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Preface

 

I wrote this book as a textbook for postgraduate students, but it might also
be used by people in the industry to update specific knowledge in their life-
long learning processes. The book partly covers the actual postgraduate
course on computer communications and networks undertaken during the
first semester of studies for the M.Sc. degree in computer engineering. Since
nowadays we are witnessing the convergence of the Internet and public
telephone network, this book might also be useful to engineers with B.Sc.
degrees in telecommunications.

The prerequisite for this book is the knowledge of the first order logic
(predicate calculus), operating systems, and computer network fundamen-
tals. The reader should also be familiar with C++ and Java programming
languages.

My approach in writing this book was to provide all the details that the
reader may need. I assumed that nothing is obvious. However, if you the
reader find something obvious while reading the book, you are encouraged
to skip ahead. If something is not clear later on, you may always return to
what you skipped. Communication protocol engineering is a very interesting
combination of abstraction and practice that requires a lot of details. It starts
from a vision that gradually materializes in the real-world artifacts. This
happens through a typical engineering process. This book covers all aspects
of the communication protocol engineering, including requirements and
analysis, design, implementation, and test and verification.

Many people helped me in writing this book. My gratitude goes to all of
them. I thank my family for their continuous support, my niece Silvia Likavec
for her valuable text corrections, and B.J. Clark, Nora Konopka, and Helena
Redshaw, of Taylor & Francis, for their professional support. Special thanks
go to my colleagues from the University of Novi Sad, Prof. Vladimir Kovacevic
for giving his blessing to this book, Ph.D. student Ivan Velikic for the excellent
cooperation (in his M.Sc. thesis we actually developed the FSM Library, one
of the anchors of this book), Ph.D. student Ilija Basicevic (for helping me in
preparation of examples in Sections 3.10.5, 4.5.2, and 5.5.2), Sonja Vukobrat
(for helping me in preparation of the example in Section 3.7), Laslo Benarik

Savic, Aleksander Stojicevic, and Cedomir Rebic (for helping me in prepara-
tion of examples in Sections 3.10.1 and 3.10.2), and Nenad Cetic (for helping
me in preparation of the example in Section 4.5.1). Thank you all!

 

Miroslav Popovic

 

Novi Sad
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1

 

1

 

Introduction

 

Originally, the term 

 

protocol

 

 was related to the customs and regulations
dealing with diplomatic formality, precedence, and etiquette. A protocol is
actually the original draft, minutes, or record from which a document, espe-
cially a treaty, is prepared, e.g., an agreement between states. Today, in the
context of computer networks, the term 

 

protocol

 

 is interpreted as a set of
rules governing the format of messages that are exchanged between com-
puters. Sometimes, especially if we want to be more specific, we use the term

 

communication protocol

 

 instead.
The title of this book, 

 

Communication Protocol Engineering

 

, is used to empha-
size the process of developing communication protocols. Like other engi-
neering disciplines, communication protocol engineering typically

• Requirements and analysis
• Design
• Implementation
• Test and v

 

erification

 

The process as described in this book is ideally the union of the UML
(Unified Modeling Language)-driven unified development process (Booch
et al., 1998), Cleanroom engineering (formal system design verification and
statistical usage testing), and some elements of Agile programming (particu-
larly unit testing based on JUnit). Of course, each organization should adapt
and tune the process to its own needs and goals. For example, one organi-
zation may stick to the UML-driven unified development process, another
may prefer Cleanroom engineering, yet another may use the combination of
both, and so forth. 

Because this book is written for the process in which all the existing state-
of-the-art methods and techniques in the area are applied, it is independent
of any particular engineering process; this is as far as we will go in discus-
sions on processes in this book. This book is not about managing processes.
Rather, this book is intended for engineers. It provides the knowledge that
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comprises the following phases (Figure 1.1):



 

2

 

Communication Protocol Engineering

 

an engineer needs to work in a modern organization involved in commu-
nication protocol engineering.

The chapters are named by typical process phases: requirements and anal-
ysis, design, implementation, and test and verification. These chapters are
actually used to classify various methods and techniques (and the accom-
panying tools). As already stated, the attitude in the selection of methods
and techniques included in this book was making a union rather than falling
into a trap of separatism. The methods and techniques introduced here
originate from the following methodologies:

• UML methodology
• ITU-T system specification and description methodology
• Agile unit testing methodology
• Cleanroom engineering methodology

UML methodology is based on various kinds of graphs, also referred to
as diagrams. This book covers all of them, namely:

• Use case diagrams (Section 2.1)
• Collaboration diagrams (Section 2.2)
• Class diagrams (Section 3.1)
• Object diagrams (Section 3.2)
• Sequence diagrams (Section 3.3)
• Activity diagrams (Section 3.4)

 

FIGURE 1.1

 

Typical communication protocol engineering phases.

Requirements
&

Analysis

Design

Implementation

Test
&

Verification
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3

• Statechart diagrams (Section 3.5)
• Deployment diagrams (Section 3.6)
• Component diagrams (S

 

ection 4.1)

 

ITU-T system specification and description methodology is based on three
domain-specific languages, which this book also covers. These languages are:

• Specification and description language (SDL) (Section 3.7)
• Message sequence charts (MSC) (Section 3.8)
• Three and tabular combined notation (TTCN) (S

 

ection 3.9)

 

Agile unit testing methodology assumes writing the test cases before the
code. Today, it is supported by the following two open-source packages (both
are covered in this book):

• JUnit, a package for automated unit testing of Java packages (Section
5.1)

• CppUnit, a library for automated unit testing of C++ modules
(S

 

ection 5.5.1)

 

Cleanroom engineering methodology is based heavily on two main meth-
ods, both covered in this book. These methods are:

• Formal system design verification. Today, more approaches exist to
formal system design verification. This book covers formal verifica-
tion based on automated theorem proving (S

 

ection 5.3).

 

• Statistical usage testing (S

 

ection 5.4).

 

The text of the book is organized as follows. At the end of this chapter, in
Section 1.1, we introduce the notion of the communication protocol and
related definitions.

nication protocol engineering. The first part of that chapter introduces UML
use case and collaboration diagrams (Section 2.1 and Section 2.2, respec-
tively). The former is used for capturing both functional and nonfunctional
system requirements, whereas the latter is used for making system analysis
models. The second part of that chapter presents a real-world example —
requirements and analysis of an SIP (Session Initiation Protocol, RFC 3261)
Softphone. The example starts with the presentation of the domain-specific
information related to SIP, continues with the SIP Softphone requirements
model (in the form of the corresponding use case diagram), and ends with
the SIP Softphone analysis model (in the form of the corresponding collab-
oration diagram).
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Chapter 2 is devoted to the requirements and analysis phase of commu-



 

4

 

Communication Protocol Engineering

 

In this chapter, we will see that communication protocols are actually mod-
eled as finite state machines (FSM). The first part of the chapter introduces
UML diagrams related to the design phase: class, object, sequence, activity,
statechart, and deployment diagrams (Section 3.1, Section 3.2, Section 3.3,
Section 3.4, Section 3.5, and Section 3.6, respectively). The second part of
Chapter 3 covers domain-specific languages originated at ITU-T; namely
SDL, MSC, and TTCN (Sections 3.7, Section 3.8, and Section 3.9, respectively).
The third part consists of design examples, with the first three examples
rather academic. The fourth example shows the design of the sliding window
concept. The fifth example is a real-world design example — the design of
the SIP INVITE client transaction, a part of the SIP protocol stack.

tocol engineering. At the beginning of this chapter, we introduce the UML
component diagrams (Section 4.1). The second part of Chapter 4 presents
various implementation approaches. Section 4.2 presents three examples of
approaches that can be used. The main goal of this study is to provoke
dilemmas by studying three different concepts of implementation and to
promote creative thinking about a spectrum of possible implementation
paradigms before restricting ourselves to a single one. This short overview
includes the implementations as nested switch-case statements, the imple-
mentation based on the interpretation of protocol messages using a protocol
definition data structure, and the implementation based on a class hierarchy
and state transition map. The second part of Chapter 4 ends with the intro-
duction of the state design pattern (Section 4.3), a catalogued FSM imple-
mentation approach.

The third part of Chapter 4 (Section 4.4) introduces one concrete, industrial-
strength implementation paradigm based on the FSM Library, a library of
C++ classes used for modeling communication protocols as FSM. This par-
adigm has been successfully used on a series of real-world projects, such as
SS7, DSS1, V5.2, H.323, SIP, and so on. This part of the book covers FSM
Library features and internals as well as the rules for writing FSM Library-
based implementations. The last part of Chapter 4 contains two real-world
examples of the FSM Library-based implementations. The first is the imple-
mentation of the POP3 communication protocol, the TCP/IP Internet proto-
col for receiving e-mail messages. The second is the SIP INVITE client
transaction, a part of the SIP protocol stack.

protocol engineering. The first part starts with the introduction of unit testing
based on JUnit, the open-source testing framework for unit testing Java
programs, originally developed by Erich Gamma and Kent Beck (Section
5.1). Next, we introduce conformance testing (Section 5.2), actually the first
stage of communication protocol acceptance testing. Conformance testing is
typically based on the TTCN test suite specification. We then introduce
formal verification of both system design and implementation based on
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Chapter 3 covers the design phase of communication protocol engineering.

Chapter 4 is devoted to the implementation phase of communication pro-

Chapter 5 deals with the testing and verification phase of communication



 

Introduction

 

5

automated theorem proving (Section 5.3). In this book, we use the theorem
prover Theo for this purpose. 

testing (Section 5.4) based on product operational profiles. The second part
of Chapter 5 consists of two real-world examples. The first example shows
the unit testing of the SIP INVITE client transaction based on the usage of
the CppUint, the library for unit testing C++ modules. The second example
demonstrates the integration testing of the SIP INVITE client transaction.

Library. The first part starts with the introduction of two main classes, 

 

FSM-
System

 

 and 

 

FiniteStateMachine

 

 (Section 6.2). Next, we introduce three main
groups of basic functions supported by the FSM Library: time, memory, and
message management functions (Sections 6.3, Sections 6.4, and Sections 6.5,
respectively). We then introduce two classes that support the communication
of FSMs over the TCP/IP Internet (Section 6.6), namely the classes 

 

FSMSys-
temWithTCP

 

 and 

 

NetFSM

 

. The first part of Chapter 6 ends with the intro-
duction of global constants, types, and functions (Section 6.7).

The second part of Chapter 6 contains detailed descriptions of the indi-
vidual FSM Library Application Programming Interface (API) functions (Sec-
tion 6.8). The third part of Chapter 6 consists of two examples. The first is
a simple example with three automata (FSM) instances (Section 6.9), and the
second is a simple example with TCP/IP network-aware automata instances
(Section 6.10).

 

1.1 The Notion of the Communication Protocol

 

What is a communication protocol? A wide range of definitions are available
in the literature today, for example: “An established set of conventions by
which two computers or communication devices validate the format and
content of the messages exchanged;” “A set of defined interfaces that permits
the computers to communicate with each other;” “A method by which two
computers coordinate their communication;” “Common agreed rules fol-
lowed in order to interconnect and communicate between computers;” “The
rules governing the exchange of information between devices on a data link;”
“The set of rules governing how information is exchanged on a network;”
and so on.

In this book, we begin with a wider informal definition. A 

 

protocol

 

 is a
set of conventions and rules governing their use that regulates the commu-
nication of an entity under observation with its environment. Such a defini-
tion enables the study of any communication, e.g., an agenda for a technical
meeting of representatives of two companies. The subject of this book is one
special class of protocols, referred to as 

 

communication protocols

 

, that reg-
ulate the communication of geographically distributed program objects. The
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communicating program objects are deployed on different processors in the
network. We will sometimes use the term 

 

protocol

 

 as an abbreviated form
of the phrase 

 

communication protocol

 

 to save space.
A 

 

process

 

, as generally defined in the theory of operating systems, is a
program in execution or prepared for execution. A process may be special-
ized for data processing, communication, or some other special task (e.g.,
I/O control, time management). Traditionally, a data processing algorithm
is specified by the flow chart. What the flow chart means for the data
processing process, the protocol means for the communication process

 

.

 

The flow chart specifies the program control flow by the use of graphic
symbols related to the series of sequential calculations, selection, iteration,
procedure/function call, and input/output operation needed to read input
data or write output data. On the other hand, the formal specification of a
communication protocol is based on messages and consists of the following
three parts:

• The message format specification.
• The message-processing procedures specification. This is essentially

a formal description of process reactions to input stimuli (i.e.,
messages).

• The error processing specification. This is the formal description of
process reactions to exceptional events (i.e., corrupted data,
timeouts).

The 

 

message format

 

 completely defines the structure of the message, i.e., it
defines the set of fields that constitute the message by defining the width of
individual fields (most commonly in bits, bytes, or words), the applied
coding scheme (e.g., binary, ASCII, Unicode, ASN.1), and optionally legal
values (e.g., constants in binary or some symbolic form, value intervals).

Therefore, a 

 

message

 

 is a series of bits logically divided into various fields.
Typically, a message consists of a message header, which most commonly
comprises more subfields, and useful data referred to as a payload. The

 

payload

 

 contains data interpreted by the communicating program objects.
The message header contains data added for supervision and control pur-
poses in accordance with the established conventions.

The 

 

message-processing procedure

 

 (i.e., the process reaction) begins with
the message reception and is described as a series of primitive operations
that define the rules of the communication, which are the essential parts of
a protocol. Typical 

 

primitive operations

 

 include timer-start operations,
timer-stop operations, message-send operations, message-receive opera-
tions, and message-data processing operations (e.g., cyclic redundancy
checking of message data, calculating expected order number of the next
message to be received).

In terms of software implementation, message processing is performed
by a message processing routine. Depending on the selected working
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environment, this routine can be a subroutine that consists of a series of
machine instructions in a symbolic form (assembly language) or a function
comprising a series of statements in a higher-level programming language,
such as C/C++ or Java.

The error-processing specification defines a set of error reactions. An 

 

error
reaction

 

 is a special protocol reaction to exceptional events or, in other words,
a reaction to unexpected situations, i.e., conditions. Typical examples of
unexpected events are: the reception of a message that contains corrupted
data, the reception of a message that is out of the original order (e.g., after
receiving the messages numbered 1, 2, and 3, we receive the message num-
bered 7 instead of the message numbered 4), timer expiration (e.g., the
receiver has not acknowledged the reception of a message to its sender
within a certain interval of time, determined by the value of the correspond-
ing timer), and so on.

Note that a protocol can be described informally or formally. The informal
description of a protocol is referred to as its 

 

informal specification

 

 and has
the following characteristics:

• It frequently has the form of a combination of textual and graphical
description of the most common scenarios of communication.

• It may state nothing about the order of the activities to be conducted
in the course of the communication.

• It is always incomplete. Most frequently, missing parts are specifi-
cations of timers, which determine time limits over individual
phases of communication.

Let us forget for a moment the communication protocols and use the old
example of informal specification of a group of tasks to get a feeling about
the issues stated above. While leaving the house, the mother says to her
daughter:

“Do not forget to finish your homework.”
“Have your breakfast when you get hungry.”
“Before you go to school, throw the garbage out.”

Obviously, this specification does not say anything about the order of the
individual tasks. For example, the daughter may complete the tasks in any
order without interrupting the individual tasks (e.g., task order may be 1,
2, 3, or 1, 3, 2), or she may complete them in any order and switch between
them (e.g., she starts with task 1, then before completing it, she switches to
task 2, completes tasks 2 and 3, and at the end finishes task 1). An essential
question here is how to organize the task executions in time, i.e., how to
allocate time to them. Clearly, a need exists to limit task duration, i.e.,
to control the task execution time. What happens if the daughter gets
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preoccupied with her homework and forgets to have breakfast before it is
time to go to school?

The example above might appear to be an exaggeration of the problems
we face in reality, but its goal is to show that informal systems specification
is insufficient, and that we need a formal systems specification to make a
precise and correct system implementation. Formal specification in the area
of communication protocols is based on modeling a protocol as a 

 

finite state
machine

 

 (FSM). A single FSM is often referred to by the term 

 

automata,

 

 and
we will use these two terms interchangeably in this book.

The formal specification of an FSM defines all its states and state transi-
tions, including transitions initiated by expiration of timers, in a unique and
detailed way. Today, we may make formal protocol specifications in either
UML or ITU-T domain-specific languages. Once we have a formal protocol
specification, we can implement it in Java or C++. Finally, we must test and
verify it. This procedure is basically what this book is all about.
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Requirements and Analysis

 

At the beginning of any project, engineers face the fundamental question,
“What must be done and how do we verify (deliver) the solution (system,
device, products, service, hardware or software)?” Answering this question
leads to what are called 

 

requirements

 

. To simplify the matter, the process
of answering this question — i.e., the corresponding engineering phase —
is also commonly called 

 

requirements

 

. So both the working phase and the
resulting documents have the same name, but the meaning is easily deduced
from the context.

The previous question actually consists of the following two questions:

1. What must be done?
2. How can the solution be verified?

Answering the former question leads to a set of functional requirements,
most frequently adorned by non-functional requirements. 

 

Functional
requirements

 

 describe the desired system behavior, while 

 

nonfunctional
requirements

 

 can be imagined as the additional attributes to the behavior
related to time restrictions, performance, and so on. To answer the latter
question, we must quantify the behavior of the system. Normally, we would
say, “For this input, the system should produce this output.” Such thinking
implies the existence of a test setup that enables automated (most preferably
automatic) testing, referred to as a 

 

test bed

 

. A test bed provides a 

 

test harness

 

by generating the input to the system and capturing its output.
The ordered pair of the given input and the expected output informally

stated in the text above is called a 

 

test case

 

. To verify complex systems, we
need many test cases. A set of test cases packed in a suitable form is referred
to as a 

 

test suite

 

. Ideally, we would like the test suite to completely cover
the systems behavior (i.e., the functional requirements), which are adorned
with their non-functional requirements. Typically, one or more test cases will
be derived from each functional requirement. Clearly for any nontrivial
system, the number of test cases needed to verify the system may be huge.

However, while thinking about the desired behavior of the system and its
verification, we inevitably think about the question, “How can we make it?”
Actually, we are trying to make a concept of the system or, more precisely,
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its architecture. This engineering phase is called an 

 

analysis

 

. Obviously, it
is tightly coupled with the requirements. These two phases have a highly
interactive relation.

Typically, work on the definition of the system architecture yields the
refinement of system functional requirements, and vice versa. This is espe-
cially true for communication protocol engineering. Therefore, we think of
these two phases, the requirements and the analysis, as one indivisible front-
end phase of communication protocol engineering. This is the reason they
are covered together in this chapter.

As already mentioned, the area of communication protocol engineering is
very well founded, and many standards, recommendations, and well-known
experiences exist — hence, this chapter is rather short compared to the others.
Unlike other areas of engineering, here a vast majority of engineers will be
faced with the task of implementing some already defined standards, such
as IETF RFC, ITU-T/ETSI recommendations, and so on. A very few engineers
will be in a position to create a completely new protocol, and even then they
will have many existing protocols for reference and as starting points.

Many existing standards actually represent very detailed designs accom-
panied by the corresponding test suites, but others are rather informal and
bring nothing more than the message syntax and encoding together with
some textual explanations of the message handling procedures. However,
most of the standards can be viewed at least as rather good starting func-
tional requirements that must be further formalized and analyzed. This
chapter tries to help the reader exactly in this direction. It tries to answer
the question, “How can we deal with the requirements in a systematic way?”
Or, in other words, “How do we capture the requirements and how do we
proceed with forward engineering from there?”

An overall consensus seems to exist in both academia and industry today
that the UML paradigm (Booch et al., 1998) can help in this respect. The
behavior of the system is described with a set of use cases. Each 

 

use case

 

captures one functional requirement adorned with its corresponding non-
functional requirements. The requirements engineer models the system by
specifying the individual actors and the corresponding use cases of the
system. The result is referred to as a 

 

requirements model

 

 of the system. The
means for making such models are 

 

use case diagrams

 

, which will be intro-
duced in the next section.

The next step in the UML paradigm is to transform the requirements model
into the 

 

analysis model

 

. Typically, a use case is viewed as a collaboration of
classifiers. In the analysis model, three different 

 

stereotypes

 

 of classes are
used: <<

 

boundary class

 

>>, <<

 

control class

 

>>, and <<

 

entity class

 

>>. The means
of specifying the collaborations in UML are 

 

collaboration diagrams

 

, which
will be introduced in a following section.

Sometimes the analysts describe the static structure of the system — in
addition to its behavior — with 

 

class diagrams

 

. This practice can be helpful
in really complex systems. In this chapter, we will present the collaboration
diagrams sufficient for the examples at hand, therefore the introduction to
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class diagrams is postponed until the next chapter. The next chapter deals
with the communication protocol design phase in which class diagrams are
essential to show the static relations among classes.

Further on, in accordance with the UML paradigm, the requirements
model should be transformed into the 

 

test model

 

 to facilitate the system
verification (the test model is actually the test suite needed for the system
verification). Essentially, the use cases should be translated into the corre-
sponding test cases described by test scripts of some kind. UML is not specific
in that respect. Of course, a few scripting languages are popular today, such
as TCL/TK, Perl, and Payton, but being general purpose languages, these
might be inappropriate for some of the projects.

To close this gap, we will introduce a domain-specific language known as

 

tree and tabular combined notation

 

 (TTCN). The TTCN tables are used for
specifying the test suites for communication protocols once the software
architecture is rather well known. Therefore, we will postpone the introduc-
tion to the TTCN language until the next chapter, which deals with the design
phase of communication protocol engineering.

A general problem when transforming use cases to test cases is that the
transformation is typically done manually, i.e., it is semiautomatic. Such an
approach is both time consuming and prone to error. However, the main
conceptual problem is the test coverage of the system behavior. In practice,
the number of possible scenarios and all possible combinations of message
parameters can be impossible to cover manually. Therefore, testing at least
the most frequently used system scenarios and message parameter combi-
nations should somehow be possible.

Clearly, more detailed UML models made during the system design phase
(e.g., statecharts, to be introduced in the next chapter) can be used later for
the automatic generation of test cases. However, the problem with this
approach is that if an error exists in the UML model, it will be propagated
into the test suite and the test suite will not be able to detect the error. A
well-known principle from mathematical logic is that negation of negation
leads to affirmation, so the bug will remain undiscovered. No matter how
large test suite we generate, it will not be able to detect the bug.

The former problem can be solved by the application of 

 

statistical usage
testing

 

, also referred to as 

 

behavior testing

 

. This paradigm is based on the
operational profile model of the system, which describes the statistics of the
system usage. It enables the practitioners to thoroughly test the system and
even estimate the system or software reliability. This practice is recognized
as a 

 

de facto

 

 standard by the industry (Broekman and Notenboom, 2003) and

communication protocol engineering).
The latter problem can be solved by using one model as a source for the

software implementation generated with forward engineering and a com-
pletely different model for the system test suite generation. Also highly
desirable is that these two models are made by two separate individuals or
teams. For example, the well-known Cleanroom engineering paradigm is
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conducted by three completely separate teams. The design team makes the
design and does its formal verification, the implementation team just does
the coding, and the test team makes the operational profile of the system
and conducts the statistical usage testing. Cleanroom engineering will be

Before proceeding further to the introduction of the mainstream approach
to requirements and analysis, which is based on UML, worth mentioning is
that until recently, many opponents to this paradigm existed. Some ongoing
doubts still exist as to if this is the correct choice. For example, in his article,
“Use-Cases Are Not Requirements” (Meyer and Apfelbaum, 1999), Meyer
argues that a better approach to requirements and analysis is transforming
the functional requirements into the behavior model that takes the form of
a finite state machine (FSM). He sees use cases as just walks across the FSM
and claims it is possible to generate them automatically rather than writing
them manually.

According to the methodology proposed by Meyer, after creating the
behavior model, two parallel streams of activities are started. The first stream
covers the analysis, the design, and the implementation, and yields the
implementation. The second stream covers the operational profile and the
performance analysis, as well as the automatic test suite generation. These
two streams merge at the automated testing phase.

This approach is very similar to the one used in this book. A slight differ-
ence is that the latter promotes separation of concerns between design and
implementation, and promotes test teams, including the models they make,
very much like the Cleanroom engineering model does. Also, it gives more
credit to the UML use cases. If we go back to the original ideas of the UML
authors (Booch et al., 1998) and try to think of a single use case as a family
of closely related collaborations among the same set of objects, clearly a use
case really captures a part of the traditional 

 

list of functional requirements

 

.
Use cases help us group simple and closely related functional requirements,
as will be illustrated by the examples in this chapter.

As already mentioned, use cases are the starting point of the software
development in the unified software development process (Booch et al.,
1998). The requirements model, essentially a set of use cases, is used to
develop all the models that correspond to the engineering phases of the
process, namely, the analysis model (result of the analysis phase), the design
and deployment models (results of the design phase), the implementation
model (result of the implementation phase), and the test model (result of the
test preparation phase). The focus of this chapter is on requirements and
analysis modeling.

The rest of the chapter is organized as follows: use case and collaboration
diagrams are introduced in the next two sections. The last section of this
chapter illustrates the requirements and analysis phases of communication
protocol engineering by presenting the case of the session initiation protocol
(SIP), RFC 3261 (Rosenberg et al., 2002). That last section is divided into three

 

9814_C002.fm  Page 12  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC

described together with statistical usage testing in Chapter 5.



 

Requirements and Analysis

 

13

subsections: SIP domain-specifics, the SIP requirements model, and the SIP
analysis model.

 

2.1 Use Case Diagrams

 

Use case diagrams are special kinds of graphs whose vertices are connected
with arcs. Two types of vertices are found in use case diagrams, namely,
actors and use cases. The 

 

actors

 

 represent humans, machines, or software
components that are the users of the software under development. They are
rendered as stick figures. 

 

Use cases

 

 represent possible uses of the software
under development and are rendered as ellipses. As already mentioned, we
think of use cases as collaborations between the corresponding objects that
constitute the part of the software under development. Clearly, they have
different roles in the requirements and the analysis phases.

In the requirements phase, we concentrate on the functional requirements
and use the use cases to capture them (“What must be done?”). At that time,
how these requirements will be fulfilled does not matter. The only important
concern is to build, together with the customer, a vision of the future system.
This vision is expressed as a desirable behavior of the system and modeled
by drawing the use case diagram and writing down the descriptions of the
individual use cases as they are added to the diagram.

In other words, we concentrate on the client’s perspective of the system.
The requirements engineer tries to define the services that the system under
development should provide. They also try to define an interface to these
services. Later, the main problems that the requirements engineer must face
are:

• Structuring the set of use cases by establishing the relationships
among them

• Prioritizing the set of use cases by assigning different priorities to
the individual use cases (especially important for the evolving sys-
tems)

Use cases have another role in the analysis phase. The job of the analyst
is to realize the use cases by the corresponding collaborations between
objects. The analyst reads the descriptions of the use cases and uses domain-
specific knowledge to identify the individual objects (horizontal structuring)
and to establish a hierarchy among them (vertical structuring). This process
will be described in the next section. 

Both actors and use cases are classifiers and, normally, they are connected
by associations. The association between the actor and the use case shows
the communication between the user and the part of the system modeled
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by the use case. Using associations enables us to indicate explicitly the points
of connection between the users and the system.

Because both actors and use cases are classifiers, we can define general
actors and general use cases and then specialize them using the generaliza-
tion relationship. For example, we may specify the general actor 

 

Client

 

 and

    

the general use case 

 

Make a connection

 

 and its specializations 

 

Make a local

   

Furthermore, while capturing the individual use cases, it may become
obvious that a certain use case extends another use case or that a certain use
case includes some other use cases. In such circumstances, the requirements
engineer may structure the use cases using <<

 

extends

 

>> and <<

 

includes

 

>>
stereotyped relationships. Especially important things can be indicated by
using the sticky notes. Invariants, preconditions, and postconditions can be
specified by the corresponding constraints. In more complex use case dia-
grams, we may need to indicate the packages and the interfaces.

Use case diagrams are normally rendered using the appropriate graphical
tools, e.g., Microsoft® Visio. This tool provides the set of graphical symbols
that are placed on the working sheet by the drag-and-drop paradigm. The
basic set of graphical symbols is shown in Figure 2.1. The requirements
engineer must specify the properties for each instance of a symbol in the
drawing. 

Five categories of actor properties are found: general information, table of
attributes, table of operations, table of constraints, and tagged values. The
general information includes name, full path, stereotype, visibility (private,
protected, or public), and the indicators for 

 

Root

 

, 

 

Leaf

 

, and 

 

Abstract

 

 types of
actors. The table of attributes includes columns for the attribute name, type,
visibility, multiplicity (1, *, 0..1, 0..*, 1..1, or 1..*), and its initial value. The
table of operations comprises columns for the operation name, return type,
visibility, scope (classifier or instance), and the indicator for the polymorphic

 

FIGURE 2.1

 

The basic set of graphical symbols available for rendering use case diagrams.

Actor

Use Case 

«extends»«uses»

-Communicates

1 1
System
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operations. The table of constraints consists of four columns: the constraint
name, stereotype (precondition, postcondition, or invariant), language type
(OCL, text, pseudocode, or code), and body of the constraint. The tagged
values include notes for the documentation, location, persistence, responsi-
bility, and semantics. 

A use case — being a classifier like an actor — has the same five categories
of properties as the actor, as well as the additional sixth category. The sixth
category of the use case properties contains the notes about the extension
points that are used to describe the <<

 

extends

 

>> stereotyped relations.
An association between an actor and a use case has three categories of

properties: general information about the association, table of constraints,
and tagged values. The general information includes the association name,
full path, stereotype, direction (none, forward, and backward), association
end count (default 2), and the attributes for each end of the association. The
attributes of the association end are its name, aggregation (none, composite,
or shared), visibility, multiplicity, and navigability indicator (navigable or
not). The graphical symbol 

 

System

 

 is used to show the system boundaries,
i.e., to group the use cases that constitute the system under development. It
has no properties. 

All the relations between the use cases have three categories of properties:
general information, table of constraints, and tagged values. The general
information includes the relation name, full path, stereotype (extends,

 

FIGURE 2.2

 

An example of the generalization and specialization of actors.

 

FIGURE 2.3

 

An example of structuring use cases.

SIP Client Client H.323 Client

Make a connection

Make a local

connection

Make a long

distance connection
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inherits, private, protected, subclass, subtype, or uses), and discriminator.
The table of constraints is the same as the table of constraints for the actors
and use cases. The tagged values are notes for the documentation.

The additional graphical symbols available for drawing use case diagrams
are shown in Figure 2.4. These symbols include notes, general constraints,
two-element constraints, OR constraints, packages, and interfaces. The notes
have two categories of properties: general properties and tagged values. The
general properties include the note name and its stereotype (none or require-
ment). The tagged values are notes for the documentation.

All the constraints, including general, two-element, and OR constraints,
have the same categories of properties: general properties and tagged values.
The general properties include the constraint name, full path, stereotype
(precondition, postcondition, or invariant), language type (OCL, code,
pseudocode, or text), and constraint body.

Four categories of package properties exist, including general properties,
table of events, table of constraints, and tagged values. The general proper-
ties are the package name, full path, stereotype (facade, framework, stub, or
system), visibility (private, protected, or public), and the indicators for 

 

Root

 

,

 

Leaf

 

, and 

 

Abstract

 

 types of packages. The table of events contains an entry
for each event. The attributes of individual events are the event name and
event type (call event, signal event, change event, or time event). The table
of constraints has the same format as the table of constraints for the actors,
and use cases and tagged values are just the notes for the documentation.

The interface has four categories of properties, actually a subset of the
actor properties. These are general properties, table of operations, table of
constraints, and tagged values. All of them are the same as the corresponding
actor properties. 

The requirements engineer renders the use case diagram along as they talk
to the customer about the desired behavior of the system to be developed.

 

FIGURE 2.4

 

The additional graphical symbols available for rendering use case diagrams.

(Constraint)Note

Package
Interface

(Constraint) (OR)

 

9814_C002.fm  Page 16  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC



 

Requirements and Analysis

 

17

The use case diagram is intented as a medium to communicate the require-
ments between the customer and the system provider. Drawing use case
diagrams is simple: the right graphical symbol is selected, dragged-and-
dropped to the working sheet, the corresponding properties are filled in, and
it is connected to the other symbols in the sheet.

As an illustration of a use case diagram, consider a simple program for
sending and receiving electronic mail messages over the Internet. The use
case diagram for such a program might look like the one shown in Figure
2.5. A single actor is found in this diagram, who is the user of the program

 

FIGURE 2.5

 

The use case diagram of the simple program for sending and receiving e-mails.

User
Send e-mail

∗

∗

Use DNSUse SMTP

Use TCP

Use IP

Use ARP

Use NIC

«uses»

«uses»

«uses»

«uses»

«uses»

Receive e-mail

∗

∗

Use POP3

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»
«uses» «uses»

 

9814_C002.fm  Page 17  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC



 

18

 

Communication Protocol Engineering

 

(named 

 

User

 

). On the highest level of abstraction, this program has two main
use cases, 

 

Send e-mail

 

 and 

 

Receive e-mail

 

.
Both of these highest-level use cases make use of the use cases 

 

Use DNS

 

(Domain Name System) and 

 

Use TCP 

 

(Transmission Control Protocol). The
DNS service provides the mapping of the e-mail server domain name into
its IP (Internet Protocol) address. The TCP provides reliable data delivery
service. Other than that, the use case 

 

Send e-mail

 

 uses the use case 

 

Use SMTP

 

(Simple Mail Transfer Protocol) and the use case 

 

Receive e-mail

 

 uses the use
case 

 

Use POP3 

 

(Post Office Protocol, Version 3). Normally, an e-mail client
uses SMTP to send an e-mail message to the e-mail server. Similarly, a user
uses POP3 to read the e-mail messages from their mailbox.

The use case 

 

Use DNS

 

 uses the use case 

 

Use IP

 

 to send a DNS requests to
the DNS server and to receive DNS responses from it. The use case 

 

Use TCP

 

uses the use case 

 

Use IP

 

 to send and receive segments of data and control
information over the Internet. The use case 

 

Use IP

 

 uses the use case 

 

Use ARP

 

(Address Resolution Protocol) to map the IP address of the destination host
to its physical (e.g., Ethernet) address. Alternatively, the use case 

 

Use IP

 

 uses
the use case 

 

Use NIC

 

 (Network Interface Controller) to send and receive IP
datagrams over the Internet. Finally, the use case 

 

Use ARP

 

 uses the use case

 

Use NIC

 

 to send an ARP request to the ARP server and to receive an ARP
response from it.

This hierarchy of use cases actually follows the hierarchy of protocols in
the TCP/IP protocol stack. As already mentioned, the concept of layered
software architecture, which is traditionally explained by the ISO OSI, was
actually invented to enable the separation of functions and the correspond-
ing functional requests, which are referred to as 

 

use cases

 

 in UML.
After creating the skeleton of the use case model, the requirements engi-

neer must fill in the descriptions of the individual use cases. The descriptions
in this example are simplified for the sake of clarity. The description of the
use case 

 

Send e-mail

 

 in plain text is the following:

Precondition:

 

The user has issued the send mail command.

 

Main flow of events:

 

Extract the recipient’s e-mail address from the e-mail message header (defined by 
the RFC 822).

Extract the e-mail server domain name from the recipient’s e-mail address (string 
after the character ”@”).

Use the use case 

 

Use DNS

 

 to map the server domain name into its IP address.

Use the use case 

 

Use TCP

 

 to open the TCP connection.

Use the use case 

 

Use SMTP

 

 to send the e-mail message to the e-mail server.

Use the use case 

 

Use TCP

 

 to close the TCP connection.

Prompt the user for the next command.

 

Exceptional flow of events:

 

The user may cancel the use case at any time by issuing the cancel command.
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Exceptional flow of events:

 

If the use case 

 

Use SMTP

 

 indicates the problem in the mail delivery, this use case 
should report it to the actor 

 

User

 

.

 

The use case 

 

Receive e-mail

 

 is identical to the use case 

 

Send e-mail

 

 with the
difference being that the former uses the use case 

 

Use POP3

 

 instead of the
use case 

 

Use SMTP

 

. The following description of the use case 

 

Use DNS

 

 is
rather simple (actually, this is the description of the behavior of the DNS
client):

Main flow of events:

 

Send the recursive DNS request by using 

 

Use IP

 

.

Receive the DNS response by using 

 

Use IP

 

.

 

The use case Use TCP is the active (initiator’s) side of the TCP. It is defined
as follows:

Main flow of events:

 

The procedure to open the TCP connection:

Send SYN data segment.

Receive SYN + ACK data segment.

Send ACK data segment.

Indicate that the connection is established.

The data transmission procedure:

Send and receive the data segments using the sliding window.

The procedure to close the TCP connection:

Send FIN data segment.

Receive ACK data segment.

Receive FIN + ACK data segment.

Send ACK data segment.

Indicate that the connection is closed both ways.

 

Exceptional flow of events:

 

The use case 

 

Send e-mail

 

 may close the TCP connection at any time.

 

The use case Use SMTP is actually the client side of the SMTP (defined by
IETF RFC 821 and RFC 788) and can be described as follows (for simplicity,
only one exceptional flow of events is given):

Main flow of events:
Receive the message 220 READY FOR MAIL.

Send the message HELLO.

Receive the message 250 OK.

Send the message MAIL FROM: <recipient’s e-mail address>.

Receive the message 250 OK.

Send the message RCPT TO: <sender’s e-mail address>.

Receive the message 250 OK.

Send the message DATA.

Receive the message 354 START MAIL INPUT.

Send the body of the e-mail message terminated with <CR><LF>.<CR><LF>.

Receive the message 250 OK.
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Send the message QUIT.

Receive the message 221.

Exceptional flow of events:
If a use case receives the message 550 NO SUCH USER HERE, as a reply to its RCPT 
TO: message, it indicates the problem to the use case Send e-mail.

The use case Use POP3 is the client side of the POP3 protocol, similar to
the use case Use SMTP. The use case Use IP is actually the IP protocol, which
is described as follows:

Main flow of events:
The procedure that is used to receive the datagrams:

Receive a datagram by using the Use NIC.

Send the received datagram to the use case Use TCP.

The procedure that is used to send the datagrams:

Decrement the contents of the time-to-live field of the IP datagram.

Extract the destination IP address from the datagram header.

Extract the destination network id from the destination IP address.

If the destination network is local the network:

Use the use case Use ARP to determine the physical address.

Deliver the datagram by using the Use NIC.

Else, route the datagram.

Exceptional flow of events:
If the datagram has been corrupted during the transmission, drop it.

Exceptional flow of events:
If the time-to-live field of the datagram counts down to 0, drop it.

The use case Use ARP is an ARP client and the use case Use NIC is a
network card driver. The former is defined as follows:

Main flow of events:
Send an ARP request by using the use case Use NIC.

Receive the ARP response by using the use case Use NIC.

The example above, especially the use cases Use TCP and Use SMTP, should
help the reader understand that a use case is a set of event sequences, not
just a single sequence. To keep use cases simple, separating the main and
the alternative flows of events is always desirable. Usually, we start by just
writing the main flow of events for each use case and later refine them by
adding the exceptional flow of events.

After this example, it should be clear that a use case captures the intended
behavior of the part of the system (subsystem, class, or interface). Of course,
after specifying the intended behavior, we must create a set of classes that
work together to implement that behavior. The means of modeling both
static and dynamic structures of the society of objects in UML are the col-
laboration diagrams.
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2.2 Collaboration Diagrams

As already mentioned, we think of use cases as collaborations between
objects. Actually, in UML we realize a use case as a collaboration of a set of
objects. This concept can be explicitly shown in UML by connecting the use
case with the corresponding collaboration using the realization relationship.

A collaboration diagram is a special kind of graph consisting of a set of
vertices interconnected by a set of arcs. Basically, the vertices are the objects
and the arcs are the links that carry the messages between the interconnected
objects. Additional vertices and arcs are the notes and the constraints (gen-
eral, two-element, and OR constraints).

Collaboration diagrams are normally rendered using the appropriate
graphical tools, e.g., Microsoft Visio. This tool provides the set of graphical
symbols that are placed on the working sheet by the drag-and-drop para-
digm. The basic set of graphical symbols is shown in Figure 2.6. The engineer
that renders the diagram must specify the properties for each instance of a
symbol in the drawing.

Three categories of object properties exist: general properties, table of
constraints, and tagged values. The general properties include the object
name, full path, classifier name, and multiplicity. The table of constraints
and the tagged values contain the same properties as the corresponding
categories for the use cases (see the previous section of this chapter).

While adding objects to the collaboration diagram, we are forced to intro-
duce the corresponding classifiers and to specify their properties (at least
the classifiers names, for a start). The classifiers have eight categories of
properties, including general properties, table of attributes, table of opera-
tions, table of receptions, table of template parameters, list of the compo-
nents, table of constraints, and tagged values. The general properties, the

FIGURE 2.6
The set of graphical symbols available for rendering collaboration diagrams.

Object : Class

1: Message1

2: Message2

Note (Constraint)

(Constraint) (OR)
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table of attributes, the table of operations, the table of constraints and the
tagged values contain the same properties as the corresponding categories
for the use cases (see the previous section of this chapter).

The table of receptions has five columns, which contain the reception name,
signal name, visibility (private, protected, or public), polymorphic indicator
(false or true), and scope (classifier or instance). The table of template param-
eters includes the columns for the parameter name and its type. The list of
components is just a list of components that implement this class.

The links in collaboration diagrams have four categories of properties,
including general properties, table of messages, table of constraints, and
tagged values. The general properties are the link name, its full path, and
the table of link ends roles, which has two columns, the end name and its
stereotype (none, association, global, local, parameter, self). The table of link
messages has four columns, including the message name, its direction (for-
ward or backward), flow kind (procedure call, flat, or asynchronous), and
sequence expression. The table of constraints contains the same properties
as the corresponding category of object (and classifier) properties. The tagged
values are just the notes for the documentation. The notes and the constraints
have the same properties as in the use case diagrams (see the previous section
of this chapter).

Most frequently, we model sequential flow of control with collaboration
diagrams. In this case, a message sequence expression takes the simple form
of a message sequence number. However, collaboration diagrams allow
modeling of more complex flows, such as iteration and branching. Iteration
is modeled by prefixing the message sequence number with the iteration
expression 

*[<control variable> := <start value>..<end value>]

e.g., *[j := 1..m]. 

Branching is modeled by prefixing the message sequence number with the
condition clause [<condition>], e.g., [i > 10]. Alternate paths of the branch
have the same message sequence number prefixed by the unique nonover-
lapping condition, where the set of conditions must cover all the possibilities.

Next, we illustrate the use of collaboration diagrams in the example of a
simple program for sending and receiving electronic mail messages over the
Internet, which was introduced and modeled in the previous section of this

start by making the real collaboration between objects that is a realization
of the use case model, and continue with the study of virtual collaborations,
which correspond to the peer-to-peer protocols present in this example. 

To start, imagine that we are provided with the classifier FSM for modeling
finite state machines. Clearly a single object of this class could be a realization
of a single use case, as shown in Figure 2.5. The assumption that each use
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case is materialized by a single FSM object leads to a real collaboration
between objects, shown in Figure 2.7.

In this class diagram, the object mailc (abbreviation for a mail client) is the
<<boundary class>> object. All other objects are the <<control class>> objects.
The e-mail message itself would be the <<entity object>>, but it is not shown
in Figure 2.7. Obviously, the realization of the individual use cases is as
follows:

• The object sender is a realization of the use case Send e-mail.
• The object receiver is a realization of the use case Receive e-mail.
• The object dnsc (abbreviation for a DNS Client) is a realization of the

use case Use DNS.

FIGURE 2.7
The collaboration diagram of the simple program for sending and receiving e-mails.

mailc : FSM

sender : FSM receiver :FSM

smtpc : FSM dnsc : FSM pop3c : FSM

tcpc : FSM

ip : FSM

arpc :FSM

nic :FSM
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• The object tcpc (abbreviation for a TCP Client, i.e., the side that
initiates the establishment of the TCP connection) is a realization of
the use case Use TCP.

• The object smtpc (abbreviation for an SMTP Client) is a realization
of the use case Use SMTP.

• The object pop3c (abbreviation for a POP3 Client) is a realization of
the use case Use POP3.

• The object ip is a realization of the use case Use IP.
• The object arpc (abbreviation for an ARP Client) is a realization of

the use case Use ARP.
• The object nic is a realization of the use case Use NIC.

just shows the links between objects. Essentially, it shows the software archi-
tecture. We may think of it as a family of particular collaborations. For
example, the user of the program might select the use case Send e-mail and
this would lead to a particular collaboration, or the user might select the use
case Receive e-mail and that would lead to another particular collaboration.

Another important thing to notice and remember is that Figure 2.7 shows
only the objects of the system under development. In this case, it is a program
that runs on a computer connected to the Internet over its network interface
card. If we want the overall picture, we can also add the models of the
systems with which our system under development would normally com-
municate. By adding the models of these external systems, we are modeling
end-to-end collaborations.

The system under development communicates with external servers,
including the ARP server, the DNS server, and the e-mail server. If we assume
that all of these servers run on the same computer, the model of the external

The external objects are as follows:

• The object smtps is the SMTP server.
• The object pop3s is the POP3 server.
• The object tcps is the TCP server, i.e., the side that accepts the estab-

lishment of the TCP connection.
• The object dnss is the DNS server.
• The object arps is the ARP server.
• The object ips is an instance of IP.
• The object nics is an instance of NIC.

The overall collaboration that corresponds to the main flow of events of
the use case Send e-mail, up to the point when the SMTP client receives the
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environment of the system under development is rather simple (Figure 2.8).



Requirements and Analysis 25

is as follows:

1: The object mailc sends the signal sendMail(msg) to the object sender.
The signal parameter msg is the e-mail message itself.

2: The object sender sends the signal domainToIP(domain) to the object
dnsc. The signal parameter domain is the domain name of the e-mail
server.

3: The object dnsc sends the signal dnsReq(domain) to the object ip. The
signal dnsReq is actually the DNS service request message.

4: The object ip sends the signal data(dnsReq) to the object nic. The general
signal data is an IP datagram. Together with the parameter dnsReq,
it represents the datagram carrying the DNS service request
message.

5: The object nic sends the signal frame(dnsReq) to the object nics. The
general signal frame is a data frame from the underlying physical
network (e.g., Ethernet). The signal frame(dnsReq) is the data frame
carrying the datagram that encapsulates the DNS service request
message.

6: The object nics sends the signal data(dnsReq) to the object ips.
7: The object ips sends the signal dnsReq(domain) to the object dnss.

FIGURE 2.8
The collaboration diagram of the e-mail and DNS server.

smtps : FSM

dnss : FSM

pop3s :FSM

tcps : FSM

ips : FSM

arps : FSM

nics : FSM
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8: The object dnss sends the signal dnsRsp(ip) to the object ips. The signal
dnsRsp is the DNS service response message and its parameter ip is
the IP address of the target e-mail server.

9: The object ips sends the signal data(dnsRsp) to the object nics.
10: The object nics sends the signal frame(dnsRsp) to the object nic.
11: The object nic sends the signal data(dnsRsp) to the object ip.
12: The object ip sends the signal dnsRsp(ip) to the object dnsc.
13: The object dnsc sends the signal ipaddr(ip) to the object sender.
14: The object sender sends the signal open(ip,25) to the object tcpc. The

signal open is an active open request to TCP (TCP should send the
SYN segment to initiate the TCP connection establishment proce-
dure). Its parameters, ip and 25, are the IP address of the target e-mail

FIGURE 2.9
The overall real collaboration of the simple program for sending and receiving e-mails and its
environment.

smtps : FSM

pop3s :FSM

tcps : FSM
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sever and the well-known TCP port number reserved for the SMTP,
respectively.

15: The object tcpc sends the signal seg(syn) to the object ip. The general
signal seg is a TCP segment. The signal seg(syn) is a SYN (synchro-
nization) TCP segment (i.e., it has the SYN bit set in the code field).

16: The object ip sends the signal data(syn) to the object nic.
17: The object nic sends the signal frame(syn) to the object nics.
18: The object nics sends the signal data(syn) to the object ips.
19: The object ips sends the signal seg(syn) to the object tcps.
20: The object tcps sends the signal seg(syn+ack) to the object ips. The

signal seg(syn+ack) is a SYN+ACK (synchronization and acknowl-
edgment) TCP segment (i.e., it has both SYN and ACK bits set in
the code field).

21: The object ips sends the signal data(syn+ack) to the object nics. The
signal data(syn+ack) is the IP datagram that encapsulates the
SYN+ACK TCP segment.

22: The object nics sends the signal frame(syn+ack) to the object nic. The
signal frame(syn+ack) is the data frame carrying the IP datagram that
encapsulates the SYN+ACK TCP segment.

23: The object nic sends the signal data(syn+ack) to the object ip.
24: The object ip sends the signal seg(syn+ack) to the object tcpc. (The

event flow now forks into two parallel flows.)
24.1: The object tcpc sends the signal openAck to the object sender.

(The first flow begins here.)
24.1.1: The object sender sends the signal openAck to the object

smtpc (The first flow ends here.)
24.2: The object tcpc sends the signal seg(ack) to the object ip. (The

second flow begins here.)
24.2.1: The object ip sends the signal data(ack) to the object nic.
24.2.2: The object nic sends the signal frame(ack) to the object nics.
24.2.3: The object nics sends the signal data(ack) to the object ips.
24.2.4: The object ips sends the signal seg(ack) to the object tcps.
24.2.5: The object tcps sends the signal openAck to the object smtps.

25: The object smtps sends the signal mail(220) to the object tcps. The
general signal mail is the SMTP message. The particular signal
mail(220) is actually the message 220 READY FOR MAIL, where the
first three digits are mandatory and the rest of the message is a
human-readable comment. (Note: We have restarted the message
numbering here for brevity.)

26: The object tcps sends the signal seg(220) to the object ips.
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27: The object ips sends the signal data(220) to the object nics.
28: The object nics sends the signal frame(220) to the object nic.
29: The object nic sends the signal data(220) to the object ip.
30: The object ip sends the signal seg(220) to the object tcpc.
31: The object tcpc sends the signal mail(220) to the object smtpc. (The

example ends here.)

What we have just described is the real collaboration between objects within
the system under development as well as with the relevant objects in its
surroundings. The real collaboration for any nontrivial system could be
rather complex. This behavior should be clear from the previous example,
where we intentionally stopped at the certain point of the event flow, which
was selected as a compromise between showing enough complexity and
maintaining clarity.

The complete list of events for the use case Send e-mail is much longer than
the one given above. For modeling the transfer of the rest of the SMTP
messages (12 of them), we would need additional 84 (12 × 7) UML events,
almost three times more than already in the list above. This complexity is
why we try to break the system down into its parts and analyze them in
detail later.

One important aspect of the simplification is the definition of the Appli-
cation Programming Interfaces (API). For example, we may define the API
between the sender and the hierarchically lower level objects (dnsc, smtpc,
and tcpc), or the API between tcpc and ip, and so on. Other important items
are the virtual collaborations that are governed by the peer-to-peer protocols.
Consider for example the virtual collaboration between dnsc and dnss (Figure
2.10). The corresponding flow comprises only two events, dnsReq(domain)
and dnsRsp(ip).

The virtual collaboration between tcpc and tcps is governed by the TCP. It

1: The object tcpc sends the signal seg(syn) to the object tcps.
2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
3: The object tcpc sends the signal seg(ack) to the object tcps.
4: The object tcpc sends the signal seg(data) to the object tcps. (Data

transmission phase) 

FIGURE 2.10
The virtual collaboration between the DNS client and the DNS server.

dnsc : FSM dnss : FSM

1: dnsReq(domain)

2: dnsRsp(ip)
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5: The object tcpc sends the signal seg(fin) to the object tcps.
6: The object tcps sends the signal seg(ack) to the object tcpc.
7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
8: The object tcpc sends the signal seg(ack) to the object tcps. 

Finally, the virtual collaboration between smtpc and smtps (in accordance
with SMTP) is of the same order of complexity (Figure 2.12; note that only
the first eight events are shown in the figure). The corresponding flow of
events is the following:

1: The object smtps sends the signal mail(220) to the object smtpc.
2: The object smtpc sends the signal mail(HELO) to the object smtps.
3: The object smtps sends the signal mail(250_OK) to the object smtpc.
4: The object smtpc sends the signal mail(MAIL_FROM:) to the object

smtps.
5: The object smtps sends the signal mail(250_OK) to the object smtpc.
6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
7: The object smtps sends the signal mail(250_OK) to the object smtpc.
8: The object smtpc sends the signal mail(DATA) to the object smtps.
9: The object smtps sends the signal mail(354_START_MAIL_INPUT) to

the object smtpc. 

FIGURE 2.11
The virtual collaboration between two TCP entities.

FIGURE 2.12
The virtual collaboration between the SMTP client and the SMTP server.

tcps : FSMtcpc : FSM

1: seg(syn)

2: seg(syn+ack)

3: seg(ack)

4: seg(data)

5: seg(fin)

6: seg(ack)

7: seg(fin+ack)

8: seg(ack)

smtpc : FSM smtps : FSM

1: mail(220)
2: mail(HELO)

3: mail(250_OK)

4: mail(MAIL_FROM:)
5: mail(250_OK)

6: mail(RCPT_TO:)
7: mail(250_OK)

8: mail(DATA)
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10: The object smtpc sends the signal mail(MAIL_BODY) to the object
smtps.

11: The object smtps sends the signal mail(250_OK) to the object smtpc.
12: The object smtpc sends the signal mail(QUIT) to the object smtps.
13: The object smtps sends the signal mail(221) to the object smtpc.

2.3 Requirements and Analysis Example

This section of the book illustrates the requirements and analysis phases of
communication protocol engineering with the example of a simple SIP soft-
phone. Normally, the requirements phase starts by acquiring the relevant
domain-specific knowledge and continues by the construction of the corre-
sponding requirements model, which is the input for the analysis phase. As
already mentioned, the output of the analysis phase is the corresponding
analysis model. The next three sections cover a short overview of the domain-
specific information, the requirements, and the analysis models of a simple
SIP softphone.

2.3.1 SIP Domain Specifics

SIP is the application layer protocol used for creating, modifying, and ter-
minating sessions, such as Internet telephone calls and multimedia distribu-
tion and conferences, with one or more participants. It has been standardized
by the IETF RFC 3261 (Rosenberg et al., 2002) and related series of RFCs
(RFC 3262, RFC 3263, RFC 3264, RFC 3265, RFC 3372, RFC 3428, RFC 3485,
RFC 3487, and others). In contrast to the ITU-T H.323 family of protocols —
which provide the whole protocol stack for multimedia communications —
SIP is just the control and signaling component on the top of the multimedia
architecture.

Aside from SIP, the multimedia architecture will typically include RTP
(Real-Time Transfer Protocol, RFC 1889), RTSP (Real-Time Streaming Proto-
col, RFC 2326), MEGACO (Media Gateway Contol Protocol, RFC 3015), and
SDP (Session Description Protocol, RFC 2327). SIP does not provide any
service on its own. Instead of full services, it provides primitives for the
services that are implemented in the overall architecture. These primitives
are based on an HTTP-like (Hyper Text Transport Protocol) request and
response transaction model.

The main SIP abstractions are the session, the dialog, and the transaction.
A multimedia session is a set of multimedia senders and receivers, as well
as data streams flowing from senders to receivers. A dialog is a peer-to-peer
relationship between two user agents (end points in the communication)
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that persists for some time. A transaction is the collaboration between the
client and the server, which comprises all the messages from the first request
sent from the client to the server up to the final response sent from the server
to the client. The requests are processed automatically, meaning that either
all requested actions are conducted, if the request has been accepted, or none
of the actions are conducted, if the request has not been accepted.

Two main transaction types exist, referred to as invite (officially written
in capital letters, i.e., INVITE) and non-invite (or, more formally, non-
INVITE) transactions. An invite transaction is a three-way handshake com-
prising the request, the response, and the acknowledgment. In contrast, a
non-invite transaction is the two-way handshake starting with the request
and ending with the corresponding response.

Notice that the roles of the user agents (communication end points) are
not fixed, and they change on the transaction by transaction bases. The user
agent that creates a new request becomes a user agent client (UAC), whereas
the user agent that receives the request becomes the user agent server (UAS).
Another important detail is that a new transaction (either invite or non-
invite) may not be started while an invite transaction is in progress. Alter-
natively, a new invite transaction may be started while a non-invite trans-
action is in progress.

Besides user agents, the SIP standard defines three types of SIP servers,
namely, the proxy server (stateful or stateless), the registrar, and the redirect
server. A proxy server is the mediator that helps end points set up the session.
Officially, it is an intermediary entity that acts as both a server and a client
for the purpose of making requests on behalf of other clients. A registrar is
a server that supports the registration of the user agents by maintaining the
corresponding database for the domain it handles. This database is referred
to as a location service. These two types of servers are most frequently
collocated in the same physical machine. A redirect server can be viewed as
a proxy server with limited capabilities. It is only capable of directing the
client to contact an alternate set of Uniform Resource Identifications (URI).

Requests and responses between a server and a client are sent as SIP
messages. The SIP message comprises the start line, one or more header
fields, empty lines (carriage-return line-feed sequences, CRLF), and an
optional message body. The start line is different in requests and in responses.
In the former case, it is referred to as a request line, and in the latter as a
status line. The request line comprises the method name (six methods are
available in SIP: REGISTER, INVITE, ACK, CANCEL, BYE, and OPTIONS),
the request URI, and the SIP version (currently “SIP/2.0”). The status line
comprises the SIP version, the status code (a three-digit integer result code),
and the reason phrase (textual status description).

The SIP protocol stack comprises four layers. Starting from the top and
going down the hierarchy, these are the transaction user (TU) layer, the
transaction layer, the transport layer, and the syntax and encoding of SIP
messages. A transaction user is any SIP entity (client or server) except for
the stateless proxy. The transaction layer supports transactions, which are
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the key component of SIP. The transport layer provides for the transfer of
SIP messages across the Internet. SIP may use three types of transport ser-
vices, including unreliable (UDP), reliable (TCP), and encrypted (Transport
Layer Security, TLS) transport service. Much of SIP message and header field
syntax is identical to HTTP/1.1. Although SIP is close to the HTTP philos-
ophy, it is not an extension of HTTP.

As mentioned above, the SIP standard specifies six methods, including
REGISTER for registering contact information, INVITE, ACK, and CANCEL
for setting up sessions, BYE for terminating sessions, and OPTIONS for
querying servers regarding their capabilities. Any INVITE after the initial
invite to the same destination is called re-INVITE and is used for modifying
the session and dialog parameters. The method INVITE starts the invite
transaction; all other methods start non-invite transactions. Interestingly
enough, six status code types are also found, depending on the value of
status code first digit, as follows:

1xx: Provisional (the request has been received and its processing has
been started)

2xx: Success (the request has been successfully processed)
3xx: Redirection (further action by the client is needed)
4xx: Client error (the request contains an error or it may not have been

fulfilled on this server)
5xx: Server error (the request is valid, but the server failed to fulfill it)
6xx: Global failure (the request cannot be fulfilled on any server)

As an example, consider the typical scenario of the SIP session setup in

Sequence diagrams are intentionally introduced later in the next chapter.
For the moment, it is enough to assume that the rectangular symbols are
the communicating entities and that the arrows are the messages they
exchange. Time advances downwards.). Two user agents ua1 and ua2,
together with their corresponding proxy servers p1 and p2, constitute the
SIP trapezoid (imagine the trapezoid by “drawing“ the lines that connect
ua1, p1, p2, and ua2).

Suppose that ua1 wants to set up a session with ua2. It starts by sending
an invite request to the proxy server that is responsible for its domain, and
that is p1. Proxy p1 locates the proxy server responsible for the destination
ua2, namely p2, and forwards the invite request to it. At the same time, p1
sends back the response 100 TRYING to ua1. Proxy p2 locates the destination
user agent, ua2, forwards the invite request to it, and sends back the response
100 TRYING to the proxy p1. ua2 receives the invite request and sends back
the response 180 RINGING, which is forwarded by the proxies p2 and p1 to
ua1.
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At this point, ua2 indicates the incoming invite request to its user. The user
accepts the request and ua2 sends back the response 200 OK, which is
forwarded by the proxies p2 and p1 to ua1. The dialog between ua1 and ua2
is successfully established. Further on, ua1 sends the ACK request to ua2
directly (the end of the three-way handshake). The session is successfully
established at this point. The communicating user agents may now exchange
the media.

The session may be terminated by either ua1 or ua2. Suppose that ua2
wants to terminate the session. It sends the BYE request to ua1 directly, which
in its turn sends back the response 200 OK. The session is successfully closed.
This is an example of the non-invite transaction.

This simplified explanation hides one rather important aspect of the
invite three-way handshake, and that is the application of the offer-answer
procedure. This procedure is used by ua1 and ua2 to determine the session

FIGURE 2.13
The example of SIP session setup (with SIP trapezoid).

ua1 : UserAgent

p1 : Proxy p2 : Proxy

ua2 : UserAgent

INVITE

INVITE

INVITE100 Trying

100 Trying

180 Ringing

180 Ringing

180 Ringing

200 OK

200 OK

ACK

Media Session

BYE

200 OK

200 OK

9814_C002.fm  Page 33  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC



34 Communication Protocol Engineering

parameters in accordance with SDP. The first offer must be carried either by
the invite request or by the response 200 OK. If the offer is carried by the
invite request (ua1 makes the first offer), the answer must be included in the
response 200 OK. If the offer is carried by the response 200 OK (ua2 makes
the first offer), the answer must be included in the ACK request (the last
message in the three-way handshake). The session is successfully established
only after the offer-answer procedure is successfully ended.

2.3.2 SIP Softphone Requirements Model

SIP softphone is the application that normally runs on some computer —
for example, a desktop PC — and enables its user to set up multimedia
sessions and to communicate with other SIP users or entities over the Inter-
net. Such an application would typically use some type of graphical user
interface (GUI) and device drivers for the sound card and the web camera,
typically provided by the local operating system (out of scope for this book)
and, of course, the SIP protocol stack.

This section shows how to construct the requirements model for the SIP
protocol stack in a simple SIP softphone. As mentioned previously, the SIP
protocol stack comprises the transaction user layer, the transaction layer, and
the transport layer. In terms of use cases, the user uses the application
(softphone), which in turn uses both the transaction layer and the transport
layer. The transaction layer also uses the transport layer. The use case dia-

these relations.
We can refine this simple model by taking into account the details of the

individual layers of the SIP protocol stack. To start, the transaction user (TU)
layer dynamically creates and uses the user agent clients (UAC) and the user
agent servers (UAS) entities to support outgoing and incoming invite
requests. Both UAC and UAS use the transaction layer (TAL), as well as the
transport layer, which is accessible through the transport layer interface
(TLI). TAL and TLI are abbreviations introduced here (they have not been
taken from the RFC 3261).

Similar to TU, TAL dynamically creates and uses invite client transactions
(INVITE CT), non-invite client transactions (non-INVITE CT), invite server
transactions (INVITE ST), and non-invite server transactions (non-INVITE
ST). TAL and all transactions use TLI, but they are all also used by TU.
Finally, TLI uses UDP, TCP, or TLS. The detailed use case diagram of the

Before proceeding further, two important points must be emphasized. The
first is that the direct relations between TU and TLI are strictly in accordance
with the RFC 3261, although this may seem to be an error because it violates
the ISO OSI ideal of a strictly layered architecture (no direct communication
between layer i + 1 and layer i). The second point is that the relations between
TU and transactions, and transactions and TLI, are not prescribed by the
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RFC 3261 but they are also not forbidden. These relations are introduced to
minimize the message paths at the expense of the increased relations com-
plexity.

To complete the requirements model, we need to describe the individual
use cases. The use case Use application is actually the main program that
interacts with the user and makes use of the SIP protocol stack and is out
of the scope of this book. The use case Use TU is responsible for dispatching
TU messages (coming from the application and the lower layers and going
to the user agent clients and servers and to the application), as well as for
dynamic creation of user agent clients and servers.

The use case Use UAC provides a set of procedures for the client side of
the transactions. The high-level description of these procedures follows:

FIGURE 2.14
The use case diagram of the simple SIP softphone.
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Main flow of events:
Receive the request from the application.

Dispatch it to the corresponding procedure.

Registration procedure:

Create and send REGISTER request.

Receive the response.

Indicate the response to the application.

Session setup procedure:

Create and send INVITE request.

Receive provisional responses (1xx), if any.

Receive the final response (not 1xx).

Indicate the final response to the application.

If the final response is 2xx,

Send ACK request.

FIGURE 2.15
The detailed use case diagram of the simple SIP softphone.
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Cancel session setup procedure:

If the final response has not been received,

Create and send CANCEL request.

Receive the response.

Indicate the response to the application.

Modify session/dialog procedure:

Perform session setup procedure.

Query server capabilities procedure:

Create and send OPTIONS request.

Receive the response.

Indicate the response to the application.

Terminate session procedure:

Create and send BYE request.

Receive the response.

Indicate the response to the application.

The use case above includes only the main flow of events. A more detailed
version would also include the exceptional flow of events that would
describe the time management and the retransmissions of the unacknowl-
edged SIP messages. These are skipped here for brevity (in reality, we also
start from a very simple version of use cases and refine them later). The same
is true for all the other use cases given in this subsection.

The use case Use UAS provides the set of procedures for the server side
of the transactions. The high-level description of these procedures follows
(the implementation is rather simple and it takes the passive and goodwill
approach):

Main flow of events:
Receive the request from the TU dispatcher (i.e., remote SIP entity).

Dispatch it to the corresponding procedure.

Session setup service procedure:

Receive the incoming INVITE request.

Indicate INVITE request to the application.

Send the provisional response, e.g., 180 RINGING.

If the user accepts the call,

Send the final response 200 OK.

Receive ACK request.

Cancel session setup service procedure:

Receive CANCEL request.

Send the final response 200 OK.

Report the outcome to the application.

Modify session/dialog service procedure:

Receive INVITE request.

Send the final response 200 OK.

Report the outcome to the application.

Query server capabilities service procedure:

Receive OPTIONS request.

Send the final response 200 OK.

Report the outcome to the application.

Terminate session service procedure:

Receive BYE request.

Send the final response 200 OK.

Report the outcome to the application.
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The use case Use TAL is responsible for dispatching TAL messages (coming
from TU, UAC, UAS, and TLI and going to the TAL transactions), as well
as for dynamic creation of TAL transactions. The use case Use INVITE CT is
an invite client transaction. Its description follows:

Main flow of events:
Receive INVITE request from TAL.

Forward INVITE request to TLI.

Receive 1xx response from TAL.

Forward 1xx response to TU.

Receive the final response from TAL.

Forward the final response to TU.

If the final response is 3xx-6xx,

Send ACK request to TLI.

The use case Use INVITE ST is an invite server transaction. Its description
follows:

Main flow of events:
Receive INVITE request from TAL.

Forward INVITE request to TU.

Receive 1xx response from TAL.

Forward 1xx response to TLI.

Receive the final response from TAL.

Forward the final response to TLI.

The use case Use non-INVITE CT is a non-invite client transaction, whose
description follows:

Main flow of events:
Receive the request from TAL.

Forward the request to TLI.

Receive the response from TAL.

Forward the response to TU.

The use case Use non-INVITE ST is a non-invite server transaction, which
is defined as follows.:

Main flow of events:
Receive the request from TAL.

Forward the request to TU.

Receive the response from TAL.

Forward the response to TLI.

The use case Use TLI is responsible for dispatching transport messages. It
routes the requests from upper layers toward its remote peer in a forward
direction, and routes the responses received from its remote peer toward the
upper layers in a backward direction (non-ACK responses are sent to TAL,
whereas ACK responses are sent to TU). It may use UDP, TCP, or TLS for the
communication with its peers over the Internet. The description of this use case
follows:
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Main flow of events:
Receive a request from upper layers.

Send the request to the remote peer.

Receive the response from the remote peer.

If the response is ACK,

Send it to TU,

Else,

Send it to TAL.

Now that we have completed the use case diagram, we can proceed to the
next engineering phase. This phase is the analysis, whose main goal is the
definition of the software architecture.

2.3.3 SIP Softphone Analysis Model

Generally, the analysis model is constructed by defining the collaboration in
a set of objects for each use case in the source requirements model. This
process becomes obvious when considering the rough use case diagram

example of exactly such a use case diagram. Each use case is rather simple,
so that a single class can realize it. Along this approach, assume the following
mapping:

• The instance of the class FSM named app realizes the use case Use
application.

• The instance of the class TUDisp named tud realizes the use case Use
TU.

• An unnamed instance of the class UAClient realizes the use case Use
UAC.

• An unnamed instance of the class UAServer realizes the use case Use
UAS.

• The instance of the class TALDisp named tald realizes the use case
Use TAL.

• An unnamed instance of the class InClientT realizes the use case Use
INVITE CT.

• An unnamed instance of the class NIClientT realizes the use case Use
non-INVITE CT.

• An unnamed instance of the class InServerT realizes the use case Use
INVITE ST. 

• An unnamed instance of the class NIServerT realizes the use case
Use non-INVITE ST.

9814_C002.fm  Page 39  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC

shown in Figure 2.14. However, by refining the use cases, we may reach a
point when a single class can realize a single use case. Figure 2.15 is an
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• The instance of the class TLIDisp named tlid realizes the use case Use
TLI. 

• The instance of the class FSM named udp realizes the use case Use
UDP.

• The instance of the class FSM named tcp realizes the use case Use
TCP.

• The instance of the class FSM named tls realizes the use case Use TLS. 

gram actually shows the software architecture, which defines the software
objects that constitute the software system or product and the associations
among them. 

FIGURE 2.16
The general collaboration diagram of the simple SIP softphone.

app :FSM

tud : TUDisp

: UAClient : UAServer

: InClientT : InServerT : NIServerT

tald : TALDisp

tlid : TLIDisp

tls : FSMtcp : FSMudp : FSM

: NIClientT
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The mapping given above translates the use case diagram shown in Figure
2.15 into the general collaboration diagram shown in Figure 2.16. This dia-
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The software architecture can be used for the further study of particular
object collaborations to check if the architecture is feasible and, if not, to
refine the use case or collaboration diagram. An example of a particular
collaboration is shown in Figure 2.17. This diagram shows the handling of
the invite request initiated by the softphone user. The flow of events is as
follows:

1: The object app sends the event inviteReq(adr) to the object tud.
2: The object tud sends the event inviteReq(adr) to an unnamed instance

of the class UAClient.
3: The unnamed instance of the class UAClient sends the event req(IN-

VITE) to the object tald.

FIGURE 2.17
The collaboration diagram showing the part of the SIP session setup.
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4: The object tald sends the event req(INVITE) to an unnamed instance
of the class IClientT.

5: The unnamed instance of the class IClientT sends the event req(IN-
VITE) to the object tlid.

6: The object tlid sends the event req(INVITE) to its peer over the object
tcp.

7: The object tlid receives the event rsp(1xx) from its peer over the object
tcp.

8: The object tlid sends the event rsp(1xx) to the object tald.
9: The object tald sends the event rsp(1xx) to an unnamed instance of

the class IClientT.
10: The unnamed instance of the class IClientT sends the even rsp(1xx)

to the object tud.
11: The object tud sends the event rsp(1xx) to an unnamed instance of

the class UAClient.
12: The object tlid receives the event rsp(200) from its peer over the object

tcp.
13: The object tlid sends the event rsp(200) to the object tald.
14: The object tald sends the event rsp(200) to an unnamed instance of

the class IClientT.
15: The unnamed instance of the class IClientT sends the event rsp(200)

to the object tud.
16: The object tud sends the event rsp(200) to an unnamed instance of

the class UAClient.
17: The unnamed instance of the class UAClient sends the event invit-

eRsp(adr) to the object tud.
18: The object tud sends the event inviteRsp(adr) to the object app.

Generally, req() and rsp() designate SIP requests and SIP responses in the
flow of events shown above. For example, req(INVITE) is the SIP invite
request, rsp(1xx) is the SIP provisional response, and rsp(200) is the SIP final
response.

References

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Modeling Language User Guide,
Addison-Wesley, Reading, MA, 1998.

Booch, G., Rumbaugh, J., and Jacobson, I., The Unified Software Development Process,
Addison-Wesley, Reading, MA, 1998.

Broekman, B. and Notenboom, E., Testing Embedded Software, Addison-Wesley,
London, 2003.

9814_C002.fm  Page 42  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC



Requirements and Analysis 43

9814_C002.fm  Page 43  Wednesday, May 17, 2006  8:10 AM

© 2006 by Taylor and Francis Group, LLC

geocities.com/model_based_testing/online_papers.htm, 1999. 
Meyer, S. and Apfelbaum, L., “Use Cases Are Not Requirements,” http://www.

Rosenberg, J. et al., “RFC 3261 – SIP: Session Initiation Protocol,” http://www.faqs.
org/rfcs/rfc3261.html, 2002. 

http://geocities.yahoo.com
http://geocities.yahoo.com
http://www.faqs.org
http://www.faqs.org


 

45

 

3

 

Design

 

System 

 

design

 

 is a phase in engineering work that follows the system
requirements and analysis phases. Its main goal is to synthesize a complete
solution based on the result of the analysis phase (obtaining the analysis
model of the system), which is actually a rough architecture — a skeleton
— of the system. We can imagine the system synthesis as a process of creating
the body of the system. This body is a reflection of the details related to the
system structure and its behavior.

Note that the complete solution of the system mentioned above is not the
system itself, but rather a detailed vision of the system that comprises all
the details sufficient to construct the system. Technically, we refer to this
vision as a 

 

design model

 

. Therefore, the system synthesis is a process that
takes an analysis model as its input and produces the design model as its
output.

The design model defines the two most important system aspects:

• System structure
• System behavior

The 

 

system structure

 

 defines the elements of the system and their associ-
ations. Sometimes it is referred to as the 

 

static structure

 

 because it defines
the static view of the system, i.e., a view without any respect to time. The
system behavior defines the outputs of the systems as functions of time or
their inputs. In the case of a family of communication protocols, which are
most frequently modeled as groups of finite state machines (automata), the
static structure defines the automata and the links between them whereas
the system behavior defines the state transitions for the individual automata
and the external messages.

Besides system synthesis, or system design, the communication protocol
design phase described in this book includes two additional designs, namely

 

deployment design

 

 and 

 

test design

 

, which result in a 

 

deployment model

 

and a 

 

test model

 

, respectively. The main goals of the deployment design are
identifying network nodes and configurations as well as identifying design
subsystems and interfaces. The deployment model is especially important
for the complex communication systems comprising many distributed
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components. For less complex systems, it is not as important, and for very
simple systems it may not even be necessary.

Although the system design and deployment models make the complete
vision of the system, they do not specify how the system can be verified.
Therefore, the engineers conduct the test design by taking the requirements
and design models and creating a test model. The test model actually defines
the behavior of the testers, who emulate the environment of the system. As
already mentioned in the previous chapter, the test model is most frequently
referred to as a test suite, which comprises a set of test cases. Each test case
specifies a series of test input values (events and messages) to the system
and the corresponding output values (events and messages) that are
expected at the system output as the results of correct system reactions to
the given series.

To summarize, a communication protocol design is a process that takes
the requirements and analysis as its input and provides the following models
as its output:

• System design model
• System deployment model
• System test model

The means of making these models today are UML diagrams or some
domain-specific languages, which are introduced in this chapter. The design
engineer starts from the analysis model, essentially a collaboration of
<<

 

boundary

 

>>, <<

 

control

 

>>, and <<

 

entity

 

>> classes, described in the corre-
sponding collaboration diagram. The development model is made by map-
ping each class from the analysis model to a set of new classes in the
development model. If the analysis model is well refined, this might even
be a one-to-one mapping or close to it. For example, the analysis model of
the SIP softphone given at the end of the previous chapter is detailed enough,
and the corresponding collaboration diagram is a good base for the refine-
ments that must be made during the system design phase.

The means of defining the static structure of the system in UML are class
diagrams and object diagrams. A 

 

class diagram

 

 shows the design classes
and the static relations (dependencies, associations, and generalizations)
among them without any respect to time. It shows important details about
classes, such as their members, fields and functions, and furthermore their
types, visibility, and so on. The 

 

object diagram

 

 is similar to the class diagram
except that it shows the system frozen at a certain moment of time. Typically,
the object diagram will show system objects (class instances) with the char-
acteristic and important values of certain field members.

The means of gathering and refining details about the system behavior are
the UML interaction diagrams. Two types of interaction diagrams are found,
namely collaboration diagrams (introduced in the previous chapter) and

 

sequence diagrams

 

. Collaboration diagrams show the interaction organized
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by the architecture, meaning that their focus is an architectural view of the
system. The architecture is adorned by the flow of events. The sequence of
evens is shown by adding sequence numbers as prefix labels to the events.

Alternately, sequence diagrams show system interactions from a time
progress perspective. The top of the sequence diagram shows the objects of
the system without static relations among them. Each object is represented
further by a vertical line rendered from its bottom toward the bottom of the
diagram. Time advances in the same direction. The interaction itself is shown
by the series of events and messages sent among the objects, which are
rendered by horizontal arrows from the source object’s line to the destination
object’s line.

The means of specifying complete system behavior are 

 

activity diagrams

 

and 

 

statechart diagrams

 

 or, more briefly, 

 

statecharts

 

. An activity diagram
shows the action or activity states starting from the initial and ending in the
final state. State transitions can be sequential, branching, or concurrent
(through forking and joining). The activity diagram is essentially a flowchart
that emphasizes the activity that takes place over time, similar to Pert Charts.

Statecharts are the means of specifying finite state machines in UML. They
are a type of advanced state transition graphs. A statechart shows simple
and composite states starting from the initial and ending in the final state.
The composite states are a means to organize states hierarchically. The state
transitions can be guarded by conditions and they can indicate firing events
and the corresponding actions.

The main goal of the deployment design is the decomposition of the system
in two dimensions. Horizontally, the system is partitioned into parts that are
deployed onto different network nodes. The term used for nodes by ISO OSI
is open systems. Vertically, the system is partitioned into layers. Typical
layers recognized by the USDP are the following:

• Application-specific layer
• Application-general layer (e.g., packages common for a set of appli-

cations)
• Middleware layer (e.g., Java VM and Java packages)
• System-software layer (e.g., TCP/IP protocol stack)

Furthermore, the system-software layer is generically partitioned by ISO OSI
into the following seven layers:

• Application layer
• Presentation layer
• Session layer
• Transport layer
• Network layer
• Data link layer
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• Physical layer

Another way to vertically partition is in accordance with the TCP/IP Internet
layers, as follows:

• Application layer
• Transport layer
• Network layer
• Network interface layer

In the context of operating systems, we can think of layers as processes.
Logically, each process has its own program and the processor that executes
it but, in reality, some of the processes may share the program or the pro-
cessor. The processes sharing the same program are referred to as threads.
The processes sharing the same processor constitute the multiprogramming
set.

The layers do not exist for themselves — rather, they are typically created
to service the requests issued by the upper layers. When the number of
requests increases, the engineers face the scalability problem, which can be
solved by deploying the same layer on more processors. If the layers are the
instances of the same class, we refer to them as replicas. Alternately, on
multiprocessor systems with common memory, it might be possible for these
layers to share the same program.

The deployment of horizontal system partitions onto different processors
or computers is used rather frequently by system designers. Examples
include the client-server architecture, the multi-tier architecture, and others.
This convenience is why most engineers think of it in the first place when
deployment issues are raised. However, the deployment of vertical system
partitions onto various processors is also possible. A typical example is the
Bluetooth Host Controller Interface (HCI), which is a demarcation line
between the host processor that executes the upper layers and the Bluetooth
link controller (a microprocessor, a microcontroller, or a digital signal pro-
cessor) that executes the lower layers.

Horizontal and vertical system partitioning are typically conducted as two
interactive activities. The designer typically partitions the horizontal system
by rendering the deployment diagram, which shows the network nodes,
links between them, and the subsystems deployed on individual nodes.
Alternately, vertical partitioning — sometimes referred to as subsystem mod-
eling — results in a class diagram that shows just the subsystems (packages),
hierarchically organized in layers, and the dependencies among the sub-
systems. These two diagrams can be combined in the overall deployment
diagram, which shows both the hierarchy and the deployment.

Another important design goal is identifying and providing generic design
mechanisms that handle common requirements. The generic design mecha-
nisms can be provided as design classes, collaborations, or subsystems. The
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examples of the generic design mechanisms in the communication protocol
engineering are:

• Protocol (finite state machine, automata) state transition manage-
ment

• Buffer management
• Timer management
• Message management

These mechanisms are common for all communication protocols. Typically,
they are designed and implemented once as a separate subsystem that com-
prises the set of classes, which is then used and refined on a series of projects.
In this book, we will use one such subsystem, entitled the FSM library (see

specific and rests more in the domain of operating systems. Additionally,
such a library would most frequently already exist and the designers would
just use the mechanisms that it provides. Because of these two reasons,
we intentionally postpone presenting the FSM library details for the next
chapter.

By accepting this approach, we keep the focus on the activities that are

has written the FSM library that provides all the necessary mechanisms (state
transition, buffer, timer, and message management) and we concentrate on
the design based on these mechanisms. Therefore, for a moment we should
simply think of the FSM library as an infrastructure that facilitates the design
and implementation of communication protocols.

Going back to the system design itself, this chapter will cover two addi-
tional domain-specific languages that have been in use much before UML
and are still rather popular today, namely SDL and MSC. The SDL diagrams
are semantically equivalent to the UML activity diagrams and statecharts.
In principle, establishing a one-to-one mapping between them should not
be a problem. The SDL diagram, like the UML activity diagram and state-
chart, specifies the complete system behavior.

The SDL diagram shows states and state transitions starting from the initial
state and ending in the final state. The state transitions are rendered in a
style of flowcharts. Each state transition starts with an input message that
causes the transition. Typically, a state transition processes the received mes-
sage and optionally sends the consequent messages.

The MSC chart is semantically equivalent to the UML interaction diagrams,
i.e., to both collaboration and sequence diagrams. In fact, the MSC chart can
be one-to-one translated to the UML sequence diagram, but the opposite is
not the case. By looking at both of them, they make the same impression.
Most engineers have the impression that they are almost the same, with the
MSC being a little less expressive. Like the UML sequence diagrams,
the MSC chart shows the objects that communicate — together with their
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corresponding vertical lines — and the messages they exchange, which are
rendered as horizontal arrows connecting the source and the destination
vertical lines.

Finally, this chapter covers the third domain-specific language, TTCN,
which is used for making test models more formal than in UML. In contrast
to the UML test model, which is rather descriptive and more like a general
framework, TTCN is a well-defined language for defining test suites. As
already mentioned, it originates from the ISO and has been traditionally
used for the conformance testing of communication protocols.

TTCN, much like the higher-level programming language, has built-in
types and allows a user to define new types (simple and structured), vari-
ables, constraints, and functions in specialized tables. The essence of the
TTCN test case specification is an indented tree of events that is filled in a
table, which specifies the behavior of the testers that run the test case and
the outcomes of the test case (pass, fail, or inconclusive).

The next sections describe the class diagrams, the object diagrams, the
sequence diagrams, the activity diagrams, the statechart diagrams, the
deployment diagrams, the SDL diagrams, the MSC charts, and the TTCN
tables. The chapter ends with a series of design examples.

 

3.1 Class Diagrams

 

A class diagram is a special type of graph that consists of a set of vertices
interconnected by arcs. They are so popular and widely used that most of
the newcomers to UML equate the UML and the class diagrams. Normally,
we use the class diagrams to model the static design view of the system.
More precisely, we typically use them to model the vocabulary of the system,
collaborations, or database schemas.

A vocabulary of the system is a set of abstractions that are parts of the
system. A collaboration is a group of classes, interfaces, and other elements
that cooperate to provide a more complex functionality. A schema is a blue-
print that is used for the conceptual design of a database. In communication
protocol engineering, we rarely deal with real databases, but we frequently
need to design at least a couple of persistent objects that hold the system
configuration or similar information. 

The basic class diagram vertices are classes, interfaces, and collaborations.
These are interconnected with three types of arcs, with dependency, gener-
alization, and association relations. To keep the size of the class diagrams
manageable, we typically render smaller collaborations that describe certain
aspects of the system. If we want to put those collaborations in a larger
context, we can render the surrounding packages or subsystems. Both pack-
ages and subsystems enable hierarchical organization of class diagrams. For
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example, we will render the FSM library as a package that is used by the
protocols that are the subjects of design and implementation.

We use packages and subsystems to manage complexity. Alternately, we
render class instances (objects) in class diagrams to manage ambiguity, espe-
cially when we want to explicitly show the dynamic type of an instance or
some other hidden details of the system. A special type of class diagrams
are object diagrams, which will be described in the next section of this
chapter.

Like use case and collaboration diagrams described in the previous chap-
ter, class diagrams are normally also rendered using some of the commer-
cially available graphical tools, e.g., Microsoft Visio. The same is true for
other UML diagrams described in this chapter. The basic set of graphical
symbols available for rendering class diagrams is shown in Figure 3.1. The
design engineer must specify properties for each instance of a symbol in the
drawing.

The most frequently used symbol in class diagrams is the class symbol.
Eight categories of class properties exist: the general information, the table
of attributes, the table of receptions, the table of parameters, the list of
components, the table of constraints, and the tagged values. The general
information includes the name, the full path, the stereotype (delegate, imple-
mentation class, metaclass, structure, type, union, or utility), the visibility
(private, protected, or public), and the indicators for the 

 

Root

 

, 

 

Leaf

 

, 

 

Abstract

 

,
and 

 

Active

 

 types of classes. The table of attributes comprises columns for the
attribute name, the type, the visibility, the multiplicity (1, *, 0..1, 0..*, 1..1, or

 

FIGURE 3.1

 

The basic set of graphical symbols available for rendering class diagrams.

«interface»

InterfaceInterface

Class

Object : Class

«subsystem»

Subsystem
Package

AssociationClass
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1..*), and its initial value. The table of operations comprises columns for the
operation name, the return type, the visibility, the scope (classifier or
instance), and the indicator for the polymorphic operations. The table of
receptions includes columns for the reception name, the corresponding sig-
nal name, the visibility, the scope, and the indicator for the polymorphic
operations. The table of template parameters stores parameter names and
types. The list of components comprises names of the components that
implement this class. The table of constraints consists of four columns: the
constraint name, the stereotype (precondition, postcondition, or invariant),
the language type (OCL, text, pseudocode, or code), and the body of the
constraint. The tagged values include the notes for the documentation, the
location, the persistence, the responsibility, and the semantics.

Two graphical symbols are available for rendering interfaces. The first
shows just the name of the interface, whereas the second also shows the
available operations. Being the specialized classifier, the interface properties
are a subset of class properties. More precisely, the interface has four cate-
gories of properties: the general information, the table of operations, the
table of constraints, and the tagged values. Those properties are the same as
the corresponding class properties with a single exception. The interface is
passive in its nature, hence the general information might not include the
indicator of 

 

Active

 

 type.
The package has four categories of properties: the general information, the

table of events, the table of constraints, and the tagged values. The general
information includes the name, the full path, the stereotype (facade, frame-
work, stub, or system), the visibility (private, protected, or public), and the
indicators for the 

 

Root

 

, 

 

Leaf

 

, and 

 

Abstract

 

 types of packages. The table of
events stores the event names and the types.

The subsystem has four categories of properties: the general information,
the table of operations, the table of constraints, and the tagged values. The
general information includes the name, the full path, the visibility, and the
indicators for the 

 

Root

 

, 

 

Leaf

 

, 

 

Abstract

 

, and 

 

Instantiable

 

 types of subsystems.
The object has four categories of properties: the general information, the

table of attributes, the table of constraints, and the tagged values. The general
information about the object includes the object name and the corresponding
class name. The tagged values are just documentation notes and the tag
persistent value.

The dependency relation has three categories of properties: the general
information, the table of constraints, and the tagged values. The general
information includes the name, the stereotype (becomes, call, copy, derived,
friend, import, instance, metaclass, power type, or send), and the description.
The tagged values are the notes for the documentation.

The generalization relation has three categories of properties: the general
information, the table of constraints, and the tagged values. The general
information comprises the name, the full path, the stereotype (extends, inher-
its, private, protected, subclass, subtype, or uses), and the discriminator. The
tagged values are documentation notes.
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The association relation has three categories of properties: the general
information, the table of constraints, and the tagged values (documentation
notes). The general information comprises the name, the full path, the name
reading direction (forward or backward), and the information about the
association ends, which includes the name, the aggregation (none, compos-
ite, or shared), the visibility, the multiplicity, and the indicator 

 

Navigable

 

. If
the end is navigable, it is shown with an arrow symbol, and if not, it is shown
without an arrow symbol. Because the composition relation is a specializa-
tion of the association relation, it has the same categories of properties (the
general information, the table of constraints, and the tagged values), with
the exception that the default values for the aggregation and multiplicity (of
one of the ends) are composite and 1, respectively.

The association class is a class that models the complex relation; therefore,
its set of properties is a union of properties of classes and associations. More
precisely, the association class has five categories of properties: the general
information, the table of attributes, the table of operations, the table of
constraints, and the tagged values. The general information comprises the
name, the full path, the information about the association ends (name, aggre-
gation, visibility, multiplicity, and navigability), and the association class
details (visibility information and 

 

Root

 

, 

 

Leaf

 

, 

 

Abstract

 

, and 

 

Active

 

 indicators).
The object link has three categories of properties: the general information,

the table of constraints, and the tagged values (just documentation notes).
The general information includes the name and the information about each
of the two link ends. The link end information comprises the name and the
stereotype (none, association, global, local, parameter, or self).

This concludes the description of the basic graphical symbols available for
rendering class diagrams. The usage of these symbols is illustrated by two

model of the TCP/IP protocol stack, and the second example is a simple
model of a finite state machine (automata instance).

The TCP/IP protocol stack is modeled by the classes that represent its
layers: 

 

Application

 

, 

 

Transport

 

, 

 

Network

 

, and 

 

Interface

 

. The transport layer has
a number of ports, which are modeled by the interface 

 

Port

 

. The application
depends on the transport (this fact is modeled by the dependency relation)
and it gets the service it needs through the interface 

 

Port

 

. Further down, the
transport layer depends on the network layer, which in turn is in association
with a number of interfaces.

The left side of Figure 3.2 shows the models of the host computers that
are connected to the Internet and the routers that interconnect the physical
networks that constitute the Internet. The host computer is modeled by the
class 

 

Host

 

. Each host comprises all TCP/IP protocol stack layers. This fact
is modeled by the composition relations between the class 

 

Host

 

 and the
classes that model the individual layers (

 

Application

 

, 

 

Transport

 

, 

 

Network

 

, and

 

Interface

 

). The router is modeled by the class 

 

Router

 

. Each router comprises
the network and the interface layer. This is modeled by the composition
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relations between the class 

 

Router

 

 and the classes that model the individual
layers.

The right side of Figure 3.2 shows some of the applications and protocols
available in the TCP/IP family of protocols. The electronic mail and World
Wide Web (WWW) applications — and their corresponding protocols — are
modeled by the class 

 

Email

 

 and 

 

WWW

 

, respectively. These two applications
are the examples of particular applications, and this fact is modeled by the
generalization and specialization relations between the class that models a
generic application (

 

Application

 

) and the classes that model the particular
applications (

 

Email

 

 and 

 

WWW

 

). Similarly, TCP and UDP are particular trans-
port protocols (modeled by the classes 

 

TCP

 

 and 

 

UDP

 

), and this is modeled
by the generalization and specialization relations between the class that
models a generic transport protocol and the class that model TCP and UDP.

Further down the hierarchy, the Internet network layer comprises the IP
and ICMP protocols (modeled as the classes 

 

IP

 

 and 

 

ICMP

 

). This is modeled
by the composition relations between the classes that model the network
layer and the IP and ICMP protocols. At the bottom of the hierarchy, we
show that various types of interfaces exist, e.g., Ethernet and serial, by
generalization and specialization relations between the class 

 

Interface

 

 and
the classes 

 

Ethernet

 

 and 

 

Serial

 

, which model these particular interfaces.

 

FIGURE 3.2

 

An example of a simple model of the TCP/IP protocol stack.
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The second example of simple class diagrams is a simple model of a finite
state machine (automata instance). The aim of this example is as an easy
exercise. We will return to the topic of modeling automata more comprehen-
sively at the beginning of the next chapter. The key abstractions in this
example are a finite state machine, a state, and a state transition, which are
modeled by the classes 

 

Automata

 

, 

 

State

 

, and 

 

Transition

 

, respectively (Figure
3.3).

The finite state machine comprises a number of states. This fact is modeled
by the composition relation between the class 

 

Automata

 

 and the class 

 

State

 

.
The multiplicity from the side of the class 

 

Automata

 

 is 1 and from the side
of class 

 

State

 

 is *. (This notation means that a finite state machine
must comprise at least one state, which technically sounds like a reasonable
requirement.)

The state transition links the source and the destination states, and this is
modeled by two association relations between the classes 

 

State

 

 and 

 

Transition

 

.
The ends of these association relations from the side of the class 

 

Transition

 

are named 

 

FromSourceState

 

 and 

 

ToDestinationState

 

, respectively. The multi-
plicity from the side of the class 

 

State

 

 is set to 1 (because each state transition
must have exactly one source and one destination state), and from the side

 

FIGURE 3.3

 

An example of a simple automata model.
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of the class 

 

Transition

 

 to 0..* (because a state may have zero or more outgoing
and zero or more incoming state transitions). The navigability of these two
association relations is set such that the relation 

 

FromSourceState

 

 points from
the class 

 

State

 

 to the class 

 

Transition

 

, whereas the relation 

 

ToDestinationState

 

points in the opposite direction.
The main problem with this model is ambiguity. The source and the des-

tination states may seem to be always the same (because both 

 

FromSource-
State

 

 and 

 

ToDestinationState

 

 association relations are connected to the same
class, namely the class 

 

State

 

). However, source and destination states can be,
and most frequently are, different states. We will come back to this point
shortly, after introducing additional nodes and relations available for ren-
dering class diagrams, to resolve this problem in a less ambiguous way.

The key abstractions related to the transition are the condition that guards
the transition, the event that fires the transition, and the action that is taken
by the transition, which are modeled by the classes 

 

Condition

 

, 

 

Event

 

, and

 

Action

 

. Each transition is characterized by these three optional elements, and
that is modeled by the composition relations between the class 

 

Transition

 

and the classes 

 

Condition

 

, 

 

Event

 

, and 

 

Action

 

. The fact that these elements are
optional is modeled by setting the multiplicity to 0..1 from the side of the
corresponding classes.

Besides actions that are taken during the transitions, we can define state
bound actions, such as the action that is taken at the entrance to a certain
state, the action that is performed while the system is in a certain state, and
the action that is taken at the exit from a certain state (we will encounter
these and more in the UML statecharts later in this chapter). These action
types are modeled as the state operations 

 

entry()

 

, 

 

do()

 

, and 

 

exit()

 

, which are
defined in the table of operations for the class 

 

State

 

.
Until now, we were modeling a generic finite state machine. To make this

model useful for the implementation of a particular finite state machine, first
we need to define the concrete conditions, events, and actions. We do so
through the specialization of the base classes 

 

Condition, Event, and Action.

which are modeled by the classes ConditionX, EventY, and ActionZ, respec-
tively. Finally, to build the particular finite state machine, we need to instan-
tiate the classes. 

This concludes the presentation of two simple examples of class diagrams.
To make this graphical language more expressive and to reduce the ambi-
guity of the class diagrams, the graphical tool provides the additional set of

metaclass, whose instances are classes that are added to the class diagram.
We can resolve the problem of ambiguity in the previous example exactly
by using the metaclass instead of the class symbol because it is then clear
that the source and the destination state may both be the same state or two
completely different states. Again, as for the basic set of symbols, the addi-
tional symbols have similar categories of properties. The metaclass has the
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same properties as the class, with the exception that its stereotype (in general
information section) is fixed to metaclass.

Both the signal and the exception symbols have the same four categories
of properties, namely, the general information, the table of parameters, the
table of constraints, and the tagged values. The general information is the
same as for the interfaces (the name, the full path, the visibility, and the
indicators Root, Leaf, and Abstract). The table of parameters stores the infor-
mation about the parameters, which comprise the parameter name, the type,
the kind (in, out, or in-out), and the default value.

FIGURE 3.4
The additional graphical symbols available for rendering class diagrams.
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The data type has five categories of properties. These are the general
information, the table of enumeration literals, the table of operations, the
table of constraints, and the tagged values. The general information includes
the name, the full path, the stereotype (none or enumeration), the visibility,
and the indicators Root, Leaf, and Abstract. If the data type is an enumeration,
the table of enumeration literals holds the information about the literal
names and the corresponding values.

A utility is a special class, therefore it has the same properties as the class
with the exception that its stereotype is fixed to utility. Similarly, a parame-
terized class is a special class that has one or more unbound formal param-
eters, therefore it has the same categories of properties as the class. Related
to the parameterized class is a bind relation, that binds (connects) the des-
ignated arguments to the template formal parameters. It has four categories
of properties: the general information (just the name and the description),
the list of bound arguments, the table of constraints, and the tagged values.
The bound element adds the result of binding between the template param-
eters and their actual values. It has the same categories of properties as the
class.

The next three symbols are the traces, refines, and uses relations. We can
think of them as specialized dependency relations. The traces relation con-
nects two model elements from two different models. The refines relation
connects a more detailed model element to its previous version. The uses
relation indicates the dependency relationship between two model elements
where one requires another to fully operate. All these relations have the same
categories of information as the dependency relation, with the exception that
their stereotype is fixed.

The next four symbols are the note, the constraint note, the constraint
shown as arrow, and the OR constraint, which we have already encountered
in both use case and collaboration diagrams (described in the previous
chapter). The last three symbols are used to describe the relations among
more than two model elements. The first is the N-ary association, which
models the association among more than two classifiers. Its properties are
the same as for the binary association with the additional properties for each
association end (the name, the aggregation, the visibility, the multiplicity,
and the navigability indicator).

The second symbol is the N-ary association class, which models more
complex associations among more than two classifiers. Again, its properties
are the same as for the binary association class with additional properties
for each association end. The third and the last symbol is the N-ary object
link, which interconnects more than two objects. Its properties are the same
as the binary object link with additional properties for each end (the name
and the stereotype). 

At the end of this section, we focus on the domain-specific class diagrams.
As already mentioned, the reader should assume and accept that somebody
has already prepared the infrastructure for the design and implementation
of communication protocols. There is no need to start modeling generic
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automata every time we start a new project, but rather we do it once and
then use it on a number of projects. This practice is what in UML is called
providing generic design mechanisms.

In this book, we design and implement communication protocols based
on the FSM library. A typical class diagram is shown in Figure 3.5. The FSM
library is shown as the package FSMLibrary in the diagram and, on most
occasions, such representation would be sufficient. It actually comprises a
rather ramified hierarchy of C++ classes (we will go into more details in the
next chapter). The two most important classes are the FiniteStateMachine and
FSMSystem. The fact that the FSM library contains these classes is modeled
by the composition relations between the package FSMLibrary and the classes

FIGURE 3.5
A typical communication protocol class diagram.
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FiniteStateMachine and FSMSystem. The multiplicity is set to 1 on both sides
(one library contains one such class).

The communication protocol is modeled by the class Automata. The fact
that it is a specific type of finite state machine is modeled by the generali-
zation and specialization relation between the class Automata and the class
FiniteStateMachine. The former inherits all the attributes and operations from

merely to provide the preliminary information about the basic functionality
provided by the class FiniteStateMachine, and that it is the full set of generic
design mechanisms that are needed. Once we have this class, designing a
protocol essentially means defining its states and state transitions, and this
is basically what we do in this chapter. After the design is finished, imple-
menting the design (in this context) actually means writing the correspond-
ing state transition routines (functions) in C++.

Another important class is the class FSMSystem. It actually provides a run-
time system for all communication protocols. At the system startup, the main
program, here referred to as utility class (not shown in Figure 3.5), registers
the given communication protocol by calling the method Add() of the class
FSMSystem, and by giving the reference to the class that models the protocol
(Automata in this example) as its parameter. Once registered, the protocol
can receive, process, and generate events (messages), through the mailboxes
provided by the FSMSystem.

As we will see in the next chapter, the FSMSystem manages all events. It
analyzes the event source and destination to locate the destination protocol.
Once it is found, the FSMSystem looks up its current state, determines the
state transition routine based on the event code (type), and calls it. This
mechanism is modeled by the uses relation between the class FSMSystem
and the class Automata.

As we can see, the class Automata is a specialization of the class FiniteState-
Machine and is used by the class FSMSystem during the system run-time.
More briefly stated, the class Automata depends on the package FSMLibrary.
This fact is also modeled in Figure 3.5 by the corresponding dependency
relation between the class and the package.

3.2 Object Diagrams

Object diagrams are a special type of class diagrams that typically show a
set of objects (instances of classifiers) and their links. Pure object diagrams
contain only objects and their links. However, sometimes we may put some
classifiers in the object diagram, especially to clarify the relations between
the classes and the objects. We may also use packages or subsystems to deal
with complexity.
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the latter. The list given in Figure 3.5 is not exhaustive and its purpose is
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Object diagrams, like class diagrams, are used to show the static design
view of the system. As already mentioned in the previous chapter, the col-
laboration diagram is used to model the behavior of the system. It also shows
the architecture of the system; hence, we say that the collaboration diagram
is organized by the architecture. We can think of the object diagram as one
snapshot of the collaboration diagram. Imagine that time is frozen. Whatever
we can see in the collaboration diagram at that single moment of time is an
object diagram.

Later in this chapter, we will introduce the deployment diagrams, and we
will introduce the component diagrams in the next chapter. Both deployment
and component diagrams can contain only objects and their links. In such
cases, they are actually pure object diagrams.

Clearly, the graphical symbols available for rendering object diagrams are
the same as the symbols used for class diagrams (sometimes referred to as
a static structure). In practice, we use only a very limited subset of those
symbols, most frequently only two of them (object and object link).
The properties of these symbols are described in a previous section of this
chapter.

Usage of object diagrams can reduce the ambiguity of the static structure
twofold. First, by rendering instances of classifiers, we can better understand
the relations among them. For example, by rendering just the classes in the
TCP/IP protocol stack model, it may not be clear what the network really
looks like. Second, by showing the values of the key class attributes, we can
recognize reality more easily. For example, by showing the status of the
individual protocols, we can also comprehend their expectations from other
cooperating protocols.

These ideas are illustrated by the following two examples. The first is the
object diagram that shows the snapshot from a simple mail transfer protocol

Figure 3.6 shows the software running on two host computers that are
connected to two different local area networks, which are interconnected by
the router. The host computers clearly require full protocol stacks whereas
the router requires only the two lowest level layers (IP and network inter-
face). One host computer, shown on the left side of the figure, runs the SMTP
client on top of the TCP/IP protocol. The other host computer hosts the
SMTP server.

The first benefit of this object diagram is that it really makes clear which
layers are required by the hosts and which are required by the routers.
Graphically, we see the network, which was rather difficult to visualize just

in this object diagram, too. More symbols are used than in the class diagram,
but only five per host and two per router. Of course, if we try to model a
large network there would be a flood of objects; therefore, we should always
try to restrict our modeling to a certain aspect of a system.
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(Figure 3.6). The second is the example of a simple finite state machine object
diagram (Figure 3.7).

by looking at the class diagram shown in Figure 3.3. Enough order is found
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FIGURE 3.6
A snapshot from the simple mail transfer protocol (SMTP).

FIGURE 3.7
An example of a simple finite state machine (FSM) object diagram
.

status = AWAITING_220

client : SMTPClient

port25c : Port

port25status = opened

tcpc : TCP

ipc : IP

status = active

ic : Ethernet

net1 : LAN

status = active

ir1 : Ethernet

status = active

ir2 : Ethernet

ipr : IP

net2 : LAN

status = active

is : Ethernet

ips : IP

port25status = opened

tcps : TCP

port25s : Port

status = INITIAL

server : SMTPServer

code = 220

text = READY FOR MAIL

msg : SMTPMsg

currentState = S0
states = (s0, s1)

aut : Automata

id = T00
condition = con00
event = eve00
action = act00
nextState = S0

t00 : Transition

id = S0
transitions = (t00, t01)

s0 : State id = T01
condition = con01
event = eve01
action = act01
nextState = S1

t01 : Transition

id = S1
transitions = (t10)

s1 : State id = T10
condition = con10
event = eve10
action = act10
nextState = S0

t10 : Transition
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The second benefit is that we can peacefully study all the details of a certain
moment in the life of a protocol, in this case SMTP. It is like looking at the
photograph of a certain party. This one shows the moment when the SMTP
server has prepared the message 220 READY FOR MAIL and its intention
was to send it at the moment when the time has been frozen. We can imagine
what the sensation of looking at a series of such object diagrams would be,
like watching a replica of an important event in a game in slow motion. After
receiving the message 220 READY FOR MAIL, the SMTP client would pre-
pare the message HELO, and so fortth.

Besides current messages, other details are also important. For example,

and from there we can deduce that the SMTP client and server had to
establish the TCP connection in the first place before they could proceed any
further. Some details may seem obvious, for example that all Ethernet cards
and their drivers must be active, but they also help in making the complete
picture of the selected moment. In a series of object diagrams, the changes
of values of certain attributes, such as status, are the most interesting and
most informative part.

The second example of object diagrams is a simple finite state machine

prises a set of two state objects, namely s0 and s1, which are the instances
of the class State. Their identifications are S0 and S1, respectively. The current
state of the automata is the state with the identification S0.

The state object s0 contains a set of two transition objects, namely t00 and
t01, which are the instances of the class Transition (Figure 3.4). Similarly, the
state object s1 contains a set with one transition object, named t10. The
transition objects t00, t01, and t10 model the automata state transitions from
the state with the identification S0 to the state with the identification S0, or
more briefly from S0 to S0, next from S0 to S1, and last from S1 to S0,
respectively.

The attributes of the transition objects are the transition identification, the
condition that guards the transition, the event that fires the transition, the
action that is taken by the transition, and the next state identification. Their
identifiers are id, condition, event, action, and nextSate, respectively. id and
nextState would typically be strings or integers. condition, event, and action
are the instances of the class Condition, Event, and Action.

An important detail is that the values of these attributes are the instances
of classes that are specialized from the classes Condition, Event, and Action.
For example, the values of the attribute condition, namely con00, con01, and
con10, are the instances of the classes, e.g., Condition00, Condition01, and
Condition10, which are actually specializations of the class Condition. Such
modeling allows us to use polymorphism, the most powerful abstraction of
object-oriented design and programming.
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we see in Figure 3.6 that the TCP port number 25 is opened from both sides,

object diagram, which is shown in Figure 3.7. A simple finite state machine
object, named aut, is an instance of the class Automata (Figure 3.4). It com-
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3.3 Sequence Diagrams

Two types of UML interaction diagrams are used, namely, the sequence
diagrams and the collaboration diagrams. We have already introduced the
collaboration diagrams in the previous chapter. They can be used in both
analysis and design phases of communication protocol engineering.
Sequence diagrams are just another type of interaction diagrams and are
semantically equivalent to collaboration diagrams. This means that a one-
to-one mapping exists between these two formalisms that are used for spec-
ifying interactions.

An interaction is basically a set of objects and their relationships, together
with the messages that are exchanged among the objects. Both sequence and
collaboration diagrams show interactions. The major difference between
them is that the sequence diagrams emphasize time ordering of messages
whereas the collaboration diagrams emphasize the structural organization
of a set of objects. The sequence diagrams are particularly useful for visual-
izing dynamic behavior in the context of the use case scenario. Generally,
they are better suited for modeling sequences of events, simple iterations,
and branching. Alternately, collaboration diagrams are more useful for mod-
eling complex iterations and branching and for visualizing multiple concur-
rent flows of control.

Sequence and collaboration diagrams also differ in appearance. As we
have already seen in the previous chapter, a collaboration diagram looks like
a graph. It consists of objects that are linked together in a certain arrange-
ment. A sequence diagram appears more like a table whose columns are
related to individual objects and whose rows are related to the messages
that are exchanged among the objects. We can imagine the horizontal axis
x, at the top of the diagram, pointing from left to right, and the vertical axis
y that points from top to bottom. The objects that participate in the interaction
are arranged across the x-axis, starting on the left with the objects that are
initiating the interaction and proceeding to the right with more subordinate
objects. The messages that are exchanged among the objects are ordered in
increasing time along the y-axis. (Actually, we have already informally
encountered sequence diagrams in the previous chapter. See the example of

The sequence diagrams have two key features that distinguish them
among other diagrams:

• Object lifeline
• Focus of control

An object lifeline is a dashed vertical line that represents the existence of
an object over a period of time. The object lifeline starts with the reception
of the message stereotyped as <<create>> and ends with the reception of the
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the SIP session setup in Figure 2.13.)
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message stereotyped as <<destroy>>. The end of the life of an object is
indicated by the mark “X.” However, most of the object will exist throughout
the interaction. Such objects are normally placed at the top of the diagram
and their lifeline typically goes to the end of the diagram.

The focus of control represents the period of time during which the object
executes. It is rendered as a long, thin rectangle. We can model recursion, a
call to self-operation, or call-back by placing a new focus of control symbol
on top of the current focus of control symbol and slightly to the right, so
that both of the symbols are visible. We can explicitly show the part of the
focus of control where the actual computation takes place by shading the
corresponding region.

We can model the mutation of objects in their state, role, or attribute values
in sequence diagrams. Two methods to do this exist: The first is by placing
a new copy of the object in the sequence diagram and showing the change
by connecting the existing and the new object copy with the transition
<<become>>. This procedure can be repeated if we want to show a sequence
of changes. The second method is by placing a new copy of the object directly
on the object’s lifeline and showing the change of state, role, or attribute
values then and there.

The set of graphical symbols available for rendering sequence diagrams

duced, each of the symbols has its own properties with the exception of the
focus of control, which has no properties on its own (it is a symbol that can
exist only on top of the object’s lifeline). The designer must fill in the prop-
erties after adding the symbol to the diagram.

The object and its lifeline have three categories of properties: the general
information, the table of constraints, and the tagged values. The general
information includes the name, the full path, the classifier, and the multi-
plicity. Other categories of properties are already explained in the previous
sections.

The message has four categories of properties. These are the general infor-
mation, the table of arguments, the table of constraints, and the tagged values
(documentation notes). The general information includes the name, the
direction (forward or backward), the operation, and the sequence expression.
The table of arguments holds information about the arguments, such as the
name, the type, the language, and the value.

The following four types of messages are used:

• Flat
• Call
• Return
• Asynchronous

The flat message models the communication between the objects that
convey information, which should result in an action. The call message
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is shown in Figure 3.8. Similar to the diagrams that were previously intro-
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models a synchronous procedure call that should result in some action. The
return message models returns from the procedure, which convey the return
value that will cause an action. The asynchronous message models the asyn-
chronous communication between two objects, which also carries some
information that will trigger an action. The note, the constraint note, the
constraint, and the OR constraint are symbols that we have already encoun-
tered and explained in previous sections.

Next, we illustrate the use of sequence diagrams by four examples shown

do relate to the same interaction, but they are not exactly semantically equiv-
alent because of two reasons. First, the former shows fewer objects than the
latter, mainly because of the limited diagram width. Second, the latter shows
only a part of the interaction shown by the former. Interestingly enough, this
seems to be a general rule. The sequence diagrams typically show fewer
objects but more messages than do collaboration diagrams.

The example shown in Figure 3.9 generally illustrates the same use case
Send e-mail as does the collaboration diagram shown in Figure 2.9. Figure
3.9 shows only the most important subset of objects but, at the same time,
it illustrates the interaction long enough to show the moment when the SMTP
client sends the SMTP message DATA toward the SMTP server. The

FIGURE 3.8
The set of graphical symbols available for rendering sequence diagrams.

Note (Constraint)

Object : Class

Message (flat) Message (call)

Message (return) Message (asynchronous)

(OR)(Constraint)
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in Figure 3.9, Figure 3.10, Figure 3.11, and Figure 3.12, which are semantically
equivalent to the collaboration diagrams shown in Figure 2.9, Figure 2.10,
Figure 2.11, and Figure 2.12, with one exception. Figure 3.9 and Figure 2.9
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the point when the SMTP client receives the message 220 READY FOR MAIL,
which is actually the very beginning of the SMTP protocol. The names of
the objects, messages (signals), and message arguments used in both figures
are explained in the previous chapter. The exact flow of events shown in
Figure 3.9 is as follows:

FIGURE 3.9
A sequence diagram showing the interaction between a simple program for sending and
receiving e-mails and its environment.

dnsc smtpc tcpssender smtpstcpc dnss

3: dnsReq(domain)

4: dnsRsp(ip)

5: ipadr(ip)

6: open(ip, 25)

7: seg(syn)

8: seg(syn+ack)

8.1: openAck

8.2: seg(ack)

8.2.1: openAck

9: mail(220)

10: seg(220)

11: mail(220)

12: mail(HELO)

13: seg(HELO)

14: mail(HELO)

15: mail(250_OK)

16: seg(250_OK)

17: mail(250_OK)

21: mail(250_OK)

22: seg(250_OK)

23: mail(250_OK)

26: mail(RCPT_TO:)

27: mail(250_OK)

28: seg(250_OK)

29: mail(250_OK)

30: mail(DATA)

1: sendMail(g)msg)

2: domainToIP(domain)

8.1.1: openAck

20: mail(MAIL_FROM:)

19: seg(MAIL_FROM:)

18: mail(MAIL_FROM:)

24: mail(RCPT_TO:)

25: seg(RCPT_TO:)
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collaboration diagram shown in Figure 2.9 shows the situation only up to
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1: The object mailc (not shown in the diagram) sends the signal send-
Mail(msg) to the object sender.

2: The object sender sends the signal domainToIP(domain) to the object
dnsc.

3: The object dnsc sends the signal dnsReq(domain) to the object dnss.
4: The object dnss sends the signal dnsRsp(ip) to the object dnsc.
5: The object dnsc sends the signal ipadr(ip) to the object sender.
6: The object sender sends the signal open(ip,25) to the object tcpc.
7: The object tcpc sends the signal seg(syn) to the object tcps.
8: The object tcps sends the signal seg(syn+ack) to the object tcpc. (The

event flow now forks into two parallel flows.)

FIGURE 3.10
A sequence diagram showing the interaction between the DNS client and the DNS server.

FIGURE 3.11
A sequence diagram showing the interaction between two TCP entities.

dnsc dnss

1: dnsReq(domain)

2: dnsRsp(ip)

tcpc tcps

1: seg(syn)

2: seg(syn+ack)

3: seg(ack)

4: seg(data)

5: seg(fin)

6: seg(ack)

7: seg(fin+ack)

8: seg(ack)
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8.1: The object tcpc sends the signal openAck to the object sender. (The
first flow begins here.)
8.1.1: The object sender sends the signal openAck to the object

smtpc. (The first flow ends here.)
8.2: The object tcpc sends the signal seg(ack) to the object tcps. (The

second flow begins here.)
8.2.1: The object tcps sends the signal openAck to the object smtps.

9: The object smtps sends the signal mail(220) to the object tcps. (Note:
We have restarted the message numbering here for brevity. We pro-
moted 8.2.2 to 9.)

10: The object tcps sends the signal seg(220) to the object tcpc.
11: The object tcpc sends the signal mail(220) to the object smtpc.
12: The object smtpc sends the signal mail(HELO) to the object tcpc.
13: The object tcpc sends the signal seg(HELO) to the object tcps.
14: The object tcps sends the signal mail(HELO) to the object smtps.
15: The object smtps sends the signal mail(250_OK) to the object tcps.

FIGURE 3.12
A sequence diagram showing the interaction between the SMTP client and the SMTP server.

smtpc smtps

1: mail(220)

2: mail(HELO)

3: mail(250_OK)

4: mail(MAIL_FROM:)

5: mail(250_OK)

6: mail(RCPT_TO:)

7: mail(250_OK)

8: mail(DATA)

9: mail(354_START_MAIL_INPUT)

10: mail(MAIL_BODY)

11: mail(250_OK)

12: mail(QUIT)

13: mail(221)
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16: The object tcps sends the signal seg(250_OK) to the object tcpc.
17: The object tcpc sends the signal mail(250_OK) to the object smtpc.
18: The object smtpc sends the signal mail(MAIL_FROM:) to the object

tcpc.
19: The object tcpc sends the signal seg(MAIL_FROM:) to the object tcps.
20: The object tcps sends the signal mail(MAIL_FROM:) to the object

smtps.
21: The object smtps sends the signal mail(250_OK) to the object tcps.
22: The object tcps sends the signal seg(250_OK) to the object tcpc.
23: The object tcpc sends the signal mail(250_OK) to the object smtpc.
24: The object smtpc sends the signal mail(RCPT_TO:) to the object tcpc.
25: The object tcpc sends the signal seg(RCPT_TO:) to the object tcps.
26: The object tcps sends the signal mail(RCPT_TO:) to the object smtps.
27: The object smtps sends the signal mail(250_OK) to the object tcps.
28: The object tcps sends the signal seg(250_OK) to the object tcpc.
29: The object tcpc sends the signal mail(250_OK) to the object smtpc.
30: The object smtpc sends the signal mail(DATA) to the object tcpc.

Another practical detail about sequence diagrams is that not only their width
but also their height is limited. Because of this, we are normally forced to
break the flow of events at a certain point. In the previous example, it was
after the object smtpc has sent the signal mail(DATA) to the object tcpc.
Typically, we would continue that flow on another sequence diagram. Good
practice is to pick the breaking points logically, for example, at the beginning
or at the end of certain communication phases.

shows only main flows of events. It does not show what happens in the case
of errors. The error handling is typically shown in separate sequence dia-
grams. We can use packages to wrap together all the related sequence dia-
grams.

Figure 3.9 shows also that the real overall interaction can be fairly complex.
To deal with complexity, we can focus on the individual virtual interactions
instead. For example, the sequence diagram showing the interaction between

then reduces to only the following two events:

1: The object dnsc sends the signal dnsReq(domain) to the object dnss.
2: The object dnss sends the signal dnsRsp(ip) to the object dnsc.

Similarly, the virtual interaction between two TCP entities, modeled by the
objects tcpc and tcps, is governed by the TCP protocol. It is slightly more
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Also important is to emphasize that the sequence diagram in Figure 3.9

the DNS client and server is a trivial one (Figure 3.10). The flow of events

complex and comprises the following flow of events (Figure 3.11):
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1: The object tcpc sends the signal seg(syn) to the object tcps.
2: The object tcps sends the signal seg(syn+ack) to the object tcpc.
3: The object tcpc sends the signal seg(ack) to the object tcps.
4: The object tcpc sends the signal seg(data) to the object tcps. (This is the

data transmission phase.)
5: The object tcpc sends the signal seg(fin) to the object tcps.
6: The object tcps sends the signal seg(ack) to the object tcpc.
7: The object tcps sends the signal seg(fin+ack) to the object tcpc.
8: The object tcpc sends the signal seg(ack) to the object tcps.

Finally, the virtual interaction between the SMTP client and server, modeled

flow of events is the following:

1: The object smtps sends the signal mail(220) to the object smtpc.
2: The object smtpc sends the signal mail(HELO) to the object smtps.
3: The object smtps sends the signal mail(250_OK) to the object smtpc.
4: The object smtpc sends the signal mail(MAIL_FROM:) to the object

smtps.
5: The object smtps sends the signal mail(250_OK) to the object smtpc.
6: The object smtpc sends the signal mail(RCPT_TO:) to the object smtps.
7: The object smtps sends the signal mail(250_OK) to the object smtpc.
8: The object smtpc sends the signal mail(DATA) to the object smtps.
9: The object smtps sends the signal mail(354_START_MAIL_INPUT) to

the object smtpc.
10: The object smtpc sends the signal mail(MAIL_BODY) to the object

smtps.
11: The object smtps sends the signal mail(250_OK) to the object smtpc.
12: The object smtpc sends the signal mail(QUIT) to the object smtps.
13: The object smtps sends the signal mail(221) to the object smtpc.

3.4 Activity Diagrams

Up to now, we have introduced three types of diagrams that are used for
modeling dynamic aspects of systems. These are the use case, the collabo-
ration, and the sequence diagrams. The use case diagrams are used first for
capturing the requirements of the system. They are then translated into
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by the objects smtpc and smtps, is of the same order of complexity (Figure
3.12). The interaction is governed by the SMTP protocol. The corresponding
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collaboration diagrams that model the architecture of the system. Next, at
the beginning of the design phase, both collaboration and sequence diagrams
are used for building up the storyboards of scenarios.

These scenarios describe the interaction among the most interesting
objects; hence, we refer to them as interaction diagrams. The interaction itself
is shown by the messages that are dispatched among the objects. Generally,
interaction (collaboration and sequence) diagrams are similar to Gantt charts.
The main difference between the collaboration and sequence diagrams is
that the former emphasize the structural relations whereas the latter empha-
size the time ordering of messages.

The storyboards of scenarios are a good place to start the design — there-
fore, they are a type of design front-end. Although the interaction diagrams
make a perfect start of the design, they are seldom used as the final artifacts
of the design phase because of the following two problems:

• The interaction diagrams are most frequently incomplete.
• The interaction diagrams specify the external behavior of individual

objects, leaving their internal behavior unknown.

As already mentioned, the interaction diagrams typically cover the main
flow of events and, because of the limited space in the diagrams, even the
main flow must be partitioned into logical communication phases. Other
less frequent flows, including error handling, are modeled in additional
interaction diagrams. All these diagrams can be sorted into packages for
easier manipulation. However, no matter how pedantic the engineer is, the
set of interaction diagrams remains incomplete by unwritten rule. Some
scenarios are always missing. In the area that is of primary interest for this
book, the packages of interaction diagrams are especially vulnerable on
specification of timers and complex unforeseen error scenarios.

Another problem we encounter while trying to make the packages of
interaction diagrams complete is that they become voluminous and, because
of that, hard to comprehend. But this behavior is what we should expect
when we try to enumerate and describe the cases instead of trying to create
the rules that generate these cases. Even a simple program performing some
simple arithmetic calculations can produce enormous numbers of execution
cases when we take into account the cardinal numbers of sets of values the
common variable types can have. Because of the coverage problems, an
implicit engineering rule is that the design based solely on the interaction
diagrams is considered as incomplete. This may not be true in the case of
simple systems, but generally it is. Therefore, we need the design back-end,
the means to end the design.

The secret of how to finish the design is found by turning our attention
to the internal behavior of the objects and trying to specify it. This attitude
is like turning the interaction diagrams inside out. We want to specify the
activities that should take place to provide the desired external behavior and
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what should be the order (flow) of the activities in the scope of a single object
or in the scope of a set of objects that are involved in the interaction. The
means to do this in UML are the activity diagrams, which are similar to Pert
network charts. The alternative means to specify the behavior of single
objects in UML are statecharts, which will be introduced in the next section.

An activity diagram is essentially a flowchart that shows the flow of control
from activity to activity. If we model the behavior of a single object, we
render the flow of control within that single object. The activity diagrams
are even more powerful and they allow us to model the behavior of a group
of objects by rendering the flow of control in that larger scope. Additionally,
we can model a single flow of control or more concurrent flows of control
within both a single object and a group of objects.

In the context of a single object, we typically partition its behavior into a
set of its operations and then model the flow of control of these operations
individually. Therefore, the most elementary level of modeling by using
activity diagrams is the level of the object’s operation. On the opposite side
of the scope scale, we can model the workflow of a group of cooperating
objects, and we will return to that point shortly.

The most elementary activity is an action state. It is defined as an atomic
(i.e., uninterruptible) program computation. Examples of action sates are the
following:

• Create another object
• Destroy another object
• Call an operation on an object
• Return a value
• Send a signal to an object
• Receive a signal from an object
• Evaluate an expression
• Execute a single statement

The action states can be specified in informal text, pseudocode, or a higher
level programming language. Although it is generally assumed that the
action state takes a small amount of execution time, that finite amount of
time must be taken into account, especially in the models of hard real-time
systems.

By combining more action states, we are building more complex activities,
which are referred to as activity states. We can think of the activity state as
a composite state that is made of other activity states and action states. The
activity state can also comprise some special actions, such as entry and exit
actions. The former is taken at the entrance to the activity state, and the latter
is taken at its exit. 

The state transitions in activity diagrams normally take place after com-
pletion of the last activity in the originating state. A transition without a
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guard (condition) immediately passes control to the destination state. Such
a transition is referred to as a triggerless, or completion, transition. A tran-
sition can branch into two or more guarded transitions, or it can fork into
more concurrent transitions, and more concurrent transitions can join into a
single transition, as we will explain shortly with some simple examples.

An activity diagram is a special type of a graph that comprises a set of
vertices that are interconnected by arcs. The basic set of graphical symbols
available for rendering activity diagrams is shown in Figure 3.13. Each
symbol has a set of properties that must be set by the designer once they
add a symbol to the diagram.

The initial state has three categories of properties. These are the general
information, the table of constraints, and the tagged values (documentation
notes). The general information is just the name and the type (initial). Each
activity diagram must start with this symbol.

The final state has the same categories of properties as the initial state
symbol, with the exception that its type is final. If the activities specified by
the activity diagram go on forever, the diagram will not contain this symbol.
Alternately, it can contain one or more such symbols.

The action state has five categories of properties, namely, the general
information, the call action, the list of deferred events, the table of constraints,
and the tagged values (documentation notes). The general information com-
prises the name, the stereotype, and the partition. The call action specifies
the name of the operation and the table of its arguments, which holds
information about the argument name, type, language, and value.

The activity state has six categories of properties. These include the general
information, the table of entry actions, the table of exit actions, the table of
internal transitions, the table of constraints, and the tagged values. The
general information is just the name and the stereotype. Both the table of
entry and the table of exit actions store the corresponding action names and
their types. The table of internal transitions comprises their properties. Each
internal transition is characterized by its name, its stereotype, and the event
that triggers the transition. 

The control flow transition has four categories of properties, including the
general information, the table of actions, the table of constraints, and the

FIGURE 3.13
The basic set of graphical symbols available for rendering activity diagrams.

ActionState

State
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tagged values (documentation notes). The general information comprises
the name and optionally the corresponding event and the guard expression.
The table of actions holds action names and their types. The decisions, as
well as the fork and join transitions, have three categories of properties,
namely, the general information (just the name), the table of constraints, and
the tagged values.

We illustrate the usage of these basic symbols by the following four simple

The example in Figure 3.14 shows a simple sequence of interruptible activ-
ities, i.e., activity states, namely, openPort(p), sendData(seg), and closePort(p).
Normally, these activity states would be modeled by the activity diagrams
themselves on the subordinated level of the hierarchy. The control flow
transitions between the individual activity states in this example are trig-
gerless, or completion, transitions, which means that they are not triggered
by other events. They also may not be guarded because their sources are
not decisions.

The exact semantics of the states in this example are not really important;
for example, we can interpret it as open the given port, send the given
segment of data, and close the port at the end. Generally, we should think
of the activity state as an operation (procedure, function), which consists of
executable statements or calls to other operations, including calls to itself
(recursion). Thinking about forward engineering helps make useful activity
diagrams. Try to imagine how the model would map to the code. It really
does not make any difference how the mapping would be made, automati-
cally with a tool or by hand.

FIGURE 3.14
An example of a simple sequence of activity states.

openPort(p)

sendData(seg)

closePort(p)
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The example in Figure 3.15 is an illustration of activity flow with branch-
ing. Actually, it is a simplified implementation of the reliable transport mech-
anism known as Automatic Repeat Question (ARQ). The whole operation
begins by starting the retransmission timer T1. This beginning is modeled
by the activity state startTimer(T1). The operation then sends the datagram

FIGURE 3.15
An example of a simple flow of activities with branching.

startTimer(T1);

sendPacket(d);

a = waitAnswer();

[T1 expired]
restartTimer(T1);

stopTimer(T1);

return true;

return false;

[else]

[ELSE]

[a==ACK]
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and waits for the answer. These two activities are modeled by the activity
state sendPacket(d) and a=waitAnswer(), respectively.

FIGURE 3.16
An example of a loop in an activity diagram.

FIGURE 3.17
An example of a simple set of concurrent flows.

i = 0; 

sendFragment(i);
[i < n] 

i = i + 1; no operation

[ELSE]

openPort(p);

sendData(); receiveData();

closePort(p);
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If the retransmission timer expires, the packet is retransmitted. This mech-
anism is modeled by the transition guarded by the expression [T1 expired],
the activity state restartTimer(T1), and the completion transition back to the
activity state sendPacket(d). The reception of the answer is modeled by the
transition that covers all the other cases (guard expression [ELSE]). The
operation proceeds by stopping the retransmission timer, and this action is
modeled by the activity state stopTimer(T1). If the answer is the acknowledg-
ment (ACK), the operation returns the value true; otherwise, it returns the
value false.

The previous example uses two branches. Each branch has one incoming
and two or more outgoing transitions. The outgoing transitions are guarded
by the Boolean expressions that are evaluated at the entrance to the branch.
The set of guards has two important features:

• The guards must not overlap — this makes the flow of control
unambiguous.

• The guards must cover all possibilities — this ensures that the flow
of control is not going to freeze.

Precisely these two features force us to make complete models and spec-
ifications of activities that describe the behavior of the system. When we
render interaction (collaboration and sequence) diagrams, no such enforce-
ments are present and, mainly because of that, they remain unfinished. Of
course, at the time when we render interaction diagrams, we really do not
want to make them final; rather, we want to check the most important aspects
and scenarios and to make our analysis more comprehensive and useful for
the finalization later. Therefore, when we start rendering the activity dia-
gram, we already have a good overall vision, but non-overlapping and
complete coverage features are the driving forces of the design finalization.

One safe way to provide both of these features is to use only the decisions
with two outgoing transitions and to guard one of them by the keyword

the decisions with more outgoing transitions, which are guarded by explicit
expressions (i.e., without the keyword ELSE). However, the price that we
may pay for safety is ambiguity. For example, if the operation in the previous
example returns the value false, it might do so because the correct not
acknowledge answer (NAK) has been received. However, the operation will
return the same value if any other message (including corrupted ACK or
NAK) has been received.

Imagine that the IP protocol must route a datagram over a physical network,
which has the Maximal Transfer Unit (MTU) smaller than the datagram size.
Normally, the IP protocol partitions the datagram into fragments (that fit MTU)
and routes the resulting fragments individually in such cases. The standard
means to model repetitive activities in activity diagrams are loops.
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ELSE, as in the example in Figure 3.15. Special attention should be paid to

The example in Figure 3.16 illustrates the usage of loops in activity diagrams.
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value 0. It continues with no operation activity state, followed by the decision
that checks the loop continuation condition (i < n). If the condition is satisfied,
the flow enters the loop body (sendFragment(i)). The loop body is followed
by the activity state that updates the control variable (i = i + 1). The example
terminates when the loop continuation condition becomes false.

Imagine that we want to model a simple communication over the TCP
connection. First, we must establish the TCP connection by opening a par-
ticular TCP port. We model this by the activity state openPort(p). Once the
connection is established, the TCP protocol provides simultaneous transfer
of data in both directions (full-duplex). To model that, we need to fork a
single flow of control into two parallel (concurrent) flows of control. One of
them enters the activity state sendData, which models the activity of sending
the data to the remote site. The other control flow enters the activity state
receiveData, which models the activity of receiving the data from the remote
site.

These two activities logically evolve in parallel over time. On a multipro-
cessor system, they can be deployed on two different processors to maximize
the system throughput. In such a case, these two activities would be parallel
in reality, also. Alternately, single-processor systems create quasi-parallelism
using the time-sharing operating system. The activities are then not parallel
in reality, but they are still concurrent because they can compete for the
same resources. Additionally, the activities can communicate using signals.
Traditionally, such communicating sequential processes are referred to as
coroutines.

realistic communication, such as a Telnet session. Imagine that the activity
state sendData is a composite state that reads the user keystrokes and sends
them to the Telnet server over the TCP connection, in a loop, until the end-
of-file key combination is detected. The activity state receiveData in this
scenario would be also a composite activity state, which receives the
responses from the Telnet server and displays them on the monitor, in a loop,
until the end-of-communication signal is detected (typically, it would be sent
when the end-of-file key combination is detected).

Once one of the parallel activities finishes, it proceeds to the control flow
join synchronization point where it waits for the other parallel activity to
finish. When both of the activities are finished, the corresponding parallel
control flow joins into a single control flow, which enters the activity state
closePort(p) and, after finishing that activity, it terminates. 

As we have seen from the previous example, fork and join synchronization
points are rendered as either thick horizontal or vertical lines. It is important
to remember that they must be balanced. Similar to the subexpression —
which must begin with the opening parenthesis and end with the closing
one — each nesting level of the concurrent control flows must begin with
the fork symbol and end with the corresponding join symbol. Apart from
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The example in Figure 3.16 starts by setting the control variable i to the

The example in Figure 3.17 shows the usage of concurrent control flows.

Although the model shown in Figure 3.17 is fairly simple, it may reflect a
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that, no restrictions are placed on the number of nesting levels, at least not
in theory. Of course, in practice we should not go beyond a manageable
number.

The set of additional symbols that are available for rendering activity
diagrams is shown in Figure 3.18. These are the object in state, the object
flow, and the swim lane symbols, as well as the symbols common for all
diagrams, namely, the note, the constraint note, the two-element constraint,
and the OR constraint.

The object flow transition enables us to show how the object state changes
in the activity diagrams. Typically, we render the objects showing the current
and the new states and we connect them by the object flow transition. The
objects themselves may be results of activity states and can be used by other
activity states. The object flow symbol has the same four categories of prop-
erties as the control flow symbol (described previously in this section).

The swim lane has no strict semantics. It is normally used to show indi-
vidual parties in the workflows. The swim lane is typically implemented as
a class or a set of classes. It is better suited for modeling business processes,
but it can also be used for modeling communication protocols. The swim
lane has three categories of properties: the general information (essentially,
its name), the table of constraints, and the tagged values.

transitions, and swim lanes, with the example of activities initiated by the
Domain Name System (DNS) client request for mapping a given domain
name onto the corresponding IP address. Figure 3.19 is a type of a workflow
conducted by the DNS client and server in their cooperative work of
translating a domain name into the IP address. The DNS client is repre-
sented by the first swim lane and the DNS server is represented by the
second. This activity diagram shows both the control flow among individ-
ual activity states and data flow, which are created by a series of objects
that are consumed and produced by the activity states of both DNS client
and server. 

The given domain name is the input parameter of the DNS client operation
that translates the domain name into the corresponding IP address. This
operation starts by the activity state createDNSmsg(), which creates an empty

FIGURE 3.18
The additional graphical symbols available for rendering activity diagrams.

Swimlane
Object : Class

Note (Constraint)

(Constraint) (OR)
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DNS message. This action is modeled by placing the object m1 that represents
the DNS message in the activity diagram and by connecting it to the activity
state createDNSmsg() with the arrow pointing toward the object m1. This
means that the object m1 is produced by the activity state createDNSmsg().
The fact that the message is empty is indicated by showing that the values
of both attributes domain and ip are unknown (the unknown value is denoted
by the question mark character, “?”).

FIGURE 3.19
The workflow between the DNS client and server with the message flow. 

DNS ServerDNS Client

m1 = createDNSmsg();

m1.setDomain(D);

send(m1); m2 = receive();

m2.setIP(ip);

ip = map(domain);

send(m2);m3 = receive();

return m3;

domain = ?
ip = ?

m1 : DNSmsg

domain = D
ip = ?

domain = D
ip = ?

m1 : DNSmsg m2 : DNSmsg

domain = D
ip = IP

m3 : DNSmsg

domain = D
ip = IP

domain = D
ip = ?

m2 : DNSmsg

m2 : DNSmsg

domain = D
ip = IP

domain = D
ip = IP

m3 : DNSmsg

m3 : DNSmsg

Input param: D

D is the given

domain name. 
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Next, the activity state sets the attribute domain to the value of the input
parameter D, thus creating a new state of the object m1. This action is
modeled by placing a new copy of the object m1 in the activity diagram and
by adding two object flow arcs. The first connects the previous object copy
and the activity state m1.setDomain(D). The arrow points toward the activity
state, which means that the state consumes the object. The second object
flow arc connects the activity state and the new copy of the object m1, thus
implying that the activity state produces it.

The control flow then forks into two independent flows. One is conducted
by the DNS client and the other is conducted by the DNS server. The DNS
client continues by sending the DNS message, as a DNS request, to the DNS
server. The corresponding activity state creates a new object, named m2, and
places it in the second swim lane, because we assume that the DNS server
runs on a different machine, or at least in a different address space. The DNS
server, in its turn, receives the DNS message. A common mechanism for
copying the message from an internal operating system buffer to the buffer
that is located within the address space of the DNS server is modeled by
placing two different copies of the object m2.

The DNS server continues by translating the given domain name into the
corresponding IP address and by setting the attribute ip to the value IP, which
denotes the result of that translation. This fact is shown in the third copy of
the object m2. The DNS server proceeds by sending the completed DNS
message, which models the DNS response message, to the DNS client, which
in its turn receives it and creates the copy of the object m3 in its address
space. Finally, two independent control flows join together and the DNS
client returns the completed DNS message to its user, thus creating the final
copy of the object m3.

As this example shows, the models of the workflows are useful because
they show and specify the external behavior, i.e., the interface and protocol
between the objects in the form of the corresponding sequence of messages
exchanged by the objects, as well as the internal behavior of objects in the
form of the series of activity states visited by them. The first is created by
modeling the data and object flow, and the second is created by modeling
the control flow across the objects. Again, by taking care of the complete
coverage of possibilities, without any overlaps, we ensure that the model is
complete. (This was not the main goal of the last example, at least not to the
extent as in the previous one, but we should keep that in mind.)

follows the conventions introduced by the corresponding IETF RFC 793. The
user requests are written in capital letters. The user requests are OPEN,
SEND, and CLOSE. Two types of OPEN requests are used, namely active
OPEN and passive OPEN. The difference between the two is who is taking
the initiative in the connection establishment procedure.

The next convention is that the names of the events and actions are written
in lowercase letters, with the following abbreviations:
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FIGURE 3.20
A TCP activity diagram.

[active OPEN]

create TCB

CLOSED

LISTEN

create TCB

snd SYN

SYN SENT

delete TCB

SYN RCVD
[rcv SYN]

snd ACK

snd SYN
[SEND][rcv SYN]

snd SYN, ACK

snd ACKESTAB
[rcv ACK of SYN]

snd FIN snd ACK
[rcv FIN]

CLOSE WAIT

snd FIN

LAST ACK

CLOSED

FIN WAIT 2

FIN WAIT 1

snd ACK
[rcv FIN]

CLOSING

snd ACK TIME WAIT delete TCB

[Timeout = 2MSL]

[passive OPEN]

[CLOSE]

[CLOSE]

[CLOSE]

[rcv ACK of FIN]

[rcv SYN, ACK]

[rcv ACK of FIN]

[rcv ACK of FIN]

[rcv FIN]

[CLOSE]
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• TCB (Transmission Control Block)
• snd (send)
• rcv (receive)
• SYN (indicates that the synchronization bit of the TCP segment is set)
• ACK (indicates that the acknowledgment bit of the TCP segment is

set)
• SYN, ACK (both SYN and ACK bits are set)
• FIN (indicates that the final bit of the TCP segment is set)
• ACK of SYN (denotes the acknowledgement of the SYN segment)
• ACK of FIN (denotes the acknowledgement of the FIN segment)
• MSL (Maximum Segment Lifetime)

The TCP events are actually modeled as guard expressions whereas the
TCP activities are modeled as UML action states (relatively short and unin-
terruptible series of executable statements). Notice that we could model the
TCP activities either by action or by activity states because these activities
are essentially interruptible. However, because they can be implemented as
rather short routines — which do not involve reception of any signals —
modeling them as action states makes more sense than as activity states.

The TCP protocol spends most of the time in one of its stable states waiting
for a certain event to occur. The TCP stable states are modeled by the UML
activity states. While being in one of its stable states, the TCP protocol just
waits for an event (it does not execute any statements). The process that
executes the TCP protocol is blocked and it does not compete for the pro-
cessor execution time. Therefore, the activity corresponding to the stable
state is more than interruptible — it is blocked. Because such an abstraction
is missing in the UML activity diagrams, we are forced to model it with an
abstraction that is the most close to it, and that is the activity state. The model

states (the names of the states are taken from the RFC 793):

• CLOSED (no connection exists)
• LISTEN (wait for a connection request from any remote TCP and

port)
• SYN SENT (wait for a matching connection request after having sent

a connection request)
• SYN RCVD (wait for a confirming connection request acknowledge-

ment after having both received and sent a connection request)
• ESTAB (the connection is established, i.e., open)
• FIN WAIT 1 (wait for a connection termination request from the

remote TCP, or an acknowledgment of the connection termination
request that was previously sent)
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• CLOSING (wait for a connection termination request acknowledg-
ment from the remote TCP)

• FIN WAIT 2 (wait for a connection termination request from the
remote TCP)

• TIME WAIT (wait for enough time to pass to be sure that the remote
TCP has received the acknowledgment of its connection termination
request)

• CLOSE WAIT (wait for a connection termination request from the
local user)

• LAST ACK (wait for an acknowledgment of the connection termi-
nation request previously sent to the remote TCP, which includes an
acknowledgment of its connection termination request)

original TCP standard. Interested readers can refer to IETF RFC 793 for more
details.

The last example in this section shows a model of a simplified send e-mail

ward implementation of a typical SMTP scenario (client side), which has

successful path of the SMTP scenario, it is a complete specification of a
desired behavior because it covers all possibilities in a non-overlapping
manner.

Again, as in the previous example, the events associated with the reception
of the corresponding messages are modeled as guard expressions, while the
actions taken by the SMTP client are modeled by the corresponding action
states. Additional similarity with the previous example is that the SMTP
client, like the TCP protocol, spends most of the time in its stable states,
waiting for a message from the SMTP server. If the received message is the
one expected, the SMTP client sends the next message, prescribed by the
ideal SMTP scenario, and proceeds to the next stable state. If the received
message is not the one expected, the SMTP client returns the value false and
the operation terminates.

The e-mail is successfully sent if all of the prescribed messages between
the SMTP client and server are successfully exchanged. In this case, the send
e-mail operation returns the value true and terminates.

3.5 Statechart Diagrams

In contrast to activity diagrams — which can be used for modeling activities
both inside the individual objects and across the workflow of objects — the
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The activity diagram shown in Figure 3.20 is fully compliant with the

operation. The corresponding activity diagram (Figure 3.21) is a straightfor-

       

already been introduced in this chapter (Figure 3.12) and in the previous
chapter (Figure 2.12). Although simplified, in a sense that it just follows the
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FIGURE 3.21
A simple send e-mail operation activity diagram (SMTP client side).

WAIT 220 WAIT 354

snd HELO

WAIT 250

snd MAIL FROM:

WAIT 250

snd RCPT TO:

WAIT 250

snd DATA

return false return false

return false

return false

return false

[ELSE] [ELSE]

[ELSE]
return false

return false
[ELSE]

snd BODY

WAIT 250

snd QUIT

WAIT 221

return true

[ELSE]

[ELSE]

[ELSE]

[rcv 220] [rcv 354]

[rcv 250]

[rcv 221]

[rcv 250]

[rcv 250]

[rcv 250]
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statechart diagrams are normally used for modeling the lifetime of a single
object (typically, an instance of a class) or a use case. The activity diagrams
emphasize the flow of the action and the activity states, whereas the state-
charts emphasize the event-ordered behavior of an object, which is especially
suitable for modeling reactive systems.

The common feature of both activity diagrams and statechart diagrams is
that they aim at making complete models of behavior, i.e., for use in the
design back-end. The driving forces for providing complete behavior spec-
ifications are the same, namely, the complete coverage of possibilities with-
out overlaps. The styles differ a bit. By unwritten rule, the decision symbols
are extensively used in activity diagrams and seldom in statechart diagrams.
Therefore, the coverage of possibilities is shown explicitly in activity dia-
grams and more implicitly in statechart diagrams.

That the activity diagrams and statechart diagrams are semantically equiv-
alent is also important to emphasize, i.e., we can use both of them for
modeling the same behavior on the comparable level of details. They merely
provide two different views of the same behavior. The activity diagrams are
better suited for modeling individual operations whereas the statechart dia-
grams are better for modeling the behavior of entire stateful objects, espe-
cially if the behavior is driven by events (messages).

Statecharts were originally invented for modeling state machines, which
makes them a perfect tool for modeling communication protocols because
the protocols are essentially state machines. According to the UML termi-
nology, a state machine is a sequence of states an object goes through in its
lifetime. A state is a situation during which an object satisfies a certain
condition, performs an activity, or waits for an event. An event is an occur-
rence of a stimulus that triggers the state transition. An action is an atomic
executable statement (computation). An activity is a non-atomic execution
composed of actions and other activities. A transition is a relation between
the source and the target states (these can be different states or the same
state) that specifies the actions to be taken when the given event occurs and
the given guard condition is satisfied.

The key abstractions in the context of state machines are the object state and
the state transition. We can think of the object state as a period of an object’s
lifetime (it can be just a moment characterized by a certain condition, a period
of a certain activity, or an interval of time in which the object waits for a certain
event). Alternately, we can think of the state transition as a rather short interval
of object’s lifetime, which is related to actions caused by a certain event and
which is defined by the following five attributes: 

• The source state
• The event trigger
• The guard condition
• The actions
• The target state
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A statechart diagram is a special type of graph that comprises a set of
vertices that are interconnected by arcs. The basic set of graphical symbols
available for rendering statechart diagrams is shown in Figure 3.22. Each
symbol has a set of properties that must be set by the designer once they
add the symbol to a diagram.

The initial state has three categories of properties. These are the general
information, the table of constraints, and the tagged values (documentation
notes). The general information is just the name and the type (initial). Each
statechart diagram must start with this symbol.

The final state has the same categories of properties as the initial state
symbol, with the exception that its type is final. If the lifetime specified by
the statechart diagram is infinite the diagram will not contain this symbol.
Alternately, it can contain one or more such symbols.

The state has six categories of properties. These include the general infor-
mation, the table of entry actions, the table of exit actions, the table of internal
transitions, the table of constraints, and the tagged values. The general
information is just the name and the stereotype. Both the table of entry and
the table of exit actions store the corresponding action names and their types.
The table of internal transitions comprises their properties. Each internal
transition is characterized by its name, its stereotype, and the event that
triggers the transition.

The following eight common types of actions are used:

• Create an object
• Destroy an object
• Call an operation on another object
• Call an operation on this object (local invocation)
• Send a signal (message) to another (or this) object
• Return a value
• Terminate execution
• Uninterrupted action (other unclassified types of actions)

Four common types of events are also used:

• Signal event. This object has caught (received) the signal (message)
that was thrown (sent) by another (or this) object. In UML, we model

FIGURE 3.22
The basic set of symbols available for rendering statecharts.

State
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the signal by the class stereotyped as <<signal>>. We can also use a
dependency relation, stereotyped as <<send>>, between the opera-
tion of the class that sends the signal and the class that defines the
signal, to explicitly show the source of the signal. A signal is an
asynchronous event.

• Call event. The object’s operation is called by another (or this) object.
A call event is a synchronous event. The event name and the param-
eters are the names and the parameters of the corresponding oper-
ation, respectively.

• Change event. The given condition is satisfied. Generally, the con-
dition is related to the state of this object (value of its attributes) or
to absolute time. We use the keyword when to specify the condition,
e.g., when((time == 17:00), or when(key == pressed). A change event is
an asynchronous event.

• Time event. The given interval of time has expired. We use the
keyword after to specify the expression that evaluates to a period of
time, e.g., after(10s), or more symbolically after(T1), which means that
the timer T1 has expired. By default, the starting time of such an
expression is the time since entering the current state. If we want
the starting time to be other than that, we must specify it explicitly.
We should note that time events enable implicit timer management,
as will be illustrated shortly.

The transition has four categories of properties. These are the general
information, the table of actions, the table of constraints, and the tagged
values (documentation notes). The general information comprises the name
and optionally the corresponding event and the guard expression. The table
of actions holds action names and their types. The decision has three cate-
gories of properties, namely, the general information (just the name), the
table of constraints, and the tagged values (same as the decision in activity
diagrams).

Simple examples that illustrate the usage of the basic set of graphical
symbols for rendering statechart diagrams seem to be appropriate at this

are semantically equivalent to the simple examples of activity diagrams

shown in Figure 3.14 illustrates a sequence of three activity states, namely,

of statechart diagrams that model the same behavior. These are the versions
A, B, and C.

Version A models the behavior by a sequence of three transient states,
namely, Opening, Sending, and Closing. By selecting appropriate names, we
can indicate what type of activity is taking place in each of the states. The
original activities openPort(p), sendData(seg), and closePort(p) are modeled as
internal transitions of the states Opening, Sending, and Closing, respectively.
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point. The following two examples, shown in Figure 3.23 and Figure 3.24,

shown in Figure 3.14 and Figure 3.15, respectively. The activity diagram

openPort(p), sendData(seg), and closePort(p). Figure 3.23 shows three versions
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We could also use entry or exit actions instead of internal transitions. Alter-
nately, we could model this simple behavior by only one transient state with
three internal transitions. Generally, by compressing models we decrease
their clarity, and we should seek the compromise appropriate for the project
at hand. Of course, defining clarity is tricky because it is essentially a matter
of taste.

Version B is the model of the same behavior that employs another way of
modeling activities in the statechart diagrams, and that is by actions taken
by state transitions. This version of the model comprises three transient
states, namely, Initial, Ready, and Finished, which are connected by triggerless
transitions. Such transitions take place immediately after their source state
is left (finished). The original activities openPort(p), sendData(seg), and close-
Port(p) are modeled here by the actions of the corresponding state transitions.

Finally, version C is the most compressed form of the model with the
equivalent semantics. It comprises only one state transition, from the initial
to the final state, which conducts a series of actions, namely, openPort(p),
sendData(seg), and closePort(p). This extreme shows the power of statechart
diagrams. Generally, statecharts are more expressive than activity diagrams
when it comes to modeling state machines, therefore we can model the same
behavior in less space.

delivery operation, which starts the timer T1, sends a packet, and waits for
the answer from the remote site. If the timer T1 expires before the answer
is received, the packet is sent again. If the answer is ACK, the operation

FIGURE 3.23
An example of a simple state machine with a single path of evolution.

Initial

Ready

Finished

Opening

Sending

Closing

Version A. Version B. Version C.

/openPort(p) 

/sendData(seg) 

/closePort(p) 

/openPort(p),sendPacket(p),closePort(p) 

9814_C003.fm  Page 90  Wednesday, April 12, 2006  12:00 PM

© 2006 by Taylor and Francis Group, LLC

The activity diagram shown in Figure 3.15 is a model of a reliable packet

returns the value true. Otherwise, it returns the value false. Figure 3.24 shows
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two versions of statechart diagrams that are models of the same behavior,
namely, versions A and B.

Version A models the given behavior by explicit, rather than implicit, timer
management. The triggerless transition from the initial state to the state
Waiting starts the retransmission timer T1 and sends the packet by conduct-
ing the actions startTimer(T1) and sendPacket(d). The expiration of the timer
T1 is modeled here by the signal event T1 expired. The corresponding tran-
sition restarts the timer T1 and sends the packet again. The reception of the
answer from the remote site is modeled by the signal answer received. The
corresponding transition stops the timer T1 and leads to the decision with
two outgoing transitions. The first is taken if the answer is ACK; otherwise,
the second is taken. Those who prefer not to use decision symbols in their
statechart diagrams should delete it, as well as the previous transition, and
add the event answer received to both transitions that are leading to the final
state.

FIGURE 3.24
An example of a simple state machine with alternative paths and loops of evolution.

Waiting

Waiting

/startTimer(T1),sendPacket(d) 

T1 expired/restartTimer(T1),sendPacket(d)

[ELSE]/return false

/sendPacket(d)

after: T1/sendPacket(d)

[ELSE]/return false

Version A

Version B.

answer received/stopTimer(T1)

[answer==ACK]/return true

answer received

[answer==ACK]/return true
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Version B, in contrast to version A, models the given behavior by implicit
timer management. Here the triggerless state transition from the initial state
to the state Waiting just sends the packet by conducting the action send-
Packet(d). The existence of the state transition triggered by the time event
after: T1 implicitly implies that the timer T1 is started at the entrance to the
state Waiting. If the timer T1 expires, the packet is sent again by the action
sendPacket(d) and the timer T1 is restarted at the new entrance to the state
Waiting. The event answer received occurs when this object receives the answer
from the remote side. This event triggers the transition that leads to the
decision and, later, to the final state. The timer T1 is implicitly stopped at
the exit from the state Waiting. The result is a more compressed form of a
model with more implicit details, which may not be seen at first glance. We
can use either one of these two styles, but we should be consistent and stick
to one on a certain project.

Now that we have covered the basics of statechart diagrams, we proceed
to their more advanced abstractions. First, besides entry and exit actions and
internal transitions, a state can perform an ongoing activity that we can
specify by using the keyword do. Most of the states are stable states, which
means that the object is blocked while waiting for an event. Some of the
states are transient, which means that they perform certain computation and
finish. Sometimes we need to also model active states, which perform some
activity all the time while waiting for an event to occur, and we do this by
using the keyword do. Generally, the special do transition can name another
state machine or a sequence of actions.

Deferred events are the next important abstraction in the context of states.
Until now, we were not interested in the events that occur during the state
that does not react to them. What happens to these events? They are simply
lost. If we want to save them so that they can be processed later in some
other states, we must specify that they are to be deferred by using the special
action named defer. Each event that is associated with this special action will
be saved for further processing by the states that explicitly name that event
in one of their transitions.

We have already shown how to manage complexity by using hierarchical
organization. Statechart diagrams allow us to use that powerful concept in
the context of states. Until now, we have dealt with simple states. Actually,
a state in UML can also be a composite state, which means that it can
comprise simple states and other composite states. This nesting of states can
go to an unlimited depth, at least in theory.

A composite state can contain either sequential or concurrent substates.
The sequential substates are disjoint, i.e., an object can be in only one of them
at a certain point in time. The concurrent substates are orthogonal, which
means that an object at a certain point in time is in all of the concurrent
substates that are active at that point. We can think of a concurrent state as
one aspect (orthogonal axis) of the object’s lifetime.

The state transitions until now were transitions between simple states.
After the introduction of composite states, the situation becomes more
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complex in this respect. Besides the transitions between simple states, there
exist the transitions between simple states and composite states, as well as
the transitions from substates to external states. The transitions from external
states to substates of a composite state are not allowed. This asymmetrical
relation raises the following question: What happens with the flow of states
inside a composite state if a transition from that composite state to another
state is triggered?

The answer is that the information about the point of interruption inside
the composite state is lost by default. This means that the processing will be
restarted from the very beginning when that composite state is re-entered
once again later. This means that the composite state operates without con-
text saving, which is referred to as a history in the UML.

If we want the composite state to operate with the history — which means
it is able to restart from the point of interruption at its re-entrance — we can
use the special history state. The history state is a special type of an initial
state that is the target for the transitions from the external states. Once
activated, it restarts the operation at the point of interruption. The following
two types of history states are used:

• The shallow history state (marked with the symbol H)
• The deep history state (marked with the symbol H*)

The shallow history state ensures context-saving only on the first level of
nesting of composite states. Alternately, the deep history state provides
context-saving on the innermost state at any depth. If there are more nesting
levels, the shallow history remembers the outermost nested state and the
deep history remembers the innermost nested state.

Like activity diagrams, statechart diagrams also support modeling con-
currency. We model concurrent activities in statechart diagrams by using
concurrent sequences of substates inside a certain composite state. Typically,
each such sequence begins with the initial state and ends with the final state.
The transition, from the external state to this composite state, forks to con-
current substates, which at the end join in the transition from this composite
state to the external state. The usage of concurrent substates is advisable
only if the behavior of one of these concurrent flows is affected by the state
of another. Alternately, if the behavior of the concurrent flows is driven by
the signals (messages) they exchange, partitioning the object into more active
objects is preferable. 

The set of additional symbols that are available for rendering statechart

history state, the deep history state, the fork or join synchronization point,
the note, the constraint note, the constraint and the OR constraint. These
symbols, like others, have their properties. The composite state has the same
categories of properties as a simple state and two additional indicators,
namely, Concurrent and Region, which determine whether the composite state
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is concurrent or not and if it is a region or not. Both shallow and deep history
states have the same three categories of properties. These are the name, the
table of constraints, and the tagged values. The rest of the symbols have
already been introduced.

Figure 3.26 shows the simple example of a statechart diagram that uses
the shallow history state. Imagine a simple state machine that starts from
the state Idle. The event sendCharacter(ch) triggers its transition to the com-
posite state Sending Segment, which starts with the shallow history state to
ensure context saving. Because this state comprises only simple states, the
application of the deep history state, instead of the shallow history state,
would have the same effect because only one level of nesting of composite
states is found.

FIGURE 3.25
The additional graphical symbols available for rendering statecharts.

FIGURE 3.26
An example of a composite state that uses the shallow history state.

H∗

(Constraint)

Composite State

(Constraint)

H

Note

(OR)

H

Buffering

Sending

Sending SegmentIdle

Break

sendCharacter(ch)

The composite state

Sending Segment

Idle

breakcontinue

when: buffer full

sendCharacter(ch)
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The state machine remains in the substate Buffering while it is filling the
corresponding buffer with new incoming characters. This status means that
the state machine will wait for the additional event sendCharacter(ch) until
the buffer becomes full, when the state machine will proceed to the state
Sending. After it sends all the characters from the buffer, the state machine
leaves the compound state Sending Segment and triggerlessly transits to the
state Idle.

If the event break occurs while the state machine is in the compound state
Sending Segment, its context will be saved and the state machine will leave
it and move to the state Break. It will remain in this state until the event
continue occurs. Then the state machine will re-enter the compound state
Sending Segment, the context will be restored, and the state machine will
resume the processing from the point of interruption.

The example in Figure 3.27 shows a simplified DNS client and server
statechart diagrams. Both of them have just a single state. Being simple
enough, these diagrams make very clear how statechart diagrams are used
to make complete designs of communication protocols. Typically, a job per-
formed by the communication protocol is to receive a message, process it,
and send one or more messages as the result of this processing. Both DNS
client and server go along this simple scheme.

The DNS client starts from the initial state by receiving a call to map the
given domain name into the corresponding IP address. This action is mod-
eled by the call event map(d) in Figure 3.27. This event triggers the transition
of the DNS client from the initial state to the state Wait DNS Response. During
the course of this transition, the DNS client sends the signal (message)
DNSrequest(d), which causes the signal event receive DNSrequest(d) at the
DNS server side. 

FIGURE 3.27
A DNS client and server statechart diagrams.

Wait DNS Response

map(d)/send DNSrequest(d)

receive DNSresponse(d,ip)/return(ip)

Wait DNS Request

DNS Client DNS Server

receive DNSrequest(d)/send DNSresponse(d,ip)
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The DNS client is simply blocked in the state Wait DNS Response while
waiting for the signal DNSresponse(d,ip). The signal event receive DNSre-
sponse(d,ip) triggers the DNS client transition to its final state. During this
transition, the DNS client extracts the IP address from the received signal
and returns it as its return value. This is modeled by the return action
return(ip).

The DNS server starts with the triggerless transition from its initial state
to the state Wait DNS Request, where it is blocked while waiting for the signal
DNSrequest(d). The signal event receive DNSrequest(d) causes the DNS server
to map the given domain name to the corresponding IP address, to create
the signal (message) DNSresponse(d,ip), and to send it to the DNS client. The
DNS server performs all these actions during the transition to the same state,
i.e., Wait DNS Request. This ensures that after servicing the current request,
the DNS server remains available for servicing the next DNS request.

protocol, namely TCP. It starts with the triggerless transition from the initial
state to the state CLOSED in which it awaits one of the two possible call
events. The call event passive OPEN causes TCP to create TCB (modeled with
the action create TCB) and to move to the state LISTEN. Alternately, the call
event active OPEN causes TCP to additionally send the signal SYN (TCP
segment with the bit SYN set in the header) to the remote TCP entity. This
is modeled with the actions create TCB and snd SYN.

TCP is blocked in the state LISTEN while waiting for one of the two
possible events. The signal event rcv SYN triggers it to send the signal SYN,
ACK (TCP segment with both bits SYN and ACK set) to the remote TCP
entity and to move to the state SYN RCVD. The call signal SEND causes
TCP to send the signal SYN to the remote TCP entity and to move to the
state SYN SENT.

While being blocked in the state SYN SENT, TCP can be triggered by one
of the three possible events. If the call event CLOSE occurs, TCP deletes TCB
(modeled with the action delete TCB) and returns to the initial state. If the
signal event rcv SYN occurs, TCP sends the signal ACK and moves to the
state SYN RCVD. If the signal event rcv SYN, ACK occurs, TCP sends the
signal ACK to the remote TCP entity and moves to the state ESTAB.

After reaching the state SYN RCVD, TCP can react to one of the two
possible events. If the call event CLOSE occurs, TCP sends the signal FIN to
the remote TCP entity and moves to the state FIN WAIT 1. If the signal event
rcv ACK of SYN, occurs, TCP moves to the state ESTAB.

Two events are recognizable in the state ESTAB. If the call event CLOSE
occurs, TCP sends the signal FIN to the remote TCP entity and moves to the
state FIN WAIT 1. If the signal event rcv FIN occurs, TCP sends the signal
ACK and moves to the state CLOSE WAIT.

In the state FIN WAIT 1, TCP may receive either FIN or ACK of FIN signals.
In the former case, it sends the signal ACK and moves to the state CLOSING,
whereas in the latter case it just moves to the state FIN WAIT 2, where it
waits for the signal FIN to send the signal ACK and move to the state TIME
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WAIT. On the alternative path, TCP moves from the state CLOSING to the
state TIME WAIT after it receives the signal ACK of FIN.

Upon the entrance to the state TIME WAIT, a timer with the period 2MSL
is started. When this period expires, TCP deletes TCB and moves back to its
initial state CLOSED. After reaching the state CLOSE WAIT, TCP waits for
the call event CLOSE to send the signal FIN and move to the state LAST
ACK, and from there to the initial state CLOSED after it receives the signal
ACK of FIN. 

e-mail operation (SMTP client side). It starts with the triggerless transition
from its initial state to the state WAIT 220 where it waits for the signal

FIGURE 3.28
A TCP statechart diagram.
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(message) 220 from the SMTP server. When the signal event rcv 220 occurs,
the SMTP client sends the signal HELO to the SMTP server and moves to
the state WAIT 250 1. After receiving the signal 250, the SMTP client sends
the message MAIL FROM: to the SMTP server and moves to the state WAIT
250 2.

Next, two signals of 250 in succession cause the SMTP client first to send
the signal RCPT TO:, then to send the signal DATA to the SMTP server, and
finally to reach the state WAIT 354. Upon reception of the signal 354, the
SMTP client sends the body of the e-mail message and moves to the state
WAIT 250 4. After receiving the signal 250, it sends the signal QUIT to the
SMTP server and finally, after receiving the signal 250 again, it returns the
value true and moves to its final state.

The main problem in this oversimplified version of the SMTP client is that
it can block indefinitely while waiting for a signal from the SMTP server.
The first thing that would be added in a more realistic design is a time limit
on waiting for signals, which would be modeled with timers (keyword after:).
The reaction to the expiration of a timer could be as simple as returning the

FIGURE 3.29
A simple send e-mail operation statechart diagram (SMTP client side).
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value false and moving to the final state, or it can include some type of a
recovery mechanism.

3.6 Deployment Diagrams

Deployment diagrams are used to model the deployment of the components,
the component instances, objects, and packages, on nodes and node
instances. A component is a part of the system that implements a set of
interfaces. It typically models a physical package of logical elements, such
as classes, interfaces, and collaborations. The common forms of packages are
the following:

• Executables
• Libraries
• Tables
• Files
• Documents

A node is a physical element that models a computational platform, which
comprises a set of resources, such as memory banks, buses, I/O channels,
controllers, processors, and so on. The examples of nodes are the following:

• Personal computers
• Mainframes
• Embedded controllers
• Mobile or cellular phones
• Network routers

We use deployment diagrams in the design phase of communication pro-
tocol engineering for the following two main purposes:

• To identify network nodes and configurations
• To identify design subsystems and interfaces

The software architecture is closely related to the structure of the physical
network. Sometimes the latter can be fixed and, in such a case, it governs
the distribution of functionality across the network nodes as well as the
selection of active classes. Alternately, both software architecture and net-
work structure can be subjects of design and, in that case, some particular
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network structure can yield a more appropriate software architecture and
system solution.

While trying to identify network nodes and configurations, we typically
render network nodes as cubes, interconnect them with association relations,
and think how to deploy individual components on these nodes. We show
the deployment in the deployment diagrams by adding the component
symbols (rectangles with tabs) and by connecting the related nodes and
components with the dependency relations. Another way to do this is to
adorn the node instances by the names of the components that are deployed
on them.

Similarly, while trying to identify the subsystems and interfaces, we typ-
ically render the packages with their corresponding interfaces. We try to
organize them into hierarchical layers (e.g., application-specific, application
general, middleware, and system-software). Finally, we show which inter-
faces (services) are provided by which packages or components and also
which packages or components are users of the services provided through
those interfaces.

Deployment diagrams are a special type of graph that comprise the set of

shows the basic set of graphical symbols available for rendering deployment
diagrams. These are the node, the node instance, the component, the com-
ponent instance, the object, the package, the interface, the association rela-
tion, the aggregation relation, the dependency relation, the note, the
constraint note, the two-element constraint, and the OR constraint. Each
symbol has a set of properties, which must be set by the designer once they
add the symbol to the diagram. The new symbols are the symbols represent-
ing the nodes, the components, and their instances. The rest of the symbols
are already introduced in the previous sections about class and object dia-
grams (called together a static structure).

The node has six categories of properties. These are the general informa-
tion, the table of attributes, the table of operations, the list of components,
the table of constraints, and the tagged values. The general information
includes the name, the full path, the stereotype, the visibility, and the indi-
cators Root, Leaf, and Abstract. The list of the components comprises the
names of the components that are deployed by this node.

The component has seven categories of properties, including the general
information, the table of attributes, the table of operations, the list of nodes,
the list of classes, the table of constraints, and the tagged values. The general
information comprises the name, the full path, the stereotype, the visibility,
and the indicators Root, Leaf, and Abstract. The list of nodes holds the names
of the nodes that deploy this component. The list of classes stores the names
of the classes that are implemented in this component.

The node instance has four categories of properties. These are the general
information, the table of attribute values, the table of constraints, and the
tagged values (documentation and persistent). The general information com-
prises the node instance name and the node name. The table of attribute
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values stores the name, the stereotype, the type, and the value for each
attribute. The component instance has the same categories of properties as
the node instance, with the exception that its general information differs and
it comprises the name of the component instance and the component name.

configuration comprised of three personal computers that are connected to
the Internet. A personal computer is modeled as the node PC. Individual
PCs are modeled as node instances, namely Machine1, Machine2, and
Machine3. Internet is modeled as the node instance, named Network, of the
node type named Internet. The real links that connect PCs to the Internet are
modeled with the association relations between the node instances Machine1,
Machine2, and Machine3, and the node instance Internet. The one-to-one
nature of these links is modeled by setting the multiplicities on both sides
of associations to 1.

This diagram is what the physical infrastructure of this example looks like.
The software components are deployed as follows: The e-mail client execut-
able is deployed to the first PC, the DNS server executable is deployed to

FIGURE 3.30
The basic set of symbols available for deployment diagrams.
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the second PC, and the SMTP server is deployed to the third PC. We model
the e-mail client executable with the component EMailClient, which is ste-
reotyped as the <<executable>>, and its particular instance deployed to the
first PC with the component instance client.exe. Similarly, the DNS server
executable is modeled with the component DNSServer and its particular
instance deployed to the second PC with the component instance dnss.exe.
Finally, the SMTP server is modeled with the component SMTPServer and
its particular instance deployed to the third PC with the component instance
smtps.exe.

and interfaces. While thinking about the system shown in the previous
example (Figure 3.31), we can identify three application layer packages, two
system-software layer packages, and three interfaces. The application layer
packages are the packages EMailClient, SMTPServer, and DNSServer, whereas
the system-software packages are the packages TCP/IP and OS.

The package TCP/IP provides two service types through the interface
TCPport and IPint, respectively. The services provided through the former
interface are used by the package EMailClient and SMTPServer, whereas the
services provided through the latter interface are used by the package EMail-
Client and DNSServer. Similarly, the package OS provides services through
its interface OSapi. These services are used by the package TCP/IP.

Interested readers can find more information about the UML diagrams in
the original books by Booch, Rumbaugh, and Jacobson (Booch et al., 1998).

FIGURE 3.31
An example of a network configuration.
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This section concludes the part of this chapter based on UML. The second
part of the chapter is based on domain-specific languages.

3.7 Specification and Description Language

Software for real communication systems and devices (concentrators, packet
switches, gateways, routers, and so on) is very complex and because of that,
hard to understand. Proving that it is correct is very difficult, thus special
attention is paid to software design. Software of this type can be modeled
in the form of an individual or a group of finite state machines. Japanese
designers were the first to apply this method of specification and description
of communication protocols in the 1970s. Not long after its initiation, the
CCITT (predecessor of ITU-T) has standardized it in the form of the so-called
Specification and Description Language (SDL).

FIGURE 3.32
An example of subsystems and interfaces.
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SDL creators have been facing the following dilemma. Traditionally, a finite
state machine (FSM) has been modeled by a state transition graph. Typically,
a state transition graph is graphically illustrated by circular symbols repre-
senting states and arrows representing state transitions. State labels are state
names whereas state transition labels indicate FSM input that causes the
corresponding state transition and FSM output produced by the same tran-
sition. An advantage of this type of FSM representation is that all the stable
FSM states are clearly indicated and can be easily noticed. Alternately, a
disadvantage of this type of FSM representation is that message-processing
procedures are not defined formally. Informally written state transition
labels, placed close to the corresponding arrows, indicate only the FSM input
causing the transition and the output that the FSM must produce. This
information is far from being sufficient for writing the software that imple-
ments the given FSM — it only provides some hints to programmers.

Another approach would be to use a flow chart, a traditional way of
specifying data-processing algorithms. An advantage of this type of FSM
representation is that message-processing procedures are clearly and pre-
cisely defined. A disadvantage is that stable FSM states are not clearly indi-
cated, therefore they can hardly be noticed. The FSM states can be marked
as certain points in a flow chart by using informal annotations, and that is
simply not comprehensible enough.

The creators of the SDL language have found a solution to this dilemma
by combining the above mentioned approaches, namely, the state transition
graph-based approach and the flowchart approach. This combination has
been cleverly made by simple extension of the set of graphical symbols
available for drawing flowcharts. The key new graphical symbols introduced
are the symbol corresponding to an FSM stable state and the symbols that
represent FSM inputs and outputs (input and output messages). We will
fully describe all the SDL graphical symbols later in this chapter.

The protocol designer uses SDL language to specify and describe the
corresponding automata instance by listing all its states and state transitions.
Although the number of states can be very large, this task is simplified by
the fact that in a given state, only a limited number of events can occur, and
this means that the automata instance can evolve from a given state only to
a limited number of new states. For example, consider a telephone call
automata instance waiting for the first digit to be dialed (the automata
instance enters this state immediately after the user has initiated an outgoing
call, i.e., after the so-called “hook-off” event). The telephone call automata
instance cannot evolve from this state to any other arbitrary state. More
precisely, in this state only the following three events are possible:

• The user ends the call (hook-on event), which causes the automata
instance to evolve to its initial idle state.

• The user dials a digit (digit event). This event triggers the state transi-
tion from the current state to the state of waiting for the second digit.
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• The user does nothing during a certain interval of time. This will
cause the expiration of the corresponding timer and a state transition
to the state in which the telephone line is blocked.

Communication protocol is by nature a reactive system. Normally, it is
blocked in its current state while waiting for one of a few recognizable events
to occur. Statistically, it is inactive most of the time. A recognizable event
triggers the corresponding state transition to a new state, where the protocol
is again blocked while waiting for further events. The state transitions com-
prise a finite number of primitive operations that are statistically rather short.

An important characteristic of program implementations of the protocols
is that they are not trying to monopolize the CPU. This implies that the
execution of this type of a program should be organized as a process with
stable states. In contrast to the conventional time-slicing system, where the
task switching is driven by timer interrupts, switching of processes with
stable states is performed at the moment at which the running process
reaches its new stable state. Whereas conventional tasks can be interrupted
in an arbitrary point of time (determined by the asynchronous occurrence
of timer interrupt signal), a process with stable states is normally not a subject
to preemption because, unlike conventional tasks, they are not monopolizing
the processor. Of course, a process with stable states can be interruptible so
that the whole system can react to the urgent events handled by the higher
priority tasks.

Enumeration of the possible states and state transitions, as described
above, is a logical process that seems to be straightforward for the experts.
However, graphical language, such as SDL, is needed to make it possible
for the design engineers to easily make complete formal specifications of the
protocols. The main advantages of graphically-oriented languages are the
following:

• Graphical language is easy to read and, because of that, it is easy to
check specification completeness and correctness.

• The specification can be easily extended.
• The specification can be directly implemented in software. This

means that if the specification is correct, a high probability exists
that the software implementation is also correct.

According to ITU-T, the complete software (system) is decomposed into a
set of functional blocks. Each functional block consists of a set of processes

A process is essentially an execution of a logical function, which consists
of a series of operations applied to message information elements (referred
to as tasks) in discrete points of time. Either it is in some of its stable states

we refer to the state transition as unstable states).
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or it makes its transition from the current to the next state. (In Chapter 4,
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A signal is defined as a data stream that delivers information to the
receiving process. A data stream among the processes inside the same func-
tional block represents the internal signal, whereas a data stream between
the processes that are parts of different functional blocks represents the
external signal to the receiving process. Therefore, from the receiving process
point of view, the signal can be classified as internal or external, depending
on whether it originates from the same or from a different functional block.

Today, SDL is a standard design language that can be used to specify and
describe any system implemented in hardware or software, particularly real-
time systems. In this book, we are especially interested in one type of the
real-time systems — communications systems.

The basic set of SDL rules is given in ITU-T recommendation Z.100e.
Additional explanations are given in a series of subsequent ITU-T recom-
mendations, namely Z.100d1e, Z.100nce, Z.100nfe, Z.100p1e, and Z.100s1e.
The main characteristics of the SDL language are the following:

• It is easy to learn.
• It is easy to extend the specification in case of the new requirements.
• In principle, it can support various methodologies for making the

system specifications.

Two forms of SDL language exist, graphical (SDL-GR) and program (SDL-
PR). The graphical form has been widely accepted for two reasons. First, it
is closer to human understanding because it is easier to understand and

FIGURE 3.33
The structure of the communication software according to ITU-T.

System

Functional Block

1

Functional Block

2

Functional Block

3

Process 1 Process 2 Process 3

Task 1 Task 2 Task 3

9814_C003.fm  Page 106  Wednesday, April 12, 2006  12:00 PM

© 2006 by Taylor and Francis Group, LLC



Design 107

follow. Second, in principle, it does not require the support by special, and
frequently very expensive, software tools. Of course, a piece of paper and a
pencil is hardly sufficient for a professional work. At least a modern graph-
ical editor that supports the SDL set of graphical symbols is needed to enable
the making of decent specifications. In this book, we use Microsoft Visio for
that purpose.

The second SDL form, SDL-PR, is practically a higher-level programming
language of textual type (similar to C/C++ and Java programming lan-
guages). Clearly, this programming language is less synoptic and is harder
to follow than the graphical form. It is intended to be used mainly by the
accompanying software tools, such as Telelogic® Software Development
Tools (SDT). The goal of using such software tools is not just to make isolated
specification and description documents, but rather to make electronic spec-
ifications, essentially models of protocols. The software tools can then be
used to interpret the models and generate the corresponding program code.

In addition to the tools provided by Telelogic, other tools exist based on
this philosophy that is, as already mentioned, referred to as model integrated
computing (MIC). One of them is also already mentioned, GME.

The main SDL applications are the following:

• Call processing in switching systems
• Error supervision and management in telecommunication systems
• Supervision, control, and data acquisition systems
• Telecommunication services
• Data transfer protocols
• Protocols in computer communications

The SDL language basics are as follows: SDL is based on a set of special
symbols and the rules for their application. The graphical form (SDL-GR) is
based on special graphical symbols whereas the program form (SDL-PR) is
based on a set of special keywords. Both SDL forms use the same set of
keywords specialized for data representation.

Later, we assume that a system consists of a number of protocols. Also,
we refer to a set of hierarchically organized protocols as a family of protocols
or a protocol stack. Typically, each protocol that is a part of the family
performs its well-defined task. The family of protocols conducts rather com-
plex tasks by cooperation of its members.

A system is described as a set of interconnected functional blocks. Chan-
nels are defined as communication links that are used for the interblock
communication and for the communication between the blocks and the
environment. Each block comprises a number of processes that communicate
by exchanging signals. A channel is typically implemented as a FIFO (First-
In-First-Out) queue that stores the signals (i.e., messages) to be transferred
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through the channel. A process is defined as a finite state machine (automata
instance) that is described by the given set of states and state transitions.

The next simple example illustrates the notions and terms introduced
above. Both graphical and program SDL forms are presented. The only goal
of presenting the program form is to provide the intuition for the reader that
will help them understand the main differences between the graphical and
program forms of the SDL language. The aim of this book is not to fully
cover the program form of the SDL language.

The example is a simple game called Daemongame. The core of the game
is a simple FSM that has only two states, even and odd. Timing is controlled
with a single timer. The expiration of the timer (this event is labeled none)
causes the FSM to switch from even state to odd state. The player presses a
button when they wish (this event is labeled Probe), i.e., at arbitrary points
of time. If the FSM is in even state, the player gets one negative point (Lose).
If the FSM is in odd state, the player gets one positive point (Win). If the
player scores more Win than Lose points, they win the game.

The first step in describing this simple system is to define input and output
signals. Input signals are the following:

• Newgame: the player wants to start the game
• Probe: the player has pressed a button
• Result: the player wants to see the current score
• Endgame: the player wants to quit the game

Output signals are the following:

• Gameid: current game identification
• Win: positive point
• Lose: negative point
• Score: total amount of points (number of Win points minus number

of Lose points)

The specification of the game Daemongame in the graphical form of SDL is

Input signals are Newgame, Probe, Result, and Endgame. Output signals are
Gameid, Win, Lose, and Score. Signal declarations are shown in the upper left
corner of the figure.

The Daemongame system specification in the program form of SDL is the
following:

system Daemongame

signal Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score(Integer);

channel Gameserver.in

from env to Game
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with Newgame, Probe, Result, Endgame;

endchannel Gameserver.in;

channel Gameserver.out

from Game to env

with Gameid, Win, Lose, Score;

endchannel Gameserver.out;

block Game referenced;

endsystem Daemongame;

Generally, any system SDL program specification starts with the keyword
system and ends with the keyword endsystem. This particular program defines
all the required signals (Newgame, Probe, Result, Endgame, Gameid, Win, Lose,
and Score), the input channel Gameserver.in, and the output channel
Gameserver.out. 

In contrast with the graphical form, which is easy to understand, the
program form represents a lower-level specification, closer to the machine
and with more details. For example, in the graphical form a channel is simply
represented by an arrow pointing to or from the functional block. The chan-
nel declaration in the program form is much more detailed: It comprises the
channel name (e.g., Gameserver.in), its direction (e.g., from environment
toward the functional block Game), and a list of signals that must be trans-
ferred over the channel (e.g., Newgame, Probe, Result, and Endgame). 

The next lower hierarchical level of detail describes a single functional
block of this simple system, namely, the block Game. Its specification is given
in both forms of SDL. The graphical form of the specification is given in

a short explanation of Figure 3.35.
Figure 3.35 shows that the block Game consists of two processes, namely

Monitor and Game. The processes are connected to the environment, and to

FIGURE 3.34
The structure of the system Daemongame.
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each other, by signaling paths. It also shows that the input channel
Gameserver.in consists of two signaling paths, the signaling path R1 (which
is used to carry Newgame signal) and the signaling path R2 (which is used
to carry the signals Probe, Result, and Endgame). The output channel
Gameserver.out comprises the single signaling path R3. A single internal sig-
naling path exists inside the block Game, the path R4, which is used to carry
the internal signal Gameover from the process Game to the process Monitor.
This new signal is declared in the upper left corner of the graphical specifi-
cation.

The specification of the block Game in SDL-PR is the following:

block Game;

signal Gameover(Pid);

connect Gameserver.in and R1, R2;

connect Gameserver.out and R3;

signalroute R1 from env to Monitor with Newgame;

signalroute R2 from env to Game with Probe,Result,Endgame;

signalroute R3 from Game to env with Gameid,Win,Lose,Score;

signalroute R4 from Game to Monitor with Gameover;

process Monitor(1,1) referenced;

process Game(0,) referenced;

endblock Game;

The specification given above starts with the keyword block and ends with
endblock. Inside the body of the definition of the block Game, we start with
the declaration of the internal signal Gameover by declaring its name, fol-
lowed by the list of its parameters enclosed in parenthesis. The signal
Gameover has a single parameter, the identification of a process (Pid) that is
sending this signal.

FIGURE 3.35
The structure of the functional block Game.
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Further on, we connect the channel Gameserver.in with the signaling paths
R1 and R2. We also connect the channel Gameserver.out with the signaling
path R3. We proceed with the declarations of signaling paths (keyword
signalroute). Each declaration indicates the signaling path name, its direction
(by using the keywords from and to), the names of the processes it connects
(note that env is the special process which represents the environment), and
a list of signals it carries (by using the keyword with). For example, the first
signal path declaration shown in SDL-PR above declares the signaling path
R1, which carries the signal Newgame from the process env (environment) to
the process Monitor.

We end the definition of the functional block Game by declaring the pro-
cesses it contains. A process in general is declared by the keyword process.
A process declaration indicates the name of the process followed by the
initial and maximal number of process instances that can appear in the
system. The maximal number of process instances is an optional parameter,
i.e., it can be omitted.

The process Monitor is declared as Monitor(1,1), which means that the block
Game should initially create one instance of this process and, at the same
time, it is also the maximal  number of Monitor instances that can be created
in this block. Alternately, the process Game is declared as Game(0,), which
means that initially there are no Game instances, but also that the maximal
number of Game instances is not limited, i.e., in theory it is allowed to create
an infinite number of process Game instances inside the functional block
Game. Of course, in reality this number is always limited to the available
hardware resources.

In this particular example, we have declared two processes, Monitor and
Game, that operate inside the functional block Game. The process Monitor
handles the interaction with a player. It is a mediator between the player
and the process Game, which is essentially a model of the win-lose game.
Due to the fact that the process Monitor is trivial and actually insignificant
for this example, we will define only the process Game on the next hierar-
chically lower level of abstraction. On this level of detail, the process Game
is modeled as a finite state machine (automata instance). 

As already mentioned, the creators of SDL-GR (graphical form of SDL)
have extended the basic set of traditional flow chart symbols with a set of
graphical symbols specialized for modeling finite state machines. The com-
plete set of graphical symbols available for describing processes in SDL-GR

The meaning of the individual graphical symbols shown in Figure 3.36 is
as follows:

• state: specifies a stable state in which a process is blocked while
waiting for one of the recognizable signals (referred to as input)

• input: specifies the reception of a given input signal (i.e., the occur-
rence of a certain event)
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• output: specifies the transmission of a given output signal (normally
the output signal generated by a certain process represents an input
signal for a process that receives it)

• decision: specifies an operation that checks if a given condition is true
or false and, based on the outcome, selects one of the two possible
paths in the current state transition

• task: specifies an action in the course of current state transition that
is neither decision nor output

• save signal: specifies that recognition (processing) of a given signal
should be postponed until it reaches a state where it is recognizable
This symbol is used in specifications of signaling systems (e.g., SS7).
It is seldom used in other applications, such as call processing.

The specification of a process in SDL-GR is generally made as a combina-
tion of the instances of the graphical symbols shown and explained above.

and describes the process Game, the core of the win-lose game.
The evolution of the process starts from an unnamed state in the upper

right corner of the graphical presentation (Figure 3.37). Starting from this
state, the process unconditionally transits to its next stable state even. During
this transition, the process Game sends the signal Gameid to the player.

FIGURE 3.36
The set of graphical symbols available in SDL-GR.
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While the process Game is in its stable state even, it awaits one of two
possible events, the reception of the signal Probe or the expiration of the
timer labeled none. If the timer expires, the process Game receives the corre-
sponding signal none, and this causes the process to evolve into the next
stable state odd. If the process receives the signal Probe, it sends the signal
Lose to the player and updates the player’s score, which is stored in the
variable count, by adding one negative point. The process does not change

FIGURE 3.37
The process Game specification in SDL-GR.
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its stable state, i.e., it remains in its current state (which is denoted with the
character “–”), and that is the state even.

In its stable state odd, the process Game recognizes two same possible
events, the reception of the signal Probe or the expiration of the timer labeled
none. Actually, the timer none determines the time interval the process will
spend in either the even or odd state before switching to the other one. Hence,
if the timer none expires, the process evolves into the stable state even.
Alternatively, if the process receives the signal Probe, it sends the signal Win
to the player and updates the player’s score (value of the variable count) by
adding one positive point. The process remains in its current state (i.e., the
state odd).

The upper left corner of the graphical representation of the process Game
(Figure 3.37) shows one important example of simplifying SDL-GR dia-
grams. Because the reception of the input signals Result and Endgame is
possible in both even and odd states, a straightforward solution would be to
mechanically add these inputs and their processing to both states. The result
would be a diagram that is much more complex and harder to understand
and follow. A more elegant solution is to draw the description of the proc-
essing of the inputs Result and Endgame in both states as a separate drawing
in the diagram, as shown in Figure 3.37.

Generally, it is always useful to try to find identical processing of input
signals (state transitions) that repeat in a number of stable states and to
simplify the specification by drawing these parts separately in the diagram.
This type of a model reduction is really easy. We just draw an oval state
symbol and write a list of the states (the list comprises the state names
separated by commas) that share the common inputs inside the state symbol.
Then we can copy and paste common state transitions. At the end, we can
just remove the redundant state transitions. Of course, in the simple dia-
grams such as in the example at hand, we can see this in advance and draw
accordingly, as we did for the processing of the inputs Result and Endgame
in the states even and odd.

If the process Game receives the signal Result, which comes from the envi-
ronment, i.e., from the player, the process sends the signal Score(count) to the
environment (actually to the player) and it remains in its current state (even
or odd). Alternately, if the process Game receives the signal Endgame, it sends
the signal Gameover to the process Monitor and the game ends, i.e., the
functional block deletes the process Game.

The specification of the process Game in SDL-PR (SDL program form) is
the following:

process Game(0,); fpar player Pid;

dcl count Integer := 0; /* the counter that contains the result */

start;

output Gameid to player;

nextstate even;

state even;
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input none;

nextstate odd;

input Probe;

output Lose to player;

task count:=count-1;

nextstate -;

state odd;

input Probe;

output Win to player;

task count:=count+1;

nextstate -;

input none;

nextstate even;

state even,odd;

input Result;

output Score(count) to player;

nextstate -;

input Endgame;

output Gameover(player);

stop;

endprocess Game;

The definition of the process starts with the keyword process and it ends
with the keyword endprocess. As already mentioned, initially no instances of
the process Game are used, and the maximal number of its instances is
unlimited. The process declaration is followed by the construct fpar player
Pid, which defines the formal process parameter player that is assigned the
value Pid. At the beginning of the game, the run-time environment creates
an instance of the process, and assigns a unique Pid number to it.

Next, we declare the integer variable count (using the keyword Integer),
which contains the current total value of points that the player has scored
so far. After the label start, we define a series of statements that are executed
by the process at its startup. In this example, the process Game at its startup
sends the signal Gameid to the player and enters its initial stable state even
(next state of the process is defined by the keyword nextstate).

For each stable state (keyword state) of the process, we define all the
recognizable input signals (using the keyword input) and on the next level
of indentation, we define the corresponding state transition as a series of
statements that ends with the nextstate statement. For example, the recog-
nizable input signals in the stable state even are the signal none, which relates
to the expiration of the corresponding timer, and the signal Probe generated
by the player’s stroke of the pushbutton. In the case the timer none expires,
the process evolves to its next stable state odd. Alternatively, if the process
receives the signal Probe, it sends the signal Lose to the player (using the
keyword output), performs the task of decrementing the score by 1 (using
the keyword task), and remains in its current state (the statement nextstate -;).

The stable state odd is defined in a similar manner. The input signals
recognized by the process in its stable state odd are the signal Probe and the
expiration of the timer none. If the process receives the signal Probe, it sends
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the signal Win to the player, increments the score by 1, and remains in its
current stable state odd. Alternatively, if the timer none expires, the process
evolves into its stable state even. Finally, we define the state transitions
initiated by the reception of the input signals Result and Endgame in either
the state even or odd.

Understanding the principals of SDL-PR helps in more easily understand-
ing the communications protocol software implementation in the state-of-
the-art, higher-level programming languages such as C/C++ or Java.
Although SDL-PR can resemble a pseudolanguage when compared to these
programming languages, in reality it is a specialized language of higher level
abstraction and it is feasible to construct a compiler for it. However, the
study of the compilers is out of the scope of this book. The primary goal of
this book in this respect is to provide an insight into the manual coding of
SDL graphical diagrams in some of the above mentioned programming
languages (C/C++ or Java). 

The example under study can help in this respect. Obviously, two levels
of nesting are included in it. The first level of nesting corresponds to the
current stable state, in which the process is blocked while waiting for the
next input signal, i.e., start, even, and odd. The second level of nesting corre-
sponds to the type of input signal, i.e., Probe, none, Result, or Endgame.

The simplest method to implement this selection construction with two
levels of nesting in the C/C++ or Java programming language is to use
nested switch-case statements. The first switch-case statement is used to locate
the current state. Then in each case clause of the first switch-case statement,
another switch-case statement is used to locate the state transition statements
that correspond to the given input signal. This type of protocol implemen-
tation will be covered in detail in the next chapter.

3.7.1 Telephone Call Processing Example

The second example of the system specification made in SDL-GR is the
specification of the telephone call processing system. The description of this
system is given in the separate ITU-T recommendation Q.71. The Q.71 com-
pliant program system consists of six mutually interconnected functional
entities (referred to as functional blocks), namely FE1, FE2, FE3, FE4, FE5,
and FE6 (Figure 3.38). The aim of this example is just to illustrate SDL-GR
applicability and the details of the recommendation Q.71 (such as the con-
crete names of the entities, their types and links, i.e., relations) are not really
significant for the comprehension of the usage of SDL-GR. The reader that
is more interested in Q.71 details can refer to the corresponding ITU-T
recommendation. 

We use the hypothetical telephone call processing system CallProcessor to
make further illustrations more concrete, but without diving into the bulk
of details of Q.71 recommendation. Comparing it to the real Q.71-compliant
system, the CallProcessor is a very simplified academic example that consists
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of a single functional block, namely TelephoneLine (Figure 3.39). This func-
tional block is linked with the environment by one input channel, named
input, and one output channel, named output. So far, this example is very
similar to the previous example Daemongame, which also comprises the single
functional block Game that is interconnected with the environment with one
input and one output channel.

The functional block TelephoneLine is shown in Figure 3.40. This simple
functional block consists of the single process FE1. Two lists of signals are
declared (using the keyword signallist) in the upper left corner of Figure 3.39,
namely, input and output. The process FE1 is connected both to the telephone
user (shown by the arrows placed at the right of FE1) and to the telephone
exchange (indicated by the arrows placed at the bottom of FE1). It can receive

FIGURE 3.38
A functional model of the telephone call processing system.

FIGURE 3.39
The hypothetical system CallProcessor.
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one of the three possible input signals (hookOff, dialDigit, and hookOn) from
the telephone user’s side. Alternately, it can send the output signal initiate-
OutgoingCall to the telephone exchange or it can receive the input signal
asnwerReceived from the exchange. 

The process FE1 is specified in the graphical form of SDL, SDL-GR, in
Figure 3.41. This process resides in the telephone exchange and it commu-
nicates with the human that uses the telephone to establish a call, talk to the
called party, and release the call at the end of the conversation. In reality,
such a process must handle many scenarios, e.g., the user picks up the
receiver but does not dial the number, or stops after dialing an insufficient
number of digits.

The process specified in Figure 3.41 is rather simplified but it still captures
the most significant part of the telephone line functionality on the calling
party side. The telephone line in this context is a processor that hosts FE1,
together with the interfacing hardware that connects it to both the calling
party user’s telephone and switching unit of the telephone exchange. For
brevity, we refer to the former simply as a user and to the latter as a telephone
exchange, or just an exchange.

The process FE1 has four stable states, namely, IDLE, WAIT_DIGIT,
WAIT_ANSWER, and CONVERSATION. The evolution of the process starts
from the state IDLE. The single recognizable input signal in this state is the
signal hookOff. If the process FE1 receives the signal hookOff, it performs the
task prepareForDialing and moves to its next stable state WAIT_DIGIT. While
performing the task prepareForDialing, the process connects the free-to-dial
tone to the calling party user. This tone serves as the indication to the user
that they can start dialing the number of another user to which they wish
to talk.

Two recognizable input signals are used in the stable state WAIT_DIGIT,
i.e., the process can either receive the input signal hookOn or the input signal

FIGURE 3.40
The structure of the functional block TelephoneLine.
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dialDigit. In this simplified example, we assume that the telephone number
of the called party consists of a single digit. However, in real ISDN telephone
networks, a so-called enblock dialing mode exists in which the ISDN terminal
sends the complete telephone number to the telephone exchange in a single
SETUP message. Therefore, this simplified example is not so far from reality.
If the process FE1 receives the input signal hookOn, it evolves into its initial
state IDLE. If it receives the input signal dialDigit, it sends the output signal
initiateOutgoingCall to the telephone exchange and it moves to the stable
state WAIT_ANSWER.

In the stable state WAIT_ANSWER, two events are again possible — the
reception of the input signal hookOn or the reception of the input signal
asnwerReceived. In the former case, the process goes back to its initial state
IDLE, whereas in the latter it evolves into its next stable state CONVERSA-
TION. The input signal asnwerReceived is actually the result of the series of
events that start with the input signal hookOff at the called party side. The

FIGURE 3.41
A simplified model of the Q.71 FE1 in SDL-GR.
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telephone line entity at the called party translates it to the signal answerIn-
comingCall and sends it to the exchange at the called party side, which in
turn sends it to the exchange at the calling party side. Finally, the exchange
at the calling party side translates it to asnwerReceived and sends it to FE1.

In the final stable state CONVERSATION, only a single event is possible. The
process FE1 can receive the input signal hookOff, and if it does, that is the end
of the conversation phase of the call and the process will return to its initial
stable state IDLE. This closes the circle and the process is ready to process a
new call originating from the same telephone line. Clearly, an instance of the
process FE1 is assigned to each telephone line in the telephone exchange.

In this example, we described the process FE1 that is assigned to the calling
party telephone line without going into a detailed specification of the oper-
ations performed by the telephone exchanges and the called party telephone
line involved in the call. Obvious from this example should be that SDL
diagrams are self-documented formal specifications and that no need really
exists for any additional textual descriptions.

The SDL diagram shows the possible evolution paths of a process (a call
processing in the example above). It defines unambiguously all telephone stable
states, as well as all possible input signals for each state. The functional speci-
fication is based on the logical advance of a call, expressed in terms of telephony
events. This makes it completely independent of both hardware structure of
the hosting system and selected programming language and framework.

The SDL diagram is drawn based on the observations of a single telephone
call without thinking about other calls, which are processed simultaneously
(quasi-parallel by a single CPU or genuinely parallel by a multi-CPU system).
This approach greatly simplifies software design. Finally, the existing SDL
diagram can be easily extended by adding new states and input signals
without the need to start drawing a new diagram from the very beginning.
This possibility also enables the easy removal of revealed design errors.

3.8 Message Sequence Charts

An alternative method of specifying communication systems is by drawing
message sequence charts that show the sequences of messages (signals)
exchanged by the communicating entities. The ITU-T has developed a special
language for this purpose, briefly referred to as MSC (Message Sequence
Charts), and it has standardized it in Z.120 series of ITU-T recommendations.

MSC is based on the idea of following a single evolution path of a process.
We start from a certain, most frequently initial, state of the process (e.g., the
state IDLE in the previous example). After that, we select one of the possible
input signals and follow the evolution path to which it points. In the previous
example, a single input signal can be received in the state IDLE: signal
hookOff, which causes the transition to the state WAIT_DIGIT.
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In the newly reached stable state, we select again one of the recognizable
events (the input signals that may be received in the stable state WAIT_DIGIT
are hookOff or dialDigit; let us assume that we have selected dialDigit) and
we follow the process evolution along the corresponding path (in the case
of the input signal dialDigit, the process moves to the state WAIT_ANSWER).
At the same time, as we mentally follow the evolution path of the process,
we draw on the paper, or even better in the corresponding graphical editor,
the messages that are exchanged between the process and its environment.
The messages are represented by the graphical arrow symbols that are
labeled by the message names. This is how we get the MSC charts.

Clearly, an MSC chart represents a single trace over the corresponding
path, through the SDL diagram, or some other form of specifying finite state
machines. We can see intuitively that for the real automata that we come
across in practical applications, a finite number of paths exist that cover the
SDL diagram. The set of the MSC charts that are obtained by visiting these
paths represents the specification that is in a logical sense equivalent to the
SDL diagram.

However, an obvious disadvantage of this type of a specification, in a form
of a set of the MSC charts, is that it is much less evident than the SDL
diagram. Therefore, when communication protocol designers refer to the
formal specification, they really assume the SDL diagram. This disadvantage
becomes obvious if instead of dealing with a single automaton, we try to
follow the evolution of a group of automata, which communicate between
themselves, as well as with the environment, e.g., the group of automata
defined in the above mentioned recommendation Q.71. The number of evo-
lution traces of such systems can be extraordinarily large.

Not only must we select the initial state of a single automata, we must do
it for all the automata from the group we want to analyze. Furthermore, in
the case of simple and loosely coupled automata, an increase in the number
of possible path combinations is not so high, but in the case of complex or
tightly coupled automata, it is clear that the number of evolutions of the
system can be huge.

The discussion above naturally raises the following questions: For what
purpose are the MSC charts useful? Do we need them at all? Practical
experience shows that making the MSC charts can be useful at the beginning
of the design process, when the designers talk rather freely about possible
communications scenarios. These scenarios of message exchange most fre-
quently represent the so-called main branches, i.e., main paths, through the
protocol. Typically, they go from the beginning (the initial state) to the end
(logically, the last state in the chain of states), e.g., from the state IDLE to the
state CONVERSATION in the previous example, without any errors or other
exceptional events. Later, after finishing the analysis of the main paths, the
paths of minor importance are analyzed. These are related to various less
frequent cases, such as handling timer expirations, error recovery proce-
dures, and so on.
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All these scenarios, in the form of MSC charts, would be very useful in
the later stages. Actually, these charts will be used as individual test cases
during the implementation phase to partially check the functionality of the
individual software modules (this is the so-called unit testing). They are also
used during the final phase of the software verification as test cases for the
compliance testing. The goal of compliance testing is to check if the software
is compliant with the specification.

In most cases, the number of manually written MSC charts is finite and
not too large (on the order of a few hundred at most). Later, during the
testing and verification phase, automatically generating a much larger num-
ber of test cases would be normal (logically equivalent to MSC charts) to
check the system much more thoroughly. This testing most frequently takes
the form of statistical usage testing, and it enables quality engineers to
estimate the software reliability without any previous knowledge about the
system under examination.

As already mentioned, the MSC language — similar to the SDL language
— has both the graphical and program form. The graphical form of the MSC
language is more interesting than the program form for developing commu-
nications software. The next example illustrates the message exchange
among the functional entities FE1, FE2, FE3, FE4, and FE5, in the case of the
successful establishment and successful release of the ISDN connection
between two subscribers. From this example, MSC is obviously useful for
tracing the message exchange between more processes, which is not so easy
and clear by looking at the set of corresponding SDL diagrams. 

We start drawing the MSC chart by placing the rectangle graphical symbols
that represent the communicating entities (i.e., processes) at the top of the
chart sheet. The names of the entities are used to label these rectangle
symbols. Next, we draw a vertical line from each rectangle symbol to the
bottom of the sheet. After that, we enter a series of messages exchanged by
the processes shown on the top of the chart. Each message (i.e., signal) is
represented by the arrow symbol labeled with the message name. The arrow
starts from the vertical line that represents the process sending the message
and ends at the vertical line that represents the process receiving the message.
The time advances in the direction from top to bottom of the sheet, i.e., the
messages that appear on the top of the chart are exchanged before the
messages that appear at the bottom of the chart.

An example of the MSC chart is shown in Figure 3.42. This example
illustrates the scenario of successful establishment and release of the ISDN
connection. The functional entities FE1 and FE5 are assigned to the calling
and called party user, respectively. Initially, the functional entity FE1
receives the signal SETUP_req from the environment (in reality, this signal
is generated by the signaling system DSS1). After receiving the signal
SETUP_req, FE1 translates it to the signal SETUP_req_ind and sends this new
signal to FE2. FE2 forwards this signal to FE3, FE3 forwards it to FE4, and
finally FE4 forwards it to FE5.
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After receiving the signal SETUP_req_ind, the functional entity FE5 imme-
diately sends two signals, the signal SETUP_ind to its environment and the
signal REPORT_req_ind back to FE4. The latter signal is forwarded from FE4
to FE3, then from FE3 to FE2, and finally from FE2 to FE1. FE1 translates
this signal to REPORT_ind and sends the latter to its environment.

The acceptance of the call by the calling party is signaled to FE5 by the
signal SETUP_resp. FE5 translates this signal to the signal SETUP_resp_conf
and sends the latter over the chain of FEs back to FE1. FE1 in its turn
translates it to SETUP_conf and sends the latter to its environment. This is
the final step of the connection establishment procedure. The next commu-
nication phase is a conversation.

At the end of the conversation, the calling party user initiates the call
release procedure by sending the signal DISC_req to the functional entity
FE1, which in turn translates it to DISC_req_ind and sends the latter to FE2.

FIGURE 3.42
An example of the MSC chart: Successful ISDN call establishment and release.
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The functional entity FE2 translates this signal to the signal RELEASE_req_ind
and sends the latter to both FE1 and FE3. From there, we have two parallel
flows of messages. FE1 replies to the signal RELEASE_req_ind by the signal
RELEASE_req_conf. Alternately, FE3 forwards the signal RELEASE_req_ind
to FE4, which translates it to DISC_req_ind and sends the latter to FE5. FE5
indicates the reception of that signal by sending the signal DISC_ind to its
environment.

The environment answers with the signal DISC_resp, which is then trans-
lated to RELEASE_req_ind and sent to FE4. The functional entity FE4 trans-
lates that to the signal RELEASE_resp_conf and sends the latter to both FE3
and FE5. Finally, FE3 forwards that final signal to FE2. This is the final step
of the call release procedure.

This real-world example shows the main advantage of using MSC charts
— instead of speculatively analyzing the parallel work of five finite state
machines (FE1, FE2, FE3, FE4, and FE5) by looking at their SDL diagrams,
here on a single chart we see how the system evolves through the procedures
of call establishment and release. At this level of abstraction, we are not
interested in the individual work of the individual automata. We just follow
the interaction based on the message exchange between the automata in a
given group.

3.9 Tree and Tabular Combined Notation

Tree and tabular combined notation (TTCN) is a language originally stan-
dardized by the International Standardization Organization (ISO). A group
of designers can employ TTCN to make a formal specification of test proce-
dures that are used to check if the implementation behaves in conformance
with the system’s formal specification. The type of testing that is conducted
in accordance with such test procedures is referred to as conformance test-
ing. The implementation that is the object of the testing is called an imple-
mentation under test (IUT). A primitive test procedure is specified in a form
of a test case. A test suite, as defined by TTCN, is a collection of various
test cases along with all requisite declarations and components. 

The philosophy of treating software as art has caused the “big software
crisis,” which clearly indicated the need to treat the programs as products
of a well-defined production process to ensure their quality. Software quality
assurance required development of new methods and supporting tools for
verification and validation of both software standard specification and its
implementation. One of the results of research and development efforts in
this area is the ISO/IEC 9646 (X.290) standard, which defines TTCN language
for writing test suites — collections of test cases to be used for verification
and validation of software products. Soon after its emergence, TTCN was
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widely accepted by the organizations involved in defining standards and
making test procedures for testing implementations of standards.

The main goal of TTCN is to enable conformance testing of software
products. Conformance testing is used to check if the software product is
compliant with its specification. Conformance test cases deal only with the
external behavior of a software product. Actually, conformance testing is
based on the application of the “black box” principle. The product must
interact with its environment as specified. Its internal structure and behavior
are not significant.

One of the most important concepts behind the TTCN standard is the
concept of the so-called test configuration (Figure 3.43). The upper tester (UP)
and the lower tester are driving the implementation under test (IUT) to check
the correctness of its behavior. This concept addresses conformance testing
of standardized protocols on the level N of the communication protocol
hierarchy, i.e., in the layer N of the communication protocol stack.

Note that the test configuration concept (Figure 3.43) is based on the
assumption that a reliable lower-level service already exists, provided by the
group of (N – 1) service providers. Typically, this lower-level layer of the
protocol stack would be developed by the same group of engineers, but it
can also be ordered as a commercial off-the-self (COTS) component. In any
case, the test configuration concept implies the bottom-up implementation
paradigm. The engineering team starts from the very bottom of the protocol
stack by implementing the lowest layer and proceeds toward the top of the
stack by building a new layer on top of the previous layer. Each layer is

FIGURE 3.43
An illustration of the test configuration.
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checked for the conformance with the corresponding standard or specifica-
tion before proceeding to the next one.

The lower tester is a program object on the same level, i.e., the level N of
the hierarchy, and is actually a peer object of the object under test (IUT). The
upper tester is a program object on the upper level, i.e., the level (N + 1) of
the protocol stack hierarchy. It imitates the future users of the IUT.

During the elaboration of the test configuration concept, the TTCN creators
have concluded that it is of great importance to provide the means for
abstract representation of certain details that are related to test configuration
and to make them available during the startup procedures. The protocol
implementation conformance statements (PICS) and protocol implemen-
tation extra information (PIXIT) have been conceived as the informal ques-
tionary. The answers to the questions of this questionary are mapped to the
corresponding TTCN parameters.

The protocol implementation conformance statements (PICS) contain the
information related to the protocol, such as optional parts, specific con-
straints, annexes, and so on. These data are the base for making the decision
about the applicability of the test cases under the given circumstances. The
protocol implementation extra information (PIXIT) contains the information
related to the physical architecture of the system, such as the physical inter-
connection and startup procedure, which are not the constitutive parts of
the protocol itself. By making a list of details of this type, the test suite
becomes more flexible and makes it possible for the test personnel to stay
out of the TTCN specification. Test personnel are people responsible for
running the test suite on the test configuration.

In the text that follows, we briefly describe the TTCN language. As already
mentioned, the TTCN test suite is a collection of various test cases along
with all the necessary declarations and components. The test case descrip-
tions are based on the application of the black box model. Each test case is
a sequence, in a form of a tree of events, which describes the external
behavior of the implementation under test, IUT.

The TTCN test suite specification consists of the following parts:

• Test suite overview part
• Test suite declaration part
• Test suite constraints part
• Test suite dynamic part

The test suite overview part is a table that contains an overall description
of the test suite. The purpose of this part of the TTCN specification is to
provide high-level information about the test suite to make it clear and more
readable.

The test suite declaration part contains declarations of the following spec-
ification elements:
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• User defined types
• Variables
• Timers
• Points of control and observation (PCO)

The declarations of types in TTCN are similar to the declarations of types
in any conventional higher-level programming language, with the exception
that in TTCN we use tables for that purpose rather than writing textual
statements. The user can use the so-called built-in data types, i.e., the types
defined by the TTCN language itself (e.g., INTEGER), and other previously
defined user types, to define new user-defined types. The main constraint
concerning TTCN types is that no equivalence exists for the pointers, i.e.,
the TTCN types may not be recursive.

Two structural types that are specific for the normal TTCN test suite
applications are available. These are protocol data unit (PDU) and abstract
service primitive (ASP). The protocol data unit (PDU) is a packet of data
exchanged by the communication entities on the same level of the protocol
stack hierarchy. These are referred to as peer entities, or just peers.

The abstract service primitive (ASP) is the type that encapsulates the PDU
for the purpose of the PDU transfer between the peers, which is conducted
by the lower-level layers of the protocol stack. Actually, ASP describes the
message that the layer N entity uses to send the PDU to its peer by sending
the ASP to the layer (N-1) service provider. Both ASPs and PDUs are related
to a given point of control and observation (PCO).

The variables used in TTCN test suites are declared by the usage of the
basic (built-in) and supplementary user-defined types. The TTCN language
also includes the notions of the test suite constants and parameters. The
value of a parameter is provided at the beginning of the system testing.

The TTCN language allows the user to extend the basic set of TTCN
operations by defining the so-called supplementary introduced operations
that are specific to a test case at hand. The design engineer defines the
supplementary introduced operations according to the needs that they face
during their work on the TTCN test suite specification.

The concept of a point of control and observation (PCO) defines the logical
point for sending or receiving messages to or from the implementation under
test (IUT). The PCO is identified by its name (address). The mapping of an
abstract PCO to a real connection is outside of the domain of TTCN language,
i.e., it is not defined by the TTCN test suite. The timers must be defined in
the TTCN test suite declaration part to be available later in the TTCN
dynamic part. The timer declaration contains its name (i.e., identification)
and its duration. 

A few examples seem to be appropriate at this point to make it easier for
the reader to comprehend the concepts and notions introduced previously.
We start with the example of the declaration of types in the TTCN language
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with the row that names the table (in the example shown in Table 3.1, the
name of the table is Simple Type Definitions). Each next row of the type
declaration table is used to declare an individual data type additionally
introduced by the user. The last row of the type declaration table is reserved
for the detailed textual comments that the design engineer can provide to
improve the quality of the TTCN test suite specification.

Each individual data type is declared by writing the type name, type
definition, type encoding, and a textual comment in separate columns of the
type declaration table. The type encoding information and a textual comment
are optional. Table 3.1 declares three types, namely B_1 (a bit string com-
prising a single bit), O_1 (an octet string comprising a single octet), and O_2
(an octet string comprising two elements, i.e., octets).

The next example illustrates the ASP type definition. Table 3.2 defines ASP
type dl_data_ind. The table includes the information about its point of control
and observation type, namely DSAP, and about two abstract service primi-
tive parameters, v5dl_address and user_data. The type of the former parameter
is O_2 whereas the type of the latter is PDU. A single textual sentence is
included to improve the readability of this definition.

example of PDU type bcc_allocation_cpl definition. The point of control and
observation type for this PDU is DSAP. The PDU has three fields, namely,

TABLE 3.1

An Example of Type Declarations in TTCN Language

Simple Type Definitions

Type Name Type Definition Type Encoding Comments

B_1 BITSTRING[1]   
O_1 OCTETSTRING[1]   
O_2 OCTETSTRING[2]   

Detailed Comments:

TABLE 3.2

An Example of an ASP Type Definition

ASP Type Definition

ASP Name: dl_data_ind
PCO Type: DSAP
Comments:

Parameter Name Parameter Type Comments

v5dl_address_value O_2  
user_data PDU  
Detailed Comments: ASP definition of the primitive 
received from DSAP PCO
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protocol_discriminator, bcc_reference_name, and message_type (look at the col-
umn “Field Name”). The types of the fields are O_1, O_2, and O_1, respec-
tively (see the column “Field Type”). All the fields are mandatory (see the
column “Comments” and the row “Detailed comments”).

The next example illustrates the declarations of test case variables in the
TTCN language. Table 3.4 defines two variables, TestCaseV and TestCaseV2.
The type of the former is INTEGER and the type of the latter is IA5String.
Their default values are decimal number 10 and IA5 string of characters,
”DefaultValue.” 

As already mentioned, the design engineer can define a supplementary
test suite operation, which corresponds to a function or a macro in a higher-
level programming language. The example of such a definition is shown in

operation has the single parameter named bcc_message. The type of the
parameter is dl_data_ind (the parameter name and the parameter type name
are separated by the character “:”). The type of the result of this operation
is O_2. 

Normally, in the TTCN test suite specifications, the test suite constraints
part follows the test suite declaration part. The constraints part contains the
constraint definitions that describe the messages that are sent or received by
the IUT. The structural TTCN types, PDUs, and ASPs are used as the models

TABLE 3.3

An Example of a PDU Type Definition

PDU Type Definition

PDU Name: bcc_allocation_cpl
PCO Type: DSAP
Encoding Rule Name:
Encoding Variation:
Comments:

Field Name Field Type Field Encoding Comments

protocol_discriminator O_1  m
bcc_reference_number O_2  m
message_type O_1  m
Detailed Comments: m = mandatory

TABLE 3.4

An Example of Test Case Variables Declarations

Test Case Variables Declarations

Variable Name Type Value Comments

TestCaseV INTEGER 10  
TestCaseV2 IA5String ”DefaultValue”  
Detailed Comments:
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to describe the messages exchanged over the PCOs. The constraints can be
parameterized to make them usable in various contexts. In each of the
contexts, real values are passed as constraint arguments.

The next example illustrates a constraint declaration. Table 3.6 declares the
PDU constraint Bcc_allocation_cpl. This constraint relates to the packet data
unit type bcc_allocation_cpl. This constraint concretely requires that three
PDU fields that are listed in the table (see the column “Field Name”) have
particular values (see the column “Field Value”), as specified in the table.
The field protocol_discriminator must contain the value TSC_V5_PD, the field
Bcc_reference_number must contain the value TSPX_BCC_REF_NUM, and the
field message_type must contain the value TSC_METY_ALLOCATION_CPL.
Of course, the constants TSC_V5_PD, TSPX_BCC_REF_NUM, and
TSC_METY_ALLOCATION_CPL must be declared earlier in the test suite
declaration part. 

The last part of the TTCN test suite specification is the dynamic part, which
describes the individual test cases. The dynamic part comprises test cases,
test steps, and default behavior tables, with all the test events and test
verdicts. A test verdict describes the current IUT behavior. The dynamic part

TABLE 3.5

An Example of a Test Suite Operation Definition

Test Suite Operation Definition

Operation Name: TSO_GET_BCC_REF_NUM(bcc_message:dl_data_ind)
Result Type: O_2
Comments:
Description: The operation TSO_GET_BCC_REF_NUM returns the 

value of the field reference_number, which is a part of the received 
message (bcc_message).

TABLE 3.6

An Example of a PDU Constraint Declaration

PDU Constraint Declaration

Constraint Name: Bcc_allocation_cpl
PDU Type: bcc_allocation_cpl
Derivation Path:
Encoding Rule Name:
Encoding Variation:
Comments:

Field Name Field Value Field Encoding Comments

protocol_discriminator TSC_V5_PD   
Bcc_reference_number TSPX_BCC_REF_NUM   
message_type TSC_METY_ALLOCATION_CPL   
Detailed Comments:
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is created in a hierarchical and nested manner. The building blocks are test
groups, test cases, test steps, and test events.

Starting from the basic toward more complex constructions, the following
hierarchical levels of constructions exist:

• Test event: the basic element that is used to build all other more
complex constructions.

• Test step: a sequence of test events.
• Test case: a sequence of test steps.
• Test group: a set of test cases.
• Test suite: a collection of individual test cases and groups of test

cases. Normally, the test suite is stored in a file system hierarchy.
The test suite itself corresponds to the top-level directory, the test
group corresponds to the subdirectory (so it is possible to have
groups of the groups of test cases), and the individual test case
corresponds to the file that contains the series of the test steps.

Test constructions are built as behavior trees that are placed into behavior
tables. This is where the name of the language comes from, tree and table
combined notation (TTCN). The behavior table contains the behavior tree
defined by writing test events in lines with different nesting (indentation)
levels. The lines on the same nesting level (i.e., with the same depth of
indentation) represent alternative test events. The line on the next nesting
level (i.e., with the next deeper indentation) executes after the line on the
previous nesting level. The line is successfully executed when the event
assigned to it has been processed.

This process means that the evolution of the behavior tree (table) begins
from the lines that start at the beginning of the corresponding rows of the
table, i.e., with the indentation of zero spaces. Of course, generally there may
be more such lines. One of them is arbitrarily selected and the execution
continues on the next level of nesting (indentation) where again more alter-
native lines may exist. One of them is selected randomly and this procedure
is repeated until the end of the tree, i.e., until its leaf is reached. The leaf of
the tree contains the test verdict.

An example of the successfully processed event is the reception of the
expected message. Once a line has been executed, the tester goes to the next
level of indentation. The tester is a program that executes the test case script
corresponding to the test case definition table. No return to the previous
level of indentation is allowed, except by using the GOTO construct. The
lines on the same level of indentation have equal probabilities.

The line in the behavior table can contain the following:

• The send message statement, e.g., L!CONNECTrequest (where CON-
NECTrequest is the message name and L is the name of the corre-
sponding point of control and observation, PCO)
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• The receive message statement, e.g., L?DISCONNECTindication

• The assignment statement, which is used to assign a value to the
specified variable, e.g., V_R := V_R + 1

• The timer operation statement that is used to start or cancel the
specified timer, e.g., START T01_max or CANCEL T01_max

• The timer expiration statement, which is the reception of an internal
message that signals the timer expiration, e.g., ?TIMEOUT T01_max

• The Boolean operation that qualifies the execution, e.g., [TSPC_PSTN
OR TSPC_ISDN]

The send message statement always executes successfully. The receive
message statement executes successfully if the message of the correct type
has been received and if its contents satisfy the given constraints. The value
assignment statement always executes successfully, as well as the timer
operation statements. The statement that is guarded with the Boolean expres-
sion executes if the expression evaluates to a true value.

Each leaf of the tree of events is assigned a single test verdict, which can
be pass, fail, or inconclusive. The verdict pass means that the test case has been
completed without errors, whereas the verdict fail indicates that the IUT is
not compliant with the specification. The verdict inconclusive means that not
enough evidence exists to proclaim that the IUT is conformant to the spec-
ification.

In practice, the user can face the need to construct new behavior trees by
concatenating the already existing trees to the newly made constructions.
This is frequently the case when writing the test cases for the certain phases
of communication that come after some initial phases. The naive approach
would be to write again, or copy, the tree lines that correspond to the initial
phase in every test case that targets the subsequent phases of communication.
A more profound approach would be to construct a common behavior tree
by writing these common lines once and then to use the common behavior
tree as a building element for other test cases. A tree can be concatenated
with another tree by the operator “+”. Thus, we make the so-called attach
construct:

+STEP_CHECK_STATE

Another problem that can appear in practice is the need to repeat certain
test cases. A single test case can be repeated the given number of times by
using the repeat construct. For example, the next iteration ends when the
expression FLAG evaluates as true:

REPEAT STEP1 UNTIL (FLAG)

The example of a behavior tree is given in Figure 3.44. This example
illustrates the IUT behavior for the case of the outgoing telephone call. This
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behavior tree is then placed in the behavior table to construct the test case
shown in Table 3.7.

The behavior tree starts with sending the hook-off signal to the IUT (the
line L!HookOff) because that line is a single line on that level of nesting
(indentation). On the next level of nesting, there are two equal native lines
(the line L?DialTone and the line L?NoTone). If the upper tester receives a
dial tone (the line L?DialTone), the execution of the test case may continue.

FIGURE 3.44
An example of the behavior tree for the outgoing telephone call.

TABLE 3.7

An Example of a Test Case Dynamic Behavior Specification

Test Case Dynamic Behavior

Test Case Name: Basic outgoing call to the conversation phase.
Group:
Purpose: To check whether the base outgoing call can be established. 
Configuration:
Default:
Comments:

No. Label Behavior Description Constraint Ref Verdict Comments

1 L!HookOff
2   L?DialTone
3     L!Digits CallSubscr2
4       L?RingTone
5 L1         L?LineConnected ConnSubscr2 PASS
6           L!HookOn
7 L2       L?BusyTone INCONC
8         L!HookOn
9 L3 L?NoTone FAIL  

Detailed Comments:

L!HookOff

L?DialTone

L!Digits

L?RingingTone

L!HookOn

Sequence

A
lt

er
n

at
iv

es

L?NoTone

L?BusyTone

L?LineConnected

L!HookOn
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Alternatively, if the upper tester receives some other tone or no tone at all
(the line L?NoTone), that run of the test case is definitely not successful and
we reach the test verdict FAIL. If the upper tester receives a dial tone, it sends
the address of the called party (digits) to the IUT (the line L!Digits) and after
that, it waits for the IUT answer. On this level of indentation, there are again
two equal lines (the line L?RingTone and the line L?BusyTone). 

If the upper tester receives a busy tone (the line L?BusyTone), that execution
of the test case is inconclusive (the test verdict is INCON). Alternately, if the
upper tester receives a ringing tone (the line L?RingTone), the upper tester
checks if the connection is successfully established (the line L?LineConnected),
e.g., by sending DTMF tones from the lower to the upper tester. If the upper
tester receives the LineConnected signal, that run of the test case is definitely
successful and we reach the test verdict PASS. In both cases, the upper tester
ends the test case by sending the hook-on signal to IUT (the line L!HookOn).

3.10 Examples

This section contains some examples that are related to the communication
protocol design. These should help the reader to consolidate their under-
standing of the concepts and techniques introduced so far.  

3.10.1 Example 1

This example demonstrates the procedures for connection establishment
and release that are performed by two communicating processes, namely
TE1 and TE2. The processes TE1 and TE2 are specified by their statechart
diagrams shown in Figure 3.45 and Figure 3.46, respectively. The semanti-
cally equivalent SDL diagrams are shown in Figure 3.47 and Figure 3.48,
respectively.

The process TE1  has four stable states,  labeled TE1_IDLE ,
TE1_CONNECTING, TE1_CONNECTED, and TE1_DISCONNECTING.
While the process TE1 is in the state TE1_IDLE, it can receive only the
message CONNECT_req from the user and after receiving that message, the
process TE1 sends the message CONNECT_ind to the process TE2, and
evolves to its next stable state TE1_CONNECTING. In that state, the process
may receive one of two possible input messages, namely CONNECT_conf or
CONNECT_reject. In the former case, the process moves to the stable state
TE1_CONNECTED, whereas in the latter case, it evolves to its initial stable
state TE1_IDLE.

In its stable state TE1_CONNECTED, the process TE1 may receive the
message DISCONNECT_req from the user. In that case, it sends the message
DISCONNECT_ind to the process TE2 and evolves to the stable state
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TE1_DISCONNECTING. From that stable state, it returns to its initial stable
state TE1_IDLE after receiving the message DISCONNECT_conf from its peer
process TE2.

The SDL diagram specification of the process TE2 is much simpler because
it  comprises  only two stable  states ,  namely,  TE2_IDLE  and
TE2_CONNECTED. In the former state, the process TE2 may receive only
the message CONNECT_ind, to which it replies by the message
CONNECT_conf and after that, it evolves to the state TE2_CONNECTED. In
the latter state, the process may receive one of two possible messages,
CONNECT_ind or DISCONNECT_ind. In the former case, the process TE2

FIGURE 3.45
The statechart diagram of the process TE1.

FIGURE 3.46
The statechart diagram of the process TE2.

TE1_IDLE

TE1_CONNECTING

TE1_CONNECTED

TE1_DISCONNECTING

rcv CONNECT_reject

rcv CONNECT_req/snd CONNECT_ind rcv DISCONNECT_conf

rcv CONNECT_conf rcv DISCONNECT_req/snd DISCONNECT_ind

TE2_IDLE

TE2_CONNECTED

rcv CONNECT_ind/snd CONNECT_reject

rcv CONNECT_ind/snd CONNECT_conf rcv DISCONNECT_ind/snd DISCONNECT_conf
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replies with the message CONNECT_reject and remains in its current state.
In the latter case, it replies with the message DISCONNECT_conf and goes
back to its initial state TE2_IDLE. 

The scenario of a successful connection establishment and release is illus-

communicating entities, the human user, and the program processes TE1 and

FIGURE 3.47
The SDL diagram of the process TE1.

TE1_IDLE

CONNECT_req

CONNECT_ind

TE1_CONNECTING

CONNECT_conf CONNECT_reject

TE1_CONNECTING

TE1_CONNECTED

DISCONNECT_req

DISCONNECT_ind

TE1_DISCONNECTING

TE1_DISCONNECTING

TE1_CONNECTED

DISCONNECT_conf

TE1_IDLE

TE1_IDLE
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trated by the MSC chart shown in Figure 3.49. The top of the chart shows the
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TE2. The vertical lines are drawn from the rectangular graphical symbols down
to the bottom of the sheet. The time advances in the same direction.

The connection establishment procedure starts when the user sends the
message CONNECT_req to the process TE1 (this event is noted by the arrow
drawn from the vertical line labeled USER to the vertical line labeled TE1),
which in turn sends the message CONNECT_ind to the process TE2. The
process TE2, in its turn, replies with the message CONNECT_conf. Upon
recept of the message CONNECT_conf, the process TE1 forwards it to

FIGURE 3.48
The SDL diagram of the process TE2.

FIGURE 3.49
A successful connection establishment and release MSC.

TE2_IDLE

CONNECT_ind CONNECT_ind DISCONNECT_ind

DISCONNECT_confCONNECT_conf CONNECT_reject

TE2_CONNECTED

TE2_CONNECTED - TE2_IDLE

USER TE1 TE2

CONNECT_req

CONNECT_conf

CONNECT_conf

CONNECT_ind

DISCONNECT_req

DISCONNECT_conf

DISCONNECT_conf

DISCONNECT_ind
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the user. This completes the connection establishment procedure. The next
communication phase is normally used for the desired data transfer. Because
of that, it is most frequently referred to as a data transfer phase.

The connection release procedure starts when the user sends the message
DISCONNECT_req to the process TE1, which translates it to the message
DISCONNECT_ind and sends it to the process TE2, which in turn replies by
the message DISCONNECT_conf. Upon reception of the message
DISCONNECT_conf, the process TE1 forwards it to the user. This completes
the connection release procedure.

The tables shown represent a simple TTCN test suite specification for this
example. This simple test suite comprises Table 3.8 with simple type decla-

dynamic behavior description, i.e., test cases. 
The reader is encouraged to play more with this simple example. For

example, we can change the previous example so that before the existing
connection is established, the process User checks if the process TE1 is ready
for the communication. The MSC chart that specifies a new connection

TABLE 3.8

The Example 1 Simple Type Declarations

Simple Type Declarations

Type Name Type Definition Type Encoding Comments

O_1 OCTETSTRING[1]
O_2 OCTETSTRING[2]

Detailed Comments:

TABLE 3.9

The Example 1 PDU Type Declarations

PDU Type Declaration

PDU Name: CONNECT_ind
PCO Type:
Encoding Rule Name:
Encoding Variation:
Comments: Example of PDU declaration 

Field Name Field Type Field Encoding Comments

Source_address O_1
Destination_address O_1
User_data O_2
Detailed Comments:
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rations, Table 3.9 with the PDU type declarations, Table 3.10 with PDU
constraint declarations, and two tables (Table 3.11 and Table 3.12) with

establishment procedure is shown in Figure 3.50.
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3.10.2 Example 2

Three terminal nodes, N1, N2, and N3, are connected to one transit node

TN. Terminal nodes generate messages for other terminal nodes in the net-
work. Depending on the value of the message parameter (1, 2, or 3), a transit
node delivers the message to its destination by sending it to the correspond-
ing port (A, B, or C).

The communication process that resides in the terminal node of the net-
work is specified by the statechart diagram shown in Figure 3.52. The process
that executes in the transit node is described by the statechart diagram shown

TABLE 3.10

The Example 1 PDU Constraint Declarations

PDU Constraint Declaration

Constraint Name: CONNECT_ind
PDU Type: CONNECT_ind
Derivation Path:
Encoding Rule Name:
Encoding Variation:
Comments:

Field Name Field Value Field Encoding Comments

Source_address –
Destination_address –
User_data –
Detailed Comments:

TABLE 3.11

The Example 1 Test Case 1

Test Case Dynamic Behavior

Test Case Name: Basic Connect TE2
Group:
Purpose: Check if a normal connection can be established
Configuration:
Default:
Comments:

No. Label Behavior Description Constraint Ref Verdict Comments

1 L?CONNECT_req
2   L!CONNECT_ind
3     L?CONNECT_conf CallEstablished PASS
4     L?CONNECT_reject CallNotEstablished INCONC

Detailed Comments: 
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Figure 3.51 shows a hypothetical computer network with a star topology.

TN. The routing table residing in TN is shown in Figure 3.51 to the right of
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The process that runs in the terminal node of the network has two stable
states, N123_IDLE and N123_MSG_SENT. The state transition is initiated by

TABLE 3.12

The Example 1 Test Case 2

Test Case Dynamic Behavior

Test Case Name: Basic Disconnect TE2
Group:
Purpose: Check call disconnect
Configuration:
Default:
Comments:

No. Label Behavior Description Constraint Ref Verdict Comments

1 L?CONNECT_req
2   L!CONNECT_ind
3     L?CONNECT_conf CallEstablished
4       L?DISCONNECT_ind
5         L!DISCONNECT_ind Disconnect
6           L?DISCONNECT_conf PASS
7           L?CONNECT_conf FAIL
8           L?CONNECT_reject FAIL
9     L?CONNECT_reject

Detailed Comments: 

FIGURE 3.50
A new connection establishment procedure MSC.

USER TE1 TE2

CONNECT_req

CONNECT_conf

CONNECT_conf

CONNECT_ind

DISCONNECT_req

DISCONNECT_ind
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in Figure 3.53. The semantically equivalent SDL diagrams are shown in
Figure 3.54 and Figure 3.55, respectively.
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the user message MSG_req. The process returns to its initial state after the
reception of one of three possible messages, namely, MSG_conf, MSG, or
MSG_reject. The process that resides in the transit node of the network has
a single state, TN_IDLE. This process routes the input message toward its
destination.

N1 sends the correct message to the node N3 over the node TN. The user is

has sent the message to the unknown destination, which has been rejected
from the node TN by the message MSG_reject.

FIGURE 3.51
A hypothetical star network with one transit and three terminal nodes.

FIGURE 3.52
The statechart diagram of the process that runs in a terminal node of the network.
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rcvMSG_req/snd
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rcv MSG_conf/snd MSG_conf
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MSG_reject
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Figure 3.56 shows the scenario of a successful message delivery. The node

3.57 shows the scenario of an unsuccessful message delivery. The node N1
informed about the successful delivery by the message MSG_conf. Figure
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The next five tables constitute a simple TTCN test suite specification for
this example, as follows:

MSG_req. 

destination_addr_ok. 

destination_addr_not_ok. 

FIGURE 3.53
The statechart diagram of the process that resides in the transit node of the network.

FIGURE 3.54
The SDL diagram of the process that runs in a terminal node of the network.

TN_IDLE

rcv MSG(dest)/

port = route(dest)
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N123_MSG_SENT

MSGMSG_req MSG_conf

MSG_conf

MSG MSG_reject

MSG_rejectMSG(dest) MSG
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• Table 3.13 contains the PDU type declaration for the message

• Table 3.14 contains the PDU constraint declaration MSG_req_

• Table 3.15 contains the PDU constraint declaration MSG_req_
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sending a message to a known terminal node. 

sending a message to an unknown terminal node. 

The reader is encouraged to play more with this example. One interesting
direction of generalization would be to consider a more complex network,

FIGURE 3.55
The SDL diagram of the process that resides in the transit node of the network.

TN_IDLE

MSG(dest)

port = route(dest)

Is port

valid?

MSG_rejectMSG

MSG_conf

-

-

YES

NO

9814_C003.fm  Page 143  Wednesday, April 12, 2006  12:00 PM

© 2006 by Taylor and Francis Group, LLC

• Table 3.16 contains the test case that corresponds to the scenario of

• Table 3.17 contains the test case that corresponds to the scenario of

such as the one shown in Figure 3.58.



144 Communication Protocol Engineering

3.10.3 Example 3

This example illustrates reliable packet delivery based on the message
acknowledgment. Each communicating process expects the acknowledg-
ment of the message that it has previously sent. If the acknowledgment is
not received within the limited period of time, the corresponding timer will

FIGURE 3.56
A successful message delivery MSC.

FIGURE 3.57
An unsuccessful message delivery MSC.

TABLE 3.13

The Example 2 PDU Type Declaration MSG_req

PDU Type Declaration

PDU Name: MSG_req
PCO Type:
Encoding Rule Name:
Encoding Variation:
Comments: Example of PDU declaration 

Field Name Field Type Field Encoding Comments

Destination_address INTEGER m
User_data OCTETSTRING[2]
Detailed Comments: 

N1 TN N3

MSG_req

MSG(dest)

MSGMSG_conf

MSG_conf

N1 TN N3

MSG_req

MSG(dest)

MSG_reject

MSG_reject
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expire and the process will assume that the message or its acknowledgment
have been lost and will retransmit the message once again.

The statechart diagram and the SDL diagram of the process are shown

states, FSM_IDLE and FSM_MSG_SENT. In its initial state, the process
starts the timer T1, sends the message with the sequence number SN, and
evolves into its next stable state FSM_MSG_SENT. In that state, the process
either receives the acknowledgment, stops the timer T1, and returns to its
initial state, or the timer T1 expires and in its turn the process retransmits
the message.

In any state (FSM_IDLE or FSM_MSG_SENT), the process can receive a
message from its peer process. The process acknowledges the message if the
sequence number of the message is valid (in communication protocols, the

TABLE 3.14

The Example 2 PDU Constraint Declaration 
MSG_req_destination_addr_ok

PDU Constraint Declaration

Constraint Name: MSG_req_destination_addr_ok
PDU Type: MSG_req
Derivation Path:
Encoding Rule Name:
Encoding Variation:
Comments:

Field Name Field Value Field Encoding Comments

Destination_address 1
User_data *
Detailed Comments:

TABLE 3.15

The Example 2 PDU Constraint Declaration 
MSG_req_destination_addr_not_ok

PDU Constraint Declaration

Constraint Name: MSG_req_ destination_addr_not_ok
PDU Type: MSG_req 
Derivation Path:
Encoding Rule Name:
Encoding Variation:
Comments:

Field Name Field Value Field Encoding Comments

Destination_address 4
User_data *
Detailed Comments:
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in Figure 3.59 and Figure 3.60, respectively. The process has two stable
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process would normally maintain the counter of the next expected message
in a sequence by incrementing its contents for each received message — a
validity check in this context would be to compare the sequence number in
the received message with the contents of this counter). If the sequence
number, RN, of the message is invalid, the process throws the message away.

peer processes. The MSC on the left in Figure 3.61 shows a successful mes-
sage delivery. The process FSM1 sends the message M1 to the process FSM2,
which in turn sends the acknowledgment ACK to the process FSM1.

The MSC on the right in Figure 3.61 shows a more complex scenario of
successful message retransmission after the unsuccessful first message

TABLE 3.16

The Example 2 Test Case 1

Test Case Dynamic Behavior

Test Case Name: Sending a message to a known terminal node
Group:
Purpose:
Configuration:
Default:
Comments:

No. Label Behavior Description Constraint Ref Verdict Comments

1 L?MSG_req
2   L!MSG_req_destination_addr_ok
3     L?MSG_conf Message sent PASS
4     L?MSG_reject FAIL

Detailed Comments:

TABLE 3.17

The Example 2 Test Case 2

Test Case Dynamic Behavior

Test Case Name: Sending a message to an unknown terminal node
Group:
Purpose:
Configuration:
Default:
Comments:

No. Label Behavior Description Constraint Ref Verdict Comments

1 L?MSG_req
2   L!MSG_req_ destination_addr_not_ok
3     L?MSG_conf Message sent FAIL
4     L?MSG_reject PASS

Detailed Comments:
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Figure 3.61 illustrates two scenarios of the communication between two
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delivery attempt. The process FSM1 sends the message M1, the process FSM2
receives it and sends its acknowledgment ACK, but it gets lost. The timer
T1 expires and the process FSM1 retransmits the message M1. The process
FSM2 receives it and sends its acknowledgment ACK, which is successfully
received by FSM1.

FIGURE 3.58
The topology of a more complex hypothetical network.

FIGURE 3.59
The statechart diagram of the communicating process that provides the reliable message deliv-
ery based on the re-transmission scheme.
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FIGURE 3.60
The SDL diagram of the communicating process that provides the reliable message delivery
based on the re-transmission scheme.
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3.10.4 Example 4

This example illustrates the sliding window concept, which provides a reli-
able and efficient transport service. Voluminous literature can be found that
addresses this topic (Halsall, 1988). The design shown here is based on Go-
back-N retransmission mechanism. It also supports the robust frame
acknowledgement procedure (one ACK may acknowledge more than one
frame).

tions that communicate with the help of two communication objects, which
are deployed at the local and remote side. The application a1 sends the data
packed into messages (M) to the object p (primary), which in its turn encap-
sulates the messages into I (information) frames, together with its sequence
number V(s), and sends them to the object s (secondary). The object s checks
the frame I sequence number against the number it expects V(r), and if they
match, it accepts the frame I and acknowledges it by sending the message
ACK to the object p. If these numbers do not match, the object s rejects the
received I frame and sends the corresponding message NAK. We assume
that the numbers V(s) and V(r) are maintained in the variables vs and vr,
respectively. The object s delivers all the correctly received messages to the
remote application a2.

In this example, we are mainly interested in the communication protocol
between the primary and the secondary side of the communication link,
which is established by the corresponding communication processes, p and

FIGURE 3.61
An example with two scenarios (with and without message retransmission).
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The collaboration diagram in Figure 3.62 shows two distributed applica-

s. The process p is modeled with the activity diagram shown in Figure 3.63
and Figure 3.64, whereas the process s is modeled with the activity diagram
shown in Figure 3.65.
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Assume that the variable rc holds the number of the I frames that were
sent by the process p but still not acknowledged by the process s. The activity

state IDLE. During this transition the variables vs and rc are reset. After
receiving a message M from the application a1, p checks if the send window
is full. If the send window is not full, p calls the procedure send(M) to
encapsulate M into I and sends it toward s. If the send window is full, p
adds M to the input queue (inputQueue). In both cases, it returns to the state
IDLE.

The procedure send(M) first creates the frame I and encapsulates the cur-
rent value of the variable vs and the message M in it by supplying them as
arguments of the corresponding constructor. It then adds the frame to the
retransmission queue (retransmissionQueue), allocates and starts a new timer
(T), adds the pair (T,I) to the map mapTtoI, adds the pair (I,T) to the map
mapItoT, increments vs and rc, and sends the frame I toward s. The map
mapTtoI is used to search for the frame I that corresponds to the given timer
T, whereas the map mapItoT is used to search for the timer T that corresponds
to the given frame I. Notice that the procedure send(M) assigns a timer to
each frame it sends. When the timer expires, p restarts the timer (restart-
Timer(T)), finds the corresponding frame by using the map mapTtoI, and
retransmits the frame toward s.

When p receives the message ACK from s, it provides the iterator on the
list retransmissionQueue and starts iterating through this list. For all the
frames whose sequence number is smaller than the sequence number in the
received ACK message, p finds the corresponding timer (by using the map
mapItoT), stops it, and removes both the pair (T,I) from the map mapTtoI and
the pair (I,T) from the map mapItoT.

Because some of the slots (or at least one of them) should be free after the
previous iteration, p provides the iterator on the list inputQueue and starts
iterating through it. It iterates while empty slots exist in the send window,
and while iterating, it removes the messages from the input queue and sends
them by calling the procedure send(M) as explained previously.

If the process p receives the message NAK, it performs the Go-back-N
retransmission procedure. Essentially, p scans the whole retransmission
queue and for each frame whose sequence number is greater than or equal
to the sequence number in the receive message ACK, it finds the correspond-
ing timer, restarts it, and retransmits the frame toward s.

with the triggerless transition from the initial state to the state IDLE. During
this transition, the variable vr is reset. After receiving the frame I, s checks

FIGURE 3.62
The Example 4 collaboration diagram.

a1 p s a2

M
I
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diagram in Figure 3.63 starts with the transition from the initial state to the

The activity diagram shown in Figure 3.65 models the process s. It starts
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FIGURE 3.63
The Example 4 activity diagram, part I.
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its sequence number equal to the value of the variable vr. If the values are
the same, s accepts the frame by incrementing vs, creating the message ACK,
and sending it to p. If the values are different, s rejects the frame by sending
the message NAK to p.

The next three figures show three typical scenarios. The sequence diagram

frames I(0) and I(1) are sent through the window and are acknowledged

FIGURE 3.64
The Example 4 activity diagram, part II.
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shown in Figure 3.66 illustrates a successful frame delivery scenario. The
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with ACK(1) and ACK(2), respectively. After some delay, I(2) is sent and it
is also successfully acknowledged with ACK(3).

cedure. The process p starts by sending the frames I(0) and I(1). The frame
arrives at s side regularly but I(1) gets lost. This causes the mismatch of
sequence numbers at the secondary side when it successfully receives I(2),
because the value of the variable vr is 1 (which indicates that s is awaiting
I(1) instead of I(2)). Because the sequence number of the frame and the value
of the variable are not the same, s rejects the frame by sending the message
NAK(1). The process p in its turn retransmits both I(1) and I(2).

mission triggered by the retransmission timer. The process p starts again by
sending I(0) and I(1) in succession. The process s in its turn acknowledges
them by ACK(1) and ACK(2), respectively. The message ACK(1) arrives suc-
cessfully at the primary side, but the message ACK(2) gets lost. This causes
the corresponding timer to expire after a while. Triggered by that event, p
restarts the timer and retransmits the frame I(1). The second time both I(1)

FIGURE 3.65
The Example 4 activity diagram, part III.
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The sequence diagram shown in Figure 3.67 illustrates the Go-back-N pro-

The sequence diagram shown in Figure 3.68 illustrates the frame retrans-
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and the corresponding ACK(2) are successfully transferred over the commu-
nication link. After receiving ACK(2), p stops the timer and removes I(1) from
the retransmission queue.

3.10.5 Example 5

In this example, we design the SIP INVITE client transaction in accordance
with RFC 3261, Section 17.11. First, let us return to the requirements and
analysis of a SIP Softphone, introduced as an example at the end of the
previous chapter. Briefly, in that example we have constructed the use case
diagram and have transformed it into the corresponding general collaboration
diagram. At the very end of that example, we have shown the one particular
collaboration related to the successful session establishment.

Now let us zoom in on the general collaboration diagram of a SIP Soft-
phone with the focus on the SIP INVITE client transaction and the surround-
ing objects with which it directly communicates. The resulting general

action is modeled as an unnamed object of the class InClientT because this
object is dynamically created upon user request. It collaborates with the
following three objects:

FIGURE 3.66
The Example 4 MSC diagram: Successful frame delivery.
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collaboration diagram is shown in Figure 3.69. The SIP INVITE client trans-
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• tud, which represents the transaction user dispatcher
• tald, which represents the transaction layer dispatcher
• tlid, which represents the transport layer dispatcher

Similarly, we can zoom in on the particular collaboration diagram that

the corresponding particular collaboration of the SIP INVITE client transac-

previous chapter, req() and rsp() designate requests and responses, respec-
tively. More precisely, req(INVITE) is the SIP invite request, rsp(1xx) is the
SIP provisional response, and rsp(200) is the SIP final response.

Another particular collaboration that corresponds to an unsuccessful ses-

as the previous one up to the step number 6, when instead of the successful
final response rsp(200), the unsuccessful final response rsp(300-699)

FIGURE 3.67
The Example 4 MSC diagram: Go-back-N retransmission.
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illustrates a successful session establishment scenario (Figure 2.17) to provide

tion with its surrounding objects (Figure 3.70). As already mentioned in the

sion establishment scenario is shown in Figure 3.71. This scenario is the same
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FIGURE 3.68
The Example 4 MSC diagram: I frame retransmission triggered by the retransmission timer.

FIGURE 3.69
The SIP INVITE client transaction collaboration diagram.
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is received. In step 7, tald forwards rsp(300-699) to SIP INVITE client
transaction, which in accordance with RFC 3261 forwards it toward the
upper layer and sends the message ACK to the remote site. These two actions
are performed in steps 8 and 9, respectively. Semantically equivalent

illustrates a successful session establishment, whereas Figure 3.73 shows an
unsuccessful session establishment scenario.

Based on the SIP INVITE client transaction state transition graph (RFC

state to the state Calling, which is triggered by the reception of the signal
(message) req(INVITE) from the transaction user (TU). The signal
req(INVITE) models the original request SIP INVITE. During this transition,
the SIP INVITE client transaction forwards the message req(INVITE) to the
transport layer.

At the entrance to the state Calling, two timers are started, timer A (TA)
and timer B (TB). The former corresponds to the time interval that must
elapse before the response to the request INVITE can be received, whereas
the latter limits the time interval during which the SIP INVITE client trans-
action waits for the response to the request INVITE. Initially, TA is set to the
value T1 (estimated round-trip time, RTT, which is by default 500 ms) and
TB is set to 64 × T1.

If the timer TA expires, the SIP INVITE client transaction restarts it by
doubling its current value (TA = TA × 2) and retransmits the signal
req(INVITE). Initial values of TA and TB (T1 and 64 × T1, respectively) allow

FIGURE 3.70
A successful session establishment collaboration diagram.
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sequence diagrams are shown in Figure 3.72 and Figure 3.73. Figure 3.72

3261, page 128) we can construct the corresponding statechart diagram (Fig-
ure 3.74). This statechart diagram starts with the transition from the initial
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FIGURE 3.71
An unsuccessful session establishment collaboration diagram.

FIGURE 3.72
A successful session establishment sequence diagram.
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this procedure to repeat the maximum of seven times before the timer TB
expires. If the timer TB expires (or if a transport error is detected), the SIP
INVITE client transaction informs TU accordingly and moves to the state
Terminated, and from there to its final state.

Most frequently, a response to the request INVITE will be received before
the timer B expires. In such a case, the SIP INVITE client transaction stops
both timers and moves to the next state, which depends on the type of
response. If the provisional response rsp(1xx) is received, the SIP INVITE
client transaction forwards it to TU and moves to the state Proceeding. If the
successful final response rsp(2xx) is received, the SIP INVITE client transac-
tion forwards it to TU and moves to the state Terminated. If the unsuccessful
final response rsp(300-699) is received, the SIP INVITE client transaction
forwards it to TU and sends the signal (message) ACK to the remote site.

While being in the state Proceeding, the SIP INVITE client transaction
simply forwards all the preliminary responses rsp(1xx) to TU. Once it receives
the successful final response rsp(2xx), it forwards it also to TU and moves
to the state Terminated. If the SIP INVITE client transaction receives the
unsuccessful final response rsp(300-699) in the state Proceeding, it forwards
that response to TU, sends the signal req(ACK) to the remote site, and moves
to the state Completed. 

At the entrance to the state Completed, the third timer, namely the timer D
(TD) is started. While being in the state Completed, the SIP INVITE client
transaction just confirms any unsuccessful final responses rsp(300-699) by
sending the SIP message ACK to the remote site. If the SIP INVITE client

FIGURE 3.73
An unsuccessful session establishment sequence diagram.
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transaction detects a transport error, it informs TU accordingly and moves
to the state Terminated. Finally, when the timer D expires, the SIP INVITE
client transaction finishes simply by moving to the state Terminated.

We finalize this example with the semantically equivalent SDL diagram,
which due to its size is shown in the next four figures (in these figures,
TPL stands for the transport layer and TU stands for the transaction user).

ing of events in the state Calling, Proceeding, Completed, and Terminated,
respectively. 

FIGURE 3.74
The statechart diagram of the SIP INVITE client transaction.
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Figure 3.75, Figure 3.76, Figure 3.77, and Figure 3.78 illustrate the process-
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FIGURE 3.75
The SDL diagram of the SIP INVITE client transaction, part I.
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FIGURE 3.76
The SDL diagram of the SIP INVITE client transaction, part II.
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FIGURE 3.77
The SDL diagram of the SIP INVITE client transaction, part III.
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FIGURE 3.78
The SDL diagram of the SIP INVITE client transaction, part IV.
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4

 

Implementation

 

The system 

 

implementation

 

 is a phase in engineering work that follows the
system design phase. This phase consists of the following two steps:

• Transform a design model into the implementation model
• Transform the implementation model into a higher-level program-

ming language code

A design model is given in the form of the corresponding UML (Booch et
al., 1998) or SDL diagrams, which are the results of the previous phases of
communication protocol engineering, i.e., requirements, analysis, and
design. The implementation model takes the form of the corresponding UML
component diagram. The output of the implementation phase is a set of
source code modules, today most frequently in C/C++ or Java, which is also
referred to as the implementation. This may sound confusing, but in reality
the correct meaning of the term is easily deduced from its context.

Logically, 

 

implementation as a phase

 

 of the production process is a well-
defined mapping of a design model into a higher-level programming lan-
guage source code. 

 

Implementation as a product

 

 is a result of this mapping.
The attribute 

 

well-defined

 

 reflects the assumption that both detailed proce-
dures and adequate tools are provided for transforming models into pro-
gram source code. This well-defined mapping of a model into the program
source code is referred to as 

 

forward engineering

 

 in UML terminology.
Likewise, the reverse mapping of a program source code into the model is
referred to as 

 

backward engineering

 

.

 

In a mathematical sense, both the mapping of a program into the program
source code and the result of that mapping (i.e., the implementation in both
of its meanings) are not unique. Therefore, logically more than one 

 

correct
implementation

 

 exists for a given model of the communication protocol.
Under the correct implementation, we assume an implementation that for
given inputs produces expected outputs within the expected time frame,
which is defined with the corresponding timers. We say for such implemen-
tation that it is compliant (conformant) with (to) the given model. The terms

 

compliant

 

 and 

 

conformant

 

 are synonyms in this context. If the model has been

 

9814_C004.fm  Page 165  Wednesday, April 12, 2006  1:23 PM

© 2006 by Taylor and Francis Group, LLC



 

166

 

Communication Protocol Engineering

 

standardized (e.g., by IETF or ITU-T), we say that the implementation is
compliant with the standard.

The concept of forward and backward engineering is an intriguing one.
Proponents of the model-based software development and various initiatives
in Model-Driven Architecture (MDA) strongly believe that forward and
backward engineering is possible, and they are putting forth tremendous
efforts to make it real. Quite a number of commercially available tools are
made with this goal in mind. The agile programming community is strongly
opposed to it because their members believe that only the program source
code is complete specification of the system. From their point of view, only
the set of test cases that successfully pass are the proof that the implemen-
tation is correct.

Other groups also exist between these two extremes that are trying to close
the gap between software modeling and programming (also called coding).
For example, the creators of the StateWORKS® tool and the corresponding
approach claim that although UML tools vendors made serious attempts to
generate code from models, they are facing major difficulties, and that these
tools can so far produce only header files or code skeletons. As an alternative,
they introduced the notion of the totally complete models in an attempt to
completely eliminate programming. The models in StateWORKS are sets of
virtual finite state machines (VFSMs) that run on top of the VFSM Executor,
which is essentially an interpreter.

This book has a similar but different approach. We try to shrink the gap
between communication protocol modeling and programming, both by mak-
ing detailed models and by providing the FSM library, which forces pro-
grammers to transform models into code in a uniform way. This
methodology makes forward engineering well defined. As already men-
tioned in the previous chapter, the FSM library provides two main classes,
namely 

 

FiniteStateMachine

 

 and 

 

FSMSystem

 

. 

 

The former is used to model and
implement individual FSMs and the latter is used as their execution platform,
which comprises common services and an event (message) interpreter.

When it comes to programming interpreters and FSM-related libraries, a
broad spectrum of possible implementations exists, starting with the tradi-
tional structural or procedural solution, continuing with a series of mixed
solutions, and ending with the object-oriented solutions of both static and
dynamic type. This situation is justified with the fact that the implementation
style depends highly on the type of the target architecture. For example, if
we consider a microcontroller as the target architecture, we are naturally
forced to select a structural solution in the C/C++ programming language.
If we consider more powerful architectures, in terms of resources, we may
also take into consideration the object-oriented approaches supported by the
C++ and Java programming languages.

In the next section, we introduce the component diagrams, which are
the means of making implementation models. We then illustrate a spec-
trum of possible finite state machine implementations, including the cat-
alogued state design pattern (Gamma et al., 1995), which is explained in
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the separate section. After that, we cover the concepts and most important
design and implementation details of the FSM library (its reference man-

tation examples.

 

4.1 Component Diagrams

 

In the previous chapter, we were dealing with the abstractions in the con-
ceptual world. The design phase typically starts with exploration in the realm
of interaction diagrams, where we try to get a better feeling of the system.
We finish the design phase by defining the static structure and the complete
behavior of the system in the corresponding class and activity or statechart
diagrams, respectively. At the end of the design phase, we also specify the
deployment of individual software components by rendering the corre-
sponding deployment diagrams.

In the implementation phase we are materializing the design abstractions,
such as classes, interfaces, and collaborations, into the components that live
in the physical world. As already mentioned, a component is a physical and
replaceable part of the system that realizes the given set of interfaces. What
we actually do at the beginning of the implementation phase is pack the
design abstractions into packages with well-defined interfaces, referred to
as components. The examples of such packages are traditional binary object
libraries, dynamically linkable libraries (DLLs), and executables, but also
tables, files, and documents.

The components and classes are very much alike. Both can:

• Realize a set of interfaces
• Participate in relations (dependencies, generalizations, and associa-

tions)
• Be nested
• Have instances
• Participate in interactions

The differences between the components and the classes are the following:

• The former represent physical entities, whereas the latter are con-
ceptual abstractions, so they exist on different levels of abstraction.

• The former only have operations that are accessible through their
interfaces, whereas the latter may have both operations and
attributes.
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The most important feature of the component is that it is replaceable. This
means that we can substitute a component with another one without any
influence on the system as a whole. This replacement is completely trans-
parent to the users of the replaced component. A new component provides
the same or perhaps even better services through the exact same interfaces.

We distinguish the following three types of components:

• The deployment components (already introduced in the context of
deployment diagrams). These are the parts of the executable system,
such as executables and DLLs.

• The work product components. These are the artifacts of the devel-
opment process, such as project settings, source code, and data files,
that are used to build the deployment components.

• The executable components. These are the parts of the run-time
system, e.g., DCOM and CORBA components.

We make the implementation models by rendering the component dia-
grams. The set of graphical symbols that are available for rendering com-
ponent diagrams is shown in Figure 4.1. As usual, we select a symbol
from the set of available symbols, drag and drop it onto the working sheet,
and fill in the data related to its properties. The set of symbols available
for rendering component diagrams is obviously a subset of the set of
symbols available for rendering deployment diagrams. The properties of
these symbols are explained in the previous chapter (see the section on
deployment diagrams).

 

FIGURE 4.1

 

The set of symbols available for rendering component diagrams.

Package
Component Node

Interface Note

(Constraint) (Constraint) (OR)
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In communication protocol engineering, we are mainly using component
diagrams for:

• Modeling APIs
• Modeling executables and libraries
• Modeling source code

Well-defined application programming interfaces (APIs) are some of the
most important features of the well-structured software system. An API is
an interface that is realized by one or more components. Being an interface,
it actually defines a set of services. It represents a clear demarcation line
between the service users and the service providers. The former just get the
service without caring who is providing it. The same also holds true in the
opposite direction, as it is completely transparent for the service providers
for whom they actually provide the service.

We may think of APIs as programmatic seams of the system. We use them
to connect more components together to create more complex systems. Each
component is replaceable. We can replace it with another component when-
ever there is a need. The developers of the component that uses some APIs
do not care who or how it will be provided. They only care about how to
fulfill the requirements for the component they are working on currently.
Alternately, the system integrator must care that all of the needed compo-
nents are provided and that they are compliant with their APIs.

Figure 4.2 illustrates the modeling of APIs by means of a very simple
example. Imagine that we have been provided with the TCP/IP protocol
stack packed as a dynamically linkable library, named 

 

tcpipstack.dll

 

. It defines
the API that comprises three interfaces, namely, 

 

TCPSockets

 

, 

 

UDPSockets

 

, and

 

IPInterface

 

. The first provides communication services over TCP ports, the
second over UDP ports, and the third directly over IP.

 

FIGURE 4.2

 

An example of a simple API.
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UDPSockets

IPInterface
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Provided with such a component, we are now able to create a new
component that uses it. For example, we can create the DLL 

 

sip.dll

 

 (Figure
4.3). This new component provides the SIP services through the interface

 

SIPInterface

 

. The fact that 

 

sip.dll

 

 uses services provided through the inter-
face 

 

TCPSockets

 

 is modeled by connecting these two with the dependency
relation.

Besides modeling APIs, we can use component diagrams to model execut-
ables and libraries. Generally, if the system under development comprises
more executables and associated object libraries, it may be wise to make a
model that illustrates their relationships. This is especially important if we
want to keep versioning and configuration management during the system
lifetime under control.

Modeling of executables and libraries can help in making the decision
regarding physical partitioning of the system. The issues that affect this
decision making are the following:

• Technical issues
• Configuration management issues
• Reusability issues

  

This executable uses the DLL 

 

sip.dll

 

 through the API that comprises the single
interface 

 

SIPInterface

 

. Farther down the hierarchy, 

 

sip.dll

 

 gets communication
service that is provided by the DLL 

 

tcpipstack.dll

 

 through the interface 

 

TCP-
Sockets

 

.

 

FIGURE 4.3

 

An example of a simple API user.

tcpipstack.dll
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IPInterface
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Each library and executable is built in the environment of a separate
software project. Generally, a software project comprises the project config-
uration (settings) files, the source code files, and the object libraries. The
source code files typically include the module declaration (header and
include) files and the module definition files. The developers try to logically
organize these files into a file system structure by placing the related files
into the same directory (folder).

In the case of complex projects, the corresponding directory tree can get
rather ramified, and sometimes it may not be clear where to put new software
modules. This can be especially confusing for the new members of the
development team. Things get even worse when we must manage splitting
and merging of groups of files as development paths fork and join.

In such cases, it is advisable to make a model of the software project, also
referred to as the source code model. An example of such a model is shown

  

definition file 

 

Main.dsw

 

. Because the project comprises all the module headers
and module definition files, the file 

 

Main.dsw

 

 has a dependency relation with
all of them. (For clarity, only some of these dependencies are shown in Figure
4.5.

 

)

 

Farther down the hierarchy, the source code files 

 

AutomataA.cpp

 

 and

 

AutomataB.cpp

 

 use the header files 

 

AutomataA.h

 

 and 

 

AutomataB.h

 

, respec-
tively. Both of these header files use the header file 

 

Constants.h

 

. Finally, all

 

FIGURE 4.4

 

The model of a simple executable.
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IPInterface
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in Figure 4.5. The executable Main.exe is built in accordance with the project
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of the header and source code files, except 

 

Constants.h

 

, use the framework

 

FSMLibrary

 

.

 

4.2 The Spectrum of FSM Implementations

 

As mentioned in the previous chapter, we model communication protocols
as finite state machines (FSMs). A broad spectrum of various solutions exists
for the implementation of FSMs. This section contains a short overview of
only three, perhaps the most representative approaches to the implementa-
tion of FSMs. The complete treatment of all methodologies and correspond-
ing tools is outside the scope of this book, and as an alternative we simply
want to develop ideas by exploring different implementations of a simple
FSM (counter by modulo 2). The goal is to familiarize the reader with this
subject by showing what the problems are and how they can be tackled.

The three approaches to FSM implementation are illustrated by simple
implementations of modulo 2 counters in the Java programming language.
As already mentioned, communication protocol developers today mainly
use C/C++ and Java, and the selection of the programming language for a
certain project mainly depends on the target platform. By mixing examples
in Java and C/C++, we want to show that all these languages are applicable
in the area of communication protocol engineering, and that the selection of
a programming language is not the highest priority issue. Actually, we start
with Java in this and the next section, and later we switch to C++.

The state design pattern is a particular FSM implementation type that is
special because it was catalogued by Gamma et al. in 1995. Because of that,

 

FIGURE 4.5

 

The model of a simple project.
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FSM library
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it receives a special treatment in the separate section. However, none of these
four approaches is used later in the book. Instead, later we introduce the
FSM Library-based implementation paradigm, which is more like the state-
of-the-art paradigm. More clearly, first we show what is possible, and per-
haps what is next, and then we turn to the current practice in communication
protocol engineering.

Let us turn our attention to the subject of the implementation, a commu-

protocol is defined with the syntax of its messages, the set of procedures
(actions) that process the messages, and the set of reactions to exceptional
events (timer and error management). In the programming world, they are
modeled as finite state machines, also referred to as automata. Mathemati-
cally, the abstract automata are defined as:

 

A

 

 = (

 

X

 

, 

 

Y

 

, 

 

S

 

, 

 

t

 

, 

 

o

 

, 

 

S

 

0

 

)

 

where

 

X

 

 = {

 

X

 

1

 

, 

 

X

 

2

 

, …

 

X

 

n

 

} is a set of input signals (input alphabet)

 

Y

 

 = {

 

Y

 

1

 

, 

 

Y

 

2

 

, …

 

Y

 

m

 

} is a set of output signals (output alphabet)

 

S

 

 = {

 

S

 

1

 

, 

 

S

 

2

 

, …

 

S

 

k

 

} is a set of states (state alphabet)

 

S

 

0

 

 is the initial state

 

t

 

 is the transition function, which maps the Cartesian product of 

 

SxX

 

 to 

 

S

 

o

 

 is an output function, which maps the Cartesian product of 

 

SxX

 

 to 

 

Y

 

Abstract automata are typically illustrated in the form of a state transition
graph. The example of the state transition graph in Figure 4.6 illustrates the
counter by modulo 2, which is actually the example of a finite state machine
we want to implement in Java. It is formally defined as follows:

 

FIGURE 4.6

 

The counter by modulo 2 state transition graph.
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C

 

 = (

 

X
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Y

 

, 

 

S

 

, 

 

t

 

, 

 

o

 

, S

 

0

 

)

where

 

X

 

 = {0, 1}

 

Y

 

 = {0, 1, 2}

 

S

 

 = {S1, S2, S3}

 

S

 

0

 

 = S1

 

The functions 

 

t

 

 and 

 

o

 

 are defined in Table 4.1.
The input and output alphabets comprise the signals {0, 1} and the signals

{0, 1, 2}, respectively. The automata can take one of the three possible states,
namely, S1, S2, and S3. The initial state of the automata (

 

S

 

0

 

) 

 

is the state S1.
Both transition and output functions are defined in Table 4.1. The rows of
this table correspond to the automata states (S1, S2, and S3), whereas the
columns correspond to the input signals (0 and 1). The elements of Table 4.1
have the format 

 

s

 

/

 

y

 

, where 

 

s

 

 corresponds to the next state number and 

 

y

 

corresponds to the output signal.
The same information about the next state and the output signal is shown

transition graph are labeled as 

 

B

 

ij

 

(

 

x

 

/

 

y

 

), where 

 

i

 

 is the number of the current
state, 

 

j

 

 is the number of the next state, 

 

x

 

 is the input signal that triggers the
transition, and 

 

y is the output signal generated by the transition. The corre-
sponding statechart diagram is shown in Figure 4.7.

TABLE 4.1

The Counter by Modulo 2 Transition Table

Next State//Output Signal Input Signal 0 Input Signal 1

State S1 1/0 2/1
State S2 2/1 3/2
State S3 3/2 1/0

FIGURE 4.7
The counter by modulo 2 statechart diagram.
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differently in the state transition graph (Figure 4.6). The arcs of the state
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The simplest but perhaps still the most frequently used FSM implemen-
tation is based on the structural or procedural approach. This implementa-
tion is made in the form of nested selection statements in higher-level
programming languages. In the programming languages C/C++ and Java,
we typically use switch-case statements for this purpose because the control
flow structures made with if and else-if statements are less readable.

Typically, the outermost switch-case statement selects a case that corre-
sponds to the automata current state. In the code paragraph that defines the
processing of the current state, normally we use the second, nested switch-
case statement, which selects the case that corresponds to the input signal.
The program paragraph that corresponds to that input signal effectively
performs the transition by creating the corresponding output signals and
evolving to the next state. This evolution is made simply by updating the
content of a variable that holds the identification of the current state (most
frequently, this is just the index of the state).

Actually, the structure of the resulting program code is very similar to the
program representation of SDL (SDL-PR), which was introduced in the pre-
vious chapter, and this fact is also mentioned there. Generally, communica-
tion protocol implementation based on nested switch-case statements looks
like the following:

switch(state) {

case STATE_1:

switch(message_code) {

case MESSAGE_CODE_1:

// processing of the message code 1 in the state 1

break;

case MESSAGE_CODE_2:

// processing of the message code 2 in the state 1

break;

case MESSAGE_CODE_3:

// processing of the message code 3 in the state 1

break;

...

default:

// processing of the unexpected message in the state 1

break;

}

case STATE_2:

switch(message_code) {

case MESSAGE_CODE_1:

// processing of the message code 1 in the state 2

break;

case MESSAGE_CODE_2:

// processing of the message code 2 in the state 2

break;

ase MESSAGE_CODE_3:

// processing of the message code 3 in the state 2

break;

...

default:
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// processing of the unexpected message in the state 2

break;

}

...

case STATE_N:

...

}

We illustrate this general scheme by applying it to the implementation of
the counter by modulo 2 in Java. The three states of the counter are labeled
as S1, S2, and S3 in the program code. The input signals 0 and 1 are labeled
as M1 and M2, respectively. The demonstration program reads the actual
input signals from the standard input file (by default, this is the keyboard).
The generated output signal is represented by a simple printout on the
standard output file (by default, this is the monitor). The demo program
code is the following:

package automata;

import java.util.*;

import java.io.*;

public class Environment1 {

public static void main(String[] args) throws IOException {

char ch = '0';

Automata1 a1 = new Automata1();

System.out.println(“This is the example of counter by modulo 2.");

System.out.println(“Automata evolution has started...");

while(true) {

System.out.print(“Enter input signal (0/1 and <ENTER>):”);

ch = (char)System.in.read();

System.in.skip(2);

if(((ch!='0') && (ch!='1'))) break;

a1.processMsg(ch);

}

}

}

The demo program initially creates the object a1, an instance of the class
Automata1, which is the structural and procedural implementation of the
counter by modulo 2. After printing two welcome messages, it falls into an
infinite while loop in which it prompts the user for the input signal and reads
it. If the input signal is neither 0 nor 1, the demo program breaks the loop
and terminates. Otherwise, it performs one step of the automata evolution
by calling the procedure processMsg() of the object a1.

The Java code for the class Automata1 is the following:

package automata;

public class Automata1 {

private static final int S1 = 0;

private static final int S2 = 1;

private static final int S3 = 2;

private static final char M1 = '0';
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private static final char M2 = '1';

private int state=S1;

public void processMsg(char msg) {

switch(state) {

case S1:

switch(msg) {

case M1:

System.out.println(“Output signal: 0”);

break;

case M2:

System.out.println(“Output signal: 1”);

state = S2;

break;

default:

break;

}

break;

case S2:

switch(msg) {

case M1:

System.out.println(“Output signal: 1”);

break;

case M2:

System.out.println(“Output signal: 2”);

state = S3;

break;

default:

break;

}

break;

case S3:

switch(msg) {

case M1:

System.out.println(“Output signal: 2”);

break;

case M2:

System.out.println(“Output signal: 0”);

state = S1;

break;

default:

break;

}

break;

default:

break;

}

}

}

The implementation above starts with the definition of the symbolic con-
stants that correspond to the possible automata states, namely S1, S2, and
S3, and valid input signals M1 and M2 (input signals 0 and 1). Next, we
define the variable state that holds the current automata state and we set it
to the value S1 (the automata initial state).
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The method processMsg starts with the switch-case statement that selects
the further execution path depending on the content of the variable state
(i.e., the current automata state). Three possible cases are found that are
defined by the corresponding case clauses. Each of these clauses contains a
further switch-case statement that distinguishes between two valid input
signals, namely M1 and M2. The nested case clause that corresponds to the
particular input signal prints the message, which corresponds to the output
signal, and updates the variable state, if the current state of the automata
changes.

This example demonstrates the main advantage of the structural or pro-
cedural approach, and that is simplicity, which yields greater performance
in terms of execution speed. Another advantage is that we can easily con-
struct a compiler or a code generator that generates such implementations
(a good example that justifies this claim is SDL-PR). The main disadvantage
of this approach is its bad scalability, which becomes evident in the case of
large-scale implementations, i.e., implementations of automata that have a
large number of states and state transitions.

The code size for such program implementations increases linearly with
the number of states and the number of state transitions. Another disadvan-
tage of this approach is that it is monolithic, which implies static regarding
the need to change the automata, either by adding new, or deleting the
existing states, or by adding or deleting state transitions.

In this type of implementation, the structure of the automata (its vertex
and arcs) is built into the machine code of the implementation (hard-coded).
We say that the input signal processing flow is governed by the structure of
the machine code. If we want to add or delete a state or a state transition,
we must change the program code, recompile it, and install the new version
on the target platform. Most frequently, the installation procedure requires
the system to be restarted at its end. Restarting the system means that
effectively it will not be operational for a certain short interval of time. The
problem is that some types of systems, such as nonstop systems, may not
tolerate restarts no matter how short the time interval is.

Some systems try to make restarts allowable by providing processor tan-
dem configurations. Typically in such a system, one of the processors con-
tinues the normal operation while the other is restarting after an update. In
that case, we have a synchronization problem, which of course can be solved
but it could be rather complex. Generally, system restarts are problematic
and should be handled with special care.

On the other end of the spectrum of FSM implementations, we have the
diametrical approach to FSM implementation in which the structure of the
automata is not defined by the program control flow but rather with the
corresponding data structure. The simple interpreter uses this data structure
to process the incoming events (messages), therefore it is referred to as an
event interpreter. The data structure implementations in assembler and C
programming language are built from lists and lookup tables. 
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The automata evolution is driven by the incoming events. Each input event
triggers one step of the evolution. The event interpreter carries out the
evolution step by traversing the data structure to determine the current state
and the state transition that corresponds to the input event type. In contrast
to this common part of the message processing flow — which is directed by
the data structure — program parts that correspond to particular reaction
tasks are dedicated routines that perform specific functions, which cannot
be generalized.

Figure 4.8 illustrates the FSM implementation based on the event inter-
preter and the data structure that defines the FSM structure (essentially, the
state transition graph). New incoming events (messages) are added at the
end of the message queue (see the top left corner of Figure 4.8). The inter-
preter takes the messages from the head of the message queue and processes
them by using the data structure, which comprises:

• Automata control table
• Automata state table
• List of valid events (one such list exists for each automata state)

FIGURE 4.8
The event interpreter and the data structure that defines the FSM structure.
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The automata control table is assigned to automata to store its current state
and optionally some of its additional attributes. The automata state table is
a lookup table that maps the state index into the address of the corresponding
list of valid events in that state. The elements of this list contain the complete
information necessary and sufficient to perform the state transition from the
current state to the next state, which is determined by the event type. This
information is stored in the following fields:

• event ID: holds the event type to which this element corresponds 
• task address: contains the pointer to the corresponding routine

(procedure)
• next state: stores the index of the next state
• next: contains the pointer to the next element in the list

The event interpreter processes the message through the following steps:

• Get the message from the head of the message queue.
• Locate the automata control table by examining the content of the

message header (message destination field, in particular).
• Read the current state and locate the corresponding list of valid

events by looking up the automata state table.
• Determine the event type by examining the content of the message

header (message code field, in particular) and locate the correspond-
ing element in the list of valid events (ignore the event if such an
element does not exist).

• Perform the task by calling the corresponding task routine as a
subroutine (procedure).

• Read the index of the next state from the field next state.
• Update the field current state by storing the next state index to it.

The advantage of this approach is that we can construct a compiler that
transforms the design FSM model into the corresponding data structure and
the set of task routines. The automatic translation performed by the compiler
increases the probability that the implementation is compliant with the
design model and, therefore, that it is correct. Moreover, the routine
performed by the event (described above) is fairly simple and short. The
price that is paid for the correctness and simplicity is poor performance. The
decrease in the processing throughput is proportional to the number of
memory accesses to the corresponding elements of the data structure.

require further explanation. The first characteristic is universality. Since the
FSM structure is built into the corresponding data structure, the event inter-
preter routine is completely independent from it. The event interpreter
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always repeats the same routine. This is the same for all FSMs. Therefore,
this routine is universal in contrast to the implementation with nested switch-
case statements, which implement just one particular FSM. This characteristic
is especially important from the point of software maintenance. If we want
to change the FSM structure by adding or deleting states or state transitions,
we must update the data structure. There is no need to change the simple
interpreter routine at all.

The second characteristic of the event interpreter-based approach is that
it enables sharing of common tasks between more state transitions. In prin-
ciple, this is also possible in the nested switch-case-based approach by intro-
ducing common functions, which are called from the corresponding case
program clauses, but this is seldom used by their practitioners. In the event
interpreter-based approach, this possibility becomes more apparent and,
therefore, really used because tasks are already specified as procedures (sub-
routines) rather than case program clauses.

Because of task sharing, the number of tasks may generally be smaller
than the number of state transitions. We can also organize tasks hierarchi-
cally, such that higher-level tasks call their subordinate tasks. This makes it
possible to implement more complex tasks by using simple primitives. Such
organization has the following advantages:

• Better performance in terms of code size
• Enables dynamic mutation of tasks

By exploiting these characteristics in environments with dynamic loaders,
such as Java, we can implement dynamically reconfigurable automata. The
automata in such environments change during normal system operation and
those changes do not demand any system restarts. In such environments, it
is desirable to use the object-oriented approach and to define the FSM struc-
ture with the set of objects rather than with a data structure, such as the one
previously described. The event interpreters in such implementations inter-
act with the objects that materialize the FSM structure instead of using the
traditional data structures.

The following code illustrates FSM structure modeling with the group of
classes written in Java:

package automata2;

import java.util.*;

import java.io.*;

class Task {

public int id;

public Task(int ident) {id=ident;}

public void processMsg() {System.out.println(id);}

}

class Branch {

private String msgcode;
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private Task task;

private String nextstateid;

public Branch(String msg, Task tsk, String nextsts) {

msgcode=msg;

task=tsk;

nextstateid=nextsts;

}

public String getMsgCode() {return msgcode;}

public Task getTask() {return task;}

public String getNextStateId() {return nextstateid;}

}

class State {

private String stateid;

public Set setofbranches;

public State(String id,Set branches) {

stateid=id;

setofbranches=branches;

}

public String getStateId() {return stateid;}

public Set getSetOfBranches() {return setofbranches;}

}

class AStructure {

private String automataid;

private Set setofstates;

public AStructure(String id,Set states) {

automataid=id;

setofstates=states;

}

public String getAutomataId() {return automataid;}

public Set getSetOfStates() {return setofstates;}

}

class Automata {

protected AStructure structure;

protected String stateId;

protected State initial;

public Automata(AStructure str,String id,State s) {

structure = str;

stateId=id;

initial=s;

}

public void processMsg(String msg) {

State currentS = initial;

Iterator iterA =

structure.getSetOfStates().iterator(); while(iterA.hasNext()) {

State eachS = (State)iterA.next();

if(eachS.getStateId().equals(stateId)) {

currentS=eachS;

break;
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}

}

Iterator iterS =

currentS.getSetOfBranches().iterator(); while(iterS.hasNext()) {

Branch eachB = (Branch)iterS.next();

if(eachB.getMsgCode().equals(msg)) {

Task t=eachB.getTask();

t.processMsg();

stateId=eachB.getNextStateId();

break;

}

}

}

}

The class Task models the task that is performed during the transition from
the current state to the next state. The task identification is stored in the class
field id. The user of the class Task specifies the particular task identification
as the parameter of the class constructor. The default message processing
function, named processMsg(), just prints the task identification to the stan-
dard output file.

The class Branch models the arc of the state transition graph. The attributes
of the state transition are the message code that triggers the state transition,
the task that is performed during the state transition, and the identification
of the next stable state. The corresponding fields are named msgcode, task,
and nextstateid, respectively. These fields are set by the class constructor. The
current content of these fields is returned by the functions getMsgCode(),
getTask(), and getNextStateId(), respectively.

The class State models a single FSM state. The state attributes are the state
identification and the set of the outgoing state transitions (the target state is
irrelevant; it can be this state or some other state). The corresponding class
fields are named id and branches, respectively. Their content is set by the class
constructor and returned by the functions getStateId() and getSetOfBranches(),
respectively.

The class AStructure models the FSM structure. Its attributes are the auto-
mata identification and the corresponding set of states. The corresponding
class fields are automataid and setofstates. The class constructor gets particular
values for these fields through its parameters. The functions getAutomataId()
and getSetOfStates() return the current values of these fields.

Finally, the class Automata models the complete FSM. Its attributes are the
FSM structure (essentially the set of sets of state transitions), the current state
identification, and the initial state identification. The corresponding class
fields are named structure, stateId, and initial, respectively. These fields are
set by the class constructor.

The function processMsg(String msg) is the event interpreter. The input
argument msg is the message, which triggered the state transition. The inter-
pretation starts with the iteration through the set of states to locate the object
that corresponds to the FSM current state (its identification is stored in the
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field stateId). This is a typical object-oriented approach, which avoids unpop-
ular switch-case and similar selection statements. Principally, this first itera-
tion is really not needed and can be easily eliminated by saving the current
state object instead of the current state identification. However, the first
iteration is intentionally kept to make the example more informative by
showing how we can use two subsequent iterations to search through the
set of sets of state transitions.

The second iteration searches through the set of state transitions that
correspond to the current state to locate the state transition that corresponds
to the input message msg. After locating the state transition, it gets the object
that corresponds to the state transition task and calls its processMsg() func-
tions, which in its turn prints the task identification to the standard output
file.

From the program code given above, the classes Task, Branch, AStructure,
and Automata are obviously generic and can be used for the construction of
any FSM. Besides that, this solution enables the design and implementation
of dynamically reconfigurable FSMs because sets in Java can be dynamically
updated and the corresponding task object dynamically loaded and
unloaded.

We illustrate the applicability of this set of classes with the following
implementation of the counter by modulo 2 in Java (the corresponding

class Task0 extends Task {

public Task0(int ident) {super(ident);}

public void processMsg() {System.out.println(“0”);}

}

class Task1 extends Task {

public Task1(int ident) {super(ident);}

public void processMsg() {System.out.println(“1”);}

}

class Task2 extends Task {

public Task2(int ident) {super(ident);}

public void processMsg() {System.out.println(“2”);}

}

class Automata2 {

public static void main(String[]args) throws IOException {

Automata a2 = makeAutomata();

char ch;

String msg;

System.out.println(“This is the example of counter by modulo 2.”);

System.out.println(“The automata evolution has started...”);

while(true) {

System.out.print(“Enter input signal (0/1 and <ENTER>): ”);

ch = (char)System.in.read();

System.in.skip(2);

if(((ch!='0') && (ch!='1'))) break;
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if(ch=='0') msg=“0”; else msg=“1”;

a2.processMsg(msg);

}

}

private static Automata makeAutomata() {

Branch b11 = new Branch(“0”,new Task0(0),“0”);

Branch b12 = new Branch(“1”,new Task1(1),“1”);

Set s1 = new HashSet();

s1.add(b11); s1.add(b12);

state S1 = new State(“0”,s1);

Branch b22 = new Branch(“0”,new Task1(1),“1”);

FIGURE 4.9
The static structure used in the second approach to the FSM implementation.
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Branch b23 = new Branch(“1”,new Task2(2),“2”);

Set s2 = new HashSet();

s2.add(b22); s2.add(b23);

State S2 = new State(“1”,s2);

Branch b33 = new Branch(“0”,new Task2(2),“2”);

Branch b31 = new Branch(“1”,new Task0(0),“0”);

Set s3 = new HashSet();

s3.add(b33); s3.add(b31);

State S3 = new State(“2”,s3);

Set a = new HashSet();

a.add(S1); a.add(S2); a.add(S3);

AStructure as = new AStructure(“0”,a);

Automata au = new Automata(as,“0”,S1);

return au;

}

}

At the beginning of this example, we define the application specific tasks,
namely, Task0, Task1, and Task2, which are responsible for printing the counter
by modulo 2 outputs (0, 1, and 2, respectively). Note that the number of
tasks (three) is smaller than the number of state transitions (six) in this
particular example. The application specific processMsg() functions are
defined by overriding the default functions.

The definitions of the classes Task0, Task1, and Task2 are followed by the
definition of the class Automata2, which comprises two public functions, the
functions main() and makeAutomata(). The function main() starts by calling
the function makeAutomata(), which in its turn returns the counter by modulo
2 object, named a2. After that, it falls into an infinite while loop in which it
reads the standard input file. If the input character is neither “0” nor “1,” it
breaks the loop and the program terminates. Otherwise, it converts an input
character into the corresponding string (“0” and “1,” respectively) and passes
it as an input event to the event interpreter.

The function makeAutomata() constructs individual state transitions
(instances of the class Branch), individual states (instances of the class State),
counter by modulo 2 structure (an instance of the class AStructure), and the
counter by modulo 2 itself (an instance of the class Automata). It first con-
structs the state transition b11, which for the input “0” moves the FSM from
the state S1 to the same state, and during that transition it performs the task
Task0. Similarly, it constructs the state transition b12, which for the input “1”
moves the FSM from the state S1 to the state S2, and during that transition
it performs the task Task1. Next, it constructs the set of state transitions s1
and the state S1.

Likewise, this function constructs the state transitions b22 and b23 and the
state S2, as well as the state transitions b33 and b31 and the state S3. Finally,
it constructs the structure of the counter by modulo 2, named as, and the
counter by modulo 2, named au. 
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The third approach to FSM implementation from the broad spectrum of
implementations is illustrated next. In this approach, we define the FSM
structure with the corresponding class hierarchy and set of lookup tables
that map FSM inputs into the corresponding state transitions. This approach
also uses message interpretation and is therefore universal, like the previous
one, but it yields much better performance that is comparable with the
performance of the first approach (nested switch-case statements).

The first idea behind this concept is to model each FSM stable state with
the class that is derived from the basic class State. The second idea is to
consider a state transition (represented with the corresponding arc of the
state transition graph) as a transient (i.e., unstable) state. Each state transition
is modeled with a class that is derived from the class that represents its
originating stable state.

These two ideas lead to the class hierarchy with two hierarchical levels.
The root of the class hierarchy is the basic class State. The first level of
hierarchy defines the FSM stable states whereas the second level of hierarchy
defines its unstable states, i.e., state transitions. 

We illustrate this approach with the example of counter by modulo 2. The
corresponding class hierarchy is shown in Figure 4.10. The first hierarchy
level defines the FSM stable states S1, S2, and S3. All of these are derived
from the basic class State. The second level defines FSM state transitions B11,
B12, B22, B23, B33, and B31. Notice that B11 and B12 are derived from their
originating state S1. Similarly, B22 and B23 are derived from S2, and B33
and B31 are derived from S3.

The third idea behind this approach is that FSM evolution takes place by
traversing the class hierarchy tree and by using polymorphism, one of the
most powerful abstractions of object-oriented programming. Concretely, the
event interpreter performs the following steps:

FIGURE 4.10
The counter by modulo 2 state class hierarchy.
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• Use FSM input message (signal) and the lookup table (map), which
is associated with the FSM current state, to determine the corre-
sponding unstable state (state transition).

• Perform the application-specific task by calling the message proc-
essing function defined within the class that models the correspond-
ing unstable state.

• Move the FSM into its next stable state.

The class hierarchy for the counter by modulo 2 is defined with the following
Java module:

package automata;

import java.util.*;

class State {

public State msgToBranch(String msg) {return new State();}

public State processMsg() {return new State();}

}

class S1 extends State {

public State msgToBranch(String msg) {

return Structure3.getBranch(“0”,msg);

}

}

class S2 extends State {

public State msgToBranch(String msg) {

return Structure3.getBranch(“1”,msg);

}

}

class S3 extends State {

public State msgToBranch(String msg) {

return Structure3.getBranch(“2”,msg);

}

}

class B11 extends S1 {

public State processMsg() {

System.out.println(“Output: 0”);

return new S1();

}

}

class B12 extends S1 {

public State processMsg() {

System.out.println(“Output: 1”);

return new S2();

}

}

class B22 extends S2 {

public State processMsg() {

System.out.println(“Output: 1”);

return new S2();
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}

}

class B23 extends S2 {

public State processMsg() {

System.out.println(“Output: 2”);

return new S3();

}

}

class B33 extends S3 {

public State processMsg() {

System.out.println(“Output: 2”);

return new S3();

}

}

class B31 extends S3 {

public State processMsg() {

System.out.println(“Output: 0”);

return new S1();

}

}

public class Automata3 {

private State state;

public Automata3() {

state = new S1();

}

public void processMsg (char chmsg) {

String msg;

if(chmsg=='0') msg=“0”; else msg=“1”;

state = state.msgToBranch(msg);

state = state.processMsg();

}

}

The basic class State has two default functions, msgToBranch() and pro-
cessMsg(). Both functions return an instance of the class State. The fact that
the instance of the class derived from the class State is also considered to be
the instance of the class State enables the event interpreter to employ poly-
morphism. We will return to this point shortly.

The function msgToBranch() is responsible for mapping the FSM input
message into the corresponding state transition object. The input message
in this simple example is a one-character string (“0” or “1”). The function
can return any instance of the basic class State, but normally in this example
it should return the instance of the class B11, B12, B22, B23, B33, or B31.

The function processMsg() caries out the application-specific task for the
given input message. It returns the FSM next stable state. The idea is that
the FSM dynamically changes its behavior. The FSM is in a certain state,
either stable or unstable, at any point in time, but it is always represented
by a single object. That object is actually returned by one of these two
functions, which are called in the course of FSM evolution.
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Next, we define the classes that model the FSM stable states, namely, S1, S2,
and S3. Each of these classes extends the basic class State and overrides the
default function msgToBranch() with the application-specific one. These partic-
ular functions actually delegate their responsibility to the function getBranch()
of the class Structure3 by passing their identification (“0,” “1,” and “2” for S1,
S2, and S3, respectively) and the input message to it. More precisely, these
simple functions just return the unstable state object that is provided by the
function getBranch() to their caller, and that is the event interpreter.

The stable state classes are followed by the classes that model the FSM
unstable states, namely, B11, B12, B22, B23, B33, and B31. Each of these classes
extends the corresponding stable state class and overrides the default func-
tion processMsg(), which it inherits from the basic class State, with the appli-
cation-specific one. These particular functions perform the application-
specific tasks and return the corresponding next stable state object (S1 for
B11 and B31, S2 for B12 and B22, and S3 for B23 and B33). The application-
specific tasks in this simple example are implemented as the corresponding
print statements to the standard output file.

The FSM is modeled with the class Automata3. This class has a single
attribute named state, which is set by the class constructor to the FSM initial
stable state, namely S1. Later during the FSM evolution it changes and can
become any FSM state, either stable or unstable.

The class Automata3 has a single function, named processMsg(), that is the
FSM event interpreter. This function performs one state transition in two
steps. In the first step, it calls the function msgToBranch() of the FSM current
stable state object. This effectively starts the state transition by moving the
FSM from its current stable state to the unstable state that corresponds to
the input message. In the second step, the event interpreter calls the function
processMsg() of the FSM unstable state, which performs the application-
specific task and returns the FSM next stable state object. This effectively
completes the state transition. Interestingly, the state class hierarchy in this
approach is completely application-specific whereas the event interpreter is
very simple and generic and therefore can be reused in implementations of
other FSMs.

The following utility classes support mapping of input messages to the
corresponding state transitions (unstable state objects):

package automata;

import java.util.*;

class MapContainer {

private String identification;

private Map map;

public MapContainer(String id,Map m){

identification = id;

map = m;

}

public String getId() {return identification;}
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public Map getMap() {return map;}

}

public class Structure3 {

private static Set maps;

public void setMaps(Set m) {

maps = m;

}

public static State getBranch(String id,String msg) {

Map m = new HashMap();

Iterator iter = maps.iterator();

while(iter.hasNext()) {

MapContainer each = (MapContainer)iter.next();

if(each.getId().equals(id)) {

m = each.getMap();

break;

}

}

return (State)m.get(msg);

}

}

The class MapContainer stores the map identification and the map itself in
the attributes identification and map, respectively. These attributes are set by
the class constructor. Their current content is available through the corre-
sponding get functions.

The class Structure3 contains a set of maps for all FSM stable states. This
set is established by the function setMaps() and searched by the function
getBranch(). The input parameters of the function getBranch() are the map
(i.e., stable state) identification and the input message. The function get-
Branch() iterates through the set of map containers, locates the one with the
given identification, uses the located map to get the state transition that
corresponds to the input message, and returns it to its caller.

An important feature of this approach is that it is based on Java sets and
maps, which makes it an ideal environment for making dynamically recon-
figurable FSMs as Java sets and maps can be dynamically updated. For
example, if we want to add a new state transition B21, it would be sufficient
to write, compile, and dynamically load a new class B21 that represents it
and to add the corresponding entry in the map that is associated to the FSM
stable state S2.

Because the current Java version does not support a map of maps, the
solution for mapping input events to the corresponding state transitions
presented here is based on the usage of a set of maps. Worth mentioning is
the fact that an environment with a map of maps would enable top perfor-
mance implementations based on two connected mappings. The key for the
first mapping would be the FSM current stable state whereas the key for the
second mapping would be the input message. The performance of such
implementations would be even better than the performance of the imple-
mentations based on nested switch-case statements. 
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The class Environment3 uses the previously defined classes and demon-
strates their usability. The corresponding Java code is the following (the
overall class architecture is shown in Figure 4.11):

package automata;

import java.util.*;

import java.io.*;

public class Environment3 {

public static void main(String[] args) throws IOException {

char ch = '0';

Automata3 a3 = new Automata3();

Map m1 = new HashMap();

m1.put(“0”,new B11()); m1.put(“1”,new B12());

MapContainer M1 = new MapContainer(“0”,m1);

Map m2 = new HashMap();

m2.put(“0”,new B22()); m2.put(“1”,new B23());

FIGURE 4.11
The static structure used in the third approach to the FSM implementation.
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MapContainer M2 = new MapContainer(“1”,m2);

Map m3 = new HashMap();

m3.put(“0”,new B33()); m3.put(“1”,new B31());

MapContainer M3 = new MapContainer(“2”,m3);

Set maps = new HashSet();

maps.add(M1); maps.add(M2); maps.add(M3);

Structure3 st3 = new Structure3();

st3.setMaps(maps);

System.out.println(“This is the example of counter by modulo 2.”);

System.out.println(“The automata evolution has started...”);

while(true) {

System.out.print(“Enter input signal (0/1 and <ENTER>): ”);

ch = (char)System.in.read();

System.in.skip(2);

if(((ch!='0') && (ch!='1'))) break;

a3.processMsg(ch);

}

}

}

The function main starts by creating the object a3, an instance of the counter
by modulo 2. It then creates all the necessary maps and map containers, the
set of maps named maps, the object st3, an instance of the class Structure3.
After this, it sets the set of maps by calling the function setMaps() and falls
into an infinite while loop in which it reads FSM input messages and calls
the event (message) interpreter until the user enters a signal that is neither
“0” nor “1.”

The keys for searching Java maps in this simple example are just simple
strings (“0” and “1”). This Java map is a rather powerful abstraction because
its key may be any class whose instances are comparable. This makes it
possible to model real communication protocol messages with such classes
and to build Java maps for them. Once we model the messages by the
corresponding objects, FSM objects can interact with them in an object-
oriented fashion.

If we want to provide a full object-oriented treatment of communication
protocol messages, we must provide the corresponding serialization func-
tions. Two types of these functions are actually used. The first type is used
for converting an object into a series of octets that can be transported over
the communication line. The second type performs the reverse operation by
converting the received series of octets into the corresponding object. If we
do not provide these serialization functions, we are forced to operate directly
on numbers and use switch-case and similar statements unpopular in the
object-oriented world.
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4.3 State Design Pattern

The State design pattern is one of the approaches to FSM implementation.
As already mentioned, the State pattern is shown in a separate section
because it was catalogued by Gamma et al. and therefore it is not just another
example but rather a well-defined and proven concept. The reader may find
the complete description of the State pattern in the original book on design
patterns (Gamma et al., 1995). Here we present just a brief overview and an
example that demonstrates the State pattern applicability.

The original motivation to introduce this design pattern was to support
objects that change their behavior as their state changes, exactly what the

state S1, it produces the output 0 for the input 0, but when its state changes
to S2 or S3, it produces different outputs for the same input (1 in the state
S2, and 2 in the state S3). Similarly, the input 1 yields the output 1 in the
state S1, the output 2 in the state S2, and the output 0 in the state S3.

The key idea of this design pattern is to separate the FSM appearance from
its behavior. We define the FSM appearance with the FSM wrapper class,
which is referred to as a context. The context defines the user interface (a
set of operations accessible by the FSM users) and contains the current FSM
state object, which is one of the concrete FSM state objects.

The FSM behavior is defined with the wrapped state hierarchy. The root
of this hierarchy is the generic state class, which actually defines an interface
for the concrete states of the context. Each concrete state class is derived
from the generic state class and it provides the state-specific behavior of the
context (FSM).

The State pattern revolves around polymorphism. Essentially, context
(FSM) delegates the state-specific requests to the current state object. More
precisely, each operation defined within the user interface simply calls the
corresponding operation on the current state object (these operations usually
have the same name). The context can pass itself as a parameter to the called
operation and thus make itself accessible to the concrete state, if needed.

Typically, clients initially configure the context with state objects. Later,
during normal system operation, clients do not deal with state objects
directly. Notice that either the context class or the concrete state subclass can
change the context current state. Therefore the FSM transition logic can be
centralized, distributed, or hybrid. 

According to the authors, the State pattern consequences are the following:

• It localizes state-specific behavior.
• It makes state transitions explicit.
• State objects can be shared.
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At the end of this short overview of the State pattern, we illustrate its
applicability with the simple example — a State pattern-based implementa-
tion of the counter by modulo 2. The corresponding class diagram is shown
in Figure 4.12. The context in this example is the class Automata4. The
attribute state holds the current FSM state object. The key function pro-
cessMsg() delegates message processing to the current FSM state object by
calling its function processMsg().

The generic state class State defines a simple interface, which comprises a
single function, processMsg(). Generally, such a function would define the
default FSM behavior, which can then be overridden in the concrete substate
classes. In this simple example, as we will shortly see, no such a behavior
is allowed and therefore the corresponding operation is simply empty.

The concrete substate classes S1, S2, and S3 are derived from the generic
state class State. Each of these classes provides a state-specific behavior by
overriding the function processMsg() with its own particular definition. The
corresponding code in Java is the following:

package automata4;

import java.util.*;

public class Automata4 {

private State state;

public Automata4() {state = new S1();}

public void setState(State s) {state = s;}

public void processMsg(char msg) {

state.processMsg(this,msg);

}

}

class State {

public void processMsg(Automata4 a,char ch) {

}

}

FIGURE 4.12
The static structure used by the State design pattern.
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class S1 extends State {

public void processMsg(Automata4 a,char ch) {

if(ch=='0') {

System.out.println(“Output 0”);

a.setState(new S1());

} else {

System.out.println(“Output 1”);

a.setState(new S2());

}

}

}

class S2 extends State {

public void processMsg(Automata4 a,char ch) {

if(ch=='0') {

System.out.println(“Output 1”);

a.setState(new S2());

} else {

System.out.println(“Output 2”);

a.setState(new S3());

}

}

}

class S3 extends State {

public void processMsg(Automata4 a,char ch) {

if(ch=='0') {

System.out.println(“Output 2”);

a.setState(new S3());

} else {

System.out.println(“Output 0”);

a.setState(new S1());

}

}

}

The definition of the class Automat4 begins with the definition of the field
state, which is used to store the FSM current state object. The class constructor
sets this field to the FSM initial state object, which is an instance of the class
S1. The function setState() is used by the FSM concrete state objects to change
the FSM state (an example of distributed transit logic). The function pro-
cessMsg() simply calls the corresponding function on the FSM current state
object.

The class State defines a simple state interface with just one function —
processMsg( ) — which is empty because this example has no default behav-
ior. The class S1 is an example of a concrete substate class. It defines the S1-
specific FSM behavior by overriding the function processMsg() that it inherits
from the base class State. This function checks whether the input signal is 0
or 1, prints the corresponding output signal, and changes FSM state by
calling the function setState(). We made the context accessible by passing it
as a parameter to the function processMsg().
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The following Java code creates the working environment for this example
(given without the comments because similar code is already explained in
a previous section):

package automata4;

import java.util.*;

import java.io.*;

public class Environment4 {

public static void main(String[] args) throws IOException {

char ch = '0';

Automata4 a4 = new Automata4();

System.out.println(“This is the example of counter by modulo 2.”);

System.out.println(“The automata evolution has started...”);

while(true) {

System.out.print(“Enter input signal (0/1 and <ENTER>): ”);

ch = (char)System.in.read();

System.in.skip(2);

if(((ch!='0') && (ch!='1'))) break;

a4.processMsg(ch);

}

}

}

4.4 Implementation Based on the FSM Library

In the previous two sections, we have explored various approaches to the
FSM implementations by the means of simple examples. The reader should
be much more familiar with the FSM implementation by now, but for the
serious communication protocol engineering we need much more. We need
a well-established working environment that will enable productive and
repeatable development processes that yield maintainable products (com-
munication protocols) of high quality.

The main measure (metrics) of quality in the context of communication
protocols is their reliability, which is considered to be proportional to the
number of remaining software bugs. Another important quality measure is
the product performance measure with its throughput (the number of mes-
sages processed in the given interval of time) and hardware resources needed
to achieve that throughput (RAM and ROM size and processor speed mea-
sured in MIPS or MHz). Generally, one of the key factors to successful
software quality assurance is the quality of the software tools used in the
development process. Communication protocol engineering is by no means
an exception in this respect.

In this section, we present an example of the state-of-the-art working
environment for the productive development of communication protocols.
The environment is effectively created by an integrated development
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environment, which includes a C++ compiler and the domain-specific C++
library, named FSM Library. As already mentioned, the FSM Library includes
two fundamental classes, FSMSystem and FiniteStateMachine. The former
creates the execution platform for a group of FSMs whereas the latter is the
base class for implementing individual FSMs.

The FSM Library API comprises two interfaces, which are defined by the
class FSMSystem and FiniteStateMachine. The complete FSM Library pro-

includes two representative implementation examples. In this section, we
focus on the FSM Library concepts and internals.

The key concept behind the FSM Library is to enable productive imple-
mentations of FSMs in a uniform way. The main task of the FSM Library
user is to implement the FSM state transition functions. The user does this
by translating the design artifacts (statechart diagram, activity diagram or
SDL diagram) into the corresponding C++ class function members. This
translation can be done manually or with a software tool (typically used if
the product performance is not critical).

The process of translation is both productive and uniform because the FSM
Library provides all the functions needed to effectively construct an FSM
state transition. These functions can be classified into the following function
groups:

• Message handling functions (both message header and message pay-
load handling functions). These functions support both message
coding and decoding (i.e., message synthesis and analysis).

• Message sending functions.
• Timer handling functions (essentially, start, stop, and restart timer).

The reader may be puzzled by the fact that the list given above does not
include any message receiving functions. The FSM Library is specific in this
respect. The developer does not need to explicitly call a function that receives
a message (signal). Rather, the FSM execution platform (provided by the
class FSMSystem) routes all sent messages toward their destination automata,
locates the state transition function that corresponds to the message type
(determined by the content of the corresponding message header field), and
calls it as its subroutine. We will see shortly that the function that performs
the message routing and processing (named Start) is actually the event
interpreter.

Therefore, the FSM Library completely supports the message handling
style present in the design artifacts (statecharts, activity diagrams, and SDL
diagrams), which just name the input event (message) without taking care
of how that event is effectively recognized (received). The FSM Library
provides the class FSMSystem to support the straightforward implementa-
tions of design artifacts. Once provided with the class FSMSystem, the
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developers do not care how the message is received; they simply write the
C++ function that performs the state transition when the message is received.

Other FSM Library specifics are the following:

• The FSM implementation is independent from the underlying real-
time kernel.

• The FSM Library provides the mechanism to send messages to the
dynamically allocated automata instances, which are referred to as
unknown automata instances.

• The FSM Library provides public mailboxes, which can be used as
message queues with different priorities.

• The FSM Library separates the message handling functions from the
real-time kernel. This feature is referred to as the encapsulation of
the message handling functions.

• The FSM Library treats timers as special messages, which are dis-
tinguished from the communication protocol messages by the code
that determines the message type.

• The logging system provided by the FSM Library is based on the
test version of the real-time kernel, which is derived from the target
(final) real-time kernel.

• The FSM implementation is independent from the concrete formats
of the communication protocol messages.

• The FSM Library provides automatic message buffer reallocation in
cases where current buffer capacity becomes insufficient for storing
additional message parameters.

The following paragraphs provide short comments on each of these FSM
Library specifics. We proceed through the list of specifics from its beginning
toward its end.

An important design decision was to make the FSM Library independent
from the underlying run-time kernel. This decision is important because it
enables easy porting of the FSM implementations to various target platforms
(bare machine, UNIX, Windows NT). The internal class KernelAPI facilitates
this independence. It represents a clean interface between the FSM imple-
mentation and the run-time system. The kernel developer must derive a new
class from the class KernelAPI and write its real member functions by taking
into account the details of the particular target platform. An example of such
implementation is shown later in this section.

The second FSM Library-specific feature is related to the beginning of the
communication between two FSMs, namely, FSM A and FSM B, where the
former has the active role and the latter is passive. The problem is simple if
A always communicates with the same B, but it becomes more complex if
B is not known in advance (B is an unknown FSM). Consider a pool of FSMs,
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where each is capable of performing the same task. FSM A is principally
interested in engaging any instance from the pool that is free.

The FSM Library facilitates the communication with the unknown auto-
mata by placing all relevant data into the header of the message that is sent
to it. The message destination is set to the special code, named
UNKNOWN_AUTOMATA. The function member Start of the class FSMSys-
tem recognizes this code and dynamically allocates an automata instance,
which will be the message destination and therefore involved in the further
communication with the message originator. In the case when there are no
free automata instances available in the pool, the function Start calls the
special function NoFreeInstances, which is responsible for the recovery pro-
cedure. Typically, this function informs the message originator about the
automata instance outage by sending it an appropriate signal, such as NAK,
DISCONNECT, and so on.

The third FSM Library-specific feature is the provision of general purpose
mailboxes, which can be used both as public mailboxes and private mail-
boxes. The former are actually FIFO message queues that contain messages
for various destinations whereas the latter contain messages for a single
destination, which is an FSM that owns the private mailbox. Generally, we
can use only a single public mailbox to enable the communication between
all FSMs present in the system. Such a solution can suffice in the case of
simple systems with a small number of FSMs and soft real-time require-
ments. However, a single public mailbox may not be sufficient in the case
of more complex systems because the FSM Library mailbox is just a FIFO
message queue without any support for message prioritization.

The absence of message prioritization can lead to a case where an FSM
processes an outdated message instead of processing the corresponding
timeout message just because the outdated message is ahead of the timeout
message in the public mailbox. Such cases can lead to dysfunctional behav-
iors that are not caused by design oversights but rather with the inappro-
priate implementation.

The regular method of supporting message prioritization in the FSM
Library-based implementations is to use more public mailboxes that are
assigned different priorities. For example, we can use three public mailboxes
for three different priorities. These three public mailboxes are effectively
treated as three FIFO message queues with different priority (e.g., high,
medium, and low). We can select a strategy of using private mailboxes
instead. We can also mix public and private mailboxes if we wish. Actually,
the function Start (the member of the class FSMSystem) treats them equally.
In its loop, it searches all the mailboxes for messages. The effective mailbox
priority is determined by the order of that search (i.e., it starts from the
mailbox index 0).

The fourth FSM Library-specific feature is the encapsulation of the message
handling functions. Generally, real-time kernels can store the message source
and destination information in the message header or in the separate data
structure. By separating the message handling functions into a group that
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handles the message header and a group that handles the message payload,
the FSM Library provides complete FSM implementation independence from
the message source and destination information location.

An additional enhancement related to the message destination provided
by the FSM Library is the support for sending messages to the left or to the
right FSM. The abstraction of the left and right FSM originally comes from
SDL. If the SDL symbol for sending a message points to the left, we say that
the message is sent to the left FSM. Similarly, if the symbol points to the
right, we say that the message is sent to the right FSM.

The internal class KernelAPI provides the functions SendMessageLeft and
SendMessageRight, which are inherited by the class FiniteStateMachine, to
support this abstraction. These two functions enable the direct coding of the
corresponding parts of SDL diagrams, and the resulting C++ code has a great
similarity with the original SDL diagrams. For example, consider the follow-
ing snippet of C++ code that corresponds to a state transition:

StopTimer(FE4_TIMER1);

DisconnectRingTone();

PrepareNewMessage(0x00,r2_SetupRespConf);

SendMessageLeft();

StartChargingIncoming();

Connect();

SetState(FE4_ACTIVE);

The call of the function SendMessageLeft() above is a direct encoding of the
corresponding left-pointing SDL graphical symbol. This snippet of code is
a typical state transition implementation based on the FSM Library, which
is rather short and easy to read and map to the original design model. These
are two key implementation features that ensure productivity and quality.

The fifth FSM Library-specific feature is that it treats timers as special
messages, distinguished from the communication protocol messages by the
code that determines the message type. Some of the message header param-
eters are meaningless for timers. The corresponding message header fields
are used by the FSM Library API functions related to timers to store the data
specific for individual timers, such as timer duration.

All timers used by a certain FSM type must be initialized in the FSM class

timer duration, and the identification of the message to be sent when the
timer expires. In response to a series of InitTimerBlock() calls, the system
creates the corresponding array of timers. The identification of a timer effec-
tively becomes the index of this array.

Once initialized, the timer can be started by the function StartTimer(),
stopped by the function StopTimer(), restarted by the function RestartTimer(),
or checked by the function IsTimerRunning(). All these functions have a single
parameter, the identification of the timer. Therefore, the resulting C++ code
resembles the original design model to a great extent. Moreover, when the
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timer expires, the corresponding message is automatically sent to the FSM
that started it, which processes this message in the same fashion as all other
messages. This feature also contributes to the similarity of the resulting C++
code and the original design model.

The sixth FSM Library-specific feature is that the logging subsystem pro-
vided by the FSM Library is based on the test version of the real-time kernel,
which is derived from the target (final) real-time kernel. The logging sub-
system is important in communication protocol engineering because certain
design oversights or implementation errors become evident only in complex
circumstances, which can happen only after long run-time periods. Typically,
such circumstances are difficult to repeat and therefore developers normally
use log files to backtrack the sources of errors once they occur.

The FSM Library provides a complete logging subsystem that is used both
during system testing and normal system exploitation. The internal class
LogAutomata defines the necessary set of functions. FSM tracing is based on
the interception of all relevant internal functions, such as FSM state updating,
message processing, timer management functions, and so on. Automatic
logging of various events makes the resulting log file outlook uniform, and
thus easy to read by any member of the development team. All logging
events are prioritized, which helps developers to easily define exactly which
events they want to trace.

Traditionally, log files are located on mass storage devices such as hard
disks or flash memory. The FSM Library introduces an enhancement in this
respect. The internal class LogInterface defines the interface between the
system implementation and the concrete logging media, such as the conven-
tional log file, the TCP/IP connection to the logging server, and so on.
Logging to the concrete media is provided by a subclass that is derived from
the base class LogInterface. Examples of such classes are the classes LogFile
and LogTCP.

The seventh FSM Library-specific feature is that the FSM implementation
is independent of the concrete formats of the communication protocol mes-
sages. The feature is facilitated by the internal class MessageHandler, which
provides a set of generic functions for manipulating message parameters.
Basically, two families of these functions exist, namely, get and add. The
former return the value of the given parameter whereas the latter add the
given message parameter to the message. The parameter is specified with
its identification (code) and its value.

The class MessageHandler uses the class MessageInterface, which is an
abstract class that defines the interface for the abstract message format.
Normally, the developer derives a class from the class MessageInterface for
each concrete message format and writes its function in accordance with the
format-specific details. An example of such a class is the class StandardMes-
sage, which models a message that comprises a sequence of octets (charac-
ters). Such an approach centralizes message handling functionality. This
centralization eliminates code redundancy and increases code coverage.

9814_C004.fm  Page 202  Wednesday, April 12, 2006  1:23 PM

© 2006 by Taylor and Francis Group, LLC



Implementation 203

Additionally, development team productivity is increased because message
handling functions and FSMs can be developed in parallel.

The eighth and last FSM Library-specific feature is that it provides auto-
matic message buffer reallocation in cases where the current buffer capacity
becomes insufficient for storing additional message parameters. Although
this functionality is rather easily implemented, it is important because it
makes the process of message creation completely transparent. The program-
mer just adds parameters to the new message as needed, without having to
take care about the size of the free space in the corresponding buffer. This
detail is completely hidden by the message handling functions.

4.4.1 Using the FSM Library

Using the FSM Library is rather easy. It helps a lot in both the design and
implementation phases of the development process. The author’s experience
shows that both students and engineers working in the industry can start
using it only after a couple of days of training. Actually, it does not take
more than writing one example based on the FSM Library to start using it.
Besides that, it is a well-established working environment that has been used
in a series of the real-world projects for the industry.

When it comes to design, the FSM Library greatly simplifies matters by
providing two fundamental classes, FSMSystem and FiniteStateMachine. The
existence of these two classes makes the system static structure well known

from the base class FiniteStateMachine. The resulting FSM is executed by the
event interpreter, which is hidden inside the class FSMSystem. These two
classes practically encapsulate all domain-specific design patterns needed
for designing a communication protocol.

The overall result is that the class diagram is almost not needed at all, at
least not for realistic communication systems that comprise less then a dozen
communication protocols. Even for very complex communication systems
based on the FSM Library, the class diagram can be used more as an accom-
panying document. The most informative part of such a class diagram would
be the one that specifies the mailboxes present in the system, as well as the
timers used by individual FSM types.

Real valuable design artifacts for the paradigm based on the FSM Library
are the complete models of the system behavior in the form of the activity,
statechart, or SDL diagrams. This is the case because the FSM Library de
facto specifies the skeleton of the system static structure but it does not (and
cannot) specify the complete system behavior. It provides only primitive
behavior from which we can build more complex behavior, in particular, the
state transitions.

Once we have finalized the detailed design diagrams (activity, statechart,
or SDL diagram), we are ready to proceed to the implementation phase of
the development process. The main task of implementing FSMs by using
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the FSM Library, besides writing the initialization function and a couple of
simple auxiliary functions, is the encoding of state transitions by using the
set of primitives provided within the FSM Library application programming

provide mapping of SDL steps in almost a one-to-one manner. The names
of the primitives are almost self-documenting, at least after the short expe-
rience you get by using them. The code resembles the original design artifacts
(especially SDL diagrams). All these attributes helps any member of the
development team to read, understand, and continue the work that was
done by some other member of the development team, especially if they
have the design artifact at their disposal.

Also worth mentioning is that besides forward engineering, the FSM
Library helps backward engineering, too. This is especially true if the back-
ward engineering is done by hand. Using software tools for that purpose is
also possible if the development team strictly obeys certain coding guide-
lines. The key for the successful forward and backward engineering is the
well-defined API (see Section 6.8).

We demonstrate the usage of the FSM Library API by the examples at the

4.4.2 FSM Library Internals

This section describes the FSM Library internals. The main FSM Library
components are the following:

• The class FSMSystem

• The class FiniteStateMachine

• The real-time kernel

The class FSMSystem provides the following functionalities:

• Initialization of the FSM objects. The result is a set of the correspond-
ing transition tables, which determine which state transitions are
triggered by the individual events (messages).

• Routing of messages. This component locates the message destina-
tion FSM, looks up its state transition table to find the state transition
that corresponds to the message type, and calls the corresponding
function as its subroutine.

• Public mailbox prioritization. The public mailbox priority decreases
as its identification increases. The identification is actually the index
of the corresponding mailbox array. The public mailbox with the
identification 0 has the highest priority.
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interface (see Section 6.8). A good thing about these primitives is that they
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• Allocation of FSMs from the pool of FSMs. If the message destination
is an unknown object of a certain type, a free FSM from the corre-
sponding pool is allocated to process that message.

The class FiniteStateMachine provides the following functionalities:

• Maintaining the current state variable (the field member of this class)
• Maintaining the state transition table
• FSM evolution support by providing the address of the state tran-

sition function that corresponds to the incoming message type
• Message handling (message checking, parsing, and creation)
• Message exchange (the message send operation is explicit whereas

the message receive operation is implicit)
• Memory management (supports requesting and releasing buffers for

messages)
• Timer management (supports starting, stopping, restarting, and test-

ing timers)

The functionalities provided by the real-time kernel are inherited by the
class FiniteStateMachine (message exchange, buffer, and timer management).
The following subsections describe the internals of these three components.

4.4.2.1 FSMSystem Internals

As already mentioned, the class FSMSystem provides the execution platform
for all FSMs present in the system. The list of concrete functionalities pro-
vided by this class is already given in the previous section. The heart of the
class FSMSystem is the function Start, which actually provides all the listed
functionalities. Essentially, it is the event (message) interpreter. Its program
code in C++ is the following:

void FSMSystem::Start(){

SystemWorking = true;

while(SystemWorking) {

Sleep(1);

for(uint8 i=0; i<NumberOfMbx; i++) {

uint8 *msg = GetMsg(i);

if(msg == NULL){

continue;

}

uint8 automataType = GetMsgToAutomata(msg);

if(((automataType > NumberOfAutomata) ||

(NumberOfObjects[automataType] == 0))){

// Error handling

DiscardMsg(msg);

continue;

}
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uint32 objNum = GetMsgObjectNumberTo(msg);

if(objNum == UNKNOWN_AUTOMATA){

ptrFiniteStateMachine object =

FreeAutomata[automataType].Get();

if(object != 0) object->Process(msg);

else

(Automata[automataType][0])->NoFreeObjectProcedure(msg);

continue;

}

else if(objNum > NumberOfObjects[automataType]) {

// Error handling

DiscardMsg(msg);

continue;

}

else {

(Automata[automataType][objNum])->Process(msg);

}

}

}

}

The function Start initially sets its field member SystemWorking to the value
true and enters the loop, which is executed while SystemWorking has the
value true. Once this variable is set to the value false (this is exactly what the
API function StopSystem() does), the function Start exits the loop and termi-
nates. Because this function is the FSM event interpreter, once it stops the
whole system stops.

Inside the while loop, this function enters the nested for loop in which it
checks all mailboxes for messages. This for loop starts from the mailbox with
the identification (index) 0, thus making it the highest priority mailbox. As
it proceeds toward the identification NumberOfMbx, the priority of the cor-
responding mailboxes decreases.

Once it finds a message in the mailbox, it exits the nested for loop and
continues with determining the destination automata (FSM) type iden-
tification by calling the function GetMsgToAutomata(). If the identification is
invalid (greater than the configuration parameter NumberOfAutomata) or if
no instances of that type are found, the function discards the message by
calling the function DiscardMsg() and continues the main loop.

If the automata type identification is valid and at least one instance of that
type is found, the function Start determines the destination object iden-
tification by calling the function GetMsgObjectNumberTo(). If this iden-
tification is equal to UNKNOWN_AUTOMATA, the function Start tries to
allocate an object from the pool of objects of the given type by calling the
function Get() on the object of that type.

If at least one free object is found in the pool (actually an array of objects
of the given type), the function Get() will return the identification (array
index) of the first one and in its turn, the function Start will call its function
ProcessMsg(). Behind the scenes, the function ProcessMsg() locates the state
transition that corresponds to the message type, calls it as its subroutine,
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and continues the main loop. If no free objects are in the pool, the function
Start discards the message and continues the main loop.

Finally, if the message destination is a known object (its identification is
not equal to UNKNOWN_AUTOMATA), the function Start checks if its
identification is valid (not greater than the configuration parameter Num-
berOfObjects[automataType]). If the object identification is valid, the func-
tion Start calls object function processMsg() and continues the main loop.

4.4.2.2 FiniteStateMachine Internals

The class FiniteSateMachine is at the top of the FSM Library class hierarchy

from its user. The class FiniteStateMachine inherits logging-related function-
ality from the class LogAutomata (shown as the left branch of the class hier-
archy in Figure 4.13). Alternately, the class FiniteStateMachine inherits the
buffer, timer, and message management functionality from the class Kerne-
lAPI (shown as the right branch of the class hierarchy in Figure 4.13). Both
FiniteStateMachine and KernelAPI inherit the message management function-
ality from the class MessageHandler.

The class LogAutomata conceptually uses the logging services provided
through the interface created by the class LogInterface. The logging services
are provided in run-time reality by the object that is an instance of a subclass,
which is derived from the base class LogInterface. Figure 4.13 shows two
examples of such classes, namely, LogFile and LogTCP. The former provides
the recording of log events into the file located on some mass storage device.
The latter uses the TCP/IP network to send log events packed into messages
to the logging server, which in its turn writes the log events to a file, perhaps
located on its hard disk.

Similarly, the class MessageHandler uses services of the abstract interface
provided by the class MessageInterface. The real providers of the message
handing services are subclasses derived from the base class MessageInterface.
Figure 4.13 shows three examples of such classes, namely, StandardMessage,
H323Message, and SS7Message. In the examples in this book, we use the class
StandardMessage, which creates the abstraction of the message comprising a
series of octets (characters) that can be partitioned into an arbitrary number
of message fields (carrying message parameters) of arbitrary size (given as
a number of octets).

In the text that follows, we cover the most important details of the class
FiniteStateMachine, KernelAPI, and MessageHandler. The effect of this top-
down approach is that we introduce first the functionality solely provided
by the class FiniteStateMachine, then the functionality that the class
FiniteStateMachine inherits from the class KernelAPI, and finally the function-
ality that the class FiniteSateMachine inherits from the class MessageHandler.

The class FiniteStateMachine comprises all attributes and operations neces-
sary for the definition and evolution of a single FSM. The FSM state is
modeled with the structure SState:
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struct SState {

SState(uint16 maxNumOfProceduresPerState);

~SState();

bool StateValid; // if true, data are valid

unsigned short NumOfBranches; // number of branches in a state

// procedure for processing unexpected message

PROC_FUN_PTR UnexpectedEventProcPtr;

SBranch* PBranch; // pointer on data for each branch

};

The field NumOfBranches contains the number of outgoing state transitions
(branches) for the corresponding state. The field UnexpectedEventProcPtr is a
pointer to the C++ function that handles the reception of unexpected mes-
sages. Finally, the field PBranch contains a pointer to the array of the SBranch
instances, which model individual outgoing state transitions. The structure
SBranch definition is the following:

struct SBranch {

uint16 EventCode; // message code

PROC_FUN_PTR ProcPtr; // message processing function

};

FIGURE 4.13
The internal FSM Library static structure.

FSMSystem

FiniteStateMachine KernelAPI MessageHandler

LogAutomata

LogInterface

LogFile LogTCP

MessageInterface

StandardMessage H323Message SS7Message
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The field EventCode contains the code of the event (message) that triggers
this state transition. The field ProcPtr contains the pointer to the C++ function
that performs the actions during this particular state transition.

Generally, an FSM can use a number of timers. Each timer is represented
with the instance of the structure TimerBlock:

struct TimerBlock {

TimerBlock(uint16 v, uint16 s) :

Count(v), SignalId(s), Valid(false), TimerBuffer(0){}

TimerBlock() :

Count(INVALID_32), SignalId(INVALID_16), Valid(false),

TimerBuffer(0) {};

uint32 Count; // in time slices

uint16 SignalId; // message code

bool Valid; // if true, data is valid

ptrBuff TimerBuffer; // Ptr to timer buffer

};

The field Count defines the timer duration, the field SignalId defines the
code of the message (signal) that is generated when the timer expires, the
field Valid is set if the timer is running, and the field TimerBuffer contains the
pointer to the buffer used by the timer expiration message.

The main private field members of the class FiniteStateMachine are the
following:

class FiniteStateMachine : public KernelAPI, LogAutomate {… 

private:

uint16 NumOfStates; // Number of FSM states

uint16 NumOfTimers; // Number of timers

uint16 MaxNumOfProcPerState; // Max. no. of branches

SState *States[MAX_STATE_NO]; // State data

uint32 ConnectionId; // Current connection

uint32 CallId; // Current call

uint8 State; // Current state

The fields NumOfStates, NumOfTimers, and MaxNumOfProcPerState are the
dimensions of the corresponding arrays. They define the number of FSM
states, the number of timers it uses, and the maximum number of branches,
respectively. The field States is an array of pointers to the instances of the
structure SState that contains pointers to arrays of instances of the structure
SBranch. This data structure corresponds to the FSM state transition table.

The field ConnectionId carries the domain-specific name but actually con-
tains the FSM object identification that is unique within the scope of objects
of the same type. During the system initialization, the class FSMSystem
creates the array of FSM objects of the same type. The index of the object in
that array is written into this field at that time. This identification can be
used as appropriate for the application at hand. The FSM Library user can
take advantage of the fact that all message sending functions automatically
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copy the content of this field into the object identification field of the message
header.

The field CallId carries another domain-specific name but it can be used
for various purposes in various applications. In contrast to the field Connec-
tionId whose uniqueness is limited to the scope of a single FSM type, the
value of the field CallId is unique in the scope of the whole system. Tradi-
tionally, it has been used to identify a single call, but generally it can be used
to identify any communication process of interest. Like the field ConnectionId,
this field is also copied by the message sending functions to the message
header automatically.

Finally, the field State is the FSM current state identification, which is the
value of the index of array defined in the field States. This field defines the
context of the FSM.

As already mentioned, the FSM Library supports the abstraction of the left
and right FSM. The message sending functions, namely SendLeftAutomata()
and SendRightAutomata() — originally defined in the class KernelAPI —
require the data about the left and right FSM. Relevant FiniteStateMachine
attributes are the following:

// Left automata data

uint8 LeftMbx; // left mbx id

uint8 LeftAutomata; // left automata

uint8 LeftGroup; // left group

uint32 LeftObjectId; // left object

// Right automata data

uint8 RightMbx; // right mbx id

uint8 RightAutomata; // right automata

uint8 RightGroup; // right group

uint32 RightObjectId; // right object

We finish the overview of the FiniteStateMachine internals with its initializa-
tion and control functions:

FiniteStateMachine(

uint16 numOfTimers = DEFAULT_TIMER_NO,

uint16 numOfState = DEFAULT_STATE_NO,

uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE);

virtual void Initialize(void) = 0;

void InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);

void InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);

PROC_FUN_PTR GetProcedure(uint16 event);

virtual void NoFreeInstances() = 0;

virtual void Process(uint8 *msg);

void FreeFSM();

The class constructor first sets the number of timers, the number of states,
and the maximal number of branches per state. It then calls the function
Initialize(), provided by the user. This function typically uses a series of calls
to functions InitEventProc() and InitUnexpectedEventProc(). The former
defines the state transition function for the given state and message type
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whereas the latter defines the unexpected message handler for the given
state.

The function GetProcedure() is a control function that returns the address
of the state transition function for the given message type in the current
state. The function NoFreeInstances() is a recovery function that is called in
cases where no more free objects of this type are found. The function Process()
is the prototype of the state transition function. The function FreeFSM()
releases the FSM object by returning it to the pool of objects of this type.

The class KernelAPI provides the following groups of functions:

• Initialization functions
• Memory management functions
• Message management functions
• Timer management functions

The initialization functions provided by the class KernelAPI are its con-

is the following:

void setKernelObjects(TPostOffice *o, TBuffers *b, CTimer *t);

The parameters of this function are the pointers to the objects that comprise
the system mailboxes, buffers, and timers. These objects will be described
in the next section.

The memory management functions provided by the class KernelAPI are
the following:

uint8 *GetBuffer(uint32 length);

void RetBuffer(uint8 *buff);

bool IsBufferSmall(uint8 *buff, uint32 length);

uint32 GetBufferLength(uint8 *buff);

The function GetBuffer() returns the pointer to the buffer of the sufficient
size (not less than specified by its parameter). The function RetBuffer()
releases the given buffer. The function IsBufferSmall() checks the size of the
given buffer. The function GetBufferLength() returns the size of the given
buffer.

The message management functions provided by the class KernelAPI are
the following:

void Discard(uint8* buff);

void SetMessageFromData();

void SendMessage(uint8 mbxId);

void SendMessage(uint8 mbxId, uint8 *msg);

void SendMessageLeft();

void SendMessageRight();

void ReturnMsg(uint8 mbxId);
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The function Discard() releases the given message. The function SetMes-
sageFromData() copies the data about this FSM (type, group, and instance
identifications) to the corresponding fields of the new message header.
According to the FSM Library terminology, the current message is the one
that has been received and processed whereas the new message is the mes-
sage that is currently under construction (and will be subsequently sent).

The function SendMessage(uint8 mbxId) sends the new message to the given
mailbox. The function SendMessage(uint8 mbxId, unit8 *msg) sends the given
message to the given mailbox. The functions SendMessageLeft() and SendMes-
sageRight() send the new message to the left and right automata, respectively.
The function ReturnMsg() sends the current message to the given mailbox.

The timer management functions provided by the class KernelAPI are the
following:

uint8 *StartTimer(uint16 code, uint32 count, uint8 *info=0);

void StopTimer(uint8 *timer);

bool IsTimerRunning(uint8 *timer);

The function StartTimer() starts the given timer by setting its duration and
the corresponding message buffer. The function StopTimer() stops the given
timer. The function IsTimerRunning() checks if the given timer is running.

The interface defined by the class MessageHandler comprises the following
two parts:

• Message header handling
• Message payload handling

The message header handling part provides getting and setting functions
for the individual message header fields. The main message header fields
are the following:

• MSG_FROM_AUTOMATA : the identification of the originating FSM
type

• MSG_TO_AUTOMATA : the identification of the destination FSM
type

• MSG_CODE : the identification of the message type
• MSG_OBJECT_ID_FROM : the identification of the originating FSM

object
• MSG_OBJECT_ID_TO : the identification of the destination FSM

object
• MSG_CALL_ID : the identification of the application-specific com-

munication process
• MSG_INFO_CODING : the identification of the message format type
• MSG_LENGTH : the message payload length in octets
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The timer message is a special message. If the timer expires, it is sent to
the same FSM that created it. Because of this, the message header fields
MSG_FROM_AUTOMATA and MSG_OBJECT_ID_FROM are not needed,
and thus can be used to hold the information about the timer duration and
the destination mailbox identification.

The class MessageInterface defines the set of abstract functions that handle
the message payload. The key idea behind the abstraction introduced by the
class MessageInterface is the generic message parameter definition, which is
independent from the particular message format. Each message parameter
is uniquely defined by the following data:

• The message parameter identification
• The message parameter length (size)
• The message parameter value (content)

Depending on the message format type, the first and the second items
listed may be implicit or explicit. Some of the messages carry the message
parameter identification and length and some do not. However, all three
items must be known to the message handling functions.

Another important fact related to the message format is that particular
message formats can be disassembled to a series of primitive elements of
the following type:

• Byte (1 byte)
• Word (2 bytes)
• DWord (4 bytes)
• Sequence of bytes (n bytes)

Therefore, the class MessageInterface includes the functions that provide
access to these primitive types of information. These functions can be par-
titioned into the following two groups:

• Current message handing functions
• New message handling functions

The current message handling functions are the following:

uint8 *GetParam(uint8 paramCode);

bool GetParamByte(uint8 paramCode, BYTE &param);

bool GetParamWord(uint8 paramCode, WORD &param);

bool GetParamDWord(uint8 paramCode, DWORD &param);

The first function returns a pointer to the parameter (sequence of octets)
whose identification (paramCode) is given. The next three functions return
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the requested parameter of the size Byte, Word, and DWord, respectively. The
new message handling functions are the following:

uint8 *AddParam(uint8 paramCode, uint8 paramLength, uint8 *param);

uint8 *AddParamByte(uint8 paramCode, BYTE param);

uint8 *AddParamWord(uint8 paramCode, WORD param);

uint8 *AddParamDWord(uint8 paramCode, DWORD param);

bool RemoveParam(uint8 paramCode);

The first four functions add the given sequence of octets, Byte, Word, and
DWord parameter to the new message, respectively. The function Remove-
Param() removes the parameter — whose identification is given — from the
message.

Each message handling function consists of two parts, a preparation part
and an operation part. The preparation part of the current message handling
functions includes preparing temporary data and message parsing. In case
of message syntax errors, message handling functions report an error by
returning the value false. The preparation part of the new message handling
functions includes allocation of the message buffer and initialization of the
message header fields MSG_CODE ,  MSG_INFO_CODING  and
MSG_LENGTH (initially set to 0).

4.4.2.3 Kernel Internals

As already mentioned, the class FiniteStateMachine is made independent of
the particular real-time kernel with the introduction of the API defined by
the class KernelAPI. Generally, the class FiniteStateMachine can use services
provided by any real-time kernel that is a subclass of the class KernelAPI. In
this section, we cover the internals of one such kernel (a default one), which
is simply referred to as Kernel.

is the class KernelAPI, which acts as the wrapper of Kernel. This class contains
pointers to the following three main parts of Kernel:

• Memory manager
• Message manager
• Time manager

The interfaces to these three resource managers are defined by the classes
TBuffers, TPostOffice, and CTimer, respectively. The memory manager comprises
the class TBuffers and a set of instances of the class TBufferQueue. The message
manager consists of the class TPostOffice and a set of instances of the class
TMailBox. The time manager is implemented by the class CTimer itself.

The class TBuffers creates the abstraction of a set of buffer pools. The size
of the buffers in the pool is the same, but these sizes are different between
the pools. For example, we can have three pools with three different sizes,
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namely, small, medium, and large. The class TBufferQueue models one such
a pool.

The constructor of the class TBufferQueue initially allocates an array of
bytes (uint8), which is the actual memory space that accommodates the
memory pool:

// calculate memory size for all buffers and get memory for them

memSize = bufferLength + BUFF_HEADER_LENGTH;

memSize *= buffersNo;

BufferPtr = new uint8[memSize];

This memory space is then partitioned into individual memory buffers
that are added to the list of free buffers that actually represent the buffer
pool. A buffer consists of the buffer header and the space for useful data.
The buffer header comprises the pointers to the previous and to the next
element in the list and the buffer code that indicates buffer size. Each buffer
pool is defined with the pointer to the list of free buffers and the size of the
buffers in that list. The class TBuffers holds the array of pointers to the

FIGURE 4.14
The internal Kernel static structure.
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instances of the class TBufferQueue (in the field member Buffers), as well as the
array of the corresponding buffer sizes (in the field member BuffersLength).

The function GetBuffer() provided by the class KernelAPI first searches the
field BuffersLength to find the pool of buffers of the sufficient size. It then
gets the buffer from the head of the list of free buffers and returns the pointer
to it. The function RetBuffer() uses buffer code from its header to return the
buffer by adding it to the end of the corresponding list.

The class TPostOffice stores the array of pointers to the corresponding
mailboxes. A mailbox is implemented as an instance of the class TMailBox.
Actually, the class TMailBox is very similar to the class TBufferQueue. The
main difference between them is that the former provides atomic (uninter-
ruptible) access to the list of messages. This feature is needed because the
list of messages is a resource shared by two concurrent processes, namely
the event interpreter and the time interrupt routine.

The atomic mailbox access is ensured by two virtual functions, namely
MbxLock() and MbxUnlock(). The former function locks the mailbox and the
latter unlocks it. These functions ensure the FSM Library’s portability. They
can be implemented by the use of semaphores provided by the local oper-
ating systems. (The FSM Library supports OS Linux® and Windows® NT
at the moment.)

The class CTimer is the most target-platform dependent part of Kernel. It
consists of two parts, a platform-dependent part and a platform-independent
part. The platform-dependent part comprises the time-driven routine that is
periodically called by the local operating system and the routines that pro-
vide access to shared data. The platform-independent part consists of the
list of running timers and routines that maintain that list. The list of running
timers is implemented as a traditional delta list (the timer at the head of the
list contains the absolute time interval whereas all other timers contain the
time interval relative to the previous timer in the list).

To simplify timer maintenance, the function StopTimer() does not analyze
the current status of the given timer (already expired or still running) — it
simply marks the timer as expired. If the timer was still running, it will
remain in the list of running timers. When it expires, it is forwarded to the
given mailbox and from there it is discarded by the function member Get()
of the class TMailBox.

4.4.3 Writing FSM Library-Based Implementations

Normally, we start by deriving subclasses from the base class FiniteStateMa-
chine. For each such subclass, we must define the following functions (see

• GetMessageInterface(): This function returns the pointer to the partic-
ular message interface object.
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• SetDefaultHeader(): This function sets the default message header
parameters.

• GetMbxId(): This function returns the identification of the mailbox
associated to this FSM type.

• GetAutomata(): This function returns the identification of this FSM
type.

• SetDefaultFSMData(): This function sets default FSM data.
• NoFreeInstances(): This recovery function is called when the pool of

objects is exhausted.
• Initialize(): This function initializes FSM-related data, including the

state transition table.

We then write the main program, which typically follows these steps:

• Create an instance of the class FSMSystem.
• Initialize the real-time kernel.
• Set the system parameters.
• Register (add) all FSM objects with the instance of the class FSM-

System.
• Start the system by calling the function Start() (defined within the

class FSMSystem).

4.5 Examples

This section includes two representative examples of the FSM Library-
based implementations. The first example is the implementation of the
application for reading Internet electronic mail. The second example
shows the implementation of the SIP invite client transaction. 

4.5.1 Example 1

This example demonstrates how an application for reading Internet elec-
tronic mail can be constructed. The application is actually an e-mail client
that comprises the following three objects (see the general collaboration
diagram in Figure 4.15): 

FIGURE 4.15
The receive e-mail application collaboration diagram.

pop3 : ClAuto channel : ChAutouser : UserAuto
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• user: a user interface
• pop3: the implementation of the POP3 protocol (refer to the original

• channel: responsible for the direct communication with the e-mail
server over the TCP protocol

of the classes UserAuto, ClAuto, and ChAuto, respectively. The object pop3 is
the central object. On its left side is the object user and on its right side is
the object channel. The interaction between these objects is illustrated with

are received and saved as files on a mass storage device. The flow of events

• Triggered by the reception of the message User_Check_Mail from the
left object, it sends the message Cl_Connection_Request to the right
object.

• Upon the reception of the message Cl_Connection_Accept from the
right object, it sends the message User_Connected to the left object.
The connection with the e-mail server is successfully established at
this point.

• After receiving the user name and password carried by the message
User_Name_Password from the left object, it first sends the user name
in the message MSG(USER name) to the right object, which is
acknowledged with the message MSG(+OK) from the right object,
and it then sends the password in the message MSG(PASS password)
to the right object, which is also acknowledged with the message
MSG(+OK) from the right object. The user authentication procedure
is successfully finished at this point.

• It then checks the status of the pending e-mails by sending the
message MSG(STAT) to the right object and receiving the answer in
the message MSG(+OK nn mm), where nn is the number of messages
in the maildrop and mm is the size of the maildrop in octets.

• While pending e-mails remain, it repeats the sequence of the e-mail
read procedure and the e-mail delete procedure. The e-mail read
procedure starts with the message MSG(RETR nn) to the right object
(nn is the order number of the e-mail message to be received). The
right object in its turn sends an e-mail message in a series of
MSG(mail) messages (the size of the last one is smaller than 255
octets). The e-mail delete procedure starts with the message
MSG(DELE nn) sent to the right object (nn is the order number of
the message to be deleted by the e-mail server). After reception of
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RFC 1939, freely available on the Internet at www.ietf.org/rfc/

from the point of view of the object pop3 is the following:

rfc1939.txt)

As shown in Figure 4.15, the objects user, pop3, and channel are the instances

three typical scenarios that are shown in Figure 4.16, Figure 4.17, and Figure
4.18. Figure 4.16 shows a successful session during which all pending e-mails

http://www.ietf.org
http://www.ietf.org
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the acknowledgment MSG(+OK) from the right object, the left object
is informed accordingly with the message User_Save_Mail (normally,
the object user should save the current e-mail message as a file on
a mass storage device at this point).

FIGURE 4.16
The successful receive e-mail session establishment scenario.
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• Finally, the object pop3 starts the session closing procedure by send-
ing the message MSG(QUIT) to the right object. Then, upon recep-
tion of the message Cl_Disconnected from the right object, it sends
the message User_Disconnected to the left object.

Figure 4.17 shows the invalid password processing scenario. It is the same
as the previous scenario up to the point where the object pop3 sends the
message MSG(PASS password) to the right object. Because the password is

FIGURE 4.17
The invalid e-mail password processing scenario.

FIGURE 4.18
The unsuccessful receive e-mail session establishment scenario.
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invalid, the right object responds with the message MSG(ERR) and the object
pop3 immediately proceeds to the session closing procedure.

nection with the e-mail server cannot be established for some reason. There-
fore, TIMER1_ID that was started by the right object expires and the associate
message TIMER1_EXPIRED triggers the right object to send the message
Cl_Connection_Reject. The object pop3 in its turn sends the message
User_Connection_Fail to the left object.

To keep this example simple enough, we focus further on the design and
implementation of the key object in this application, the object pop3. The
complete dynamic behavior of this object is specified with the SDL diagram,

defined with nine states (Cl_Ready, Cl_Connecting, Cl_Authorizing,
Cl_User_Check, Cl_Pass_Check, Cl_Mail_Check, Cl_Receiving, Cl_Deleting, and
Cl_Dis connec t ing ) ,  s ix  input  messages  (User_Check_Mai l ,
Cl_Connection_Reject, Cl_Connection_Accept, User_Name_Password, MSG, and
Cl_Disconnected), and seven output messages (Cl_Connection_Request,
User_Connection_Fail, User_Connected, MSG, Mail, User_Save_Mail, and
User_Disconnected).

By convention, the names of all messages (except Mail) exchanged between
the object pop3 and the left object begin with the prefix User_. The names of
the control messages exchanged between the object pop3 and the right object
begin with the prefix Cl_. The names of the POP3-related messages
exchanged between the object pop3 and the right object are named MSG.
Two types of MSG messages are used — commands directed to the e-mail
server and responses received from it.

The MSG commands are the following:

• MSG(USER name): corresponds to the original POP3 command for
specifying the name of the user mailbox

• MSG(PASS password): corresponds to the original POP3 command
for specifying the password for the previously specified mailbox

• MSG(STAT): corresponds to the original POP3 command for inquir-
ing about the mailbox status

• MSG(RETR nn): corresponds to the original POP3 command for
reading the pending e-mail message number nn

• MSG(DELE nn): corresponds to the original POP3 command for
deleting the pending e-mail message number nn

• MSG(QUIT): corresponds to the original POP3 command for closing
the current session
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Figure 4.18 shows the unsuccessful session establishment scenario. It starts
in the same way as the scenario in Figure 4.16. Assume that the TCP con-

l

which is shown in Figure 4.19 and Figure 4.20. The corresponding FSM is
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The MSG responses are the following:

• MSG(+OK): corresponds to the original POP3 acknowledgment mes-
sage

• MSG(ERR): corresponds to the original POP3 error message

FIGURE 4.19
The POP3 client SDL diagram, part I.
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• MSG(mail): corresponds to the actual e-mail message that was
received from the e-mail server

Cl_Connecting, Cl_Authorizing, Cl_User_Check, and Cl_Pass_Check. The eight
state transitions are shown in Figure 4.19, as follows:

• From Cl_Ready to Cl_Connecting, triggered by User_Check_Mail

FIGURE 4.20
The POP3 client SDL diagram, part II.
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Figure 4.19 shows valid state transitions for the states Cl_Ready,
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• From Cl_Connecting to Cl_Ready, triggered by Cl_Connection_Reject

• From Cl_Connecting to Cl_Authorizing, triggered by
Cl_Connection_Accepted

• From Cl_Authorizing to Cl_User_Check, triggered by
User_Name_Password

• From Cl_User_Check to Cl_Pass_check, triggered by MSG(+OK)

• From Cl_User_Check to Cl_Disconnecting, triggered by MSG(ERR)

• From Cl_Pass_Check to Cl_Mail_check, triggered by MSG(+OK)

• From Cl_Pass_Check to Cl_Disconnecting, triggered by the MSG(ERR)

Cl_Receiving, Cl_Deleting, and Cl_Disconnecting. The seven state transitions
are shown in Figure 4.20, as follows:

• From Cl_Mail_Check to Cl_Receiving, triggered by MSG(+OK) and
guarded by the condition nn > 0

• From Cl_Mail_Check to Cl_Disconnecting, triggered by MSG(+OK)
and guarded by the condition !(nn > 0)

• From Cl_Receiving to Cl_Deleting, triggered by MSG(mail) and
guarded by the condition mail(size) < 255

• From Cl_Receiving to Cl_Receiving, triggered by MSG(mail) and
guarded by the condition !(mail(size) < 255)

• From Cl_Deleting to Cl_Receiving, triggered by MSG(+OK) and
guarded by the condition nn > 0

• From Cl_Deleting to Cl_Disconnecting, triggered by MSG(+OK) and
guarded by the condition !(nn > 0)

• From Cl_Disconnecting to Cl_Ready, triggered by Cl_Disconnected

Next, we proceed to the implementation in C++ based on the FSM Library.
First, we define symbolic constants specific for this project in a header file,
which is typically named const.h. The content of this file is the following:

#ifndef _CONST_H_

#define _CONST_H_

#include <fsm.h>

const uint8 CH_AUTOMATA_TYPE_ID = 0x00;

const uint8 CL_AUTOMATA_TYPE_ID = 0x01;

const uint8 USER_AUTOMATA_TYPE_ID = 0x02;

const uint8 CH_AUTOMATA_MBX_ID = 0x00;

const uint8 CL_AUTOMATA_MBX_ID = 0x01;

const uint8 USER_AUTOMATA_MBX_ID = 0x02;

// channel messages

const uint16 MSG_Connection_Request = 0x0001;

const uint16 MSG_Sock_Connection_Reject = 0x0002;
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Figure 4.20 shows valid state transitions for the states Cl_Mail_Check,
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const uint16 MSG_Sock_Connection_Accept = 0x0003;

const uint16 MSG_Cl_MSG = 0x0004;

const uint16 MSG_Sock_MSG = 0x0005;

const uint16 MSG_Disconnect_Request = 0x0006;

const uint16 MSG_Sock_Disconnected = 0x0007;

const uint16 MSG_Sock_Disconnecting_Conf = 0x0008;

// pop3 client messages

const uint16 MSG_User_Check_Mail = 0x0009;

const uint16 MSG_Cl_Connection_Reject = 0x000a;

const uint16 MSG_Cl_Connection_Accept = 0x000b;

const uint16 MSG_User_Name_Password = 0x000c;

const uint16 MSG_MSG = 0x000d;

const uint16 MSG_Cl_Disconnected = 0x000f;

// user messages

const uint16 MSG_Set_All = 0x0010;

const uint16 MSG_User_Connected = 0x0011;

const uint16 MSG_User_Connection_Fail = 0x0012;

const uint16 MSG_Mail = 0x0013;

const uint16 MSG_User_Save_Mail = 0x0015;

const uint16 MSG_User_Disconnected = 0x0014;

#define ADRESS “krtlab8”

#define PORT 110

#define TIMER1_ID 1

#define TIMER1_COUNT 10

#define TIMER1_EXPIRED 0x20

#define PARAM_DATA 0x01

#define PARAM_Name 0x02

#define PARAM_Pass 0x03

#endif // _CONST_H_

The file const.h starts with the definitions of automata types and their
private mailbox identifications. The identifications assigned to the classes
ChAuto ,  ClAuto ,  and UserAuto  are CH_AUTOMATA_TYPE_ID ,
CL_AUTOMATA_TYPE_ID, and USER_AUTOMATA_TYPE_ID, respec-
t ive ly.  The  ident ifica t ions  o f  the i r  pr iva te  mai lboxes  a re
CH_AUTOMATA_MBX_ID ,  CL_AUTOMATA_MBX_ID ,  and
USER_AUTOMATA_MBX_ID, respectively. Next, we define the symbols that
correspond to the codes of the messages recognized by the classes ChAuto,
ClAuto, and UserAuto, respectively. By convention, these symbols are pro-

At the end of the file const.h, we define the domain name and the number
of the port, which are used to establish the TCP connection with the e-mail
server (symbols ADDRESS and PORT), channel timer-related constants
(symbols TIMER1_ID, TIMER1_COUNT, and TIMER1_EXPIRED), and the
identifications of the message parameters (symbols PARAM_DATA,
PARAM_Name, and PARAM_Pass).
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Next, we write the header file ClAuto.h. Its content is the following:

#ifndef _Cl_AUTO_H_

#define _Cl_AUTO_H_

#include <NetFSM.h>

#include <fsmsystem.h>

#include “const.h”

class ClAuto : public FiniteStateMachine {

// for FSM

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

void SetDefaultFSMData();

void NoFreeInstances();

void Reset();

uint8 GetMbxId();

uint8 GetAutomata();

uint32 GetObject();

void ResetData();

// FSM States

enum ClStates {

FSM_Cl_Ready,

FSM_Cl_Connecting,

FSM_Cl_Authorizing,

FSM_Cl_User_Check,

FSM_Cl_Pass_Check,

FSM_Cl_Mail_Check,

FSM_Cl_Receiving,

FSM_Cl_Deleting,

FSM_Cl_Disconnecting

};

public:

ClAuto();

~ClAuto();

void Initialize();

void FSM_Cl_Ready_User_Check_Mail();

void FSM_Cl_Connecting_Cl_Connection_Reject();

void FSM_Cl_Connecting_Cl_Connection_Accept();

void FSM_Cl_Authorizing_User_Name_Password();

void FSM_Cl_User_Check_MSG();

void FSM_Cl_Pass_Check_MSG();

void FSM_Cl_Mail_Check_MSG();

void FSM_Cl_Receiving_MSG();

void FSM_Cl_Deleting_MSG();

void FSM_Cl_Disconnecting_Cl_Disconnected();

protected:

int m_MessageCount;

char m_UserName[20];

char m_Password[20];

};

#endif /* _Cl_AUTO_H */

After listing all necessary header files, we declare the class ClAuto, which
is derived from the base class FiniteStateMachine. The declaration of the class
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ClAuto starts with the declaration of field and function members that are
mandatory for any class that is derived from the class FiniteStateMachine (as
explained previously in this chapter). It continues with the declaration of
the FSM state names and state transition function prototypes.

By convention, FSM state names are the names from the SDL diagram
prefixed with the prefix FSM_ (e.g., the initial state Cl_Ready is named
FSM_Cl_Ready in the C++ code). The state transition function is named by
concatenating the state name and the input message name and by prefixing
this composite name with the prefix FSM_ (e.g., the state transition function
performed when the FSM in state Cl_Ready receives the message
User_Check_Mail is named FSM_Cl_Ready_User_Check_Mail). As already
mentioned, ClAuto FSM has nine states and fourteen state transitions.

The reader may be puzzled with the fact that there are fourteen valid FSM
state transitions and only ten state transition functions declared in the header
file ClAuto.h. This circumstance is because some of the state transitions are
triggered with the same message type but different message content — e.g.,
MSG(+OK) and MSG(ERR) — or they are guarded with the complementary
conditions — e.g., (nn > 0) and !(nn > 0). To clearly understand these matters,
remember that FiniteStateMachine derivatives react to various message types in
various FSM states. This is how we calculate the number of state transitions.

If we apply the principle stated above to the class ClAuto, we have the
situation where all the states react to a single message with the exception of
the state Cl_Connecting ,  which reacts to two valid messages,
Cl_Connection_Reject and Cl_Connection_Accept. Because of this, we have
(8 × 1) + (1 × 2) state transition functions, which resolves to ten state transition
functions, as mentioned above.

Finally, we write the class ClAuto definition file, named ClAuto.cpp. The
content of this file is the following:

#include <stdio.h>

#include “const.h”

#include “ClAuto.h”

#define StandardMessageCoding 0x00

ClAuto::ClAuto() : FiniteStateMachine(0, 9, 2) {}

ClAuto::~ClAuto() {}

uint8 ClAuto::GetAutomate() {

return CL_AUTOMATA_TYPE_ID;

}

uint8 ClAuto::GetMbxId() {

return CL_AUTOMATA_MBX_ID;

}

uint32 ClAuto::GetObject() {

return GetObjectId();

}
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MessageInterface *ClAuto::GetMessageInterface(uint32 id) {

return &StandardMsgCoding;

}

void ClAuto::SetDefaultHeader(uint8 infoCoding) {

SetMsgInfoCoding(infoCoding);

SetMessageFromData();

}

void ClAuto::SetDefaultFSMData() {

SetDefaultHeader(StandardMessageCoding);

}

void ClAuto::NoFreeInstances() {

printf(“[%d] ClAuto::NoFreeInstances()\n”, GetObjectId());

}

void ClAuto::Reset() {

printf(“[%d] ClAuto::Reset()\n”, GetObjectId());

}

void ClAuto::Initialize() {

SetState(FSM_Cl_Ready);

// set message handlers

InitEventProc(FSM_Cl_Ready, MSG_User_Check_Mail,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Ready_User_Check_Mail));

InitEventProc(FSM_Cl_Connecting, MSG_Cl_Connection_Reject,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject));

InitEventProc(FSM_Cl_Connecting, MSG_Cl_Connection_Accept,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept));

InitEventProc(FSM_Cl_Authorizing, MSG_User_Name_Password,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Authorizing_User_Name_Password));

InitEventProc(FSM_Cl_User_Check, MSG_MSG,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_User_Check_MSG));

InitEventProc(FSM_Cl_Pass_Check, MSG_MSG,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Pass_Check_MSG));

InitEventProc(FSM_Cl_Mail_Check, MSG_MSG,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Mail_Check_MSG));

InitEventProc(FSM_Cl_Receiving, MSG_MSG,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Receiving_MSG));

InitEventProc(FSM_Cl_Deleting, MSG_MSG,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Deleting_MSG));
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InitEventProc(FSM_Cl_Disconnecting, MSG_Cl_Disconnected,

(PROC_FUN_PTR)&ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected));

}

void ClAuto::FSM_Cl_Ready_User_Check_Mail(){

PrepareNewMessage(0x00, MSG_Connection_Request);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Connecting);

}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Reject(){

PrepareNewMessage(0x00, MSG_User_Connection_Fail);

SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

SendMessage(USER_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Ready);

}

void ClAuto::FSM_Cl_Connecting_Cl_Connection_Accept(){

PrepareNewMessage(0x00, MSG_User_Connected);

SetMsgToAutomata(USER_AUTOMATE_TYPA_ID);

SetMsgObjectNumberTo(0);

SendMessage(USER_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Authorizing);

}

void ClAuto::FSM_Cl_Authorizing_User_Name_Password(){

char* name = new char[20];

char* pass = new char[20];

uint8* buffer = GetParam(PARAM_Name);

memcpy(m_UserName,buffer+2,buffer[1]);

m_UserName[buffer[1]] = 0;// terminate string

buffer = GetParam(PARAM_Pass);

memcpy(m_Password,buffer+2,buffer[1]);

m_Password[buffer[1]] = 0;// terminate string

char l_Command[20] = “user”;

strcpy(l_Command+5,m_UserName);

strcpy(l_Command+5+strlen(m_UserName),“\r\n”);

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_User_Check);

}

void ClAuto::FSM_Cl_User_Check_MSG(){

char* data = new char[255];

uint8* buffer = GetParam(PARAM_DATA);

uint16 size = buffer[1];
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memcpy(data,buffer + 2,size);

data[size]=0;

printf(“%s”,data);

if((data[0] == '+')) {

char l_Command[20] = “pass ”;

strcpy(l_Command+5,m_Password);

strcpy(l_Command+5+strlen(m_Password),“\r\n”);

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,strlen(l_Command),(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Pass_Check);

else {

char l_Command[20] = “quit\r\n”;

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,6,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Disconnecting);

}

}

void ClAuto::FSM_Cl_Pass_Check_MSG(){

char* data = new char[255];

uint8* buffer = GetParam(PARAM_DATA);

uint16 size = buffer[1];

memcpy(data,buffer + 2,size);

data[size]=0;

printf(“%s”,data);

if((data[0] == '+')) {

char l_Command[20] = “stat\r\n”;

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,6,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Mail_Check);

else {

char l_Command[20] = “quit\r\n”;

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,6,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Disconnecting);

}

}

void ClAuto::FSM_Cl_Mail_Check_MSG(){

char* data = new char[255];

uint8* buffer = GetParam(PARAM_DATA);

uint16 size = buffer[1];
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memcpy(data,buffer+2,size);

data[size]=0;

printf(“%s”,data);

int l_nDigit = 1;

while(buffer[l_nDigit+6] != ' ') l_nDigit++;

memcpy(data,buffer +6,l_nDigit);

data[l_nDigit]=0;

m_MessageCount = atoi(data);

if((m_MessageCount == 0) {

char l_Command[20] = “quit\r\n”;

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,6,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Disconnecting);

else {

char l_Command[20] = “retr ”;

strcpy(l_Command+5,data);

strcpy(l_Command+5+l_nDigit,“\r\n”);

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+l_nDigit+2,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Receiving);

}

}

void ClAuto::FSM_Cl_Receiving_MSG(){

char* data = new char[255];

uint8* buffer = GetParam(PARAM_DATA);

uint16 size = buffer[1];

memcpy(data,buffer + 2,size);

char temp[4];

memcpy(temp,data,3); temp[3] = 0;

if((strcmp(temp,“+OK“) != 0) {

PrepareNewMessage(0x00, MSG_Mail);

SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,size,(uint8*)data);

SendMessage(USER_AUTOMATA_MBX_ID);

if((size < 255) {

char l_Command[20] = “dele ”;

itoa(m_MessageCount,data,10);

strcpy(l_Command+5,data);

strcpy(l_Command+5+strlen(data),“\r\n”);

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);
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SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Deleting);

}

}

}

void ClAuto::FSM_Cl_Deleting_MSG(){

PrepareNewMessage(0x00, MSG_User_Save_Mail);

SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

SendMessage(USER_AUTOMATA_MBX_ID);

m_MessageCount——;

if(m_MessageCount > 0) {

char data[5];

char l_Command[20] = “retr ”;

itoa(m_MessageCount,data,10);

strcpy(l_Command+5,data);

strcpy(l_Command+5+strlen(data),“\r\n”);

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,5+strlen(data)+2,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Receiving);

else {

char l_Command[20] = “quit\r\n”;

PrepareNewMessage(0x00, MSG_Cl_MSG);

SetMsgToAutomata(CH_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

AddParam(PARAM_DATA,6,(uint8*)l_Command);

SendMessage(CH_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Disconnecting);

}

}

void ClAuto::FSM_Cl_Disconnecting_Cl_Disconnected(){

PrepareNewMessage(0x00, MSG_User_Disconnected);

SetMsgToAutomata(USER_AUTOMATA_TYPE_ID);

SetMsgObjectNumberTo(0);

SendMessage(USER_AUTOMATA_MBX_ID);

SetState(FSM_Cl_Ready);

}

The file ClAuto.cpp starts with the list of all necessary header files (stdio.h,
const.h, and ClAuto.h), followed by the definition of the symbolic constant
StandardMessageCoding and the set of mandatory function definitions — class
constructor, class destructor, and functions GetAutomata(), GetMbxId(), GetO-
bject(), GetMessageInterface(), SetDefaultHeader(), SetDefaultFSMData(), NoFree-
Instances(), Reset(), and Initialize().

The class constructor ClAuto() calls the constructor of the class FiniteState-
Machine with a list of parameters, which specifies that ClAuto FSM has no
timers, nine states, and the maximum of two state transitions per state (see
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The class destructor performs no particular operation.
The mandatory functions provide the following functionalities:

• The function GetAutomata() returns the ClAutomata type iden-

• The function GetMbxId() returns the associated mailbox iden-

• The function GetObject() returns the object identification (actually, it

• The function GetMessageInterface() returns the pointer to the message
coding object (actually, an instance of the class StandardMessage). See

• The function SetDefaultHeader() sets default data in the new message
header by calling two FSM Library functions, SetMsgInfoCoding()

• The function SetDefaultFSMData() sets the new message header
default values by calling the function SetDefaultHeader() and speci-
fying the constant StandardMessageCoding as its parameter.

• The function NoFreeInstances() just prints the information message

• The function Reset() also just prints the information message to the

The most important mandatory function is the function Initialize(). It starts
by setting the FSM initial state, Cl_Ready (denoted with the constant
FSM_Cl_Ready). It continues by setting the state transition functions (also
referred to as message handlers). Each message handler is set by a single
call to the FSM Library function InitEventProc(). The first parameter of this
function is the state name, the second is the input message name, and the
third is the address of the corresponding ClAuto function member (see also

The set of mandatory functions is followed by the set of state transition
functions. As already mentioned, ten such functions are used. Each of these
functions processes a single message type in a single state, as follows:

• The function FSM_Cl_Ready_User_Check_Mail() processes the mes-
sage User_Check_Mail in the state Cl_Ready.

• The function FSM_Cl_Connecting_Cl_Connection_Reject() processes
the message Cl_Connection_Reject in the state Cl_Connecting.
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the FSM Library API specification in Section 6.8, particularly, Section 6.8.11).

tification (the constant CL_AUTOMATA_TYPE_ID). See also Section

returns the value returned by the FSM Library function GetObject

6.8.24.

tification (the constant CL_AUTOMATA_MBX_ID). See also Section
6.8.38.

Id()). See also Section 6.8.60.

also Section 6.8.39.

and SetMessageFromData(). See also Section 6.8.97, Section 6.8.117,
and Section 6.8.108.

to the standard output file. See also Section 6.8.78.

standard output file. See also Section 6.8.85.

Section 6.8.73).
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• The function FSM_Cl_Connecting_Cl_Connection_Accept() processes
the message Cl_Connection_Accept in the state Cl_Connecting.

• The function FSM_Cl_Authorizing_User_Name_Password() processes
the message User_Name_Password in the state Cl_Authorizing.

• The function FSM_Cl_User_Check_MSG() processes the message
MSG in the state Cl_User_Check.

• The function FSM_Cl_Pass_Check_MSG() processes the message
MSG in the state Cl_Pass_Check.

• The function FSM_Cl_Mail_Check_MSG() processes the message
MSG in the state Cl_Mail_Check.

• The function FSM_Cl_Receiving_MSG() processes the message MSG
in the state Cl_Receiving.

• The function FSM_Cl_Deleting_MSG() processes the message MSG
in the state Cl_Deleting.

• The function FSM_Cl_Disconnecting_Cl_Disconnected() processes the
message Cl_Disconnected in the state Cl_Disconnecting.

The function FSM_Cl_Ready_User_Check_Mail() is a typical simple state
transition function. It first creates a new message by calling the function
PrepareNewMessage(). (Its first parameter is the message length and the sec-
ond is the message type; the third parameter is optional and is not used in

and object identification by calling the function SetMsgToAutomata() (its

tion SetMsgObjectNumberTo() (its parameter is the FSM object identification;

destination mailbox by calling the function SendMessage() (its parameter is

FSM state by calling the function SetState (its parameter is the state iden-

The next two functions, FSM_Cl_Connecting_Cl_Connection_Reject() and
FSM_Cl_Connecting_Cl_Connection_Accept(), are very similar to the one pre-
viously described (only the message type and the new state name are dif-
f e rent ) .  But  the  four th  s ta te  t rans i t ion  func t ion ,
FSM_Cl_Authorizing_User_Name_Password(), is more complex. It demon-
strates well how a state transition function can get a parameter from the
current message and how it can add a parameter to the new message. This
concrete state transition function gets two parameters (user name and pass-
word) from the current message by calling the function GetParam() (its

It also adds one parameter (user name) to the new message by calling the
function AddParam() (its parameters are the message parameter type, length,
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this example. See also Section 6.8.81.) It then sets the destination FSM type

parameter is the FSM type identification; see also Section 6.8.125) and func-

see also Section 6.8.123), respectively. Next, it sends the new message to the

the mailbox identification; see also Section 6.8.106). Finally, it sets the new

tification; see also Section 6.8.137).

parameter is the identification of the parameter type; see also Section 6.8.61).

and pointer; see also Section 6.8.12).
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The fifth state transition function, FSM_Cl_User_Check_MSG(), is even
more complex because it involves branching depending on the value of the
current message parameter. By making a branch, the state transition function
actually selects one of two possible paths of the FSM evolution, which yields
two different output (new) messages and two different destination FSM
states. The sixth state transition function is very similar to the fifth one.

The seventh state transition function, FSM_Cl_Mail_Check_MSG(), brings
one new important detail. It shows how a state transition function can save
some data (in this example, the number of pending e-mail messages, which
is stored in the class field member m_MessageCount) so that it can be shared
or used by other state transitions — in this example, by the ninth state
transition function, FSM_Cl_Deleting_MSG().

The rest of the state transition functions do not bring anything essentially
new. However, the reader is advised to study them in detail as an additional
exercise.

4.5.2 Example 2

The aim of this example is to implement the SIP INVITE client transaction

that section we examined the general collaboration diagram of the SIP Soft-

tically equivalent sequence diagrams for the cases of successful and unsuc-

We start the implementation of this design by defining the symbolic con-
stants, such as the FSM type names (e.g., the name of the INVITE client FSM

client mailbox is InviteClienteTE_FSM_MBX), names of the FSM

TIMER_D), names of the SIP messages (e.g., INVITE, OPTIONS, CANCEL,
ACK, BYE, RESISTER), names of the response codes (e.g., _180_RINGING,
_200_OK, _302_MOVED_TEMPORARILY, _401_UNAUTHORIZED,
_403_FORBIDDEN, _404_NOT_FOUND), and names of situations (e.g
URI_IN_TO_UNRECOGNIZED and NOT_TO_CURRENT_USER). Tradition-
ally, we write definitions of all these constants into the file constants.h.

Next, we write the class that represents an SIP message, simply named
Message. The most important field member of this class is the last (also
referred to as the current) SIP message (its type is the C++ type string). Other
field members hold the relevant SIP session related information. The function
members support SIP message analysis and synthesis (parsing and creation).
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phone (see Section 2.3.3, Figure 2.16) with the focus on the INVITE client
transaction. The result is the general collaboration diagram shown in Figure
3.69. We then made two particular collaboration diagrams and their seman-

cessful SIP session establishment (Figure 3.70, Figure 3.71, Figure 3.72, and

type is InviteClienteTE_FSM), mailbox names (e.g., the name of the INVITE

Figure 3.73). Finally, we devised the complete dynamic behavior specification
in the form of the statechart diagram (Figure 3.74) and semantically equiv-

Library related message types, timer names (e.g., TIMER_A, TIMER_B,

alent SDL diagram (Figure 3.75, Figure 3.76, Figure 3.77, and Figure 3.78).

design, which is given in Section 3.10.5 (Chapter 3, Example 5). Briefly, in
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Actually, the class Message that is used in this example is a simple wrapper
around the OpenSIP SIP message parser. (OpenSIP is freely available on the

We skip the content of the file constants.h and the source code of the class
Message intentionally to keep this example short enough and easily compre-
hendible, and we proceed with the introduction of the supplementary class
TALE. The declaration of the class TALE is the following:

#ifndef _TALE_FSM_

#define _TALE_FSM_

#include “../kernel/fsm.h”

#include “../message/message.h”

#include “../constants.h”

class TALE : public FiniteStateMachine {

uint8 MessageCopy[MAX_LENGTH_MESSAGE];

uint32 IndexTLI;

BOOL IndexTLISet;

public:

void SetIndexTLI(uint32 newIndexTLI);

uint32 GetIndexTLI();

BOOL IsTransportReliable();

void SendMessageToTU();

void SendMessageToTPL();

void SendErrorMessageToTU();

void MakeLocalCopyOfMsg();

void SendCopiedMessageToTPL();

public:

TALE(uint16 numOfTimers, uint16 numOfState, uint16 maxNumOfPrPerSt);

~TALE();

};

The class TALE is a good example of how we can make our implementa-
tions more compact. As we can see from the previous example, sending a
single message requires a series of FSM Library function calls. For example,
forwarding the current message would require a series of calls to the function
CopyMessage(), SetMsgToAutomata(), SetMsgToGroup(), SetMsgObjectNum-
berTo(), and function SendMessage() — five function calls. In the case of simple
designs, we can tolerate repetition of this series of function calls, but in cases
of more complex design or platforms with limited resources, this repetition
may not be tolerated.

Consider the SIP invite client transaction FSM. It has thirteen state transi-
tions, and most of them require sending a message to either TPL (transport
layer) or TU (transaction user). We would need to repeat the same series of
function calls about ten times. Consider now the whole SIP Softphone, which
supports four types of transactions (invite and non invite, client and server
transactions). In such situations, replacing this series of function calls with
a single function call, which in its turn performs the original sequence of
function calls, makes sense.
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This replacement is exactly the reason why the class TALE has been intro-
duced in the first place. This class inherits all field and function members
from the class FiniteStateMachine from which it is derived. It also adds some
new field and function class members. All classes that implement SIP trans-
actions are derived from the class TALE. The most important field member
of the class TALE is the field MessageCopy, which holds the copy of the last
sent message. Actually, this field is the retransmission buffer (remember that
SIP invite client in the state Calling must retransmit the message INVITE in
case the timer A expires).

The two most important function members are the functions SendMessage-
ToTU() and SendMessageToTPL(). The former sends the current message to
TU and the latter to TPL. They are very similar; therefore, it is sufficient to
study just one of them. Here is the source code of the former function:

void TALE::SendMessageToTU() {

CopyMessage();

SetMsgToAutomata(UA_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

SendMessage(UA_Disp_FSM_MBX);

}

This is the most elegant way to forward a message in the FSM Library-
based implementations. The function CopyMessage() copies the current (last
received) message to the new (output) message. The symbolic constant
UA_Disp_FSM is the name of the UA (user agent) FSM type, and the constant
UA_Disp_FSM_MBX is the name of its mailbox. As we will shortly see, the
use of the functions SendMessageToTU() and SendMessageToTPL() signifi-
cantly compresses the source code. They make one-to-one mapping of SDL
diagrams to C++ code possible.

Next, we proceed to the implementation of the INVITE client transaction

declaration of the class InviteClientTE is the following:

#ifndef _InviteClientTE_FSM_

#define _InviteClientTE_FSM_

#include “TALE.h”

Message SIPMsg;

uint32 cseq_number;

uint32 TimerADuration;

public:

enum States {

STATE_INITIAL,

STATE_CALLING,

STATE_PROCEEDING,

STATE_COMPLETED

9814_C004.fm  Page 237  Wednesday, April 12, 2006  1:23 PM

© 2006 by Taylor and Francis Group, LLC

FSM. We implement it by writing the class InviteClientTE. Note that in Figure

class InviteClientTE : public TALE {

3.69 to Figure 3.73, we used the abbreviation InClientT for this name. The
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};

// state Initial message handlers

void Evt_Init_INVITE();

// state Calling message handlers

void Evt_Calng_TIMER_A_EXP();

void Evt_Calng_RESPONSE_1XX();

void Evt_Calng_RESPONSE_2XX();

void Evt_Calng_TIMER_B_EXP();

void Evt_Calng_RESPONSE_3_6XX();

void Evt_Calng_TRANSPORT_ERR();

// state Proceeding message handlers

void Evt_Proc_RESPONSE_1XX();

void Evt_Proc_RESPONSE_2XX();

void Evt_Proc_RESPONSE_3_6XX();

// state Completed message handlers

void Evt_Comptd_TIMER_D_EXP();

void Evt_Comptd_RESPONSE_3_6XX();

void Evt_Comptd_TRANSPORT_ERR();

// unexpected messages message handler

void Event_UNEXPECTED();

// problem specific functions

void RetransmitInvite();

BOOL SendAckMessageToTPL();

// FiniteStateMachine abstract functions

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

void SetDefaultFSMData();

void NoFreeInstances();

void Reset();

uint8 GetMbxId();

uint8 GetAutomate();

uint32 GetObject();

void ResetData();

public:

The class InviteClientTE is derived from the class TALE. The meaning of
its field members is the following:

• The field SIPMsg is the SIP message parser (an instance of the class
Message).

• The field cseq_number holds the value of the SIP message header
field CSeq, which is used to identify and order transactions (see RFC
3261, Subsection 8.1.1.5).

• The field TimerADuration contains the current value of the timer A
(remember, the value of the timer A is doubled each time it expires).

Next, we enumerate the names of the FSM states. There are altogether four
FSM states, STATE_INITIAL, STATE_CALLING, STATE_PROCEEDING, and
STATE_COMPLETED. A short explanation is needed at this point. According
to the original specification (RFC 3261, Figure 5, page 128), the INVITE client
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transaction FSM also has four explicitly rendered states, namely, Calling,
Proceeding, Completed, and Terminated. The initial state is omitted in the orig-
inal specification. In our implementation, we create a pool of InviteClientTE
objects, which are dynamically allocated on demand by the TU. These objects
are never really terminated. Once they play their simple role, they are
returned to the pool of free InviteClientTE objects, and from there they are
dynamically assigned to play the same role again. Therefore, we renamed
the state Terminated to Initial. We also made this state the source of the initial
state transition (triggered with the INVITE message from TU), thus making
the FSM a never-terminating one.

We then list the state transition function prototypes for each state individ-
ually. The naming convention is the same as in the previous example: The
name of the state transition function is constructed by concatenating the state
name and the message name and by prefixing that name with a certain prefix.
The naming convention is applied more freely in this example by shortening
the state names. This practice is frequently done to keep the name lengths
acceptable (short enough but providing code readability at the same time).
Thirteen valid state transitions and their corresponding state transition func-
tions (message handlers) are used. The fourteenth message handler, named
Event_UNEXPECTED(), handles all unexpected messages in all states.

Finally, we list the function prototypes of the problem-specific functions
and mandatory FiniteStateMachine abstract functions. These functions —
except the function RetransmitInvite() — are intentionally skipped in the text
that follows to keep the presentation of this example short.

We finish the implementation by writing the class InviteClientTE definition
file, named InvClientTE.cpp. The content of this file is the following:

#include <stdio.h>

#include “InvClientTE.h”

#include “../Message/message.h”

#include “timer_values.h”

#define StandardMessageCoding 0x00

InviteClientTE::InviteClientTE() : TALE(10, 10, 10) {}

InviteClientTE::~InviteClientTE() {}

void InviteClientTE::Initialize() {

SetState(STATE_INITIAL);

// define timers

InitTimerBlock(TIMER_A,1,TIMER_A_EXPIRED);

InitTimerBlock(TIMER_B,1,TIMER_B_EXPIRED);

InitTimerBlock(TIMER_D,1,TIMER_D_EXPIRED);

// state STATE_INITIAL message handlers

InitEventProc(STATE_INITIAL, INVITE,

(PROC_FUN_PTR)&InviteClientTE::Evt_Init_INVITE);

// state STATE_CALLING message handlers

InitEventProc(STATE_CALLING, TIMER_A_EXPIRED,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_A_EXP);
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InitEventProc(STATE_CALLING, RESPONSE_1XX_T,

(PRO_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_1XX);

InitEventProc(STATE_CALLING, RESPONSE_2XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_2XX);

InitEventProc(STATE_CALLING, TIMER_B_EXPIRED,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TIMER_B_EXP);

InitEventProc(STATE_CALLING, RESPONSE_3XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_4XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_5XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, RESPONSE_6XX_T,

(PROC_FUN_PTR)&InviteClientTE::Ev_Calng_RESPONSE_3_6XX);

InitEventProc(STATE_CALLING, TRANSPORT_ERR,

(PROC_FUN_PTR)&InviteClientTE::Evt_Calng_TRANSPORT_ERR);

// state STATE_PROCEEDING message handlers

InitEventProc(STATE_PROCEEDING, RESPONSE_1XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_1XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_2XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_2XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_3XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_4XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_5XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

InitEventProc(STATE_PROCEEDING, RESPONSE_6XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Proc_RESPONSE_3_6XX);

// state STATE_COMPLETED message handlers

InitEventProc(STATE_COMPLETED, TIMER_D_EXPIRED,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TIMER_D_EXP);

InitEventProc(STATE_COMPLETED, RESPONSE_3XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_4XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, RESPONSE_5XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);
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InitEventProc(STATE_COMPLETED, RESPONSE_6XX_T,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_RESPONSE_3_6XX);

InitEventProc(STATE_COMPLETED, TRANSPORT_ERR,

(PROC_FUN_PTR)&InviteClientTE::Evt_Comptd_TRANSPORT_ERR);

// unexpected messages message handler

InitUnexpectedEventProc(STATE_INITIAL,

(PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_CALLING,

(PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_PROCEEDING,

(PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

InitUnexpectedEventProc(STATE_COMPLETED,

(PROC_FUN_PTR)&InviteClientTE::Event_UNEXPECTED);

}

void InviteClientTE::Evt_Init_INVITE() {

SendMessageToTPL();

if (!IsTransportReliable()){

TimerADuration = GetT1();

setTimerCount(TIMER_A, TimerADuration);

StartTimer(TIMER_A);

}

setTimerCount(TIMER_B, 64*GetT1());

StartTimer(TIMER_B);

MakeLocalCopyOfMsg();

SetState(STATE_CALLING);

}

void InviteClientTE::Evt_Calng_TIMER_A_EXP(){

TimerADuration = 2 * TimerADuration;

setTimerCount(TIMER_A, TimerADuration);

RestartTimer(TIMER_A);

RetransmitInvite();

}

void InviteClientTE::Evt_Calng_RESPONSE_1XX(){

uint16 val;

StopTimer(TIMER_A);

StopTimer(TIMER_B);

SendMessageToTU();

GetParamWord(INDEX_TLI_PARAM, val);

SetIndexTLI(val);

SetState(STATE_PROCEEDING);

}

void InviteClientTE::Evt_Calng_RESPONSE_2XX(){

StopTimer(TIMER_A);

StopTimer(TIMER_B);

SendMessageToTU();

SetState(STATE_INITIAL);
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}

void InviteClientTE::Evt_Calng_TIMER_B_EXP(){

StopTimer(TIMER_A);

SendErrorMessageToTU();

SetState(STATE_INITIAL);

}

void InviteClientTE::Evt_Calng_TRANSPORT_ERR(){

StopTimer(TIMER_A);

StopTimer(TIMER_B);

SendErrorMessageToTU();

SetState(STATE_INITIAL);

}

void InviteClientTE::Evt_Calng_RESPONSE_3_6XX(){

uint16 val;

StopTimer(TIMER_A);

StopTimer(TIMER_B);

SendMessageToTU();

GetParamWord(INDEX_TLI_PARAM, val);

SetIndexTLI(val);

SendAckMessageToTPL();

if (IsTransportReliable())

setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);

else

setTimerCount(TIMER_D, 64*GetT1());//64T1

StartTimer(TIMER_D);

SetState(STATE_COMPLETED);

}

void InviteClientTE::Evt_Proc_RESPONSE_1XX(){

SendMessageToTU();

}

void InviteClientTE::Evt_Proc_RESPONSE_2XX(){

SendMessageToTU();

SetState(STATE_INITIAL);

}

void InviteClientTE::Evt_Proc_RESPONSE_3_6XX(){

SendMessageToTU();

SendAckMessageToTPL();

if (IsTransportReliable())

setTimerCount(TIMER_D, ZERO_TIMER_VAL_APPROX);

else

setTimerCount(TIMER_D, 64*GetT1());//64T1

StartTimer(TIMER_D);

SetState(STATE_COMPLETED);

}

void InviteClientTE::Evt_Comptd_TIMER_D_EXP(){

SetState(STATE_INITIAL);

}
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void InviteClientTE::Evt_Comptd_RESPONSE_3_6XX(){

SendAckMessageToTPL();

}

void InviteClientTE::Evt_Comptd_TRANSPORT_ERR(){

StopTimer(TIMER_D);

SendErrorMessageToTU();

SetState(STATE_INITIAL);

}

void InviteClientTE::Event_UNEXPECTED() {

}

void InviteClientTE::RetransmitInvite(){

SendCopiedMessageToTPL();

}

The mandatory function Initialize() starts by setting the FSM initial state
STATE_INITIAL. It then initializes the timers A, B, and D by calling the FSM
Library function InitTimerBlock() (its parameters are the timer identification,
the timer interval duration, and the identification of the associated message;

state transition functions. These functions process various message types in
different states, as follows:

• The function Evt_Init_INVITE() processes the message INVITE in the
state STATE_INITIAL.

• The function Evt_Calng_TIMER_A_EXP() processes the message
TIMER_A_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_1XX() process the message
RESPONSE_1XX_T in the state STATE_CALLING.

• The function Evt_Calng_ RESPONSE_2XX() process the message
RESPONSE_2XX_T in the state STATE_CALLING.

• The function Evt_Calng_TIMER_B_EXP() processes the message
TIMER_B_EXPIRED in the state STATE_CALLING.

• The function Evt_Calng_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T,
and RESPONSE_6XX_T in the state STATE_CALLING.

• The function Evt_Calng_TRANSPORT_ERR() processes the message
TRANSPORT_ERR in the state STATE_CALLING.

• The function Evt_Proc_RESPONSE_1XX() processes the message
RESPONSE_1XX_T in the state STATE_PROCEEDING.

• The function Evt_Proc_RESPONSE_2XX() processes the message
RESPONSE_2XX_T in the state STATE_PROCEEDING.
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• The function Evt_Proc_RESPONSE_3_6XX() processes the messages
RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T, and
RESPONSE_6XX_T in the state STATE_PROCEEDING.

• The function Evt_Comptd_TIMER_D_EXP() processes the message
TIMER_D_EXPIRED in the state STATE_COMPLETED.

• The function Evt_Comptd_RESPONSE_3_6XX() processes the mes-
sages RESPONSE_3XX_T, RESPONSE_4XX_T, RESPONSE_5XX_T,
and RESPONSE_6XX_T in the state STATE_COMPLETED.

• The function Evt_Comptd_TRANSPORT_ERR() processes the
message TRANSPORT_ERR in the state STATE_COMPLETED.

• The function Event_UNEXPECTED() processes all unexpected mes-
sages in all states.

As we can see from the source code above, the state transition functions
(message handlers) are short and easily readable because each program
statement is easily traceable back to the original statechart and SDL dia-
grams. For example, consider the first state transition function
Evt_Init_INVITE(). The original SDL specification of this state transition

provided by the class FSMSystem. The next step in the SDL diagram says:
“Invite_T to TPL.” This step is implemented with a single program state-
ment, namely, the function call to the function SendMessageToTPL().

The next step in the SDL diagram is the question, “Is transport reliable?”
We implement it also with a single function call to the function IsTrans-
portReliable(). We continue the SDL coding in this manner. If the transport
is reliable, the initial value of the timer A is provided by calling the
function GetT1() — a way to parameterize the software. Next, we set the
timer A duration by calling the function setTimerCount() — this is the
undocumented FSM Library function at the moment, to be included in
the next official release — and start the timer A by calling the function
StartTimer() (the parameter of this function is the timer identification; see

At the end of this function, we set the duration of the timer B and start it,
make the local copy of the last sent message by calling the function Make-
LocalCopy() — remember that it is needed for the possible retransmission —
and set the new state by calling the function SetState() (its parameter is the

Next, the state transmission function, EvtCalng_TIMER_A_EXP(), per-
forms the reaction to the timer A expiration (see the corresponding SDL
specification in Figure 3.75) with only four program statements. The first one
doubles the timer A duration, the second sets this new duration, the third
restarts the timer A by calling the FSM Library function RestartTimer() (see

the function RetransmitInvite(). Also, all other state transition functions are
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state identification; see also Section 6.8.137).
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made in this spirit of one-to-one mapping from the original SDL diagram.
The reader is advised to study them as an additional exercise.
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5

 

Test and Verification

 

The test and verification phase is a phase of communication protocol engi-
neering work that follows the implementation phase. The primary goal of
this phase is to verify that the implementation in the higher-level program-
ming language is correct. The implementation is correct if it meets its original

The correctness of the implementation is checked with the test suite, which

mented in a higher-level programming language, e.g., Java or C++. But how
do we verify the correctness of the test suite implementation? The answer
is that we do not check the correctness of the test suite independently. We
always check the correctness of the implementation under test and test suite
simultaneously. Theoretically, a bug in a test suite can cover a bug in the
implementation; we should be aware of that but such cases seldom happen
in practice.

Typical testing activities conducted in the communication protocol engi-
neering test and verification phase are the following:

• Unit testing
• Integration testing
• Conformance testing
• Load testing
• In-field testing
• Formal verification
• Statistical usage testing

The first four types of activities (unit testing, conformance testing, load
testing, and in-field testing) are stemming from the traditional software
engineering, whereas the last two (formal verification and statistical usage
testing) are originating from the Cleanroom engineering. Today, communi-
cation protocol engineers tend to complement software engineering with the
Cleanroom engineering testing approaches, therefore we cover all the above
listed activities in this chapter.
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As its name suggests, the unit testing is used for testing individual software
units before their integration into the product. Typically, a software unit is
a single class written in a separate Java compilation unit or C++ module.
This class most commonly implements a simple communication protocol or
a part of a more complex communication protocol. In the case of the FSM
Library based paradigm, such a unit would be a C++ module that defines
the class derived from the class 

 

FiniteStateMachine

 

.
Unit testing of communication protocols is relatively straightforward. Typ-

ically, we construct a set of test cases that check individual FSM state tran-
sitions, as well as more complex FSM transactions (series of FSM state
transitions). We will use JUnit and CppUinit testing frameworks for unit
testing of communication protocols in this book. Details of unit testing are
given in Section 5.1 (unit testing) and Section 5.5.1 (Example 1).

The next phase is integration testing. The philosophy of integration testing
starts from the fact that some of the units have successfully undergone unit
testing and that they are available for further testing, whereas the rest of
them are not. For the purpose of integration testing, we introduce replace-
ments for the units that are not available, which are referred to as the
imitators (or simulators).

There are two kinds of imitators, namely drivers and stubs. A driver is an
active imitator that generates input messages for the real objects (units)
under test. A stub is a passive imitator that accepts the output messages
generated by the objects under test. Stubs can also send replays that are
expected from the objects they are imitating. Of course, we can construct
more complex imitators that act as both drivers and stubs. In this book, we
will call the collaborations of real objects, 

 

drivers,

 

 and stubs simply 

 

integration
test collaborations

 

.
Generally, communication protocols are well suited for integration testing

because families of communication protocols are hierarchically organized in
layers with well-defined interfaces. The communication between individual
protocols is based on messages, which are traditionally exchanged through
the mailboxes (for example, as in implementations based on the FSM
Library). Simulating the environment of a real object under test in such a
situation is easy. Drivers and stubs simply exchange messages with objects
under test. Actually, they act on behalf of the units that will communicate
with the units under test in the final product.

Normally, protocol stacks are implemented in the bottom-up fashion, start-
ing from the lowest layer of the protocol stack and building the next layer
on top of the previous one. Drivers and stubs in such an approach simulate
only a part of the environment, the higher layer of the protocol stack in
particular. The example of the simple integration test collaboration is given
in Section 5.5.2 (Example 2).

When all software units have undergone unit and integration testing, the
final product is integrated and ready for acceptance testing, which comprises
conformance testing (also referred to as compliance testing), load testing,
and in-field testing. Preliminary acceptance testing can be organized solely
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by the production organization and conducted on its premises. However,
final acceptance testing is organized and conducted by the organization that
has the legal authority to issue acceptance certificates.

As suggested by its name, the aim of conformance testing is to prove that
the product (implementation) under test conforms to the original require-
ments. In the area of communication protocol engineering, these require-
ments would normally be standards issued by the IETF, ISO, ITU-T, ETSI,
and similar organizations. The newer standards made by ITU-T and ETSI
most frequently include the conformance test suite specification in TTCN.

The conformance testing is a kind of functional testing (also referred to as
black box testing). The tester is not interested in the structure of the product
and its internal behavior. He only ensures that the external behavior of the
product meets the original specification. Typically, this behavior is specified
with the set of scenarios described in TTCN. We will return to the subject
of conformance testing in Section 5.2.

The load testing typically involves exposing the implementation under
test to the conditions of the real exploitation. Conceptually, this means that
the implementation under test must service the requests coming from more
independent sources simultaneously. While conformance testing focuses on
the correctness of services given to the minimal number of request sources,
load testing checks the correctness of services driven by the requests coming
from independent sources in preferably interleaved fashion.

Normally, load testing is conducted in the simulated environment in the
laboratory. Typically, we would construct, purchase, or lease the specialized
equipment, referred to as a load generator. A load generator is normally a
programmable device that offers a selection of predefined scenarios and their
parameters, such as number of request sources, duration of individual com-
munication phases, and so on, as well as definitions of completely new
scenarios.

The name 

 

load generator

 

 may be misleading because it suggests that the
device generates only the requests — which it does — but it also receives
the responses from the implementation under test and checks if it operates
correctly. For example, after the connection is successfully established, it
sends and receives test tones to check that the connection is really usable.
During load testing, we primarily check declared traffic capabilities of the
product. A typical requirement would be that the number of lost requests
must not exceed the given limit after the given number of requests has been
issued in accordance with the given request arrival distribution.

We normally also check the behavior of the implementation under test for
both lower and higher rates of request arrivals. With an extremely low rate
of requests, we want to check the sustainability of the long-lasting connec-
tions, whereas with an extremely high rate we want to make sure that
the overload protection mechanisms are in place and that they function
correctly. After successful load testing, the implementation under test is
integrated into the target network for the in-field testing. The in-field testing
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is essentially the experimental exploitation of the product for the given
interval of time (e.g., three months).

The aim of in-field testing is to detect, locate, and eliminate bugs that are
exposed by the real-world scenario (also referred to as a traffic case) that
could not be simulated in the laboratory. During this last phase of acceptance
testing, log files always prove to be extremely useful. Today, the log files can
be collected over the Internet and analyzed remotely. Also, installing soft-
ware upgrades can be done by uploading new software patches over the
Internet.

Detecting bugs through the analysis of the log files can be augmented by
adding the program hooks for certain really infrequent traffic cases. Defining
state transition preconditions, postconditions, and invariants and checking
them at run-time is also extremely useful in detecting bugs during in-field
testing, and later during normal system exploitation. Although communica-
tion protocol maintenance is an integral part of communication protocol
engineering, it is out of scope of this book (see directions for further reading

Traditional software engineering comprises a number of development
phases, such as requirements, analysis, design, implementation, unit test,
integration, integration test, verification, and maintenance. These phases can
be cascaded in the case of the waterfall process model or revisited in the
case of the spiral-incremental process model. The number of remaining bugs
is the main software quality metric. Another important metric used in soft-
ware engineering is the test coverage (measured as the percentage of tested
software paths, variable usages, and so on).

Cleanroom engineering, in contrast to traditional software engineering, is
organized as a sequence of the following development activities:

• Formal model development.
• Formal verification of the formal model.
• Handing formal model to the implementation team, which imple-

ments it in a higher level programming language.
• Operational profile modeling.
• Automatic test suite generation, which is based on the given oper-

ational profile model.
• Statistical usage testing and software reliability estimation. If at least

one test case from the automatically generated test suite fails, the
implementation under test is thrown away and the complete devel-
opment cycle is repeated from the very beginning (starting with the
formal model development).

The complete treatment of formal modeling and verification is out of the
scope of this book (see directions for further reading in Section 5.6). As a
means of introduction to the area of formal methods, formal modeling and
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verification based on theorem proving is covered in Section 5.3. The para-
digm described in that section is based on the application of the theorem
prover named THEO.

Operational profile modeling, automatic test suite generation, statistical
usage testing and reliability software estimation are described in Section 5.4.
The paradigm described in that section is based on the application of the
software tool, which is named generic test case generator (GTCG).

 

5.1 Unit Testing

 

The aim of unit testing is to check the correctness of an individual software
unit (Java compilation unit or C/C++ module). A generally accepted belief,
especially among proponents of agile methods such as extreme program-
ming, is that unit testing should be conducted by the programmer who is
implementing the target software unit because it greatly improves program-
mer’s productivity. In principle, unit tests should be written before, or at
least during, the implementation of the target software unit.

Of course the programmer must clearly distinguish two roles, namely
implementer and tester roles (the author of extreme programming, Kent
Beck, uses the metaphor: “by changing hats” to explain this paradigm). The
programmer, as unit tester, concentrates on the unit interface. By thinking
about the interface and by writing unit tests, the programmer gets a clearer
picture about the services that the target software unit must provide. The
programmer should also try to make test cases that cover boundary condi-
tions, as well as situations that would be potentially hard to manage for the
target software unit.

The programmer, as unit implementer, concentrates on the implementation
of the original unit design. They should forget about unit tests and concen-
trate on mapping the design to code. This should be a straightforward task
if a proper framework (such as the FSM Library) is provided.

Unit testing helps programmers produce software units of better quality
in shorter time intervals and this has been proven in practice. First, by
creating unit tests, the programmer becomes even more familiar with the
implementation at hand. Second, the programmer gets the immediate feed-
back. If there is a bug, it is easy to detect in the scope of a particular test
case. If the test case passes, the programmer gets immediate satisfaction that
they have done their job well.

Unit test cases should be executed frequently during the target unit’s
implementation. As time passes, new test cases are added and old cases are
run again. Even if no new test cases are used, we should rerun all existing
unit tests every time we add new functionality. Testing that is conducted by
running an unchanged test suite to check if the new software functionality
has not affected existing functionalities is referred to as regression testing.
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Regression testing

 

 is the key point of this paradigm. It enables a dramatic
increase of productivity because it builds the programmer’s confidence that
everything is in good order and under control; therefore, the programmer
can work more relaxed. Regression testing also encourages experimenting.
In situations when alternative paths may be used in the course of implemen-
tation, the programmer may try out a way that seems most appropriate. If
one or more test cases fail in regression testing that is subsequently con-
ducted, the programmer may decide to reset to the starting point by retriev-
ing the previous version from the installed version control system database.

Unit testing (including regression testing) definitively has a great impact
on a programmer’s psychology in a positive direction. It is estimated to be
the key factor for the increase of the programmer’s productivity. The next
question is to what extent we should go with the unit testing The answer is
not easy. Certainly, any amount of unit testing is better that none. Alternately,
an attempt at exhaustive unit testing might be counterproductive.

The right choice is somewhere between these two extremes. We do not
need to test trivial things, such as class function members that set or get the
value of a certain private field member. Rather, we should concentrate on
the boundary conditions and parts of code where it becomes more complex.
Although generally unpopular among professionals, copy-paste practice
may be tolerated for generating a set of similar test cases.

Three principal preconditions exist for successful unit testing practice:

• A proper unit testing framework must be provided.
• Test cases should not involve any human intervention.
• The implementation under test must not be changed.

A proper unit testing framework must provide three main functions:

• Test case registration: This function enables registering new test
cases within the given test suite hierarchy. On each level of the
hierarchy, a set of individual test cases may be found, as well as
other hierarchically subordinated test suites (very similar to the file
system structure).

• Test case execution: This function provides automatic execution of
all test cases defined within the given test suite hierarchy. It must
not require more than a single push-button to be started. Otherwise,
the framework is simply not usable.

• Test case reporting: This function must provide a general report on
the outcome of the execution of all test cases, as well as individual
reports for all test cases that failed or caused errors.

The second precondition is that test suite execution should not involve
any human intervention. This is the essential precondition to make unit
testing completely automatic. If we want to eliminate human interventions,
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we must secure two conditions. First, the input data required by a test case
must be defined as symbolic constants in its source code or in other external
files. Second, the results of the test case must be automatically checked by
a test case itself. The unit testing framework must provide adequate func-
tions for this purpose.

A typical function for checking test case results is the function 

 

assert(con-
dition)

 

, where 

 

condition

 

 is a Boolean expression that evaluates to either the
value 

 

true

 

 or 

 

false

 

. Test case continues (

 

pass

 

) in the former case and breaks
(

 

fail

 

) in the latter case. If the test case execution successfully reaches the end
of the test case, it is considered successful (qualified with the verdict 

 

pass

 

).
Otherwise, it is considered unsuccessful (qualified with the verdict 

 

fail

 

). If
the test case execution breaks because of some error (most typically, an
exception such as “divide by zero”), it is qualified with the verdict 

 

error

 

.
Another typical function for checking test case results is the function

 

assertEquals(p1,p2)

 

. This function call is semantically equivalent to the func-
tion call 

 

assert(p1==p2)

 

. This means that if the parameters 

 

p1

 

 and 

 

p2

 

 are equal
(of course, they must be comparable), the test case execution continues;
otherwise, it breaks. Typically, one of the parameters is a constant and
another is a program variable.

Although these two functions are semantically equivalent, the function

 

assertEquals()

 

 is advantageous when it comes to test case reporting. If the
function 

 

assert()

 

 breaks the test case execution, the unit testing framework
reports only that the condition evaluated to the value 

 

false

 

, which is not a
very informative report. Alternately, if the function 

 

assertEquals()

 

 breaks, the
framework provides the report “expected 

 

C

 

 but was 

 

V

 

,” where 

 

C

 

 is the value
of the constant (e.g., 

 

p1

 

) and 

 

V

 

 is the real value of the variable (e.g., 

 

p2

 

).
We can further improve the readability of the test case execution reports

by using the optional text string parameter of the function 

 

assertEquals()

 

.
Generally, the function call format for this function is 

 

assertEquals(text, con-
dition)

 

, where 

 

text

 

 is the text string that explains the meaning of this assertion
point in more detail. The string 

 

text

 

 is used as a prefix of the test report
shown above. For example, if the value of the variable 

 

ch

 

 should be ‘A’ but
it turns out to be ‘B’ instead, the function call 

 

assertEquals(“Check ch:,” ‘A’,
ch)

 

 would produce the report, “Check ch: expected ‘A’ but was ‘B’”.
Besides the functions 

 

assert()

 

 and 

 

assertEquals()

 

, unit testing framework
typically provides two additional functions for writing test cases, 

 

setUp()

 

and 

 

tearDown()

 

. The former sets up the test fixture whereas the latter destroys
it. A test fixture is a set of objects that act as samples for testing. Normally,
the test fixture comprises the instance of the unit under test (e.g., the instance
of the class that is derived from the class 

 

FiniteStateMachine

 

) and also other
supplementary objects, which are required for effective unit testing.

Typically, the unit testing framework offers the base class for writing test
cases, which provides the functions 

 

assert()

 

, 

 

assertEquals()

 

, 

 

setUp()

 

, and

 

tearDown()

 

. The programmer normally derives his tester class from this base
class, fills in 

 

setUp()

 

 and 

 

tearDown()

 

 functions, and starts writing individual
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test cases. Each function member of the tester class — whose name follows
the given naming convention — is a single test case.

Remember that concrete 

 

setUp()

 

 and 

 

tearDown()

 

 implementations are
shared by all test cases defined within a single tester class. Actually, these
two functions are implemented as null (empty) methods on test cases. The
execution of each test case starts with the call to the function 

 

setUp()

 

, proceeds
with the call to the user-defined function that implements a single test case,
and ends with the call to the function 

 

tearDown()

 

. Normally, we put the test
case initialization and cleanup code in the functions 

 

setUp()

 

 and 

 

tearDown()

 

,
respectively.

The third unit testing postulate is that the unit under test must not be
touched at all. We are only allowed to write new classes that are derived
from the base class, which is provided by the unit testing framework. Chang-
ing the source code of the unit under test for the purpose of its testing is
strictly forbidden, even by adding a simple print statement to the standard
output file. Because of that, the only proper way to do the unit testing is to
drive the unit under test with various messages, capture its responses, and
check the correctness of the unit’s external behavior.

This kind of controlled execution of the implementation under test is
referred to as the test harness. The key request is that it must be fully
automatic. The programmer should provide the mechanisms that support
the test harness while he plays the role of the implementer (what we refer
to as the 

 

design for testability

 

). Otherwise, providing a test harness can be a
very hard task. For example, consider a simple program that reads its input
from the keyboard and writes its output to the monitor by using the oper-
ating system services, which cannot be replaced. Because we are not allowed
to change the source code of the implementation under test, providing a test
harness in this case is hardly achievable.

The example of the unit testing framework is JUnit, an open-source testing
framework for unit testing Java programs that was originally developed by
Erich Gamma and Kent Beck. Based on this framework, the open-source
community came up with CppUnit, a semantically equivalent testing frame-
work for unit testing C++ modules. These frameworks are very simple but
powerful enough to enable industrial-strength unit testing of individual
software units. Because JUnit and CppUnit are semantically equivalent, we
will treat them as two implementations of the same framework.

The framework comprises the interface 

 

Test

 

 and two fundamental classes,

    

test suite (an instance of the class 

 

TestSuite

 

) can contain an arbitrary number
of test cases (instances of the class 

 

TestCase

 

), as well as an arbitrary number
of other hierarchically subordinated test suites. This arrangement allows
programmers (playing the role of unit testers) to organize test cases into a
hierarchy of test suites to their convenience.

Any concrete tester class (such as the class 

 

MyTester

 

 in Figure 5.1) must be
derived from the base class 

 

TestCase

 

, which among others provides the four
fundamental functions described above, namely, 

 

setUp()

 

, 

 

tearDown()

 

, 

 

assert()

 

,
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and 

 

assertEquals()

 

. By convention, an individual test case is written as the
function member of the tester class, whose name starts with the word “test,”
for example, 

 

test1

 

, 

 

test2

 

, and so on.
Next, we illustrate JUnit’s usability on a concrete example. In the example

that follows, we demonstrate unit testing paradigm for the case where the
implementation under test is counter by modulo 2. The particular imple-
mentation we are interested in is the one based on the State design pattern.
This implementation is presented in Section 4.3.

As already mentioned in Section 4.3, the function 

 

processMsg()

 

, which
processes FSM input (message), prints its results by calling the function
member 

 

println()

 

 of the class 

 

MyIO

 

, rather than by calling the standard I/O
function 

 

System.out.println()

 

. This is a good example of how we can provide
the support for the test harness in our design and implementation. Here is
the source code of the class 

 

MyIO

 

:

 

package automata4;

import java.util.*;

public class MyIO {

private static String lastOutput;

public static String getLastOutput() { return lastOutput; }

public static void println(String s) {

lastOutput = s;

System.out.println(s);

}

}

 

The field member 

 

lastOutput

 

 is used to store the last output generated by
the FSM. The function 

 

getLastOutput()

 

 returns this last output generated by
the FSM to its caller. It is used by the test case function to retrieve the last

 

FIGURE 5.1

 

The structure of the JUnit testing framework.

«interface»

Test
∗

TestSuite

1

TestCase

MyTester
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FSM output to compare it with the expected output (also referred to as the
“golden output”). The function 

 

println()

 

 is simple enough — it just stores
the output of the FSM and prints it by calling the standard function 

 

Sys-
tem.out.println()

 

.
Although we do not need it in this example, we can generally use an

analogous approach for capturing the FSM inputs also. Instead of calling the
standard function 

 

System.in.read()

 

 directly, we can construct and call the
function member 

 

read()

 

 of the class 

 

MyIO

 

. This function would in its own
turn read the input by calling the standard input functions and store that
input into the corresponding field member of the class 

 

MyIO

 

 (e.g., 

 

lastInput

 

).
The last FSM input would be available through the function member 

 

get-
LastInput()

 

.
After providing test harness support, we continue with the definition of

the tester class, which is named 

 

Automata4Tester

 

 in this example. The source
code of this class is the following:

 

/*

* Automata4 tester

*

*/

package automata4;

import junit.framework.*;

public class Automata4Tester extends TestCase {

protected Automata4 a4;

public Automata4Tester(String name) {

super(name);

}

protected void setUp() {

// setup code

a4 = new Automata4();

}

protected void tearDown() {

// cleanup code

}

// test case 1

public void test1() {

a4.processMsg('0');

assertEquals(MyIO.getLastOutput(),“Output 0”);

a4.processMsg('0');

assertTrue(MyIO.getLastOutput() == “Output 0”);

}

// test case 2

public void test2() {

for(int i=0;i<100;i++) {

a4.processMsg('0');

assertEquals(MyIO.getLastOutput(),“Output 0”);

 

9814_C005.fm  Page 256  Wednesday, April 12, 2006  3:22 PM

© 2006 by Taylor and Francis Group, LLC



 

Test and Verification

 

257

 

}

}

// test case 3

public void test3() {

a4.processMsg('0');

assertEquals(MyIO.getLastOutput(),“Output 0”);

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 1”);

a4.processMsg('0');

assertEquals(MyIO.getLastOutput(),“Output 1”);

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 2”);

a4.processMsg('0');

assertEquals(MyIO.getLastOutput(),“Output 2”);

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 0”);

}

// test case 4

public void test4() {

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 1”);

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 2”);

a4.processMsg('1');

assertEquals(MyIO.getLastOutput(),“Output 0”);

}

// test case 5

public void test5() {

for(int i=0;i<1000;i++) {

test3();

test4();

}

}

public static TestSuite suite() {

return new TestSuite(Automata4Tester.class);

}

public static void main(String[] args) {

junit.textui.TestRunner.run(suite());

}

}

 

The tester class 

 

Automata4Tester

 

 is derived from the class 

 

TestCase

 

. Its field
member 

 

a4

 

 is an instance of the implementation under test, namely, the class

 

Automata4

 

. The constructor of the class 

 

Automata4

 

 simply calls the constructor
of its super class (the class 

 

TestCase

 

) and passes its input parameter (

 

String name

 

).
The function 

 

setUp()

 

 creates an instance of the implementation under test
by instantiating the class 

 

Automata4

 

 and storing its instance into the field
member 

 

a4

 

. The function 

 

tearDown()

 

 is empty in this example because the
Java garbage collector takes care of unused objects. The garbage collector
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destroys the object that is stored in the field member a4 at the end of the test
case.

The function test1() is the first test case defined within the tester class
Automata4Tester. Basically, it tests the FSM state transition from the state S0
to the state S0, which is driven by the input value 0. It does the same
operation twice. Each time it supplies input 0 to the implementation under
test (stored in the field member a4) by calling its function processMsg() and
passing it the parameter, ‘0’.

Assuming that the implementation under test was in its initial state and
that it reacted correctly to the given input, its last output should be the text,
“Output 0”. The test case function test1() checks that assumption by calling
the function assertEquals(). The first real parameter of that function call is the
value of the last output, which is returned by the function member get-
LastOutput() of the class MyIO, whereas the second parameter is the expected
string, “Output 0”.

Second, the test case function test1() again supplies input 0 to the imple-
mentation under test (stored in the field member a4) by calling its function
processMsg() and passing it the parameter, ‘0’. Assuming that the implemen-
tation under test has reacted properly in the first place, it would be in the
initial state at the time the second call to the function processMsg() happens.
Driven with the input ‘0’, it should produce again the output string,“Output
0”. The test case function test1() checks this assumption again, only this time
it does so by calling the function assert(). The real parameter of this function
call is the condition MyIO.getLastOutput() == “Output 0”.

The function test2() is the second test case defined within the tester class
Automata4Tester. This test case is slightly more complex than the previous
one. The previous test case checks if the implementation under test reacts
correctly when it is driven twice with the same input value ‘0’ in the same
current state (S0). We did this on purpose — first, to demonstrate the usage
of both assert() and assertEquals(), and second, the implementation under test
may not always react correctly if it is driven with a certain input value in
the given state, at least not in theory.

This practice may seem paranoid but, in reality, various types of time- and
FSM evolution-dependent bugs are hidden at the beginning and become
evident only later during the FSM evolution. Returning to the problem at
hand, we ask ourselves: Will this FSM react correctly many times, for exam-
ple, 100 times? With JUnit at our disposal, we can easily construct a test case
that resolves such dilemmas.

This is exactly what the test case function test2() does. It does so by exe-
cuting the body of the for loop 100 times. Inside the body of the loop, it
drives the implementation under test with input value ‘0’ by calling its
function processMsg(). After each of these calls, it checks if the last output
was the string “Output 0” by calling the function assertEquals().

The function test3() is the third test case defined within the tester class
Automata4Tester. This is a typical FSM-related test case, characterized with
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the complete coverage of the FSM state transition graph. The flow of the
state transitions checked by this test case is the following:

• From S0 to S0, driven with the input 0 (expected output 0)
• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S1, driven with the input 0 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S2, driven with the input 0 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test4() is the fourth test case defined within the tester class
Automata4Tester. This is another typical FSM-related test case, characterized
by its progressive nature. The counter is always driven with the input “1”
so that its content is incremented every time. This test case does not provide
the full state transition graph coverage, but it is valid and we can think of
many partial graph coverage test cases. The flow of the state transitions
checked by this test case is the following:

• From S0 to S1, driven with the input 1 (expected output 1)
• From S1 to S2, driven with the input 1 (expected output 2)
• From S2 to S0, driven with the input 1 (expected output 0)

The function test5() is the fifth, and the last, test case defined within the
tester class Automata4Tester. It is a fairly simple, yet rather intensive, test case
that is based on the combination of the previous two test cases. The test case
function test5() repeats the body of the for loop 1,000 times. Inside the body
of the loop, it just calls the functions test3() and test4() in succession.

The function suite() returns the test suite, which it creates by calling the
constructor of the class TestSuite. The real parameter of this function call is
the name of the implementation under test class file (Automata4Tester.class).
The constructor of the class TestSuite finds all the functions whose names
start with the word “test” defined within the class Automata4Tester and
automatically adds them to the test suite it creates.

The function main() runs the test suite defined by the previous function
suite(). It does that by calling the function run() of the class TestRunner, which
is an integral part of the JUnit testing framework. The real parameter of this
function call is the test suite that is created by the function suite(). This test
suite contains all test cases defined within the class Automata4Tester.

In the case of more complex implementations, we may decide to create
more tester classes rather than define all test cases within a single tester class,
such as the class Automata4Tester. In such a situation, we would need to create
a hierarchy of test suites and the overall tester class that would automatically
run all test cases in all test suites. The source code of such a tester class is
the following:
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/*

* Tester

*

*/

package automata4;

import junit.framework.*;

/*

* TestSuite that runs all test suites

*

*/

public class AllTests {

public static void main (String[] args) {

junit.textui.TestRunner.run(suite());

}

public static TestSuite suite() {

TestSuite suite = new TestSuite(“All Tests”);

suite.addTest(Automata4Tester.suite());

// add other test suites here

return suite;

}

}

The class AllTests comprises two function members, namely, the functions
suite() and main(). The former function creates and returns the test suite that
is in the root of the test suite hierarchy. This means that it contains all other
hierarchically subordinated test suites. The latter function executes the root
test suite, i.e., it executes all test suites that were added to it.

The function suite() creates the root test suite simply by calling the con-
structor of the class TestSuite. The real parameter of this function call is the
name of that test suite (the string “All Tests”). It then adds the test suite that
contains the test cases defined within the tester class Automata4Tester to the
root test suite. It does this by calling the function member addTests() of the
root test suite object suite. Generally, in the case when we have multiple
tester classes, we would repeat the call to the function addTests() for each
tester class.

The function main() runs the test suite defined by the previous function
suite(). It does this by calling the function member run() of the class TestRun-
ner. The real parameter of this function call is the test suite created by the
function member suite() of the class AllTests. This test suite contains a single
hierarchically subordinated test suite, which in turn contains all test cases
defined within the class Automata4Tester.

We start the automatic execution of all test cases defined within the class
Automata4Tester by running the file Automata4Tester.class. Similarly, we start
the automatic execution of all test cases defined within all tester classes (in
this simple example we have just one of them, the class Automata4Tester) by
running the file AllTests.class. In both cases, we should get the same result.
Each test case function will print its own outputs to the standard output file.
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At the end, the test runner will print out the final report, which should look
like this:

Time: 1,783

OK (5 tests)

Press any key to continue...

The number 1783 corresponds to the number of seconds that were needed
to execute all test cases, whereas the number 5 in parenthesis corresponds
to the total number of test cases that were executed.

5.2 Conformance Testing

As already mentioned at the beginning of this chapter, conformance testing
is the first step of acceptance testing (followed by the load testing and in-
field testing). The aim of conformance testing is to check the functional
correctness of external behavior of the implementation under test without
checking its inner workings. Essentially, conformance testing is functional
testing that is based on the “black box” approach.

The main goal of conformance testing is to separately check the correctness
of each individual function of the implementation under test (IUT). The
sample test case for a simple SIP softphone (IUT) is: “Initiate session setup.
Check if IUT sends the message INVITE to the outbound proxy server
(imitated by the testing framework). Make the testing framework replay with
the message 404 (not found). Check if IUT replays with the message ACK”

as simple as possible so we can easily interpret their outcomes. Of course,
some of the test cases are inevitably complex and we cannot do anything
about this, but we should never make them more complex than they need
to be.

More precisely, we do not try to check more functions simultaneously by
interleaving the corresponding scenarios. For example, consider the SIP
proxy server as the implementation under test. In the case of conformance
testing, we are interested only if it can support a single session establishment
at a time. Normally, we would not be interested in checking if it can support
multiple session establishments simultaneously. Actually, that is exactly the
purpose of the load testing.

When it comes to specifying official conformance test suites for real-world
protocols (like SIP), this is a really serious business conducted by the inter-
national standardization institutions, such as IEEE, ISO, IETF, ITU-T, ETSI,
and others. The results are rather voluminous specifications that most fre-

Notation). The most recent version of TTCN at the time of this writing is the
TTCN-3, which enables both tabular and program formats of specifications.
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For a better understanding of the scope of conformance testing, consider
the documents currently available from ETSI (you can download them from

(IETF RFC 3261). These documents are the following:

• Conformance test specification for SIP, Part 1: Protocol implementa-
tion conformance statement proforma (ETSI TS 102 027-1)

• Conformance test specification for SIP, Part 2: Test suite structure
and test purposes (ETSI TS 102 027-2)

• Conformance test specification for SIP, Part 3: Abstract test suite and
partial protocol implementation of extra information for testing
(ETSI TS 102 027-3)

The first document is the proforma to be completed by the vendor of the
implementation to claim implementation capabilities. The guidance for com-
pleting the proforma is given is its Section 5. This document is used both
during static conformance review and during the test suite parameterization
phase of conformance testing.

The second document describes the test suite structure and the purposes
of individual test cases. This document was used as the test plan before the
test suite was written in the TTCN-3 language. Now it is used as the reference
document for understanding the abstract test suite, which is given in the
third document.

The third document specifies the abstract test suite to be used for SIP
conformance testing. Actually, it is comprised of two files, the archive (ZIP
file) that contains SIP test suite in TTCN-3 program format and the SIP test
suite overview file (PDF file). The SIP test suite in TTCN-3 program format
can be executed using a commercially available TTCN-3 tool.

The SIP conformance test suite specification by ETSI (the three documents
listed above) considers four types of implementations under test. The imple-
mentations are the following (see IETF RFC 3261 for their definitions):

FIGURE 5.2
An example of the conformance testing test case.

iut : SoftPhone tester : TestingFramework

INVITE

404

ACK
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• User agent that behaves as client or server
• Registrar
• Proxy server (both outbound and simple proxy server)
• Redirect server

The present version of the specification considers the following three types
of sessions:

• Sessions that are established using a proxy server
• Sessions that are established directly (without proxy)
• Sessions that are established using the redirect server

The way the SIP conformance test suite is structured is a good example of
typical conformance test suite structuring. All test cases are classified into
the following four main groups (which correspond to the main SIP function-
alities):

• Registration
• Call control
• Querying for capabilities
• Messaging

The test cases in the main groups are further classified according to the
role that should be checked. The roles for the main group registration are the
registrant and the registrar. The roles for the main group call control are
originating endpoint, terminating endpoint, proxy, and redirect server. The roles
for the main group querying for capabilities are originating endpoint, terminating
endpoint, and proxy. The roles for the main group messaging are registrant,
registrar, originating endpoint, terminating endpoint, proxy, and redirect server.

Some of the role subgroups are further divided into functional subgroups.
For example, the role subgroup originating endpoint of the main group call
control is divided into three functional subgroups, namely, call establishment,
call release, and session modification. Finally, functional subgroups of test cases
can be divided into three test groups: valid behavior (V), invalid behavior (I),
and inopportune behavior (O).

Notice that official conformance testing can be conducted only by the
authorized organizations (national certification centers, telecom operators,
and so on) that use special tools that themselves were certified for such a
usage. These tools are professional equipment, most frequently referred to
as testers, e.g., a SIP tester. A tester typically comprises the framework that
supports test suite administration, execution (most frequently based on inter-
pretation), and associated reporting. Such a framework is referred to as the
testing framework.
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The testers may be rather sophisticated. Most of them support most of —
if not all — the state-of-the-art protocols. Alternately, almost unique testers
are also used that support ultramodern protocols that have not become part
of the main stream protocols. Both of these types of testers can be rather
expensive. Most frequently, competent and efficient operating of protocol
testers requires special training.

Because of that, most of the small- and even middle-scale organizations
involved in protocol development can not afford purchasing testers and
employing full-time employees (confusingly enough, also called testers) for
the purpose of conformance testing. Rather, they rent the equipment or the
person who can operate it for the purpose of the unofficial and preliminary
conformance testing at the client location. The goals of this preliminary
conformance testing are to reduce the overall cost and to minimize the risk
of failing the official conformance testing.

Some organizations use open source test suites to reduce the cost of the
preliminary conformance testing. An example of such a test suite is the SIP
Forum Basic UA Test Suite created by Nils Ohlmeier, freely available on the

license). This test suite is comprised of the following two parts:

• SIP Forum Testing Framework (SFTF)
• Basic UA tests

SFTF provides regular functions of test suite administration (e.g., adding
new test cases, simply referred to as the tests), test suite execution control
(executing all tests, selected groups of tests, or individual tests), and test
suite execution reporting (both by printouts in the interactive window and
in the log files with five possible levels of logging details). The testing
framework contains the logic required to execute the test, parse incoming
messages, and create replies.

The second part (listed above) is simply a subdirectory that contains all
basic user agent tests (i.e., test cases). The tests and SFTF itself are written
in Python. The goal of these tests is not to provide the complete conformance
testing of SIP implementations, as the ETSI specification does. Rather, the
goal is to check the well-known SIP interoperability problems, which
frequently occur in immature SIP User Agent (UA) implementations, such
as the simple SIP softphone.

Additionally, these tests can discover the implementation under test
behavior that conforms to the original SIP specification but is considered a
suboptimal implementation solution. Such cases are reported as warnings
(W). The developer should consider revising the implementation in the case
of warnings to make it more robust.

Many tests in this test suite are adopted from the IETF’s SIP torture tests
Internet draft (available on the Internet under the name draft-ietf-sipping-
torture-tests-02). The rest of the tests are the contributions from the SIP Forum
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members. Original IETF SIP torture tests focus on areas that have caused
problems in the past or have particularly unfavorable characteristics if han-
dled improperly. Some of them test only the parser and others test both the
parser and the application above it. Some use valid and some use invalid
SIP messages to check the target functionality.

The SIP Forum tests are classified into the following eight test groups:
protocol tortures (26 tests), authentication (4 tests), registration (1 test), dialog
and transaction processing (19 tests), DNS (2 tests), NAT capabilities (2 tests),
services (2 tests), and warnings about obsolete features (5 tests). All tests are
defined in one spreadsheet (XLS file). The test attributes (spreadsheet col-
umns) are the following: number, title, tested device, expected behavior,
typical failures, notes, call flow, source (the corresponding section in RFC
3261), and comment.

For example, the test number 201 entitled “A Short Tortuous Request”
tests the SIP user agent server behavior. The expected behavior is, “Server
considers the request valid and generates a proper response”. The call flow
is illustrated with the sequence diagram shown in Figure 5.3.

5.3 Formal Verification Based on Theorem Proving

This section covers the formal verification of communication protocols based
on automated theorem proving. The reader will learn how to use automated
theorem proving for formal verification of both communication protocol
specification and its implementation. Normally, the communication protocol

FIGURE 5.3
An example of the SIP protocol torture test.

c : UAC s : UAS

INVITE

180 (Ringing)

CANCEL

200 (OK)

487 (Request Terminated)

ACK
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is modeled as the finite state machine. Basic knowledge of predicate calculus
(first-order logic) is assumed for easy and complete understanding of this
section.

The outline of this section is the following:

• Axiomatic specification of finite state machines
• Theoretic specification of test cases
• Formal verification of the specification
• Directions for generating test cases
• Formal verification of the implementation
• Software development process based on the formal verification
• A realistic example

The axiomatic specification of the finite state machine is the model of the
FSM in the predicate calculus. This model is the set of well-formulated
formulas. The first well-formulated formula in the model is optional and it
defines the initial state of the FSM. Its general format is the following:

State(INITIAL).

State is a predicate and INITIAL is the name (label) of the FSM initial state.
The names State and INITIAL are noninterpretative user-defined names (like
names of the user-defined functions and constants in the higher-level pro-
gramming languages). For brevity, in this section we use the name S instead
of State and we label finite state machine states with numbers (0, 1, 2…)
rather than with symbolic names.

The fact that this first well-formulated formula is optional requires a short
comment. In most of the formal FSM descriptions, such as UML activity
diagrams and statecharts, the specification of the FSM initial state is man-
datory. Here, it is not. If we always want to examine the FSM evolution
beginning from the same state, we will define it as the FSM initial state in
the FSM axiomatic specification. Alternately, sometimes it is possible and
preferable to examine the FSM evolution beginning from different FSM
states. In that case, we do not define the FSM initial state in the FSM axiomatic
specification and we define it on the left-hand side of the concluding well-
formulated formula instead.

The rest of the well-formulated formulas in the FSM axiomatic specification
are obligatory. Each of the mandatory well-formulated formulas models a
single FSM state transition (also referred to as a FSM branch). The format of
the well-formulated formula that models time invariant FSM state transition
from the state X to the state Y triggered with the input T and generating the
output R is the following:

{State(X)&Input(T)} => {State(Y)&Output(R)}
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State, Input, and Output are predicates. X, Y, T, and R are constants that
label the source FSM state, the destination FSM state, the particular FSM
input, and the particular FSM output, respectively. Most frequently, we use
abbreviated names I and S instead of Input and Output, respectively. In the
case that the state transition generates more, say N, output signals (mes-
sages), the corresponding well-formulated formula has the following format:

{State(X)&Input(T)} => {State(Y)&Output(R_1)&
Output(R_2)&…&Output(R_N)}.

where R_1, R_2…R_N are the labels of particular output signals.
Next, we introduce the concept of control predicates. As their name sug-

gests, the control predicates are used to control the FSM activity. A global
control predicate is used to enable or disable the complete FSM activity.
Usually we name it A(N_I), where A stands for Automata and N_I labels the
particular FSM.

Besides the global control predicate, state transition control predicates also
exist, one for each FSM state transition. A state transition control predicate
enables or disables the associated state transition. We typically name it
T(M_I), where T stands for Transition and M_I labels the particular FSM state
transition. The state transition well-formulated formula that includes control
predicates has the following format:

{Automata(I)&Transition(J)&State(X)&Input(T)} => {State(Y)&Output(R)}

I is the label of the particular FSM and J is the label of the particular state
transition modeled with this formula. If we include both Automata(I) and
Transition(J), the state transition is enabled. If we skip Automata(I), the FSM
(i.e., all its state transitions) are disabled. If we skip Transition(J), this indi-
vidual state transition is disabled. This concludes the presentation of the
axiomatic specification of a single FSM.

A theoretical test case for a single FSM is the theorem about the particular
FSM evolution path, which states that for a given series of inputs (I1, I2…In),
FSM performs a series of state transitions (S1, S2…Sn), which will produce a
series of particular output values (O1, O2…On). The corresponding well-
formulated formula has the following format: 

{Automata(N)&Transition(M)&Input(I1)&…&Input(In)} => 
{Output(O1)&...&Output(On)&State(S1)&…&State(Sn)}

Most frequently, we only want to check that FSM produces the expected
series of outputs and that at the end it reaches the expected final state Sn.
The corresponding theorem has a very similar but simpler format:

{Automata(N)&Transition(M)&Input(I1)&…&Input(In)} =>

{Output(O1)&...&Output(On)&State(Sn)}
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Before proceeding to modeling the groups of communicating FSMs, let us
look at a simple example. The following shows the axiomatic specification
of the counter by modulo 2 (see the statechart diagram in Figure 5.4) and a
sample theorem about its expected behavior. The FSM axiomatic specifica-
tion is the following:

S(0)

{A(0)&T(0)&S(0)&I(0)} => {S(0)&O(0)}

{A(0)&T(1)&S(0)&I(1)} => {S(1)&O(1)}

{A(0)&T(2)&S(1)&I(0)} => {S(1)&O(1)}

{A(0)&T(3)&S(1)&I(1)} => {S(2)&O(2)}

{A(0)&T(4)&S(2)&I(0)} => {S(2)&O(2)}

{A(0)&T(5)&S(2)&I(1)} => {S(0)&O(0)}

FIGURE 5.4
The counter by modulo two statechart.

S(0)

S(1)

I(1)/O(2)

Counter by

modulo 2

S(2)

I(1)/O(0)

I(0)/O(0)

I(0)/O(1)

I(0)/O(2)

I(1)/O(1)
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The first well-formulated formula defines the state S(0) as the FSM initial
state. Next, six well-formulated formulas define six FSM state transitions —
from the state S(0) to S(0), from S(0) to S(1), from S(1) to S(1), from S(1) to
S(2), from S(2) to S(2), and from S(2) to S(0), respectively. A(0) is the global
control predicate. T(0), T(1)…T(5) are the individual state transition control
predicates. The sample theorem is the following:

{A(0)&T(0)&I(0)&T(1)&I(1)} => {O(0)&O(1)&S(1)}

It may be interpreted as follows: The FSM is globally enabled by including
the general control predicate A(0) on the left-hand side of the concluding
well-defined formula. The first FSM state transition is enabled by including
the state transition predicate T(0). The FSM is stimulated with the input I(0),
which should result in the output O(0). The second FSM state transition is
enabled by including the state transition control predicate T(1). The FSM is
stimulated with the input I(1) and the FSM should generate O(1) at its output.
Finally, the FSM should reach the state S(1).

We can prove this theorem with the automated theorem prover THEO devel-
oped by Monty Newborn (Newborn, 2001). To do that, we must write the
theorem to a text file, compile it using the program Compile (cc.exe), and prove
it by running the program THEO (teo.exe). The final result looks like this:

Predicates: S A T I O

Functions: 0 1 . 2 3 4 5 :

EQ:

ESAF:

ESAP:

0 <BC: 19 NC: 6 AC: 3 U: 0>

1 {T0 N1 R1 F0 C9 H0 h0 U11} *

.Proof Found!

Of course, realistic finite state machines never operate in isolation. Rather,
they normally operate in groups of cooperating finite state machines.
For example, according to ITU-T the system consists of functional blocks

functional block comprises finite state machines (processes) interconnected
with signaling paths (routes). A communication channel may comprise one
or more signaling paths. Finite state machines communicate by exchanging
signals (events, messages) over signaling paths.

We can use such a kind of traditional system decomposition to our con-
venience, but it is not required. As the opposite extreme, we can have a
chaotic system in which each FSM talks to all other FSMs (like stations in
wireless networks). We can even connect more FSMs in signaling networks
with all kinds of topologies, such as start, bus, or a network that connects
an arbitrary number of FSMs. The means to model all these abstractions in
the first-order logic are predicates and their compositions.
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To start, we can introduce the notation Signal(SIG_N) that represents the
act of signaling the particular signal, where Signal is a predicate and SIG_N
is the label of a particular signal. We then can introduce the notation Sig-
nalOverPath(SIG_N,PATH_M) that represents the act of signaling the partic-
ular signal over the particular signaling path, and so on. The well-formulated
formulas that model state transitions do not change much. For example, the
state transition from the state X to the state Y is triggered with the signal P
and generates the signal Q, and looks like this:

{State(X)&Signal(P)} => {State(Y)&Signal(Q)}

In the formula above, Signal(P) is received and Signal(Q) is sent out of any
signaling path, channel, or network. In the case where the former signal is
transferred over path M and the latter signal is sent over the path N, the
formula would look like this:

{State(X)&SignalOverPath(P,M)} => {State(Y)&SignalOverPath(Q,N)}

After introducing the concept of signaling between finite state machines
in a group of cooperating FSMs, we can proceed to the axiomatic specifica-
tion of the group of FSMs. As shown above, each FSM in a group is specified
with a set of well-formulated formulas (one optional for the initial state and
one mandatory for each individual state transition). Consequently, the spec-
ification of a group of FSMs is the union of sets of well-formulated formulas
for individual FSMs that constitute that group.

The theoretical test case for the group of FSMs is just a generalization of
the theoretical test case for the individual FSM. The left-hand side of the
corresponding well-formulated formula consists of control predicates, if any,
and staring signals whereas the right-hand side of the formula lists the
resulting signals and final states of individual FSMs. The format of the typical
theorem about the evolution of the group of FSMs is the following (assume
the system with two FSMs): 

{Signal(A)} => {Signal(B)&Signal(C)&Signal(D)&State(X)&State(Y)}

In the sample theorem above, Signal(A) triggers the evolution of the system.
As the result of the evolution, the system generates three signals: Signal(B),
Signal(C), and Signal(D). At the end of the evolution, the FSMs reach their
final states, namely, State(X) and State(Y).

We now illustrate the concepts introduced above by the means of a simple
example. Consider a simple system with three FSMs (see their statechart

S(0). After receiving that signal, it sends the signal E(10) and goes to the state
S(1), where it waits for the signal E(1). Once it receives the signal E(1), it
sends the signal E(20) and goes to the state S(2). The second and the third
FSMs are very much alike. The former waits for the signal E(10) and after
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receiving that signal, it sends the signal E(11). The latter waits for E(20) and
sends E(21).

Next, we construct the theorem about the expected behavior of this simple
system. This theorem says that if we supply signals E(0) and E(1) to this
system, the first FSM will start evolving and will generate the signals E(10)
and E(20). These two signals will trigger the second and the third FSMs,
which will in their turn generate signals E(11) and E(21), respectively. Finally,
these FSMs will reach final states S(2), S(11), and S(21), respectively.

The axiomatic specification of this simple system and the theorem
explained above are specified in the following sequence of well-formulated
formulas:

; Simple system with 3 FSMs

; Axiomatic spec. of the first FSM

S(0).

{S(0)&E(0)} => {S(1)&E(10)}.

{S(1)&E(1)} => {S(2)&E(20)}.

; Axiomatic spec. of the second FSM

S(10).

{S(10)&E(10)} => {S(11)&E(11)}.

; Axiomatic spec. of the third FSM

S(20).

{S(20)&E(20)} => {S(21)&E(21)}.

; Theorem

conclusion

{E(0)&E(1)} => {S(2)&S(11)&S(21)&E(10)&E(20)&E(11)&E(21)}.  

FIGURE 5.5
The statecharts of three communicating FSMs.
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To automatically prove this theorem, we run Compile and THEO once again.
The final result looks like this:

Predicates: S E

Functions: 0 1 10 2 20 11 21 : .

EQ:

ESAF:

ESAP:

0 <BC: 14 NC: 3 AC: 3 U: 0>

1 {T0 N1 R1 F0 C1 H0 h0 U14} *

.Proof Found!

Next, we introduce the concept of a theoretical log file. As already men-
tioned, a theoretical test case is a theorem about an FSM’s expected behavior.
It defines starting (input) signals on its left-hand side and a series of expected
output signals and traversed FSM states (including the final ones that we
are most interested in) on its right-hand side. We refer to the right-hand side
of the theoretical test case as the theoretical log file.

A strong similarity exists between the theoretical and the real log files. The
real log file is the result of the system execution in real time. It represents a
particular path of the system evolution. The theoretical log file is the result of
the virtual (speculative) system execution. It shows the expected outcomes,
such as generated signals and traversed states (including the final states).

However, one principal difference between the two of them is that the logs
in the real log file usually have a time stamp. The value of the time stamp
is usually unique (with the exception of the logs in multiprocessor systems).
Alternately, logs in the theoretical log files are individual predicates that
correspond to signals and states, and they do not have any time stamp at all.

Furthermore, we can write logs in the theoretical log file in any order,
because the operator “&” is a commutative one. The easiest way to think
about it is that the theoretical test case is true forever. Hence, it really does
not matter in which order we name the logs. Another way to think about it
is that it all have happened at the same moment of time. Therefore, all logs
have the same “time stamp,” which may be omitted because it does not
provide any meaningful information, and then again the order of logs does
not matter.

Actually, when we look at the FSM axiomatic specification and to the
theoretical test case more closely, we notice that no explicit notion of time
exists at all. The only notion of time present there is the implicit one, and it
is made through the control predicates. Although the absence of the explicit
notion of time may seem confusing and disadvantageous, it is the main
source of power of proving theorems.

To understand why, imagine that we made a system that reacts in certain
ways when it receives two different messages but we are not sure what will
happen if these two signals arrive at exactly the same time. If the probability
of this event is very low, it can take a long period of time before the event
happens and we face a system failure. With the theorem-proving approach,
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we check such situations immediately. Imagine the enormous amounts of
test time that are saved this way.

Another powerful characteristic of this approach is that each theoretical
test case actually represents a family of test cases. For example, let us return
to the counter by modulo 2. Consider the theorem:

{A(0)&T(0)&I(0)} => {O(0)&S(0)}

Because in first-order logic, I(0) <=> I(0)&I(0), we can rewrite the theorem
as follows:

{A(0)&T(0)&I(0)&I(0)&I(0)&I(0)&I(0)} => {O(0)&S(0)}

We may interpret this theorem as follows: If we apply the same signal I(0)
many times (even up to infinity), we will always get the signal O(0) at the
FSM output and it will remain in the state S(0). Therefore, by proving indi-
vidual theoretical test cases, most frequently we are actually checking the
families of test cases. This concludes the presentation of the axiomatic spec-
ification and theoretical test cases related to FSMs.

Now let us see how we can use this in communication protocol engineer-
ing. We start with the formal verification of the specification. The concept is
rather simple, although it can prove to be difficult to realize in practice.
Ideally, two independent teams must be present (or at least a person who is
“changing hats”), namely, the design and testing teams. The former writes
the axiomatic specification of the family of communication protocols that is
modeled as a group of FSMs. The latter writes and proves the theoretical
test cases.

If a theoretical test case fails (the proof of the theorem cannot be found),
at least one error is generated in either axiomatic specification or in the
theorem. It may be the case that two or even more errors occur in both of
them. Most frequently, the errors are trivial oversights made by theorem
writers because they are not so familiar with the system at hand. If not, the
errors are typically caused by rather nontrivial oversights in the system
design.

Finding these errors is not a trivial task at all. Typically, we would try to
shorten the theorem or the axiomatic specification and see what happens.
Of course, with an automated theorem prover such as THEO at our disposal,
this is much easier than doing it by hand. Control predicates may help, also
— with them, we can sequence the events to our convenience. The need for
them is typically a clue that we have synchronization problems.

We can also use an automated theorem prover for automatic test case
generation. To do that, we assume that axiomatic specification of the system
is errorless. We start by selecting one of the possible input signals on the
left-hand side of the theorem. We then check various output signals at the
right-hand side of the theorem by trying to prove the theorem. If the proof
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is found, our assumption was correct and we keep that signal at the right-
hand side. If not, we continue by checking other signals.

Of course, some input signals can just cause internal state transitions and
no signals at the output of the system. The right-hand side will remain empty
in that case. By continuing this process, we can generate theoretical test cases
of arbitrary length:

{I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)}.

Similarly, we can make guesses about transient or final states of the system,
for example:

{I(A)&I(B)&I(C)} => {O(X)&O(Y)&O(Z)&S(P)&S(Q)}

The real benefit of such automatically generated test cases is that they can
be translated into executable test cases and used for automatic testing of the
system implementation. Generating test cases in the previously described
fashion is not very efficient, and neither it is well coordinated. We can
generate test cases more cleverly by respecting the structure of the FSM
axiomatic specification rather then viewing it as a black box. Actually, the
FSM axiomatic specification introduced in this section is yet another means
of modeling the FSM state transition graph.

Generating test cases by traversing the FSM state transition graph is pos-
sible with the goal to achieve its complete coverage. Three possible types of
FSM state transition coverage exist, namely, node, branch (arc), and path
coverage. That the path coverage cannot be achieved if the graph is cyclic
is well known. Alternately, branch coverage subsumes node coverage and,
because of that, seems to be the best selection.

Sometimes we may have the opposite problem. The test suite (a set of test
cases) may already be available, such as the SIP conformance test suite

we can use a tool to translate TTCN-3 test cases into theorems, and then we
can use the automated theorem prover to formally verify conformance of
the system axiomatic specification with the standard.

Yet another application of the automated theorem prover is the formal
verification of the system implementation. To do this, we assume that a
conformance test suite is already available and use the reverse engineering
tool to extract the axiomatic specification of the system from the implemen-
tation source code and, optionally, from log files if some are available. The
reverse engineering tool normally relies on conventions that govern the
structure of the source code and log files.

For example, the reverse engineering tool for the FSM Library-based imple-

tions and their real parameters to retrieve the well-formulated formulas that
constitute system axiomatic specification. More precisely, the tool extracts
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mentations relies on the specification of the FSM Library API (see Section

available from ETSI in TTCN-3 language (see Section 5.3). In such a situation,

6.8). This tool simply searches the source code for the specific library func-
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the elements of the left-hand side of the state transition well-formulated
formula by searching for library functions InitEventProc() and InitUnexpect-
edEventProc().

The real parameters of the function InitEventProc() are the source state, the
triggering signal (event, message), and the state transition function. The first
two parameters (state and signal) are exactly the elements of the left-hand
side of the corresponding well-formulated formula. The real parameters of
the function InitUnexpectedEventProc() are the source state and the state tran-
sition function. The state is the first element of the left-hand side of the well-
formulated formula. The second element is any signal that is not valid for
the given state.

The reverse engineering tool proceeds by examining an individual state
transition function. It creates one well-formulated formula (they all have the
same left-hand side) for each state transition function execution path. For
example, a state transition function with a simple sequence of statements
yields a single formula, whereas a state transition function that has a switch
with three cases yields three formulas.

The right-hand side of the state transition well-formulated formula is
constructed by the analysis of the state transition function. The tool first
searches for the functions PrepareNewMessage() and SendMessage() to extract
symbolic names of the signals that are generated by that execution path of
the state transition function. It then searches for the function SetState(), whose
real parameter is the name of the destination state. If this function is not
found, the tool assumes that the FSM state should not be changed and copies
the state name from the left-hand side to the right-hand side of the formula.

This procedure is repeated for all state transition functions. Finally, the
tool provides the complete axiomatic specification of the system in ASCII
format, which is readable by the automated theorem prover. We then use
already available test cases to formally verify the system implementation
source code.

Although most frequently we assume that the tools and other components
we use are bug-free (in this particular case, these tools are the reverse engi-
neering tool, compiler, linker, loader, and operating system), sometimes they
are not. No matter how low the probability of such a failure is, it can happen
and when it does, it compromises the formal verification of the source code.
In such a case, we can use the reverse engineering tool that extracts the
axiomatic system specification from log files. The example of the particular
log file that was created by the FSM Library-based implementation is given
in Section 5.5.1. Principally, the axiomatic specification that is provided from
the log file is usually incomplete (except when it contains traces of all possible
system execution paths), but even as such, it is sufficient to locate and
eliminate the problem at hand.

When it comes to the application of formal verification methods, software
development processes can be classified into three different categories. The
Cleanroom engineering is a typical representative of the first category. It uses
formal verification methods to formally verify the system design. The second
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category uses formal methods to formally verify the system implementation
whereas the third uses it to formally verify both the system design and
implementation.

We will end this section with a more realistic example — the axiomatic
specification of the FSM that implements both ITU-T Q.71 FE1 and FE5 call

oretical test case. The former functional entity models the functionality of
the calling party (also referred to as the subscriber A) whereas the latter
models the functionality of the called party (also referred to as the subscriber
B). The following is the axiomatic specification of the FSM, named FE1FE5
(ITU-T Q.71 FE1 and FE5 merged together):

;

;  FE1FE5 definition

;

;  Initial state definition:

S(FE1FE5_ON_HOOK).

{S(FE1FE5_ON_HOOK)&E(r3_DisconnectReqInd)} =>

{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_ON_HOOK)&E(r3_SetupReqInd)} =>

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_ReportReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_SetupReqInd)} =>

{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_ACTIV)&E(r3_DisconnectReqInd)} =>

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_ACTIV)&E(User_ON_HOOK)} =>

{S(FE1FE5_ON_HOOK?)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(User_ON_HOOK)} =>

{S(FE1FE5_ON_HOOK)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)} =>

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_SetupReqInd)} =>

{S(FE1FE5_WAIT_ON_HOOK)&E(r3_DisconnectReqInd)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(User_OFF_HOOK)} =>

{S(FE1FE5_ACTIV)&E(r3_SetupRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)} =>

{S(FE1FE5_ON_HOOK)&E(r3_DisconnectRespConf)}.

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_SetupReqInd)} =>

{S(FE1FE5_WAIT_OFF_HOOK)&E(r3_DisconnectReqInd)}.

conclusion

; {S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)} =>
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; {S(FE1FE5_UNKNOWN_FE2)&E(r1_SetupReqInd)}.

; {S(FE1FE5_UNKNOWN_FE2)&E(User_ON_HOOK)} =>

; {S(FE1FE5_DISCONNECTING_FE2)}.

{S(FE1FE5_ON_HOOK)&E(User_OFF_HOOK)&E(User_ON_HOOK)} =>

{S(FE1FE5_DISCONNECTING_FE2)&E(r1_SetupReqInd)}.

Actually, this file contains three theorems (starting after the keyword con-
clusion). The first two are commented out (the semicolon character “;” at the
beginning of the line means that the line is a comment) leaving only the
third open as a subject to prove by the automated theorem prover. The first
commented theorem claims that if the FSM FE1FE5 is stimulated with the
input signal User_OFF_HOOK in its initial state FE1FE5_ON_HOOK, it will
generate the output signal r1_SetupReqInd and move to the state
FE1FE5_UNKNOWN_FE2. The second commented theorem claims that if
the FSM FE1FE5 is further stimulated with the signal User_ON_HOOK in
the state FE1FE5_UNKNOWN_FE2, it will just move to the state
FE1FE5_DISCONNECTING_FE2.

Finally, the third theorem — which is actually the subject of automated the-
orem proving — is a simple composition of the previous two theorems. It states
that if the FSM FE1FE5 is stimulated by the sequence of the input signals
User_OFF_HOOK and User_ON_HOOK in its initial state FE1FE5_ON_HOOK,
it will generate the output signal r1_SetupReqInd and finish in the state
FE1FE5_DISCONNECTING_FE2. To automatically prove this theorem, we run
Compile and THEO once again. The final result looks like this:

Predicates: S E

Functions: FE1FE5_ON_HOOK User_OFF_HOOK r1_SetupReqInd User_ON_HOOK

FE1FE5_DISCONNECTING_FE2 . r1_DisconnectRespConf FE1FE5_UNKNOWN_FE2

r1_DisconnectReqInd User_DIGIT r1_ProceedingReqInd

FE1FE5_WAIT_FOR_DIGITS r1_ADDL_AddrReqInd r3_DisconnectReqInd

FE1FE5_WAIT_ON_HOOK r1_SetupRespConf FE1FE5_ACTIV r1_ReportReqInd

r3_DisconnectRespConf r3_SetupReqInd FE1FE5_WAIT_OFF_HOOK

r3_ReportReqInd FE1FE5_ON_HOOK? r3_SetupRespConf :

EQ:

ESAF:

ESAP:

0 <BC: 56 NC: 4 AC: 4 U: 0>

1 {T1 N1 R1 F0 C49 H1 h0 U8} *

.Proof Found!

5.4 Statistical Usage Testing

Statistical usage testing, also referred to as statistical testing or behavioral
testing, is today the main industry standard for quality assessment of embed-
ded systems. As its name suggests, the goal of statistical usage testing is to
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test the product under conditions that it is expected to face in its real exploi-
tation. The description of these conditions is given with the set of product’s
operational profiles. Two key ideas are behind the concept of statistical usage
testing.

The first addresses the focus of testing whereas the second addresses the
quality of the final product. We start with the genesis of the first of these
two ideas. That any nontrivial product requires a vast amount of test cases
for its verification should be obvious by now. The order of this amount can
very easily go up to hundreds of thousands of test cases or even more.
Because some of the product working modes (also referred as states) are
more frequently used than others, selecting the number of associated test
cases accordingly makes sense, especially if we want to limit the size of the
test suite.

This reasoning led to the concept of the operational profile. Remember
that the motivation for its introduction was to respect the usage frequencies
of individual operational states. Actually, because product state transitions
are triggered by the corresponding events (signals, messages), the state usage
frequencies are equal to the frequencies of these events. Furthermore, if we
want to make our considerations independent of the total number of usages
(tests), introducing the probabilities of events is convenient. (In this context,
we define the probability as the number of real occurrences of the event
divided by the total number of its possible occurrences.)

Mathematically, the operational profile is a Markov process. It can be
modeled as a special kind of graph whose vertices are product states and
whose arcs are state transitions triggered with the corresponding events of
the given probability. The operational profile is essentially a finite state
machine with given probabilities of its state transitions. Of course, the sum
of probabilities of all outgoing state transitions for a single state must be
equal to 1 (100%).

The second idea behind the concept of statistical usage testing is to use
the product reliability as the main measure of its quality. The genesis of this
idea is that traditional software engineering measures of product quality are
the number of remaining bugs and the test coverage of the implementation under
test that was achieved through its testing. However, achieving good results
with respect to these two measures is not sufficient for assuring the high
quality of the product.

For example, consider the following paradox. Imagine a software product
that has a single bug that causes a system crash every time the software is
started. Although the product has the excellent value of the metric number
of remaining bugs (only 1 bug remaining), it is completely unreliable and
therefore practically unusable. In real life, we are not interested in how good
the product is with respect to number of remaining bugs and test coverage.
Rather, we are primarily interested in its reliability.

Of course, we cannot measure the product reliability directly, but we can
estimate this from the number of test cases that it has successfully passed.
More precisely, in real engineering practice we have the opposite problem.
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We want to calculate the number of test cases needed for the desired product
reliability and for the given level of risk we are ready to accept. We can do
this by solving the following equation:

B = RN

where
B is an upper bound on the probability that the model assertions are 

erroneous
R is a lower bound on the estimate of product reliability
N is the number of random test cases that the product must successfully 

pass

For example, achieving even moderate reliability of R = 0.999 with B = 0.007
would require the successful pass of N = 5,000 random test cases. Similarly,
achieving R = 0.9999 with B = 0.007 requires N = 50,000 random test cases,
and achieving R = 0.99999 with B = 0.007 requires N = 500,000 random test
cases. Alternatively, we can run a smaller number of test cases on more
product samples in parallel. For example, instead of running N = 500,000
random test cases on a single sample, we can run N = 50,000 random test
cases on 10 product samples simultaneously.

By considering these examples, we can deduce two conclusions. The first
is that conducting statistical usage testing of the final product may require
a significant amount of time. The order of magnitude of this amount is
calendar weeks or even months, depending on the characteristics of the
concrete product. The second conclusion is that we definitely need tools that
automatically generate and execute test suites of that size. We simply cannot
do this by hand.

An example of the automated working environment for generating statis-
tical test suites is described by Popovic (Popovic and Velikic, 2005). This
working environment consists of two parts, namely, the front-end and the

(GME) developed at the Institute for Software Integrated Systems at Vander-
bilt University. GME is a configurable toolkit for creating domain-specific
modeling and program synthesis environments.

Generally, we configure GME by creating metamodels that specify the
modeling language, and therefore the modeling paradigm, of the application
domain. Once we create a metamodel, we must interpret and register it by
GME to create a new working environment for making domain-specific
models. We normally use such working environments for building domain-
specific models and for storing them in a model database. The domain-
specific models are essentially graphs, and we render them by dragging and
dropping the graphical symbols on the working sheet that is maintained by
the GME graphical user interface (GUI). The symbols in GME have their
attributes, preferences, and properties.

9814_C005.fm  Page 279  Wednesday, April 12, 2006  3:22 PM

© 2006 by Taylor and Francis Group, LLC
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The particular metamodel that specifies the language (and the paradigm)
for modeling operational profiles is represented with the metaclass Opera-
tionalProfile in Figure 5.6. Each concrete operational profile model (repre-
sented with the class OpProfile in Figure 5.6) is created by using the
operational profile modeling paradigm (the class OpProfile is derived from
the class OperationalProfile). Creating operational profile models by using this
paradigm is quite easy.

The modeling language for rendering operational profile models has a
single symbol, State. This symbol has a single attribute, which is the name
of the state. Normally, we just drag and drop the state symbol icon to the
working sheet, click on the name field, and type in its name. Each of the
state symbols we place on the working sheet represents a single working
state (mode) of the product that we want to test.

Rendering state transitions requires a little more work. To render a state
transition, we select a connecting tool (symbolized by the operator “+”), click
on the source state, and click on the destination state. When the state tran-
sition is in place, we enter the particular data for its attributes. A state
transition has the following three attributes:

• EventClass: specifies the class of events that trigger the state transi-
tion

• Output: specifies the expected output of the state transition
• Probability: specifies the probability of the state transition (in percent)

FIGURE 5.6
The working environment for generating statistical test suites.
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The most frequently used format of the attribute EventClass definition is
the following:

E(a,b,c...);->a := A1/A2/...; b := B1/B2/...; c := C1/C2/...

The event class definition above consists of two parts. The first one is on the
left-hand side of the substring “->” and is referred to as the event class. The
event class E(a,b,c…); is a string with an arbitrary number of parameters
(substrings), labeled here as a, b, c, and so on. The second part of the defi-
nition is on the right-hand side of the substring “->”. It provides definitions
of possible replacements (which are also strings) for each event class param-
eter. As indicated above, the parameter a may be replaced with the string A1

or A2 and so on.
A particular event (also referred to as the constant event) is an event class

without parameters. We may also think about it as the event class with a
single member. Particular events are generated from the event class by sub-
stituting each event class parameter with the randomly selected replacement
from the list of possible replacements. All replacements have equal selection
probabilities. Examples of particular events for the event class definition
given above are E(A1,B1,C1…), E(A1,B1,C2…), E(A1, B2, C1…), E(A2, B1, C1…),
and so on.

The event class format shown above is feasible as far as the number of the
possible values of event class parameters is relatively small. But when the
number of the possible values is large, writing them explicitly becomes
impractical, if not impossible. For example, consider the integer parameter
whose possible values are from the interval [0,10000). Writing all 10,000 of
its possible values would be really annoying. To make it easier for the user,
the working environment supports the following two intrinsic functions:

• randInt<i,j> randomly selects an integer number from the interval
[i,j)

• randFloat<x,y> randomly selects a float number from the interval
[x,y)

When we place and name all state symbols, interconnect them with state
transitions, and enter the data for attributes of all state transitions, the oper-
ational profile model is finished and we can store it in a file (or a database).
This is exactly the main purpose of the working environment front-end

states or state transitions, as well as by changing the data for attributes of
state transitions, and store it again. All these manipulations are supported
by the GME’s GUI.

The working environment back-end consists of two parts. The first is the
operational profile model interpreter (represented by the class ModelInter-
preter in Figure 5.6), which is registered to GME. The second part of the back-
end is a separate program written in Java, which is named Generic Test Case
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Generator (GTCG). The main task of the model interpreter is to transform
the operational profile model to the operational profile specification, a simple
text file of the well-defined format (represented with the class OpProfileSpec

erate the test suite to be used for statistical usage testing and the correspond-
ing statistical report (represented with the classes TestSuite and Statistics in
Figure 5.6).

The operational profile model interpreter is a Java package that is regis-
tered to GME with the program JavaCompRegister. The package comprises
the following three classes:

• OPBONComponent: the interface between GME and the model inter-
preter

• OPState: the state interpreter
• OPTransition: the state transition interpreter

The model interpreter behaves similarly to traditional plug-in components
of GUIs. We activate it by a click on the corresponding model interpreter
icon. As the result of this activation, GME calls the model interpreter interface
function invokeEx, which in its turn creates temporary container objects for
state names, event classes, state transition probabilities, event class defini-
tions, and next state definitions.

Next, the model interpretation is performed by traversing the multigraph
architecture of the model in focus. While visiting individual states and state
transitions, GME calls the function traverseChildren of the class OPState and
OPTransition, respectively. These two functions effectively interpret the
model by reading the data of the attributes and filling the above mentioned
container objects. At the end of the interpretation, the content of these con-
tainer objects is saved into the operational profile specification file named
opspec.txt.

The automatic test case generator GTCG uses the following input items:

• The operational profile data from the file opspec.txt.
• The initial operational profile state. Most frequently, the initial state

is fixed, but sometimes it may be selectable.
• The number of test cases to be generated. This item determines the

size of the test suite. As mentioned earlier, it depends on the product
reliability we want to guarantee.

• The test case length, defined as the number of test steps in a test
case. A test step is the particular event that is randomly selected
from the given event class.

The operational profile specification file opspec.txt consists of the following
four parts:

9814_C005.fm  Page 282  Wednesday, April 12, 2006  3:22 PM

© 2006 by Taylor and Francis Group, LLC
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• Part I defines the number of states (M) and the number of event
classes (N).

• Part II is a matrix of state transition probabilities. The matrix element
Pij defines the probability of the event class number j in the opera-
tional profile state number i.

• Part III is a matrix of event class definitions. The matrix element Eij

defines the event class number j in the operational profile state
number i. Most frequently, Eij is the same in all states (Ei1 = Ei2 =
…EiM).

• Part IV is a matrix of next states. The matrix element Tij defines the
next state number (index) for the event class number j in the oper-
ational profile state number i.

GTCG provides the following two files at its output:

• testcases.txt: contains the test suite to be used for statistical usage
testing

• statistics.txt: contains the corresponding statistical report, which is
the important measure of the generated test suite quality

The file testcases.txt contains the series of test cases. Each test case starts
with its number followed by the column character ‘:’ (e.g., 0:, 1:, 2:). The next
line contains the test bed setup command TestBox.initialize(), which essen-
tially initializes the hardware connected to product inputs and outputs for
the purpose of automatic testing. The test bed setup command is followed
by the series of lines that contain particular events randomly selected from
the associated event classes (the number of these lines is determined by the
given test case length). The event class itself is selected randomly from the
distribution defined by the operational profile data (opspec.txt, Part II).

The file statistics.txt consists of two parts. The first part contains a series
of lines, one per operational profile state. Each of these lines indicates the
number of occurrences of the corresponding operational profile state (ci), the
discrepancy between the observed and expected frequency of state occur-
rence (di), and the significance level (SLi). The significance level is actually
the probability that the discrepancies as large as those observed would occur
with random variation. The second part of the statistical report shows the
mean value of the discrepancy and the mean value of the significance value.

The detailed explanation of the statistical measures mentioned above is
outside the scope of this book but can be found elsewhere (e.g., Woit, 1994).
Practically, it is enough to remember the following guides:

• A significance level greater than or equal to 20% is considered large.
This result means that the test suite is of sufficient quality and we
may use it for statistical usage testing.
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• A significance level less than or equal to 1% is considered small.
This result means that the test suite quality is poor and it should not
be used for statistical usage testing.

The statistical usage testing methodology governs the usage of tools that
create the working environment. The methodology subsumes the following
steps:

• Make the operational profile model of the product (implementation
under test).

• Interpret the model.
• Determine the desired level of reliability.
• Calculate the required size of the test suite (the number of test cases).
• Generate the test suite.
• Check the test suite quality. If the quality is not acceptable, return

to the previous step.
• Execute the test suite. If all test cases successfully pass, the final

verdict is pass. In that case, we can claim that the product reliability
is at least at the level of the desired reliability. If at least one test case
fails, the final verdict is fail and the product is considered not usable,
at least not at the desired level of reliability.

This methodology can be used for testing both parts of products and
complete products. We will illustrate such applications by the following two
examples. The implementation under test in the first example is the SIP invite
client transaction. We start with modeling its operational profile in accor-

The operational profile shown in Figure 5.7 has five working states,
namely, Initial, Calling, Proceeding, Completed, and Terminated. At the same
time, it has nine event classes that are intentionally labeled with names that
resemble the original specification (see RFC 3261, Figure 5). The definitions
of the event classes (not shown in Figure 5.7) are the following:

• The event class labeled INVITE is defined as INVITE (this class has
a single member).

• The event class labeled 300–699 is defined as M3->M3:=rand-
Int<300,700>;

• The event class labeled TA is defined as TA (original RFC 3261 label:
Timer A fires).

• The event class labeled 1XX is defined as M1->M1:=rand-
Int<100,200>;

• The event class labeled TB or TransportERR is defined as E->E:=TB/
TransportERR;
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• The event class labeled 2XX is defined as M2->M2:=rand-
Int<200,300>;

• The event class labeled TD is defined as TD (original RFC 3261 label:
Timer D fires).

• The event class labeled TransportERR is defined as TransportERR
(constant event).

• The event class labeled End is defined as End (added because the
sum of outgoing state transition probabilities for each state must be
equal to 100%).

FIGURE 5.7
The SIP INVITE client transaction operational profile.
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Note that outgoing state transition probabilities add up to 100% for each
state (an essential request for a Markov process). Generally, we set the state
transition probabilities according to what we expect the product will face in
its real exploitation. Of course, we should use statistical data available for
some similar product or the previous version of the same product whenever
we can.

Next, we start the model interpreter, which transforms the model into the
operational profile specification file opspec.txt. When writing GME model
interpreters, we should make no assumptions about the order in which the
model is traversed. For example, to assume that individual states and state
transitions are going to be visited in the same order in which they were
originally entered would be a mistake because this is not going to happen.
The best assumption we can make in this respect is to assume the completely
random visiting order.

Based on this assumption, the model interpreter simply assigns identifi-
cations to states and state transitions according to the order they are visited.
The particular assignment of identifications to operational profile states in
this example is the following:

• The state Terminated is assigned the identification 0.
• The state Calling is assigned the identification 1.
• The state Proceeding is assigned the identification 2.
• The state Completed is assigned the identification 3.
• The state Initial is assigned the identification 4.

The particular assignment of identifications to operational profile event
classes is the following:

• The event class E is assigned the identification 0.
• The event class M1 is assigned the identification 1.
• The event class TA is assigned the identification 2.
• The event class INVITE is assigned the identification 3.
• The event class TransportERR is assigned the identification 4.
• The event class M2 is assigned the identification 5.
• The event class M3 is assigned the identification 6.
• The event class TD is assigned the identification 7.
• The event class End is assigned the identification 8.
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The content of the file opspec.txt is the following:  

Note: The specifications of event classes for the states 1, 2, and 3 (Calling,
Proceeding, and Completed) were too long to fit into a single line. Therefore,
definitions of event classes for each of these states spans across two lines
(the second starts at the next level of indentation).

Next, we activate GTCG with the script that specifies the starting state
identification 4 (Initial), the number of test cases that is equal to 1,000, and
the test case length that is equal to 4 (this means 4 steps, i.e., particular
events, per test case). Selection of this particular test case length requires a
short comment. This value is exactly the length of the shortest path across
all five states starting from the state Initial (path Initial-Calling-Proceeding-
Completed-Terminated, with five states and four state transitions). Of course,
other paths of length 4 are possible and will be generated.

As already mentioned, the GTCG creates two output files, testcases.txt and
statistics.txt. According to the methodology outlined above, we first check
the quality of the generated test suite by inspecting the file statistics.txt. Its
content is the following:

Calculating statistics

The average significance level SL is equal to 72% (0.72). Because this number
is greater than the required 20%, we conclude that the quality of the generated
test suite is sufficient and that we can use it for the statistical usage testing.

5 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.2 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0

0.0 0.33 0.0 0.0 0.0 0.33 0.34 0.0 0.0

0.0 0.0 0.0 0.0 0.33 0.0 0.33 0.34 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

null null null null null null null null End
E->E:=TB/TransportERR; M1->M1:=randInt<100,200>; TA null null
M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null

null M1->M1:=randInt<100,200>; null null null
M2->M2:=randInt<200,300>; M3->M3:=randInt<300,700>; null null

null null null null TransportERR null M3->M3:=randInt<300,700>;
TD null

null null null INVITE null null null null null

0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 3 0 0
0 2 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0 0
0 0 0 1 0 0 0 0 0

i=0 ci=1104 di=0.0 SLi=1.0
i=1 ci=1237 di=2.470493128536783 SLi=0.0
i=2 ci=291 di=0.7498208280500565 SLi=0.7014229616104999
i=3 ci=368 di=0.1864198248469353 SLi=0.910066579962014
i=4 ci=1000 di=0.0 SLi=1.0
Mean d=0.6813467562867549
Mean SL=0.7222979083145027
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Next, we look more closely to a couple of test cases from the beginning of
the file testcases.txt to get a better feeling of the nature of statistical test cases.
The relevant comments are interleaved with the test cases:

0:

TestBox.initialize();

INVITE

443

TransportERR

End

Test case number 0: After the initial INVITE, GTCG randomly selects the
event class labeled 300–699 and the particular event 443 from that class. This

GTCG randomly selects the event TransportERR, thus causing the state tran-
sition to the state Terminated. End is the only possible event in that state.

1:

TestBox.initialize();

INVITE

TA

586

TD

Test case number 1: After the initial INVITE, GTCG randomly selects the event
class TA (Timer A fires). The current state remains the state Calling (Figure 5.7).
Next, GTCG randomly selects the event 586, thus causing the state transition
to the state Completed. Finally, GTCG randomly selects the event TD (Timer D
fires), which causes the state transition to the state Terminated.

2:

TestBox.initialize();

INVITE

190

267

End

Test case number 2: After the initial INVITE, GTCG randomly selects the
event class 1XX and the particular event 190. This causes the state transition
to the state Proceeding (Figure 5.7). Next, GTCG randomly selects the event
267, thus causing the state transition to the state Terminated. The next event
must be the event End.

3:

TestBox.initialize();

INVITE

494

TD

End
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Test case number 3: After the initial INVITE, GTCG randomly selects the
event class 300–699 and the particular event 494. This causes the state tran-

event TD, thus causing the state transition to the state Terminated. The next
event must be the event End.

In the short descriptions of the generated test cases given above, we used the
construct, “GTCG randomly selects the event class X and the particular event
Y,” for brevity. One should remember that the selection of the event class is
always in accordance with the given operational profile probability distribution
whereas the selection of the particular event from the given class is really
random.

The previous example shows how we can use statistical usage testing for
testing a part of the product. As already mentioned, we can employ statistical
usage testing for testing the whole products, too. The next example shows
such an application — statistical usage testing of the simple SIP softphone.

8 states and 13 event classes. The states are Connecting, Terminating, Discon-
necting, Connected, Calling, Initial, Proceeding, and Ringing (listed here in the
ascending order of their identification). The event classes are RELEASE, 200,
ACK, 180, ERR, END, ANSWER, 100, INVITE, SETUP, BYE, TH, and TB (also
listed in the ascending order of their identification).

All event classes have just one member and their definition is equal to the
label shown in Figure 5.8 with the exception of the event class that is labeled
ERR, which is defined as follows:

M3->M3:=randInt<300,381>/randInt<400,494>/randInt<500,514>/randInt<600,607>;

This definition is a good example of how we can specify a random value that
may be selected from more disjoint intervals of values. Next, we generate 1,000
test cases with five test steps each. The content of the file statistics.txt is the
following:

Calculating statistics 

Because the average significance level is 62% (greater than 20%), we can
conclude that the test suite quality is acceptable. A couple of typical test
cases are taken from the file testcases.txt and shown here without comments
(the reader should study them for their own exercise): 

i=0 ci=360 di=0.625 SLi=0.4686783191616166
i=1 ci=1564 di=0.0 SLi=1.0
i=2 ci=244 di=0.0 SLi=1.0
i=3 ci=546 di=1.6483516483516483 SLi=0.21453651135488572
i=4 ci=496 di=0.5843413978494628 SLi=0.7503695231083775
i=5 ci=1000 di=0.064 SLi=0.8248262531456066
i=6 ci=286 di=3.0879953379953404 SLi=0.21451818049555796
i=7 ci=504 di=0.4897959183673477 SLi=0.4966702889206116
Mean d=0.8124355378204748
Mean SL=0.6211998845233321
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The operational profile of the SIP softphone is shown in Figure 5.8. It has
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15:

TestBox.initialize();

SETUP

100

180

200

BYE

16:

TestBox.initialize();

INVITE

FIGURE 5.8
The SIP softphone operational profile.

Initial

Calling Ringing

Proceeding Connecting

Connected

Disconnecting

Terminated

SETUP, P = 50% INVITE, P = 50%

100, P = 40% ANSWER, P = 70%

200, P = 40% ACK, P = 80%

200, P = 30%

RELEASE, P = 50%

200, P = 100%

End, P = 100%

BYE, P = 50%

180, P = 30%

ERR, P = 30%

ERR, P = 30%

TH, P = 20%

TB, P = 30%
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ANSWER

ACK

BYE

END

17:

TestBox.initialize();

SETUP

100

200

BYE

END

18:

TestBox.initialize();

INVITE

ANSWER

ACK

RELEASE

200

5.5 Examples

This section includes two examples and two related problems. The first
example demonstrates unit testing of the FSM Library-based implementa-
tions. The second example illustrates integration testing of the FSM Library-
based products.

5.5.1 Example 1

This example demonstrates unit testing of the SIP invite client transaction
implementation, which is described in Section 4.5.2 (Example 2). The SIP
invite client transaction implementation is based on the requirements and

Section 3.10.5 (Example 5).
Because the implementation under test (SIP invite client transaction) is

implemented in C++, we use CppUnit implementation of the unit testing
framework, introduced in Section 5.1. In this simple example, we will con-
struct just one test case to keep it short enough. Also, we will skip some SIP
message-specific message handling, which is really not essential for this
example.

We start this example by constructing two classes: ExampleTestCase and
ExampleMessageFactory. The former is the tester class, which comprises one
sample test case, whereas the latter is the supplementary class, which pro-
vides the functions for message management. The content of the class Exam-
pleTestCase declaration file, named ExampleTestCase.h, is the following:
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#ifndef CPP_UNIT_EXAMPLETESTCASE_H

#define CPP_UNIT_EXAMPLETESTCASE_H

// CppUnit helper macros

#include <cppunit/extensions/HelperMacros.h>

// Problem specific headers

#include “../kernel/fsmsystem.h”

#include “../kernel/logfile.h”

#include “../NewSIP/InvClientTE.h”

#include “ExampleMessageFactory.h”

/*

 * A sample test case

 *

 */

class ExampleTestCase : public CPPUNIT_NS::TestFixture {

CPPUNIT_TEST_SUITE(ExampleTestCase);

CPPUNIT_TEST(example);

CPPUNIT_TEST_SUITE_END();

protected:

FSMSystemWithTCP *pSys;

LogFile *lf;

InviteClientTE* pInviteCltTE[NUMBER_OF_TES];

ExampleMessageFactory* pEMF;

uint8 *msg;

uint16 msgcode;

public:

void setUp();

protected:

void example();

};

#endif

The declaration file above includes the CppUnit helper macros header file
(HelperMacros.h) and the problem-specific header files (fsmsystem.h, logfile.h,
InvClientTE.h, and ExampleMessageFactory.h). The class ExampleTestCase is
derived from the class that is defined by the macro instruction
CPPUNIT_NS::TestFixture. The definition of the test suite starts with the
macro instruction CPPUNIT_TEST_SUITE() and ends with the macro
instruction CPPUNIT_TEST_SUITE_END(). The parameter of the former
macro instruction is the name of the test suite (ExampleTestCase, in this
example).

Generally, we use the macro instruction CPPUNIT_TEST() to define indi-
vidual test cases inside the body of the test suite definition. The parameter
of this macro instruction is the name of the test case function that is defined
within the tester class and that we want to add to the test suite. In this
particular example, we add a single test case function, named example(), with
a single macro instruction, CPPUNIT_TEST(), whose real parameter is the
string “example”.

Next, we define the test case fixture. In this example, it comprises the
following:
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• The pointer to the instance of the class FSMSystemWithTCP (see

• The pointer to the instance of the class LogFile (which is the interface
to the log file)

• The array of pointers to the instances of the class InviteClientTE
(which is actually the implementation under test)

• The pointer to the instance of the class ExampleMessageFactory (which
is the supplementary tester class)

• The pointer to the message
• The code of the message

At the end of this file we declare the function setUp() and the test case
function example(). The content of the class ExampleTestCase definition file,
named ExampleTestCase.cpp, is the following:

#include “ExampleTestCase.h”

#include “../kernel/fsmsystem.h”

#include “../kernel/logfile.h”

#include “../NewSIP/InvClientTE.h”

#include “ExampleMessageFactory.h”

CPPUNIT_TES_SUITE_REGISTRATION(ExampleTestCase);

void ExampleTestCase::setUp() {

pSys = new FSMSystemWithTCP(11,11);

pEMF = new ExampleMessageFactory();

for (int i = 0; i < NUMBER_OF_TES; i++) {

pInviteCltTE[i] = new InviteClientTE();

}

uint8 buffClassNo = 4;

uint32 buffsCount[4] = {50, 50, 50, 50};

uint32 buffsLength[4] = {1025, 1025, 1025, 1025};

pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);

lf = new LogFile(“log.log”, “log.ini”);

LogAutomateNew::SetLogInterface(lf);

pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);

for (i = 1; i < NUMBER_OF_TES; i++){

pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);

}

}

void ExampleTestCase::example() {

msg = pEMF->MakeInviteToTALMsg();

pInviteCltTE[0]->Process(msg);

msgcode = pEMF->GetMsgCodeFromMBX(TLI_Test_FSM_MBX);

CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)INVITE);

msg = pEMF->Make1XXToTAL();

pInviteCltTE[0]->Process(msg);
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msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);

CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_1XX);

msg = pEMF->Make2XXToTAL();

pInviteCltTE[0]->Process(msg);

msgcode = pEMF->GetMsgCodeFromMBX(UA_Disp_FSM_MBX);

CPPUNIT_ASSERT_EQUAL(msgcode,(uint16)RESPONSE_2XX);

}

At the beginning of this file, we register the test suite with the macro
instruction CPPUNIT_TEST_SUITE_REGISTRATION(). The real parameter
of this macro instruction is the name of the test suite. Next, we define the
function setup() and the test case function example().

The function setup() starts by creating an instance of the class FSMSystem-
WithTCP, an instance of the class ExampleMessageFactory, and the given num-
ber (NUMBER_OF_TES) of instances of the implementation under test (the
class InviteClientTE). After that, it defines the types of buffers to be used by
the FSM Library kernel, initializes the kernel by calling the function Init-

instances of the implementation under test to the FSM system by calling its

of the implementation under test in the following three steps:

•

• Check the state transition from the state STATE_CALLING to the

• Check the state transition from the state STATE_PROCEEDING to
the state STATE_INITIAL, driven by the message 2XX

Each of these three steps consists of the following four substeps:

• Create the message (INVITE, 1XX, or 2XX).
• Send the message to the implementation under test by calling its

• Get the message code of the output message by calling the function
member GetMsgCodeFromMBX() of the class ExampleMessageFactory.
The output message is retrieved from the destination FSM Library
mailbox. The destination mailbox is either the mailbox of the trans-
port layer (TPL) or the mailbox of the transaction user (TU).

• Check the retrieved message code against the expected one (message
code of the message INVITE, 1XX, or 2XX) by calling the macro
CPPUNIT_ASSERT_EQUAL().
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Kernel() (see Section 6.8.4), creates the log file by calling the function LogFile(),
and sets the log interface by calling the function SetLogInterface() (see Section

The function example() performs the test case by checking state transitions

6.8.105). At the end, it adds the given number (NUMBER_OF_TES) of

function Add() (see Section 6.8.2 and Section 6.8.3).

Check the state transition form the state STATE_IDLE (see Section

state STATE_PROCEEDING, driven by the message 1XX

4.5.2) to the state STATE_CALLING, driven by the message INVITE

function member Process() (see Section 6.8.82).
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The particular substeps of the first step are the following:

• Create the message INVITE by calling the function member Make-
InviteToTALMsg() of the class ExampleMessageFactory

• Send the message to the implementation under test
• Get the message code of the message that is retrieved from the TPL

mailbox
• Check it against the code of the message INVITE

The particular substeps of the second step are the following:

• Create the message 1XX by calling the function member
Make1XXToTAL() of the class ExampleMessageFactory

• Send the message to the implementation under test
• Get the message code of the message that is retrieved from the TU

mailbox
• Check the message code against the code of the message 1XX

The particular substeps of the third step are the following:

• Create the message 2XX by calling the function member
Make2XXToTAL() of the class ExampleMessageFactory

• Send the message to the implementation under test
• Get the message code of the message that is retrieved from the TU

mailbox
• Check the message code against the code of the message 2XX

Next, we construct the supplementary class ExampleMessageFactory.
The content of its declaration file, named ExampleMessageFactory.h, is the
following:

#ifndef _ExampleMessageFactory_FSM_

#define _ExampleMessageFactory_FSM_

#include “../constants.h”

#include “../kernel/fsm.h”

#include “../message/message.h”

class ExampleMessageFactory : public FiniteStateMachine {

int cseq_number;

Message SIPMsg;

sip_t *mes;

stringresponseBody;

public:

uint8* MakeInviteToTALMsg();

uint16 GetMsgCodeFromMBX(uint8 mbx);

uint8* Make1XXToTAL();
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uint8* Make2XXToTAL();

// FiniteStateMachine abstract functions

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

void SetDefaultFSMData();

void NoFreeInstances();

void Reset();

uint8 GetMbxId();

uint8 GetAutomate();

uint32 GetObject();

void ResetData();

public:

ExampleMessageFactory();

~ExampleMessageFactory();

void Initialize();

};

#endif

The content of the class ExampleMessageFactory definition file, named Exam-
pleMessageFactory.cpp, is the following (the parts that are not essential for this
example are omitted to keep the example short):

#include “ExampleMessageFactory.h”

#include “../parser/smsgtypes.h”

#include “../parser/smsg.h”

#define SipMessageCoding 0x00

extern char* IPString(unsigned int addr, char* buf, int len);

ExampleMessageFactory::ExampleMessageFactory() : FiniteStateMachine(16, 2, 3) {}

ExampleMessageFactory::~ExampleMessageFactory() {}

void ExampleMessageFactory::Initialize() {}

uint8* ExampleMessageFactory::MakeInviteToTALMsg(){

char temp[10];

char szHostName[255];

hostent* HostData;

uint8* recmsg;

uint8* msg;

...

PrepareNewMessage(0x00,INVITE);

SetMsgToAutomate(InviteClientTE_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParam(SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),

(uint8*) SIPMsg.getLastMessage().c_str());

AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);

SendMessage(InviteClientTE_FSM_MBX);

msg = GetMsg(InviteClientTE_FSM_MBX);

return msg;

}
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uint16 ExampleMessageFactory::GetMsgCodeFromMBX(uint8 mbx) {

uint8* msg;

uint16 msgCode;

msg = GetMsg(mbx);

msgCode = GetUint16((uint8*)(msg+MSG_CODE));

return msgCode;

}

uint8* ExampleMessageFactory::Make1XXToTAL(){

uint8* msg;

...

PrepareNewMessage(0x00,RESPONSE_1XX_T);

SetMsgToAutomate(TAL_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);

SendMessage(InviteClientTE_FSM_MBX);

msg = GetMsg(InviteClientTE_FSM_MBX);

return msg;

}

uint8* ExampleMessageFactory::Make2XXToTAL(){

uint8* msg;

SIPMsg.makeResponse(“200”,“OK”,responseBody,0);

PrepareNewMessage(0x00,RESPONSE_2XX_T);

SetMsgToAutomate(TAL_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParamDWord(SIP_PARSED_MESSAGE, (unsigned long) mes);

SendMessage(InviteClientTE_FSM_MBX);

msg = GetMsg(InviteClientTE_FSM_MBX);

return msg;

}

...

The main reason we must introduce the supplementary class ExampleMes-
sageFactory is because most of the functions defined in the FSM Library API
are protected, which means that they cannot be used in the tester class
directly. Alternately, as defined at the moment, CppUnit does not allow us
to use multiple-inheritance when we are defining tester classes. Rather, a
tester class may be derived only from the class that is defined by the macro
instruction CPPUNIT_NS::TestFixture.

The source code from the file ExampleMessageFactory.cpp should be obvious
by now. The only detail that deserves a short explanation is the method by
which we create messages. We use typical snippets of code, which start with
the PrepareNewMessage() function call and are followed with the series of
SetXX() and AddParamXX() function calls. The way we end these code snip-
pets may seem odd. First, we send the new message by calling the function
SendMessage() and immediately after that, we read that message from the
same destination mailbox by calling the function GetMsg(). Although it may
seem odd, this is the most effective method of creating the complete message
in the format that is expected by the function Process(). 
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Finally, we write the main module, named Main.cpp. This module creates
the collaboration of objects necessary to automatically execute the test suite
and report the results of its execution (Figure 5.9). The function main() per-
forms the following steps:

• Create the event manager and the test controller
• Add a listener that collects test results
• Add a listener that prints dots as test cases are executed (one dot

per test case)
• Add the top suite to the test runner
• Print the test results in a compiler-compatible format

The source code of the module Main.cpp follows:

#include <cppunit/BriefTestProgressListener.h>

#include <cppunit/CompilerOutputter.h>

#include <cppunit/extensions/TestFactoryRegistry.h>

#include <cppunit/TestResult.h>

#include <cppunit/TestResultCollector.h>

#include <cppunit/TestRunner.h>

int main(int argc,char* argv[]) {

CPPUNIT_NS::TestResult controller;

CPPUNIT_NS::TestResultCollector result;

controller.addListener(&result);

CPPUNIT_NS::BriefTestProgressListener progress;

controller.addListener(&progress);

CPPUNIT_NS::TestRunner runner;

runner.addTest(CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest());

runner.run(controller);

CPPUNIT_NS::CompilerOutputter outputter(&result,std::cerr);

outputter.write();

return result.wasSuccessful() ? 0 : 1;

}

FIGURE 5.9
The collaboration of objects necessary for the automatic execution of the CppUnit test suite.

controller

progress

result outpuller

runner
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As the result of the automatic test suite execution, we get the following report
on the monitor:

ExampleTestCase::example : OK

OK(1)

Press any key to continue...

Additionally, we will get the log file with the following content:

Fri Sep 16 19:32:50 2005

Msg To: UNKNOWN (0x02), Automate ID: 0x00000000

MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd

Received Msg: (0x0000), Length: 502  Coding type: 0

0f cd 02 ff | 00 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 f6 |

...

Start Timer:  (2)

State: 0 -> 1

-----------------------------------------------------

Fri Sep 16 19:32:50 2005

Msg To: UNKNOWN (0x02), Automate ID: 0x00000000

MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd

Received Msg: (0x0029), Length: 9  Coding type: 0

0f cd 06 ff | 29 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00 04 
00 | 50 9c 4c 00 | 00

Stop Timer:  (2)

State: 1 -> 2

-----------------------------------------------------

Fri Sep 16 19:32:50 2005

Msg To: UNKNOWN (0x02), Automate ID: 0x00000000

MsgFrom: UNKNOWN (0x0f), Automate ID: 0xcdcdcdcd

Received Msg: (0x002a), Length: 9  Coding type: 0

0f cd 06 ff | 2a 00 cd cd | cd cd 00 00 | 00 00 cd cd | cd cd 00 09 | 00 01 00 04 
00 | 50 9c 4c 00 | 00

State: 2 -> 0

-----------------------------------------------------

Each record of the log file indicates date and time, message source and
destination, message type, message length, message coding type, the content
of the message (in hexadecimal code), timer operations, and state transition
information (e.g., “0 -> 1” means a transition from the state S0 to the state
S1). By looking at this particular log file, we see that the implementation
under test behaves as expected. But normally we do not look at the log file
if all test cases pass. The real value of the log file is that it is of great help in
localizing bugs if a test case fails. Additionally, we could use the log file to
check the internal operation of the implementation under test automatically
by the tester class. We skipped that step to keep the example simple enough.

5.5.2 Example 2

This example illustrates one of the steps in the integration testing of the
SIP-based softphone. Imagine that the SIP invite client transaction and the
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transaction layer dispatcher have undergone complete unit testing. The next
normal step would be to integrate them into the final product. Furthermore,
imagine that TU and TPL are not yet developed. The only thing we can do
is to replace TU and TPL with their imitator classes, named UA_Test and
TLI_Test (TLI stands for Transport Layer Interface), respectively (see the
collaboration diagram in Figure 5.10).

The aim of this simple example is to check one particular interaction,
illustrated with the collaboration diagram in Figure 5.10. To achieve that
goal, we construct the class UA_Test that acts as a simple test driver and the
class TLI_Test that acts as a simple test stub. Both classes are derived from
the class FiniteStateMachine. The former class has a single state and a single
state transition, whereas the latter has two states and two state transitions.

The class UA_Test declaration file, named UA_Test.h, has the following
content:

#ifndef _UA_Test_FSM_

#define _UA_Test_FSM_

#include “../constants.h”

#include “../kernel/fsm.h”

#include “../message/message.h”

class UA_Test : public FiniteStateMachine {

FIGURE 5.10
The example of the integration testing collaboration.
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int cseq_number;

Message SIPMsg;

void SendInviteToTAL();

public:

enum States { STATE_INITIAL };

void Evt_Init_TIMER_TINV_EXP();

void Event_UNEXPECTED();

// FiniteStateMachine abstract functions

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

void SetDefaultFSMData();

void NoFreeInstances();

void Reset();

uint8 GetMbxId();

uint8 GetAutomate();

uint32 GetObject();

void ResetData();

public:

UA_Test();

~UA_Test();

void Initialize();

};

#endif

As mentioned above, the class UA_Test has a single state, named
STATE_INITIAL ,  and a single state transition function, named
Evt_Init_TIMER_TINV_EXP(). The class UA_Test definition file, named
UA_Test.cpp, has the following content (parts that are not essential are omit-
ted):

#include “UA_Test.h”

#include “../parser/smsgtypes.h”

#include “../parser/smsg.h”

#define SipMessageCoding 0x00

extern char* IPString(unsigned int addr, char* buf, int len);

UA_Test::UA_Test() : FiniteStateMachine(16, 2, 3) {}

UA_Test::~UA_Test() {}

void UA_Test::Initialize() {

SetState(STATE_INITIAL);

InitTimerBlock(TIMER_TINV,1,TIMER_TINV_EXPIRED);

InitEventProc(STATE_INITIAL,TIMER_TINV_EXPIRED,

(PROC_FUN_PTR)&UA_Test::Evt_Init_TIME_TINV_EXP);

InitUnexpectedEventProc(STATE_INITIAL,

(PROC_FUN_PTR)&UA_Test::Event_UNEXPECTED);

StartTimer(TIMER_TINV);

}

void UA_Test::Evt_Ini_TIMER_TINV_EXP() {

SendInviteToTAL();

}
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void UA_Test::SendInviteToTAL(){

char temp[10];

char szHostName[255];

hostent* HostData;

uint8* recmsg;

sip_t *mes;

...

PrepareNewMessage(0x00,INVITE);

SetMsgToAutomate(TAL_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParam((SIP_RAW_MESSAGE, SIPMsg.getLastMessage().length(),

(uint8*) SIPMsg.getLastMessage().c_str());

AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);

SendMessage(TAL_Disp_FSM_MBX);

}

...

The function Initialize() sets the FSM initial state, initializes the timer
TIMER_TINV to a 1-sec delay, sets the state transition functions, and starts
the timer TIMER_TINV. When the timer expires, the state transition function
Evt_Init_TIMER_TINV_EXP() is called. This function sends the INVITE mes-
sage to the transaction layer dispatcher (TAL_Disp) by calling the function
SendInviteToTAL(), which is very similar to the one given in the Example 1

stub class TLI_Test.
The class TLI_Test declaration file, named TLI_Test.h, has the following

content (parts that are not essential are omitted):

#ifndef _TLI_Test_FSM_

#define _TLI_Test_FSM_

#include “../constants.h”

#include “../kernel/fsm.h”

#include “../message/message.h”

class TLI_Test : public FiniteStateMachine {

...

Message SIPMsg;

sip_t *mes;

// Message management functions

void Send1XXToTAL();

void Send2XXToTAL();

public:

enum States {

STATE_INITIAL,

STATE_1XX_SENT

};

void Evt_Init_INVITE_T();

void Evt_1XXSent_TIMER_T2XX_EXP();

void Event_UNEXPECTED();

// FiniteStateMachine abstract functions

...

public:
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TLI_Test();

~TLI_Test();

void Initialize();

};

#endif

As mentioned above, the class TLI_Test has two states, named
STATE_INITIAL and STATE_1XX_SENT, and two state transition functions
named Evt_Init_INVITE_T() and Evt_1XXSent_TIMER_T2XX_EXP(). The
class TLI_Test definition file, named TLI_Test.cpp, has the following content
(parts that are not essential are omitted):

#include “TLI_Test.h”

#define SipMessageCoding 0x00

extern char* IPString(unsigned int addr, char* buf, int len);

TLI_Test::TLI_Test() : FiniteStateMachine(16, 2, 3) {}

TLI_Test::~TLI_Test() {}

void TLI_Test::Initialize() {

char szHostName[255];

hostent* HostData;

SetState(STATE_INITIAL);

InitTimerBlock(TIMER_T2XX,2,TIMER_T2XX_EXPIRED);

InitEventProc(STATE_INITIAL,INVITE,

(PROC_FUN_PTR)&TLI_Test::Evt_Init_INVITE_T);

InitEventProc(STATE_1XX_SENT,TIMER_T2XX_EXPIRED,

(PROC_FUN_PTR)&TLI_Test::Evt_1XXSent_TIME_T2XX_EXP);

InitUnexpectedEventProc(STATE_INITIAL,

(PROC_FUN_PTR)&TLI_Test::Event_UNEXPECTED);

// Problem specific part

...

}

void TLI_Test::Evt_Init_INVITE_T() {

Send1XXToTAL();

StartTimer(TIMER_T2XX);

SetState(STATE_1XX_SENT);

}

void TLI_Test::Evt_1XXSent_TIMER_T2XX_EXP() {

Send2XXToTAL();

}

void TLI_Test::Send1XXToTAL(){

uint8* recmsg;

recmsg = GetParam(SIP_RAW_MESSAGE);

...

SIPMsg.makeResponse(“100”,“Trying”,responseBody,0);

PrepareNewMessage(0x00,RESPONSE_1XX_T);

SetMsgToAutomate(TAL_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);
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SendMessage(TAL_Disp_FSM_MBX);

}

void TLI_Test::Send2XXToTAL(){

SIPMsg.makeResponse(“200”,“OK”,responseBody,0);

PrepareNewMessage(0x00,RESPONSE_2XX_T);

SetMsgToAutomate(TAL_Disp_FSM);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(0);

AddParamDWord((SIP_PARSED_MESSAGE, (unsigned long) mes);

SendMessage(TAL_Disp_FSM_MBX);

}

...

The function Initialize() sets the initial state, initializes the timer
TIMER_T2XX to a 2-sec delay, sets the state transition functions, and finishes
with some problem-specific initializations. The state transition function
Evt_Init_INVITE_T(), triggered with the reception of the message INVITE,
sends the preliminary response 100 (Trying) by calling the function
Send1XXToTAL(), starts the timer TIMER_T2XX, and changes its state to
STATE_1XX_SENT.  The  s ta te  t rans i t ion  func t ion
Evt_1XXSent_TIMER_T2XX_EXP(), triggered with the expiration of the
timer TIMER_T2XX, sends the final response 200 (OK) by calling the function
Send2XXToTAL().

The content of the main module, named test_main.cpp, is the following
(parts that are not essential are omitted):

#include <conio.h>

#include “kernel/fsmsystem.h”

#include “kernel/logfile.h”

#include “NewSIP/TAL_Disp.h”

#include “Test/UA_Test.h”

#include “Test/TLI_Test.h”

#include “NewSIP/InvClientTE.h”

FSMSystemWithTCP *pSys;

LogFile *lf;

TAL_Disp* pTALDisp;

TLI_Test* pTLI;

UA_Test* pUA;

InviteClientTE* pInviteCltTE[NUMBER_OF_TES];

DWORD thread_id;

HANDLE thread_handle;

...

DWORD WINAPI SystemThread(void *data){

FSMSystem *sysAutomate = (FSMSystem *)data;

sysAutomate->Start();

return 0;

}

int init(){

pSys = new FSMSystemWithTCP(11,11);

pTALDisp = new TAL_Disp();

pTLI = new TLI_Test();
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pUA = new UA_Test();

for (int i = 0; i < NUMBER_OF_TES; i++){

pInviteCltTE[i]= new InviteClientTE();

}

uint8 buffClassNo = 4;

uint32 buffsCount[4] = { 50, 50, 50, 50 };

uint32 buffsLength[4] = { 1025, 1025, 1025, 1025};

pSys->InitKernel(buffClassNo, buffsCount, buffsLength, 1);

lf = new LogFile(“log.log”, “log.ini”);

LogAutomateNew::SetLogInterface(lf);

pSys->Add(pTALDisp, TAL_Disp_FSM, 1, false);

pSys->Add(pInviteCltTE[0], InviteClientTE_FSM, 10, true);

pSys->Add(pTLI, TLI_Test_FSM, 1, false);

pSys->Add(pUA, UA_Test_FSM, 1, false);

for (i = 1; i < NUMBER_OF_TES; i++){

pSys->Add(pInviteCltTE[i], InviteClientTE_FSM);

}

thread_handle = CreateThread(NULL, 0, SystemThread, pSys,

THREAD_PRIORITY_ABOVE_NORMAL, &thread_id);

return 1;

}

...

void main (void){

parser_init();

init();

while(!kbhit());

exit_app();

}

As the result of the execution of the main module, we get the log file with
nine records that correspond to the messages that are exchanged between
implementations under test (transaction layer dispatcher and SIP invite cli-
ent transaction) and test driver (UA_Test) and test stub (TLI_Test). This file

times longer, hence not included here.
Test automation of integration tests based on log files is possible for simple

collaborations like the one shown in this example, although it may be cum-
bersome. However, if we must deal with more complex collaborations that
evolve concurrently, this approach is hardly applicable. Using log files in
such situations would normally require human intervention for checking
the results of the integration tests. Generally, we should try to use the style

for the integration of the parts of the system.

5.6 Further Reading

The reader can find more information related to this chapter in the references.
The first reference (Berard et al., 2001) contains a comprehensive coverage
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of the state-of-the-art model-checking techniques and tools. The second
(Newborn, 2001) provides detailed information on the theorem prover THEO
used in Section 5.3. The third (Popovic et al., 2001) provides a software
maintenance case study in the area of communication protocol engineering.
The fourth (Popovic and Velikic, 2005) contains more information on the
generic test case generator used in Section 5.5. Finally, the fifth reference
(Woit, 1994; Chapter 3 and Section 3.1.1, in particular) provides more infor-
mation on the reliability estimation model used in Section 5.5.
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6

 

FSM Library

 

The purpose of this chapter is to familiarize the reader with an example of
a real-world library for making families of communication protocols.
Although it is not perfect, it is in use and evolving. The main argument
against it may be that there are too few C++ classes with too many function
members. Alternately, this disadvantage is a tradeoff for a rather simple API,
which is quite easy to learn and use.

 

6.1 Introduction

 

The FSM library described in this book is created to be used as a working
environment for the implementation of groups of communication protocols.
The programmer has two basic classes at his or her disposal, namely, 

 

FSM-
System

 

 and 

 

FiniteStateMachine

 

. The class 

 

FSMSystem

 

 models a platform for
a group of communication processes (otherwise called finite state machines
or automata). An instance of this class interconnects individual communi-
cation processes by handling all of the resources needed for the operation
of individual finite state machines.

The class 

 

FiniteStateMachine

 

 models a generic communication process (i.e.,
communication protocol). Each individual communication protocol is rep-
resented by an instance of this class. The implementation of a particular
communication protocol is narrowed down to writing state-transition func-
tions in C++. The transition function comprises procedures that process the
message received in a given FSM state. This processing results in a transition
to a new FSM state and the optional generation of the corresponding out-
going messages. All state transition functions must be defined for all finite
state machines registered to a single FSM system (an instance of the class

 

FSMSystem

 

). Additionally, all the FSM system run-time elements must be
initialized properly before it can be successfully started.

The relationship between the classes 

 

FSMSystem

 

 and 

 

FiniteStateMachine

 

 is
a symbiosis — one cannot operate without the other. The FSM system clearly
represents just an infrastructure, or an unused platform. In reality, an FSM

 

9814_C006.fm  Page 307  Thursday, April 13, 2006  10:31 AM

© 2006 by Taylor and Francis Group, LLC



 

308

 

Communication Protocol Engineering

 

system is always used so that at least a couple of finite state machines are
registered to it, together representing a group of finite state machines.
Because of that and to achieve simplicity and brevity, we frequently use the
term “FSM system” as a synonym for the group of automata, assuming that
some individual automata are actually registered to it, and vice versa.
Although an instance of the class 

 

FiniteStateMachine

 

 cannot operate on its
own, we simply refer to it as a “finite state machine.”

 

6.2 Basic FSM System Components

 

The FSMSystem library is written in C++ using an object-oriented approach.
The basic components are written as C++ classes that provide functionality
of both individual finite state machines and a group of finite state machines.
These classes are the following:

 

• FiniteStateMachine

• FSMSystem

 

A class can inherit the functionality of a single finite state machine by
specializing the base class 

 

FiniteStateMachine

 

. The programmer implements
this class by writing the real functions for those declared as virtual, by adding
new problem-specific functions (e.g., state transition functions), and by
optionally overriding the inherited functions to redefine the functionality of
the base class.

A class can inherit the functionality of a group of finite state machines by
specializing the class 

 

FSMSystem

 

. Normally, this class is simply instantiated
as an oracle of a group of finite state machines.

 

6.2.1 Class

 

 FSMSystem

 

An instance of the class 

 

FSMSystem

 

 is an object representing a finite state
machine system, i.e., a group of finite state machines (a group of automata).
The protected attributes of this class represent the resources available for all
the automata included in a group of automata. The basic task of this class
is the initialization and management of FSMs, buffers (memory zones), mes-
sages, and timers. During a normal lifecycle of an instance of the class

 

FSMSystem

 

, its user typically performs the following steps or operations:

• Create FSM system
• Initialize FSM system
• Start FSM system
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• Stop FSM system

In the list above, the idiom “FSM system” represents an instance of the class

 

FSMSystem

 

.

 

6.2.1.1 FSM System Initialization

 

The initialization of the FSM system consists of the following steps:

• Create the FSM system — see the constructor 

 

FSMSystem()

 

• Create and initialize individual finite state machines — see the con-
structor 

 

FiniteStateMachine()

 

• Add individual finite state machines to the FSM system
• Initialize the FSM system
• Start FSM system logging

The constructor 

 

FSMSystem()

 

 requires two parameters:

• The number of types of finite state machines
• The number of mailboxes

Individual instances of the class 

 

FiniteStateMachine

 

 can be added to the
FSM system by using one of two the possible functions:

 

void Add(ptrFiniteStateMachine object, // Automata instance address

uint8 automataType, // Automata type

uint32 numOfObjects, // Number of instances

bool useFreeList = false); // List of free automata

void Add(ptrFiniteStateMachine object, // Automata instance address

uint8 automataType); // Automata type

 

The first of the overloaded functions above is used to add the first finite
state machine of each type. The other instances of the same type are added
using the second function.

The initialization of the FSM system kernel is performed by calling the
following function:

 

void InitKernel(uint8 buffClassNo, // Number of different types

uint32 *buffersCount, // Number of buffers per type

uint32 *buffersLength, // Buffer lengths per type

uint8 numOfMbxs=0, // Number of mailboxes

TimerResolutionEnum timerRes = Timer1s); // Timer resolution in ms

 

The parameters of the function 

 

InitKernel

 

 specify the number of buffer
types, the numbers of the instances of different types, their sizes, the number
of mailboxes to be used by the automata in a group, and the basic timer
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resolution. The default number of mailboxes is 0. The default basic timer
resolution is 1 sec (just as an example, it can be much smaller, e.g., 10 ms).

The FSM system logging functionality provides message content recording
in a sequence resulting from the evolution of the FSM system. These mes-
sages are recorded automatically into a file created at the FSM system startup.
The file 

 

log.ini

 

 is optional and is used to define textual titles (names) of the
messages exchanged among the finite state machines included in the corre-
sponding FSM system. If 

 

log.ini

 

 file is defined, the message binary codes are
substituted by the corresponding message names, thus making the log files
human readable. On Windows® machines, the 

 

log.ini

 

 file must be placed in
the system folder (

 

c:\winnt

 

 or 

 

c:\windows

 

). The format of this file is the
following:

 

[AUTOMATA]

1=AUTOMATA1_FSM

2=AUTOMATA2_FSM

SequenceNumber=AUTOMATA_TYPE

[MESSAGES]

0=0xe000,MSG_1,0

1=0xe002,MSG_2,0

SequenceNumber=MSG_CODE,TEXT_TITLE,0

 

A typical example is the following:

 

#define NO_BUFFERS 3

#define NO_AUTOMATA_1 5

#define NO_AUTOMATA_2 9

...

// Definition of buffers: three types, where number of buffers per type

// is 50, 30, and 20, and their lengths are 128, 256, and 512 bytes,

// respectively.

uint8 buffClassNo = NO_BUFFERS;

uint32 buffersCount[NO_BUFFERS] = {50,30,20};

uint32 buffersLength[NO_BUFFERS] = {128,256,512};

// Create FSM system that has two automata types and uses

// two mailboxes (one mailbox per each automata type)

FSMSystem *fsmSystem = new FSMSystem(2,2);

// Create individual automata

Automata1 *automata1 = new Automata1[NO_AUTOMATA_1];

Automata2 *automata2 = new Automata2[NO_AUTOMATA_2];

// Add individual automata to FSM system and implicitly initialize each

// automata instance by calling its function Initialize(). This call is

// made from the function Add.

fsmSystem->Add(&automata1[0],AUTOMATA1_FSM,NO_AUTOMATA_1,false);

for((i=1; i<NO_AUTOMATA_1; i++))

fsmSystem->Add(&automata1[i],AUTOMATA1_FSM);

fsmSystem->Add(&automata2[0],AUTOMATA2_FSM,NO_AUTOMATA_2,true);
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for((i=1; i<NO_AUTOMATA_2; i++))

fsmSystem->Add((&automata2[i],AUTOMATA2_FSM);

// Initialize kernel

fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,2);

// Create and set logging system (log file name, message definition file)

lf = new LogFile(“log.log”, “log.ini”);

LogAutomataNew::SetLogInterface(lf);

...

 

The example above starts with the definition of the number of buffer types.
In this example, three buffer types are defined (i.e., small, medium, and large
buffers) by setting the symbolic constant 

 

NO_BUFFERS

 

 value to 3. Next, we
define the number of instances of two automata types by setting the values
of symbolic constants 

 

NO_AUTOMATA_1

 

 to 5 and 

 

NO_AUTOMATA_2

 

 to 9.
This means that five instances of the first automata type and nine instances
of the second automata type will exist in the group of automata we are going
to create.

Next, the program paragraph defines the number of buffers, as well as
their size, for each buffer type. Fifty small buffers of size 128 bytes, thirty
medium buffers of size 256 bytes, and twenty large buffers of size 512 bytes
would be used. The number of buffer types is stored in the variable 

 

buff-
ClassNo

 

. The number of buffers of each type and their lengths are stored in
the arrays 

 

buffersCount

 

 and 

 

buffersLength

 

.
We then create the FSM system by calling the constructor of the class

 

FSMSystem

 

. This constructor has two parameters: the number of automata
types and the number of mailboxes to be used by the system for its own
purposes. Next, we create two groups of automata of two different types. In
the program, these groups are represented as arrays of instances of classes,
namely, the classes 

 

Automata1

 

 and 

 

Automata2

 

. In this example, we assume
that these classes have already been defined by extending the base class

 

FiniteStateMachine

 

.
After creating two groups of automata of different types, all the automata

are added to the already created FSM system. The first instance of each
automata type is added by calling the overloaded function 

 

Add

 

 with the first
type of signature, which specifies the instance address, the instance type, the
total number of instances of this type, and the indicator specifying if a list
of free automata of this type exists or not. The rest of the instances are added
by calling the overloaded function 

 

Add

 

 with the second type of signature,
specifying just the instance address and its type.

The first automata type in this example does not have a list of free auto-
mata, whereas the second type does have a list of free automata. This means
that the instance of the second automata type can be viewed as a pool of
resources of the same type. They may be dynamically allocated to be engaged
in a certain communication scenario. When a programmer decides to use
this opportunity, he must provide the function 

 

NoFreeInstance

 

, which is called
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when the dynamic allocation request cannot be satisfied, because no more
free automata instances of that type are found.

The FSM system is initialized by simply calling its function 

 

InitKernel

 

. The
parameters of this function specify the number of buffer types, the number
of buffers of each type, their sizes, and the number of mailboxes to be used
for FSMs. Normally, we use one mailbox per each automata type. This is not
a restriction imposed by the class 

 

FSMSystem

 

, it is simply a convention. Other
arrangements are also allowed; for example, we can create more mailboxes
for messages of different priorities, or we can create additional mailboxes
dedicated to communication between the given groups of automata types.
Most generally, we can use mailboxes just as queues of any kinds of mes-
sages. Because the last parameter of the function 

 

InitKernel

 

 is omitted, the
timer resolution is set to its default value (1 sec, in this example).

At the end of this example, we create and set the logging system by calling
its constructor 

 

LogFile

 

 and the function 

 

SetLogInterface

 

, respectively. The para-
meters of the constructor specify the name of the log file (

 

log.log

 

) as well as
the name of the file containing the textual names of the messages (

 

log.ini

 

).
The parameter of the function 

 

SetLogInterface

 

 specifies the logging system
interface, which generally is a file. In this example, the disk file is named

 

log.log

 

 but it could be any file, including special files representing devices
handled by the corresponding device drivers, such as 

 

/dev/lpt

 

 or 

 

/dev/com1

 

.

 

6.2.1.2 FSM System Startup

 

The FSM system is started by calling its function 

 

Start

 

. Most frequently, this
function is called by the thread assigned to the FSM system. Here is an
example:

 

DWORD WINAPI FsmSystemThreadFunc((void* param)){

try {

fsmSystem->Start();

}

catch(...){

OutputDebugString(‘Exception — terminating FSM system\n’);

return 0;

}

OutputDebugString(‘FSM system terminated\n’);

return 0;

}

...

// Somewhere in the main function

DWORD fsmSystemThreadId;

CreateThread(NULL,0,FsmSystemThreadFunc,0,0,fsmSystemThreadId);

...

 

In the example above, we start the FSM system by calling its function 

 

Start

 

from the thread function 

 

FsmSystemThreadFunction

 

. We assume that thread
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has already been created and that its identification is stored in the variable

 

fsmSystemThreadId

 

.

 

6.2.2 Class 

 

FiniteStateMachine

 

All the automata added to the FSM system are implemented by extending
the base class 

 

FiniteStateMachine

 

. This class defines a set of virtual functions
that must be defined by the programmer. These functions are the following:

 

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

uint8 GetMbxId();

uint8 GetAutomata();

void SetDefaultFSMData();

void NoFreeInstances();

void Initialize();

 

The following example illustrates the most frequently used definitions of

 

FiniteStateMachine

 

 functions. The detailed description of all the functions is
given in Section 6.8 describing API functions.

 

// This function returns the message interface for the given interface ID.

// It is assumed that standardMsgCoding is defined as:

// StandardMessage standardMsgCoding;

MessageInterface *Automata::GetMessageInterface(uint32 id){

switch(id){

case 0x00:

return &standardMsgCoding;

// Other definitions

// case 0x01:

// case 0x02:

}

throw TErrorObject(__LINE__,__FILE__,0x01010400);

}

// This function fills in the message header.

void Automata::SetDefaultHeader(uint8 infoCoding){

SetMsgInfoCoding(infoCoding);

SetMessageFromData();

}

// This function defines the mailbox number (ID) to be used as default

// by the automata of the type defined by this class.

uint8 Automata::GetMbxId(){

return AUTOMATA_MB_ID;

}

// This function returns the number (ID) which identifies the automata

// type defined by this class.

uint8 Automata::GetAutomate(){

return AUTOMATA_TYPE_ID;

 

9814_C006.fm  Page 313  Thursday, April 13, 2006  10:31 AM

© 2006 by Taylor and Francis Group, LLC



 

314

 

Communication Protocol Engineering

 

}

// This function sets the values of the instance attributes.

void Automata::SetDefaultFSMData(){

attribut1 = VALUE_1;

attribut2 = VALUE_2;

}

// This function is called if there are no more free automata of this

// type. It may be used if the instances of this class have been added to

// the FSM system with the parameter useFreeList set to value true.

void Automata::NoFreeInstances(){

// The activity if there are no free automata of this type.

}

// This function defines state transition functions and timers to be used

// by the automata of this type. It is called by the function Add, which

// is used to add an automata instance to the given FSM system.

// It is assumed that state transition functions are declared and defined

// elsewhere.

void Automata::Initialize(){

// Here we place a series of initializations:

// InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);

// InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);

// InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);

InitEventProc(IDLE, MSG_SEND, (PROC_FUN_PTR) &Automata::Idle_MsgSend);

InitEventProc(IDLE, MSG_RCV,  (PROC_FUN_PTR) &Automata::Idle_MsgReceive);

InitEventProc(SEND, MSG_NEW,  (PROC_FUN_PTR) &Automata::Send_MsgNew);

InitEventProc(SEND, MSG_END,  (PROC_FUN_PTR) &Automata::Send_MsgEnd);

InitEventProc(IDLE, T200_CODE,(PROC_FUN_PTR) &Automata::T200Expired);

InitUnexpectedEventProc(IDLE, (PROC_FUN_PTR) &Automata::Idle_Unexpected);

InitUnexpectedEventProc(SEND, (PROC_FUN_PTR) &Automata::Send_Unexpected);

InitTimerBlock(T200,T200_VALUE,T200_CODE);

}

 

In the example above, we would like to create the class 

 

Automata

 

 that
models one type of finite state machines (automata). The definition of the
class comprises the definitions of its function members. The function member

 

GetMessageInterface

 

 returns the object that embodies the coding of the mes-
sages to be used by the instances of the class 

 

Automata

 

. In this example, it
is an instance of the class 

 

StandardMessage

 

.
The member function 

 

SetDefaultHeader

 

 is used to automatically fill in the
message header defaults. Normally, these are the data about the automata
instance that has created the message to send to some other automata
instance. In this example, it uses the function 

 

SetMsgInfoCoding

 

 to specify
the type of the coding to be applied. It also uses the function 

 

SetMessage-
FromData

 

 to specify the type of the originating automata instance, the iden-
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tification of the group to which the automata instance belongs, and the
identification of the originating automata instance.

The member function 

 

GetMbxId

 

 returns the identification of the mailbox
used by the automata instance of this type. In this example, it is the value
of the symbolic constant 

 

AUTOMATA_MBX_ID

 

. The member function

 

GetAutomata

 

 returns the identification of the automata type. It is the value
of the symbolic constant 

 

AUTOMATA_TYPE_ID

 

. The member function 

 

Set-
DefaultFSMData

 

 is used by the automata instance to set its specific data
before it commences its normal operation. In this example, 

 

attribute1

 

 is set
to the value 

 

VALUE_1

 

 and 

 

attribute2

 

 is set to the value 

 

VALUE_2

 

.
The member function 

 

NoFreeInstances

 

 can be used to specify the action to
be performed if no more free automata instances of this type are found, e.g.,
to make a small system restart, allocate some additional automata instances,
and so on. This mechanism is available to the programmer if the instances
of automata have been added (function 

 

Add

 

) to the FSM system with the
parameter 

 

useFreeList

 

 set to the value 

 

true

 

.
The member function 

 

Initialize

 

 is used to define automata state transition
functions and timers (referred to as timer blocks throughout the FSM library
documentation) to be used by the automata. The FSM library distinguishes
two types of events, expected and unexpected, and allows the programmer
to specify the corresponding event handlers, which are just specialized C++
functions. These handlers are defined by calling the registration functions,
namely, the function 

 

InitEventProc

 

 for the expected events and the function

 

InitUnexpectedEventProc

 

 for the unexpected events. The parameters of both
of these functions specify the state code, the event (message) code, and the
pointer to the event handler.

In this example, we have defined seven automata state transition functions
altogether, five of them triggered by the expected events and two triggered
by the unexpected events. The part of the automata shown in the example
has two states, 

 

IDLE

 

 and 

 

SEND

 

. The expected events in the state 

 

IDLE

 

 are

 

MSG_SEND

 

, 

 

MSG_RCV

 

, and 

 

T200_CODE

 

. The corresponding event han-
dlers are 

 

Idle_MsgSend, Idle_MsgReceive, and T200Expired, respectively. Two
legible events exist in the state SEND, MSG_NEW and MSG_END. The
corresponding handlers are Send_MsgNew and Send_MsgEnd. The unex-
pected event handler for the state IDLE is Idle_Unexpected whereas for the
state SEND it is Send_Unexpected. The corresponding state transition table is
shown in Table 6.1. 

TABLE 6.1

Example of a State Transition Table

MSG_RCV MSG_SEND T200_CODE MSG_NEW MSG_END ?

Idle Idle_MsgReceive Idle_MsgSend T200Expired Idle_
Unexpected

Send Send_
MsgNew

Send_
MsgEnd

Send_
Unexpected
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The timers are initialized by calling the function InitTimerBlock. The para-
meters of this function specify the unique timer identification, its duration
(as the number of basic timer resolution units), and the code of the message
sent when the timer expires. In the example above, these are the symbolic
constants T200, T200_VALUE, and T200_CODE.

To sum, automata states and attributes are defined in accordance with the
problem at hand. The state transition function, referred to as the event
handler, is called upon the reception of a given message in a given state, as
defined by the function Initialize. Each event handler is defined as a class
member function responsible for handling a given event.

The timers to be used by the automata are defined also by the function
Initialize. This is done by calling the function InitTimerBlock, which in turn
creates the internal kernel timer block (essentially a program object) and fills
in its identification, duration, and the corresponding timer message code.

6.3 Time Management

In the previous section, automata timers are initialized during the FSM
system startup by the function Initialize. The automata type that uses timers
in its regular operation manages them through the corresponding FSM
library API functions, which maintain the internal kernel object behind the
scenes. The API functions are the following:

void InitTimerBlock(uint16 tmrId,uint32 count,uint16 signalId);

void StartTimer(uint16 tmrId);

void StopTimer(uint16 tmrId);

void RestartTimer(uint16 tmrId)

bool IsTimerRunning(uint16 tmrId);

The function InitTimerBlock is used to define (initialize) the timer. Its para-
meters specify the unique timer identification, its duration as a multiple of
the basic timer resolution unit, and the code of the message sent to the
automata mailbox when the timer expires. This is explained in the previous
section. Notice that each timer has the unique identification tmrId used as a
parameter of all the API functions to identify the timer.

Each API function represents a primitive timer operation. The function
StartTimer is used to start the timer, the function StopTimer stops the timer,
the function RestartTimer restarts the timer, and the function IsTimerRunning
is used to check if the timer is running or not.

The following example illustrates the usage of these primitives:

if(!IsTimerRunning(T200)){

StartTimer(T200);

}
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else

StopTimer(T200);

...

A normal timer life cycle has the following phases:

• Define, i.e., initialize the timer
• Use the timer by alternative application of the following primitives:

• Start (applicable if the timer is not running, hence either newly
defined or previously stopped)

• Stop (applicable if the timer is running)
• Restart (logically equivalent to Stop plus Start)
• IsTimerRunning (returns true if it does, otherwise returns false)

6.4 Memory Management

Because the main application of the FSM library is in real-time systems, efficient
memory allocation must be provided. The FSM library does not rely on the
hosting operating system because some of the operating systems suffer from
memory fragmentation problem. Furthermore, in some applications on bare
machines, the operating system may not even be available. Because of that,
memory management is one of the main functions of the FSM library.

The working memory is partitioned into certain zones referred to as buff-
ers. The programmer defines the number of different buffer types, the num-
bers of buffers of each type, and their sizes. The programmer specifies this

library kernel in its turn creates them as its own internal objects.
The buffers are most frequently used indirectly through message management

(message create, send, receive, and similar operations) and timer operations
(timer definition and usage operations). Besides this indirect buffer usage, the
buffers can be managed directly if needed through the following API functions:

uint8 *GetBuffer(uint32 length);

void  RetBuffer(uint8 *buff);

bool  IsBufferSmall(uint8 *buff,uint32 length);

uint32 GetBufferLength(uint8 *buff);

The programmer requests a buffer by calling the function GetBuffer. The
parameter of this function is the minimal size of the desired buffer. All the
buffers provided by the kernel must be returned to it by calling the function
RetBuffer. Untidy memory management can cause buffer loss, commonly
referred to as memory leak, which may cause irregular kernel operation and
a system crash.
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Besides the memory allocation (malloc) and free primitives, two additional
primitives provide the information about the buffer already allocated to the
finite state machine. The function IsBufferSmall checks if the buffer size is
smaller than the value of its parameter. If yes, it returns true, otherwise, it
returns false. Another function, named GetBufferLength, returns the buffer
size in octets (bytes).

The following example illustrates the usage of the buffer management
primitives:

// We define two buffer types, small and large.

// There are ten small buffers and fifteen large buffers.

// The small buffer size is 128 bytes. The large buffer size is

// 256 bytes.

uint8 buffClassNo = 2;

uint32 buffersCount[2] = {10,15};

uint32 buffersLength[2] = {128,256};

...

// Kernel initialization (noMBX is irrelevant in this example)

fsmSystem->InitKernel(buffClassNo,buffersCount,buffersLength,noMBX);

...

uint32 bufferLength;

uint8 *pointer = GetBuffer(100);

if((IsBufferSmall(pointer,129)){

RetBuffer(pointer);

pointer = GetBuffer(129);

}

if((pointer != NULL))

bufferLength = GetBufferLength(pointer);

...

In the example above, we first define two buffer types — small and large
— by calling the function InitKernel. Its fourth parameter (noMBX, the num-
ber of the mailboxes) is not relevant for this example. The rest of the program
illustrates the usage of FSM library’s buffer management functions. First,
the program asks for a buffer not smaller than 100 bytes, then it checks if
this buffer is smaller than 129 bytes. If yes, it returns the allocated buffer
and requests a new one not smaller than 129 bytes (in this example, it will
get one large buffer of size 256 bytes). At the end, the program checks if the
pointer is defined, which also means that it points to a certain buffer. If it is
defined, the program asks for its size by calling the function GetBufferLength.

6.5 Message Management

The main communication among individual automata included in the FSM
system is achieved through the messages exchanged through the mailboxes
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typically assigned to the individual automata. The message sent from the
originating automata instance towards the destination automata instance is
placed temporarily in the mailbox assigned to the destination automata
instance. There it waits to be taken over and subsequently processed by the
destination automata instance (process).

As already mentioned, a mailbox is a message queue that can contain
messages for any automata type, thus it does not need to be assigned to
some particular automata type. In contrast to a typical paradigm, it can be
used as a general message queue shared by more destination automata.
Essentially, in such a paradigm the source automata instance can put the
message in any mailbox hosted by the FSM system and it will eventually be
delivered to its proper destination.

This message routing and delivery is performed automatically by the FSM
system and is hidden from the automata, which are just service users. The
FSM system has an abstraction of the mailbox from which it takes messages,
one at a time (mailbox abstraction provides buffering functionality by
employing the FIFO memory type). Upon the reception of each individual
message, the FSM system consults the message header to determine the
destination automata instance and passes the message to it. The destination
automata instance looks up the message code and, based on the current
automata state, calls the appropriate automata state transition function.

Message reception is completely transparent for the programmer writing
the program code for the finite state machine. The above mechanism is
absolutely hidden from him. The programmer must simply accept that the
message reception and its classification are done automatically by the sys-
tem. He just writes the message processing functions that are called auto-
matically by the system upon the reception of the corresponding message.

The API functions can be partitioned into two groups:

• The functions that work with the received message
• The functions that work with the new message that must be pre-

pared and sent

The functions in the first group are used to provide the information about
the originating automata instance. The source of this information is the
message header and the values of the message parameters. The functions in
the second group provide primitives needed to make and send a message:

• Buffer allocation (indirect call to GetBuffer primitive)
• Filling the message header with the data about the originating auto-

mata instance
• Adding the message parameters and setting them to the given values
• Sending the message to the mailbox assigned to the destination

automata instance
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The messages may be sent only from a finite state machine or a FSM
system. Note that during normal system operation, a FSM system does not
send any messages. In this context, a finite state machine is an instance of
the class FiniteStateMachine, or a class derived from it, and an FSM system
is an instance of the class FSMSystem.

Example 1:
// Get parameter of type PARAM_1 from the received message.

// The size of PARAM_1 is WORD.

WORD word;

GetParamWord(PARAM_1,word);

// Get parameter of arbitrary size. Maximum size for StandardMessage is

// 256 bytes. If that is not sufficient, a programmer must derive a new

// class and redefine its functions.

uint8 *pointer;

uint8 text[300];

uint8 msgLength;

pointer = GetParam(TEXT);

if(pointer != NULL){

// StandardMessage format: bytes 1 and 2 contain parameter name,

// byte 3 contains parameter length in bytes,

// byte 4 and further contain the parameter itself.

memcpy(text,pointer+3,*((pointer+2)));

// Make a string by placing null at the end of character array.

memset(text+(*((pointer+2))),0x00,1);

}

The example above shows how the programmer can get a parameter from
the current message. A current message is the last message received by the
automata instance, i.e., it is the last message taken from the mailbox and
assigned to the automata instance for processing. The parameter size is
WORD (2 bytes). First, the programmer declares the variable word in which
he wants to store the parameter value.

The message can contain many parameters, therefore the programmer
must specify the unique identifier of the parameter he wants to get. In this
example, the identifier is the value of the symbolic constant PARAM_1.
Finally, a copy of the desired parameter is provided by calling the API
function GetParam. The first parameter of this function is the parameter
identifier (PARAM_1) and the second is the variable (word) in which the
desired parameter is to be copied.

The second part of the example above demonstrates how the programmer
may handle textual parameters of arbitrary size. The StandardMessage format
prescribes that the first 2 bytes of such a parameter are reserved for the
parameter name, the next byte is used for the parameter length (in bytes), and
the rest of the bytes in the parameter represent its value. The example shows

9814_C006.fm  Page 320  Thursday, April 13, 2006  10:31 AM

© 2006 by Taylor and Francis Group, LLC



FSM Library 321

how a copy of such a parameter can be provided and how a null terminated
string can be constructed by adding the NULL character at its end.

Example 2:
...

// PrepareNewMessage parameters: buffer size and message type.

PrepareNewMessage(0xAA,MSG_NAME);

// Fill in the message header:

// destination automata type, its ID, and optionally its group ID.

SetMsgToAutomata(AUTOMATA_TYPE);

SetMsgObjectNumberTo(automataId);

SetMsgToGroup(INVALID_08);

// Add parameters: see also other AddParam functions.

AddParamByte(PARAM_1,byte);

AddParamWord(PARAM_2,word);

AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to the specified mailbox.

SendMessage(AUTOMATA_MBX_ID);

The example above shows a common way to construct and send a message.
The first step is to call the function PrepareNewMessage. The parameters of
this function specify the expected buffer size (0xAA in this example) and the
message name, which also specifies the message type (MSG_NAME).

Next, we fill in the message header by calling the following functions:

• SetMsgToAutomata: set the destination automata instance type
(AUTOMATA_TYPE)

• SetMsgObjectNumberTo: set the destination automata instance iden-
tification (automataId)

• SetMsgToGroup: set the automata instance group identification
(INVALID_08)

We then add three message parameters by calling the members of the
AddParam family of functions. The first function shown in the example is
AddParamByte. Its parameters specify the unique parameter identifier
(PARAM_1) and the variable containing the value of the parameter to be
copied to the corresponding field of the message (byte). The second function
is AddParamWord. Similarly, its parameters specify the parameter iden-
tification (PARAM_2) and the variable holding its value (word). The last
function is AddParam. The parameters of this function specify the parameter
identification (PARAM_3), its length (parameterLength), and a pointer to it
(parameterPointer).

At the end of the example above, we send the message by calling the
function SendMessage. The parameter of this function specifies the destina-
tion mailbox identification (AUTOMATA_MBX_ID).
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Example 3:
// Send a message from the FSM system.

uint8 *msg = GetBuffer(messageInfoLength+MSG_HEADER_LENGTH);

// infoBuffer must be properly formatted.

memcpy(msg+MSG_HEADER_LENGTH,infoBuffer,infoBufferLength);

SetMsgFromAutomata(AUTOMATA_TYPE_FROM_ID,msg);

SetMsgFromGroup(INVALID_08,msg);

SetMsgObjectNumberFrom(automataFromId,msg);

SetMsgToAutomata(AUTOMATA_TYPE_TO_ID,msg);

SetMsgToGroup(INVALID_08,msg);

SetMsgObjectNumberTo(automataToId,msg);

SetMsgInfoCoding(0,msg);// 0 = StandardMessage

SetMsgCode(MSG_FROM_SYSTEM_AUTOMATA,msg);

SetMsgInfoLength(infoBufferLength,msg);

SendMessage(AUTOMATA_TO_MBX_ID,msg);

...

The example above shows how a message can be created and sent within
the FSM system. This process is done through the following steps:

• Allocate a buffer by calling the function GetBuffer.
• Copy the information payload.
• Fill in the data about the originating automata instance by calling

the function SetMsgFromAutomata fill in the originating automata
instance type identification (AUTOMATA_TYPE_FROM_ID); by
calling the function SetMsgFromGroup, fill in the originating auto-
mata instance group identification (INVALID_08); and by calling the
function SetMsgObjectNumberFrom, fill in the automata instance
identification (automataFromId).

• Fill in the data about the destination automata instance. The function
SetMsgToAutomata sets the destination automata instance type iden-
tification (AUTOMATA_TYPE_TO_ID), the function SetMsgToGroup
sets the destination automata instance group identification
(INVALID_08), and the function SetMsgObjectNumberTo sets the des-
tination automata instance identification (automataToId).

• Finalize the message. The function SetMsgInfoCoding sets the type
of coding (StandardMessage), the function SetMsgCode sets the mes-
sage code (MSG_FROM_SYSTEM_AUTOMATA), and the function
SetMsgInfoLength sets the payload length (infoBufferLength).

• Send message by calling the function SendMessage with the second
type of the signature. The parameters of this function specify the
destination mailbox identification (AUTOMATA_TO_MBX_ID) and
the pointer to the message to be sent (msg).
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6.6 TCP/IP Support

One of the primary design goals of creating the FSM library was to support
the design of scalable applications based on distributed processing. The FSM
library enables both single-processor and multiprocessor applications. In the
former case, all groups of automata execute in a single processor. They share
processor resources, such as its processing unit, operating memory, flash,
and so on. The automata communicate over the mailboxes placed in the
common operating memory.

In the latter case, various groups of automata are deployed on more pro-
cessors, which can be logically viewed as a multiprocessor system. The
groups of automata execute on different processors in parallel and use the
mailboxes physically located in separate operating memories. The FSM
library transparently uses the network infrastructure to pass messages
among the communicating automata. Most frequently, the communication
infrastructure is TCP/IP technology.

In both cases, the communicating automata are unaware of the real phys-
ical infrastructure because the physical details are hidden from them. This
is accomplished by providing a unique API. An individual automata instance
manages just its timers, buffers, and messages (new and current, i.e., last
received). The rest is handled by the FSM library kernel behind the scenes.
This means that the FSM library inherently provides implicit support for
TCP/IP. For example, if an automata instance wishes to send a message to
some other automata instance physically located on a different machine, it
just prepares the message and calls the API function SendMessage. The class
FSMSystem takes care of transporting the message over the TCP/IP network
and placing it in the local mailbox assigned to the destination automata.

As far as individual automata based on the FSM library need to commu-
nicate only among themselves, implicit TCP/IP support is sufficient. The
need to communicate with other program components that are not based on
the FSM library and that use TCP/IP sockets directly leads to the require-
ment for explicit TCP/IP support. To fulfill that requirement, the FSM library
also provides explicit (in addition to implicit) TCP/IP support in a form of
traditional TCP/IP socket abstraction. Of course, the automata instance that
uses these additional API features must be aware and capable of handling
details of TCP/IP communication (IP addresses and port numbers).

Explicit TCP/IP support is provided by two additional classes, namely,
FSMSystemWithTCP and NetFSM. These two classes enable the FSM library-
based automata to directly communicate over the TCP/IP protocol stack
with other FSM library based automata or with other TCP/IP program
components, e.g., Web server, SIP client. As their names suggest, the class
FSMSystemWithTCP is used instead of the class FSMSystem, and the class
NetFSM is a logical counterpart of the class FiniteStateMachine.
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6.6.1 Class FSMSystemWithTCP

The class FSMSystemWithTCP is derived from the class FSMSystem by
extending it with support for communication over the TCP/IP family of
protocols. It inherits the basic functionality of the base class, which has been

In contrast to single-processor applications, distributed applications com-
prise parts (i.e., groups of automata) that are started independently. Because
of this, two groups of automata executing on different processors must
establish a TCP/IP connection at their startup. The connection establishing
procedure is symmetric: This means that either side of the party — or both
— must start their local TCP servers by calling the function InitTCPServer.
The opposite side establishes the connection by calling the function estab-
lishConnection.

Example:
// In processor 1 (server)

//

// Initialize kernel.

fsmSystem1->InitKernel(buffClassNo,buffersCount,buffersLength,2);

// Initialize TCP/IP server on port number 5000.

// NetFSM_Automata1 is derived from NetFSM.

fsmSystem1->InitTCPServer(5000,NetFSM_Automata1);

// In processor 2 (client)

//

// Set server TCP/IP parameters (port, IP address).

// Establish the connection.

fsmSystem2.setPort(5000);

fsmSystem2.setIP("192.168.77.77");

fsmSystem2.establishConnection();

...

This example shows the code excerpts for the TCP/IP server and client
machines, named processor 1 and processor 2. At startup, the server initial-
izes the FSM library kernel by calling the function InitKernel (its parameters
are the number of buffer types, their count, length, and the number of the
mailboxes to be used). Next, it calls the function InitTCPServer to start the
TCP/IP server.  We assumed in  this  example  that  the  c lass
NetFSM_Automata1 is derived from the class NetFSM.

Alternately, the client sets the TCP port number (5000) by calling the
function setPort and the IP address of the TCP server (192.168.77.77) by
calling the function setIP, and establishes the connection with the server by
calling the function establishConnection.
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6.6.2 Class NetFSM

The class NetFSM is derived from the base class FiniteStateMachine by extend-
ing its basic functionality with support for the communication over TCP/IP
infrastructure. The inherited basic functionality has been described previ-

functionality is extended with the abstraction enabling TCP/IP communi-
cation by adding three new function members. The new functions are the
following:

virtual void convertFSMToNetMessage()=0;

virtual uint16 convertNetToFSMMessage()=0;

virtual uint8 getProtocolInfoCoding()=0;

These functions are used to convert the internal message format (abbrevi-
ated as FSM) into external, or network message format (abbreviated as Net),
and vice versa. Normally, automata executing in the same processor
exchange internal messages coded in internal message format. However, this
message format is not suitable for transmission over the network. Most
commonly, the message must be serialized, i.e., transformed from data object
and structure form into the external message in accordance with a given
external message format. This is a series of bits, sometimes grouped in octets
or words, that are transmitted over the communication line.

The functions listed above are virtual functions and therefore the program-
mer must define them while he writes a class that is derived from the class
NetFSM. The message format conversion functions naturally read a message
from some input buffer, convert it into a requested format, and write the
output to an output buffer.

The function convertFSMToNetMessage is not intended to be used directly
by the communicating automata but rather to be called internally by the
FSM library kernel to convert an internal message into the external one before
it can be sent over the network. Therefore, the input of this function is the
internal message and its output is the corresponding output message. The
parameters of this function specify the pointer to the internal message fsm-
MessageS, its length fsmMessageLength, the pointer to the output, the external
message protocolMessageS, and its length sendMsgLength. The programmer
must specify the mapping algorithm by writing this function.

Symmetrically, the function convertNetToFSM is intended to be used by the
FSM library kernel to convert an external message received over the network
into an internal message representation, which must be delivered to the local
mailbox and processed further by the corresponding local automata. The
input of this function is the external message and the output is the internal
message. The parameters of this function specify the pointer to the external
message protocolMessageR, its length receivedMessageLength, the pointer to the
output, internal message fsmMessageR, and its length fsmMessageRLength.

The function getProtocolInfoCoding returns the code of the type of external
information coding. An instance of the class NetFSM, referred to as net
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automata, initiates the transmission of the message across the TCP/IP net-
work by calling the function sentToTCP. This function may throw an excep-
tion in the case of an error, e.g., when net automata wants to send a message
after the TCP connection has been closed.

Example:
// PrepareNewMessage parameters: buffer size and message type

PrepareNewMessage(0xAA,MESSAGE_NAME);

// Fill in message header:

// destination automata type, its ID, and its group ID (if relevant)

SetMsgToAutomata(AUTOMATA_TYPE);

SetMsgObjectNumberTo(automataId);

SetMsgToGroup(INVALID_08);

// Add parameters.

AddParamByte(PARAM_1,byte);

AddParamWord(PARAM_2,word);

AddParam(PARAM_3,parameterLength,parameterPointer);

// Send message to local mailbox:

// SendMessage(AUTOMATA_MBX_ID);

// or send it over TCP/IP network:

sendToTCP();

The example above demonstrates how automata can prepare a message
and send it over a TCP/IP network. The message is prepared like any other
message. The function PrepareNewMessage is used to allocate a buffer for the
message and to specify a message name. A series of already described func-
tions is then used to fill in the message header and add the message para-

management). At the end, instead of sending the message to the local mail-
box by calling the function SendMessage, the message is sent over the TCP/
IP network by calling the function sendToTCP.

A net finite state machine receives the messages equally as simple auto-
mata (instances of the class FiniteStateMachine) do, just by reading its local
mailbox.

6.7 Global Constants, Types, and Functions

The file kernelConsts.h defines the global constants, the types, and the func-
tions used by the FSM library kernel. The constants and their values are the
following:

MSG_FROM_AUTOMATA = 0; // Source automata ID (BYTE)

MSG_FROM_GROUP = 1; // Source automata group ID (BYTE)

MSG_TO_AUTOMATA = 2; // Destination automata ID (BYTE)

9814_C006.fm  Page 326  Thursday, April 13, 2006  10:31 AM

© 2006 by Taylor and Francis Group, LLC

meters (see the second example in Section 6.5 describing the message



FSM Library 327

MSG_TO_GROUP = 3; // Destination automata group ID (BYTE)

MSG_CODE = 4; // Message code(WORD)

MSG_OBJECT_ID_FROM = 6; // Source automata instance ID (DWORD)

MSG_OBJECT_ID_TO = 10; // Destination automata ID (DWORD)

CALL_ID = 14; // Call (process) ID

MSG_INFO_CODING = 18; // Info coding type, 0 = StandardMessage

MSG_LENGTH = 19; // Message payload length

MSG_INFO = 21; // Message payload offset

MSG_HEADER_END = MSG_INFO; // End of message header

INVALID_08 = 0xff; // Mask for 8 bits

INVALID_16 = 0xfff; // Mask for 16 bits

INVALID_32 = 0xffffffff; // Mask for 32 bits

The global data types are the following:

int8, uint8 // BYTE

int16, uint16 // WORD

int32, uint32 // DWORD

The utility functions provided for the load-store manipulation with various
data types are the following:

void SetUint16(uint8 *addr,uint16 value);

void SetUint32(uint8 *addr,uint32 value);

uint16 GetUint16(uint8 *addr);

uint32 GetUint32(uint8 *addr);

The utility functions are provided to avoid cast operators in C/C++ pro-
grams because some microcontrollers do not allow word or double-word
memory access to odd memory addresses.

6.8 API Functions  

The FSM library API functions are grouped into the following eight groups:

•
•
•
•
•
•
•
•
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FSMSystem constructor (Table 6.2) 
FSMSystem member functions (Table 6.3) 

FSMSystemWithTCP member functions (Table 6.5) 

FiniteStateMachine member functions (Table 6.7) 

FSMSystemWithTCP constructor (Table 6.4) 

FiniteStateMachine constructor (Table 6.6) 

NetFSM constructor (Table 6.8) 
NetFSM member functions (Table 6.9) 
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TABLE 6.2

FSMSystem Constructor Summary

FSMSystem(uint8 numOfAutomata, uint8 numberOfMbx)

The constructor initializes the object that represents the FSM system along with the data
structures needed for its proper operation.

TABLE 6.3

FSMSystem Member Functions Summary

Type Member Function

Void Add  (ptrFiniteStateMachine object, uint8 
automataType, uint32 numOfObjects, bool 
useFreeList=false)

This function adds the first instance of each automata type to the
FSM system.

Void Add(ptrFiniteStateMachine object, uint8 
automataType)

This function adds all the automata instances of the given type to
the FSM system, except for the first instance.

Void InitKernel(uint8 buffClassNo, uint32 *buffersCount, 
uint32 *buffersLength, uint8 numOfMbxs=0, 
TimerResolutionEnum timerRes=Timer1s)

This function initializes the elements of the kernel responsible for
time, buffer, and message management.

Void Remove(uint8 automataType)

This function removes all the instances of the given automata type
from the FSM system.

ptrFiniteState
Machine

Remove(uint8 automataType, uint32 object)

This function removes the given instance of the given automata
type.

Virtual void Start()

This function starts the FSM system.
Void StopSystem()

This function stops the FSM system.

TABLE 6.4

FSMSystemWithTCP Constructor Summary

FSMSystemWithTCP(uint8 numOfAutomata, uint8 numberOfMbx)

The constructor initializes the object that represents the FSM system supporting
communication over TCP/IP network along with the data structures needed for its
proper operation.
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The following sections contain a detailed description of FSMSystem library
API functions.

6.8.1 FSMSystem  

Function prototype:
FSMSystem(

uint8 numOfAutomata,

uint8 numberOfMbx)

Function description: This constructor initializes the object that represents
the FSM system together with the data structures needed for its proper
operation. 

Parameters: 
numOfAutomata: the number of various automata types to be added to

the FSM system
numberOfMbx: the number of mailboxes to be used by the FSM system

Note: Typically, a single mailbox is assigned to each automata type but
other arrangements are also allowed. Normally, an automata type corre-
sponds to a protocol. For example, the IP protocol may be implemented as
one automata type and the TCP protocol may be implemented as another
automata type. A typical arrangement would be to assign one mailbox to IP
and one to TCP. Another arrangement would be to assign two mailboxes to
each protocol. For example, in this arrangement, IP would use the first

TABLE 6.5

FSMSystemWithTCP Member Functions Summary

Type Member Function

int InitTCPServer(uint16 port, uint8 automataType, char 
*ipAddress=0, unsigned char *parm=0, int length=0)

This function initializes the TCP server. Once initialized, the server waits for
a request to establish the TCP connection with a remote client.

TABLE 6.6

FiniteStateMachine Constructor Summary

FiniteStateMachine(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16 
numOfState=DEFAULT_STATE_NO, uint16 
maxNumOfProceduresPerState=DEFAULT_PROCEDURE_NO_PE_STATE, bool 
getMemory=true)

This constructor initializes the object that represents the instance of a given automata
type along with the data structures needed for its proper operation.
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TABLE 6.7

FiniteStateMachine Member Functions Summary

Type Member Function

uint8* AddParam(uint16 paramCode, uint32 paramLength, 
uint8 *param)

This function is used to add the given parameter of the
given length to the new message.

uint8* AddParamByte(uint16 paramCode, BYTE param)

This function is used to add the given parameter of length
1 byte to the new message.

uint8* AddParamDWord(uint16 paramCode, DWORD param)

This function is used to add the given parameter of length
4 bytes to the new message.

uint8* AddParamWord(uint16 paramCode, WORD param)

This function is used to add the given parameter of length
2 bytes to the new message.

virtual void CheckBufferSize(uint32 paramLength)

This function provides a new message buffer with the size
sufficient to accept the parameter of the given length.

virtual void ClearMessage()

This function returns the buffer allocated for the current
message to the kernel and assigns value NULL to the
internal pointer to the current message. The current
message is the last message received by the automata
instance.

virtual void CopyMessage()

This function makes a copy of the current message and
assigns that copy to the new message.

virtual void CopyMessage(uint8 *msg)

This function makes a copy of the given message and
assigns that copy to the new message.

virtual void CopyMessageInfo(uint8 infoCoding, uint16 
lengthCorrection=0)

This function copies the part of the message containing the
useful information, referred to as a payload (message
without its header), from the current to the new message.

virtual void Discard(uint8* buff)

This function deletes the message placed in the given buffer
and returns the buffer to the kernel.

void DoNothing()

This function performs no operation. It is called when the
automata receives an unexpected message unless a new
function is provided to handle unexpected messages.

void Free FSM()

This function reports to the FSM system that the automata
instance has finished its current assignment and is free for
further assignments.

virtual uint8 GetAutomata()=0

This function returns the identification of the automata type
for this automata instance.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

uint8 GetBitParamByteBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message
parameter of length 1 byte masked with the given mask.

uint16 GetBitParamWordBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message
parameter of length 2 bytes masked with the given mask.

uint32 GetBitParamDWordBasic(uint32 offset, uint32 
mask=MASK_32_BIT)

This function returns the value of the current message
parameter of length 4 bytes masked with the given mask.

virtual uint8* GetBuffer(uint32 length)

This function returns the buffer whose size is not less than
the size given by the value of its parameter.

uint32 GetBufferLength(uint8 *buff)

This function returns the size of the given buffer in bytes.
virtual inline 
uint32

GetCallId()

This  funct ion returns  the  ident ificat ion of  the
communication process in which this instance is currently
involved, e.g., the call ID.

uint32 GetCount(uint8 mbx)

This function returns the current number of messages in the
given mailbox.

virtual uint8 GetGroup()

This function returns the identification of the group of
automata to which this instance belongs.

virtual uint8 GetInitialState()

This function returns the identification of the initial state of
this automata type.

virtual inline uint8  GetLeftMbx()

This function returns the identification of the mailbox
assigned to the automata instance that is logically to the left
of this automata instance.

virtual inline uint8  GetLeftAutomata()

This function returns the identification of the automata type
that is logically to the left of this automata instance.

virtual inline uint8 GetLeftGroup()

This function returns the identification of the group of
automata that is logically to the left of this automata
instance.

virtual inline 
uint32

GetLeftObjectId()

This function returns the identification of the automata
instance that is logically to the left of this automata instance.

virtual uint8 GetMbxId()

This function returns the identification of the mailbox
assigned to this automata instance.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual 
MessageInterface*

GetMessageInterface(uint32 id)

This function returns the object that governs the coding of
messages used by this automata instance. The returned
object is an instance of the class derived from the class
MessageInterface.

uint8* GetMsg()

This function returns the first unread message from the
mailbox assigned to this automata instance.

static uint8* GetMsg(uint8 mbx)

This function returns the first unread message from the
mailbox identified by the value of its parameter.

inline uint32 GetMsgCallId()

This function returns the identification of the communication
process (e.g., call ID) from the current message.

inline uint16 GetMsgCode()

This function returns the message code from the current
message header.

inline uint8 GetMsgFromAutomata()

This function returns the identification of the originating
automata type from the current message.

inline uint8 GetMsgFromGroup()

This function returns the identification of the group of the
originating automata instance for the current message. 

inline uint8 GetMsgInfoCoding()

This function returns the identification of the information
coding scheme used for the current message.

inline uint16 GetMsgInfoLength()

This function returns the payload length of the current
message in bytes.

inline uint16 GetMsgInfoLength(uint8 *msg)

This function returns the payload length of the given
message in bytes. The message is specified by its pointer.

inline uint32 GetMsgObjectNumberFrom()

This function returns the identification of the originating
automata instance from the current message.

inline uint32 GetMsgObjectNumberTo()

This function returns the identification of the destination
automata instance from the current message.

inline uint8 GetMsgToAutomata()

This function returns the identification of the destination
automata type from the current message.

inline uint8 GetMsgToGroup()

This function returns the identification of the type of group
of the destination automata from the current message.

inline uint8* GetNewMessage()

This function returns the address of the buffer that contains
the new message.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline uint8 GetNewMsgInfoCoding()

This function returns the identification of the information
coding scheme used for the new message. 

inline uint16 GetNewMsgInfoLength()

This function returns the payload length of the new
message in bytes.

uint8* GetNextParam(uint16 paramCode)

This function returns the address of the next instance of the
given type of message parameter within the current
message.

bool GetNextParamByte(uint16 paramCode, BYTE 
&param)

This function searches for the next instance of the given
type of the single-byte parameter in the current message. If
the instance is found, the function copies it into its
parameter specified by the reference and returns the value
true; otherwise, it returns the value false.

bool GetNextParamDWord(uint16 paramCode, DWORD 
&param)

This function searches for the next instance of the given
type of the 4-byte parameter in the current message. If the
instance is found, the function copies it into its parameter
specified by the reference and returns the value true;
otherwise, it returns the value false.

bool GetNextParamWord(uint16 paramCode, WORD 
&param)

This function searches for the next instance of the given
type of the 2-byte parameter in the current message. If the
instance is found, the function copies it into its parameter
specified by the reference and returns the value true;
otherwise, it returns the value false.

virtual uint32 GetObjectId()

This function returns the unique identification of this
automata instance.

uint8* GetParam(uint16 paramCode)

This function returns the address of the first instance of the
given type of the message parameter within the current
message.

bool GetParamByte(uint16 paramCode, BYTE &param)

This function searches for the first instance of the given type
of single-byte parameter in the current message. If the
instance is found, the function copies it into its parameter
specified by the reference and returns the value true;
otherwise, it returns the value false.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

bool GetParamDWord(uint16 paramCode, DWORD &param)

This function searches for the first instance of the given type
of 4-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified
by the reference and returns the value true; otherwise, it
returns the value false.

bool GetParamWord(uint16 paramCode, WORD &param)

This function searches for the first instance of the given type
of 2-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified
by the reference and returns the value true; otherwise, it
returns the value false.

PROC_FUN_PTR GetProcedure(uint16 event)

This function returns the pointer to the event handler for
the given event identifier and the current state of automata.

virtual inline uint8 GetRightMbx()

This function returns the identification of the mailbox
assigned to the automata instance that is logically to the
right of this automata instance.

virtual inline uint8 GetRightAutomata()

This function returns the identification of the automata type
that is logically to the right of this automata instance.

virtual inline uint8 GetRightGroup()

This function returns the identification of the type of the
group of automata that is logically to the right of this
automata instance.

virtual inline 
uint32

GetRightObjectId();

This function returns the identification of the automata
instance that is logically to the right of this automata
instance.

virtual inline uint8 GetState()

This function returns the identification of the current state
of this automata instance.

virtual bool IsBufferSmall(uint8 *buff, uint32 length)

This function returns the value true if the size of the given
buffer is not greater than the given size specified as the
value of its second parameter; otherwise, it returns the value
false.

virtual void Initialize()

This function defines the automata state transition event
handlers and timers used by this automata type.

void InitEventProc(uint8 state, uint16 event, 
PROC_FUN_PTR fun)

This function defines the given state transition event
handler for the given automata state and the given event
(message code).
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

void InitTimerBlock(uint16 tmrId, uint32 count, 
uint16 signalId)

This function initializes the given timer by the given
duration and the timer expiration message code.

void InitUnexpectedEventProc(uint8 state, 
PROC_FUN_PTR fun)

This function defines the given state transition event
handler for unexpected events in the given automata state.

bool IsTimerRunning(uint16 id)

This function returns the value true if the given timer is
active (running); otherwise, it returns the value false.

void NoFreeObjectProcedure(uint8 *msg)

This function defines the behavior of this automata type if
the list of free automata of this type is used and if it is empty
at the moment when a free instance is requested.

virtual void NoFreeInstances()

This function defines the behavior of the FSM system if a
list of free automata is used and if it is empty at the moment
when a free instance is requested.

virtual bool ParseMessage(uint8 *msg)

This function checks if the given message is coded properly
and if it is, it becomes the current message (its pointer is
assigned to the internal variable CurrentMessage).

virtual void PrepareNewMessage(uint8 *msg)

This function defines the given buffer as the new message
buffer by assigning the given pointer to the internal variable
NewMessage. The buffer is used as a working area for the
construction of the new message.

virtual void PrepareNewMessage(uint32 length, uint16 code, 
uint8 infoCode = LOCAL_PARAM_CODING)

This function creates the new message of the given length
with the given message code and the given type of
information coding.

virtual void Process(uint8 *msg)

This function performs the preparations for the message
processing and selects the state transition event handler
based on the message code and current state of this
automata instance.

void PurgeMailBox()

This function purges all the messages from the mailbox
assigned to this automata type and releases all the buffers
assigned to the messages.

bool RemoveParam(uint16 paramCode)

This function removes the given type of message parameter
from the new message.

virtual void Reset()

This function resets this automata instance by returning it
to its initial state and stopping all its active timers.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

void ResetTimer(uint16 id)

This function resets the internal timer block object and
returns the buffer allocated by the StartTimer primitive to
the FSM library kernel.

void RestartTimer(uint16 tmrId)

This function restarts the given timer. It is logically
equivalent to a sequence of StopTimer and StartTimer
primitives.

virtual void RetBuffer(uint8 *buff)

This function returns the given buffer to the FSM library
kernel. Normally, each memory buffer is returned at the end
of its life cycle. The failure to do so leads to the memory
leak problem.

void ReturnMsg(uint8 mbxId)

This function makes a copy of the current message and
sends it to the given mailbox. This primitive is used
frequently for message forwarding. On many occasions, the
communication process must react in this simple way.

void SetBitParamByteBasic(BYTE param, uint32 
offset, uint32 mask=MASK_32_BIT)

This function sets the given single byte parameter of the
new message to the result of the bit-wise inclusive OR
operation applied to the given parameter and its previous
value masked (bit-wise AND operation) with the given bit-
mask.

void SetBitParamDWordBasic(DWORD param, uint32 
offset, uint32 mask=MASK_32_BIT)

This function sets the given 4-byte parameter of the new
message to the result of the bit-wise inclusive OR operation
applied to the given parameter and its previous value
masked (bit-wise AND operation) with the given bit-mask.

void SetBitParamWord(WORD param, uint32 offset, 
uint32 mask=MASK_32_BIT)

This function sets the given 2-byte parameter of the new
message to the result of the bit-wise inclusive OR operation
applied to the given parameter and its previous value
masked (bit-wise AND operation) with the given bit-mask.

inline void SetCallId()

This function sets the default value of the attribute CallId
of this automata instance.

inline void SetCallId(uint32 id)

This function sets the given value of the attribute CallId of
this automata instance.

inline void SetCallIdFromMsg()

This function sets the attribute CallId of this automata
instance to the value of the parameter CallId of the current
message. This primitive is used to store the reference
number specific to the communication protocol.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

virtual void SetDefaultFSMData()

This function sets the automata specific data to their default
values. It is typically used before the normal operation phase.

virtual void SetDefaultHeader(uint8 infoCoding)

This function sets the default header field values for the
given type of the message information coding.

inline void SetGroup(uint8 id)

This function sets the identification of the group of
automata for this automata type to the given value. This
primitive is used to declare the group membership.

virtual void SetInitialState()

This function sets the current state of this automata instance
to its initial state.

static void SetKernelObjects(TPostOffice *postOffice, 
TBuffers *buffers, CTimer *timer)

This function sets the FSMSystem library kernel objects (post
office, buffers, and timers), which are common for all of the
automata in the FSM system.

inline void SetLeftMbx(uint8 mbx)

This function sets the identification of the mailbox assigned
to the automata instance that is logically to the left of this
automata instance.

inline void SetLeftAutomata(uint8 automata)

This function sets the identification of the automata type
that is logically to the left of this automata instance.

inline void SetLeftObject(uint8 group)

This function sets the identification of the type of the group
of automata that is logically to the left of this automata
instance.

inline void SetLeftObjectId(uint32 id)

This function sets the identification of the automata instance
that is logically to the left of this automata instance.

static void SetLogInterface(LogInterface *logingObject)

This function defines the object responsible for message
logging. The object is an instance of a class derived from
the class LogInterface.

inline void SendMessage(uint8 mbxId)

This function sends the new message to the given mailbox.
The mailbox is specified by its identification.

inline void SendMessage(uint8 mbxId, uint8 *msg)

This function sends the given message to the given mailbox.
void SetMessageFromData()

This function sets the header fields of the new message
related to the originating automata instance to the values
specific to this automata instance.

inline void SetMsgCallId(uint32 id)

This function sets the call ID parameter of the new message
to the given value.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetMsgCallId(uint32 id, uint8 *msg)

This function sets the call ID parameter of the given
message to the given value.

inline void SetMsgCode(uint16 code)

This function sets the message code parameter of the new
message to the given value.

inline void SetMsgCode(uint16 code, uint8 *msg)

This function sets the message code parameter of the given
message to the given value.

inline void SetMsgFromAutomata(uint8 from)

This function sets the type of the originating automata
parameter of the new message to the given value.

inline void SetMsgFromAutomata(uint8 from, uint8 *msg)

This function sets the type of the originating automata
parameter of the given message to the given value.

inline void SetMsgFromGroup(uint8 from)

This function sets the type of the originating group of
automata parameter of the new message to the given value.

inline void SetMsgFromGroup(uint8 from, uint8 *msg)

This function sets the type of the originating group of
automata parameter of the given message to the given
value.

inline void SetMsgInfoCoding(uint8 codingType)

This function sets the message information coding
parameter of the new message to the given value.

inline void SetMsgInfoCoding(uint8 codingType, uint8 *msg)

This function sets the message information coding
parameter of the given message to the given value.

inline void SetMsgInfoLength(uint16 length)

This function sets the message payload (useful information)
length parameter of the new message.

inline void SetMsgInfoLength(uint16 length, uint8 *msg)

This function sets the message payload (useful information)
length parameter of the given message.

inline void SetMsgObjectNumberFrom(uint32 from)

This function sets the originating automata instance
identification parameter of the new message to the given
value.

inline void SetMsgObjectNumberFrom(uint32 from, uint8 *msg)

This function sets the originating automata instance
identification parameter of the given message to the given
value.

inline void SetMsgObjectNumberTo(uint32 to)

This function sets the destination automata instance
identification parameter of the new message to the given
value.
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TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetMsgObjectNumberTo(uint32 to, uint8 *msg)

This function sets the destination automata instance
identification parameter of the given message to the given
value.

inline void SetMsgToAutomata(uint8 to)

This function sets the destination automata type
identification parameter of the new message to the given
value.

inline void SetMsgToAutomata(uint8 to, uint8 *msg)

This function sets the destination automata type
identification parameter of the given message to the given
value.

inline void SetMsgToGroup(uint8 to)

This function sets the destination automata group
identification parameter of the new message to the given
value.

inline void SetMsgToGroup(uint8 to, uint8 *msg)

This function sets the destination automata group
identification parameter of the given message to the given
value.

void SendMessageLeft()

This function sends the new message to the mailbox
assigned to the automata instance that is logically to the left
of this automata instance.

void SendMessageRight()

This function sends the new message to the mailbox
assigned to the automata instance that is logically to the
right of this automata instance.

inline void SetNewMessage(uint8 *msg)

This function sets the new message to the given message
by assigning the given message pointer to the internal
pointer to the new message.

inline void SetObjectId(uint32 id)

This function sets the identification of this automata
instance to the given value.

inline void SetRightMbx(uint8 mbx)

This function sets the identification of the mailbox assigned
to the automata instance that is logically to the right of this
automata instance.

inline void SetRightAutomata(uint8 automata)

This function sets the identification of the automata type
that is logically to the right of this automata instance.

inline void SetRightObject(uint8 group)

This function sets the identification of the type of the group
of automata that is logically to the right of this automata
instance.
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mailbox to receive the messages from network interfaces (drivers) and the
second to receive the messages from TCP. Yet another arrangement would
be to assign a single mailbox to all the protocols. Finally, a set of mailboxes
can be used to prioritize the messages. For example, three mailboxes may
be used to distinguish high, middle, and low priority messages.

6.8.2 Add(ptrFiniteStateMachine, uint8, uint32, bool)

Function prototype:
void Add(

ptrFiniteStateMachine object,

uint8 automataType,

uint32 numberOfObjects,

bool useFreeList = false)

TABLE 6.7 (CONTINUED)

FiniteStateMachine Member Functions Summary

Type Member Function

inline void SetRightObjectId(uint32 id)

This function sets the identification of the automata instance
that is logically to the right of this automata instance.

inline void SetState(uint8 state)

This function sets the identification of the current state of
this automata instance.

void StartTimer(uint16 tmrId)

This function starts the given timer. The timer is specified
by its identification.

void StopTimer(uint16 tmrId)

This function stops the given timer. The timer is specified
by its identification.

static void SysClearLogFlag()

This function stops the logging of the messages exchanged
by the automata.

static void SysStartAll()

This function starts the logging of the messages exchanged
by the automata.

TABLE 6.8

NetFSM Constructor Summary

NetFSM(uint16 numOfTimers=DEFAULT_TIMER_NO, uint16 
numOfState=DEFAULT_STATE_NO, uint16 
maxNumOfProceduresPerState=DEFAULT_PROCEDURE_NO_PER_STATE, bool 
getMemory=true)

The constructor initializes the object that represents an instance of the given automata
type along with the data structures needed for its proper operation.
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Function description: This function adds the first instance of each automata
type to the FSM system. At the same time, this function defines the unique
identification of this automata type and the number of instances of this
automata type that will be subsequently added to the FSM system. It also
declares a group of instances of this automata type as either a set of resources
to be used individually or as a pool of resources of the same type available
for dynamic allocation.

Function parameters:
object: the pointer to the first instance of this automata type to be added

to the FSM system
automataType: the unique identification of this type of automata
numberOfObjects: the total number of instances of this type to be added

to the FSM system.
useFreeList: the indicator selecting the mode of usage of individual in-

stances of this type.

Note: Typically, the FSM system is created at system startup and then
groups of various automata types are added to it. As a rule, the first instance
of the given automata type is added by this function. Its parameters specify,
in order from left to right, the pointer to the first object of this type, the
identification of this automata type, the total number of instances that will
be added to the FSM system, and the mode of individual instance allocation.
This last parameter has a default value false, which means that each automata
instance represents an individual resource. If this default is overridden by

TABLE 6.9

NetFSM Member Functions Summary

Type Member Function

virtual void convertFSMToNetMessage()

This function converts the internal message format into the
external message format appropriate for the transmission over
the TCP/IP network.

virtual uint16 convertNetToFSMMessage()

This function converts the external message format into the
internal message format appropriate for the communication
within the FSM system.

void establishConnection()

This function establishes the TCP connection between two
geographically distributed FSM systems.

virtual uint8 getProtocolInfoCoding()

This function returns the identification of the type of the
external message coding.

void sendToTCP()

This function sends the new message to the remote FSM system
over the previously established TCP connection.
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the value true, the group of instances of this automata type represents a pool
of resources of the same type. The individual instances from this pool are
allocated dynamically and on-demand, based on the use of the internal
FSMSystem library kernel list of resources of the given type. (This is the
origin of the name of the last parameter of this function, useFreeList.) This
dynamic allocation is requested by sending a message to an unknown auto-
mata, which is identified by the instance identification set to the value –1
(see function SetMsgObjectNumberTo).

6.8.3 Add(ptrFiniteStateMachine, uint8)

Function prototype:
void Add(

ptrFiniteStateMachine object,

uint8 automataType)

Function description: This function adds all the automata instances except
the first instance of the given type to the FSM system. It assumes that the
first instance of this automata type has been added previously to the FSM
system by calling the overloaded function Add with four parameters in its
signature.

Function parameters:
object: the pointer to the instance of this automata type to be added to

the FSM system
automataType: the unique identification of this automata type

Note: As already mentioned, after the FSM system is created at system
startup, the groups of various automata types are added to it. As a rule, the
first instance of the given automata type is added by the overloaded function
Add with four parameters in its signature (see the previous section for more
details on its parameters). All the other instances of the given automata type
are added to the FSM system by this overloaded function Add. An advantage
of differentiating these two functions becomes obvious in a dynamic envi-
ronment where objects are created on-demand and added to the FSM system.
If the given automata type already exists and a need arises for another
instance of it, this overloaded Add function is sufficient.

6.8.4 InitKernel

Function prototype:
void InitKernel(

uint8 buffClassNo,

uint32 *buffersCount,

uint32 *buffersLength,

uint8 numOfMbxs=0,
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TimerResolutionEnum timerRes = Timer1s)

Function description: This function initializes the elements of the kernel
responsible for time, buffer, and message management. The parameters of
this function specify the number of buffer types, the number of instances
per each buffer type and their lengths, the number of mailboxes to be used
by the automata added to the FSM system, and the basic timer resolution.
The default value of the basic timer resolution is 1 sec, which is defined by
the symbolic constant Timer1s.

Function parameters:
buffClassNo: the number of buffer types
buffersCount: the pointer to the array of the numbers of instances of the

corresponding buffer types
buffersLength: the pointer to the array of the sizes of the corresponding

buffer types
numOfMbxs: the number of the mailboxes
timerRes: the basic timer resolution

Note: This function essentially initializes the FSMSystem library kernel. It
must be called after the FSM system has been created and before it can be
started. It also assumes that the arrays of the cardinal numbers and the sizes
of individual buffer types are already created and filled by the programmer.
Because the specification of the buffers to be provided by the kernel may
look cumbersome, we provide the following example. Suppose that a need
arises for three buffer types, namely, small, medium, and large. The pro-
grammer should set the first parameter of this function to the number 3.
Next, suppose that the programmer needs 300 small buffers, 200 medium
buffers, and 100 large buffers, and that their sizes should be 64, 128, and 256
bytes, respectively. Before calling this function, the programmer should cre-
ate the following two arrays:

• Array of cardinal numbers = [300, 200, 100]
• Array of sizes = [64, 128, 256]

Finally, the programmer should specify the pointers to these two arrays
as the second and the third parameter of this function.

6.8.5 Remove(uint8)

Function prototype:
void Remove(unit8 automataType)
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Function description: This function removes all instances of the given
automata type from the FSM system.

Function parameters:
automataType — the type of automata to be removed from the system

Note: First, the FSM system removes all instances of the given automata
type from the FSM system. Next, the kernel frees all the memory zones
occupied by the internal data structures used by the automata of this type.

6.8.6 Remove(uint8, uint32)

Function prototype:
ptrFiniteStateMachine Remove(

uint8 automataType

uint32 object)

Function description: This function removes the given instance of the given
automata type. The parameters of this function specify the identification of
the automata type and the identification of the automata instance.

Function parameters:
automataType: the identification of the automata type
object: the identification of the instance of the given automata type

Function returns: This function returns the pointer to the automata
instance removed from the FSM system.

6.8.7 Start

Function prototype:
virtual void Start()

Function description: This function starts the FSM system and is the main
function of the FSM system. In this function, the FSM system thread enters
a loop in which it reads the kernel mailboxes and distributes the messages
to the destination automata.

Note: The FSM system thread remains in the loop while the internal
attribute SystemWorking is set to the value true. A typical implementation of
the FSM system thread is shown in the example in Section 6.2.1.2.

6.8.8 StopSystem

Function prototype:
void StopSystem()
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Function description: This function stops the FSM system. It sets the
internal attribute SystemWorking to the value false, thus causing the FSM
system thread to exit its loop and stop the FSM system.

Note: If the function Start has been called from the separate operating
system thread, the call to the function StopSystem will cause the termination
of that thread.

6.8.9 FSMSystemWithTCP

Function prototype:
FSMSystemWithTCP(

uint8 numOfAutomata,

uint8 numberOfMbx)

Function description: This constructor initializes the object that represents
the FSM system supporting communication over TCP/IP network, along
with the data structures needed for its proper operation. Its parameters
specify the number of automata types to be added to the FSM system and
the number of mailboxes.

Function parameters:
numOfAutomata: the number of automata types that will be added to the

FSM system
numberOfMbx: the number of mailboxes that will be used by the auto-

mata added to the FSM system

Note: Typically, a single mailbox is assigned to each automata type
included in the FSM system but other arrangements are also allowed. For
example, a single mailbox may be assigned to all the automata types
included in the FSM system. Also allowed is to assign an arbitrary number
of mailboxes to each automata type, e.g., to enable message prioritization.

6.8.10 InitTCPServer

Function prototype:
int InitTCPServer(

uint16 port,

unit8 automataType,

char *ipAddress = 0,

unsigned char *parm = 0,

int length = 0)

Function description: This function initializes the TCP server. Once initial-
ized, the server waits for a request to establish the TCP connection with a
remote client. The parameters of this function specify the number of the TCP
port on which the server awaits the connection request, the automata type
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included in the FSM system engaged in the communication, the server IP
address, the pointer to the area where the connection parameters should be
passed to the specified automata type, and the parameter lengths in bytes.
After the reception of the request, the server allocates an instance of the
given automata type and passes the connection together with the received
parameters to the allocated automata instance. Further communication con-
tinues directly between the remote client and the allocated automata
instance, i.e., the server is completely isolated from it.

Function parameters:
Port: the number of the TCP port on which the server awaits a connec-

tion request
automataType: the automata type included in the FSM system that is

engaged in the communication. This automata type must be derived
from the class NetFSM. After the connection has been initially
estbalished, the server transfers it to the allocated instance of this
automata type.

ipAddress: the pointer to the server IP address
parm: the pointer to the area where the parameters received while es-

tablishing the connection should be passed and subsequently taken
by to the specified automata type

length: the parameter lengths specified by the previous pointer, in bytes

Function returns: If the TCP server awaiting a request from a remote client
is successfully started, this function returns the value 0. Otherwise, it returns
the value –1.

Note: This function should be called only once, just initially to start the
TCP server.

6.8.11 FiniteStateMachine

Function prototype:
FiniteStateMachine(

unit16 numOfTimers = DEFAULT_TIMER_NO,

uint16 numOfState = DEFAULT_STATE_NO,

uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,

bool getMemory = true)

Function description: This constructor initializes the object that represents
the instance of a given automata type together with the data structures
needed for its proper operation. Its parameters specify the number of the
timers to be used by this automata type, the number of the states that this
automata type has, the maximal number of state transitions per state, and
the indicator specifying whether this constructor should reserve the memory
for the objects that represent the states and state transitions of this automata
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type or not. The default value of this indicator is true, which means that this
constructor is responsible for memory allocation.

Function parameters:
numOfTimers: the number of the timers to be used by this automata type
numOfState: the number of the states that this automata type has
maxNumOfProceduresPerState: the maximal number of state transitions

per state
getMemory: the memory allocation indicator (by default, its value is true)

Note: This constructor may be called either with some or without any of
the parameters. If the parameter is not specified, the constructor will use its
default value. The indicator getMemory may be set to the value false when
the programmer wants to do manual memory allocation to optimize overall
memory consumption.

6.8.12 AddParam

Function prototype:
uint8 *AddParam(

uint16 paramCode,

uint32 paramLength,

uint8 *param)

Function description: This function is used to add the given parameter of
the given length to the new message. The parameters of this function specify
the unique identification of the parameter type, the parameter length in
bytes, and the pointer to the parameter itself. If the parameter to be added
to the message is too large to fit in the buffer that is assigned to the new
message, this function will get a bigger buffer, copy the new message into
it, add the parameter, and release the old buffer.

Function parameters:
paramCode: the parameter type
paramLength: the parameter length, in bytes
param: the pointer to the parameter

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: This function enables the programmer to add a parameter of an
arbitrary size to the new message with the limitation that it must not exceed
the maximal parameter length specified for the given type of message coding
(e.g., for the type StandardMessage, the maximal parameter length is 256
bytes). The message parameters in StandardMessage are sorted in the ascend-
ing order of their corresponding type identifiers.
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6.8.13 AddParamByte

Function prototype:
uint8 *AddParamByte(

uint16 paramCode,

BYTE param)

Function description: This function is used to add the given parameter of
length 1 byte to the new message. The parameters of this function specify
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.14 AddParamDWord

Function prototype:
uint8 *AddParamDWord(

uint16 paramCode,

DWORD param)

Function description: This function is used to add the given parameter of
length 4 bytes to the new message. The parameters of this function specify
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 232 bytes.

6.8.15 AddParamWord

Function prototype:
uint8 *AddParamDWord(

uint16 paramCode,

WORD param)
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Function description: This function is used to add the given parameter of
length 2 bytes to the new message. The parameters of this function specify
the unique identification of the parameter type and the parameter value.

Function parameters:
paramCode: the parameter type
param: the parameter value

Function returns: This function returns the pointer to the buffer that con-
tains the new message.

Note: The total message length must not exceed the limit specified for the
given type of message coding. In any case, it must not exceed 8G bytes.

6.8.16 CheckBufferSize

Function prototype:
uint8 *CheckBufferSize(uint32 paramLength)

Function description: This function provides a new message buffer with
the size sufficient to accept the parameter of the given length. The parameter
of this function specifies the parameter length in bytes.

Function parameters:
paramLength: the parameter length

Function returns: This function returns the pointer to the new message.
Note: This function is obsolete. In the previous version of the FSM library,

this function ensured the new message buffer management was transparent
to the programmer. Typically, the programmer would call this function
before calling some of the AddParam functions to ensure that the new mes-
sage is stored in a buffer of a sufficient size. This means that the buffer is
large enough to accept a new parameter of the given size in addition to the
current content of the new message. Behind the scenes, this function checked
the current size of the new message. If it was not sufficient, the function
allocated a new, larger buffer, copied the current new message into it,
released the old buffer, and returned the pointer to the newly allocated buffer
containing the new message. In the current version of the FSM library, all
the AddParam functions call this function internally at their very beginning
and the programmer need no longer call it explicitly.

6.8.17 ClearMessage

Function prototype:
virtual void ClearMessage()
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Function description: This function returns the buffer allocated for the
current message to the kernel and assigns the value NULL to the internal
pointer to the current message. The current message is the last message
received by the automata instance.

Note: If the FSMSystem library has been compiled for the debug mode,
this function will additionally verify that the return value of the function is
NULL.

6.8.18 CopyMessage( )

Function prototype:
virtual void CopyMessage()

Function description: This function makes a copy of the current message
and assigns that copy to the new message. By definition, a current message
is the last received message and a new message is the message under
construction to be subsequently sent. The value of the pointer to the current
message copy is assigned to the internal pointer to the new message.

Note: This function first checks if the new message already exists by
checking the internal pointer to the new message. If the new message has
already been defined or is under construction (the internal pointer is not
equal to the value NULL), the function releases the buffer that contains the
new message and assigns the value NULL to the internal pointer. Next, the
function makes a copy of the current message and assigns its address to the
pointer to the new message. This function is typically used for message
forwarding. The protocol A sends a message to the protocol B, which in turn
forwards the copy of the same message to the protocol C.

6.8.19 CopyMessage(uint*) 

Function prototype:
virtual void CopyMessage(uint8 *msg)

Function description: This function makes a copy of the given message
and assigns that copy to the new message. The parameter of this function
specifies the pointer to the original message.

Function parameters:
msg: the pointer to the original message

Note: This function assumes that the new message does not exist, i.e., the
internal pointer to the new message should contain the value NULL before
this function is called. However, if the new message already exists, this
function will return its buffer and get a fresh buffer for the new message
before copying the given message into it.
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6.8.20 CopyMessageInfo

Function prototype:
virtual void CopyMessageInfo(

uint8 infoCoding,

uint16 lengthCorrection = 0)

Function description: This function copies the part of the message con-
taining the useful information, referred to as a payload (message without
its header), from the current into the new message stored in a newly
allocated buffer. The parameters of this function specify the type of the
information coding that governs the formatting and length correction of
the message.

Function parameters:
infoCoding: the identification of the type of the information coding
lengthCorrection: the message length correction

Note: The message length correction depends on the type of applied infor-
mation coding. If the new message buffer does not exist, this function will
get a buffer, assign it to the new message, and make the required copy.

6.8.21 Discard

Function prototype:
virtual void Discard(uint8* buff)

Function description: This function deletes the message placed in the given
buffer and returns the buffer to the kernel. The parameter of this function
specifies the buffer to be cleared and released.

Function parameters:
buff: the pointer to the buffer

6.8.22 DoNothing

Function prototype:
void DoNothing()

Function description: This function performs no operation. It is called
when automata receives an unexpected message unless a new function to
handle unexpected messages is defined. By definition, an unexpected mes-
sage is any type of message that has not been defined as a legal type of
message in the current automata state.
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Note: This function may be redefined by calling the function Init-
UnexpectedEventProc if a need exists for concrete functionality handling unex-
pected messages.

6.8.23 FreeFSM

Function prototype:
void FreeFSM()

Function description: This function reports to the FSM system that an
automata instance has finished its current assignment and is free for further
assignments. If the first instance of this automata type has been added to
the FSM system with the parameter useFreeList set to the value true, the group
of the instances of this automata type is viewed as a pool of resources. In
that case, this function returns the resource to the corresponding pool by
queuing it to the internal list of the resources of the same type.

Note: If a group of instances of this automata type is used as a set of
individual resources rather than as a pool of resources (the parameter use-
FreeList has been set to the value false when the first automata instance has
been added to the FSM system), this function has no effect.

6.8.24 GetAutomata

Function prototype:
virtual uint8 GetAutomata() = 0

Function description: This function returns the identification of the auto-
mata type for this automata instance.

Function returns: This function returns the unique ID of the automata type.
Note: This function is a pure virtual function, which means that it must

be defined in the class that models some concrete automata type. Typically,
this function returns the constant value that represents the required iden-
tification. It finds this constant by looking up the table of identifications
created by reading the file of all the known automata types at the FSM system
startup time.

6.8.25 GetBitParamByteBasic

Function prototype:
unit8 GetBitParamByteBasic(

uint32 offset,

uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 1 byte masked with the given mask. The parameters
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of this function specify the offset of the original parameter of the message
and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing
the value of a single bit, or of a group of bits simultaneously, is possible in
the parameter of size 1 byte that is at a given distance from the beginning
of the message.

6.8.26 GetBitParamWordBasic

Function prototype:
unit8 GetBitParamWordBasic(

uint32 offset,

uint32 mask=MASK_32_BIT)

Function description: This function returns the value of the current mes-
sage parameter of length 2 bytes masked with the given mask. The para-
meters of this function specify the offset of the original parameter of the
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing
the value of a single bit, or a group of bits simultaneously, is possible in the
parameter of size 2 bytes that is at a given distance from the beginning of
the message.

6.8.27 GetBitParamDWordBasic

Function prototype:
unit8 GetBitParamDWordBasic(

uint32 offset,

uint32 mask=MASK_32_BIT)
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Function description: This function returns the value of the current mes-
sage parameter of length 4 bytes masked with the given mask. The para-
meters of this function specify the offset of the original parameter of the
message and the value of the mask.

Function parameters:
offset: the offset of the original parameter of the message
mask: the value of the mask

Function returns: This function returns the result of the bit-wise AND
operation between the value of the message parameter at the given message
offset and the given value of the parameter mask.

Note: Normally, depending on the value of the parameter mask, testing
the value of a single bit, or of a group of bits simultaneously, is possible in
the parameter of size 4 bytes that is at a given distance from the beginning
of the message.

6.8.28 GetBuffer

Function prototype:
virtual uint8 *GetBuffer(uint32 length)

Function description: This function returns a buffer whose size is not less
than the size given by the value of its parameter. The parameter of this
message specifies the minimal buffer length in bytes.

Function parameters:
length: the buffer length

Function returns: This function returns the pointer to a newly allocated
buffer.

Note: The FSMSystem library kernel handles a limited number of buffer
types with a limited number of instances per each type defined during the
kernel initialization by calling the function InitKernel. By definition, this
function first searches for the buffer types of the size that ideally match the
desired buffer. If such a type does not exist, the function searches for the
next size greater buffer types. This allocation policy may yield a buffer of a
size much bigger than needed, and frequent occurrence of this type of allo-
cation may lead to inefficient memory usage. For example, suppose that the
programmer has mistakenly defined only two buffer sizes, small and large,
such that not a single protocol message can fit into the small buffer. In this
case, only the large buffers will be consumed and the small buffers will not
be used at all. Therefore, special care must be taken when defining the buffers
before calling the function InitKernel.
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Now let us go back to the buffer allocation algorithm. When this function
finds a buffer type of a sufficient size, it checks for a free buffer of that
type. If no such type is found, the system is badly designed and a new
buffer type must be added to the system. If such a buffer type exists but
no free buffers of that type are available, the function will look for the
next size buffer. If all the buffers of the sufficient size are already allocated,
the FSM system experiences the memory exhaustion problem. In academic
examples, the system is allowed to crash under these circumstances.
However, industrial-strength applications require implementation of
additional mechanisms, such as overload protection and intelligent auto-
matic restarts.

6.8.29 GetBufferLength

Function prototype:
uint32 GetBufferLength(uint8 *buff)

Function description: This function returns the size of the given buffer in
bytes. The parameter of this function specifies the pointer to the buffer.

Function parameters:
buff: the address of the buffer

Function returns: This function returns the specified buffer length in bytes.

6.8.30 GetCallId

Function prototype:
virtual inline uint32 GetCallId()

Function description: This function returns the identification of the com-
munication process that this instance is currently involved in, e.g., the call
ID. The actual meaning of this identification is application specific.

Function returns: This function returns the value of the attribute CallId.
Note: Historically, the attribute CallId is tied to call processing (e.g., Q.71)

and signaling (e.g., SS7, DSS1) protocols, but it also proved to be useful in
modern multimedia protocols (e.g., H.323 and SIP). Generally, this attribute
may be used as an identification of the process or of the transaction that
engages more cooperative automata. If a single attribute is not sufficient the
programmer may introduce additional attributes in classes derived from the
base class FiniteStateMachine.
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6.8.31 GetCount

Function prototype:
uint32 GetCount(uint8 mbx)

Function description: This function returns the current number of mes-
sages in the given mailbox. The parameter of this message specifies the
identification of the mailbox.

Function parameters:
mbx: the mailbox identification

Function returns: This function returns the number of unread messages
contained in the mailbox of interest.

6.8.32 GetGroup

Function prototype:
virtual uint8 GetGroup()

Function description: This function returns the identification of the group
of automata to which this instance belongs.

Function returns: This function returns a number that uniquely identifies
the group of automata which, besides other members, includes this automata
instance.

6.8.33 GetInitialState

Function prototype:
virtual uint8 GetInitialState()

Function description: This function returns the identification of the initial
state of this automata type.

Function returns: This function returns the number that uniquely identifies
the initial state of this automata type.

Note: The default value of the initial state is 0.

6.8.34 GetLeftMbx

Function prototype:
virtual inline uint8 GetLeftMbx()

Function description: This function returns the identification of the default
mailbox assigned to the automata instance that is logically to the left of this
automata instance.
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Function returns: This function returns the number that uniquely identifies
the default mailbox assigned to the left automata instance.

Note: Historically, the terms left and right automata instance originate from
SDL, where an automata instance typically communicates with its left and
right neighbors. These neighbors might have their own mailboxes, some-
times briefly called left and right mailboxes.

6.8.35 GetLeftAutomata

Function prototype:
virtual inline uint8 GetLeftAutomata()

Function description: This function returns the identification of the auto-
mata type that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identifies
the left automata type.

Note: By definition, left automata are logically placed to the left of the
currently observed automata instance.

6.8.36 GetLeftGroup

Function prototype:
virtual linline uint8 GetLeftGroup()

Function description: This function returns the identification of the group
of automata that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identifies
the left group of automata.

Note: By definition, a left group of automata is a group that contains left
automata.

6.8.37 GetLeftObjectId

Function prototype:
virtual inline uint32 GetLeftObjectId()

Function description: This function returns the identification of the auto-
mata instance that is logically to the left of this automata instance.

Function returns: This function returns the number that uniquely identifies
the left automata instance.

Note: By definition, left automata are logically placed to the left of the
currently observed automata instance. This function returns the iden-
tification of the particular left automata instance with which the currently
observed automata instance communicates.

9814_C006.fm  Page 357  Thursday, April 13, 2006  10:31 AM

© 2006 by Taylor and Francis Group, LLC



358 Communication Protocol Engineering

6.8.38 GetMbxId

Function prototype:
virtual uint8 GetMbxId()

Function description: This function returns the identification of the default
mailbox assigned to this automata type. Note that an instance of a given
automata type may receive its messages through any mailbox, i.e., through
the default mailbox as well as through other mailboxes. Alternately, a single
mailbox may by assigned to more than one automata type.

Function returns: This function returns the number that uniquely identifies
the default mailbox assigned to this automata instance.

Note: This function is a pure virtual function, which means that it must
be defined by the programmer when he writes a class derived from the class
FiniteStateMachine. Typically, this function returns the constant value that
represents the required mailbox identification (the content of the correspond-
ing class field). This constant can be initially determined by looking up the
table of identifications and set by calling the function SetMbxId. The table of
identifications can be created by reading the file containing all the known
automata types at the FSM system startup time. A mailbox ID is typically a
record field that describes a single automata type.

6.8.39 GetMessageInterface

Function prototype:
virtual MessageInterface *GetMessageInterface(uint32 id) = 0

Function description: This function returns the object that governs the
coding of messages used by this automata instance. The parameter of this
function specifies the identification of the information coding scheme. The
returned object is an instance of the class derived from the class Message-
Interface.

Function parameters:
id: the information coding scheme

Function returns: This function returns the pointer to the object responsible
for parsing and coding the messages used by this automata instance.

Note: This function is a virtual function, which means that it must be
defined when the programmer writes a class derived from the class Finite-
StateMachine. The identification with the value 0 is reserved for the informa-
tion coding used by the format of the class StandardMessage, which is a basic
type of a message supported by the FSMSystem library.
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6.8.40 GetMsg( )

Function prototype:
uint8* GetMsg()

Function description: This function returns the first unread message from
the mailbox assigned to this automata instance.

Function returns: This function returns a pointer to the buffer that has been
removed from the head of the list, which is hidden by the abstraction of the
mailbox assigned to this automata instance. If no such buffer exists, i.e., if
the list is empty, the function returns the value NULL.

6.8.41 GetMsg(uint8) 

Function prototype:
static uint8* GetMsg(uint8 mbx)

Function description: This function returns the first unread message from
the given mailbox. The parameter of this function specifies the identification
of the mailbox.

Function parameters:
mbx: the mailbox ID

Function returns: This function returns the pointer to the buffer that has
been removed from the head of the list, which is hidden by the abstraction
of the given mailbox. If no such buffer exists, i.e., if the list is empty, the
function returns the value NULL.

Note: Although this function is defined as a static function, a call to this
function is not allowed before the kernel initialization and the FSM system
startup. The call to this function made before that may cause unpredictable
behavior.

6.8.42 GetMsgCallId

Function prototype:
inline uint32 GetMsgCallId()

Function description: This function returns the identification of the com-
munication process (e.g., call ID) from the current message.

Function returns: This function returns the value of the attribute CallId.
Note: The attribute CallId is application specific. It can be used to indicate

a process or a transaction in which more cooperating automata are involved.
The size of CallId is 32 bits. It is considered large enough for most of the
applications. To increase the size of CallId, the programmer would need to
modify the base class FiniteStateMachine.
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6.8.43 GetMsgCode

Function prototype:
inline uint16 GetMsgCode()

Function description: This function returns the message code from the
current message header.

Function returns: This function returns the value of the message code from
the header of the current (last received) message.

6.8.44 GetMsgFromAutomata

Function prototype:
inline uint8 GetMsgFromAutomata()

Function description: This function returns the identification of the origi-
nating automata type from the current message. This value is provided from
the header of the current message.

Function returns: This function returns the value of the identification of
the automata type that has created and sent the current message to this
automata instance.

6.8.45 GetMsgFromGroup

Function prototype:
inline uint8 GetMsgFromGroup()

Function description: This function returns the identification of the group
of the originating automata instance for the current message. This value is
provided from the header of the current message.

Function returns: This function returns the value of the identification of
the group of automata instance that has created and sent the current message
to this automata instance.

6.8.46 GetMsgInfoCoding

Function prototype:
inline uint8 GetMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the current message.

Function returns: This function returns the value that identifies the type
of information coding that has been used to create the current message.

Note: This information is provided from the header of the current message.
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6.8.47 GetMsgInfoLength( )

Function prototype:
inline uint16 GetMsgInfoLength()

Function description: This function returns the payload length of the cur-
rent message in bytes.

Function returns: This function returns the value of the current message
payload size in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the sum
of the length of the message header and the length of the message payload.

6.8.48 GetMsgInfoLength(uint8*) 

Function prototype:
inline uint16 GetMsgInfoLength(uint8 *msg)

Function description: This function returns the payload length of the given
message in bytes. The parameter of this function specifies the pointer to the
message.

Function parameters:
msg: the pointer to the message

Function returns: This function returns the value of the size of the given
message payload in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the sum
of the length of the message header and the length of the message payload.

6.8.49 GetMsgObjectNumberFrom

Function prototype:
inline uint32 GetMsgObjectNumberFrom()

Function description: This function returns the identification of the origi-
nating automata instance from the current message.

Function returns: This function returns the value that identifies the auto-
mata instance that has created and sent the message.

Note: This value is provided from the header of the current (last received)
message.
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6.8.50 GetMsgObjectNumberTo

Function prototype:
inline uint32 GetMsgObjectNumberTo()

Function description: This function returns the identification of the desti-
nation automata instance from the current message. This value is actually
this automata instance.

Function returns: This function returns the value that identifies the auto-
mata instance that has received the message and that must process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.51 GetMsgToAutomata

Function prototype:
inline uint8 GetMsgToAutomata()

Function description: This function returns the identification of the desti-
nation automata type from the current message. This value is actually this
automata type.

Function returns: This function returns the value that identifies the auto-
mata type that should receive the message and that should process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.52 GetMsgToGroup

Function prototype:
inline uint8 GetMsgToGroup()

Function description: This function returns the identification of the type
of the group of the destination automata from the current message. This
value is actually the group to which this automata type belongs.

Function returns: This function returns the value that identifies the group
of automata that has received the message and that must process it.

Note: This value is provided from the header of the current (last received)
message.

6.8.53 GetNewMessage

Function prototype:
inline uint8 *GetNewMessage()
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Function description: This function returns the address of the buffer that
contains the new message.

Function returns: This function returns the pointer to the already defined
new message or the message under construction.

Note: If the new message does not exist, this function returns the value
NULL. This function assumes that the programmer has already allocated a
buffer for the new message by previously calling the function PrepareNew-
Message or calling the function GetBuffer.

6.8.54 GetNewMsgInfoCoding

Function prototype:
inline uint8 GetNewMsgInfoCoding()

Function description: This function returns the identification of the infor-
mation coding scheme used for the new message.

Function returns: This function returns the value that uniquely identifies
the type of information coding.

Note: This value is provided from the header of the new message.

6.8.55 GetNewMsgInfoLength

Function prototype:
inline uint16 GetNewMsgInfoLength()

Function description: This function returns the payload length of the new
message in bytes.

Function returns: This function returns the value of the new message
payload size in bytes.

Note: The length of the message header is not included in the length
returned by this message. By definition, the total message length is the
sum of the length of the message header and the length of the message
payload.

6.8.56 GetNextParam

Function prototype:
uint8 *GetNextParam(uint16 paramCode)

Function description: This function returns the address of the next instance
of the given parameter type within the current message. The parameter of
this function specifies the type of the message parameter.

Function parameters:
paramCode: the identification of the type of the message parameter
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Function returns: The function returns the pointer to the next instance of
the message parameter. If it does not exist, the function returns the value
NULL.

Note: This function cannot be used by the programmer to get the first
instance of the message parameter of a given type. It assumes that the first
instance has already been provided by calling the function GetParam. Typi-
cally, the function GetParam is called once to provide the first instance of the
parameter and then called iteratively to provide the next instances of the
parameter.

6.8.57 GetNextParamByte

Function prototype:
bool GetNextParamByte(

uint16 paramCode,

BYTE &param)

Function description: This function searches for the next instance of the
given type of the single-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The para-
meters of this function specify the identification of the type of the message
parameter and the pointer to the memory area where this function should
store the next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of the message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by calling the function GetParamByte.
Typically, the function GetParamByte is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.58 GetNextParamDWord

Function prototype:
bool GetNextParamDWord(

uint16 paramCode,

DWORD &param)
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Function description: This function searches for the next instance of the
given type of parameter 4 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The para-
meters of this function specify the identification of the type of the message
parameter and the pointer to the memory area where this function should
store the next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by calling the function GetParamDWord.
Typically, the function GetParamDWord is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.59 GetNextParamWord

Function prototype:
bool GetNextParamWord(

uint16 paramCode,

WORD &param)

Function description: This function searches for the next instance of the
given type of parameter 2 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The para-
meters of this function specify the identification of the type of the message
parameter and the pointer to the memory area where this function should
store the next instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter
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Function returns: This function returns the value true if the next instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer cannot use this function to get the first instance of
the message parameter of the given type. This function assumes that the first
instance has already been provided by the call to the function GetParamWord.
Typically, the function GetParamWord is called once to provide the first
instance of the parameter and then called iteratively to provide the next
instances of the parameter.

6.8.60 GetObjectId

Function prototype:
virtual uint32 GetObjectId()

Function description: This function returns the unique identification of this
automata instance.

Function returns: This function returns the value that uniquely identifies
this particular automata instance.

Note: This value has been automatically assigned to this automata instance
by the function Add, which is called to add this automata instance to the
FSM system.

6.8.61 GetParam

Function prototype:
uint8 *GetParam(uint16 paramCode)

Function description: This function returns the address of the first instance
of the given type of the message parameter within the current message. The
parameter of this function specifies the identification of the parameter type.

Function parameters:
paramCode: the identification of the parameter type

Function returns: This function returns the pointer to the first instance of
the message parameter within the current message. If no message parameters
of the given type are found, this function returns the value NULL.

Note: This function returns the pointer to the beginning of the message
parameter. The format of the message parameter is governed by the selected
type of the message information coding. For example, the parameter of the
message StandardMessage consists of three fields. These fields are the para-
meter type (stored in 2 bytes), the parameter length (stored in 1 byte), and
the information part of the parameter (stored in the number of bytes deter-
mined by the content of the previous field of the parameter).
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6.8.62 GetParamByte

Function prototype:
bool GetParamByte(

uint16 paramCode,

BYTE &param)

Function description: This function searches for the first instance of the
given type of single-byte parameter in the current message. If the instance
is found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The para-
meters of this function specify the identification of the type of the message
parameter and the pointer to the memory area where this function should
store the first instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter and then the function
GetNextParamByte is called iteratively to provide the next instances of the
parameter.

6.8.63 GetParamDWord

Function prototype:
bool GetParamDWord(

uint16 paramCode,

DWORD &param)

Function description: This function searches for the first instance of the
given type of parameter 4 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The
parameters of this function specify the identification of the type of message
parameter and the pointer to the memory area where this function should
store the first instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
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param: the pointer to the memory area reserved by the programmer for
the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter and then the function
GetNextParamDWord is called iteratively to provide the next instances of the
parameter.

6.8.64 GetParamWord

Function prototype:
bool GetParamWord(

uint16 paramCode,

BYTE &param)

Function description: This function searches for the first instance of the
given type of parameter 2 bytes in the current message. If the instance is
found, the function copies it into its parameter specified by the reference
and returns the value true; otherwise, it returns the value false. The para-
meters of this function specify the identification of the type of message
parameter and the pointer to the memory area where this function should
store the first instance of the message parameter.

Function parameters:
paramCode: the identification of the type of message parameter
param: the pointer to the memory area reserved by the programmer for

the next instance of the message parameter

Function returns: This function returns the value true if the first instance
of the message parameter is found. If the instance is not found, this function
returns the value false.

Note: The programmer must use this function to get the first instance of
the message parameter of the given type. Typically, this function is called
once to provide the first instance of the parameter and then the function
GetNextParamWord is called iteratively to provide the next instances of the
parameter.

6.8.65 GetProcedure

Function prototype:
PROC_FUN_PTR GetProcedure(uint16 event)
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Function description: This function returns the pointer to the event handler
for the given event identifier and the current state of automata. The para-
meter of this function specifies the identification of the event type.

Function parameters:
event: the identification of the event type (message code)

Function returns: This function returns the pointer to the event handler.
Essentially, the event handler is a C++ class function member that handles
the given event type in the current state.

Note: The FSM system internal data structures contain all the necessary
information about the automata states, the sets of recognizable events (mes-
sages) for all automata states, and the corresponding event handlers. This
information must be defined for each automata type after it has been added
to the FSM system by the function Add. The programmer specifies this
information in the parameters of the function Initialize. If the event handler
has not been specified by the function Initialize for the given event type in
the current automata state, this function returns the pointer to the function
DoNothing, which performs the default processing of the unexpected events
(messages).

6.8.66 GetRightMbx

Function prototype:
virtual inline uint8 GetRightMbx()

Function description: This function returns the identification of the default
mailbox assigned to the automata instance that is logically to the right of
this automata instance.

Function returns: This function returns the number that uniquely identifies
the default mailbox for the right automata instance.

Note: Historically, the terms left and right automata instance originate from
SDL, where an automata instance typically communicates with its left and
right neighbors. These neighbors have their own mailboxes, sometimes
briefly called left and right mailboxes.

6.8.67 GetRightAutomata

Function prototype:
virtual inline uint8 GetRightAutomata()

Function description: This function returns the identification of the auto-
mata type that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identifies
the right automata type.
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Note: By definition, right automata are logically placed to the right of the
currently observed automata instance.

6.8.68 GetRightGroup

Function prototype:
virtual linline uint8 GetRightGroup()

Function description: This function returns the identification of the group
of automata that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identifies
the right group of automata.

Note: By definition, a right group of automata is a group that contains
right automata.

6.8.69 GetRightObjectId

Function prototype:
virtual inline uint32 GetRightObjectId()

Function description: This function returns the identification of the auto-
mata instance that is logically to the right of this automata instance.

Function returns: This function returns the number that uniquely identifies
the right automata instance.

Note: By definition, right automata are logically placed to the right of the
currently observed automata instance. This function returns the iden-
tification of the particular right automata instance with which the currently
observed automata instance communicates.

6.8.70 GetState

Function prototype:
virtual inline uint8 GetState()

Function description: This function returns the identification of the current
state of this automata instance.

Function returns: This function returns the value that uniquely identifies
the current state of this automata instance.

6.8.71 IsBufferSmall

Function prototype:
virtual bool IsBuferSmall(

uint8 *buff,

uint32 length)
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Function description: This function returns the value true if the size of the
given buffer is not greater than the given size specified as the value of its
second parameter; otherwise, it returns the value false. The parameters of
this function specify the buffer whose size is to be checked and the size to
be used as a measuring unit.

Function parameters:
buff: the pointer to the buffer whose size is to be checked
length: the value of the measuring unit

Function returns:
This function returns the value true if the size of the given buffer is less

than or equal to the given size. If the buffer size is greater than the given
size, the function returns the value false.

6.8.72 Initialize

Function prototype:
virtual void Initialize() = 0

Function description: This function defines the automata state transition
event handlers and timers used by this automata type. State transition event
handlers are essentially the C++ functions defined by the programmer, which
process events (messages). Timers are primitive time mechanisms used to
restrict the duration of certain communication phases.

Note: While writing the function Initialize, the programmer normally
defines the functions that process the expected events (messages) by calling
the function InitEventProc, the functions that process the unexpected events
by calling the function InitUnexpectedEventProc, and the timers by calling the
function InitTimerBlock.

6.8.73 InitEventProc

Function prototype:
void InitEventProc(

uint8 state,

uint16 event,

PROC_FUN_PTR fun)

Function description: This function defines the given state transition event
handler for the given automata state and the given event (message code).
The parameters of this function specify the identification of the state of this
automata type, the identification of the event type, and the pointer to the
event handler.
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Function parameters:
state: the identification of the state of this automata type
event: the identification of the event type
fun: the pointer to the event handler

Note: This function may be used only within the definition of the function
Initialize. A sequence of calls to this function fills in the internal state table
for this automata type. This table is used by the FSM system and this
automata type during its normal operation to locate the event handler that
corresponds to the given pair (state, event).

6.8.74 InitTimerBlock

Function prototype:
void InitTimerBlock (

uint16 tmrId,

uint32 count,

uint16 signalId)

Function description: This function initializes the given timer by the given
duration and the timer expiration message code. The parameters of this
function specify the timer identification, the timer duration, and the iden-
tification of the message to be sent to this automata type when the specified
timer expires.

Function parameters:
tmrId: the timer identification
count: the timer duration (in timer ticks)
signalId: the identification of the message (signal) to be sent by the

specified timer

Note: The timer identification is a value selected by the programmer. This
value uniquely identifies the timer to the automata type that uses it in all
the timer-related primitives, namely, InitTimerBlock, ResetTimer, RestartTimer,
StartTimer, and StopTimer. Uniqueness of identifiers is limited to the scope
of a single automata type. If the timer expires, it sends a special message
(referred to as a signal) to the automata instance that has started that timer.
The code of this message is set to the value of the parameter SignalId. The
kernel calculates the absolute timer duration in seconds by dividing the time
resolution specified for automata type with the time resolution of the FSM
system and by multiplying this result with the basic timer resolution spec-
ified as the parameter of the function InitKernel.
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6.8.75 InitUnexpectedEventProc

Function prototype:
void InitUnexpectedEventProc(

uint8 state,

PROC_FUN_PTR fun)

Function description: This function defines the given state transition event
handler for unexpected events in the given automata state. The parameters
of the function specify the automata state and the unexpected event handler,
which is essentially a C++ function that handles unexpected events (mes-
sages).

Function parameters:
state: the value that uniquely identifies the automata state
fun: the pointer to the unexpected event handler

Note: If the unexpected event (message) handler does not exist because it
has not been defined by this function, the FSM system and this automata
type will use the function DoNothing to handle unexpected messages for all
the states in which the unexpected message is not defined.

6.8.76 IsTimerRunning

Function prototype:
bool IsTimerRunning(uint16 id)

Function description: This function returns the value true if a given timer
is active (running); otherwise, it returns the value false. The parameter of this
function specifies the timer identification.

Function parameters:
id: the timer identification

Function returns: This function returns the value true if the timer is run-
ning. If the timer is not active, this function returns the value false.

Note: The timer may not be active because it has not been started at all or
it has been started but has expired in the meantime.

6.8.77 NoFreeObjectProcedure

Function prototype:
void NoFreeObjectProcedure(uint8 *msg)

Function description: This function defines the behavior of this automata
type if the list of free automata of this type is used and if it is empty at the
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moment when a free instance is requested. The parameter of this function
specifies the pending event (message).

Function parameters:
msg: the pointer to the pending message

Note: This function is used if a group of automata of this type is used as
a pool of resources of the same type. This function is called if the message
related to this automata type appears and no available automata instances
(resources) of this type are available. The programmer should write his own
function to handle this situation in an application-specific way. This situation
is additionally handled at the level of the FSM system by the function
NoFreeInstances.

6.8.78 NoFreeInstances

Function prototype:
virtual void NoFreeInstances() = 0

Function description: This function defines the behavior of the FSM system
if a list of free automata is used and if it is empty at the moment when a
free instance is requested.

Note: This function is used if a group of automata of this type is used as
a pool of resources of the same type within the FSM system. This function
is called if the message related to this automata type appears and no available
automata instances (resources) of this type are available. The programmer
should write his own function to handle this situation in an application-
specific way. This situation is additionally handled at the level of this auto-
mata type by the function NoFreeObjectProcedure.

6.8.79 ParseMessage

Function prototype:
virtual bool ParseMessage(uint8 *msg)

Function description: This function checks if the given message is coded
properly and, if it is, it becomes the current message (its pointer is assigned
to the internal variable CurrentMessage). The parameter of this function spec-
ifies the message to be parsed.

Function parameters:
msg: the pointer to the message to be parsed

Function returns: This function returns the value true if the message syntax
is correct; otherwise, it returns the value false.
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Note: This function is called internally for each received message. Nor-
mally, this function is called after the reception of the message to check its
syntax. If the message syntax is correct, further message processing functions
are called. Otherwise, the FSM system reports an error and discards the
syntactically incorrect message.

6.8.80 PrepareNewMessage(uint8*)

Function prototype:
virtual void PrepareNewMessage(uint8 *msg)

Function description: This function defines the given buffer as the new
message buffer by assigning the given pointer to the internal variable New-
Message. The buffer is used by this automata instance as a working area for
the construction of the new message. The parameter of this function specifies
the buffer.

Function parameters:
msg: the pointer to the buffer

Note: If the programmer wants to create a new message, he would nor-
mally call the function GetBuffer to obtain the buffer for the construction of
the message. Next, the programmer would call this function to declare the
buffer provided by the kernel as the buffer that will contain the new message.
After this declaration, the programmer may use all the functions from the
family of functions that operate on the new message to construct the new
message. Basically, these are the AddParamX functions.

6.8.81 PrepareNewMessage(uint32, uint16, uint8)

Function prototype:
virtual void PrepareNewMessage(

uint32 length,

uint16 code,
uint8 infoCode = LOCAL_PARAM_CODING)

Function description: This function creates the new message of the given
length with the given message code and the given type of information
coding. The parameters of this function specify the message length, the
message code, and the identification of the type of message information
coding.

Function parameters:
length: the message length
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code: the value of the message code
infoCode: the identification of the type of message information coding

Note: Dealing with static messages of fixed and known sizes is easy. In
this case, the programmer normally knows the size of the message he must
create. The programmer creates the new message by calling this function
and specifying the size as the value of the function parameter length. How-
ever, dealing with dynamic messages is more complicated because the mes-
sage length might not be known in advance. In this case, the programmer
may specify the value 0 as the value of the parameter length. This function
in its turn will create the empty message that has its header but has no
payload. Further on, the programmer typically uses functions AddParamX
to dynamically add new parameters to the message. Whenever not enough
room exists for the new parameter in the existing new message buffer, the
function AddParamX transparently allocates a bigger buffer, moves the con-
tent of the new message into it, and releases the smaller buffer. Of course,
the price paid for this flexibility is the processing overhead for the transpar-
ent buffer management.

6.8.82 Process

Function prototype:
virtual void Process(uint8 *msg)

Function description: This function performs the preparations for the mes-
sage processing and selects the state transition event handler based on the
message code and current state of this automata instance. After completion
of the message processing, this function releases the buffer used by
the message. The parameter of this function specifies the message to be
processed.

Function parameters:
msg: the pointer to the message to be processed

Note: This function is called internally by this automata type. Because this
function is virtual, the programmer may define the message handling pro-
cedure in accordance with the application-specific requirements.

6.8.83 PurgeMailBox

Function prototype:
void PurgeMailBox()
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Function description: This function purges all the messages from the mail-
box assigned to this automata type and releases all the buffers assigned to
the messages.

Note: Notice that the mailbox is assigned to an automata type rather than
to an individual instance of this type. This means that the mailbox may contain
the messages addressed to different instances of this type. This function does
not differentiate the messages. Instead, it simply purges all of them.

6.8.84 RemoveParam

Function prototype:
bool RemoveParam(uint16 paramCode)

Function description: This function removes the given type of message
parameter from the new message. The parameter of this function specifies
the identification of the type of message parameter.

Function parameters:
paramCode: the value that uniquely identifies the type of message pa-

rameter

Function returns: This function returns the value true if the given type of
the message parameter is successfully found and removed. If the new mes-
sage does not contain the given type, this function returns the value false.

Note: Removing the type of message parameter with identification 0 is not
recommended because it marks the end of the parameters in the message.
FSMSystem library debug version will report an error in that case and stop
the program execution.

6.8.85 Reset

Function prototype:
virtual void Reset()

Function description: This function resets this automata instance by return-
ing it to its initial state and stopping all its active timers.

Note: If the programmer wants to specify some additional actions to be
undertaken during the restart operation, he may redefine this default behav-
ior by writing the corresponding function member of a class derived from
the class FiniteStateMachine.

6.8.86 ResetTimer

Function prototype:
void ResetTimer(uint16 id)
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Function description: This function resets the internal timer block object
and returns the buffer allocated by the StartTimer primitive to the FSM library
kernel. The parameter of this function specifies the identification of the timer.

Function parameters:
id: the value that uniquely identifies the timer

6.8.87 RestartTimer

Function prototype:
void RestartTimer(uint16 tmrId)

Function description: This function restarts the given timer. It is logically
equivalent to a sequence of StopTimer and StartTimer primitives. The para-
meter of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the timer

6.8.88 RetBuffer

Function prototype:
virtual void RetBuffer(uint8 *buff)

Function description: This function returns the given buffer to the FSM
library kernel. Normally, each memory buffer is returned at the end of its
life cycle. The failure to do so leads to the memory leak problem. The
parameter of this function specifies the buffer to be released.

Function parameters:
buff: the pointer to the buffer to be released

Note: The programmer must pay special attention to releasing the buffers
when they are not needed anymore because the FSMSystem library does not
include the garbage collector. Memory outage causes the exception that will
stop the program execution.

6.8.89 ReturnMsg

Function prototype:
void ReturnMsg(uint8 mbxId)

Function description: This function makes a copy of the current message
and sends it to the given mailbox. This primitive is used frequently for
message forwarding. On many occasions, the communication process must
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react in this simple way. The parameter of this function specifies the iden-
tification of the mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox

6.8.90 SetBitParamByteBasic

Function prototype:
void SetBitParamByteBasic(

BYTE param,

uint32 offset,

uint32 mask = MASK_32_BIT)

Function description: This function sets the given single-byte parameter
of the new message to the result of the bit-wise inclusive OR operation
applied to the given parameter and its previous value masked (bit-wise AND
operation) with the given bit-mask. The parameters of this function specify
the value of the single-byte parameter, the offset of the target parameter of
the new message, and the value of the bit-mask.

Function parameters:
param: the value of the single-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.91 SetBitParamDWordBasic

Function prototype:
void SetBitParamDWordBasic(

DWORD param,

uint32 offset,

uint32 mask = MASK_32_BIT)

Function description: This function sets the given 4-byte parameter of the
new message to the result of the bit-wise inclusive OR operation applied to
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the
value of the 4-byte parameter, the offset of the target parameter of the new
message, and the value of the bit-mask.

Function parameters:
param: the value of the 4-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask
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6.8.92 SetBitParamWordBasic

Function prototype:
void SetBitParamWordBasic(

WORD param,

uint32 offset,

uint32 mask = MASK_32_BIT)

Function description: This function sets the given 2-byte parameter of the
new message to the result of the bit-wise inclusive OR operation applied to
the given parameter and its previous value masked (bit-wise AND opera-
tion) with the given bit-mask. The parameters of this function specify the
value of the 2-byte parameter, the offset of the target parameter of the new
message, and the value of the bit-mask.

Function parameters:
param: the value of the 2-byte parameter
offset: the target parameter of the new message
mask: the value of the bit-mask

6.8.93 SetCallId( )

Function prototype:
inline void SetCallId()

Function description: This function sets the default value of the attribute
CallId of this automata instance.

Note: This function automatically allocates the first available identification
and assigns it to the protected class attribute CallId, completely transparent
to the programmer.

6.8.94 SetCallId(uint32) 

Function prototype:
inline void SetCallId(uint32 id)

Function description: This function sets the given value of the attribute
CallId of this automata instance. The parameter of this function specifies the
value to be assigned to the attribute CallId.

Function parameters:
id: the value to be assigned to the attribute CallId

Note: In contrast to an overloaded function without any parameters in its
signature, this function enables the programmer to manually assign the value
to the attribute CallId. However, this value must be unique. The programmer
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must pay special attention to the assignment of these numbers, especially if
he mixes this function call with function calls to the overloaded function
that assigns the default values.

6.8.95 SetCallIdFromMsg

Function prototype:
inline void SetCallIdFromMsg()

Function description: This function sets the attribute CallId of this automata
instance to the value of the parameter CallId of the current message. This
primitive is used to store the reference number specific to the communication
protocol.

6.8.96 SetDefaultFSMData

Function prototype:
virtual void SetDefaultFSMData() = 0

Function description: This function sets the automata-specific data to their
default values. It is typically used before the normal operation phase.

Note: The programmer must define this virtual function for a class derived
from the class FiniteStateMachine. They do so by writing a C++ function that
initializes the problem-specific data.

6.8.97 SetDefaultHeader

Function prototype:
virtual void SetDefaultHeader(uint8 infoCoding = 0)

Function description: This function sets the default header field values for
the given type of the message information coding. The parameter of this
function specifies the identification of the type of the message information
coding.

Function parameters:
infoCoding: the type of the message information coding

Note: The programmer must define this virtual function for a class derived
from the class FiniteStateMachine. They do so by writing a C++ function that
fills in the protocol-specific data in the new message header.
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6.8.98 SetGroup

Function prototype:
inline void SetGroup(uint8 id)

Function description: This function sets the identification of the group of
automata for this automata type to the given value. This primitive is used
to declare the group membership. The parameter of this function specifies
the value to be assigned to the corresponding class attribute.

Function parameters:
id: the value that uniquely identifies the group of automata

6.8.99 SetInitialState

Function prototype:
virtual void SetInitialState()

Function description: This function sets the current state of this automata
instance to its initial state.

Note: The programmer must obey the rule that the value of the iden-
tification of the initial automata state is 0.

6.8.100 SetKernelObjects

Function prototype:
static void SetKernelObjects(

TPostOffice *postOffice,

TBuffers *buffers,

CTimer *timer)

Function description: This function sets the FSMSystem library kernel
objects (post office, buffers, and timers), which are common for all the auto-
mata in the FSM system. The parameters of this function specify the post
office object, the buffers object, and the timers object.

Function parameters:
postOffice: the pointer to the post office object
buffers: the pointer to the buffers object
timer: the pointer to the timers object

Note: This function is called internally by the function InitKernel. Remem-
ber that this function defines the kernel objects that are common for all
automata types and all their instances. An accidental call to this function
may cause unpredictable behavior of the FSM system.
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6.8.101 SetLeftMbx

Function prototype:
inline void SetLeftMbx(uint8 mbx)

Function description: This function sets the default identification of the
mailbox assigned to the automata instance that is logically to the left of this
automata instance. The parameter of this function specifies the identification
of the mailbox.

Function parameters:
mbx: the value that uniquely identifies the mailbox

6.8.102 SetLeftAutomata

Function prototype:
inline void SetLeftAutomata(uint8 automata)

Function description: This function sets the identification of the automata
type that is logically to the left of this automata instance. The parameter of
this function specifies the identification of the automata type.

Function parameters:
automata: the value that uniquely identifies the automata type

6.8.103 SetLeftObject

Function prototype:
inline void SetLeftObject(uint8 group)

Function description: This function sets the identification of the type of
the group of automata that is logically to the left of this automata instance.
The parameter of this function specifies the identification of the group of
automata.

Function parameters:
group: the value that uniquely identifies the group of automata

6.8.104 SetLeftObjectId

Function prototype:
inline void SetLeftObjectId(uint32 id)
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Function description: This function sets the identification of the automata
instance that is logically to the left of this automata instance. The parameter
of this function specifies the identification of the automata instance.

Function parameters:
id: the identification of the automata instance

6.8.105 SetLogInterface

Function prototype:
static void SetLogInterface(LogInterface *logingObject)

Function description: This function defines the object responsible for mes-
sage logging. The object is an instance of a class derived from the class
LogInterface. The parameter of this function specifies the message logging
object.

Function parameters:
logingObject: the pointer to the message logging object

Note: The programmer must not call this function before the initialization
of all the automata included in the FSM system has been finished. The
logging object may log data to the file on the local mass memory unit (e.g.,
flash memory) or to the network file server. The log file is essential for
debugging and test and verification purposes.

6.8.106 SendMessage(uint8)

Function prototype:
inline void SendMessage(uint8 mbxId)

Function description: This function sends the new message to the given
mailbox. The parameter of this function specifies the identification of the
mailbox.

Function parameters:
mbxId: the value that uniquely specifies the mailbox

Note: By definition, the internal pointer NewMessage points to the buffer
that contains the new message. The programmer initializes this pointer by
calling the function PrepareNewMessage.

6.8.107 SendMessage(uint8, uint8*)

Function prototype:
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inline void SendMessage(

uint8 mbxId,

uint8 *msg)

Function description: This function sends the given message to the given
mailbox. The parameters of this function specify the identification of the
mailbox and the message to be sent to that mailbox.

Function parameters:
mbxId: the value that uniquely identifies the mailbox
msg: the pointer to the message

6.8.108 SetMessageFromData

Function prototype:
void SetMessageFromData()

Function description: This function sets the header fields of the new mes-
sage related to the originating automata instance to the values specific to
this automata instance. The data specifying the originating automata
instance are its type, its group, and its identification.

Note: This function is automatically called from the function SendMessage.

6.8.109 SetMsgCallId(uint32)

Function prototype:
inline void SetMsgCallId(uint32 id)

Function description: This function sets the call ID parameter of the new
message to the given value. The parameter of this function specifies the value
of the call ID.

Function parameters:
id: the value of the call ID

Note: The call ID parameter has been traditionally used to identify a single
telephone call. In general, it may be used to uniquely identify a communi-
cation process or a transaction that engages a group of automata that par-
ticipate in its processing.

6.8.110 SetMsgCallId(unit32, unit8*)

Function prototype:
inline void SetMsgCallId(

uint32 id,

uint8 *msg)
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Function description: This function sets the call ID parameter of the given
message to the given value. The parameters of this function specify the value
of the call ID and the target message.

Function parameters:
id: the value of the call ID
msg: the pointer to the buffer that contains the target message

Note: The value of the call ID parameter is the same for all the messages
involved in a transaction or a process, e.g., a single telephone call.

6.8.111 SetMsgCode(uint16)

Function prototype:
inline void SetMsgCode(uint16 code)

Function description: This function sets the message code parameter of
the new message to the given value. The parameter of this message specifies
the message code.

Function parameters:
code: the message code

6.8.112 SetMsgCode(uint16, uint8*)

Function prototype:
inline void SetMsgCode(

uint16 code,

uint8 *msg)

Function description: This function sets the message code parameter of
the given message to the given value. The parameters of this function specify
the message code and the target message.

Function parameters:
code: the message code
msg: the pointer to the buffer that contains the target message

6.8.113 SetMsgFromAutomata(uint8)

Function prototype:
inline void SetMsgFromAutomata(uint8 from)
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Function description: This function sets the type of the originating automata
parameter of the new message to the given value. The parameter of this function
specifies the identification of the automata type that is the message source.

Function parameters:
from: the identification of the automata type

Note: This function is automatically called by the function SetMessageFrom-
Data.

6.8.114 SetMsgFromAutomata(uint8, uint8*)

Function prototype:
inline void SetMsgFromAutomata(

uint8 from,

uint8 *msg)

Function description: This function sets the type of the originating auto-
mata parameter of the given message to the given value. The parameters of
this function specify the type of the automata that is the message source and
the target message.

Function parameters:
from: the automata type that is the message source
msg: the pointer to the buffer that contains the target message

6.8.115 SetMsgFromGroup(uint8)

Function prototype:
inline void SetMsgFromGroup(uint8 from)

Function description: This function sets the type of the originating group
of automata parameter of the new message to the given value. The parameter
of this message specifies the identification of the group of automata that is
the message source.

Function parameters:
from: the identification of the group of automata that is the message

source

Note: This function is automatically called by the function SetMessageFrom-
Data.
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6.8.116 SetMsgFromGroup(uint8, uint8*)

Function prototype:
inline void SetMsgFromGroup(

uint8 from,

uint8 *msg)

Function description: This function sets the type of the originating group
of automata parameter of the given message to the given value. The para-
meters of this function specify the identification of the group of automata
that is the message source and the target message.

Function parameters:
from: the identification of the group of automata that is the message

source
msg: the pointer to the buffer that contains the target message

6.8.117 SetMsgInfoCoding(uint8)

Function prototype:
inline void SetMsgInfoCoding(uint8 codingType)

Function description: This function sets the message information coding
parameter of the new message to the given value. The parameter of this
message specifies the identification of the information coding scheme.

Function parameters:
codingType: the value that uniquely specifies the information coding

scheme

Note: This function is automatically called by the function PrepareNew-
Message.

6.8.118 SetMsgInfoCoding(uint8, uint8*)

Function prototype:
inline void SetMsgInfoCoding(

uint8 codingType,

uint8 *msg)

Function description: This function sets the message information coding
parameter of the given message to the given value. The parameters of this
function specify the identification of the information coding scheme and the
target message.
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Function parameters:
codingType: the identification of the information coding scheme
msg: the pointer to the target message

6.8.119 SetMsgInfoLength(uint16)

Function prototype:
inline void SetMsgInfoLength(uint16 length)

Function description: This function sets the message payload (useful infor-
mation) length parameter of the new message. The parameter of this function
specifies the value of the payload length.

Function parameters:
length: the payload length in octets (bytes)

Note: All the AddParamX functions — which are responsible for adding
parameters to the new message — call this function automatically to update
the length of the message payload.

6.8.120 SetMsgInfoLength(uint16, uint8*)

Function prototype:
inline void SetMsgInfoLength(

uint16 length,

uint8 *msg)

Function description: This function sets the message payload (useful
information) length parameter of the given message. The parameters of
this function specify the value of the payload length and the target
message.

Function parameters:
length: the payload length in octets (bytes)
msg: the pointer to the buffer that contains the target message

6.8.121 SetMsgObjectNumberFrom(uint32)

Function prototype:
inline void SetMsgObjectNumberFrom(uint32 from)

Function description: This function sets the originating automata instance
identification parameter of the new message to the given value. The para-
meter of this function specifies the identification of the automata instance
that is the message source.
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Function parameters:
from: the identification of the automata instance that is the message

source

Note: This function is automatically called by the function SetMessageFrom-
Data.

6.8.122 SetMsgObjectNumberFrom(uint32, uint8*)

Function prototype:
inline void SetMsgObjectNumberFrom(

uint32 from,

uint8 *msg)

Function description: This function sets the originating automata instance
identification parameter of the given message to the given value. The para-
meters of this message specify the identification of the automata instance
that is the message source and the target message.

Function parameters:
from: the identification of the automata instance that is the message

source
msg: the pointer to the buffer that contains the target message

6.8.123 SetMsgObjectNumberTo(uint32)

Function prototype:
inline void SetMsgObjectNumberTo(uint32 to)

Function description: This function sets the destination automata instance
identification parameter of the new message to the given value. The para-
meter of this function specifies the automata instance that is the message
destination.

Function parameters:
to: the automata instance that is the message destination

6.8.124 SetMsgObjectNumberTo(uint32, uint8*)

Function prototype:
inline void SetMsgObjectNumberTo(uint32 to,uint8 *msg)

Function description: This function sets the destination automata instance
identification parameter of the given message to the given value. The
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parameters of this function specify the automata instance that is the message
destination and the target message.

Function parameters:
to: the automata instance that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.125 SetMsgToAutomata(uint8)

Function prototype:
inline void SetMsgToAutomata(uint8 to)

Function description: This function sets the destination automata type iden-
tification parameter of the new message to the given value. The parameter of
this function specifies the automata type that is the message destination.

Function parameters:
to: the automata type that is the message destination

6.8.126 SetMsgToAutomata(uint8, uint8*)

Function prototype:
inline void SetMsgToAutomata(

uint8 to,

uint8 *msg)

Function description: This function sets the destination automata type
identification parameter of the given message to the given value. The para-
meters of this function specify the identification of the automata type that
is the message destination and the target message.

Function parameters:
to: the identification of the automata type that is the message destination
msg: the pointer to the buffer that contains the target message

6.8.127 SetMsgToGroup(uint8)

Function prototype:
inline void SetMsgToGroup(uint8 to)

Function description: This function sets the destination automata group
identification parameter of the new message to the given value. The para-
meter of this function specifies the identification of the group of automata
that is the message destination.
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Function parameters:
to: the identification of the group of automata that is the message des-

tination

6.8.128 SetMsgToGroup(uint8, uint8*)

Function prototype:
inline void SetMsgToGroup(

uint8 to,

uint8 *msg)

Function description: This function sets the destination automata group
identification parameter of the given message to the given value. The para-
meters of this function specify the identification of the group of automata
that is the message destination and the target message.

Function parameters:
to: the identification of the group of automata that is the message des-

tination
msg: the pointer to the buffer that contains the target message

6.8.129 SendMessageLeft

Function prototype:
void SendMessageLeft()

Function description: This function sends the new message to the mailbox
assigned to the automata instance that is logically to the left of this automata
instance.

Note: The programmer may use this function if he has already defined the
left automata instance for the currently observed automata instance. This
definition includes the definition of the mailbox assigned to the left automata
instance. If the left automata instance and its mailbox are defined, this func-
tion automatically fills in all the data related to both source (originating) and
destination automata instances within the new message and sends the new
message to the left mailbox.

6.8.130 SendMessageRight

Function prototype:
void SendMessageLeft()

Function description: This function sends the new message to the mailbox
assigned to the automata instance that is logically to the right of this auto-
mata instance.
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Note: The programmer may use this function if he has already defined the
right automata instance for the currently observed automata instance. This
definition includes the definition of the mailbox assigned to the right auto-
mata instance. If the right automata instance and its mailbox are defined,
this function automatically fills in all the data related to both source (origi-
nating) and destination automata instances within the new message and
sends the new message to the right mailbox.

6.8.131 SetNewMessage

Function prototype:
inline void SetNewMessage(uint8 *msg)

Function description: This function sets the new message to the given
message by assigning the given message pointer to the internal pointer
to the new message. The parameter of this function specifies the target
message.

Function parameters:
msg: the pointer to the buffer that contains the target message

6.8.132 SetObjectId

Function prototype:
inline void SetObjectId(uint32 id)

Function description: This function sets the identification of this automata
instance to the given value. The parameter of this function specifies the
identification of this automata instance.

Function parameters:
id:  the value that uniquely identifies this automata instance

6.8.133 SetRightMbx

Function prototype:
inline void SetRightMbx(uint8 mbx)

Function description: This function sets the identification of the mailbox
assigned to the automata instance that is logically to the right of this auto-
mata instance. The parameter of this message specifies the identification of
the right mailbox for this automata instance.

Function parameters:
mbx: the identification of the right mailbox for this automata instance
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6.8.134 SetRightAutomata

Function prototype:
inline void SetRightAutomata(uint8 automata)

Function description: This function sets the identification of the automata
type that is logically to the right of this automata instance. The parameter
of this function specifies the automata type that is to the right of this auto-
mata instance.

Function parameters:
automata: the identification of the automata type

6.8.135 SetRightObject

Function prototype:
inline void SetRightObject(uint8 group)

Function description: This function sets the identification of the type of
the group of automata that is logically to the right of this automata instance.
The parameter of this function specifies the type of the group of automata
that is to the right of this automata instance.

Function parameters:
group: the identification of the group of automata

6.8.136 SetRightObjectId

Function prototype:
inline void SetRightObjectId(uint32 id)

Function description: This function sets the identification of the automata
instance that is logically to the right of this automata instance. The parameter
of this function specifies the identification of the automata instance that is
to the right of this automata instance.

Function parameters:
id: the identification of the automata instance

6.8.137 SetState

Function prototype:
inline void SetState(uint8 state)
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Function description: This function sets the identification of the current
state of this automata instance. The parameter of this function specifies the
identification of the state.

Function parameters:
state: the value that uniquely identifies the particular state of automata

6.8.138 StartTimer

Function prototype:
void StartTimer(uint16 tmrId)

Function description: This function starts the given timer. The parameter
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single
automata type that uses it.

6.8.139 StopTimer

Function prototype:
void StopTimer(uint16 tmrId)

Function description: This function stops the given timer. The parameter
of this function specifies the identification of the timer.

Function parameters:
tmrId: the value that uniquely identifies the particular timer

Note: Uniqueness of the timer identifier is limited to the scope of a single
automata type that uses it.

6.8.140 SysClearLogFlag

Function prototype:
static void SysClearLogFlag()

Function description: This function stops the logging of the messages
exchanged by the automata.
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6.8.141 SysStartAll

Function prototype:
Static void SysStartAll()

Function description: This function starts the logging of the messages
exchanged by the automata.

Note: Normally, the programmer should start the logging of messages
before he starts the individual automata included in the FSM system.

6.8.142 NetFSM

Function prototype:
NetFSM(

uint16 numOfTimers = DEFAULT_TIMER_NO,

uint16 numOfState = DEFAULT_STATE_NO,

uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE,

bool getMemory = true)

Function description: This constructor initializes the object that represents
an instance of the given automata type together with the data structures
needed for its proper operation. The parameters of this function specify the
number of timers to be used by this automata type, the total number of states
for this automata type, the maximal number of state transitions per state for
this automata type, and the memory allocation indicator. All the parameters
have their default values as shown in the function prototype declaration above.

Function parameters:
numOfTimers: the number of timers to be used by this automata type
numOfState: the total number of states for this automata type
maxNumOfProceduresPerState: the maximal number of state transitions

per state
getMemory: the memory allocation indicator

Note: The programmer may call this constructor without parameters. In
that case, the parameters will be set to their corresponding default values.
The value of the fourth parameter getMemory regulates memory allocation.
By default, this indicator is set to the value true, which means that the
constructor will take care of memory allocation. Default memory allocation
is not optimal because it is based on the maximal number of transitions per
state. This compromise has been made intentionally because it leads to a
very simple FSM definition API. If the programmer wants to optimize mem-
ory allocation, he may build the data structure describing the FSM by allo-
cating necessary memory blocks from the memory heap, linking them
together, and storing the pointer to this data structure in the protected class
field member States before this function is called. In that case, the program-
mer would set the fourth parameter getMemory to the value false.
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6.8.143 convertFSMToNetMessage

Function prototype:
virtual void convertFSMToNetMessage() = 0

Function description: This function converts the internal message format
into the external message format appropriate for the transmission over the
TCP/IP network.

Note: The programmer must define this virtual function by writing the
corresponding function member of a class derived from the class NetFSM.

6.8.144 convertNetToFSMMessage

Function prototype:
virtual uint16 convertNetToFSMMessage() = 0

Function description: This function converts the external message format
into the internal message format appropriate for the communication within
the FSM system.

Function returns: This function returns the code of the received message.
Note: The programmer must define this virtual function by writing the

corresponding function member of a class derived from the class NetFSM.

6.8.145 establishConnection

Function prototype:
void establishConnection()

Function description: This function establishes the TCP connection
between two geographically distributed FSM systems.

Note: The programmer must call this function before he can call the func-
tion sendToTCP to send the message to the remote FSM system.

6.8.146 getProtocolInfoCoding

Function prototype:
virtual uint8 getProtocolInfoCoding() = 0

Function description: This function returns the identification of the type
of external message coding.

Function returns: This function returns the value that uniquely identifies
the type of the coding of the external message.
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6.8.147 sendToTCP

Function prototype:
void sendToTCP()

Function description: This function sends the new message to the remote
FSM system over the previously established TCP connection.

Note: The programmer must call the function establishConnection before he
can call this function.

6.9 A Simple Example with Three Automata Instances

This section shows how the programmer can construct the FSM system and
how he can add individual automata instances to it. To keep the example
simple, we include only one use case, Show Simple Demo (Figure 6.1). The
realization of this use case is a simple collaboration that comprises three
instances (instance_1, instance_2, and instance_3) of the same automata type

automata instances have a trivial task to exchange the given number of
messages in a “round robin” fashion.

At the beginning, the main thread calls the function StartDemo of
instance_1, which in turn asynchronously sends itself the message
IDLE_START. Upon reception of this message, instance_1 sends the message
IDLE_MSG to instance_2, which increments the message sequence number
and forwards the message to instance_3, and the latter translates it to the
message MSG_MSG and sends it back to instance_1. This message then makes
two full circles around the collaborating objects. Finally, instance_1 translates
it to the message MSG_STOP and sends it to instance_2, which in turn
forwards it to instance_3. The corresponding sequence diagram is shown in

lations of the messages.

FIGURE 6.1
The simple use case diagram for the example with three automata instances.

Demonstrator

Show Simple Demo

System

«uses»
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Figure 6.3. The conditions A, B, and C regulate the already mentioned trans-
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FIGURE 6.2
The collaboration diagram for the example with three automata instances.

FIGURE 6.3
The sequence diagram for the example with three automata instances.
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The statechart diagram that describes the behavior of a single automata
instance is organized into two hierarchical levels. The top level comprises
two simple states, IDLE and MESSAGE, and four composite states,
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and
Automata_MSG_STOP (Figure 6.4). The symbolic constant MAX_MSG_NUM
is defined to have the value 10 in this example. The variable msgno is the

for figures is replaced with the longer self-documenting name msgNumber.
The  ind iv idua l  compos i te  s ta tes  Automata_ IDLE_START,

have been made rather detailed to show how to provide the mapping from
the UML model to the corresponding program code by the application of
forward engineering. Essentially, the state transition actions are the
sequences of calls to functions provided by the FSM library, such as Prepare-
NewMessage, AddParamDWord, SendMessage, and so on.

FIGURE 6.4
The statechart diagram for the example with three automata instances.

IDLE

Automata_IDLE_MSG

Automata_IDLE_START Automata_MSG_MSG

Automata_MSG_STOP

MESSAGE

UNKNOWN

UNKNOWN

IDLE_START

IDLE_MSG

MSG_MSG

[msgno<MAX_MSG_NUM]

[else]

MSG_STOP
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message sequence number, whose values are shown in parenthesis in Figure

Automata_IDLE_MSG, Automata_MSG_MSG, and Automata_MSG_STOP are

6.2 and Figure 6.3. Later in the program text, this short variable name suitable

shown in Figure 6.5, Figure 6.6, Figure 6.7, and Figure 6.8, respectively. These
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Each of the composite states can be modeled as an operation by the cor-
responding activity diagram. The activity diagrams for the operations
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and

forward engineering but on a slightly higher abstraction level, by using
informal text statements instead of explicit functions calls. Essentially, com-
posite statecharts and activity diagrams have the same semantics in this

The third and semantically equivalent method of modeling the behavior
of individual automata instances is by using the domain-specific SDL model.
This model comprises state transitions triggered by the reception of the
corresponding messages. The same names are used again so that the reader
can easily follow the correspondence between the SDL state transitions and
the UML composite states and activity diagrams. The SDL state transitions
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and

As already mentioned, all three automata instances in this example are of
the same type, i.e., class. The class Automata is a specialization of the FSM
library class FiniteStateMachine and is used by the FSM library class FSM-

Automata inherits all the members from its parent class and adds some field

FIGURE 6.5
The statechart diagram for the composite state Automata_IDLE_START.

INITIAL

PREPARING

SENDING

/PrepareNewMessage(0 × 00, IDLE_MSG); AddParamDWord(COUNT, msgno); 

/SendMessage(MBX_AUTOMATA_ID);

/msgno = 1 

Automata_IDLE_START
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Automata_MSG_STOP are shown in Figure 6.9, Figure 6.10, Figure 6.11, and

example.

Figure 6.12, respectively. Again, these diagrams have been made by applying

Automata_MSG_STOP are shown in Figure 6.13, Figure 6.14, Figure 6.15, and
Figure 6.16, respectively.

System (see the corresponding UML class diagram in Figure 6.17). The class
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members ,  such  as  m sgno ,  and  func t ion  members ,  such  as
Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG,
Automata_MSG_STOP, Initialize, and StartDemo. The first four correspond to
the composite states from the previous UML statechart model.

understand better the structural relationships among objects. A collaboration

over their virtual peer-to-peer connections. On a more detailed level of
abstraction, we see that the real communication is governed by the FSM
system, which is the owner of the mailboxes (not shown in the figure) used
for storing the messages, e.g., StandardMessage (shown in the figure). This
particular message shown in one snapshot of object collaboration is the first
message sent from instance_1 to instance_2. The message code is IDLE_MSG
and the value of the message sequence parameter is 1.

The program project in this example comprises the files Automata.h, Auto-
mata.cpp, Constants.h, Main.cpp, and the FSM library (see the corresponding

FIGURE 6.6
The statechart diagram for the composite state Automata_IDLE_MSG.

Automata_IDLE_MSG

INITIAL

PREPARING

SENDING_MSG

SENDING_IDLE

/GetParamDWord(COUNT, msgno); msgno++

[msgno<NUM_AUTOMATA]/PrepareNewMessage(0 × 00, IDLE_MSG);

AddParamDWord(COUNT, msgno);

[else]/PrepareNewMessage(0 × 00, MSG_MSG); AddParamDWord(COUNT, msgno);

/SendMessage(MBX_AUTOMATA_ID);

/SendMessage(MBX_AUTOMATA_ID);
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An object diagram such as the one shown in Figure 6.18 helps us to

diagram (Figure 6.2) shows the logical communication of automata instances

component diagram in Figure 6.19). Building this project in Microsoft Visual
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Studio 6.0 yields a single executable, which is executed on a single PC

The rest of this section is devoted to the program implementation of the
previous models. The content of the corresponding program files is as follows.

File Automata.h:
#ifndef __AUTOMATA__

#define __AUTOMATA__

#include <stdio.h>

#include “stdlib.h”

#include “kernel\fsm.h”

#include “kernel\errorObject.h”

#include “Constants.h”

class Automata: public FiniteStateMachine {

private:

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

FIGURE 6.7
The statechart diagram for the composite state Automata_MSG_MSG.

Automata_MSG_MSG

INITIAL

PREPARING

SENDING_STOP

SENDING_MSG

/GetParamDWord(COUNT, msgno); msgno++

[msgno<MAX_MSG_NUM]/PrepareNewMessage(0 × 00, MSG_MSG);

AddParamDWord(COUNT, msgno);

[else]/PrepareNewMessage(0 × 00, MSG_STOP); AddParamDWord(COUNT, msgno);

/SendMessage(MBX_AUTOMATA_ID);

/SendMessage(MBX_AUTOMATA_ID);
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machine (see the corresponding deployment diagram in Figure 6.20).
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void SetDefaultHeader(uint8 infoCoding);

uint8 GetMbxId();

uint8 GetAutomata();

void SetDefaultFSMData();

void NoFreeInstances();

uint8 text[20];

uint32 msgNumber;

uint32 idToMsg;

// State transition functions for the state IDLE

void Automata_IDLE_START();

void Automata_IDLE_MSG();

// State transition functions for the state MSG

void Automata_MSG_MSG();

void Automata_MSG_STOP();

// Unexpected event handlers for the states IDLE and MSG

void Automata_UNEXPECTED_IDLE();

void Automata_UNEXPECTED_MSG();

public:

Automata();

~Automata(){};

FIGURE 6.8
The statechart diagram for the composite state Automata_MSG_STOP.

Automata_MSG_STOP

INITIAL

PREPARING

SENDING_STOP

/GetParamDWord(COUNT, msgno); msgno-

[msgno>0]/PrepareNewMessage(0×00,MSG_STOP);

AddParamDWord(COUNT, msgno);

[else]

/SendMessage(MBX_AUTOMATA_ID);
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void Initialize();

void StartDemo();

};

#endif

The file Automata.h contains the declaration of the class Automata derived
from the class FiniteStateMachine. This declaration has its private and public
parts. The private field members are the message interface object StandardMsg-
Coding, the text work area text, the message sequence number msgNumber, and
the identification of the message destination automata idToMsg.

The common private function members are the following functions:

• GetMessageInterface: returns the message interface object
• SetDefaultHeader: sets the message header in accordance with the

specified information coding
• GetMbxId: returns the identification of the mailbox assigned to this

automata type
• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type

(msgNumber and idToMsg)
• NoFreeInstances: handles the situation when no more free instances

of this type are found

FIGURE 6.9
The activity diagram for the operation Automata_IDLE_START.

msgno = 1 

PREPARE IDLE_MSG

SEND TO NEXT INSTANCE 

SET STATE MESSAGE 

Automata_IDLE_START 
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The application-specific private function members are the following state
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the state
MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in
the state MESSAGE

FIGURE 6.10
The activity diagram for the operation Automata_IDLE_MSG.

GET msgno

INCREMENT msgno

PREPARE IDLE_MSG

SEND TO NEXT INSTANCE

SET STATE MESSAGE

PREPARE MSG_MSG

SEND TO NEXT INSTANCE

SET STATE MESSAGE

[msgno<NUM_AUTOMATA][else]

Automata_IDLE_MSG
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The public function members are the class constructor, the class destructor,
the initialization function Initialize, and the startup function StartDemo.

File Automata.cpp:
#include “kernel/LogFile.h”

#include “Automata.h”

Automata::Automata() : FiniteStateMachine(

0, // uint16 numOfTimers = DEFAULT_TIMER_NO,

FIGURE 6.11
The activity diagram for the operation Automata_MSG_MSG.

GET msgno

INCREMENT msgno

PREPARE MSG_MSG
SET msgno TO

NUM_AUTOMATA - 1

[msgno<MAX_MSG_NUM][else]

SEND TO NEXT INSTANCEPREPARE MSG_STOP

SET STATE MESSAGESEND TO NEXT INSTANCE

SET STATE IDLE

Automata_MSG_MSG
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2, // uint16 numOfState = DEFAULT_STATE_NO,

3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE

{

SetDefaultFSMData();

}

// This function returns the pointer to the object that governs the

// message information coding (the pointer to the message interface).

// This automata instance works only with the standard messages

// (ID 0x00). If the caller specifies another type of coding,

// this function throws the exception TErrorObject. The message

// interface is defined in Automata.h

MessageInterface *Automata::GetMessageInterface(uint32 id){

switch(id){

case 0x00:

return &StandardMsgCoding;

}

throw TErrorObject(__LINE__,__FILE__,0x01010400);

}

FIGURE 6.12
The activity diagram for the operation Automata_MSG_STOP.

GET msgno

DECREMENT msgno

SET STATE IDLE PREPARE MSG_STOP

SEND TO NEXT INSTANCE

[msgno>0][else]

SET STATE IDLE

Automata_MSG_STOP
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// This function fills in the message header.

void Automata::SetDefaultHeader(uint8 infoCoding){

SetMsgInfoCoding(infoCoding);

SetMessageFromData();

}

// This function returns the identification of the mailbox that is

// assigned to this automata type.

uint8 Automata::GetMbxId(){

return MBX_AUTOMATA_ID;

}

// This function returns the identification of this automata type.

uint8 Automata::GetAutomata(){

return FSM_TYPE_AUTOMATA;

}

// This function initializes the data specific to individual

// instance of this automata type.

FIGURE 6.13
The SDL diagram for the transition Automata_IDLE_START.
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void Automata::SetDefaultFSMData(){

msgNumber = 0;

idToMsg  = INVALID_32;

}

// This function is called if there are no free instances of this

// automata type. If the programmer wants to use this option, they must

// add the first automata instance of this type to the parameter

// useFreeList of the function Add set to true. In this example, it

FIGURE 6.14
The SDL diagram for the transition Automata_IDLE_MSG.
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// is empty. In real applications, the programmer should provide

// some recovery mechanism, such as overload protection or restart.

void Automata::NoFreeInstances(){

}

FIGURE 6.15
The SDL diagram for the transition Automata_MSG_MSG.
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// This function initializes the state transition functions and the

// timers that are used by this automata type. This function is

// called implicitly by the function Add, which is responsible for

// adding individual automata instances to the FSM system.

// Each state transition function is separately declared and defined.

void Automata::Initialize(){

// Here the programmer does the following initializations:

// InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);

// InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);

// InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);

InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)

&Automata::Automata_IDLE_START);

InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)

&Automata::Automata_IDLE_MSG);

FIGURE 6.16
The SDL diagram for the transition Automata_MSG_STOP.
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InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)

&Automata::Automata_MSG_MSG);

InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)

&Automata::Automata_MSG_STOP);

InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)

&Automata::Automata_UNEXPECTED_IDLE);

InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)

&Automata::Automata_UNEXPECTED_MSG);

}

// State transition functions for the state IDLE.

void Automata::Automata_IDLE_START(){

msgNumber = 1;

idToMsg  = GetObjectId()+1;

FIGURE 6.17
The class diagram for the example with three automata instances.
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+Delete() 
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FIGURE 6.18
The object diagram for the example with three automata instances.

FIGURE 6.19
The component diagram for the example with three automata instances.

instance_3 : Automata

fsmSystem : FSMSysteminstance_1 : Automata
MessageCode = IDLE_MSG
MessageNumberParameter = 1

: StandardMessage

instance_2 : Automata
virtual

This instance_1 and instance_2

peer to peer connection is virtual.

The real communication involves

their interaction with the fsmSystem.

«framework»

FSM Library

«executable»

Main.exe

«file»

Main.dsw

«file»
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«file»

Automata.cpp

«file»

Constants.h

«file»
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// Round Robin message transfer among automata instances 0-2

if(idToMsg == 3)

idToMsg = 0;

// The automata instance prepares and sends the message,

// and changes its state to MESSAGE.

PrepareNewMessage(0x00,IDLE_MSG);

char text[] = “THIS IS THE FIRST MESSAGE”;

AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMATA_ID);

SetState(MESSAGE);

}

void Automata::Automata_IDLE_MSG(){

idToMsg = GetObjectId()+1;

// Round Robin message transfer among automata instances 0-2

if((idToMsg == 3)

idToMsg = 0;

// Get parameters from the message

unsigned char *tmp;

tmp = GetParam(PARAM_TEXT);

assert(tmp);

memcpy(text,tmp+2,*(tmp+1));

memset(text+(*(tmp+1)),0x00,1);// make the string

GetParamDWord(COUNT,msgNumber);

// Round Robin – this instance receives the message from the previous one

uint32 idFromMsg = GetObjectId()-1;

if(idFromMsg == -1)

idFromMsg = 2;

printf(“Text received: %s\n from automata:%u \n”,text,idFromMsg);

// If the message sequence number is less than NUM_AUTOMATA,

FIGURE 6.20
The deployment diagram for the example with three automata instances.

PC
«executable»

Main.exe
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// send IDLE_MSG. If not, send MSG_MSG.

msgNumber++;

if(msgNumber < NUM_AUTOMATA){

// Prepare and send the message.

// Change automata state to MESSAGE.

PrepareNewMessage(0x00,IDLE_MSG);

char text[] = “THIS IS THE SECOND MESSAGE”;

AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMATA_ID);

}

else {

// Prepare and send the message.

// Change automata state to MESSAGE.

PrepareNewMessage(0x00,MSG_MSG);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMATA_ID);

}

SetState(MESSAGE);

}

void Automata::Automata_MSG_MSG(){

GetParamDWord(COUNT,msgNumber);

msgNumber++;

if(msgNumber < MAX_MSG_NUM){

// Forward the message to the next automata instance.

PrepareNewMessage(0x00,MSG_MSG);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMAT_ID);

}

else {

printf(“Stop automata:%with message:%u\n”,GetObjectId(),msgNumber);

// Prepare and send the message.

// Change automata state to IDLE.

PrepareNewMessage(0x00,MSG_STOP);

AddParamDWord(COUNT,NUM_AUTOMATA-1);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMATA_ID);

SetState(IDLE);

}

}
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void Automata::Automata_MSG_STOP(){

printf(“Stop automata instance: %u\n”,GetObjectId());

GetParamDWord(COUNT,msgNumber);

msgNumber——;

if(msgNumber > 0){

// Prepare and send the message.

// Change automata state to IDLE.

PrepareNewMessage(0x00,MSG_STOP);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

SendMessage(MBX_AUTOMATA_ID);

}

SetState(IDLE);

}

void Automata::Automata_UNEXPECTED_IDLE(){

printf(“Unexpected message in the state IDLE \n”);

}

void Automata::Automata_UNEXPECTED_MSG(){

printf(“Unexpected message in the state MESSAGE \n”);

}

void Automata::StartDemo(){

uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);

SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);

SetMsgFromGroup(INVALID_08,msg);

SetMsgObjectNumberFrom(0,msg);

SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);

SetMsgToGroup(INVALID_08,msg);

SetMsgObjectNumberTo(0,msg);

SetMsgInfoCoding(0,msg); // 0 = StandardMessage

SetMsgCode(IDLE_START,msg);

SetMsgInfoLength(0,msg);

SendMessage(MBX_AUTOMATA_ID,msg);

}

The file Automata.cpp contains the definition of the class Automata. This def-
inition starts with the class constructor that first calls the base class constructor
specifying no timers, two states, and the maximum of three state transitions
per state for this automata type. After that, the constructor calls the function
SetDefaultFSMData, which sets the data specific for this automata type.

The function GetMessageInterface returns the pointer to the message interface
object for the given type of information coding. This class operates with only
standard messages (the corresponding ID is 0x00). If the caller of this function
specifies the identification of the standard message as its parameter, the func-
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tion returns the pointer to the object StandardMsgCoding. If the caller specifies
some other message type, this function throws the exception TErrorObject.

The function SetDefaultHeader sets the message information coding by
calling the function SetMsgInfoCoding and the automata specific data by
calling the function SetMessageFromData. The function GetMbxId returns the
value MBX_AUTOMATA_ID as the identification of the mailbox assigned to
this automata type. The function GetAutomata returns the value
FSM_TYPE_AUTOMATA as the identification of this automata type. The
function SetDefaultFSMData sets the field msgNumber to the value 0 and the
field idToMsg to the value INVALID_32. The function NoFreeInstances is empty
in this simple example. In real-world projects, it would be used to trigger
some higher-level protection or recovery mechanism.

The function Initialize defines the event handlers by calling the function
InitEventProc and the unexpected events handlers by calling the function
InitUnexpectedEventProc. More precisely, this function defines the event han-
dlers for the messages IDLE_START and IDLE_MSG in the state IDLE and
for the messages MSG_MSG and MSG_STOP in the state MESSAGE. It also
defines the handlers for unexpected messages in both states.

The function Automata_IDLE_START handles the message IDLE_START in
the state IDLE. First, it sets the message sequence number msgNumber to the
value 1. It then determines the identification of the destination automata
instance by incrementing its own identification by modulo 3. (This means
that the destination of the messages created and sent by instance_0 is
instance_1, the destination for instance_1 is instance_2, and the destination for
instance_2 is instance_0.) Next, this function prepares and sends the message,
“THIS IS THE FIRST MESSAGE”. At the end, it performs the state transition
from IDLE to MESSAGE by calling the function SetState and specifying the
value MESSAGE as its parameter.

The function Automata_IDLE_MSG handles the message IDLE_MSG in the
state IDLE. First, it determines the identifications of the source and destina-
tion automata instances for the received message and prints them to the
monitor. It then increments the message sequence numbers and checks if
they are less than the number of communicating automata instances
NUM_AUTOMATA (value 3). If yes, the function prepares and sends the
message IDLE_MSG with the text, “THIS IS THE SECOND MESSAGE”. If
not, the function prepares and sends the message MSG_MSG without any
text. In both cases, it sets the current state of this automata instance to the
value MESSAGE.

The function Automata_MSG_MSG handles the message MSG_MSG in the
state MESSAGE. First, it gets the message sequence number from the
received message and increments that number. It then checks if the new
value of the message sequence number has reached the given limit. If not,
this function prepares and sends the message MSG_MSG to the next auto-
mata instance in the chain. If it has, this function prepares and sends the
message MSG_STOP to the next automata instance in the chain and sets the
current state of this automata instance to IDLE.
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The function Automata_MSG_STOP handles the message MSG_STOP in
the state MESSAGE. First, it decrements the message sequence number and
checks its new value. If the value is positive, the function prepares and sends
the message MSG_STOP to the next automata instance in the chain and sets
the current state of this automata instance to IDLE.

The unexpected event handlers in this example just print the warning
messages. In real applications, these functions would trigger some higher-
level recovery mechanisms. The function StartDemo creates the first message
in the system. It fills in its header as if the automata instance with the
identification 0 had sent that message to itself and sends the message to the
mailbox assigned to this automata type.

File Constants.h:
// FSM

#define FSM_TYPE_AUTOMATA 0

// MBX

#define MBX_AUTOMATA_ID 0

#define MAX_MSG_NUM 10

#define NUM_AUTOMATA 3

#define COUNT 1

#define PARAM_TEXT 2

enum AutomataStates{

IDLE = 0,

MESSAGE,

};

enum Messages{

IDLE_START = 0,

IDLE_MSG,

MSG_MSG,

MSG_STOP

};

The file Constants.h first defines general symbolic constants. The identification
of this automata type FSM_TYPE_AUTOMATA is assigned the value 0, the
ident ificat ion of  the  mai lbox re lated to  this  automata type
MBX_AUTOMATA_ID is assigned the value 0, the maximal message sequence
number MAX_MSG_NUM is assigned the value 10, the number of automata
instances of this type NUM_AUTOMATA is assigned the value 3, the iden-
tification of the message parameter that contains the messages sequence num-
ber COUNT is assigned the value 1, and the identification of the message
parameter that contains the text PARAM_TEXT is assigned the value 2.

Next, the identifications of the individual states of this automata type are
enumerated. The identification of the state IDLE is assigned the value 0 and
the identification of the state MESSAGES is assigned the value 1. Finally, the
identifications of various message types (message codes) are enumerated.
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The message types are named as IDLE_START, IDLE_MSG, MSG_MSG, and
MSG_STOP. These symbols are assigned the values 0, 1, 2, and 3, respectively.

File Main.cpp:
#include “conio.h”

#include “Kernel/fsmsystem.h”

#include “Kernel/LogFile.h”

#include “Automata.h”

// Assume the following.

// The FSM system hosts a single automata type.

// The FSM system uses a single mailbox for the message exchange.

// Create the FSM system.

FSMSystem fsmSystem(1,1);

// Create three instances of the class Automata.

Automata instance_1, instance_2, instance_3;

// FSM system thread

DWORD WINAPI ThreadFunction(void* dummy){

uint32 buffersCount[3] = {5,3,2};

uint32 buffersLength[3] = {128,256,512};

uint8 buffClassNo = 3;

// Initialize the FSM system.

printf(“Initialize the FSM system... \n”);

fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,3,false);

fsmSystem.Add(&instance_2,FSM_TYPE_AUTOMATA);

fsmSystem.Add(&instance_3,FSM_TYPE_AUTOMATA);

fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);

LogFile lf(“log.log”, “log.ini”);

LogAutomataNew::SetLogInterface(&lf);

// Start the FSM system.

printf(“Start the FSM system... \n”);

try {

fsmSystem.Start();

}

catch(...) {

OutputDebugString(“Exception — stop the FSM system...\n”);

return 0;

}

OutputDebugString(“The end of the operation.\n”);

return 0;

}

void main(int argc,char* argv[]){

DWORD threadID;

bool end = false;

char ret;

// Start the FSM system thread.
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HANDLE hTemp = CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);

Sleep(100);

// Program works until the character ‘Q’ or ‘q’ is pressed.

while(!end) {

if(_kbhit()) {

ret = _getch();

switch(ret) {

case 'Q':

case 'q':

fsmSystem.StopSystem();

end = true;

Sleep(100);

break;

case 'S':

case 's':

instance_1.StartDemo();

break;

default:

break;

}

}

}

CloseHandle(hTemp);

printf(“The end. \n”);

}

The file Main.cpp starts with the instantiation of the class FSMSystem by
calling its constructor. The parameters used in this call specify that the
instance of the FSMSystem, named fsmSystem, will include a single automata
type and this automata type will use a single mailbox. Next, three instances
of the class Automata are made, namely, instance_1, instance_2, and instance_3.
Additionally, this file contains the definitions of the FSM system thread
function ThreadFunction and the function main.

The function ThreadFunction first prepares the data needed to define three
buffer types. The sizes and quantities of these buffers are five at 128 bytes,
three at 256 bytes, and two at 512 bytes. Next, three automata instances are
added to fsmSystem. Note that the fourth parameter of the first call to the
function Add is set to the value false, which means that these three instances
are to be used as three distinctive instances rather than as a pool of instances
of the same type. After that, this function initializes the kernel by calling the
function InitKernel, defines and sets the logging interface by calling the
function SetLogInterface, and starts fsmSystem by calling its function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After that, it just waits
for the character ‘Q’ or ‘q’ to be pressed and to subsequently terminate the
program.
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6.10 A Simple Example with Network-Aware Automata 
Instances

This section shows how the programmer can construct FSM systems with
the TCP support that is able to communicate over the TCP/IP network and
how he can add individual network-aware automata instances to it. Nor-
mally, the programmer creates the FSM system with TCP support by instan-
tiating the class FSMSystemWithTCP. Alternately, network-aware automata
types are normally derived from the base class NetFSM. Of course, the
network-aware automata instances of a given type are then created simply
by instantiating that automata type.

This example is very similar to the previous one. Actually, it has been
created from it by a few rather simple modifications. Only one instance of
the given automata type is added to the FSM system (now with the TCP/
IP support). This automata instance has a trivial task of exchanging the given
number of messages with its peer in the remote FSM system. The main
difference is that the whole program is instantiated twice. These program
instances run as two separate processes that communicate over the TCP/IP
protocol stack (see the corresponding collaboration diagram in Figure 6.21).

At the beginning, as in the previous example, the main thread calls the
function StartDemo of instance_1, which in turn sends itself asynchronously
the message IDLE_START. Upon reception of this message, instance_1 sends
the message IDLE_MSG to its peer instance_1 that resides at the remote FSM
system. These two automata instances, local and remote, then exchange nine
MSG_MSG messages (the last MSG_MSG message is not shown in the fig-
ure). At the end of the communication, the local instance sends the message
MSG_STOP to the remote instance (not shown in the figure). The correspond-

messages.

FIGURE 6.21
The collaboration diagram for the example with network-aware automata.

instance_1 : NetAutomatainstance_1 : NetAutomatamain : Thread

1 : StartDemo()

3 : IDLE_MSG(1)
4 : MSG_MSG(2)
5 : MSG_MSG(3)
6 : MSG_MSG(4)
7 : MSG_MSG(5)
8 : MSG_MSG(6)
9 : MSG_MSG(7)
10 : MSG_MSG(8)

2 : IDLE_START

«
self»

This object resides in

a local FSM system.

This object resides in

a remote FSM system.
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The statechart diagram that describes the behavior of an individual auto-
mata instance is again organized into two hierarchical levels. The top level

Automata_IDLE_START, Automata_IDLE_MSG, Automata_MSG_MSG, and
Automata_MSG_STOP are a little simpler in this example and are shown in

The program code given in this example assumes that both processes run
on the same machine whose IP address is 192.168.0.57. To get this code
running on another machine, the reader should change this parameter
accordingly. If the reader wants to experiment on two different machines,
he must set this parameter to the IP addresses of those machines (see the

Before proceeding further, studying the previous example first is strongly
recommended. The content of the program files is as follows.

File NetAutomata.h:
#ifndef __NET_AUTOMATA__

#define __NET_AUTOMATA__

FIGURE 6.22
The sequence diagram for the example with network-aware automata.

main:Thread Object2 Object3

StartDemo();

IDLE_MSG(1)

MSG_MSG(2)

MSG_MSG(3)

MSG_MSG(4)

MSG_MSG(5)

MSG_MSG(6)

MSG_MSG(7)

MSG_MSG(8)

MSG_MSG(9)

MSG_MSG(10)

This object resides in

a remote FSM system.

This object resides in

a local FSM system.

MSG_STOP

IDLE_START
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#include <stdio.h>

#include “stdlib.h”

#include “kernel\NetFSM.h”

#include “kernel\errorObject.h”

#include “Constants.h”

class NetAutomata: public NetFSM {

private:

// NetFSM

uint16 convertNetToFSMMessage();

void convertFSMToNetMessage();

uint8 getProtocolInfoCoding();

// FSM

StandardMessage StandardMsgCoding;

MessageInterface *GetMessageInterface(uint32 id);

void SetDefaultHeader(uint8 infoCoding);

uint8 GetMbxId();

uint8 GetAutomata();

void SetDefaultFSMData();

void NoFreeInstances();

uint8 text[20];

FIGURE 6.23
The composite state Automata_IDLE_START.

INITIAL

PREPARING

SENDING

/PrepareNewMessage(0 × 00, IDLE_MSG);

AddParamDWord(COUNT, msgno);

/sendToTCP();

/msgno = 1

Automata_IDLE_START
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uint32 msgNumber;

uint32 idToMsg;

// State transition functions for the state IDLE

void NetAutomata_IDLE_START();

void NetAutomata_IDLE_MSG();

// State MSG

void NetAutomata_MSG_MSG();

void NetAutomata_MSG_STOP();

// Unexpected messages in states IDLE and MSG

void NetAutomata_UNEXPECTED_IDLE();

void NetAutomata_UNEXPECTED_MSG();

public:

NetAutomata();

~NetAutomata(){};

void Initialize();

void StartDemo();

};
#endif

FIGURE 6.24
The composite state Automata_IDLE_MSG.

Automata_IDLE_MSG

INITIAL

PREPARING

SENDING_MSG

/GetParamDWord(COUNT, msgno); msgno++

/PrepareNewMessage(0 × 00, MSG_MSG);

AddParamDWord(COUNT, msgno);

/sendToTCP();
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FIGURE 6.25
The composite state Automata_MSG_MSG.

FIGURE 6.26
The composite state Automata_MSG_STOP.

Automata_MSG_MSG

INITIAL

PREPARING

SENDING_STOP

SENDING_MSG

/GetParamDWord(COUNT, msgno); msgno++

[msgno<MAX_MSG_NUM] /PrepareNewMessage(0 × 00, MSG_MSG);

AddParamDWord(COUNT, msgno);

[else]/PrepareNewMessage(0 × 00, MSG_STOP); AddParamDWord(COUNT, msgno);

/sendToTCP();

/sendToTCP();

Automata_MSG_STOP

INITIAL

/PrintStopMessage();
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The file NetAutomata.h contains the declaration of the class NetAutomata
derived from the class NetFSM. This declaration has its private and public
parts. The private field members are the message interface object Standard-
MsgCoding, the text work area text, the message sequence number msgNum-
ber, and the identification of the automata instance idToMsg, which is the
message destination.

The private function members specific to the class NetFSM are the follow-
ing functions:

• convertNetToFSMMessage: converts the external message format into
the internal message format appropriate for the communication
within the FSM system

• convertFSMToNetMessage: converts the internal message format into
the external message format appropriate for the transmission over
the TCP/IP network

• getProtocolInfoCoding: returns the identification of the type of the
external message coding

The private function members specific to the class FinteStateMachine are the
following functions:

• GetMessageInterface: returns the message interface object
• SetDefaultHeader: sets the message header according to the specified

information coding
• GetMbxId: returns the identification of the mailbox that is assigned

to this automata type
• GetAutomata: returns the identification of this automata type
• SetDefaultFSMData: sets the data specific for this automata type

(msgNumber and idToMsg)

FIGURE 6.27
The deployment diagram for the example with network-aware automata.

Machine1 : PC Network : Internet Machine2 : PC

1 1 1 1

«executable»

i1 : Example21

«executable»

i1 : Example22
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• NoFreeInstances: handles the situation when no more free instances
of this type are found

The application-specific private function members are the following state
transition functions:

• Automata_IDLE_START: handles the message IDLE_START in the
state IDLE

• Automata_IDLE_MSG: handles the message IDLE_MSG in the state
IDLE

• Automata_MSG_MSG: handles the message MSG_MSG in the state
MESSAGE

• Automata_MSG_STOP: handles the message MSG_STOP in the state
MESSAGE

• Automata_UNEXPECTED_IDLE: handles unexpected messages in
the state IDLE

• Automata_UNEXPECTED_MSG: handles unexpected messages in
the state MESSAGE

The public function members are the class constructor, the class destructor,
the initialization function Initialize, and the startup function StartDemo.

File NetAutomata.cpp:
#include “kernel/LogFile.h”

#include “NetAutomata.h”

NetAutomata::NetAutomata() : NetFSM(

0, // uint16 numOfTimers = DEFAULT_TIMER_NO,

2, // uint16 numOfState = DEFAULT_STATE_NO,

3) // uint16 maxNumOfProceduresPerState = DEFAULT_PROCEDURE_NO_PER_STATE

{

SetDefaultFSMData();

}

// This function returns the pointer to the object that governs the

// message information coding (the pointer to the message interface).

// This automata instance works only with the standard messages

// (ID 0x00). If the caller specifies another type of coding,

// this function throws the exception TErrorObject.

// The message interface is defined in NetAutomata.h

MessageInterface *NetAutomata::GetMessageInterface(uint32 id){

switch(id) {

case 0x00:

return &StandardMsgCoding;

}

throw TErrorObject(__LINE__,__FILE__,0x01010400);

}
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// This function fills in the message header.

void NetAutomata::SetDefaultHeader(uint8 infoCoding){

SetMsgInfoCoding(infoCoding);

SetMessageFromData();

}

// This function returns the identification of the mailbox that is

// assigned to this automata type.

uint8 NetAutomata::GetMbxId(){

return MBX_AUTOMATA_ID;

}

// This function returns the identification of this automata type.

uint8 NetAutomata::GetAutomata(){

return FSM_TYPE_AUTOMATA;

}

// This function initializes the data specific for individual

// instance of this automata type.

void NetAutomata::SetDefaultFSMData(){

msgNumber = 0;

idToMsg = INVALID_32;

}

// This function is called if there are no free instances of this

// automata type. If the programmer wants to use this option they must

// add the first automata instance of this type with the parameter

// useFreeList of the function Add set to true. In this example it is

// empty. In real applications the programmer should provide some

// recovery mechanism, such as overload protection or restart.

void NetAutomata::NoFreeInstances(){}

// This function initializes the state transition functions and the

// timers that are used by this automata type. This function is called

// implicitly by the function Add responsible for adding individual

// automata instances to the FSM system.

// Each state transition function is separately declared and defined.

void NetAutomata::Initialize(){

// Here the programmer does the following initializations:

// InitEventProc(uint8 state, uint16 event, PROC_FUN_PTR fun);

// InitUnexpectedEventProc(uint8 state, PROC_FUN_PTR fun);

// InitTimerBlock(uint16 timerId, uint32 timerCount, uint16 signalId);

InitEventProc(IDLE,IDLE_START,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_IDLE_START);

InitEventProc(IDLE,IDLE_MSG,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_IDLE_MSG);

InitEventProc(MESSAGE,MSG_MSG,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_MSG_MSG);

InitEventProc(MESSAGE,MSG_STOP,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_MSG_STOP);

InitUnexpectedEventProc(IDLE,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_UNEXPECTED_IDLE);
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InitUnexpectedEventProc(MESSAGE,(PROC_FUN_PTR)

&NetAutomata::NetAutomata_UNEXPECTED_MSG);

}

// State transition functions for the state IDLE.

void NetAutomata::NetAutomata_IDLE_START(){

msgNumber = 1;

idToMsg = 0;

// The automata instance prepares and sends the message,

// and changes its state to MESSAGE.

PrepareNewMessage(0x00,IDLE_MSG);

char text[] = “THIS IS THE FIRST MESSAGE”;

AddParam(PARAM_TEXT,strlen(text),(unsigned char *)text);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

sendToTCP();

SetState(MESSAGE);

}

void NetAutomata::NetAutomata_IDLE_MSG(){

idToMsg = 0;

// Get parameters from the message

unsigned char *tmp;

tmp = GetParam(PARAM_TEXT);

assert(tmp);

memcpy(text,tmp+2,*(tmp+1));

memset(text+(*(tmp+1)),0x00,1);// make the string

GetParamDWord(COUNT,msgNumber);

printf(“Text received: %s\n”,text);

// If the message sequence number is less than given limit,

// continue message counting. If not stop the program.

msgNumber++;

// Prepare and send the message.

// Change automata state to MESSAGE.

PrepareNewMessage(0x00,MSG_MSG);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

sendToTCP();

SetState(MESSAGE);

}

void NetAutomata::NetAutomata_MSG_MSG(){

GetParamDWord(COUNT,msgNumber);

msgNumber++;
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if(msgNumber < MAX_MSG_NUM){

// Forward the message.

PrepareNewMessage(0x00,MSG_MSG);

AddParamDWord(COUNT,msgNumber);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

sendToTCP();

}

else {

printf(“Stop automata: %u\n”,GetObjectId());

// Prepare and send the message.

// Change automata state to IDLE.

PrepareNewMessage(0x00,MSG_STOP);

SetMsgToAutomata(FSM_TYPE_AUTOMATA);

SetMsgToGroup(INVALID_08);

SetMsgObjectNumberTo(idToMsg);

sendToTCP();

SetState(IDLE);

}

}

void NetAutomata::NetAutomata_MSG_STOP(){

printf(“Stop automata: %u\n”,GetObjectId());

SetState(IDLE);

}

void NetAutomata::NetAutomata_UNEXPECTED_IDLE(){

printf(“Unexpected message in the state IDLE \n”);

}

void NetAutomata::NetAutomata_UNEXPECTED_MSG(){

printf(“Unexpected message in the state MESSAGE \n”);

}

void NetAutomata::StartDemo(){

uint8 *msg = GetBuffer(MSG_HEADER_LENGTH);

SetMsgFromAutomata(FSM_TYPE_AUTOMATA,msg);

SetMsgFromGroup(INVALID_08,msg);

SetMsgObjectNumberFrom(0,msg);

SetMsgToAutomata(FSM_TYPE_AUTOMATA,msg);

SetMsgToGroup(INVALID_08,msg);

SetMsgObjectNumberTo(0,msg);

SetMsgInfoCoding(0,msg); // 0 = StandardMessage

SetMsgCode(IDLE_START,msg);

SetMsgInfoLength(0,msg);

SendMessage(MBX_AUTOMATA_ID,msg);

}

uint16 NetAutomata::convertNetToFSMMessage(){

// Manipulate only data because automata sends the new

// message to itself.

int length = receivedMessageLength-MSG_HEADER_LENGTH;
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memcpy(fsmMessageR, protocolMessageR+MSG_HEADER_LENGTH, length);

fsmMessageRLength=length; // mandatory – used by workWhenReceive()

// Rotate bytes

uint16 msgCode = GetUint16((uint8*)(protocolMessageR+MSG_CODE));

switch((msgCode)){

case IDLE_START:

msgCode = IDLE_START;

break;

case IDLE_MSG:

msgCode = IDLE_MSG;

break;

case MSG_MSG:

msgCode = MSG_MSG;

break;

case MSG_STOP:

msgCode = MSG_STOP;

break;

default:

msgCode = 0xffff;

}

return msgCode;

}

void NetAutomata::convertFSMToNetMessage(){

// Here we send the whole message.

memcpy(protocolMessageS,fsmMessageS,fsmMessageSLength);

sendMsgLength = fsmMessageSLength;

}

uint8 NetAutomata::getProtocolInfoCoding(){

// Standard msg info coding

return 0;

}

The file NetAutomata.cpp contains the definition of the class NetAutomata.
This definition starts with the class constructor that first calls the base class
constructor specifying no timers, two states, and the maximum of three state
transitions per state for this automata type. After this, the constructor calls
the function SetDefaultFSMData, which sets the data specific for this auto-
mata type.

The functions GetMessageInterface, SetDefaultHeader, GetMbxId, GetAuto-
mata, SetDefaultFSMData, NoFreeInstances, and Initialize are the same as in
the previous example. The only difference is that the name of the class
Automata has been renamed to NetAutomata.

The function NetAutomata_IDLE_START  handles the message
IDLE_START in the state IDLE. First, it sets the message sequence number
msgNumber to the value 1 and the identification of the destination automata
instance idToMsg to the value 0. Next, this function prepares and sends the
message, “THIS IS THE FIRST MESSAGE,” to its peer in the remote FSM
system by calling the function SendToTCP. At the end, it performs the state
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transition from IDLE to MESSAGE by calling the function SetState and spec-
ifying the value MESSAGE as its parameter.

The function NetAutomata_IDLE_MSG handles the message IDLE_MSG in
the state IDLE. First, it prints the received message to the monitor. It then
prepares and sends the message with the code MSG_MSG to its peer by
calling the function SendToTCP and sets the current state of this automata
instance to the value MESSAGE.

The function NetAutomata_MSG_MSG handles the message MSG_MSG in
the state MESSAGE. First, it gets the message sequence number from the
received message and increments this value. It then checks if the new value
of the message sequence number has reached the given limit. If not, this
function prepares and sends the message MSG_MSG to its peer at the remote
FSM system by calling the function SendToTCP. If it has reached the limit,
this function prepares and sends the message MSG_STOP to its peer at the
remote FSM system and sets the current state of this automata instance to
IDLE.

The function NetAutomata_MSG_STOP handles the message MSG_STOP
in the state MESSAGE. It is fairly simple and just sets the current state of
this automata instance to IDLE. The unexpected event handlers in this exam-
ple just print the warning messages. In real-world applications, these func-
tions would trigger some higher-level recovery mechanisms. The function
StartDemo creates the first message in the system. It fills in its header as if
the automata instance with the identification 0 had sent that message to itself
and sends this message to the mailbox assigned to this automata type.

The function convertNetToFSMMessage just copies the payload of the exter-
nal message received from the remote FSM system to the current FSM system
internal message (the last received message), because in this simple example
the two communicating instances have the same IDs and no need exists for
any mappings between them. The pointer fsmMessageR points to the current
internal message, the pointer protocolMessageR points to the current external
message, and the variable fsmMessageRLength is equal to the payload size of
the current external message. At the end, this function determines the mes-
sage code and returns it as its return value.

The function convertFSMToNetMessage copies the whole new internal mes-
sage to the new external message and sets the value of its length. The pointer
fsmMessageS points to the new internal message, the pointer protocolMessageS
points to the new external message, and the variables fsmMessageSLength
and sendMsgLength contain their lengths.

The function getProtocolInfoCoding returns the code of the standard mes-
sage coding (code 0x00) used for coding external messages. Note that in this
simple example, both internal and external messages are actually standard
messages.

File Constants.h:
// FSM

#define FSM_TYPE_AUTOMATA 0
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// MBX

#define MBX_AUTOMATA_ID 0

#define MAX_MSG_NUM 10

#define COUNT 1

#define PARAM_TEXT 2

#define IP_ADDRESS “192.168.0.57”

#define PORT_1 7000

#define PORT_2 8000

enum AutomataStates {

IDLE = 0,

MESSAGE,

};

enum Messages {

IDLE_START = 0,

IDLE_MSG,

MSG_MSG,

MSG_STOP

};

The file Constants.h first defines general symbolic constants. It is very
similar to the file with the same name in the previous example. The iden-
tification of this automata type FSM_TYPE_AUTOMATA is assigned the
value 0, the identification of the mailbox related to this automata type
MBX_AUTOMATA_ID is assigned the value 0, the maximal message
sequence number MAX_MSG_NUM is assigned the value 10, the iden-
tification of the message parameter that contains the messages sequence
number COUNT is assigned the value 1, and the identification of the message
parameter that contains the text PARAM_TEXT is assigned the value 2.

The main difference with the previous example is the definition of the
symbolic constants related to the communication over TCP/IP infrastruc-
ture. The IP address IP_ADDRESS is assigned the value 192.168.0.57, the
TCP port number for the first server PORT_1 is assigned the value 7000, and
the TCP port number for the second server PORT_2 is assigned the value
8000. Next, the identifications of the individual states of this automata type,
as well as possible message codes, are enumerated. This part of the file is
the same as in the previous example.

File Main.cpp:
#include “conio.h”

#include “Kernel/fsmsystem.h”

#include “Kernel/LogFile.h”

#include “NetAutomata.h”

// If the following line is not commented out we get the code for the

// server listening to the port number PORT_1.

// If the following line is commented out we get the code for the

// server listening to the port number PORT_2.

#define AUTOMATA1
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// Assume the following.

// The FSM system hosts a single automata type.

// The FSM system uses a single mailbox for the message exchange.

// Create the FSM system.

FSMSystemWithTCP fsmSystem(1,1);

// Create the instance of the class NetAutomata.

NetAutomata instance_1;

DWORD WINAPI ThreadFunction(void* dummy){

uint32 buffersCount[3] = {5,3,2};

uint32 buffersLength[3] = {128,256,512};

uint8 buffClassNo = 3;

// Initialize the FSM system.

printf(“Initialize the FSMSystemWithTCP... \n”);

fsmSystem.Add(&instance_1,FSM_TYPE_AUTOMATA,1,true);

fsmSystem.InitKernel(buffClassNo,buffersCount,buffersLength,1);

LogFile lf(“log.log”, “log.ini”);

LogAutomataNew::SetLogInterface(&lf);

// Server in machine number 1 will listen to the port number PORT_1.

// Server in machine number 2 will listen to the port number PORT_2.

// It does not matter which instance will establish the TCP

// connection by calling the function establishConection().

#ifdef AUTOMATA1

printf(“Start server...on port:%u\n”,PORT_1);

fsmSystem.InitTCPServer(PORT_1,FSM_TYPE_AUTOMATA);

#else

printf(“Start server...on port:%u\n”,PORT_2);

fsmSystem.InitTCPServer(PORT_2,FSM_TYPE_AUTOMATA);

#endif

// Start the FSM system.

printf(ìStart the FSM system...\n”); 

try {

fsmSystem.Start();

}

catch(...) {

OutputDebugString(“Exception - stop the FSM system...\n”);

return 0;

}

OutputDebugString(“The end of the operation.\n”);

return 0;

}

void main(int argc,char* argv[]){

DWORD threadID;

bool end = false;

char ret;

// Start the FSM system thread.

HANDLE hTemp = CreateThread(NULL,0,ThreadFunction,NULL,0,&threadID);

Sleep(100);
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// Program works until the character ‘Q’ or ‘q’ is pressed.

while((!end)) {

if(_kbhit()) {

ret = _getch();

switch((ret)) {

case 'Q':

case 'q':

fsmSystem.StopSystem();

end = true;

Sleep(100);

break;

case 'S':

case 's':

instance_1.StartDemo();

break;

case 'E':

case 'e':

// Press ‘e’ to establish the connection with the remote server.

// This will enable the communication with the remote system.

#ifdef AUTOMATA1

instance_1.setPort(PORT_2);

instance_1.setIP((IP_ADDRESS));

printf(“establishConection on port:%u”,PORT_2);

instance_1.establishConnection();

#else

instance_1.setPort(PORT_1);

instance_1.setIP(IP_ADDRESS);

printf(“establishConection on port:%u”,PORT_1);

instance_1.establishConnection();

#endif

default:

break;

}

}

}

CloseHandle(hTemp);

printf(“The end. \n”);

}

The file Main.cpp starts with the list of the necessary include files and the
definition of the symbolic constant AUTOMATA1. This constant should be
defined for the local process and not for the remote process (this is done by
commenting out the source code line that defines the symbol AUTOMATA1).

Next, the instantiation of the class FSMSystemWithTCP is performed by a
call to its constructor. The parameters used in this call specify that the
instance of the FSMSystemWithTCP, named fsmSystem, will include a single
automata type and this automata type will use a single mailbox. After that,
a single instance of the class NetAutomata is made, instance_1. Additionally,
this file contains the definitions of the FSM system thread function Thread-
Function and the function main.

The function ThreadFunction first prepares the data needed to define three
buffer types. The sizes and quantities of these buffers are five at 128 bytes,
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three at 256 bytes, and two at 512 bytes. Next, the three automata instances
are added to fsmSystem. Note that the fourth parameter of the first call to
the function Add is set to the value true, which means that the instances are
to be used as a pool of instances of the same type. After that, this function
initializes the kernel by calling the function InitKernel, defines and sets the
logging interface by calling the function SetLogInterface, starts the TCP server
by calling the function InitTCPServer, and starts the fsmSystem by calling its
function Start.

The function main starts the FSM system thread (which executes the func-
tion ThreadFunction) and suspends itself for 100 ms. After this, it waits for
the user command. If the user presses the character ‘E’ or ‘e’, it establishes
the TCP connection with the remote TCP server by calling the function
establishConnection. If the user presses the character ‘Q’ or ‘q’, it terminates
the program.
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