

cp libwrap.a /usr/local/lib

cp tcpd.h /usr/local/include

All that's left to install are the documentation files. TCP Wrapper comes
with several pages that need to be copied into the appropriate directories
for the man command to use. The easiest way to install them is by man
page section. There are files available for sections 3, 5, and 8, so your next
three commands will look like this.

cp *.3 /usr/local/man/man3

cp *.5 /usr/local/man/man5

cp *.8 /usr/local/man/man8

444 Part Three �9 IPv6 Practice

And that's that. You've just completed the installation of TCP Wrapper
and all its man pages. All that remains is configuration. Luckily, that's the
very next section.

23.4.4 CONFIGURATION

Before running recklessly into configuring your new software, you should
make some decisions regarding what services you wish to wrap and what
your end result should be. For our example, we'll assume we want the
following.

�9 Telnet access allowed for people coming from 192.168.3.8
�9 Telnet access allowed for people coming from any IPv6 host

under the 3ffe:80f0:l:l:: prefix
�9 FTP access allowed only for people coming from 3ffe:80f0:10:l:

201:2ff:dead:feed
�9 Everyone else denied for all services

Th~ first thing you'll need to do is actually "wrap" the services in inetd.conf
that you want wrapped. This is as simple as changing the value in the
column that tells inetd which daemon it should run. To wrap a service,
substitute the path to tcpd for the path to the daemon. For example, with
the telnet service, the original line in /e tc / inetd.conf looks like this.

telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd

To wrap this service, you 'd simply change t h e / u s r / s b i n / i n . t e l n e t d part
to / u s r / l oca l / sb in / t cpd . Thus, the inetd.conf line for a wrapped telnet
service would look like this.

telnet stream tcp6 nowait root /usr/local/sbin/tcpd in.telnetd

Piece of cake. Now, according to what we decided earlier, we also
want to wrap the FTP service, so do the same for the ftp entry in your
/e tc/ inetd.conf file. Once that's done, the inetd.conf lines for the telnet
and FTP services will look like this.

ftp

telnet

stream tcp6 nowait root /usr/local/sbin/tcpd in.ftpd

stream tcp6 nowait root /usr/local/sbin/tcpd in.telnetd

Once you've made these changes, send the inetd process a HUP signal. This
tells inetd to reread its configuration file. First, determine what process ID

Chapter 23 �9 Practical IPv6 Security Solutions 445

the inetd process is running under. Then send that process ID the HUP
signal.

ps-ef] grep inetd

root 164 1 0

s -t

kill -HUP 164

Feb 05 ? 0"08 /usr/sbin/inetd-

You've just successfully wrapped ftp and telnet with TCP Wrapper.
The last step is to set up the security rules that control connection
authentication.

This part is accomplished using two different files: /etc/hosts.al low and
/etc/hosts.deny. As the names suggest, the former indicates connections
that are permitted, while the latter controls the denial of unwanted con-
nections. When a connection attempt is made, the first n:le that matches
the connection information is the one that applies. Also, the first file to
be checked is /etc/hosts .al low. Keep that in mind as you're creating your
security rules.

Using the example requirements we just set for ourselves, we'll start with
the easiest rules file first: /etc/hosts .deny. Chances are you don't have
this file yet, so you'll have to create it. It's in this file that we'll specify
our default "deny everyone from everything" rule. To make this happen,
crea te /e tc /hos ts .deny and give it the following contents.

/etc/hosts .deny

ALL " ALL

As the rule says, deny ALL hosts (the entry after the colon) from ALL
services (the entry before the colon). While being very secure, it's not a
terribly productive configuration, so let's continue. The next file you'll
want to create is /etc/hosts .al low. It's in this file that you'll start to punch
holes in your default deny rule to allow your friends and colleagues into
your new IPv6 system.

First, we'll handle our telnet rules. Previously, we indicated that we
wanted telnet open to people coming in from 192.168.3.8 as well as people

446 Part Three �9 IPv6 Practice

coming in from any IPv6 host under the 3ffe:80f0:l:l:: prefix. To start things
off, you need to indicate that this rule applies to the telnet service. Begin
your line in / e t c /hos t s . a l low with the name of the daemon for which this
rule appl iesmin this case, the following.

in. telnetd-

Now follow that with the addresses of the hosts who should be allowed
to use this service. In the case of IPv4 addresses, you can just enter them
normally.

in.telnetd- 192.168.3.8

IPv6 addresses, on the other hand, must be surrounded by square brackets
([]). They can either be specified as a single IPv6 address, or you can specify
a range of addresses by using a pref ix /mask notation. In our case, we want
everyone coming in from a host within the 3ffe:80f0:1:1:: network to be able
to connect, so we'll be using the pref ix /mask notation. Also, multiple hosts
on the same line must be separated by spaces. Therefore, the final line in
the rules file for telnet will look like this.

in.telnetd- 192.168.3.8 [3ffe-8OfO'l-l--/64]

Our FTP rule will be much easier. As we defined earlier, we want anyone
coming from 3ffe:80f0:10:l:201:2ff:dead:feed to be able to connect to our
FTP service. Following the preceding format, the line i n / e t c /hos t s . a l l ow
for the FTP service will look like this.

in. ftpd- [3ffe- 80fO �9 i0- i- 201- 2ff-dead- feed]

There are more options available for use in the hosts.deny and hosts.allow
files, but these are the basics. For more information, I recommend taking
a look at the hosts_access(5) man page. What you have just accomplished,
however, fulfills all of the security requirements we set forth at the begin-
ning of this section. For the sake of easy visualization, here's what the
comple ted /e tc /hos t s . a l low file looks like.

/etc/hosts.allow

Chapter 23 �9 Practical IPv6 Security Solutions 447

in.telnetd: 192.168.3.8 [3ffe:8OfO:l:l: :/64]

in. ftpd: [3ffe: 80fO : i0 : 1 : 201 : 2ff :dead: feed]

Also, since TCP Wrapper is run each time a wrapped service is requested,
there's no need to s tar t / s top a daemon or k i l l -HUP a process when you
make a change to the rules files.

23.5 Summary

No prudent network administrator would skimp on security systems,
and the use of packet filtering firewalls, IPsec, and TCP Wrappers as
described here should be considered and adapted for any IPv6 ne twork - -
even testbeds. Once the security systems are in place and routing is live,
applications like DNS and email can be rolled out as described in the next
chapter.

Email and DNS Under I Pv6

This chapter provides step-by-step instructions for setting up DNS services
under IPv6, including setting up BIND, as well as a section detailing the
process of setting up an email server under IPv6.

24.1 Building BIND 9 with OpenSSL Support*

This section explains in detail how to obtain and compile both OpenSSL
and BIND 9 for use with an IPv6 DNS system.

*This section is adapted from a document written by Robert C. Zilbauer Jr., �9 Zama
Networks.

449

450 Part Three �9 IPv6 Practice

24.1.1 GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 The ability to compile binaries from source code. This usually
means a working gcc installation coupled with the necessary
compilation utilities (e.g., make, ld, etc.).

�9 The ability to uncompress files with gzip.
�9 The ability to un-bundle file packages with tar.
�9 The latest version of the Berkeley Internet Name Domain

software (BIND). Currently, this is BIND 9.1.0
(h t tp : / /www.isc .org/products / BIND/).

�9 OpenSSL release 0.9.5a or newer (http:/ /www.openssl .org).

24.1.2 BUILDING OPENSSL

Although BIND 9 comes with its own version of SSL (for use with
DNSSEC), that version contains no architecture-dependent optimizations.
By compiling OpenSSL on your own, you'll be able to take advantage of
assembly code optimizations that can dramatically speed up BIND's SSL
operations (particularly on Intel and Sparc architectures).

The first thing you need to do is obtain the latest OpenSSL source code.
You can find this code and a great deal of information about OpenSSL
itself at the main OpenSSL Web site (http:/ /www.openssl .org). For use
with BIND 9, you'll need OpenSSL version 0.9.5a or higher. As just
mentioned, the latest source release of OpenSSL is also available from
http: / / www.zamanetworks.com.

Like most source packages, OpenSSL comes compressed and bundled into
a tar file. If you're using the GNU version of tar, you can un-tar the package
at the same time that you're uncompressing it. The following command
will accomplish this.

% tar fxz openssl-O.9.6.tar.gz

Otherwise, you'll have to uncompress the package first and then proceed
with the tar command.

% gzip d openssl-O.9.6.tar.gz

% tar fx openssl-O.9.6.tar

Chapter 24 ~ Email and DNS Under IPv6 451

Once you've uncompressed and extracted the source from the tar file,
compiling the code is fairly straightforward. While in the directory created
by un-tarring the source, configure the compilation process by running the
supplied config script.

% cd openssl-0.9.6

% ./config

Once the configure script is finished, type "make" and the compilation of
the source code into usable binaries will begin.

Once the make process is complete, test the resulting libraries and exe-
cutables by doing a make test. Assuming everything goes well, do a make
install and allow OpenSSL to install itself into the default location. This
means that all of your OpenSSL libraries and executables will be found
under /us r / loca l / s s l .

Building BIND The BIND software is the meat of your new domain
name server. This is the software that will be responding to DNS queries.
Not only will it supply DNS information about your domain to external
parties, but it will also resolve DNS information about external domains
for you.

The first step is obtaining the source code. Currently, the package you
want to use is BIND Version 9.1.0 or later. You can get this from the Internet
Software Consortium's Web site (h t tp : / /www.isc .org /products /BIND/) .
Just download the file and uncompress/un-tar it as you did with the
OpenSSL software.

Once the source has been un-tarred, cd into the newly created directory and
begin configuring the source for compilation. You want to make sure BIND
uses the OpenSSL libraries you compiled earlier, so begin the configuration
with the following command.

% cd bind-9.1.O

% ./configure with-openssl:/usr/local/ssl

The configure script will now check your system for the elements
required to build BIND and incorporate your previously compiled
OpenSSL libraries.

Once the configure script is done, type make. This will start the compil-
ation process. Assuming everything compiles correctly (i.e., you don't get

452 Part Three ~ IPv6 Practice

any fatal errors), you should do a make check to run through the first part
of the collection of test scripts that come with BIND. Check the output of
these tests, and make sure there aren't any grievous errors. Toward the
end of the testing, you'll get a number of errors regarding unconfigured
interfaces, but you can ignore those. We'll deal with them next.

As a matter of fact, we'll deal with them now. If you 've seen the uncon-
figured interface errors, your make check is probably finished. To run
through the rest of the tests, you'll have to set up a bunch of virtual inter-
faces for the test scripts to use. Fortunately, the BIND installation comes
with a script made to do just that. The script, ifconfig.sh, can be found in
b i n / t e s t s / s y s t e m / f r o m the top of the BIND 9 source tree. You may want
to cd into that directory for the next few steps.

% cd bin/tests/system/

Unfortunately, as of BIND Version 9.1.1rc2, the ifconfig.sh script doesn' t
work at all for the Intel version of Solaris 8 and doesn't work completely
for the Sun version of Solaris 8. The code maintainers have been notified,
but just in case you're using unfixed code, you should be able to use the
following script.

#!/bin/sh

Copyright (C) 2000, 2001 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any

purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM

DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL

INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Chapter 24 �9 Email and DNS Under IPv6 453

$Id- ifconfig.sh,v 1.25.4.1 2001/01/09 22:34-37 bwelling Exp $

Set up interface aliases for bind9 system tests.

If running on hp-ux, don't even try to run config.guess.

It will try to create a temporary file in the current directory,

which fails when running as root with the current directory

on a NFS mounted disk.

case 'uname -a' in

HP-UX) sys=hpux ;;

*) sys='../../../config.guess' ;;

esac

case "$i" in

startlup)

for ns in 1 2 3 4 5

do

case "$sys" in

*-pc-solaris2.8)

ifconfig lo0-$ns plumb

ifconfig lo0-$ns i0.53.0.$ns up

-;

*-sun-solaris2.8)

ifconfig lo0-$ns plumb

ifconfig lo0-$ns i0.53.0.$ns up

-;

Giving up."

*)

esac

echo "Don't know how to set up interface.

exit 1

done

stopldown)

454 Part Three �9 IPv6 Practice

esac

for ns in 5 4 3 2 1

do

case "$sys" in

*-pc-solaris2.8)

ifconfig lo0:$ns i0.53.0.$ns down

ifconfig lo0:$ns i0.53.0.$ns unplumb

;;

*-sun-solaris2.8)

ifconfig lo0:$ns i0.53.0.$ns down

ifconfig lo0:$ns I0.53.0.$ns unplumb

; ; *)

echo "Don't know how to destroy interface.

done

Giving up."

esac

.)

exit i

echo "Usage- $0 { up I down }"

exit 1

The preceding script is a stripped-down version of BIND's ifconfig.sh
script. I've eliminated everything not pertaining to Solaris 8 and fixed
the "down" section to properly unplumb the interfaces when you're done
with them.

Armed with the proper ifconfig.sh script, you're ready to finish up with
BIND's automated tests. First, run the script with the up argument.
This will set up the required virtual interfaces BIND will use during the
tests.

% ./ifconfig. sh up

Now, do a make test to run through the remaining tests. Once the tests
have completed successfully, you'll want to clean up the virtual interfaces

Chapter 24 �9 Email and DNS Under IPv6 455

used in the tests. The same script will do this. Just give it the d o w n
argument instead of up.

% ./ifconfig.sh down

Finally, your newly built BIND package has been tested and is ready
for installation. Move up to the top of the BIND source tree (assuming
you d ropped into the b i n / t e s t s / s y s t e m directory) and issue the install
command.

% cd . . / . . / . .

% make install

Several BIND executables will be installed i n / u s r / l o c a l / b i n . The name
server binary itself, named, will be installed in / u s r / l o c a l / s b i n , and
several name server-related libraries will be put in / u s r / l oca l / l i b . All
that 's left to do now is configure your new name server.

24.2 Configuring an IPv4/IPv6 DNS**

This section explains in detail how to configure BIND 9 for use as an
IPv4/IPv6 domain name server. Configuration details will be given for
both a master (primary) and a slave (secondary) server. In addition,
example configuration files and a current root server list will be included
at the end of this document.

24.2.1 GATHERING THE PIECES

Here's a brief list of what you'l l need for this project.

�9 A working Solaris 8 (either Intel or Sun) machine for each
server (master and slave).

�9 Both machines should have a correctly configured IPv4
interface.

�9 Both machines should have a properly configured IPv6
interface. It is r ecommended that both machines be configured
with a static IPv6 address.

**This section is adapted from a document written by Robert C. Zilbauer Jr., �9 Zama
Networks.

456 Part Three �9 IPv6 Practice

The servers should also have the OpenSSL and BIND 9
packages compiled and installed on them.

24.2.2 CONFIGURING YOUR MASTER DNS

Once the preceding groundwork has been completed, you can move right
into configuring your new DNS machines. By default BIND will look for its
configuration file, named.conf, in/etc. A sample named.conf file has been
included at the end of this document for your convenience. However, in the
following section, we'll go over some of the highpoints of the configuration
file and explain why they're in there.

All of the information that BIND will serve as your DNS (a.k.a., your
zone records) can be kept anywhere you'd like. In this case, we'll create
a directory, / va r /named and instruct BIND to look there for its zone
records. Also, we need to explicitly tell BIND to answer IPv6 queries.
All of these things are done at the top of the named.conf file in an options
section like this.

options

{

{

any;

};

};

listen-on-v6

directory "/var/named" ;

notify yes-

provide-ixfr yes;

The first line of the options section tells BIND to listen for IPv6 queries.
The directory option tells it where to find its zone records. The notify and
provide-ixfr options begin to define the relationship of your primary (or
master) DNS with your secondary (or slave) DNS. The notify line says
your master DNS should send notification to its slaves when a record has
been updated, and the provide-ixfr option allows your slaves to request
incremental updates (i.e., only the parts of the records that have been
changed).

Chapter 24 �9 Email and DNS Under IPv6 457

Make sure you have at least the default logging enabled. The following
will allow BIND to send messages through syslog, which (usually) end up
in y o u r / v a r / a d m / m e s s a g e s file.

logging

category "default"

zone ". "

{

Next, you must tell your name server where to look for root zone infor-
mation. This is done with the root.hint file (the current version of which
is included at the end of this document) and the following section in your
named.conf file.

type hint-

file "root.hint";

};

Now you'll need to start adding records for your DNS to serve. We'll start
with the loopback addresses of your DNS.

zone "localhost"

{

type master;

file "db.localhost';

};

zone "O.O.127.in-addr.arpa"

{

type master;

file "db.127.0.0";

notify no ;

};

{

"defaul t_syslog" ;

"de faul t_debug" ;

};

};

458 Part Three �9 IPv6 Practice

The config file definitions indicate that your forward localhost records can
be found in a file named db.localhost and your reverse localhost records
can be found in db.127.0.0. We'll describe the contents of these and the rest
of your zone files later on in this paper. For now, just assume that the file
names are correct and that they'll be there when we need them.

Since this is an IPv6 DNS, we'll need the IPv6 equivalent of the preceding
files. So add the following lines to your config file for your IPv6 localhost
lookups (only reverse is needed in this section; your forward IPv6 localhost
lookups will be handled by the db.localhost file we defined earlier).

zone "O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.ip6.int"

{

type master ;

file "db. OOOO-OOOO-OOOO-OOOO.ip6.int';

notify no ;

};

zone "\ [x0000000000000000/64] .ip6.arpa"

{

type master;

file "db. OOOO:OOOO:OOOO:OOOO.ip6.arpa';

notify no ;

};

Officially, the ip6.int format (also known as "nibble format") is deprecated.
However, it is still in use for compatibility with existing IPv6 applications.

Now identify the file name and other properties for your domain 's zone
records. For simplicity, we'll assume we're only setting up our DNS to
answer queries for one (creatively named) domain, "mydomain.com."

zone "mydomain.com"

{

type master;

file "db.mydomain.com";

notify yes;

allow-transfer

Chapter 24 �9 Email and DNS Under IPv6 459

192.168.25.4;

};

};

Before going into further explanation, let's add in the reverse lookups
for our IPv6 network. This document assumes that your IPv4 reverse
DNS lookups are being handled by whoever gave you your addresses,
so we won' t be dealing with those. For our purposes, we'll use an IPv6
network beginning with 3ffe:80f0:l:l:... Notice that we're using both the
"bitstring" format as well as the deprecated nibble format.

zone "\ [x3ffe80fO00010001/64] .ip6.arpa"

{

type master;

file "db.3ffe:8OfO:OOOl:OOOl.ip6.arpa";

notify yes;

allow-transfer

192.168.25.4;

};

};

zone "l.O.O.O.l.O.O.O.O.f.O.8.e.f.f.3.ip6.int"

{

type master;

file "db.3ffe:8OfO:OOOl:OOOl.ip6.int";

notify yes;

allow-transfer

};

};

192.168.25.4;

If you take a look at the three zone definitions you 've just created, you'll
notice they all have several things in common. Since this is going to be your

460 Part Three �9 IPv6 Practice

primary (or "master") DNS, each zone definition starts by indicating that
this machine holds the master records for that zone (type master). Next,
you've defined the name of the file in which the zone records will be kept.
The notify yes line indicates that your master DNS should notify its slave
DNS whenever records are updated within the given zone. And, last, the
allow-transfer definition tells your server which machine is allowed to do
zone transfers. This should be the IP address of your slave DNS.

24.2.3 CONFIGURING YOUR "localhost" ZONE

Now that your named.conf file is complete, it's time to start creating your
zone files. Drop down into the directory you specified in your named.conf
file as having your zone information. If you set up your named.conf file
just like our examples, that would b e / v a r / n a m e d .

The first two files you'll create are to facilitate lookups of your localhost.
The info for your specific machine will (more than likely) be identical to
what you see here. First, we handle the forward lookups (both IPv4 and
IPv6) for your localhost. Create the db.localhost file and fill it with the
following.

$ORIGIN localhost.

@ 4h IN

$TTL lh

localhost

IN

IN

IN

IN

IN

SOA nsl.mydomain.com, dns.mydomain.com. (

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

NS

NS

A

AAAA

A6

ns i. mydomain, com.

ns2 .mydomain. com.

172.0.0.1

0000- 0000- 0000 �9 0000- 0000 - 0000 �9 0000 �9 0001

0000- 0000- 0000- 0000- 0000- 0000- 0000- 0001

Chapter 24 �9 Email and DNS Under IPv6 461

At this point, we'll go over some of the key elements to be aware of in
this file (as well as the other files you'll be creating). You'll notice the SOA
indicator toward the top of the file. This stands for Start Of Authority. The
machine name immediately following the SOA indicates the name of the
machine, which should be considered "authoritative" for the information
within the zone file. In all cases on your master DNS, this will be the
name of your master DNS machine. The next element of the SOA line,
"dns.mydomain.com," is actually the email address of the maintainer of
the zone records. While it's written with periods as punctuation, it means
dns@mydomain.com is the email address of the maintainer of the records
within this zone file. This, too, will likely be the same throughout all of
your zone files.

While we won' t be going over all of the numbers within the parenthesized
section of the SOA record, we will discuss one of them. Whenever you
make updates to your zone records, you should adjust the serial number
accordingly. As a general rule of thumb, use the current date as your serial
number. Since you may be making more than one change to your files
on a particular day, add a two-digit revision number to the end of the
date. For example, the first change you make on March 23, 2001, would
have a serial number of "2001032301" (YYYYMMDDRR, where RR is the
double-digit revision number). Consequently, when you make the second
change to the file on the same day, you 'd change the serial number to
"2001032302."

The reason for this has to do with the interaction between your master
DNS and your slave DNS. In order for your slave DNS to know that there
are new changes it needs to download from the master, the serial number
must be incremented. If you 've made changes to your master DNS and
expect to see the changes propagate to your slave DNS but they don't , one
of the first things you should check is your serial number on the master
DNS. If you haven' t incremented the serial number, the changes won ' t be
reflected in your slave DNS's records.

For an explanation of the other numbers within the SOA block
(e.g., refresh, retry, etc.), see the BIND 9 Administrator Reference Manual.
This manual is available in PDF format from Nominum, Inc. (h t t p : / /
www.nominum.com).

The IN NS records define the name servers responsible for this zone.
Chances are good that these lines will also be the same across all of your
zone files.

462 Part Three �9 IPv6 Practice

Last, the entry beginning with "localhost" starts the actual localhost DNS
information. In your forward lookup files, you will be defining the IPv4
address (the A record) as well as the IPv6 address. In the case of IPv6
forward lookups (just like with IPv6 reverse lookups), there are two
address formats: the deprecated "quad-A" record (AAAA) and the A6
record. Both are used for compatibility reasons.

The IPv4 reverse lookup file for your localhost zone is much simpler. You'll
notice that it contains a lot of the same information as the forward lookup
zone. Create the file db.127.0.0 in y o u r / v a r / n a m e d directory, and give it
the following contents.

$ORIGIN 0.0.127.in-addr.arpa.

@ 4h IN SOA nsl.mydomain.com, dns.mydomain.com.

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

IN NS

IN NS

nsl .mydomain. com.

ns2 .mydomain. com.

STTL lh

IN PTR localhost.

The only thing different in this file is the actual zone data. The PTR record
maps 127.0.0.1 to the name "localhost."

Now on to something a little more complicated: IPv6 reverse lookups
for localhost. Remember that IPv6 reverse lookups (like forward
lookups) have two formats that are both currently in use. We'll start
with the older, nibble format. Create a new file in your / v a r / n a m e d
directory named db.0000:0000:0000:0000.ip6.int with the following
contents.

Chapter 24 �9 Email and DNS Under IPv6 463

$ORIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int.

@ 4h IN SOA nsl .mydomain. com. dns .mydomain. com. (

IN NS

IN NS

2001012501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

ns i. mydomain, com.

ns2 .mydomain. com.

STTL lh

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR localhost.

And then put the same information in the newer bitstring format. Create
another file in / var / named with the name db.0000:0000:0000:0000.ip6.arpa
containing this.

$ORIGIN \ [x0000000000000000/64] .ip6.arpa.

@ 4h IN SOA nsl. mydomain, com. dns.mydomain.com. (

IN NS

IN NS

$TTL lh

\ [x0000000000000001/64] IN

2001012501

28800

7200

604800

86400

)

; serial

; refresh

; retry

; expire

; minimum

nsl .mydomain. com.

ns2. mydomain, com.

PTR localhost.

464 Part Three �9 IPv6 Practice

Both of these files are there for the same function: to map the IPv6
localhost address, 0000:0000:0000:0000:0000:0000:0000:0001, to the name
"localhost."

24.2.4 CONFIGURING FORWARD AND REVERSE DNS iOOKUPS

N o w that you've configured your localhost records, you're ready to set
up the forward lookups for your domain, mydomain.com. Create a file in
/ var /named called db.mydomain.com with the following contents.

$ORIGIN mydomain, com.

@ 4h IN

$TTL lh

SOA nsl.mydomain.com, dns.mydomain.com. (

2001021501 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

IN NS

IN NS

ns i. mydomain, com.

ns2 .mydomain. com.

The rest of the file should be filled in with your domain information. First
of all, you should add IPv4 and IPv6 entries for your master and slave DNS
machines (nsl .mydomain.com and ns2.mydomain.com). Be sure to define
your IPv6 addresses using both the older AAAA record type and the A6
record type. When you' re done with that, your file will look something
like this.

nsl IN A

IN AAAA

IN A6 0

192.168.25.5

3ffe- 80f0- i- i- 201- 2ff- fe00. 2112

3ffe- 80f0 : 1 : 1:201- 2ff- fe00" 2112

Chapter 24 �9 Email and DNS Under IPv6 465

ns2 IN A

IN AAAA

IN A6 0

192.168.25.4

3 ffe- 80f0 - 1 �9 1 : 201 �9 2ff- fe00 - 2111

3ffe- 80f0: i- i- 201- 2ff- fe00- 2111

N o w add entries for any other machines for which you'd like to have
DNS entries. Let's say, for example, you want a Web server to answer
at www.mydomain .com. Its DNS entry in this file would look something
like this.

wTT~ IN A

IN AAAA

IN A6 0

192.168.25.7

3ffe- 80f0- I- i-201-2ff- fee8-efal

3ffe-80f0-i- i-201-2ff- fee8-efal

The last thing to do is to configure the reverse lookups for your IPv6 net-
work. Again, you should create two reverse lookup zone files: one for
nibble format and one for bitstring format. First the nibble format. Create
a file i n / v a r / n a m e d called db.3ffe:80f0:0001:0001.ip6.int. Its contents will
look something like this.

$ORIGIN 1.0.0.0.1.0.0.0.0. f. 0.8.e.f.f.3.ip6.int.

@ 4h IN SOA nsl.mydomain.com, dns.mydomain.com. (

IN NS

IN NS

2001020201 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

nsl .mydomain. com.

ns2 .mydomain. com.

$TTL lh

l.l.l.2.0.0.e.f.f.f.2.0.1.0.2.0

IN PTR ns2.mydomain.com.

2.1.1.2.0.0.e.f.f.f.2.0.1.0.2.0

466 Part Three �9 IPv6 Practice

24.2.5

IN PTR nsl .mydomain. com.

l.a.f.e.8.e.e.f.f.f.2.0.i.0.2.0

IN PTR www.mydomain.com.

And, finally, create a file in / v a r / n a m e d called db.3ffe:80f0:0001:0001.
ip6.arpa. This file will contain the reverse DNS information for your IPv6
network in bitstring format. Much like the preceding file, your bitstring
reverse DNS file will look something like this.

$ORIGIN \ [x3ffe80f000010001/64] .ip6.arpa.

@ 4h IN SOA nsl .mydomain. com. dns .mydomain. com.

IN NS

IN NS

$TTL lh

\ [x020102fffe002111/64]

IN PTR

\ [x020102fffe002112/64]

IN PTR

\ [x020102fffee8efal/64]

IN PTR

2001020201 ; serial

28800 ; refresh

7200 ; retry

604800 ; expire

86400 ; minimum

)

nsl .mydomain. com.

ns2 .mydomain. com.

ns2 .mydomain. com.

nsl .mydomain. com.

www. mydomain, com.

STARTING AND TESTING YOUR MASTER DNS

If you've gotten this far, you should have the following configuration files
ready to go.

�9 The BIND configuration file i t se l f : /e tc /named.conf
�9 localhost forward lookups: /var /named/db . loca lhos t

Chapter 24 �9 Email and DNS Under IPv6 467

�9 localhost IPv4 reverse lookups : /va r /named /db .127 .0 .0
�9 localhost IPv6 reverse lookups (nibble format):

/ v a r / n a m e d / db.0000:0000:0000:0000.ip6.int
�9 localhost IPv6 reverse lookups (bitstring format):

/ v a r / n a m e d / db.0000:0000:0000:0000.ip6.arpa
�9 mydomain .com forward lookups:

/ var / named / db.mydomain.com
�9 IPv6 reverse lookups (nibble format):

/ var / named / db.3 ffe:80f0:0001:0001 .ip6.int
�9 IPv6 reverse lookups (bitstring format):

/ v ar / named / d b.3 ffe :80f0:0001:0001 .i p6. arpa
�9 The root zone information f i l e : / v a r / n a m e d / r o o t . h i n t (see the

end of this document)

Starting up the named process is as simple as typing in the name of the
executable on the command line as root.

nsl# /usr/local/sbin/named

The named process will automatically look for its configuration file in
/ e t c /named .conf and then load all of the zone files you 've specified.
Wait a few seconds for named to initialize itself and then check
/ v a r / a d m / m e s s a g e s for any error messages. Assuming all looks good,
you're ready to do some testing.

You can do some initial testing on the name server machine itself using
the host command that comes with BIND 9. The host command takes the
following arguments: options, item to lookup, and name server to use.
Using the -a option with host will show you all of the information your
new name server returns in response to a particular query. For example,
to test your IPv6 lookups you would use the following command.

nsl# host -

a www.mydomain.com 3ffe-80f0-1-1-201-2ff-fe00-2112

That command will return something similar to the following.

Trying "www.mydomain. com. "

Using domain server-

Name- 3ffe-80f0-1-1-201-2ff-fe00-2112

Address- 3ffe:80f0-1-1-201-2ff-fe00-2112#53

468 Part Three �9 IPv6 Practice

Aliases:

;;

->>HEADER<<- opcode: QUERY, status: NOERROR, id: 54299

;; flags: qr aa rd ra; QUERY: i, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 6

;; QUESTION SECTION: ;www.mydomain.com. IN ANY

;; ANSWER SECTION: www.mydomain.com.

192.168.25.7 www.mydomain.com.

3ffe:80f0:10:l:201:2ff:fee8:efal www.mydomain.com.

0 3ffe:80f0:10:l:201:2ff:fee8:efal

3600 IN A

3600 IN AAAA

3600 IN A6

;; AUTHORITY SECTION:

mydomain.com.

mydomain.com.

;; ADDITIONAL SECTION:

nsl.mydomain.com.

nsl.mydomain.com.

nsl.mydomain.com.

ns2.mydomain.com.

ns2.mydomain.com.

14400 IN NS

14400 IN NS

ns2 .mydomain. com.

nsl .mydomain. com.

ns2 .mydomain. com.

3600 IN A

3600 IN A6

3600 IN AAAA

3600 IN A

3600 IN A6

3600 IN AAAA

192.168.25.5

0 3ffe:80f0:l:l:201:2ff:fe00:2112

3ffe:80f0:l:l:201:2ff:fe00:2112

192.168.25.4

0 3ffe:80f0:l:l:201:2ff:fe00:2111

3ffe:80f0:l:l:201:2ff:fe00:2111

Received 293 bytes from 3ffe-80f0-1"l-201-2ff-fe00-2112#53 in 3 ms

At the top of the output you'll see the IP address and port of the name server
that host is using to look up the information. In this case the IP address
is the IPv6 address you specified--3ffe:80f0:1:1:201:2ff:fe00:2112mand the
port is the standard DNS portm53. The rest of the information shows you
all of the records your new name server can return for that machine name.

Similar tests can be performed for the other machines you've defined. Also,
you can (and should) test the reverse lookups for your machines as well.
To test the IPv4 forward lookup for w w w . m y d o m a i n . c o m , you would use
the IPv4 address of your new name server in the host command.

nsl# host a www.mydomain.com 192.168.25.5

To do a reverse lookup on the IPv6 address of w w w . m y d o m a i n . c o m , you
would just specify its IP address in place of the machine name in the host
command.

Chapter 24 �9 Email and DNS Under IPv6 469

nsl# host -

a 3ffe-80f0-10.1-201-2ff-fee8.efal 3ffe-80f0-1-1-201-2ff.fe00-2112

You can do similar tests from a separate machine. If that machine also
has BIND9 installed, you can use the same exact host commands for
your testing. Otherwise, you can use the standard nslookup command
to do some rudimentary testing from a remote machine. I say rudimentary
because nslookup won't generally understand IPv6 addresses. However,
you can make sure your new DNS responds with IPv6 addresses from an
IPv4 query. That's still a good sign you're set up correctly.

First, get into the nslookup command interpreter by typing nslookup at
a prompt. Now, point nslookup at your new name server with the server
<ip address> command. The next step is to tell nslookup to show you all
the records it can by issuing a set type=any command. N o w just type in
the machine you want to test.

A test for www.mydomain .com with nslookup against your new name
server will look something like this.

remotemachine.com> nslookup

Default Server: nsl.remotemachine.com Address: 216.65.257.1

> server 192.168.25.5

Default Server: [192.168.25.5]

Address: 192.168.25.5

> set type=any

> www.mydomain.com.

Server: [192.168.25.5]

Address: 192.168.25.5

www.mydomain.com

internet address = 192.168.25.7 www.mydomain.com

IPv6 address = 3ffe:80f0:10:l:201:2ff:fee8:efal

www.mydomain.com

record type 38, interpreted as: www.mydomain.com.

3600 IN 38 ?38? mydomain.com

nameserver = ns2.mydomain.com mydomain.com

nameserver = nsl.mydomain.com nsl.mydomain.com

470 Part Three �9 IPv6 Practice

internet address : 192.168.25.5 nsl.mydomain.com

record type 38, interpreted as: nsl.mydomain.com.

3600 IN 38 ?38? nsl.mydomain.com

IPv6 address = 3ffe:80f0:l:l:201:2ff:fe00:2112

ns2.mydomain.com

internet address = 192.168.25.4 ns2.mydomain.com

record type 38, interpreted as: ns2.mydomain.com.

3600 IN 38 ?38? ns2.mydomain.com

IPv6 address = 3ffe:80f0:l:l:201:2ff:fe00:2111

You'll notice in this output that the newer IPv6 record type, A6, is not
understood. However, the IPv6 address comes through via the older
AAAA record format.

You've now tested your master DNS both locally and remotely. Since
I 'm sure there's no chance of anything going wrong, you now have
a working master domain name server capable of serving both IPv4 and
IPv6 addresses. You're done!

24.2.6 CONFIGURING YOUR SLAVE DNS

Make that you' re done unless you want to set up another machine as your
slave DNS (a machine to answer DNS queries in case your master server is
down or otherwise unavailable). The initial setup of the slave DNS machine
will be identical to that of the master DNS machine. Check through the
"Gathering the Pieces" section, and make sure the machine you want to
use as your slave DNS meets all of the prerequisites. After that section is
where things start to diverge.

You should still create a directory for your zone records as you did with
the master DNS. Putting it in the same place, / v a r / n a m e d , is always
a good idea. You should also copy over the root.hint file from your pr imary
DNS into t h e / v a r / n a m e d directory of your new secondary DNS. Both the
master and the slave need that file.

While you 're copying files over, you may want to copy over the four
files responsible for the localhost lookups. Although this machine is
a slave DNS, it's still in charge of its own localhost lookups. The files
you want are db.localhost, db.127.0.0.0, db.0000:0000:0000:0000.ip6.int,
and db.0000:0000:0000:0000.ip6.arpa. The only change you should make
to these files is in the SOA line at the top. In each of these four files, change

Chapter 24 �9 Email and DNS Under IPv6 471

the ns l .mydomain .com entry (immediately following the SOA element) to
ns2.mydomain.com.

The rest of the files i n / v a r / n a m e d on your slave DNS machine will be
created automatically, however. So the only other file you need to change
is the main BIND configuration f i le , /e tc /named.conf .

The options section of the configuration file is different on a slave DNS
machine. Basically, it doesn' t need any of the options regarding zone
transfers or slave notification. So the modified options section would look
like this.

options

{

any;

}-

};

listen-on-v6 {

directory "/var/named"-

All of the following sections of t h e / e t c / n a m e d . c o n f file on your slave DNS
system will be identical to those on your master DNS machine.

�9 The "." zone section (which indicates the name of the root.hint
file)

�9 The logging section
�9 The localhost zone (for forward localhost lookups)
�9 The zone responsible for reverse IPv4 localhost lookups
�9 The two zones responsible for reverse IPv6 localhost lookups

(both the nibble and bitstring formats)

You can copy and paste those elements from your master DNS machine's
/ e t c /named .conf file into your slave's. That sets up all of the basic BIND
elements you need. Now, it's just a matter of setting up slave zones for the
forward and reverse lookups of mydomain.com.

To do that, just add three zone definitions to y o u r / e t c / n a m e d . c o n f file.
They will look similar to the following.

zone "mydomain. com"

{

type slave;

472 Part Three �9 IPv6 Practice

file "bk.mydomain.com";

masters

{

192.168.25.5;

};

};

zone "\[x3ffe80fOOOOlOOOl/64].ip6.arpa"

{

type slave;

file ~bk.3ffe:8OfO:OOOl:OOOl.ip6.arpa';

masters

{

192.168.25.5;

};

};

zone "l.O.O.O.l.O.O.O.O.f.O.8.e.f.f.3.ip6.int"

{

type slave;

file "bk.3ffe:8OfO:OOOl:OOOl.ip6.int";

masters

{

192.168.25.5;

};

};

The first one handles the forward lookups for mydomain .com, while the
last two take care of the different formats of IPv6 reverse lookups. In each
case, the type is set to slave, which indicates that this server should rely
on another for its information about these zones. The file is where it will
save that information once it is obtained, and the masters section tells it
from which machine it should get that information. The IP address in that
masters sections should be the IP address of your master DNS.

Now start the name server process (named) as root just like you did on
your master DNS.

nsl# /usr/local/sbin/named

Chapter 24 �9 Email and DNS Under IPv6 473

After a few moments of initialization, you should see the three bk.* files
show up i n / v a r / n a m e d . Once they're in there, you can run some DNS
query tests using the host command as you did with your master server.
Just use the address of your slave server instead of the one for your master.

The final thing you should test is a zone transfer. Go over to your master
server and make a change to one of your zone files. For example, add a test
machine entry to db.mydomain.com. Important: Make sure you increment
the serial number at the top of the file or the slave won ' t know the contents
have changed.

Once you've made the appropriate changes, send the named process on
your master server a HUP signal. This tells named to reread its configura-
tion files. First, determine what process ID the named process is running
under. Then send that process ID the HUP signal.

nsl'/var/named# ps -ef I grep named

root 164 1 0 Feb 05 ? 0-08 /usr/local/sbin/named

nsl-/var/named# kill -HUP 164

Shortly after sending the HUP signal, you should see the changes
propagate over to the appropriate bk.* file on your slave server. In this
case, since we made the change to db.mydomain.com, you'll see the
change reflected in bk.mydomain.com.

Now that you know your secondary server is correctly responding to
queries and correctly handling zone transfers, you can pat yourself on
the back. You've successfully set up an IPv6 capable master /s lave DNS
system!

24.2.7 EXAMPLE named.conf OPTIONS

Example named.conf (master) options

{

any;

};

listen-on-v6

474 Part Three �9 IPv6 Practice

};

logging

{

directory "/var/named" ;

notify yes;

provide-ixfr yes;

category "default"

"default_syslog';

"default_debug";

};

};

zone "."

{

type hint ;

file "root.hint";

};

// IPv4 localhost and localhost reverse, zone "localhost"

{

type master;

file "db.localhost";

];

zone "O.O.127.in-addr.arpa"

{

type master;

file "db.127.0.O";

notify no;

};

// IPv6 localhost and localhost reverse.

// .ip6.int is deprecated but kept for compatibility for now.

zone "O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.ip6.int"

{

type master;

Chapter 24 �9 Email and DNS Under IPv6 475

file "db.0000-0000-0000:0000.ip6.int";

notify no;

};

zone "\[x0000000000000000/64].ip6.arpa"

{

type master;

file "db.0000:0000:0000:0000.ip6.arpa";

notify no;

};

zone "mydomain.com"

{

type master;

file "db.mydomain.com';

notify yes;

allow-transfer

192.168.25.4;

};

};

// Reverse lookups for 3ffe:80f0:0001:0001:

// ... zone "\[x3ffe80f000010001/64].ip6.arpa"

{

type master;

file "db.3ffe:80f0:0001:0001.ip6.arpa";

notify yes;

allow-transfer

192.168.25.4;

};

};

zone "l.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int"

{

type master;

file ~db.3ffe:80f0:0001:0001.ip6.int';

476 Part Three �9 IPv6 Practice

};

notify yes;

allow-transfer

};

192.168.25.4;

Example named.conf (slave) options

any;

};

listen-on-v6

directory "/var/named";

type hint;

file "root.hint";

};

// IPv4 localhost and localhost reverse.

zone "localhost"

{

type master;

file "db.localhost';

};

};

zone ". "

{

};

logging

{

category "default"

{ "default syslog"; "default debug";

};

Chapter 24 �9 Email and DNS Under IPv6 477

zone "0.0.127.in-addr.arpa"

{

type master;

file "db.127.0.0";

notify no;

};

// IPv6 localhost and localhost reverse.

// .ip6.int is deprecated but kept for

// compatibility for now.

zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int"

{

type master;

file "db.0000:0000:0000:0000.ip6.int';

notify no;

};

zone "\[x0000000000000000/64] .ip6.arpa"

{

type master;

file "db.0000-0000-0000:0000.ip6.arpa';

notify no;

};

zone "mydomain.com"

{

type slave;

file "bk.mydomain.com";

masters

{

192.168.25.5;

};

};

// Reverse lookups for 3ffe:80f0:0001:0001:...

zone "\[x3ffe80f000010001/64].ip6.arpa"

{

type slave;

file "bk.3ffe-80f0-0001-0001.ip6.arpa';

masters

478 Part Three �9 IPv6 Practice

{

192.168.25.5;

};

};

zone ~l.0.0.0.1.0.0.0.0.f.0.8.e.f.f.3.ip6.int"

{

type slave;

file "bk.3ffe-80f0-0001-0001.ip6.int";

masters

{

192.168.25.5;

};

};

Current root .h int file

This file holds the information on root name servers needed to

initialize cache of Internet domain name servers

(e.g. reference this file in the "cache . <file>"

configuration file of BIND domain name servers).

This file is made available by InterNIC registration services

; under anonymous FTP as

; file

; on server

; -OR- under Gopher at

; under menu

; submenu

; file

/domain/named.root

FTP.RS.INTERNIC.NET

RS.INTERNIC.NET

InterNIC Registration Services (NSI)

InterNIC Registration Archives

named.root

last update: Aug 22, 1997

related version of root zone: 1997082200

Chapter 24 �9 Email and DNS Under IPv6 479

; formerly NS.INTERNIC.NET

A.ROOT-SERVERS.NET.

; formerly NSI.ISI.EDU

B.ROOT-SERVERS.NET.

; formerly C.PSI.NET

C.ROOT-SERVERS.NET.

�9 formerly TERP.UMD.EDU

D.ROOT-SERVERS.NET.

; formerly NS.NASA.GOV

E.ROOT-SERVERS.NET.

; formerly NS.ISC.ORG

F.ROOT-SERVERS.NET.

; formerly NS.NIC.DDN.MIL

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

3600000

IN NS

A

NS

A

NS

A

NS

A

NS

A

NS

A

NS

A. ROOT-SERVERS . NET.

198.41.0.4

B. ROOT-SERVERS. NET.

128.9.0.107

C. ROOT-SERVERS. NET.

192.33.4.12

D. ROOT- SERVERS. NET.

128.8.10.90

E. ROOT- SERVERS. NET.

192.203.230.10

F. ROOT- SERVERS . NET.

192.5.5.241

G.ROOT-SERVERS.NET.

480 Part Three �9 IPv6 Practice

G.ROOT-SERVERS.NET. 3600000

; formerly AOS.ARL.ARMY.MIL

H. ROOT-SERVERS . NET.

; formerly NIC.NORDU.NET

I . ROOT- SERVERS . NET.

; temporarily housed at NSI

J. ROOT-SERVERS . NET.

; housed in LINX,

K. ROOT-SERVERS . NET.

3600000

3600000

3600000

3600000

(InterNIC)

3600000

3600000

operated by RIPE NCC

; temporarily housed at ISI

L. ROOT-SERVERS . NET.

; housed in Japan,

M. ROOT- SERVERS. NET.

; End of File

3600000

3600000

(IANA)

3600000

3600000

operated by WIDE

3600000

3600000

NS

A

NS

A

NS

A

NS

A

NS

A

NS

A

192.112.36.4

H. ROOT-SERVERS . NET.

128.63.2.53

I. ROOT-SERVERS. NET.

192.36.148.17

J. ROOT-SERVERS . NET.

198.41.0.10

K. ROOT- SERVERS . NET.

193.0.14.129

L. ROOT-SERVERS . NET.

198.32.64.12

M. ROOT- SERVERS . NET.

202.12.27.33

Chapter 24 �9 Email and DNS Under IPv6 481

24.3 Designing and Implementing an IPv6 Email Server

This section explains in detail how to configure and install an IPv6-capable
email server using Courier Mail Server.

24.3.1

24.3.2

GATHERING THE PIECES

Here's a brief list of what you'll need for this project.

�9 A working FreeBSD 4.2 machine (Intel) that is configured
for IPv6

�9 db or gdbm (can be found on FreeBSD in / u s r / p o r t s /
databases/)

�9 gcc 2.91 or higher (available from f tp : / / f tp .gnu .org /gnu / gcc/)
�9 gmake (can be found on FreeBSD i n / u s r / p o r t s / d e v e l /)
�9 Perl 5.6 (available from http: / /www.cpan .org / s rc / index .h tml)
�9 Gnupg (available from h t tp : / /www.gnupg.org)
�9 OpenSSL 0.96 (available from www.openssl.org)
�9 Apache 1.3.19 source code that includes the IPv6 patch and the

mod_ssl patch
�9 Courier Mail Server 0.32.0 or higher (available from

ht tp: / /sourceforge.net /projects /courier /)
�9 A static IPv6 ip address (obtain this from the Network

Administrator or your IPv6 ISP)
�9 IPF Firewall configured for IPv4 and IPv6

"Pre.Courier" SOFTWAe,: INSTALLATION

Courier Mail Server is dependent on a number of other software packages
that need to be configured and installed prior to unzipping and untarring
Courier. Please refer to the INSTALL files for the software for configuration
and installation specifics.

This is the recommended order for installing the software prior to Courier
Mail Server.

g c c

gmake

db or gdbm

482 Part Three �9 IPv6 Practice

gnupg

OpenSSL

Perl

Apache

Once OpenSSL is installed, there is a chance that you will have to manually
seed the pseudo-random number generator (PRNG). If the PRNG is not
seeded, you will see error messages when running scripts to create SSL
certificates for Apache and Courier.

To seed the PRNG, do the following.

1. Create a file named .rand in /us r / loca l / s s l , and make sure that
it is readable by root only.

2. Use a text editor, such as vi, and enter at least five lines of
random gibberish.

3. Save the file, and then run the following command to finish
seeding the PRNG.

$ openssl rand -out /usr/local/ssl/.rand -rand /usr/local/ssl/.rand -base64 1024

24.3.3 INSTALLING APAC.E

For the Apache build, the installation instructions differ from those in the
INSTALL file.

1. Make sure that root has /us r / loca l / s s l / l ib and /us r / loca l /
ssl/include contained in the LD_LIBRARY_PATH setting.

2. From within the build directory for Apache, run the script
configure.v6 (this runs configure with the patch for IPv6
support and the mod_ssl patch).

3. Run make.
4. Run make certificate to generate a self-signed certificate. If you

see an error message indicating that the PRNG is not seeded,
see the section "Installing OpenSSL" for instructions to seed the
PRNG.

5. Run make install to complete the install process.

Try starting Apache with the /us r / loca l /apache /b in /apachec t l startssl
command to see if it finds the SSL libraries that it needs to run

Chapter 24 �9 Emoil and DNS Under IPv6 483

HTTPS connections. To avoid having to enter the passphrase each time
you want to start Apache with SSL running (for instance, at boot up), you
should remove the encryption from the RSA private key (while preserving
the original file).

$ cp server.key server.key.org

$ openssl rsa-in server.key.org-out server.key

And also make sure the server.key file is now only readable by root.

$ chmod 400 server.key

Now server.key will contain an unencrypted copy of the key. If you point
your server at this file it will not prompt you for a passphrase. However, if
anyone gets this key, he or she will be able to impersonate you on the net.
Please make sure that the permissions on that file are really such that only
root or the Web server user can read it (preferably get your Web server to
start as root but run as another server, and have the key readable only by
root).

There will be modifications to the httpd.conf file, but that will be done once
Courier Mail Server has been installed.

24.3.4 PREPARING TO iNSTALL COURIER MAIL SERVER

Be sure to read the Courier Mail Server INSTALL document in its entirety
before running configure and make (a "reader-friendly" version can be
found on the Web at http: / /courier.sourceforge.net/ install .html).

(Note: Keep in mind that configure and make are run as the user courier,
whereas make install and make install-configure are run as root.)

Set up the PATH and LD_LIBRARY_PATH settings for both courier and
root on your system in preparation for configuring and installing Courier
Mail Server. The paths should look like the following examples.

PATH=/usr/local/src'/sbin-/usr/sbin-/bin-/usr/bin- /

usr/local/sbin'/usr/local/bin'/usr/XllR6/bin: /

usr/lib/courier/bin-/usr/lib/courier: /

usr/lib/courier-O. 3x.x.xxxxxx-/usr/lib/courier/share

484 Part Three �9 IPv6 Practice

24.3.5

24.3.6

24.3.7

LD_LIBRARY_PATH=/usr/Iib-/usr/local/ssl/lib-/usr/local/

ssl/include:/usr/local/lib-/usr/local/bin

PASSING OPTIONS: THE conf.script FILE

Once the Courier source code is unzipped and un-tarred, cd into the build
directory and create a shell script called conf.script. This script will set flags
for OpenSSL support, execute configure, and pass the desired options to
configure. Here is an example conf.script.

#!/bin/sh

CPPFLAGS="-I/usr/local/ssl/include"

LDFLAGS="-L/usr/local/ssl/lib"

export CPPFLAGS

export LDFLAGS

./configure --with-mailuser=courier --with-mailgroup=courier

--with-mailuid=xxxx --with-mailgid=xxxx --without-authpam

--without-authldap --with-authpwd --without-authmysql

--without-authuserdb --without-authvchkpw --without-authcram

--with-waitfunc=wait --enable-webpass=yes --with-ipv6

Make the script executable by the courier user and then run it.

BUILDING COURTER MAIL SERVER

Refer to the steps in the Installation document for Courier Mail Server.
If you run into problems while running configure or any of the makes,
please read the FAQ page (http://courier.sourceforge.net/FAQ.html) or
search the Courier users' mailing list (ht tp: / /www.geocrawler .com/l is ts /
3/SourceForge/3723/0/).

POSTtNSTALLATtON/etc FILE CONFIGURATION

Use a text editor, such as vi, to make configuration changes to the
following files.

/usr/lib/courier/etc/authmodulelist

authpwd

Chapter 24 �9 Email and DNS Under IPv6 485

/usr/lib/courier/etc/courierd
DEFAULTDEL IVERY=" [lust / i ib / courier/bin/mai i drop"

/usr/lib/courier/etc/esmtpd
AUTHMODULE S = "au thpwd"

. . .

ESMTPDSTART=YES

/usr/lib/courier/etc/esmtpd.cnf
RANDFILE = /usr/local/ssl.rnd

. . .

CN=mai i. zama 6. com

/usr/lib/courier/etc/imap
AUTHMODULE S = "au thpwd"

. . .

IMAPDSTART=YES

/usr/lib/courier/etc/imap.cnf
RANDFILE = /usr/iocal/ssl.rnd

ON=mail. zama6, com

/usr/lib/courier/etc/imap-ssl
IMAPDSSLSTART:YES

TLS_ALLOWSELFSIGNEDCERT=I (uncomment this line)

/usr/lib/courier/etc/pop3d
AUTHMODUL E S = "au t hpwd"

~ . .

POP3 DSTART=YES

/usr/lib/courier/etc/pop3.cnf
RANDFILE = /usr/local/ssl.rnd

CN=mai i. zama 6. com

/usr/lib/courier/etc/pop3d-ssl
POP3 DSSLSTART=YES

TLS_ALLOWSELFSIGNEDCERT:I (uncomment this line)

486 PartThree �9 IPv6 Practice

/usr/lib/co ufi eWetc/aliases/system

postmaster:mailadmin

/usWlib/cou~eWetc/smtpaccess/default:
172.16.12

203.142.132

203.142.142

203.142.143

Create the following files using a text editor.

/us~lib/courie~etc/locals:

fully qualified hostname

hostname

fully qualified email domain

from hostname)

localhost

/usr/lib/cou~er/etc/esmtpdacceptmailfor.dir/default:

fully qualified email domain

email domain

localhost

alIow, RELAYCLIENT

alIow, RELAYCLIENT

allow,RELAYCLIENT

alIow,RELAYCLIENT

(if different

24.3 .8 POSTINSTALLATION SCRIPTS

Run the following scripts to read in the configuration changes made
in the etc/esmtpacceptmailfor.dir/default, etc/aliases/system, and
etc / smtpaccess/default files.

$ /usr/lib/courier/share/makeacceptmailfor

$ /usr/lib/courier/share/makealiases

$ /usr/lib/courier/share/makesmtpaccess

Run the following scripts to create the SSL certificate files for IMAP, POP3,
and SMTP.

$ /usr / i ib/courier / share/mkesmtpdcert

Chapter 24 �9 Email and DNS Under IPv6 487

$ /usr / i ib/couri er / share/mkeimapdcert

$ /usr / Iib / courier / share/mkepop3 dcert

If these scripts fail, check them to verify that the path to the SSL executable
is set to / u s r /b in /openss l . If it is not, use vi to change the path in the
scripts.

24.3.9 FINAL CONFIGURATION CHECKS

Set the directory permissions to 777 for each directory in the path to
the SqWebMail executable / usr / lib / courier / libexec / courier / webmai l / .
Otherwise, users attempting to open an HTTP or HTTPS connection
from their browsers will receive a message that they are forbidden from
executing the webmail script.

Set the Courier Mail Server executable to executable by root.

$ (/usr/lib/courier-0.3x.x.xxxxxx/courier. sysvinit).

cd t o / v a r and use mkdir to create a directory called lock. cd into lock and
use mkdir to create a directory called subsys, cd into subsys and touch
a file called courier. Set courier as the owner and group recursively for the
/ va r / l ock directory.

Use a text editor, such as vi, to make the following changes to
/ usr / local / a pache / conf / httpd, conf.

ScriptAlias /cgi-bin/ "/usr/lib/courier/libexec/courier/webmail/"

<Directory "/usr/lib/courier/libexec/courier/webmail">

<Directory "/usr/local/apache/htdocs">

Options FollowSymLinks MultiViews

User webuser

Group webuser

488 Part Three �9 IPv6 Practice

24.3.10 ADDING COURTER AND APACHE TO THE STARTUP SERVICES IN/etc/rc

Use a text editor, such as vi, to make the following entry in t h e / e t c / r c file
to start Courier at boot up.

if [-x /usr/lib/courier-O.32.0.200iO319/courier.sysvinit]; then

/usr/lib/courier-0.32.0.20010319/courier.sysvinit start

fi

Add the following entry i n / e t c / r c to start Apache at boot up.

if [-x /usr/local/apache/bin/apachectl]; then

/usr/local/apache/bin/apachectl startssl

fi

You'll also need to modify sendmail on the machine so that it runs
secondary to Courier's sendmail process and monitors the mail queue
every 15 minutes. Make the following changes to t h e / e t c / r c file's entry
for running sendmail.

if [-r /etc/mail/sendmail.cf]; then

echo -n ' sendmail'; /usr/sbin/sendmail -ql5m

24.3.11 CONFIGURING THE FREEBSD KERNEL FOR FILESYSTEM QUOTA SUPPORT

Courier does not enforce any quota limits on user account size. It relies
on the FreeBSD operating system to handle filesystem quotas. Therefore,
quota support must be enabled at the OS level.

FreeBSD's default kernel configuration does not support filesystem quotas,
so the option must be added to the configuration file and the kernel has to
be recompiled to read in the new quota option.

cd to t h e / u s r / s r c / s y s / i 3 8 6 / c o n f / d i r e c t o r y . Copy the file GENERIC to
GENERIC.bak so that the original configuration is preserved and may be
used if the modified file becomes corrupted. Use a text editor to add the
following line to the GENERIC file.

options QUOTA # Filesystem quota support

Chapter 24 �9 Email and DNS Under IPv6 489

Save the changes to the file and then run the following command.

$ config GENERIC

Then cd to the / u s r / s r c / sys / compile/GENERIC directory and run the
following commands.

$ make depend

$ make

$ make install

Enable quotas in the /e tc / rc .conf file by using a text editor to add the
following line.

enable_quotas:"YES"

Edit the /e tc / f s t ab file to enable quotas on a per-file system basis. To enable
per-user quotas on a file system, add the userquota option to the options
field in t he / e t c / f s t ab entry for the file system you want to enable quotas
on. Here is an example.

/dev/adOsla / ufs rw,userquota 1 1

After the option has been added to the /e tc / fs tab file, type reboot to reboot
the machine, and read in the new configuration changes for file system
quotas.

Once the machine comes back up and you are logged in, type quota -v to
verify that the quotas are enabled.

24.3.12 SETTING QUOTA LIMITS

The newuser script copies the quota attributes from a "model" Zama Mail
user account called zmail. This account must exist before accounts can be
created via the Web interface.

Create a user called zmail. Now create the Maildir for the zmail account.
From the zmail home directory, r u n / u s r / l i b / c o u r i e r / b i n / m a i l d i r m a k e
Maildir. Change the owner and group recursively on the Maildir to zmail.

490 Part Three �9 IPv6 Practice

Create a file called .courier in the zmail home directory that contains the
following.

I /usr/bin/id > ID

I /usr/bin/env > ENV

I /usr/lib/courier/bin/maildrop

Change the owner and group of the .courier file to zmail. Now set the
quota limits for the zmail user. Type edquota -u zmail. This will pull up
the quota file for the user zmail. Use vi commands to set the soft limit to
4000 and the hard limit to 5000.

/- blocks in use" 67, limits (soft : 4000, hard : 5000)

Quit and save the changes for the zmail account.

Starting and Stopping Courier Mail Server Manually

To start Courier Mail Server manually, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit start

The services for esmtpd, imapd, imapd-ssl, pop3, and pop3d-ssl should
start running on their appropriate ports.

To stop Courier, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit stop

This is a hard stop command.

To read in configuration changes, run this.

$ /usr/lib/courier-0.3x.x.xxxx/courier.sysvinit restart

This does stop and then start the services, but restart is a gentler way to
stop the process than the stop option.

Chapter 24 ~ Email and DNS Under IPv6 491

Set up a Maildir and a .courier file for each user that is owned by the
user.

�9 If using the Web interface "create account" script, all of this
will be done automatically.

�9 If not, from the user's home directory, run the following.

$ /usr/lib/courier/bin/maildirmake Maildir

Change the owner and group recursively on the Maildir to the user.

Copy the .courier file from / h o m e / z m a i l / to the user's home directory
and change the owner and group to the user's.

24.3.13 TROUBLESHOOTING

If the installation for any of the software applications fails, please refer to
their INSTALL or FAQ documents or user group mail lists.

For Apache (mod_ssl), the user group mail list URL is
http : //marc. theaimsgroup, com/

For Courier Mail Server, the user group mail list URL is
http : //www. geocrawler, com/lists/3/SourceForge/3723 / 0/

Also refer to the log files i n / v a r / l o g and note the messages being logged
for the different applications.

�9 Apache logs messages i n / v a r / l o g / e r r o r _ l o g and / v a r / l o g /
access_log.

�9 Courier Mail Server logs messages i n / v a r / l o g / m a i l l o g .

24.4 Summary

In this chapter, we looked at the Steps necessary to build an IPv6-capable
DNS server as well as an IPv6-capable email server. Although applica-
tions and distributions change over time, and chances are good that the
software described here may change as well, the broad outlines should give

492 Part Three �9 IPv6 Practice

deployers guidance needed to roll out their own DNS and email services
with whatever software they choose.

Having built, designed, installed and configured all the systems needed
in an IPv6 network (nodes, servers, routers, security systems, and applica-
tion servers), we move on in the next chapter to a discussion of the current
state of the IPv6 world as well as a look at the future potential of IPv6.

III
I

The Present and the
Future of I Pv6

Over a decade after work began on IPng and the protocols that would
ultimately comprise IPv6, there are still few production networks of any
size or importance running IPv6. In this chapter, we look at what many
considered the first big win for IPv6: the Third Generation Partnership
Project (3GPP) for cellular communication, followed by a brief discussion
of the few live IPv6 networks that are currently to be found. A section on the
problems with IPv6 is followed by sections that list IPv6 implementations
and IPv6 resources.

25.1 IPv6 and 3GPP

The Third Generation Partnership Project (3GPP) standards have long
been anticipated by the IPv6 community. By 2001, it was said (back in
1998), support for IPv6 would be mandatory in all 3GPP cellular devices,

493

494 Part Three �9 IPv6 PractJce

from mobile telephones to roving wireless PDAs and laptops. By 2003,
the degree to which IPv6 is deployed is considerably less than expected.
RFC 3314, "Recommendations for IPv6 in Third Generation Partnership
Project (3GPP) Standards," outlines the interoperation between wireless
communication protocols and IPv6, with special attention to whether and
how the protocols need to be modified. RFC 3316, "Internet Protocol Ver-
sion 6 (IPv6) for Some Second and Third Generation Cellular Hosts,"
discusses how existing cellular hosts can be deployed with support
for IPv6.

Both documents reflect optimism that the acceptance of IPv6 for these
devices will be high and problems will all be surmountable. For example,
RFC 3314 suggests that nodes will largely be able to use existing IPv6
implementations with little or no modification, making the process of
migrating to IPv6 support painless.

However, by 2001, we were told, the 3GPP choice of IPv6 might not be as
extensive as originally announced. Instead of deploying it on every 3GPP
device, IPv6 would be used only for multimedia applications with most
traditional wireless services still delivered by circuit-switched telecommu-
nications networks. And there were indications that IPv6 would not even
make the grade for the wireless vendors' backbones.

While in 2001, industry pundits anticipated 3GPP systems would be live
by 2003, the drama is still playing out. Some IPv6 proponents foresaw
IPv6 networks of as many as a billion or more wireless nodes by now;
the dream of killer-applications for IPv6 has been deferred with many
viewing Asia, especially China and India, as the force driving acceptance
of IPv6.

25.2 Live I Pv6 Networks

Ten years after the earliest IPv6 specifications and implementations, IPv6
remains on the extreme periphery of the mainstream portions of the global
Internet. Large organizations willing to go on record as embracing IPv6
for their production networks remain as rare as hens' teeth. Although the
number of ISPs and other connectivity providers announcing some form
of IPv6 service or support continues to grow, the size of the actual market
for IPv6 remains vanishingly small.

Chapter 25 �9 The Present and the Future of IPv6 495

IPv6 implementers may be operating largely undetected by the rest of the
Internet, but they are operating.

�9 Mobile telecommunications providers have begun using IPv6
to allocate addresses to mobile phones. IPv4 is simply incapable
of supporting the millions (or hundreds of millions) of mobile
devices that the wireless industry must support.

�9 Individuals and small businesses around the world have
embraced IPv6, particularly among the open source move-
ment. Linux and BSD operating systems have incorporated
IPv6 support since the mid-1990s. These early implementers
are adopting IPv6 for a number of reasons, from a desire to
be on the bleeding edge of technology to the hope of develop-
ing new skills and products that will be in demand once IPv6
is accepted more generally. Many, if not most, believe in the
inevitability of IPv6 as the successor to IPv4.

�9 Businesses, governments, and other groups that have been
largely left out of the mainstream Internet view IPv6 as a viable
alternative to attempting to support millions of IP nodes with
a handful of IPv4 addresses.

A well-maintained and managed IP network, whether v4 or v6, should be
transparent to the end user. Applications should work, and users should
be able to accomplish their tasks without having to be aware of how their
data is sent and received over the network. In many if not most cases,
existing IPv4 networks may never have to support IPv6 except at their
edges. New networks can be added, and are being added, that support
IPv4 only.

It is possible, as of 2003, to implement IPv6-only or IPv6/IPv4 on produc-
tion networksBbut just barely. Significant research and preparation are
necessary to locate IPv6-ready connectivity providers as well as IPv6-ready
hardware and software. Much of that preparation may include creating
solutions from scratch, but that is often the case when applying a new
technology.

So where are the IPv6 network and connectivity providers? Attempting to
list them in a chapter here would be as premature as someone trying to
compile a comprehensive and authoritative list of manufacturers and types
of automobiles 100 years ago. The data communication industry remains in
flux, with established corporations merging, filing for bankruptcy, chang-
ing tactics, and spinning off or absorbing operations on a weekly basis.

496 Part Three ~ IPv6 Practice

One can only hope that by the time of this book's next edition some leading
providers of IPv6 connectivity will have emerged, but for now the next
generation IP network is still largely invisible.

25.3 The Problems with IPv6

Not everyone sees IPv6 as an inevitable upgrade. In fact, as the global IPv4
Internet continues to operate despite the gloomy predictions, more and
more IPv6 is seen as a phantom menace much as the year 2000 "crisis" is
now perceived.

However, there are problems with IPv6.

�9 IPv4 still works just fine. Sometimes backbones melt down,
and sometimes attacks bring networks to their knees, but by
and large IPv4 serves the needs of the Internet community.

�9 NAT seems to (mostly) work, and in conjunction with the un-
allocated IPv4 address space, should provide enough elbow
room for everyone who needs it.

�9 IPv6 is going to be an expensive hassle. At least, that's the
perception, and given the costs associated with IT that were
incurred to prepare for a Y2K crisis that never emerged (quite
possibly because so many organizations prepared for it), man-
agers are hard put to push for the budget necessary even to
evaluate IPv6 for production networks.

And by 2001, IPv6 working group leaders were being quoted as saying
that the one and only problem that IPv6 solves and IPv4 does not is that
of address exhaustion. Clearly, no organization that already has enough
address space for its needs could possibly justify the expense of solving a
problem that it doesn't have.

25.4 IPv6 Promise and Potential

In the early summer of 2003, the Department of Defense announced that
starting in October 2003 the DoD would only purchase IPv6-compliant
network technologies, with the goal of full IPv6-compliance throughout
the U.S. military by 2008.

Chapter 25 �9 The Present and the Future of IPv6 497

With this announcement, IPv6 scored its first major public technology
win--unti l mid-2003, IPv6 was only discussed as a technology that might
be possible sometime in the future. There were no major corporations
or other organizations committing to IPv6, and although vendors have
been claiming IPv6 support for their products since the mid-1990s, never
before has IPv6 support been on a list of required features for such a large
consumer of networking technology.

The DoD, with its annual IT budget in excess of $30 billon, quite obvi-
ously will push the networking industry into a much higher commitment
to IPv6 than ever before. What is not immediately obvious is the effect
this decision will have on all the organizations that do business with the
DoD. Every one of those businesses will now have to take a much more
serious look at IPv6 and decide whether they want---or need-- to migrate
their own network infrastructures to support IPv6.

Even more than the selection of IPv6 by the 3GPP for deployment in large
networks, the DoD's embrace of IPv6 for its internal and operational net-
works as well as for battlefield use ensures that IPv6 will (at the very least)
be implemented and refined over the coming years.

25.5 IPv6 Resources

This section includes a list of Web links to sites of interest to the IPv6
networking community. These resources are offered as a selection; readers
seeking the most up-to-date and complete Web resources are urged to use
their favorite search engine. Invariably, many of the Web resources cited
in printed books change or disappear by the time they arrive in bookstores;
it is hoped that the sites referenced in Table 25-1 will still be useful to the
reader.

25.6 Summary

It is becoming increasingly clear that, as explained in Chapter 1, IPv6 will
succeed only if it can be applied to an entirely different field of endeavor.
The global Internet is an IPv4 network; the costs involved in converting it
are much too high. The only way IPv6 can stay off the trash heap of history

498 Part Three �9 IPv6 Practice

Site URL

Microsoft Research Lab IPv6

Microsoft IPv6 Support

Deep Space 6 (IPv6 Linux Portal)

IETF IPv6 Working Group

Additional IPv6 Working Group info

IPv6 Forum (industry consortium)

Peter Bieringer's Linux Section: IPv6

UK IPv6 Resource Centre (Lancaster

University)

NetBSD IPv6 Networking

KAME Project (BSD IPv6)

Internet2 IPv6 Working Group

Links to Global IPv6 Taskforces

Searching the RFC Archive

www.research.microsoft.com/msripv6/
www.microsoft.com/windowsserver2003/

technologies/ipv6/

www.deepspace6.net

www.ietf.org/html.charters/
ipv6-charter.html

playground.sun.com/pub/ipv6/
www.ipv6forum.com

www.bieringer.de/linux/IPv6/

www.cs-ipv6.1ancs.ac.uk

www.netbsd.org/Documentation/network/

ipv6/

www.kame.net

ipv6.internet2.edu

www.ipv6-taskforce.org

www.rfc-editor.org/rfcsearch.html

Table 25-1: A selection of Web resources for IPv6.

is if someone figures out a way to use it for some entirely new application,
where huge address spaces are mandatory. To date, promising starts have
already been made in the mobile telecommunications market as well as
the defense industry; whether those initiatives will be enough to propel
IPv6 into every connected device on earth remains to be seen.

IPv6 RFCs

The following are all IPv6-related RFCs that had been published by the
IETF as of mid-2003. The list was generated by searches on the RFC archive
at www.rfc-editor.org. RFCs are listed in descending order, and each list-
ing includes the RFC number, title, authors, date of publication, status (that
is, whether it is updated or obsoleted by some other RFC or if it updates
or obsoletes some other RFC), and type of document.

INFORMATIONAL RFCs provide information and are not to be
interpreted as specifying an Internet standard.

PROPOSED STANDARD RFCs specify a protocol that has been imple-
mented and that is being considered for use as an Internet standard.

DRAFT STANDARD RFCs specify a protocol that has been implemented in
at least two different forms and that has a body of experience and research
backing it up. It often represents a revision of a PROPOSED STANDARD.

501

502 Part Four �9 Appendix

STANDARD RFCs (also denoted as STDs) specify a protocol that has been
accepted as a standard for the Internet community.

BEST CURRENT PRACTICES documents are published as RFCs as well as
BCPs and contain information about recommended procedures, processes,
or techniques for accomplishing networking goals.

EXPERIMENTAL RFCs specify a protocol that is being investigated by
researchers. Experimental specifications should generally not be imple-
mented or deployed in production networks and should be used with
extreme caution in laboratory conditions.

RFCs published on April 1 are almost always "April Fool's" jokes and
should be read for amusement only (however, there have been non-joke
RFCs published on April I as well as joke RFCs with a publication date of
April, without the date).

RFC 3572

Internet Protocol Version 6 over MAPOS (Multiple Access Protocol Over

SONET/SDH)

T. Ogura, M. Maruyama, T. Yoshida

July 2003

INFORMATIONAL

~C 3542

Advanced Sockets Application Program Interface (API) for IPv6

W. Stevens, M. Thomas, E. Nordmark, T. Jinmei

May 2003

Obsoletes RFC 2292

INFORMATIONAL

KFC 3531

A Flexible Method for Managing the Assignment of Bits of an IPv6

Address Block

M. Blanchet

April 2003

INFORMATIONAL

RFC 3513

Internet Protocol Version 6 (IPv6) Addressing Architecture

R. Hinden, S. Deering

April 2003

Obsoletes RFC 2373

PROPOSED STANDARD

Appendix �9 IPv6 RFCs 503

RFC 3493

Basic Socket Interface Extensions for IPv6

R. Gilligan, S. Thomson, J. Bound, J. McCann, W. Stevens

March 2003

Obsoletes RFC 2553

INFORMATIONAL

RFC 3484

Default Address Selection for Internet Protocol Version 6 (IPv6)

R. Draves

February 2003

PROPOSED STANDARD

RFC 3364

Tradeoffs in Domain Name System (DNS) Support for Internet Protocol

version 6 (IPv6)

R. Austein

August 2002

Updates RFC 2673, RFC 2874

INFORMATIONAL

RFC 3363

Representing Internet Protocol version 6 (IPv6) Addresses in the Domain

Name System (DNS)

R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain

August 2002

Updates RFC 2673, RFC 2874

INFORMATIONAL

RFC 3316

Internet Protocol Version 6 (IPv6) for Some Second and Third Generation

Cellular Hosts

J. Arkko, G. Kuijpers, H. Soliman, J. Loughney, J. Wiljakka

April 2003

INFORMATIONAL

RFC 3314

Recommendations for IPv6 in Third Generation Partnership Project (3GPP)

Standards

M. Wasserman, Ed.

September 2002

INFORMATIONAL

RFC 3307

Allocation Guidelines for IPv6 Multicast Addresses

B. Haberman

August 2002

PROPOSED STANDARD

504 Part Four �9 Appendix

RFC 33O6

Unicast-Prefix-based IPv6 Multicast Addresses

B. Haberman, D. Thaler

August 2002

PROPOSED STANDARD

RFC 3266

Support for IPv6 in Session Description Protocol (SDP)

S. Olson, G. Camarillo, A. B. Roach

June 2002

Updates RFC 2327

PROPOSED STANDARD

RFC 3226

DNSSEC and IPv6 A6 aware server/resolver message size requirements

O. Gudmundsson

December 2001

Updates RFC 2535, RFC 2874

PROPOSED STANDARD

RFC 3194

The H-Density Ratio for Address Assignment Efficiency: An Update on the

H ratio

A. Durand, C. Huitema

November 2001

Updates RFC 1715

INFORMATIONAL

RFC 3178

IPv6 Multihoming Support at Site Exit Routers

J. Hagino, H. Snyder

October 2001

INFORMAT I ONAL

RFC 3177

IAB/IESG Recommendations on IPv6 Address

IAB, IESG

September 2001

INFORMATIONAL

RFC 3175

Aggregation of RSVP for IPv4 and IPv6 Reservations

F. Baker, C. Iturralde, F. Le Faucheur, B. Davie

September 2001

PRO POSED STANDARD

Appendix �9 IPv6 RFCs 505

RFC 3162

RADIUS and IPv6

B. Aboba, G. Zorn, D. Mitton

August 2001

PROPOSED STANDARD

RFC 3146

Transmission of IPv6 Packets over IEEE 1394 Networks

K. Fujisawa, A. Onoe

October 2001

PROPOSED STANDARD

RFC 3142

An IPv6-to-IPv4 Transport Relay Translator

J. Hagino, K. Yamamoto

June 2001

INFORMAT I ONAL

RFC 3122

Extensions to IPv6 Neighbor Discovery for Inverse Discovery

Specification

A. Conta

June 2001

PROPOSED STANDARD

RFC 3111

Service Location Protocol Modifications for IPv6

E. Guttman

May 2001

PROPOSED STANDARD

RFC 3089

A SOCKS-based IPv6/IPv4 Gateway Mechanism

H. Kitamura

April 2001

I NFORMAT I ONAL

RFC 3056

Connection of IPv6 Domains via IPv4 Clouds

B. Carpenter, K. Moore

February 2001

PROPOSED STANDARD

506 PartFour �9 Appendix

RFC 3053

IPv6 Tunnel Broker

A. Durand, P. Fasano, I. Guardini, D. Lento

January 2001

INFORMAT I ONAL

RFC 3 0 4 1

Privacy Extensions for Stateless Address Autoconfiguration

in IPv6

T. Narten, R. Draves

January 2001

PROPOSED STANDARD

RFC 3 0 1 9

IP Version 6 Management Information Base for The Multicast Listener

Discovery Protocol

B. Haberman, R. Worzella

January 2001

PROPOSED STANDARD

RFC 2 9 2 8

Initial IPv6 Sub-TLA ID Assignments

R. Hinden, S. Deering, R. Fink, T. Hain

September 2000

INFORMATIONAL

RFC 2 9 2 1

6BONE pTLA and pNLA Formats (pTLA)

B. Fink

September 2000

INFORMATIONAL

RFC 2 8 9 4

Router Renumbering for IPv6

M. Crawford

August 2000

PROPOSED STANDARD

RFC 2 8 9 3

Transition Mechanisms for IPv6 Hosts and Routers

R. Gilligan, E. Nordmark

August 2000

Obsoletes RFC 1933

PROPOSED STANDARD

Appendix �9 IPv6RFCs 507

RFC 2874

DNS Extensions to Support IPv6 Address Aggregation and Renumbering

M. Crawford, C. Huitema

July 2000

Updates RFC 1886, Updated by RFC 3152, RFC 3226, RFC 3363, RFC 3364

EXPERIMENTAL

[pub as:PROPOSED STANDARD]

RFC 2767

Dual Stack Hosts using the Bump-In-the-Stack Technique (BIS)

K. Tsuchiya, H. Higuchi, Y. Atarashi

February 2000

INFORMAT I ONAL

RFC 2766

Network Address Translation--Protocol Translation (NAT-PT)

G. Tsirtsis, P. Srisuresh

February 2000

Updated by RFC 3152

PROPOSED STANDARD

RFC 2765

Stateless IP/ICMP Translation Algorithm (SIIT)

E. Nordmark

February 2000

PROPOSED STANDARD

RFC 2740

OSPF for IPv6

R. Coltun, D. Ferguson, J. Moy

December 1999

PROPOSED STANDARD

RFC 2732

Format for Literal IPv6 Addresses in URL's

R. Hinden, B. Carpenter, L. Masinter

December 1999

PROPOSED STANDARD

RFC 2711

IPv6 Router Alert Option

C. Partridge, A. Jackson

October 1999

PROPOSED STANDARD

508 PartFour �9 Appendix

RFC 2710

Multicast Listener Discovery (MLD) for IPv6

S. Deering, W. Fenner, B. Haberman

October 1999

PROPOSED STANDARD

RFC 2675

IPv6 Jumbograms

D. Borman, S. Deering, R. Hinden

August 1999

Obsoletes RFC 2147

PROPOSED STANDARD

RFC 2590

Transmission of IPv6 Packets over Frame Relay Networks Specification

A. Conta, A. Malis, M. Mueller

May 1999

PROPOSED STANDARD

RFC 2553

Basic Socket Interface Extensions for IPv6

R. Gilligan, S. Thomson, J. Bound, W. Stevens

March 1999

Obsoletes RFC 2133, Obsoleted by RFC 3493, Updated by RFC 3152

INFORMATIONAL

~C 2546

6Bone Routing Practice

A. Durand, B. Buclin

March 1999

Obsoleted by RFC 2772

INFORMATIONAL

~C 2545

Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing

P. Marques, F. Dupont

March 1999

PROPOSED STANDARD

RFC 2529

Transmission of IPv6 over IPv4 Domains without Explicit Tunnels

B. Carpenter, C. Jung

March 1999

PROPOSED STANDARD

Appendix �9 IPv6RFCs 509

RFC 2526

Reserved IPv6 Subnet Anycast Addresses

D. Johnson, S. Deering

March 1999

PROPOSED STANDARD

RFC 2497

Transmission of IPv6 Packets over ARCnet Networks

I. Souvatzis

January 1999

PROPOSED STANDARD

RFC 2492

IPv6 over ATM Networks

G. Armitage, P. Schulter, M. Jork

January 1999

PROPOSED STANDARD

RFC 2491

IPv6 over Non-Broadcast Multiple Access (NBMA) networks

G. Armitage, P. Schulter, M. Jork, G. Harter

January 1999

PROPOSED STANDARD

RFC 2474

Definition of the Differentiated Services Field (DS Field) in the IPv4

and IPv6 Headers

K. Nichols, S. Blake, F. Baker, D. Black

December 1998

Obsoletes RFC 1455, RFC 1349, Updated by RFC 3168, RFC 3260

PROPOSED STANDARD

RFC 2473

Generic Packet Tunneling in IPv6 Specification

A. Conta, S. Deering

December 1998

PROPOSED STANDARD

RFC 2472

IP Version 6 over PPP

D. Haskin, E. Allen

December 1998

Obsoletes RFC 2023

PROPOSED STANDARD

510 PartFour �9 Appendix

RFC 2471

IPv6 Testing Address Allocation

R. Hinden, R. Fink, J. Postel (deceased)

December 1998

Obsoletes RFC 1897

EXPERIMENTAL

RFC 2470

Transmission of IPv6 Packets over Token Ring Networks

M. Crawford, T. Narten, S. Thomas

December 1998

PROPOSED STANDARD

RFC 2467

Transmission of IPv6 Packets over FDDI Networks

M. Crawford

December 1998

Obsoletes RFC 2019

PROPOSED STANDARD

RFC 2466

Management Information Base for IP Version 6: ICMPv6 Group

D. Haskin, S. Onishi

December 1998

PROPOSED STANDARD

RFC 2465

Management Information Base for IP Version 6: Textual Conventions and

General Group

D. Haskin, S. Onishi

December 1998

PROPOSED STANDARD

~C 2464

Transmission of IPv6 Packets over Ethernet Networks

M. Crawford

December 1998

Obsoletes RFC 1972

PROPOSED STANDARD

KFC 2463

Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6) Specification

A. Conta, S. Deering

December 1998

Obsoletes RFC 1885

DRAFT STANDARD

Appendix �9 IPv6 RFCs 511

RFC 2462

IPv6 Stateless Address Autoconfiguration

S. Thomson, T. Narten

December 1998

Obsoletes RFC 1971

DRAFT STANDARD

RFC 2461

Neighbor Discovery for IP Version 6 (IPv6)

T. Narten, E. Nordmark, W. Simpson

December 1998

Obsoletes RFC 1970

DRAFT STANDARD

RFC 2460

Internet Protocol, Version 6 (IPv6) Specification

S. Deering, R. Hinden

December 1998

Obsoletes RFC 1883

DRAFT STANDARD

RFC 2454

IP Version 6 Management Information Base for the User Datagram

Protocol

M. Daniele

December 1998

PROPOSED STANDARD

RFC 2452

IP Version 6 Management Information Base for the Transmission

Control Protocol

M. Daniele

December 1998

PROPOSED STANDARD

RFC 2450

Proposed TLA and NLA Assignment Rule

R. Hinden

December 1998

INFORMAT I ONAL

RFC 2 4 2 8

FTP Extensions for IPv6 and NATs

M. Allman, S. Ostermann, C. Metz

September 1998

PROPOSED STANDARD

512 PartFour �9 Appendix

~C 2406

IP Encapsulating Security Payload (ESP)

S. Kent, R. Atkinson

November 1998

Obsoletes RFC 1827

PROPOSED STANDARD

RFC 2402

IP Authentication Header

S. Kent, R. Atkinson

November 1998

Obsoletes RFC 1826

PROPOSED STANDARD

~C 2401

Security Architecture for the Internet Protocol

S. Kent, R. Atkinson

November 1998

Obsoletes RFC 1825, Updated by RFC 3168

PROPOSED STANDARD

RFC 2375

IPv6 Multicast Address Assignments

R. Hinden, S. Deering

July 1998

INFORMATIONAL

RFC 2374

An IPv6 Aggregatable Global Unicast Address Format

R. Hinden, M. O'Dell, S. Deering

July 1998

Obsoletes RFC 2073

PROPOSED STANDARD

B~C 2365

BCP0023

Administratively Scoped IP Multicast

D. Meyer

July 1998

BEST CURRENT PRACTICE

B~C 2292

Advanced Sockets API for IPv6

W. Stevens, M. Thomas

February 1998

Obsoleted by RFC 3542

INFORMATIONAL

Appendix �9 IPv6RFCs 513

~C 2185

Routing Aspects of IPv6 Transition

R. Callon, D. Haskin

September 1997

INFORMATIONAL

~C 2147

TCP and UDP over IPv6 Jumbograms

D. Borman

May 1997

Obsoleted by RFC 2675

PROPOSED STANDARD

~C 2133

Basic Socket Interface Extensions for IPv6

R. Gilligan, S. Thomson, J. Bound, W. Stevens

April 1997

Obsoleted by RFC 2553

INFORMATIONAL

~C 2080

RIPng for IPv6

G. Malkin, R. Minnear

January 1997

PROPOSED STANDARD

RFC 2073

An IPv6 Provider-Based Unicast Address Format

Y. Rekhter, P. Lothberg, R. Hinden, S. Deering, J. Postel

January 1997

Obsoleted by RFC 2374

PROPOSED STANDARD

~C 2030

Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

D. Mills

October 1996

Obsoletes RFC 1769

INFORMATIONAL

RFC 2023

IP Version 6 Over PPP

D. Haskin, E. Allen

October 1996

Obsoleted by RFC 2472

PROPOSED STANDARD

514 PartFour �9 Appendix

RFC 2019

Transmission of IPv6 Packets over FDDI

M. Crawford

October 1996

Obsoleted by RFC 2467

PROPOSED STANDARD

RFC 1981

Path MTU Discovery for IP version 6

J. McCann, S. Deering, J. Mogul

August 1996

PROPOSED STANDARD

RFC 1972

A Method for the Transmission of IPv6 Packets over Ethernet Networks

M. Crawford

August 1996

Obsoleted by RFC 2464

PROPOSED STANDARD

RFC 1971

IPv6 Stateless Address Autoconfiguration

S. Thomson, T. Narten

August 1996

Obsoleted by RFC 2462

PROPOSED STANDARD

RFC 1970

Neighbor Discovery for IP Version 6 (IPv6)

T. Narten, E. Nordmark, W. Simpson

August 1996

Obsoleted by RFC 2461

PROPOSED STANDARD

RFC 1955

New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG

R. Hinden

June 1996

I NF ORMAT I ONAL

RFC 1933

Transition Mechanisms for IPv6 Hosts and Routers

R. Gilligan, E. Nordmark

April 1996

Obsoleted by RFC 2893

PROPOSED STANDARD

Appendix �9 IPv6 RFCs 515

RFC 1924

A Compact Representation of IPv6 Addresses

R. Elz

Apr-01-1996

INFORMATIONAL

RFC 1897

IPv6 Testing Address Allocation

R. Hinden, J. Postel

January 1996

Obsoleted by RFC 2471

EXPERIMENTAL

RFC 1888

OSI NSAPs and IPv6

J. Bound, B. Carpenter, D. Harrington, J. Houldsworth, A. Lloyd

August 1996

EXPERIMENTAL

RFC 1887

An Architecture for IPv6 Unicast Address Allocation

Y. Rekhter, T. Li, Eds.

December 1995

INFORMAT I ONAL

RFC 1886

DNS Extensions to support IP version 6

S. Thomson, C. Huitema

December 1995

Updated by RFC 2874, RFC 3152

PROPOSED STANDARD

~C 1885

Internet Control Message Protocol (ICMPv6) for the Internet Protocol

Version 6 (IPv6)

A. Conta, S. Deering

December 1995

Obsoleted by RFC 2463

PROPOSED STANDARD

~C 1884

IP Version 6 Addressing Architecture

R. Hinden, S. Deering, Eds.

December 1995

Obsoleted by RFC 2373

HISTORIC

[pub as:PROPOSED STANDARD]

516 PartFour �9 Appendix

~C 1883

Internet Protocol, Version 6 (IPv6) Specification

S. Deering, R. Hinden

December 1995

Obsoleted by RFC 2460

PROPOSED STANDARD

RFC 1881

IPv6 Address Allocation Management

IAB, IESG

December 1995

INFORMAT I ONAL

RFC 1827

IP Encapsulating Security Payload (ESP)

R. Atkinson

August 1995

Obsoleted by RFC 2406

PROPOSED STANDARD

RFC 1826

IP Authentication Header

R. Atkinson

August 1995

Obsoleted by RFC 2402

PROPOSED STANDARD

~C 1825

Security Architecture for the Internet Protocol

R. Atkinson

August 1995

Obsoleted by RFC 2401

PROPOSED STANDARD

~C 1810

Report on MD5 Performance

J. Touch

June 1995

INFORMAT I ONAL

~C 1809

Using the Flow Label Field in IPv6

C. Partridge

June 1995

INFORMAT I ONAL

Appendix �9 IPv6RFCs 517

RFC 1776

The Address is the Message

S. Crocker

Apr-01-1995

INFORMATIONAL

RFC 1753

IPng Technical Requirements Of the Nimrod Routing and Addressing

Architecture

N. Chiappa

December 1994

INFORMATIONAL

RFC 1752

The Recommendation for the IP Next Generation Protocol

S. Bradner, A. Mankin

January 1995

PROPOSED STANDARD

RFC 1726

Technical Criteria for Choosing IP The Next Generation (IPng)

C. Partridge, F. Kastenholz

December 1994

INFORMAT I ONAL

RFC 1719

A Direction for IPng

P. Gross

December 1994

I NFORMAT I ONAL

RFC 1715

The H Ratio for Address Assignment Efficiency

C. Huitema

November 1994

Updated by RFC 3194

INFORMATIONAL

RFC 1710

Simple Internet Protocol Plus White Paper

R. Hinden

October 1994

INFORMAT I ONAL

518 PartFour �9 Appendix

RFC 1707

CATNIP: Common Architecture for the Internet

M. McGovern, R. Ullmann

October 1994

I NF 0 RMAT I ONAL

RFC 1705

Six Virtual Inches to the Left: The Problem with IPng

R. Carlson, D. Ficarella

October 1994

INFORMAT I ONAL

RFC 1688

IPng Mobility Considerations

W. Simpson

August 1994

I NFORMAT I ONAL

RFC 1687

A Large Corporate User's View of IPng

E. Fleischman

August 1994

I NFORMAT I ONAL

RFC 1686

IPng Requirements- A Cable Television Industry Viewpoint

M. Vecchi

August 1994

INFORMATIONAL

RFC 1683

Multiprotocol Interoperability In IPng

R. Clark, M. Ammar, K. Calvert

August 1994

INFORMAT I ONAL

RFC 1682

IPng BSD Host Implementation Analysis

J. Bound

August 1994

INFORMATIONAL

Appendix �9 IPv6RFCs 519

~C 1680

IPng Support for ATM Services

C. Brazdziunas

August 1994

INFORMAT I ONAL

RFC 1679

HPN Working Group Input to the IPng Requirements Solicitation

D. Green, P. Irey, D. Marlow, K. O'Donoghue

August 1994

INFORMAT I ONAL

RFC 1678

IPng Requirements of Large Corporate Networks

E. Britton, J. Tavs

August 1994

INFORMAT I ONAL

RFC 1677

Tactical Radio Frequency Communication Requirements for IPng

B. Adamson

August 1994

INFORMAT I ONAL

~C 1676

INFN Requirements for an IPng

A. Ghiselli, D. Salomoni, C. Vistoli

August 1994

INFORMAT I ONAL

~C 1675

Security Concerns for IPng

S. Bellovin

August 1994

INFORMAT I ONAL

~C 1674

A Cellular Industry View of IPng

M. Taylor

August 1994

INFORMAT I ONAL

520 PartFour �9 Appendix

RFC 1673

Electric Power Research Institute Comments on IPng

R. Skelton

August 1994

INFORMAT I ONAL

~C 1672

Accounting Requirements for IPng

N. Brownlee

August 1994

I NF 0RMAT I ONAL

RFC 1671

IPng White Paper on Transition and Other Considerations

B. Carpenter

August 1994

INFORMAT I ONAL

RFC 1670

Input to IPng Engineering Considerations

D. Heagerty

August 1994

INFORMAT I ONAL

RFC 1669

Market Viability as a IPng Criteria

J. Curran

August 1994

INFORMAT I ONAL

RFC 1668

Unified Routing Requirements for IPng

D. Estrin, T. Li, Y. Rekhter

August 1994

INFORMAT I ONAL

RFC 1667

Modeling and Simulation Requirements for IPng

S. Symington, D. Wood, M. Pullen

August 1994

INFORMATIONAL

Appendix �9 IPv6 RFCs 521

RFC 1622

Pip Header Processing

P. Francis

May 1994

INFORMATIONAL

RFC 1621

Pip Near-term Architecture

P. Francis

May 1994

INFORMATIONAL

RFC 1550

IP. Next Generation (IPng) White Paper Solicitation

S. Bradner, A. Mankin

December 1993

I NFORMAT I ONAL

RFC 1475

TP/IX: The Next Internet

R. U1 imann

June 1993

EXPERIMENTAL

RFC 1454

Comparison of Proposals for Next Version of IP

T. Dixon

May 1993

INFORMAT I ONAL

A
AAAA resource record, 304-305

advantage of, 309-310
A6 versus, 308

Access control, 94
Address Autoconfiguration, 225
Addresses (addressing)

allocation methods, 66-67, 272-273
cluster, 71
problems, proposals to fix, 62--63, 66
renumbering, 137-138
Simple Internet Protocol Plus, 71

Addresses, IPv4, 22, 24-29
compatible, 77, 156
encapsulated within IPv6, 156
mapped, 77, 78, 156
rationing, 38, 39-40
recycling, 38-39
replacing, 39

523

Index

rethinking, 39
subnetting, 40-44, 48-49

Addresses, IPv6
aggregation, 124-126, 143-144
aggregation fields, 149-151
anycast, 138-139, 142, 195-208
broadcast function, 142-143
format, 148-156
global routing prefix and subnet ID,

151-152
IPv4 addresses encapsulated within, 156
modified EUI-64 interface addressing,

152-155
multicast, 142, 183-194
network and node, 143
node self-awareness, 156-157
obtaining and planning for, 343-344
representation, 144-145, 148-149
unicast, 142, 146-148

524 Index

Address family identifier (AFI), 245-246
Address family information, 256
Address Resolution, 225
Address Resolution Protocol (ARP), 138, 227,

239
Address space

geographic-based aggregation, 125-126
IPv6 aggregation, 126
provider-based aggregation, 124-125

Adelman, Len, 100
Administrative domains (ADs), 238
Advanced Encryption Standard (AES), 98
ADVERTISE, 275
Advertisements, router, 224, 231-233,

281-282
Agent Discovery, 293
Aggregation

addressing, 124-126, 143-144
DNS, 306-308
fields, 149-151

Algorithms
encryption and authentication, 97-104
routing, 239-240

ALL_DHCP_Relay_Agents_and_Servers, 274
ALL_DHCP_Servers, 274
All Nodes Addresses, 187-188
Allocation of addresses, 66-67, 272-273
All Routers Addresses, 188
AMD, 8
Anycast, IPv4, 198
Anycast, IPv6, 138-139, 142

address assignment, 199-200
architectural issues, 197-200
binding, 206
configuration, 200
future of, 206-208
identifying unicast addresses, 204-206
IPsec and, 199
Neighbor Discovery and, 227
overview of, 196
pseudo, 196-197
reserved addresses, 201-202
responding to packets, 204

restrictions, 200-201
role of, 195, 196-197
routing, 203-204
scope, 200
specification, 200-201
Subnetwork Router, 201

Anycast Address Resolving Protocol (AARP),
206-207

Apache, 482-483, 488
Apple Computer, Inc., 8, 28

LocalTalk, 154
ARCnet, 154
ARPA, IP4 and IP6, 305
Ascom, 99
A6

AAAA versus, 308
domain name resolution, 307-308
resource record, 306-307

Asymmetric encryption, 100
ATM, 183
Authentication

algorithms, 97-104
data, 114, 117
data origin, 95
defined, 93
Simple Internet Protocol Plus, 71

Authentication Header (AH), 89, 95, 105,
114-119, 133, 162

Autoconfiguration
comparison of IPv4 and IPv6, 24
description of IPv6, 136, 271-289
renumbering, router and network, 272,

284-289
Autoconfiguration, stateful, 24, 136, 271-272

DHCP messages, 274-278
RFCs pertaining to, 273-274

Autoconfiguration, stateless, 14-15, 24, 136,
272-273, 278

collision detection, 281
design goals, 279-280
link-local address, creating, 280-281
privacy issues, 282-284
router advertisements, 281-282

Index 525

Automatic allocation, 272
Automatic tunneling, 80, 81,329-331

Intra-Site Automatic Tunnel Addressing
Protocol, 335-337

Autonomous system (AS), 238, 251

B
Backbone, 239
Behavior aggregates, 259, 260
Bellman-Ford algorithm, 239
Bidirectional tunneling, 297
Binding update/acknowledgment/

request, 180, 297
BIND 9, 316

building, with OpenSSL support, 449-455
configuring, for use as an IPv4/IPv6

domain name server, 455-480
BitchX, 316
Blowfish, 99
Boeing Computer Services, 28
Boot Protocol (BOOTP), 46, 67, 136, 273
Border Gateway Protocol (BGP), 240

basics of, 254-256
entities involved, 253, 254
gateway, 255
multiprotocol extensions, 256-257
speaker, 255

Border Gateway Protocol version 4 (BGP4),
30, 240, 253--255, 380-381,389-390,
399-400

Brute-force attacks, 92, 99
Bump-in-the-stack (BITS), 119-120
Bump-in-the-wire (BITW), 120

C
Care-of-address, 140
CAST, 99
"Catenet Model for Internetworking, The"

(Cerf), 26
CATNIP, 69
Cerf, Vint, 26
Checksum, 211
Christensen, Clayton, 6

Cisco Systems, 90, 340
configuring 2611 router for IPv6, 365-376
configuring 7200 router for IPv6, 376-382

Clark, David, 26
CLASS, 302
Classless Inter-Domain Routing (CIDR),

introduction of, 28, 30, 38, 44--46
Client-server message exchanges, 276-278
Cohen, Danny, 26
Collision detection, 155, 281
Confidentiality, defined, 93--94
Configured tunneling, 80, 81
Configuring IPv6

Cisco 2611 router for, 365-376
Cisco 7200 router for, 376-382
on FreeBSD, 352-359
Hitachi GR2000 series routers for,

382-390
NEC IX5010 series routers for, 390-401
on Solaris 8, 359-364
on Windows NT, 349-352

CONFIRM, 275
Connectionless integrity, 95
Connection-Less Network Protocol (CLNP),

69
Connectivity issues, 63, 326-327
Controlled link sharing, 262
Cookie, 101
Costs

comparison of IPv4 and IPv6, 25
IPv6, 14

Courier Mail Server to configure email
server, 481-491

Crocker, Dave, 70
Cyphertext, 92
Cyptography, 92

D

Data Encryption Standard (DES), 98-99
Datagram identification, 129
Datagram length, 129
Data origin authentication, 95
DECLINE, 275

526 Index

Deering, Steve, 70, 71,125, 220
Denial of service (DOS) attacks, 64, 96
Destination address, 130, 132
Destination Options Header, 133, 162,

174-180
Destination Unreachable message, 212-213,

214-215
DHCP. See Dynamic Host Configuration

Protocol
Differentiated Services (Diffserv) approach,

259, 262, 264-266
Differentiated Services (DS) field, 128-129,

130-131,259, 264, 266
Diffie-Hellman key exchange, 101
Digital signatures, 94, 96, 103-104
Dijkstra's Algorithm, 239
Disruptive technologies

examples of, 8-9
use of term, 6

Distance-vector routing algorithm, 239,
242-244

Distinguished names, 64
Domain Name System (DNS)

aggregation, 306-308
anycast and, 207
building BIND 9 with OpenSSL support

for use with IPv6, 449-455
configuring BIND 9 for use an IPv4/IPv6,

455-480
extensions for IPv6, 302-305
forward and reverse lookups,

configuring, 464-466
master, configuring, 456-460
master, starting and testing, 466-470
naming domains, 310
next generation, 308-310
renumbering and, 284
resource records, 301,302-304,

306-307
slave, configuring, 470-473
upgrading, 344-345

Domain of Interpretation (DOI), 108
Dotted quad format, 144

Dual stacks, 82-83, 347
Duplicate Address Detection, 226
Dynamic allocation, 273
Dynamic Host Configuration Protocol

(DHCP), 38, 46-47, 66, 67, 239
client-server exchanges of messages,

276-278
messages, 274-276
stateful autoconfiguration, 24, 136,

271-278
stateless autoconfiguration, 14-15, 24,

136, 272-273, 278-284

E
Echo function, ICMPv6, 216
Echo Reply message, 213, 216
Echo Request message, 213, 216
Eli Lily and Co., 28
Email server, Courier Mail Server to

configure, 481--491
Enabled applications, 316-317
Encapsulating Security Payload (ESP)

header, 89, 95, 105, 110-114,
118-119, 133-134, 162

Encoded NSAP addresses, 146, 148
Encryption

algorithms, 97-104
asymmetric, 100
data confidentiality, 95
defined, 94
public key, 93, 94, 95, 100
symmetric, 98-100

Endpoint identification, 180
End-to-end (transparency) problems, IPv4,

23, 33-35
Error message, 211
Ethernet, 60
Ethertype, 82
Exchange-based addresses, 144
Explicit Congestion Notification (ECN)

description of, 260, 268-269
flags, 131

Explicit tunneling, 80-81

Index 527

Extended unique identifier (EUI), 143
modified EUI-64 interface addressing,

152-155, 202, 282, 283
Extension headers

adding, to IPv6 headers, 160-162
destination, 133, 162, 174-180
fragment, 162, 170-174
hop-by-hop, 132-133, 162, 174-180
IPv6-in-IPv6 tunneling, 164-165
optional Internet-layer data in, 165
ordering, 162-164
routing, 162, 165-170

Exterior Gateway Protocol (EGP), 239,
240-241

filtering firewall on, 418-426
kernel configuration, 354
static configuration, 356-359

FreeS/WAN with IPv6 support, 317

G
Gateways, 235
Gateway-to-Gateway Protocol (GGP), 240
General Electric Co., 28
Geographic-based aggregation, 125-126
Global routing prefix, 151-152
Global unicast address, 146, 147
GOST, 99
Group ID, 184, 185, 186

F
Fault tolerance, 207-208
File Transfer Protocol (FTP), 65
Filtering firewalls

on FreeBSD, 418-426
on Solaris 8, 403-418

Fixed-scope multicast addresses, 188-189
Flag days, 285, 287-289
Flags, 129

multicast, 184
Flooding scopes, 253
Flow label, 131,260, 266-268
Ford Motor Co., 28
Foreign agent, 293
FP (format prefix), 149, 150
Fragmentation, 129, 135, 162, 170-174

IPv4, 170-171
packet, 173-174
path MTU, 217-220

Fragment Header, 133, 162, 170-174
fields, 171-173

Frame Relay, 183
Francis, Paul, 70, 71
FreeBSD

autoconfiguration, 354-356
configuring, for filesystem quota support,

488--489
configuring IPv6 on, 352-359

H
Haberman, Brian, 206
Header checksum, 130
Header fields, IPv6, 130-132

version, 130
Header format

IPv4, 127, 128-130
IPv6, 126-130
length, 128
version, 128

Headers
See also Extension headers; Option
headers
Authentication Header (AH), 89, 95, 105,

114-117
Encapsulating Security Payload (ESP), 89,

95, 105, 110-114
RIP, 246
Simple Internet Protocol Plus, 71

Hinden, Robert, 70, 71
Hitachi GR2000 series routers, configuring

for IPv6, 382-390
Home agent, 293
Hop-by-hop options header, 132-133, 162,

174-180
Hop limit field, 129, 131
Host-to-host tunneling, 80
Host-to-router tunneling, 80

528 Index

Huitema, Christian, 28, 69, 70, 220
Huston, Geoff, 32

I
IBM, 28, 98
ICMP (Internet Control Message Protocol),

role of, 210, 227
ICMPv6 (Internet Control Message Protocol

IPv6), 184, 192
Destination Unreachable message,

212-213, 214-215
Echo Reply message, 213, 216
Echo Request message, 213, 216
fragmentation and path MTU,

217-220
Internet control messages, 211-213
message format, 210-211
message header fields, 211
new messages, 209-210
Packet Too Big message, 213, 215
Parameter Problem message, 213, 216
Time Exceeded message, 213,

215-216
IDEA (International Data Encryption

Algorithm), 99
IEEE, 143
Inbound Load balancing, 226
Informational message, 211
INFORMATION-REQUEST, 275
Initialization vector, 113
Innovator's Dilemma, The (Christensen), 6
Integrated Services (intserv) approach, 262,

263-264, 265
Integrity

connectionless, 95
defined, 93

Integrity Check Value (ICV), 114, 117
Intel, 8, 282-283
Inter-domain routing, 257
Interface ID, 150
Interior Gateway Protocol (IGP), 239
International Organization for Standards

(ISO), 60

Internet
areas designated for change, 61-68
early assumptions about, 59-61

Internet Activities Board (IAB), 60
Internet Architecture Board (IAB), 60, 61
Internet Control Message Protocol. See ICMP
Internet Control Message Protocol IPv6. See

ICMPv6
Internet Engineering Note (IEN), No. 46, 26
Internet Engineering Steering Group (IESG),

60, 61
Internet Group Management Protocol

(IGMP), 184, 192, 210
Internet Key Exchange (IKE) protocol, 101,

108
Internet Security Association and Key

Management Protocol (ISAKMP),
101-102, 108

Internetworking, ad hoc, 61
Internetwork Packet eXchange (IPX), 63, 82
Interoperability, 91-92
Intra-Site Automatic Tunnel Addressing

Protocol (ISATAP), 335-337
IP Address Encapsulation (IPAE), 70
IP Encapsulation, 70
IPFilter, 316-317
IP4.ARPA, 305
IPng (IP Next Generation)

candidates, 68-72
RFCs covering, 72-73

IPsec (IP Security Protocol)
anycast and, 199
Authentication Header (AH), 89, 95, 105,

114-119
basic operation, 104-106
comparison of IPv4 and IPv6, 24, 106
Encapsulating Security Payload (ESP), 89,

95, 105, 110-114, 118-119
goals of, 94-95
implementing, on Sun Solaris, 426-440
implementing and deploying, 119-120
Integrity Check Value (ICV), 114, 117
network address translators and, 52

Index

security associations, 107-109
services provided, 91
tunnel and transport mode, 109-110

IP6.ARPA, 305
IPv4

address rationing, 38, 39-40
addresses, 22, 24-29
anycast, 198
end-to-end problems, 23, 33-35
fragmentation, 170-171
headers, 127, 128-130
mobility, 24, 139-140, 292-296, 298
Neighbor Discovery, 227-229
Open Shortest Path First, 253
options, 68
problems with, 22-23
routing, nondefault, 22-23, 29-33

IPv6
advantages over IPv4, 23
Forum Web site, 317
future for, 17-18, 493-497
-in-IPv6 tunneling, 164-165
network value, 11-12
possible growth of, 13-16
problems with, 496
Web sites for, 497, 498

IPv7, 69
Itoh, Jun-ichiro Itojun, 317

J
Jacobson, Van, 49
Java, 317
Jumbograms, 135
Jumbo Payload Option, 132, 133, 178

K
KAME, 317-318, 354
Karupiah, Ettikan Kandasamy, 207-208
Key exchange, 101
Key management, 100-102
KEY (security key), 304

529

L
Layer 2 Forwarding (L2F), 90
Layer 2 Tunneling Protocol (L2TP), 90
Learning lab, 338-339
LFTP, 317
Link layer address change, 226
Link layer protocols, 314-316
Link-local address, creating, 280-281
Link-local network addresses, 34-35
Link-local unicast address, 146, 147
Link sharing, controlled, 262
Link state algorithm, 239
Link state database, 251
Link state routing, 251
Live networks, 494-496
Load balancing, 207-208, 226-227
localhost, configuring, 460-464
Local state, 251
LocalTalk, 154
Logical IP subnet (LIS), 235-236
Loopback unicast address, 147

M
Mail exchange (MX), 303-304
Man-in-the-middle attacks (MITMs),

96-97
Manual allocation, 273
Maximum transmission unit (MTU), 134-135,

170-71,215
path, 217-220

MD2, MD4, MD5 (message digest functions),
103, 117

Media Access Control (MAC), 143
-48 interface identifier, 153-154

Merck and Co., Inc., 28
Message authentication codes (MACs),

117
Messages

body, 211
DHCP, 274-278
Internet control, 211-213
Multicast Listener Discovery, 192-193

Metcalfe, Robert, 11, 12

530 Index

Microsoft Corp.
configuring IPv6 on Windows NT,

349-352
as an example of sustaining technology,

7-8
global unique identifiers and, 283
Point-to-Point Tunneling Protocol, 90-91
Verisign's issue of public key certificates,

93, 96
MIT, 28
Mobile node, 293
Mobility

agent, 140, 293
comparison of IPv4 and IPv6, 24, 139-140,

292-298
home address, 180, 202
RFCs pertaining to, 292

Modified EUI-64 interface addressing,
152-155, 202, 282, 283

Moore's Law, 11, 20
Multicast, 142

address format, 184-185
principles of, 183-184
reserved and permanent addresses,

186-189, 190-191
scope definitions, 185-186
solicited-node, 188, 189, 191-192

Multicast Listener Discovery (MLD) protocol,
184, 192-193, 210

Multihoming, 258
Multiprotocol reachable NLRI, 257
Multiprotocol unreachable NLRI, 257

N
NAME, 302
NAPTR (naming authority pointer), 304
National Institute of Standards and

Technology (NIST), 98, 103
National Security Agency, 100
NATs. See Network address translators
Native IPv6, 326-327, 329, 332-333
NEC IX5010 series routers, configuring for

IPv6, 390-401

Neighbor Advertisement message, 225
Neighbor Discovery (ND), 138, 210

IPv6 compared with IPv4, 227-230
messages, description of, 224-225
network problems solved, 225-227
router solicitation, 230-233

Neighbor Solicitation message, 224
Neighbor Unreachability Detection, 226
NetWare, 63, 82, 146
Network(s)

addressing, 143
mask, 31
renumbering, 137-138
routed, 236-238
value, 11-12

Network address translators (NATs),
23, 38

basic operation of, 51-52
end-to-end problems and 33-34
formation of, 49
misconceptions, 52-53
reasons for, 50
RFCs pertaining to, 53-55

Network Associates, Inc., 99, 103
Networked "things", use of term, 10
Network layer reachability information

(NLRI), 256-257
Network Service Access Point (NSAP), 69

encoded addresses, 146, 148, 178
Next headers, 114, 129, 131,161
Next-hop Determination, 226
Next hop information, 256
Nimrod network architecture, 166, 180
NLA ID (next-level aggregation identifier),

150
Node addressing, 143
Node self-awareness, 156-157
Nonbroadcast multiaccess (NBMA) network,

183
Nondefault routing, 22-23, 29-33, 239
Nonglobal interface identifier, 154
Nordmark, Eric, 206
Nortel's Entrust products, 99

Index 531

Novell NetWare, 63, 82, 146
NXT (next domain), 304

O
OAKLEY, 102
Ohta, Masataka, 207
Open Shortest Path First (OSPF) algorithm,

239, 251-253
OpenSSL support, building BIND 9 with,

449-455
Option headers

current valid, 178-180
destination, 133, 162, 174-180
format, 174-175
fragment, 133, 162, 170-174
hop-by-hop, 132-133, 162, 174-180
IPv4, 68, 130
IPv6, 130, 132-134
padding, 177
routing, 162, 165-170
Simple Internet Protocol Plus, 71
specification and encoding, 175-177

Organizationally unique identifier (OUI), 143
OSI (Open Systems Interconnection), 60, 63

P
Packets

classification, 263
fragmentation, 173-174
responding to anycast, 204
scheduling, 263
size limits, 134-135

Packet Too Big message, 213, 215
Padding, 113, 177
Padding length, 113
Parameter Discovery, 225
Parameter Problem message, 213, 216
Path MTU discovery (PMTUD), 132, 135, 180

fragmentation and, 218-219
implementation issues, 220-221
IPv6, 220

Payload data, 113
Payload length, 115-116, 129, 131

Peers, 240-241
Performance

comparison of IPv4 and IPv6, 24-25
IPv6, 14

Per-hop behavior (PHB), 264
Permanent multicast addresses, 189, 190-191
Photuris, 101-102
Ping function, 216
P Internet Protocol (Pip), 70
Point-to-Point Tunneling Protocol (PPTP),

90-91
Prefix Discovery, 225
Pretty Good Privacy (PGP), 99, 101
Privacy

autoconfiguration and, 282-284
Simple Internet Protocol Plus, 71

Private keys, 92
Private network address space, 23, 49, 50
Products, technologies versus, 15-16
Protocol data unit (PDU), 217
Protocol field, 129
Protocol Indendent Multicast Sparse-Mode

(PIM-SM), 207
Protocols, life expectancy, 20-21
Protocol tunneling, 164
Provider-based aggregation, 124--125, 144
Proxy advertisements, 227
Pseudo-anycast, 196-197
Public key encryption, 93, 94, 95, 100
Public key infrastructure (PKI) providers,

96-97

Q
Quake for IPv6, 317
Quality of service

approaches to, 262
basics of, 260-265
Differentiated Services (Diffserv)

approach, 259, 262, 264-266
Differentiated Services (DS) field, 259,

264, 266
Explicit Congestion Notification, 260,

268-269

532 Index

Quality of service (Continued)
flows, 266-268
Integrated Services (intserv) approach,

262, 263-264, 265
reserving resources, 262-263
Simple Internet Protocol Plus, 71

Query formats, 304, 305

R
RC2/RC4, 99
RDATA, 303
RDLENGTH, 303
Realm-specific IP (RSIP), 55-56
Real-time services, 262
REBIND, 275
RECONFIGURE, 275
Redirect message, 225, 226
Regional Internet Registries (RIRs), 39, 40, 124
RELAY-FORW, 275
RELAY-REPL, 275
RELEASE, 275
RENEW, 275
Renumbering, router and network, 272,

284-289
Replay attacks, 64, 91, 95
REPLY, 275
REQUEST, 275
Requests for Comments. See RFCs
RES (reserved), 150
Reserved addresses

anycast, 201-202
multicast, 186-189

Reserved area, 116, 150
Resource records (RRs), 301,302-304, 306-307
Resource ReSerVation Protocol (RSVP),

262-263
Reverse lookup domain, 304, 305
RFCs, lists of

for BOOTP, DHCP and DHCPv6, 273-274
for Differentiated Services, 266
for Explicit Congestion Notification, 260,

268-269
for ICMPv6 message types, 212

for IPv6, in general, 73, 499-521
for IPv6 over X, 315-316
on link layer specifications, 155
on mobility, 292
on transition to IPv6, 76

RFC 33 (New HOST-HOST Protocol), 25
RFC 760 (IP Internet), 25, 26
RFC 768 (User Datagram Protocol), 314
RFC 790 (Assigned Numbers), 26
RFC 791 (Internet Protocol), 20, 25, 26, 27, 40,

41, 63, 128
RFC 823 (DARPA Internet Gateway), 240
RFC 904 (Exterior Gateway Protocol), 240
RFC 917 (Internet Subnets), 41
RFC 950 (Internet Standard Subnetting

Procedure), 41
RFC 951 (Bootstrap Protocol), 46, 136, 273
RFC 1034, 302
RFC 1058 (Routing Information Protocol), 239
RFC 1105 (Border Gateway Protocol), 254
RFC 1122 (Internet Hosts-Communications

Layers), 128
RFC 1174 (IAB Policy on Distributing

Internet Identifier Assignments), 39
RFC 1191 (Path MTU Discovery), 218
RFC 1256 (ICMP Router Discovery

Messages), 227
RFC 1287 (Towards the Future Internet

Architecture), 28, 59-61, 62, 63, 64-65
RFC 1347 (TCP and UDP with TUBA), 68-69
RFC 1349 (Type of Service in IP Suite), 128
RFC 1366 (Management of IP Address

Space), 39, 40
RFC 1367 (Schedule for IP Address Space

Management), 39-40
RFC 1475 (TP/IXTP/IX), 69
RFC 1519 (Classless Inter-Domain

Routing-CIDR), 44-45
RFC 1546 (Host Anycasting Service), 196-197,

198
RFC 1597 (Address Allocation for Private

Internets), 49

Index 533

RFC 1631 (IP Network Address Translators),
49, 54

RFC 1633 (Integrated Services), 262
RFC 1688 (IPng Mobility), 292
RFC 1707 (CATNIP), 69
RFC 1710 (Simple Internet Protocol Plus), 70,

72
RFC 1715 (H Ratio for Address Assignment

Efficiency), 28
RFC 1752 (IP Next Generation Protocol), 723
RFC 1771 (Border Gateway Protocol 4), 240,

254-255
RFC 1772 (Border Gateway Protocol

applications), 255
RFC 1797 (Class A Subnet Experiment), 48-49
RFC 1809 (Flow Label Field in IPv6), 260
RFC 1818 (OSI NSAPs and IPv6), 178
RFC 1879 (Class A Subnet Experiment), 48, 49
RFC 1884 (IPv6 Addressing Architecture),

124, 141,195
RFC 1885 (Internet Control Message Protocol

for IPv6), 210
RFC 1886 (DNS Extensions), 304, 305
RFC 1917 (recycling of IP networks), 47
RFC 1924 (address representation), 145
RFC 1981 (Path MTU Discovery), 221
RFC 2002 (Mobility Support), 140
RFC 2080 (RIPng for IPv6), 248-250
RFC 2131 (Dynamic Host Configuration

Protocol), 46, 136
RFC 2168, 304
RFC 2205 (Resource ReSerVation Protocol

-RSVP), 262-263
RFC 2283 (Multiprotocol Extensions for

BGP-4), 254, 256
RFC 2328 (OSFP Version 2), 239, 251-253, 253
RFC 2373 (Addressing Architecture), 138,

146, 197
RFC 2374 (aggregation), 143-144, 149-151
RFC 2401 (Security Architecture for Internet

Protocol), 89-93, 91,107
RFC 2402 (IP Authentication Header),

114-117, 118

RFC 2406 (IP Encapsulating Security
Payload), 110-114, 117, 118

RFC 2453 (RIP version 2), 245
RFC 2460 (extension headers), 160, 161,163,

166, 260, 266-268, 285
RFC 2461 (Neighbor Discovery), 138, 224-233
RFC 2462 (Stateless Address

Autoconfiguration), 136, 278-279, 284
RFC 2463, 210, 211,213
RFC 2473 (Packet Tunneling), 178-179
RFC 2474 (Differentiated Services Field),

128-129, 259, 264
RFC 2481 (Explicit Congestion Notification),

260, 268
RFC 2526 (Reserved IPv6 Subnet Anycast

Addresses), 197, 201-202
RFC 2529 (Transmission of IPv6 over IPv4

Domains without Explicit Tunnels),
76, 81

RFC 2535, 304
RFC 2545 (BGP-4 Multiprotocol Extensions),

253-254, 257
RFC 2598 (Expedited Forwarding PHB), 264
RFC 2661 (Layer Two Tunneling Protocol), 91
RFC 2663 (IP NATs), 54
RFC 2675 (Jumbograms), 135
RFC 2710 (Multicast Listener Discovery), 192,

193, 204
RFC 2711 (Router Alert), 179
RFC 2740 (OSPF for IPv6), 253
RFC 2766 (NAT-Protocol Translation), 54, 55
RFC 2874 (DNS Extensions and Aggregation

and Renumbering), 284, 306
RFC 2894 (Router Renumbering), 285,

286-287
RFC 2915, 304
RFC 2960 (Stream Control Transmission

Protocol), 314
RFC 2988 (Integrated Services over Diffserv),

265
RFC 2993 (Architectural Implications of

NATs), 54
RFC 3022 (Traditional NATs), 53-54

534 Index

RFC 3027 (Complications with NATs), 54
RFC 3041 (Privacy Extensions for Stateless

Address Autoconfiguration in IPv6),
154-155, 283-284

RFC 3056 (Connection of IPv6 Domains via
IPv4 Clouds), 76, 83

RFC 3068 (Anycast Prefix for 6to4 Relay
Routers), 202

RFC 3102 (Realm Specific IP), 55-56
RFC 3122 (Extensions to IPv6 Neighbor

Discovery), 229
RFC 3152 (IP6.ARPA), 305
RFC 3168 (Explicit Congestion Notification),

260, 268-269
RFC 3194 (Host-Density Ratio for Address

Assignment Efficiency: An Update on
the H Ratio), 28-29

RFC 3221 (Commentary on Inter-Domain
Routing in the Internet), 32-33

RFC 3314 (IPv6 in Third Generation
Partnership Project), 494

RFC 3316 (IPv6 for Cellular Hosts), 494
RFC 3344 (IP Mobility Support for IPv4),

292-293
RFC 3363 (IPv6 Addresses in DNS), 306, 308
RFC 3364 (Tradeoffs in DNS), 308-309
RFC 3424 (IAB Considerations for UNilateral

Self-Address Fixing-UNSAF), 34
RFC 3513 (address representation), 144-145,

146, 147, 152, 155, 157, 187, 200-201
Rijndael data encryption algorithm, 98
RIPng, 248-250
RIP routing protocol, 239, 240, 242-248
Rivest, Ron, 100
Router Advertisement message, 224, 231-233,

281-282
Router Alert Option, 132, 133, 179
Router Discovery, 225
Routers, configuring for IPv6

Cisco 2611, 365-376
Cisco 7200, 376-382
Hitachi GR2000 series, 382-390
NEC IX5010 series, 390-401

Router Solicitation message, 224, 230-231
Router-to-host tunneling, 80
Router-to-router tunneling, 79-80
Routing

aggregation, 30-31
algorithms, 239-240
anycast, 203-204
Border Gateway Protocol (BGP), 240,

253-257
distance-vector algorithm, 239, 242-244
Exterior Gateway Protocol, 239, 240-241
fundamentals of, 235-242
hardware-based forwarding, 342-343
inter-domain, 257
interior versus external, 238-239
IPv4, 22-23, 29-33, 253
IPv6, 241-242, 257-258
networks, 236-238
nondefault, 22-23, 29-33, 239
Open Shortest Path First (OSPF)

algorithm, 239, 251-253
optimization, 297-298
option, 162, 165-170
problems, proposals to fix, 62-63
renumbering, 284-285, 286-287
RIP, 242-248
RIPng, 248-250
scalability, 32-33
software-based forwarding, 342-343
Source Route Routing Head (Type 0), 166,

167-170
tag, 246, 250

Routing Header, 133, 162, 165-170
Routing Information Base (RIB), 30
RSA, 99
RSA algorithm, 100, 103

S
Scalability, 333-335
Schneier, Bruce, 99
Scope definitions, 185-186
Secret key encryption, 98
Secure Hash Algorithm (SHA), 103, 117

Index 535

Secure hashes, 94, 102-103, 117
Security

See also Filtering firewalls; IPsec
(IP Security Protocol)

encryption and authentication
algorithms, 97-104

gateways, 104-105, 109
goals, 93-97
identifier, 154-155
Internet Protocol issues, 90-93
IPv6, 14, 24
network address translators and, 52-53
proposals addressing, 63-64

Security Association Database (SAD),
108-109

Security Associations (SAs), 107-109
Security Parameter Index (SPI), 107, 112-113,

116
Security Policy Database (SPD), 108
Segments Left field, 166
Sequence number, 113, 116
Session keys, 99
Shamir, Adi, 100
SIG (security signature), 304
Simple Internet Protocol (SIP), 70
Simple Internet Protocol Plus (SIPP), 70,

71-72
Simple Key-management for Internet

Protocols (SKIP), 102
Site-local network addresses, 34-35
Site-local unicast address, 146, 147
Site renumbering, 284, 285-286
6over4, 81, 81-82
6to4, 83-84

automatic tunneling, 329-331
network to native IPv6, 329, 332-333
network to 6to4 network, 329, 331-332

Skipjack, 100
SLA ID (site-level aggregation identifier), 150
Solaris. See Sun Solaris
SOLICIT, 275
Solicited-node multicast address, 188, 189,

191-192

Source address, 130, 131
Source Route Routing Head (Type 0), 166,

167-170
Spoofing attacks, 96
Stateful autoconfiguration, 24, 136, 271-272

DHCP messages, 274-278
RFC pertaining to, 273-274

Stateless autoconfiguration, 14-15, 24, 136,
272-273, 278

collision detection, 281
design goals, 279-280
link-local address, creating, 280-281
privacy issues, 282-284
router advertisements, 281-282

Static tunneling, 327-328
Stream Control Transmission Protocol

(SCTP), 314
Subnet ID, 151-152
Subnetting issues, 257-258
Subnetwork Router anycast address, 201
Subnetworks (subnets), 40-44

Class A addresses, 48-49
Sun Microsystem, 102
Sun Solaris, implementing IPsec on, 426-440
Sun Solaris 8

building TCP wrapper for IPv6 on,
440-447

configuring IPv6 on, 359-364
filtering firewall on, 403-418

Sustaining technology
defined, 7-8
IPv6 as a, 16

Symmetric encryption, 98-100

T
TCP (Transmission Control Protocol), 260,

314
TCP/IP, 60, 63
TCP wrapper for IPv6 on Solaris 8, building,

440-447
Technologies, products versus, 15-16
Third Generation Partnership Project (3GPP),

493-494

536 Index

Time Exceeded message, 213, 215-216
Time-to-live (TTL), 129, 302
TLA ID (top-level aggregation identifier),

150
Traceroute function, 215-216
Traffic analysis attacks, 91
Traffic control, 64
Traffic flow confidentiality, 95
Training, 337-338
Transition

clients, deploying, 347
dual stacks, 82-83, 347
migration, 344-346
phasing out IPv4, 347
planning for, 339-344
preparing for, 337-339
RFCs covering, 76
6over4, 81, 81-82
6to4, 83-84
steps, 323-327
tunnels (tunneling), 77-82

Translation, 340-341
Transparency (end-to-end) problems, IPv4,

23, 33-35
Transport layer protocols, 314
Transport mode, IPsec and, 109-110
Trick or Treat Demon (TOTD), 316
Tsuchiya, Paul, 70
TTL. See Time-to-live
TUBA, 68-69
Tunnels (tunneling), 77-82

automatic (6to4), 329-331
bidirectional, 297
encapsulation limit, 178-179
explicit, 80-81
Intra-Site Automatic Tunnel Addressing

Protocol, 335-337
IPv6-in-IPv6, 164-165
mode and IPsec, 109-110
protocols, 90-91,164

requirements, 77-79
scalability, 333-335
6to4 network to native IPv6, 329, 332-333
6to4 network to 6to4 network, 329,

331-332
static, 327-328
types, 79-80
without explicit, 81

Twofish, 99
TYPE, 302
Type of Service (ToS), 64, 67, 128-129, 259

U
Ullman, Robert, 69
Unicast addresses, 142, 146-148

identifying, from anycast addresses,
204-206

Unspecified addresses, 147
User Datagram Protocol (UDP), 314

V
Verisign, Inc., 93, 96
Vermicelli Project, 316
Viagenie, 317
Virtual private networks (VPNs), 90, 109
VLAN, 391-394

W
Web sites on IPv6, 497, 498
Windows NT, configuring IPv6 on, 349-352
WWW6to4, 316

X
Xerox, 28

Z
Zero compression, 145
Zimmermann, Philip, 99

