

Swift 4 Protocol-Oriented
Programming
Third Edition

Bring predictability, performance, and productivity to your
Swift applications

Jon Hoffman

BIRMINGHAM - MUMBAI

Swift 4 Protocol-Oriented Programming

Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Second edition: November 2016

Third edition: October 2017

Production reference: 1031017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-003-2

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jon Hoffman

Copy Editor
Safis Editing

Reviewer
Andrea Prearo

Project Coordinator
Ulhas Kambali

Commissioning Editor
Kunal Chaudhari

Proofreader
Safis Editing

Acquisition Editor
Reshma Raman

Indexer
Aishwarya Gangawane

Content Development Editor
Vikas Tiwari

Graphics
Abhinash Sahu

Technical Editor
Subhalaxmi Nadar

Production Coordinator
Aparna Bhagat

About the Author
Jon Hoffman has over 25 years of experience in the field of information technology. Over
these years, Jon has worked in the areas of system administration, network administration,
network security, application development, and architecture. Currently, Jon works as a
senior software engineer for Syn-Tech Systems.

Jon has developed extensively for the iOS platform since 2008. This includes several apps
that he has published in the App Store, apps that he has written for third parties, and
numerous enterprise applications. He has also developed mobile applications for the
Android and Windows platforms. What really drives Jon the challenges that the field of
information technology provides and there is nothing more exhilarating to him than
overcoming a challenge.

Some of Jon’s other interests are spending time with his family, robotic projects, and 3D
printing. Jon also really enjoys Tae Kwon Do, where he and his oldest daughter Kailey
earned their black belts together early in 2014, Kim (his wife) earned her black belt in
December 2014, and his youngest daughter Kara is currently working towards her black
belt.

About the Reviewer
Andrea Prearo is a software engineer with over 15 years of experience. He is originally from
Italy, and after a decade of writing software in C/C++ and C#, he moved to the Bay Area in
2011 to start developing mobile apps.

In the last few years, he has been focusing on Swift, Objective-C, iOS, and microservices,
with some short explorations of the Android platform. Currently, he is a member of the iOS
dev team at Capital One, working on the company's flagship mobile banking app.

His interests include reading books, watching movies, and hiking. From time to time, he
also blogs about tech at https://medium.com/@andrea.prearo.

I would like to thank my wonderful wife, Nicole, for her never-ending support in all my
endeavors.

https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo
https://medium.com/@andrea.prearo

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788470036.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788470036

Table of Contents
Preface 1

Chapter 1: Starting with the Protocol 7

Protocol syntax 9
Defining a protocol 9
Property requirements 10
Method requirements 10
Optional requirements 11

Protocol inheritance 12
Protocol composition 13
Using protocols as a type 15
Polymorphism with protocols 16
Type casting with protocols 18
Associated types with protocols 19
Delegation 20
Designing with protocols 23
Protocols in the Swift standard library 27
Summary 28

Chapter 2: Our Type Choices 29

Classes 31
Structures 32
Access controls 33
Enumerations 34
Tuples 39
Protocols 41
Value and reference types 41
Recursive data types for reference types only 47
Inheritance for reference types only 49
Dynamic dispatch 52
Swift's built-in types 53
Copy-on-write 54
Summary 54

Chapter 3: Extensions 55

Defining an extension 57

[ii]

Protocol extensions 59
Text validation 63
Extensions with the Swift standard library 70
Conforming to the Equatable protocol 71
Summary 72

Chapter 4: Generics 73

Generic functions 74
Type constraints with Generics 77
Generic types 78
Associated types 82
Generic subscripts 83
Copy-on-write 85
Generics in a protocol-oriented design 91
Generics in the Swift standard library 95
Summary 96

Chapter 5: Object-Oriented Programming 97

What is object-oriented programming? 98
Requirements for the sample code 99
Swift as an object-oriented programming language 100
Issues with the object-oriented design 109
Summary 111

Chapter 6: Protocol-Oriented Programming 112

Requirements for the sample code 113
Swift as a protocol-oriented programming language 113
Summarizing protocol-oriented programming and object-oriented
programming 122
Differences between object-oriented programming and protocol-
oriented programming 123

Protocol and protocol extensions compared with superclasses 123
Implementing vehicle types 126
Using value and reference types 128

The winner is... 129
Summary 130

Chapter 7: Adopting Design Patterns in Swift 131

What are design patterns? 132
Creational patterns 133

The singleton design pattern 134

[iii]

Understanding the problem 135
Understanding the solution 135
Implementing the singleton pattern 135

The builder design pattern 137
Understanding the problem 137
Understanding the solution 137
Implementing the builder pattern 138

The factory method pattern 143
Understanding the problem 143
Understanding the solution 143
Implementing the factory method pattern 144

Structural design patterns 147
The bridge pattern 147

Understanding the problem 147
Understanding the solution 148
Implementing the bridge pattern 148

The facade pattern 152
Understanding the problem 152
Understanding the solution 152
Implementing the facade pattern 153

The proxy design pattern 155
Understanding the problem 155
Understanding the solution 155
Implementing the proxy pattern 155

Behavioral design patterns 157
The command design pattern 158

Understanding the problem 158
Understanding the solution 159
Implementing the command pattern 159

The strategy pattern 161
Understanding the problem 161
Understanding the solution 161
Implementing the strategy pattern 162

The observer pattern 163
Understanding the problem 164
Understanding the solution 164
Implementing the observer pattern 164

Summary 168

Chapter 8: Case Studies 169

Logging service 170
Requirements 171
The design 171
Conclusion 179

Data access layer 180

[iv]

Requirements 180
The design 181
Data model layer 182
Data helper layer 183
Bridge layer 186
Using the data access layer 190
Conclusion 191

Summary 191

Index 192

Preface
This book is about protocol-oriented programming. When Apple announced Swift 2 at the
World Wide Developers Conference (WWDC) in 2015, they also declared that Swift was the
world's first protocol-oriented programming language. By its name, we may assume that
protocol-oriented programming is all about the protocol, however, that would be a wrong
assumption. Protocol-oriented programming is about so much more than just the protocol;
it is actually a new way of not only writing applications but also how we think about
programming.

In the first four chapters, we take an in-depth look at each of the components of the
protocol-oriented programming paradigm. These chapters are designed to give the reader a
solid understanding of the different components of protocol-oriented programming, so
he/she will understand how they can use these components in their applications.
One of the biggest misconceptions about protocol-oriented programming is that it is just
another name for object-oriented programming. In Chapter 5, Object-Oriented Programming
and Chapter 6, Protocol-Oriented Programming we take on this myth by comparing protocol-
oriented programming to object-oriented programming to see what is similar and what is
different. We also discuss the advantages and disadvantages of both programming
paradigms.

The last two chapters are written to help the reader understand how they can design their
application in a protocol-oriented programming way. Chapter 7, Adopting Design Patterns
in Swift looks at how we can implement several design patterns in a protocol-oriented way
and Chapter 8, Case Studies looks at three real-world case studies to reinforce everything
previously discussed in the book.

What this book covers
Chapter 1, Starting with the Protocol, looks at what protocols are and how they are used in
the Swift programming language. We will also examine how the protocol can be used to
write very flexible and reusable code.

Chapter 2, Our Type Choices, discusses the different types that Swift offers (structs, classes,
enums, and tuples). We will look at several examples of when to use the various types and
when not too.

Preface

[2]

Chapter 3, Extensions, looks at how extensions and protocol extensions are used with the
Swift programming language. We will look at examples of how extensions can be used with
protocol-oriented programming.

Chapter 4, Generics, Apple has stated that Generics is one of the most powerful features of
Swift and this chapter will show how powerful Generics is. We will look at how to use
Generics to make very flexible types, and also how to implement the Copy-on-Write feature
for our custom types.

Chapter 5, Object-Oriented Programming, examines how we would develop characters for a
video game, taking an object-oriented approach. In order to really appreciate the ideas
behind protocol-oriented programming, we need to understand the problems it is designed
to solve. We will then look at the drawbacks with this design.

Chapter 6, Protocol-Oriented Programming, develops the same video game characters from
chapter 5, but this time we will take a protocol-oriented approach to the design. We will
then compare the object-oriented approach and the protocol-oriented approach to see the
advantages that the protocol-oriented approach offers.

Chapter 7, Adopting Design Patterns in Swift, looks at implementing several design patterns
using protocol-oriented programming. For each of the design patterns, we will look at the
problem they are designed to solve and how to implement the pattern.

Chapter 8, Case Studies, explores two case studies. This chapter is designed to pull
everything from the first six chapters together to show the reader how to use protocol-
oriented programming in real-world situations.

What you need for this book
To follow along with the examples in this book, the reader will need to have an Apple
computer with OS X 10.13 or higher installed. They will also need to install XCode version
9.0 or higher with Swift version 4 or higher. The reader should possess at least basic
knowledge of the Swift programming language.

Preface

[3]

Who this book is for
This book is intended for the developer who has at least an introductory knowledge of the
Swift programming language and wants to understand what protocol-oriented
programming is. This book is written for the developer that not only wants to understand
protocol-oriented programming but also wants to fully understand the different
components of the programming paradigm. This book is written for the developer who
learns best by looking at and working with code, because every concept covered in the book
is backed by example code written to give the reader a solid understanding of the current
topic and to demonstrate how to properly implement it.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "With the
where clause we are requiring that the elements in the iterator, within the E type, must be of
the Integer type"

A block of code is set as follows:

protocol ZombieObserver {
 func turnLeft()
 func turnRight()
 func seesUs()
}

Any command-line input or output is written as follows:

Making a copy of internalQueue

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "From this menu, we will
want to select the Create a new Xcode project option."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important to us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files emailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your email address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Swift- 4- Protocol- Oriented- Programming- Third- Edition. We also
have other code bundles from our rich catalog of books and videos available at https:/ /
github.com/PacktPublishing/ . Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/Swift4ProtocolOrientedPr

ogrammingThirdEdition_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/Swift-4-Protocol-Oriented-Programming-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/Swift4ProtocolOrientedProgrammingThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Swift4ProtocolOrientedProgrammingThirdEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Starting with the Protocol

This book is about protocol-oriented programming. When Apple announced Swift 2 at the
World Wide Developers Conference (WWDC) in 2015, they also declared that Swift was
the world's first protocol-oriented programming language. From its name, we may assume
that protocol-oriented programming is all about the protocol; however, this would be a
wrong assumption. Protocol-oriented programming is about so much more than just the
protocol; it's actually a new way of not only writing applications, but also how we think
about application design.

In this chapter, you will learn the following:

How to define property and functional requirements within a protocol
How to use protocol inheritance and composition
How to use a protocol as a type
What polymorphism is
How to use associated types with protocols
How to implement the delegation pattern with protocols
How to design type requirements with protocols

If you are coming from an object-oriented programming background, you may be familiar
with the interface. In the object-oriented world, the interface is a type that contains method
and property signatures, but does not contain any implementation details. An interface can
be considered a contract where any type that conforms to the interface must implement the
required functionality defined within it. Most object-oriented developers rarely use
interfaces as the focal point for their application design unless they are working with a
framework similar to the Open Service Gateway Initiative (OSGi) framework.

Starting with the Protocol

[8]

When we are designing an application in an object-oriented way, we usually begin the
design by focusing on the class hierarchy and how the objects interact. The object is a data
structure that contains information about the attributes of the object in the form of
properties, and the actions performed by or to the object in the form of methods. We cannot
create an object without a blueprint that tells the application what attributes and actions to
expect from the object. In most object-oriented languages, this blueprint comes in the form
of a class. A class is a construct that allows us to encapsulate the properties and actions of
an object into a single type.

Designing an application in a protocol-oriented way is significantly different from
designing it in an object-oriented way. Rather than starting with the class hierarchy,
protocol-oriented design says that we should start with the protocol. While protocol-
oriented design is about so much more than just the protocol, we can think of the protocol
as its backbone. After all, it would be pretty hard to have protocol-oriented programming
without the protocol.

A protocol in Swift is similar to the interface in object-oriented languages, where the
protocol acts as a contract that defines the methods, properties, and other requirements
needed by our types to perform their tasks. We say that the protocol acts as a contract
because any type that conforms to the protocol promises to implement the requirements
defined by the protocol itself. If a type says that it conforms to a protocol and it does not
implement all functionality defined by the protocol, we will get a compile-time error and
the project will not compile. In Swift, any class, structure, or enumeration can conform to a
protocol.

In the last paragraph, we mentioned that the protocol is similar to the interface. Don't be
fooled by this comparison because even though the interface and the protocol are similar,
protocols in Swift are actually a lot more powerful than the interface in most object-oriented
languages. As you read through this book, you will see how powerful Swift protocols are.

Most modern object-oriented programming languages implement their standard library
with a class hierarchy; however, the basis of Swift's standard library is the protocol
(http://swiftdoc.org). Therefore, not only does Apple recommend that we use the
protocol-oriented programming paradigm in our applications, but they also use it in the
Swift standard library.

With the protocol being the basis of the Swift standard library and also the backbone of the
protocol-oriented programming paradigm, it is very important that we fully understand
what the protocol is and how we can use it. In this chapter, we will cover not only the basics
of the protocol but also give an understanding on how it can be used in your application
design.

http://swiftdoc.org

Starting with the Protocol

[9]

Protocol syntax
In this section, we will look at how to define a protocol and how to add requirements to it.
This will give us a basic understanding of the protocol. The rest of the chapter will build on
this understanding.

Defining a protocol
The syntax we use to define a protocol is very similar to the syntax used to define a class,
structure, or enumeration. The following example shows the syntax used to define a
protocol:

Protocol MyProtocol {
 //protocol definition here
}

To define the protocol, we use the protocol keyword followed by the name of the protocol.
We then put the requirements, which our protocol defines, between curly brackets. Custom
types can state that they conform to a particular protocol by placing the name of the
protocol after the type's name, separated by a colon. The following example shows how we
would define that a structure conforms to a protocol:

struct MyStruct: MyProtocol {
 //structure implementation here
}

A type can also conform to multiple protocols. We list the multiple protocols that the type
conforms to by separating them with commas:

struct MyStruct: MyProtocol, AnotherProtocol, ThirdProtocol {
 // Structure implementation here
}

Having a type conform to multiple protocols is a very important concept within protocol-
oriented programming, as we will see later in the chapter and throughout this book. This
concept is known as protocol composition.

Now let's see how we would add property requirements to our protocol.

Starting with the Protocol

[10]

Property requirements
A protocol can require that the conforming types provide certain properties with specified
names and types. The protocol does not say whether the property should be a stored or
computed property because the implementation details are left up to the conforming types.

When defining a property within a protocol, we must specify whether the property is a
read-only or a read-write property by using the get and set keywords. We also need to
specify the property's type since we cannot use the type inference in a protocol. Let's look at
how we would define properties within a protocol by creating a protocol named FullName,
as shown in the next example:

protocol FullName {
 var firstName: String {get set}
 var lastName: String {get set}
}

In this example, we define two properties named firstName and lastName, which are
read-write properties. Any type that conforms to this protocol must implement both of
these properties. If we wanted to define the property as read-only, we would define it using
only the get keyword, as shown in the following code:

var readOnly: String {get}

It is possible to define static properties by using the static keyword, as shown in the
following example:

static var typeProperty: String {get}

Now let's see how we would add method requirements to our protocol.

Method requirements
A protocol can require that the conforming types provide specific methods. These methods
are defined within the protocol exactly as we define them within a class or structure, but
without the curly brackets and method body. We can define that these methods are instance
or type methods using the static keyword. Adding default values to the method's
parameters is not allowed when defining the method within a protocol.

Starting with the Protocol

[11]

Let's add a method named getFullName() to the FullName protocol:

protocol FullName {
 var firstName: String {get set}
 var lastName: String {get set}

 func getFullName() -> String
}

The fullName protocol now requires one method named getFullName() and two read-
write properties named firstName and lastName.

For value types, such as the structure, if we intend for a method to modify the instances that
it belongs to, we must prefix the method definition with the mutating keyword. This
keyword indicates that the method is allowed to modify the instance it belongs to. The
following example shows how to use the mutating keyword with a method definition:

mutating func changeName()

If we mark a method requirement as mutating, we do not need to write the mutating
keyword for that method when we adopt the protocol with a reference (class) type. The
mutating keyword is only used with value (structures or enumerations) types.

Optional requirements
There are times when we want protocols to define optional requirements. An optional
requirement is a method or property that is not required to be implemented. To use
optional requirements, we need to start off by marking the protocol with the @objc
attribute.

It is important to note that only classes can adopt protocols that use the
@objc attribute. Structures and enumerations cannot adopt these
protocols.

To mark a property or method as optional, we use the optional keyword. The following
example shows how we would create both an optional property and also an optional
method:

@objc protocol Phone {
 var phoneNumber: String {get set}
 @objc optional var emailAddress: String {get set}
 func dialNumber()
 @objc optional func getEmail()

Starting with the Protocol

[12]

}

Now let's explore how protocol inheritance works.

Protocol inheritance
Protocols can inherit requirements from one or more additional protocols and then add
additional requirements. The following code shows the syntax for protocol inheritance:

protocol ProtocolThree: ProtocolOne, ProtocolTwo {
 // Add requirements here
}

The syntax for protocol inheritance is very similar to class inheritance in Swift, except that
we are able to inherit from more than one protocol. Let's see how protocol inheritance
works. We will use the FullName protocol that we defined earlier and create a new
protocol named Person:

protocol Person: FullName {
 var age: Int {get set}
}

Now, when we create a type that conforms to the Person protocol, we must implement the
requirements defined in the Person protocol, as well as the requirements defined in the
FullName protocol. As an example, we could define a Student structure that conforms to
the Person protocol, as shown in the following code:

struct Student: Person {
 var firstName = ""
 var lastName = ""
 var age = 0

 func getFullName() -> String {
 return "\(firstName) \(lastName)"
 }
}

Note that in the Student structure, we implemented the requirements defined in both the
FullName and Person protocols. However, the only protocol specified in the structure
definition was the Person protocol. We only needed to list the Person protocol because it
inherited all the requirements from the FullName protocol.

Now let's look at a very important concept in the protocol-oriented programming
paradigm: Protocol composition.

Starting with the Protocol

[13]

Protocol composition
Protocol composition lets our types adopt multiple protocols. This is a major advantage that
we get when we use protocols rather than a class hierarchy because classes, in Swift and
other single-inheritance languages, can only inherit from one superclass. The syntax for
protocol composition is the same as the protocol inheritance that we just saw. The following
example shows how we would use protocol composition:

struct MyStruct: ProtocolOne, ProtocolTwo, Protocolthree {
 // implementation here
}

Protocol composition allows us to break our requirements into many smaller components
rather than inheriting all requirements from a single protocol or single superclass. This
allows our type families to grow in width rather than height, which means we avoid
creating bloated types that contain requirements that are not needed by all conforming
types. Protocol composition may seem like a very simple concept, but it is a concept that is
essential to protocol-oriented programming. Let's look at an example of protocol
composition so we can see the advantage we get from using it.

Let's say that we have the class hierarchy shown in the following diagram:

Starting with the Protocol

[14]

In this class hierarchy, we have a base class named Athlete. The Athlete base class then has
two subclasses named Amateur and Pro. These classes are used depending on whether the
athlete is an amateur athlete or a pro athlete. An amateur athlete may be a collegiate athlete,
and we would need to store information such as which school they go to and their GPA. A
pro athlete is one that gets paid for playing the game. For the pro athletes, we would need
to store information such as what team they play for and their salary.

In this example, things get a little messy under the Amateur and Pro classes. As we can see,
we have separate football player classes under both the Amateur and Pro classes (the
AmFootballPlayer and ProFootballPlayer classes). We also have separate baseball classes
under both the Amateur and Pro classes (the AmBaseballPlayer and ProBaseballPlayer
classes). This will require us to have a lot of duplicate code between these classes.

With protocol composition, instead of having a class hierarchy where our subclasses inherit
all functionality from a single superclass, we have a collection of protocols that we can mix
and match in our types.

We can then use one or more of these protocols as needed for our types. For example, we
can create an AmFootballPlayer structure that conforms to the Athlete, Amateur, and
FootballPlayer protocols. We could then create the ProFootballPlayer structure that
conforms to the Athlete, Pro, and FootballPlayer protocols. This allows us to be very
specific about the requirements for our types and only adopt the requirements that we
need.

Starting with the Protocol

[15]

From a pure protocol point of view, this last example may not make a lot of sense right now
because protocols only define the requirements; however, in Chapter 3, Extensions, we will
see how protocol extensions can be used to implement these types with minimal duplicate
code.

One word of warning: if you find yourself creating numerous protocols
that only contain one or two requirements in them, then you are probably
making your protocols too granular. This will lead to a design that is hard
to maintain and manage.

Now let's look at how a protocol is a full-fledged type in Swift.

Using protocols as a type
Even though no functionality is implemented in a protocol, they are still considered a full-
fledged type in the Swift programming language, and can mostly be used like any other
type. What this means is that we can use protocols as parameters or return types for a
function. We can also use them as the type for variables, constants, and collections. Let's
look at some examples of this. For these next few examples, we will use the following
Person protocol:

protocol Person {
 var firstName: String {get set}
 var lastName: String {get set}
 var birthDate: Date {get set}
 var profession: String {get}
 init (firstName: String, lastName: String, birthDate: Date)
}

In this Person protocol, we define four properties and one initializer.

For this first example, we will show how to use a protocol as a parameter and return type
for a function, method, or initializer. Within the function itself, we also use the Person as
the type for a variable:

func updatePerson(person: Person) -> Person {
 var newPerson: Person
 // Code to update person goes here
 return newPerson
}

Starting with the Protocol

[16]

We can also use protocols as the type to store in a collection, as shown in the next example:

var personArray = [Person]()
var personDict = [String: Person]()

We can use the instance of any type that conforms to our protocol anywhere that the
protocol type is required. Let's assume that we have two types named SwiftProgrammer
and FootballPlayer that conform to the Person protocol. We can then use them as
shown in this next example:

var myPerson: Person

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: birthDateProgrammer)
myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino", birthdate:
birthDatePlayer)

As we saw earlier, we can use the Person protocol as the type for an array, which means
that we can populate the array with instances of any type that conforms to the Person
protocol. The following is an example of this (note that the bDateProgrammer and
bDatePlayer variables are instances of the Date type that would represent the birth date of
the individual):

var programmer = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
 birthDate: bDateProgrammer)

var player = FootballPlayer(firstName: "Dan", lastName: "Marino",
 birthDate: bDatePlayer)

var people: [Person] = [] people.append(programmer) people.append(player)

What we are seeing in these last couple of examples is a form of polymorphism. To use
protocols to their fullest potential, we need to understand what polymorphism is.

Polymorphism with protocols
The word polymorphism comes from the Greek roots poly (meaning many) and morphe
(meaning form). In programming languages, polymorphism is a single interface to multiple
types (many forms). There are two reasons to learn the meaning of the word polymorphism.
The first reason is that using such a fancy word can make you sound very intelligent in
casual conversation. The second reason is that polymorphism provides one of the most
useful programming techniques, not only in object-oriented programming but also in
protocol-oriented programming.

Starting with the Protocol

[17]

Polymorphism lets us interact with multiple types through a single uniform interface. In the
object-oriented programming world, the single uniform interface usually comes from a
superclass, while in the protocol-oriented programming world, that single interface usually
comes from a protocol.

In the last section, we saw two examples of polymorphism with Swift. The first example
was the following code:

var myPerson: Person

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
 birthDate: birthDateProgrammer)
myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino",
 birthdate: birthDatePlayer)

In this example, we had a single variable of the Person type. Polymorphism allowed us to
set the variable to instances of any type that conforms to the Person protocol, such as the
SwiftProgrammer or FootballPlayer types.

The other example of polymorphism was in the following code:

var programmer = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
 birthDate: bDateProgrammer)

var player = FootballPlayer(firstName: "Dan", lastName: "Marino",
 birthDate: bDatePlayer)

var people: [Person] = []
people.append(programmer)
people.append(player)

In this example, we created an array of Person types. Polymorphism allowed us to add
instances of any types that conform to Person protocol to this array.

When we access an instance of a type through a single uniform interface, as we just showed,
we are unable to access type-specific functionality. As an example, if we had a property in
the FootballPlayer type that records the age of the player, we would be unable to access
that property because it is not defined in the People protocol.

If we do need to access type-specific functionality, we can use type casting.

Starting with the Protocol

[18]

Type casting with protocols
Type casting is a way to check the type of an instance and/or to treat the instance as a
specified type. In Swift, we use the is keyword to check whether an instance is of a specific
type and the as keyword to treat an instance as a specific type.

The following example shows how we would use the is keyword:

if person is SwiftProgrammer {
 print("(person.firstName) is a Swift Programmer")
}

In this example, the conditional statement returns true if the Person instance is of the
SwiftProgrammer type or false if it isn't. We can use the where statement in combination
with the is keyword to filter an array to only return instances of a specific type. In the next
example, we filter an array that contains instances of the Person protocol and have it only
return those elements of the array that are instances of the SwiftProgrammer type:

for person in people where person is SwiftProgrammer {
 print("(person.firstName) is a Swift Programmer")
}

Now let's look at how we would cast an instance to a specific type. To do this, we can use
the as keyword. Since the cast can fail if the instance is not of the specified type, the as
keyword comes in two forms: as? and as!. With the as? form, if the casting fails it returns
a nil. With the as! form, if the casting fails a runtime error is thrown; therefore, it is
recommended to use the as? form unless we are absolutely sure of the instance type or we
perform a check of the instance type prior to doing the cast.

The following example shows how we would use the as? keyword to attempt to cast an
instance of a variable to the SwiftProgammer type:

if let _ = person as? SwiftProgrammer {
 print("(person.firstName) is a Swift Programmer")
}

Since the as? keyword returns an optional, in the last example we could use optional
binding to perform the cast.

Now let's see how we can use associated types with protocols.

Starting with the Protocol

[19]

Associated types with protocols
When defining a protocol, there are times when it is useful to define one or more associated
types. An associated type gives us a placeholder name that we can use within the protocol
in place of a type. The actual type to use for the associated type is not defined until the
protocol is adopted. The associated type basically says: We do not know the exact type to use;
therefore, when a type adopts this protocol it will define it. As an example, if we were to define a
protocol for a queue, we would want the type that adopts the protocol to define the instance
types that the queue contains rather than the protocol.

To define an associated type, we use the associatedtype keyword. Let's see how to use
associated types within a protocol. In this example, we will illustrate the Queue protocol
that will define the requirements needed to implement a queue:

protocol Queue {
 associatedtype QueueType
 mutating func addItem(item: QueueType)
 mutating func getItem() -> QueueType?
 func count() -> Int
}

In this protocol, we define one associated type named QueueType. We then use this
associated type twice within the protocol. We use it first as the parameter type for the
addItem() method. We then use it again when we define the return type of the getItem()
method as an optional type.

Any type that implements the Queue protocol must specify the type to use for the
QueueType placeholder, and must also ensure that only items of that type are used where
the protocol requires the QueueType placeholder.

Let's look at how to implement Queue in a non-generic class called IntQueue. This class
will implement the Queue protocol using the integer type:

struct IntQueue: Queue {
 var items = [Int]()
 mutating func addItem(item: Int) {
 items.append(item)
 }
 mutating func getItem() -> Int? {
 if items.count > 0 {
 return items.remove(at: 0)
 }
 else {
 return nil
 }

Starting with the Protocol

[20]

 }
 func count() -> Int {
 return items.count
 }
}

As we can see in the IntQueue structure, we use the integer type for both the parameter
type of the addItem() method and the return type of the getItem() method. In this
example, we implemented the Queue protocol in a non-generic way. Generics in Swift allow
us to define the type to use at runtime rather than compile time. We will show how to use
associated types with generics in Chapter 4, Generics.

Now that we have explored protocols in some detail, let's look at how we can use them in
the real world. In the next section, we will see how to use protocols to implement the
delegation design pattern.

Delegation
Delegation is used extensively within the Cocoa and Cocoa Touch frameworks. The
delegation pattern is a very simple but powerful pattern where an instance of one type acts
on behalf of another instance. The instance that is doing the delegating keeps a reference to
the delegate instance, and then, when an action happens, the delegating instance calls the
delegate, to perform the intended function. Sounds confusing? It really isn't.

This design pattern is implemented in Swift by creating a protocol that defines the
delegates' responsibilities. The type that conforms to the protocol, known as the delegate,
will adopt this protocol, guaranteeing that it will provide the functionality defined by the
protocol.

For the example in this section, we will have a structure named Person. This structure will
contain two properties of the String type, named firstName and lastName. It will also
have a third property that will store the delegate instance. When either the firstName or
lastName properties are set, we will call a method in the delegate instance that will display
the full name. Since the Person structure is delegating the responsibility for displaying the
name to another instance, it does not need to know or care how the name is being
displayed. Therefore, the full name could be displayed in a console window or in a
UILabel; alternatively, the message may be ignored altogether.

Starting with the Protocol

[21]

Let's start off by looking at the protocol that defines the delegate's responsibilities. We will
name this delegate DisplayNameDelegate:

protocol DisplayNameDelegate {
 func displayName(name: String)
}

In the DisplayNameDelegate protocol, we define one method that the delegate needs to
implement named displayName(). It is assumed that within this method the delegate will
somehow display the name; however, it is not required. The only requirement is that the
delegate implements this method.

Now let's look at the Person structure that uses the delegate:

struct Person {
 var displayNameDelegate: DisplayNameDelegate

 var firstName = "" {
 didSet {
 displayNameDelegate.displayName(name: getFullName())
 }
 }
 var lastName = "" {
 didSet {
 displayNameDelegate.displayName(name: getFullName())
 }
 }

 init(displayNameDelegate: DisplayNameDelegate) {
 self.displayNameDelegate = displayNameDelegate
 }

 func getFullName() -> String {
 return "\(firstName) \(lastName)"
 }
}

In the Person structure, we start off by adding the three properties, which are named
displayNameDelegate, firstName, and lastName. The displayNameDelegate
property contains an instance of the delegate type. This instance will be responsible for
displaying the full name when the values of the firstName and lastName properties
change.

Starting with the Protocol

[22]

Within the definitions for the firstName and lastName properties, we define the property
observers. The property observers are called each time the value of the properties is
changed. Within these property observers, is where we call the displayName() method of
our delegate instance to display the full name.

Now let's create a type that will conform to the DisplayNameDelegate protocol. We will
name this type MyDisplayNameDelegate:

struct MyDisplayNameDelegate: DisplayNameDelegate {
 func displayName(name: String) {
 print("Name: \(name)")
 }
}

In this example, all we will do is print the name to the console. Now let's see how we would
use this delegate:

var displayDelegate = MyDisplayNameDelegate()
var person = Person(displayNameDelegate: displayDelegate)
person.firstName = "Jon"
person.lastName = "Hoffman"

In this code, we begin by creating an instance of the MyDisplayNameDelegate type and
then use that instance to create an instance of the Person type. Now when we set the
properties of the Person instance, the delegate is used to print the full name to the console.

While printing the name to the console may not seem that exciting, the real power of the
delegation pattern comes when our application wants to change the behavior. Maybe in our
application we will want to send the name to a web service or display it somewhere on the
screen or even ignore the change. To change this behavior, we simple need to create a new
type that conforms to the DisplayNameDelegate protocol. We can then use this new type
when we create an instance of the Person type.

Another advantage that we get from using the delegation pattern is loose coupling. In our
example, we separated the logic part of our code from the view by using the delegate to
display the name whenever the properties changed. Loose coupling promotes a separation
of responsibility, where each type is responsible for very specific tasks; this makes it very
easy to swap out these tasks when requirements change, because we all know that
requirements change often.

So far in this chapter, we have looked at protocols from a coding point of view, now let's
look at protocols from a design point of view.

Starting with the Protocol

[23]

Designing with protocols
With protocol-oriented programming, we should always begin our design with the
protocols, but how should we design these protocols? In the object-oriented programming
world, we have superclasses that contain all the base requirements for the subclasses.
Protocol design is a little bit different.

In the protocol-oriented programming world, we use protocols instead of superclasses, and
it is preferable to break the requirements into smaller, more specific protocols rather than
having bigger monolithic protocols. In this section, we will look at how we can separate the
requirements into smaller, very specific protocols and how to use protocol inheritance and
composition. In Chapter 3, Extensions, we will take this a little further and show you how to
add functionality to all types that conform to a protocol using protocol extensions.

For the example in this section, we will model something that I enjoy building: Robots.
There are many types of robots with lots of different sensors, so our model will need the
ability to grow and handle all the different options. Since all robots have some form of
movement, we will start off by creating a protocol that will define the requirements for this
movement. We will name this protocol RobotMovement:

protocol RobotMovement {
 func forward(speedPercent: Double)
 func reverse(speedPercent: Double)
 func left(speedPercent: Double)
 func right(speedPercent: Double)
 func stop()
}

In this protocol, we define the five methods that all conforming types must implement.
These methods will move the robot in the forward, reverse, left or right directions as well as
stop the robot. This protocol will meet our needs if we only want the robot to travel in two
dimensions but what if we had a flying robot? For this we would need our robot to also go
up and down. For this we can use protocol inheritance to create a protocol that adds the
additional requirements for traveling in three dimensions:

protocol RobotMovementThreeDimensions: RobotMovement {
 func up(speedPercent: Double)
 func down(speedPercent: Double)
}

Starting with the Protocol

[24]

Notice that we use protocol inheritance when we create this protocol to inherit the
requirements from the original RobotMovement protocol. This allows us to use
polymorphism as described in the Polymorphism with protocols sections of this chapter. This
allows us to use instances of types that conform to either of these protocols interchangeably
by using the interface provided by the RobotMovement protocol. We can then determine if
the robot can travel in three dimensions by using the is keyword, as described in the Type
casting with protocols section of this chapter, to see if the RobotMovement instance conforms
to the RobotMovementThreeDimensions protocol or not.

Now we need to add some sensors to our design. We will start off by creating a Sensor
protocol that all other sensor types will inherit from. This protocol will contain four
requirements. The first two will be read-only properties that define the name and type for
the sensor. We will need an initiator that lets us name the sensor and a method that will be
used to poll the sensor:

protocol Sensor {
 var sensorType: String {get}
 var sensorName: String {get set}

 init (sensorName: String)
 func pollSensor()
}

The sensor type would be used to define the type of sensor and would contain a string, such
as DHT22 Environment Sensor. The sensor name would let us distinguish between
multiple sensors and would contain a string, such as Rear Environment Sensor. The
pollSensor() method would be used to perform the default operation by the sensor.
Generally, this method would be used to read the sensor at regular intervals.

Now we will create requirements for some specific sensor types. The following example
shows how we would create the requirements for an environment sensor:

protocol EnvironmentSensor: Sensor {
 func currentTemperature() -> Double
 func currentHumidity() -> Double
}

Starting with the Protocol

[25]

This protocol inherits the requirements from the Sensor protocol and adds two additional
requirements that are unique for environment sensors. The currentTemperature()
method would return the last temperature reading from the sensor and the
currentHumidity() method would return the last humidity reading from the sensor. The
pollSensor() method from the Sensor protocol would be used to read the temperature
and humidity at regular intervals. The pollSensor() method would probably run on a
separate thread.

Let's go ahead and create a couple more sensor types:

protocol RangeSensor: Sensor {
 func setRangeNotification(rangeCentimeter: Double,
 rangeNotification: () -> Void)
 func currentRange() -> Double
}

protocol DisplaySensor: Sensor {
 func displayMessage(message: String)
}

protocol WirelessSensor: Sensor {
 func setMessageReceivedNotification(messageNotification:
 (String) -> Void)
 func messageSend(message: String)
}

You will notice that two of these protocols (RangeSensor and WirelessSensor) define
methods that set notifications (setRangeNotification and
setMessageReceivedNotifications). These methods accept closures in the method
parameters and will be used within the pollSensor() method to notify robot code
immediately if something has happened. With RangeSensor types, the closure would be
called if the robot was within a certain distance of an object and with WirelessSensor
types the closure would be called if a message came in.

There are two advantages that we get from a protocol-oriented design like this one. The first
is each of the protocols only contain the specific requirements needed for their particular
sensor type. The second is we are able to use protocol composition to allow a single type to
conform to multiple protocols. As an example, if we have a Display sensor that has Wi-Fi
built in, we would create a type that conforms to both the DisplaySensor and
WirelessSensor protocols.

Starting with the Protocol

[26]

There are many other sensor types; however, this will give us a good start for our robot.
Now let's create a protocol that will define the requirements for the robot types:

protocol Robot {
 var name: String {get set}
 var robotMovement: RobotMovement {get set}
 var sensors: [Sensor] {get}

 init (name: String, robotMovement: RobotMovement)
 func addSensor(sensor: Sensor)
 func pollSensors()
}

This protocol defines three properties, one initiator, and two methods that will need to be
implemented by any type that conforms with this protocol. These requirements will give us
the basic functionality needed for the robots.

It may be a bit confusing thinking about all these protocols, especially if we are used to
having only a few superclass types. It usually helps to have a basic diagram of our
protocols. The following image shows a diagram for the protocols that we just defined with
the protocol hierarchy:

Starting with the Protocol

[27]

This gives us the basic idea of how we can design a protocol hierarchy. You will notice that
each of the protocols define the specific requirements for each device type. In Chapter 6,
Protocol-Oriented Programming, we will go into greater detail on how to model our
requirements with protocols.

In this section, we used protocols to define the requirements for the components of a robot.
Now it is your turn; take a moment and see if you can create a concrete implementation of
the Robot protocol without creating any concrete implementations of the other protocols.
The key to understanding protocols is understanding how to use them without the concrete
types that conform to them. In the downloadable code for this book, we have a sample class
named SixWheelRover that conforms to the Robot protocol that you can compare your
implementation to.

Now let's see how Apple uses protocols in the Swift standard library.

Protocols in the Swift standard library
Apple uses protocols extensively in the Swift standard library. The best resource that we
have to see the makeup of the standard library is http://swiftdoc.org. This site shows us
the types, protocols, operators, and globals that make up the standard library.

To see how Apple uses protocols, let's look at the Dictionary type. This is a very
commonly used type but also one that has a pretty simple protocol hierarchy. From the
http://swiftdoc.org/ main page, click on the Dictionary type. Then scroll about
halfway down the page until you see the inheritance section that should look similar to the
following image:

http://swiftdoc.org
http://swiftdoc.org/

Starting with the Protocol

[28]

This section lists the protocols that the Dictionary type conforms to. If we click on the
View Protocol Hierarchy link, we will see a graphical representation of the protocol
hierarchy that will look similar to this:

As we can see from the diagram, the Dictionary type conforms to five different protocols.
We can also see that the Collection protocol inherits requirements from the Sequence
protocol.

From the http://swiftdoc.org/ main page, we can click on each of the protocols to see
their requirements. From this site, we realize that Apple uses protocols extensively within
the Swift standard library. We will be looking at this site as we go through this book to see
how Apple uses the various technologies that we are discussing.

Summary
While protocols themselves may not seem very exciting, they are actually quite powerful.
As we saw in this chapter, we are able to use them to create very specific requirements. We
can then use protocol inheritance and protocol composition to create protocol hierarchies.
We also saw how to implement the delegation patterns with protocols.

We concluded the chapter by showing how we can model a robot with sensors using the
protocol and how Apple uses protocols in the Swift standard library.

In Chapter 3, Extensions, we will see how we can use protocol extensions to add
functionality to types that conform to a protocol but before we do that, let's look at our type
choices.

http://swiftdoc.org/

2
Our Type Choices

In most traditional, object-oriented programming languages, we create classes (which are
reference types) as blueprints for our objects. In Swift, unlike other object-oriented
languages, structures have much of the same functionality as classes; however, they are
value types. Apple has said that we should prefer value types, such as structures, to
reference types, but what are the actual advantages? Swift actually has a number of type
choices that we can use, and in this chapter we will look at all of these types to see their
advantages and disadvantages. Knowing how and when to use each type is important in
order to properly implement protocol-oriented programming in our projects.

In this chapter, you will learn the following:

What a class is and how to use it
What a structure is and how to use it
What an enumeration is and how to use it
What a tuple is and how to use it
The differences between value and reference types

Swift classifies types as either named or compound types. A named type is a type that can
be given a name when it is defined. These named types include classes, structures,
enumerations, and protocols. In addition to user-defined named types, Swift also defines
many commonly-used named types within the Swift standard library, including arrays,
sets, and dictionaries.

Our Type Choices

[30]

Many data types that we would normally consider primitive types in other languages are
actually named types in Swift and are implemented in the Swift standard library using
structures. These include types that represent numbers, strings, characters, and Boolean
values. Since these types are implemented as named types, we are able to extend their
behavior using extensions as we would with any other named type. As we will see in both
this and future chapters, the ability to extend a named type, including types that would
traditionally be considered as primitive types and protocols, is an extremely powerful
feature of the Swift language and is one of the pillars of protocol-oriented programming.
We will look at extensions in Chapter 3, Extensions.

A compound type is a type that is not given a name when it is defined. In Swift, we have
two compound types: function types and tuple types. Function types represent closures,
functions, and methods, while tuple types take the form of a comma-separated list that is
enclosed in parentheses. We are able to use the typealias declaration to give an alias to
compound types. This allows us to use the alias name instead of the type itself within our
code.

There are two categories of types: reference types and value types. When we pass an
instance of a reference type, we are passing a reference to the original instance, which
means that the two references are sharing the same instance. Classes are reference types.

When we pass an instance of a value type, we are passing a new copy of the instance, which
means that each instance gets a unique copy. Value types include structures, enumerations,
and tuples.

Every type in Swift will be either a named or compound type, and they will also be either a
reference or value type, except in the case of protocols. Since we are unable to create an
instance of a protocol, it is neither a reference nor a value type. Sounds a bit confusing? It
really isn't. As we look at all type choices and how we can use them, we will see how easy
this is to understand.

Now, let's begin looking at the type choices that we have in Swift. We will begin by looking
at the backbone of object-oriented programming: the class.

Our Type Choices

[31]

Classes
In object-oriented programming, we cannot create an object without a blueprint that tells
the application what properties and methods to expect from the object. In most object-
oriented languages, this blueprint comes in the form of a class. A class is a construct that
allows us to encapsulate the properties, methods, and initializers of an object into a single
type. Classes can also include other items, such as subscripts; however, we are going to
focus on the basic items that make up classes not only in Swift, but in other languages as
well.

Let's look at how we would use a class in Swift:

class MyClass {
 var oneProperty: String

 init(oneProperty: String) {
 self.oneProperty = oneProperty
 }

 func oneFunction() {

 }
}

An instance of a class is typically called an object. However, in Swift, structures and classes
have many of the same functionalities; therefore, we will use the term instance when
referring to instances of either type.

Anyone who has used object-oriented programming in the past is probably familiar with
the class type. It has been the backbone of object-oriented programming since its inception.

When we create instances of the class, it is named; therefore, the class is a named type. The
class type is also a reference type.

The next type we are going to look at is arguably the most important type in the Swift
language: Structures.

Our Type Choices

[32]

Structures
Apple has said that Swift developers should prefer value types over reference types, and it
seems that they have also taken that philosophy to heart. If we look at the Swift standard
library (http://swiftdoc.org), we will see that the majority of types are implemented
using structures. The reason Apple is able to implement the majority of Swift's standard
library with structures is that, in Swift, structures have many of the same functionalities as
classes. There are, however, some fundamental differences between classes and structures,
and we will be looking at these differences later in this chapter.

In Swift, a structure is a construct that allows us to encapsulate the properties, methods, and
initializers of an instance into a single type. They can also include other items, such as
subscripts. However, we are going to focus on the basic items that make up a structure. This
description may sound a lot like how we described classes in the last section. This is
because classes and structures are very similar in Swift. I know we have already mentioned
this, but it is very important to understand the ways in which structures and classes are
similar, and it is also necessary to understand the ways in which they are different in order
to know which type to use.

Let's see how we could create a structure:

struct MyStruct {
 var oneProperty: String

 func oneFunction() {
 }
}

If we compare this structure to the class from the previous section, we can see some very
basic differences. In the structure, we are not required to define an initializer because the
structure will create a default initializer for us if we do not provide one to set any properties
that need to be initialized. This default initializer will require us to provide initial values for
all non-optional properties when we create an instance of the structure.

One difference that we do not see here is that the mutating keyword is used for some of
the methods defined in the structures. Structures are value types; therefore, by default, the
properties of the structure cannot be changed from within instance methods. By using the
mutating keyword, we are opting for the mutating behavior for that particular method.
We must use the mutating keyword for any method within the structure that changes the
values of the structure's properties.

http://swiftdoc.org

Our Type Choices

[33]

The structure is a named type because we name the instance when it is created. The
structure type is also a value type. One of the main differences between a structure and a
class is that the class is a reference type while a structure is a value type. We will look at the
differences between value and reference types later in this chapter.

Let's look at how access controls work for classes and structures in Swift.

Access controls
Access controls allow us to restrict the access to, and visibility of, parts of our code. This
allows us to hide implementation details and only expose the interfaces we want the
external code to access. We can assign specific access levels to both classes and structures.
We can also assign specific access levels to properties, methods, and initializers that belong
to our classes and structures.

In Swift, there are five access levels:

Open: This is the most visible access control level. It allows us to use a property,
method, class, and so on anywhere we want to import the module. Basically,
anything can use an item that has an access control level set to open. Anything
that is marked open can be subclassed or overridded by any item within the
module they are defined in and any module that imports the module it is defined
in. This level is primarily used by frameworks to expose the framework's public
API.
Public: This access level allows us to use a property, method, class, and so on
anywhere we want to import the module. Basically, anything can use an item that
has an access control level set to public. Anything that is marked public can be
subclassed or overridded by any item within the module they are defined in. This
level is primarily used by frameworks to expose the framework's public API.
Internal: This is the default access level. This access level allows us to use a
property, method, class, and so on in the module the item is defined in. If this
level is used in a framework, it lets other parts of the framework use the item, but
code outside the framework will be unable to access it.
Fileprivate: This access control allows access to the properties and methods from
any code within the same source file that the item is defined in.
Private: This is the least visible access control level. It only allows us to use the
property, method, class, and so on in the source file that defines it.

Our Type Choices

[34]

Access controls are extremely useful when we are developing frameworks. In order to use
frameworks, we need to mark the public facing interfaces as public, so other modules, such
as applications that import the framework, can use them. We would then use the internal
and private access control levels to mark the interfaces that we want to use internal
framework.

To define access levels, we place the name of the level before the definition of the entity. The
following code shows examples of how we would add access levels to several entities:

private struct EmployeeStruct {}
public var firstName = "Jon"
internal var lastName = "Hoffman"
private var salaryYear = 0.0
public func getFullName() -> String {}
fileprivate func giveBonus(amount: Double) {}
open func giveRaise(amount: Double) {}

There are some limitations with access controls, but these limitations are there to ensure
that access levels in Swift follow a simple guiding principle: no entity can be defined in terms
of another entity that has a lower (more restrictive) access level. What this means is that we
cannot assign a higher (less restrictive) access level to an entity when it relies on another
entity that has a lower (more restrictive) access level.

Here are a couple of examples to illustrate this rule:

We cannot mark a method as being public when one of the arguments or the
return type has an access level set to private because external code would not
have access to the private type
We cannot set the access level of a method or property to public when the class or
structure has an access level set to private because external code would not be
able to access the constructor when the class is private

The next type that we are going to look at is Swift's supercharged enumerations.

Enumerations
In most languages, enumerations are little more than a data type consisting of a set of
named values called elements. In Swift, however, enumerations have been supercharged to
give them significantly more power. Enumerations in Swift are a lot closer in functionality
to classes and structures; however, they can still be used like enumerations in other
languages.

Our Type Choices

[35]

Before we see how enumerations are supercharged in Swift, let's see how we can use them
as standard enumerations. The following code defines an enumeration called Devices:

enum Devices
{
 case IPod
 case IPhone
 case IPad
}

In the Devices enumeration, we defined three possible values: IPod, IPhone, and IPad.
One of the reasons why enumerations are different in Swift as compared to other languages
is that they can be prepopulated with values known as raw values. As shown in the
following example, we could redefine our Devices enumeration to be prepopulated with
String values:

enum Devices: String {
 case IPod = "iPod"
 case IPhone = "iPhone"
 case IPad = "iPad"
}

We can then use the rawValue property to retrieve the raw value for any of the
enumeration's elements, as shown in the following code:

Devices.IPod.rawValue

In Swift, we can also store the associated values alongside our case values. These associated
values can be of any type, and can vary for each case. This enables us to store additional
custom information with our case types. Let's see how this works by redefining our
Devices enumeration with the associated values:

enum Devices {
 case IPod(model: Int, year: Int, memory: Int)
 case IPhone(model: String, memory: Int)
 case IPad(model: String, memory: Int)
}

In the previous example, we defined three associated values with the IPod case and two
associated values with the IPhone and IPad cases. We can then use this new Devices
enumeration with the associated values, as follows:

var myPhone = Devices.IPhone(model: "6", memory: 64)
var myTablet = Devices.IPad(model: "Pro", memory: 128)

Our Type Choices

[36]

In this example, we defined the myPhone device as an iPhone 6 with 64 GB of memory and
the myTablet device as an iPod Pro with 128 GB of memory. We can now retrieve the
associated values as follows:

switch myPhone {
 case .IPod(let model, let year, let memory):
 print("iPod: \(model) \(memory)")
 case .IPhone(let model, let memory):
 print("iPhone: \(model) \(memory)")
 case .IPad(let model, let memory):
 print("iPad: \(model) \(memory)")
}

In this example, we will simply print out the associated values of the myPhone device. What
we have seen so far makes enumerations far more powerful than enumerations in other
languages. However, we are not done showing off what enumerations can do in Swift. In
Swift, enumerations are not limited to a list of elements. They can also contain computed
properties, initializers, and methods, just like classes and structures.

Let's take a look at how we can use methods and computed properties with enumerations.
Since it almost feels like Christmas with all the exciting features, our example will have a
holiday theme:

enum Reindeer: String {
 case Dasher, Dancer, Prancer, Vixen, Comet, Cupid, Donner, Blitzen,
 Rudolph
 static var allCases: [Reindeer] {
 return [Dasher, Dancer, Prancer, Vixen, Comet, Cupid, Donner, Blitzen,
 Rudolph]
 }
 static func randomCase() -> Reindeer {
 let randomValue = Int(
 arc4random_uniform(
 UInt32(allCases.count)
)
)
 return allCases[randomValue]
 }
}

In this example, we created an enumeration called Reindeer that contains the names of
Santa's nine reindeer (we cannot forget Rudolph, you know). Within the Reindeer
enumeration, we created an allCases computed property that returns an array containing
all of the possible cases for the enumeration. We also created a randomCase() method that
will return a random reindeer from our enumeration.

Our Type Choices

[37]

The previous examples in this section showed how to use the individual features of Swift's
enumerations, but their true power is shown when they are used together. Let's look at one
more example where we combine the associated values with methods and properties to
make a supercharged enumeration. We will start off by defining a basic enumeration that
defines the various formats of a book, with the page count and the price of each format
stored in an associated value:

enum BookFormat {
 case PaperBack (pageCount: Int, price: Double)
 case HardCover (pageCount: Int, price: Double)
 case PDF (pageCount: Int, price: Double)
 case EPub (pageCount: Int, price: Double)
 case Kindle (pageCount: Int, price: Double)
}

This enumeration would work great, but there are some basic drawbacks. The first one, and
the one that really drives me nuts, is seen when we retrieve the associated values from our
enumerations. For example, let's create the following instance of the BookFormat
enumeration:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)

Now, to retrieve the page count and the price of this enumeration, we could use the
following code:

switch paperBack {
 case .PaperBack(let pageCount, let price):
 print("\(pageCount) - \(price)")
 case .HardCover(let pageCount, let price):
 print("\(pageCount) - \(price)")
 case .PDF(let pageCount, let price):
 print("\(pageCount) - \(price)")
 case .EPub(let pageCount, let price):
 print("\(pageCount) - \(price)")
 case .Kindle(let pageCount, let price):
 print("\(pageCount) - \(price)")
}

This is quite a bit of code to retrieve the associated values, especially where we may need to
retrieve these values in multiple locations throughout our code. We could create a global
function that would retrieve these values, but we have a better way in Swift. We can add a
computed property to our enumeration that will retrieve the pageCount and price values
of the enumeration.

Our Type Choices

[38]

The following example shows how we could add these computed properties:

enum BookFormat {
 case PaperBack (pageCount: Int, price: Double)
 case HardCover (pageCount: Int, price: Double)
 case PDF (pageCount: Int, price: Double)
 case EPub (pageCount: Int, price: Double)
 case Kindle (pageCount: Int, price: Double)

 var pageCount: Int {
 switch self {
 case .PaperBack(let pageCount, _):
 return pageCount
 case .HardCover(let pageCount, _):
 return pageCount
 case .PDF(let pageCount, _):
 return pageCount
 case .EPub(let pageCount, _):
 return pageCount
 case .Kindle(let pageCount, _):
 return pageCount
 }
 }
 var price: Double {
 switch self {
 case .PaperBack(_, let price):
 return price
 case .HardCover(_, let price):
 return price
 case .PDF(_, let price):
 return price
 case .EPub(_, let price):
 return price
 case .Kindle(_, let price):
 return price
 }
 }
 }

With these computed properties, we can very easily retrieve the associated values from the
BookFormat enumeration. The following code demonstrates how to use them:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)
print("\(paperBack.pageCount) - \(paperBack.price)")

Our Type Choices

[39]

These computed properties hide the complexity of the switch statement and provide a
much cleaner dot syntax interface to use.

We can also add methods to our enumerations. Let's say, as an example, that if a person
were to buy multiple copies of our book in different formats, they would receive a 20%
discount. The following function could be added to our BookFormat enumeration to
calculate this discount:

func purchaseTogether(otherFormat: BookFormat) -> Double {
 return (self.price + otherFormat.price) * 0.80
}

We could now use the method shown in the following code:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)
var pdf = BookFormat.PDF(pageCount: 180, price: 14.99)
var total = paperBack.purchaseTogether(otherFormat: pdf)

As we can see, enumerations in Swift are a lot more powerful than enumerations in most
other languages. The one thing to avoid is overusing them. They are not meant to be a
replacement for either the class or the structure. Deep down, enumerations are still a data
type consisting of a finite set of named values, and all of these new exciting features are
there to make them more useful to us.

When we create instances of the enumeration, it is named; therefore, it is a named type. The
enumeration type is also a value type. Now let's look at one of the most underutilized types
in Swift: Tuples.

Tuples
In Swift, a tuple is a finite, ordered, comma-separated list of elements. While there are
tuples in other languages that I have used, I never really took advantage of them. To be
honest, I was only vaguely aware that they actually existed in those other languages. In
Swift, tuples are more prominent than they are in other languages, which forced me to take
a closer look at them. What I found is that they are extremely useful. In my opinion, tuples
are one of the most underutilized types in Swift and, as we go through this book (especially
in the case study section), I will point out some cases where the tuple type can be used.

Our Type Choices

[40]

We can create a tuple and access the information within it, as shown in the following
example:

let mathGrade1 = ("Jon", 100)
let (name, score) = mathGrade1
print("\(name) - \(score)")

In the previous code, we grouped a String and an Integer into a single tuple type. We
then decomposed the tuple using pattern matching, which places the values into the name
and score constants.

What we saw in the last example is an unnamed tuple. These tuples work great at a pinch,
but I have found that I use named tuples more often because it is much easier to retrieve the
values from a named tuple. We can create a named tuple and access the information stored
within it as shown in the following example:

let mathGrade2 = (name: "Jon", grade: 100)
print("\(mathGrade2.name) - \(mathGrade2.grade)")

Note that, when we grouped the String and Integer values in this tuple, we assigned
names to each of the values. We can then use these names to access the information within
the tuple, thereby avoiding the decomposing step.

Apple has stated that we can use tuples as a return type for a function to return multiple
values. The following example shows how we could use tuples to return multiple values
from a function:

func calculateTip(billAmount: Double,tipPercent: Double) ->
 (tipAmount: Double, totalAmount: Double) {
 let tip = billAmount * (tipPercent/100)
 let total = billAmount + tip
 return (tipAmount: tip, totalAmount: total)
}

In this example, we created a calculateTip() function that calculates the tip based on the
billAmount and tipPercentage parameters that were passed in. We then returned both
the tip amount that was calculated and also the total bill amount in a named tuple value.

We could then use this function as shown in the following code:

var tip = calculateTip(billAmount:31.98, tipPercent: 20)
print("\(tip.tipAmount) - \(tip.totalAmount)")

Our Type Choices

[41]

What we have seen in this section is how tuples are typically used in Swift. As we go
through this book, we will be using tuples in various examples. Tuples are very useful
when we need to pass a temporary collection of values in our code.

In Swift, a tuple is a value type. Tuples are also compound types; however, we are able to
give a tuple an alias using the typealias keyword. The following example shows how we
would assign an alias to a tuple:

typealias myTuple = (tipAmount: Double, totalAmount: Double)

In Swift, protocols are also considered a type.

Protocols
To some, it may seem surprising that protocols are considered a type since we cannot
actually create an instance of them; however, we can use them as a type. What this
statement means is that, when we define the type for a variable, constant, tuple, or
collection, we can use a protocol for that type.

We are not going to cover protocols in depth in this section since we have already covered
them in Chapter 1, Starting with the Protocol, however, it is important to understand that
they are considered a type.

Each type that we have discussed so far is either a value or a reference type; however, a
protocol is neither because we are not able to create an instance of them.

It is really important to have a complete understanding of the differences between value
and reference types in Swift, so let's compare the two.

Value and reference types
There are some very fundamental differences between value types (structures,
enumerations, and tuples) and reference types (classes). The primary difference is how the
instances of value and reference types are passed. When we pass an instance of a value
type, we are actually passing a copy of the original instance. This means that the changes
made to one instance are not reflected back to the others. When we pass an instance of a
reference type, we are passing a reference to the original instance. This means that both
references point to the same instance; therefore, a change made to one reference will reflect
in the others.

Our Type Choices

[42]

The explanation in the previous paragraph is a pretty straightforward explanation;
however, it is a very important concept that you must understand. In this section, we are
going to examine the differences between value and reference types so that we know the
advantages of each, as well as the pitfalls to avoid when using them.

Let's begin by creating two types. One is going to be a structure (value type) and the other is
going to be a class (reference type). We will be using these types in this section to
demonstrate the differences between value and reference types. The first type that we will
look at will be named MyValueType. We will implement MyValueType using a structure,
which means that it is a value type, as its name tells us:

struct MyValueType {
 var name: String
 var assignment: String
 var grade: Int
}

Within MyValueType; we defined three properties. Two of the properties are of the String
type (name and assignment) and one is of the Integer type (grade). Now, let's look at how
we would implement this as a class:

class MyReferenceType {
 var name: String
 var assignment: String
 var grade: Int

 init(name: String, assignment: String, grade: Int) {
 self.name = name
 self.assignment = assignment
 self.grade = grade
 }
}

The MyReferenceType type defines the same three properties as in the MyValueType,
however, we needed to define an initializer in the MyReferenceType type that we did not
need to define in the MyValueType type. The reason for this is that structures provide us
with a default initializer that will initialize all the properties that need to be initialized if we
do not provide a default initializer.

Let's look at how we could use each of these types. The following code shows how we could
create instances of each of these types:

var ref = MyReferenceType(name: "Jon", assignment: "Math Test 1",
 grade: 90)
var val = MyValueType(name: "Jon", assignment: "Math Test 1", grade: 90)

Our Type Choices

[43]

As we see in this code, instances of structures are created in exactly the same way as the
instances of classes. Being able to use the same format to create instances of structures and
classes is good because it makes our lives easier; however, we do need to keep in mind that
value types behave in a different manner to reference types. Let's look at this. The first thing
we need to do is create two functions that will change the grades for the instances of our
two types:

func extraCreditReferenceType(ref: MyReferenceType, extraCredit: Int) {
 ref.grade += extraCredit
}

func extraCreditValueType(val: MyValueType, extraCredit: Int) {
 var val = val
 val.grade += extraCredit
}

Each of these functions takes an instance of one of our types and an extra credit amount.
Within the function, we will add the extra credit amount to the grade. Now let's see what
happens when we use each of these functions. Let's start off by seeing what happens when
we use the MyReferenceType type with the extraCreditReferenceType() function:

var ref = MyReferenceType(name: "Jon", assignment: "Math Test 1",
 grade: 90)
extraCreditReferenceType(ref: ref, extraCredit: 5)
print("Reference: \(ref.name) - \(ref.grade)")

In this code, we created an instance of the MyReferenceType type with a grade of 90. We
then used the extraCreditReferenceType() function to add five extra points to the
grade. If we run this code, the following line will be printed in the console:

Reference: Jon - 95

As we can see, five extra credit points were added to the grade. Now let's try to do the same
thing with the MyValueType type and the extraCreditValueType() function. The
following code shows how to do this:

var val = MyValueType(name: "Jon", assignment: "Math Test 1", grade: 90)
extraCreditValueType(val: val, extraCredit: 5)
print("Value: \(val.name) - \(val.grade)")

In this code, we created an instance of the MyValueType type with a grade of 90. We then
used the extraCreditValueType() function to add five extra points to the grade. If we
run this code, the following line will be printed in the console:

Value: Jon - 90

Our Type Choices

[44]

As we can see, the five extra credit points are missing from our grade in this example. The
reason for this is that, when we pass an instance of a value type to a function, we are
actually passing a copy of the original instance. This means that, when we add the extra
credit to the grade within the extraCreditValueType() function, we are adding it to a
copy of the original instance. As a result, the changes are not reflected back to the original
copy of the instance.

Using a value type protects us from making accidental changes to our instances because the
instances are scoped to the function or type in which they are created. Value types also
protect us from having multiple references to the same instance. Let's look at this so we can
understand the types of issue we may face when we use reference types. We will begin by
creating a function that is designed to retrieve the grade for an assignment from a data
store. However, to simplify our example, we will simply generate a random score. The
following code shows how we would write this function:

func getGradeForAssignment(assignment: MyReferenceType) {
 // Code to get grade from DB
 // Random code here to illustrate issue
 let num = Int(arc4random_uniform(20) + 80)
 assignment.grade = num
 print("Grade for \(assignment.name) is \(num)")
}

This function is designed to retrieve the grade for the assignment that is defined in the
MyReferenceType instance that is passed into the function. Once the grade is retrieved, we
will use it to set the grade property of the MyReferenceType instance. We will also print
the grade out to the console so we can see what the grade is. Now, let's see how we would
not want to use this function:

var mathGrades = [MyReferenceType]()
var students = ["Jon", "Kim", "Kailey", "Kara"]
var mathAssignment = MyReferenceType(name: "", assignment: "Math
Assignment", grade: 0)

for student in students {
 mathAssignment.name = student
 getGradeForAssignment(assignment: mathAssignment)
 mathGrades.append(mathAssignment)
}

Our Type Choices

[45]

In the previous code, we created a mathGrades array that will store the grades for our
assignment and a students array that will contain the names of the students we wish to
retrieve the grades for. We then created an instance of the MyReferenceType class that
contains the name of our assignment. We will use this instance to request the grades from
the getGradeForAssignment() function. Now that everything is defined, we will loop
through the list of students to retrieve the grades. The following is a sample output from
this code:

Grade for Jon is 90
Grade for Kim is 84
Grade for Kailey is 99
Grade for Kara is 89

This appears to look exactly like what we want. However, there is a huge bug in this code.
Let's loop through our mathGrades array to see what grades we have in the array itself:

for assignment in mathGrades {
 print("\(assignment.name): grade \(assignment.grade)")
}

The output of this code would look as follows:

Kara: grade 89
Kara: grade 89
Kara: grade 89
Kara: grade 89

That is not what we wanted. The reason we see these results is because we created one
instance of the MyReferenceType type and then we kept updating that single instance.
This means that we kept overwriting the previous name and grade. Since
MyReferenceType is a reference type, all the references in the mathGrades array pointed
to the same instance of the MyReferenceType type, which ended up being Kara's grade.

Most veteran object-oriented developers have learned to watch out for this type of issue the
hard way, but this type of error still happens, especially with junior developers. Using value
types can help us avoid these issues; however, there are times when we would like to have
this type of behavior. Apple has provided a way for us to have this behavior with value
types using the inout parameters. An inout parameter allows us to change the value of a
value type parameter and to have that change persist after the function call has ended.

Our Type Choices

[46]

We define an inout parameter by placing the inout keyword at the start of the parameter's
definition. An inout parameter has a value that is passed into the function. This value is
then modified by the function and is passed back out of the function to replace the original
value.

Let's look at how we can use value types with the inout keyword to create a version of the
previous example that will work correctly. The first thing we need to do is modify the
getGradesForAssignment() function to use an instance of MyValueType that it can
modify:

func getGradeForAssignment(assignment: inout MyValueType) {
 // Code to get grade from DB
 // Random code here to illustrate issue
 let num = Int(arc4random_uniform(20) + 80)
 assignment.grade = num
 print("Grade for \(assignment.name) is \(num)")
}

The only change we made to this function was the way we defined the parameter that was
passed in. The property is now defined as being of the MyValueType type, and we added
the inout keyword to allow the function to modify the instance that was passed in. Now
let's see how we could use this function:

var mathGrades = [MyValueType]()
var students = ["Jon", "Kim", "Kailey", "Kara"]
var mathAssignment = MyValueType(name: "", assignment: "Math Assignment",
 grade: 0)
for student in students {
 mathAssignment.name = student
 getGradeForAssignment(assignment: &mathAssignment)
 mathGrades.append(mathAssignment)
}

for assignment in mathGrades {
 print("\(assignment.name): grade \(assignment.grade)")
}

Once again, this code looks a lot like the code from the previous example; however, we
made two changes. The first is that the mathAssignment variable is now defined to be of
the MyValueType type, and, when we called the getGradeForAssignment() function, we
prefixed the argument with an ampersand (&). The ampersand tells us that we are passing a
reference to the value type, so any changes made in the function are reflected back to the
original instance.

Our Type Choices

[47]

The output of this new code will look as follows:

Grade for Jon is 87
Grade for Kim is 81
Grade for Kailey is 90
Grade for Kara is 83
Jon: grade 87
Kim: grade 81
Kailey: grade 90
Kara: grade 83

The output from this code is what we expected to see, where each instance in the
mathGrades array represents a different grade. The reason this code works correctly is that,
when we add the mathAssignment instance to the mathGrades array, we are adding a
copy of the mathAssignment instance to the array. However, when we pass the
mathAssignment instance to the getGradeForAssignment() function, we are passing a
reference, even though the type is a value type.

There are some things we cannot do with value types that we can do with reference (class)
types. The first thing that we will look at is the recursive data type.

Recursive data types for reference types
only
A recursive data type is a type that contains other values of the same type as a property for
the type. Recursive data types are used when we want to define dynamic data structures,
such as lists and trees. The size of these dynamic data structures can grow or shrink
depending on our runtime requirements.

Linked lists are perfect examples of a dynamic data structure that we would implement
using a recursive data type. A linked list is a group of nodes that are linked together and
where, in its simplest form, each node maintains a link to the next node in the list. The
following diagram shows how a very basic linked list works:

Our Type Choices

[48]

Each node in the list contains some value or data, and it also contains the link to the next
node in the list. If one of the nodes within the list loses the reference to the next node, the
remainder of the list will be lost because each node is only aware of the next node. Some
linked lists maintain a link to both the previous and next nodes to allow us to move both
forward and backward through the list.

The following code shows how we could create a linked list using a reference type:

class LinkedListReferenceType {
 var value: String
 var next: LinkedListReferenceType?
 init(value: String) {
 self.value = value
 }
}

In the LinkedListReferenceType class, we have two properties. The first property is
named value and it contains the data for this instance. The second property is named next,
which points to the next item in the linked list. If the next property is nil, then this instance
will be the last node in the list. If we tried to implement this linked list as a value type, the
code could look similar to the following code:

struct LinkedListValueType {
 var value: String
 var next: LinkedListValueType?
}

When we add this code to a playground, we receive the following error: Recursive value
type 'LinkedListValueType' is not allowed. This tells us that Swift does not allow
recursive value types. However, we are able to implement them as a reference type, which
we saw earlier.

If we think about it, recursive value types are a really bad idea because of how value types
function. Let's examine this for a minute, because it will really stress the difference between
value and reference types. It will also help you understand why we need reference types.

Let's say that we were able to create the LinkedListValueType structure without any
errors. Now let's create three nodes for our list, as shown in the following code:

var one = LinkedListValueType(value: "One",next: nil)
var two = LinkedListValueType (value: "Two",next: nil)
var three = LinkedListValueType (value: "Three",next: nil)

Our Type Choices

[49]

Now we will link these nodes together with the following code:

one.next = two
two.next = three

Do you see the problem with this code? If not, think about how a value type is passed. In
the first line, one.next = two, we are not actually setting the next property to the two
instance itself; we are actually setting it to a copy of the two instance. This means that in the
next line, two.next = three, we are setting the next property of the two instance itself to
the three instance. However, this change is not reflected back in the copy that was made
for the next property of the one instance. Sounds a little confusing? Let's clear it up a little
by looking at a diagram that shows the state of our three LinkedListValueType instances
if we were able to run this code:

As we can see from the diagram, the next property of the one instance is pointing to a copy
of the two instance whose next property is still nil. The next property of the original two
instance, however, is pointing to the three instance. This means that, if we try to go
through the list by starting at the one instance, we will not reach the three instance
because the copy of the two instance will still have a next property that is nil.

The second thing that we can only do with reference (class) types is class inheritance.

Inheritance for reference types only
In object-oriented programming, inheritance refers to one class (known as a sub or child
class) being derived from another class (known as a super or parent class). The subclass will
inherit methods, properties, and other characteristics from the superclass. With inheritance,
we can also create a class hierarchy where we can have multiple layers of inheritance.

Our Type Choices

[50]

Let's look at how we could create a class hierarchy with classes in Swift. We will start off by
creating a base class named Animal:

class Animal {
 var numberOfLegs = 0
 func sleeps() {
 print("zzzzz")
 }
 func walking() {
 print("Walking on \(numberOfLegs) legs")
 }
 func speaking() {
 print("No sound")
 }
}

In the Animal class, we defined one property (numberOfLegs) and three methods
(sleeps(), walking(), and speaking()). Now, any class that is a subclass of the Animal
class will also have these properties and methods. Let's see how this works by creating two
classes that are subclasses of the Animal class. These two classes will be named Biped (an
animal with two legs) and Quadruped (an animal with four legs):

class Biped: Animal {
 override init() {
 super.init()
 numberOfLegs = 2
 }
}

class Quadruped: Animal {
 override init() {
 super.init()
 numberOfLegs = 4
 }
}

Since these two classes inherit all the properties and methods from the Animal class, all we
need to do is create an initializer that sets the numberOfLegs property to the correct
number of legs. Now, let's add another layer of inheritance by creating a Dog class that will
be a subclass of the Quadruped class:

class Dog: Quadruped {
 override func speaking() {
 print("Barking")
 }
}

Our Type Choices

[51]

In the Dog class, we inherited from the Quadruped class that inherits from the Animal class.
Therefore, the Dog class will have all the properties, methods, and characteristics of both the
Animal and Quadruped classes. If the Quadruped class overrides anything from the
Animal class, then the Dog class will inherit the version from the Quadruped class.

We can create very complex class hierarchies in this manner. As an example, the following
diagram expands on the class hierarchy that we just created to add several other animal
classes.

As we can see, class hierarchies can get very complex. However, as we just saw, they can
eliminate a lot of duplicate code because our subclasses inherit methods, properties, and
other characteristics from their superclasses. Therefore, we do not need to recreate them in
all of the subclasses.

Our Type Choices

[52]

The biggest drawback of a class hierarchy is the complexity. When we have a complex
hierarchy, as shown in the preceding diagram, it is easy to make a change and not realize
how it is going to affect all of the subclasses. As an example, if we think about the dog and
cat classes, we may want to add a furColor property to our Quadruped class so we can
set the color of the animal's fur. However, horses do not have fur; they have hair. So, before
we can make any changes to a class in our hierarchy, we need to understand how it will
affect all the subclasses in the hierarchy.

In Swift, it is best to avoid using complex class hierarchies, as shown in this example, and
use a protocol-oriented approach, unless there are specific reasons to use them. We will see
how to use a protocol-oriented approach to avoid complex class hierarchies throughout this
book.

In most object-oriented languages, the standard library is in the form of a class hierarchy,
where the majority of the library is implemented using classes, as shown in this section.
However, Swift is a bit different.

Dynamic dispatch
In the Inheritance for reference types only section we saw how we can use inheritance with
classes to inherit and override functionality defined in a super class. You may be wondering
how and when the appropriate implementation is chosen. The process of choosing which
implementation to call is performed at runtime and is known as dynamic dispatch.

One of the key points to understand from the last paragraph is that the implementation is
chosen at runtime. What that means is that a certain amount of runtime overhead is
associated with using class inheritance as shown in the Inheritance for reference types only
section. For most applications, this overhead is not a concern; however, for performance-
sensitive applications such as games this overhead can be costly.

One of the ways that we can reduce the overhead associated with dynamic dispatch is to
use the final keyword. The final keyword puts a restriction on the class, method, or
function that indicates that it cannot be overridden, in the case of a method or function, or
subclassed, in the case of a class.

To use the final keyword, you put it prior to the class, method, or function declaration as
shown in this example:

final func myFunc() {}
final var myProperty = 0
final class MyClass {}

Our Type Choices

[53]

In the Inheritance for reference types only section we defined a class hierarchy that started with
the Animal superclass. If we wanted to restrict subclasses from overriding the walking()
method and numberOfLegs property, we would change the Animal implementation as
shown in the next example:

class Animal {
 final var numberOfLegs = 0
 func sleeps() {
 print("zzzzz")
 }
 final func walking() {
 print("Walking on \(numberOfLegs) legs")
 }
 func speaking() {
 print("No sound")
 }
}

This change allows the application, at runtime, to make a direct call to the walking()
method rather than an indirect call that gives the application a slight performance increase.
If you must use a class hierarchy, it is good practice to use the final keyword wherever
possible; however, it is better to use a protocol-oriented design, with value types to avoid
this.

Swift's built-in types
If you are reading this book, you are probably very familiar with Swift's built-in data types
and data structures. However, to really unleash their power, we need to understand how
they are implemented in the Swift standard library.

The Swift standard library defines several standard data types, such as Int, Double, and
String. In most languages, these types are implemented as primitive types, which means
that they cannot be extended or subclassed. In Swift, however, these types are implemented
in the Swift standard library as structures, which means we can extend these types just as
we can with any other type that is implemented as a structure; however, we cannot
subclasses them as we can do with other languages.

You can read more about Swift's standard library at
http://swiftdoc.org.

http://swiftdoc.org

Our Type Choices

[54]

Swift also defines several standard data structures, such as arrays, dictionaries, and sets.
Just like the built-in data types, these are also implemented as structures in the Swift
standard library. You may be wondering about the performance of these data structures
when they contain a large number of elements since value types receive a copy of the data
structure when they are assigned to another variable. Apple has an answer for this, called
COW (Copy-on-write).

Copy-on-write
When an instance of a value type, such as a structure, is assigned to another variable, that
second variable receives a copy of the instance. This means that, if we had an array that
contained 50,000 elements, then at runtime we would need to copy all 50,000 elements
when we assigned the array to a second variable or if we passed it to another part of our
code. This can severely impact our performance; however, with Swift built-in data
structures such as the array this impact is reduced because of Copy-on-write.

With Copy-on-write, Swift does not make a second copy of the data structure until a change
is made to that data structure. Therefore, if we pass an array of 50,000 elements to another
part of our code, and that code does not actually make any changes to the array, we will
avoid the runtime overhead of copying all the elements.

Unfortunately, Copy-on-write is only implemented with certain types in the Swift Standard
library and does not come free with all value types. In Chapter 4, Generics we will look at
how we can implement Copy-on-write for our custom data types.

Summary
In most object-oriented programming languages, our type choices are limited. In Swift,
however, we have numerous choices. This allows us to use the right type for the right
situation. Understanding how the different types work is essential to writing good stable
code.

In this chapter, we looked at the different types we can use in Swift and emphasized the
difference between value and reference types. While Apple has said that we should prefer
value types. We did look at areas, such as recursive data types, that require reference types.

We also discussed how we can optimize our code by using the final keyword when using
reference types. In the next chapter, we will look at how we can avoid using a class
hierarchy by using extensions.

3
Extensions

Back in the early 90s, when the primary language that I developed in was C, I had
numerous custom libraries that contained functionality that was not a part of the standard
C library. I found these libraries extremely useful because I tended to use the functionality
they provided in most of my projects. This functionality included things such as converting
the first letter of a string to uppercase or converting a double value to a currency string (two
digits after the decimal point and a currency symbol). Having libraries such as these is
extremely useful because there is always functionality that we find useful that is not
included in the standard library of the language we are developing in. I usually
implemented this extra functionality in C with global functions. In more modern object-
oriented languages, we can implement this functionality by subclassing the class we wish to
add the functionality to, but in Swift we can use extensions to add this functionality to
existing types without the need to use global functions or subclassing. To make extensions
even more useful, Apple gave us the ability to extend protocols, which lets us add
functionality to any type that adopts a protocol.

We will learn the following in this chapter:

How to extend structures, classes, and enumerations
How to extend protocols
How to use extensions in a real-world example

Extensions are one of the most useful features in the Swift language. They allow us to add
functionality to an existing type even if we do not have the source code for the type.
Protocol extensions are arguably one of the most exciting features of protocol-oriented
programming. If you are not familiar with protocol extensions, you may be wondering how
we can add functionality to a protocol when protocols do not contain any functionality. We
will see how to use protocol extensions later in this chapter and see why they are so
exciting. First, however, let's look at what extensions are and how to extend classes,
structures, and enumerations.

Extensions

[56]

With extensions, we can add the following items to an existing type:

Computed properties
Instance and type methods
Convenience initializers
Subscripts

One drawback of extensions is that we cannot override the functionality of the type we are
extending. Extensions are designed to add additional functionality and are not designed as
a means of changing the functionality of a type. Another thing that we cannot do with
extensions is add stored properties; however, we can add computed properties.

To understand why extensions are so useful, we need to understand the problem that they
are designed to solve. In most object-oriented languages, when we want to add additional
functionality to an existing class, we generally subclass the class we want to add the extra
functionality to. We then add the new functionality to this new subclass. The problem with
this method is that we are not actually adding the functionality to the original class;
therefore, we have to change all instances of the original class which need this extra
functionality, to instances of this new subclass. With some classes, such as the NSString
class, it can take a significant amount of code to create a subclass.

Another problem we can run into is that we can only subclass reference types (classes). This
means we are unable to subclass value types such as a structure or enumeration. What
makes matters even worse is the fact that the greater part of the Swift standard library is
made up of value types. This means that we are unable to add functionality to types from
the Swift standard library by subclassing them. Apple has also recommended that we prefer
value types to reference types in our applications, therefore if we listen to Apple's
recommendation (and we should), we cannot subclass the majority of our custom types.

With extensions, we are able to add new functionality directly to the types that we are
extending. This means that all instances of that type automatically receive the new
functionality without the need to change the type of the instance. We are also able to extend
both reference and value types, which includes protocols. As we will see later in this
chapter, the ability to extend protocols is one of the things that make protocol-oriented
programming possible.

Let's begin by looking at how we extend types such as structures, enumerations, and
classes.

Extensions

[57]

Defining an extension
An extension is defined by using the extension keyword followed by the name of the type
you are extending. We then put the functionality that we are adding to the type between
curly brackets. The following example shows how to define an extension:

extension String {
 // Add functionality here
}

The previous example would add an extension to the String type from the Swift standard
library. Since we can extend any type, we can use extensions to add functionality to types
from the Swift standard library, types from frameworks, or our own custom types. While
we can use extensions to add functionality to our own custom types, it is usually better to
add the functionality directly to the type itself. The reason for this is that our code is easier
to maintain if all the functionality (code) for our custom types is located together.

If we are adding functionality to a framework and we have the code for that framework, it
is still better to add the functionality with an extension rather than changing the code
within the framework itself. The reason for this is that, if we add the functionality directly
to the code within the framework, when we get newer versions of the framework, our
changes will be overwritten. Newer versions of the framework will not overwrite our
extensions as long as we do not put them in a file that belongs to the framework.

Let's see how we can add functionality to a standard Swift type using an extension. The
following code extends the String type to add a method that returns an optional value that
contains either the first character of the string or a nil, if the string is empty:

extension String {
 func getFirstChar() -> Character? {
 guard characters.count > 0 else {
 return nil
 }
 return self[startIndex]
 }
}

Once we add this extension to our application, all instances of the String type can take
advantage of the new functionality. There is also nothing special that needs to be done to
access the functionality; instances of the String type do not know or care whether the
functionality came from the original implementation of the type or from an extension. The
following example shows how we use the getFirstChar() method:

var myString = "This is a test"
print(myString.getFirstChar())

Extensions

[58]

The previous example will print the character T to the console. It is just as easy to add other
functionality such as subscripts to existing types. The following example shows how we
would add a subscript to our String extension that accepts a range operator and returns a
substring with the characters defined by the range operator:

extension String {
 func getFirstChar() -> Character? {
 guard characters.count > 0 else {
 return nil
 }
 return self[startIndex]
 }

 subscript (r: CountableClosedRange<Int>) -> String {
 get {
 let start = index(self.startIndex, offsetBy:r.lowerBound)
 let end = index(self.startIndex, offsetBy:r.upperBound)
 return substring(with: start..<end)
 }
 }
}

In Chapter 2, Our Type Choices, we mentioned that types that are normally implemented as
primitives in other languages are implemented as named types in Swift. These include
types that represent numbers, characters, and Boolean values. Since they are implemented
as named types, we are also able to extend them as we would any other type. As an
example, if we wanted to extend the Integer type to add a method that would return the
value of the integer squared, we could do it with an extension like this:

extension Int {
 func squared() -> Int {
 return self * self
 }
}

We could then use this extension to get the value of any integer squared, as shown in the
following example:

print(21.squared())

Extensions

[59]

Another example would be to extend the Double type to add a method that would convert
the value of the double to a String type representing the value as a currency. This method
would round the number to two decimal places and add a currency symbol. The following
code demonstrates how we could do this:

extension Double {
 func currencyString() -> String {
 let divisor = pow(10.0, 2.0)
 let num = (self * divisor).rounded() / divisor
 return "$\(num)"
 }
}

We cannot add stored properties with extensions, however; we can add computed
properties. Earlier in this section, we added a method named squared() to the Integer
type. We could have implemented this functionality as a computed property, as shown in
the following example:

extension Int {
 var squared: Int {
 return self * self
 }
}

Now that we have seen how to extend a standard type such as classes, enumerations, or
structures, let's see what protocol extensions are all about.

Protocol extensions
Protocols, like other types, can be extended. Protocol extensions can be used to provide
common functionality to all types that conform to a particular protocol. This gives us the
ability to add functionality to any type that conforms to a protocol rather than adding the
functionality to each individual type or through a global function. Protocol extensions, like
regular extensions, also give us the ability to add functionality to types that we do not have
the source code for.

Extensions

[60]

Protocol-oriented programming and frameworks such as GameplayKit rely heavily on
protocol extensions. Without protocol extensions, if we wanted to add specific functionality
to a group of types that conformed to a protocol, we would have to add the functionality to
each of the types. If we were using reference types (classes), we could create a class
hierarchy, but, as we mentioned earlier, that is not possible with value types. Apple has
stated that we should prefer value types to reference types and with protocol extensions we
have the ability to add common functionality to a group of values and/or reference types
that conform to a specific protocol, without having to implement that functionality in all
types.

Let's see what protocol extensions can do for us. The Swift standard library provides a
protocol named Collection:

http://swiftdoc. org/ nightly/ protocol/ Collection/

This protocol inherits from the Sequence protocol and it is adopted by all of Swift's
standard collection types such as the Dictionary and Array.

Let's say that we wanted to add the functionality to all types that conform to the
Collection protocol. This new functionality would shuffle the items in a collection or
return only the items whose index number is an even number. We could very easily add
this functionality by extending the Collection protocol, as shown in the following code:

extension Collection {
 func evenElements() -> [Iterator.Element] {

 var index = startIndex
 var result: [Iterator.Element] = []
 var i = 0
 repeat {
 if i % 2 == 0 {
 result.append(self[index])
 }
 index = self.index(after: index)
 i += 1
 } while (index != endIndex)
 return result
 }

 func shuffle() -> [Iterator.Element] {
 return sorted(){ left, right in
 return arc4random() < arc4random()
 }
 }
}

http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/
http://swiftdoc.org/nightly/protocol/Collection/

Extensions

[61]

Notice that when we extend a protocol, we use the same syntax and format that we use
when we extend other types. We use the extension keyword followed by the name of the
protocol that we are extending. We then put the functionality we are adding between the
curly brackets. Now every type that conforms to the Collection protocol will receive both
the evenElements() and shuffle() functions. The following code shows how we would
use these functions with an array:

var origArray = [1,2,3,4,5,6,7,8,9,10]

var newArray = origArray.evenElements()
var ranArray = origArray.shuffle()

In the previous code, the newArray array will contain the elements 1, 3, 5, 7, and 9 because
those elements have index numbers that are even (we are looking at the index number, not
the value of the element). The ranArray array will contain the same elements as the
origArray, but the order will be shuffled.

Protocol extensions are great for adding functionality to a group of types without the need
to add the code to each of the individual types; however, it is important to know what types
conform to the protocol we are extending. In the previous example, we extended the
Collection protocol by adding the evenElements() and shuffle() methods to all
types that conform to the protocol. One of the types that conforms to this protocol is the
Dictionary type. However, the Dictionary type is an unordered collection; therefore, the
evenElements() method will not work as expected. The following example illustrates this:

var origDict = [1:"One",2:"Two",3:"Three",4:"Four"]
var returnElements = origDict.evenElements()
for item in returnElements {
 print(item)
}

Since the Dictionary type does not promise to store the items in any particular order, any
of the two items could be printed to the screen in this example. The following shows one
possible output from this code:

(2, "two")
(1, "One")

Extensions

[62]

Another problem is that anyone who is not familiar with how the evenElements()
method is implemented may expect the returnElements array to be of the Dictionary
type since the original collection is a Dictionary type; however, it is actually an instance of
the Array type. This can cause some confusion. Therefore, we need to be careful when we
extend a protocol to make sure the functionality we are adding works as expected for all
types that conform to the protocol. In the case of the shuffle() and evenElements()
methods, we might have been better served to add the functionality as an extension directly
to the Array type rather than the Collection protocol, however there is another way. We
can add constraints to our extensions that will limit the types that receive the functionality
defined in an extension.

In order for a type to receive the functionality defined in a protocol extension, it must
satisfy all constraints defined within the protocol extension. A constraint is added after the
name of the protocol that we are extending using the where keyword. The following
example shows how we would add a constraint to our Collection extension:

extension Collection where Self: ExpressibleByArrayLiteral {
 //Extension code here
}

In the Collection protocol extensions in the previous example, only types that also
conform to the ExpressibleByArrayLiteral protocol
(http://swiftdoc.org/nightly/protocol/ExpressibleByArrayLiteral/) will receive the
functionality defined in the extension. Since the Dictionary type does not conform to the
ExpressibleByArrayLiteral protocol, it will not receive the functionality defined within
the protocol extension.

We could also use constraints to specify that our Collection protocol extension only
applies to a collection whose elements conform to a specific protocol. In the following
example, we use constraints to make sure that the elements in the collection conform to the
Comparable protocol. This may be necessary if the functionality that we are adding relies
on the ability to compare two or more elements in the collection. We could add this
constraint as follows:

extension Collection where Iterator.Element: Comparable {
 // Add functionality here
}

Constraints give us the ability to limit which types receive the functionality defined in the
extension. One thing that we need to be careful of is using protocol extensions when we
should actually be extending an individual type. Protocol extensions should be used when
we want to add functionality to a group of types. If we are trying to add the functionality to
a single type, we should look to extend that individual type.

http://swiftdoc.org/nightly/protocol/ExpressibleByArrayLiteral/

Extensions

[63]

Now that we have seen how to use extensions and protocol extensions, let's look at a real-
world example. In this example, we will show how to create a text validation framework.

Text validation
In numerous apps, across multiple platforms (iOS, Android, and Windows), I have been
tasked to validate user input either after the user has entered it or as it is entered. This
validation can be done very easily with regular expressions; however, we do not want
various regular expression strings littered throughout our code. We can solve this problem
by creating different classes or structures that contain the validation code. The question is;
how would we organize these types to make them easy to use and maintain? Prior to
protocol extensions in Swift, I would have used protocols to define the validation
requirements and would then create a type that conforms to the protocol for each validation
type needed.

Prior to looking at how we would accomplish this text validation, let's take a quick look at
what regular expressions are and how we would use them in Swift. A regular expression
(also known as regex) is a special text string that is used to describe a search or matching
pattern. The regular expression string, also known as a pattern, consists of one or more
characters, operators, or constructs. Regular expressions are very useful when searching for
a string for a particular pattern or (as we use it here) validating a string.

Regular expressions are not unique to Swift. Almost all modern languages have a way to
use regular expressions. Whole books have been written about regular expressions, so in
this section, we will give a very brief introduction with enough information for you to
understand the examples in this chapter.

In its simplest form, a regular expression is a string of characters such as abc or 12345.
Using a regular expression such as this will match the pattern within a string, as shown in
the following examples:

Regex Matches Description

abc xyzabcxyzabc Matches the string abc

12345 1234567890 Matches the string 12345

Extensions

[64]

We can also define character sets using square brackets ([]). Character sets will match one
character in the string to any character within the set. To define the set, we can use a string
of characters, as shown in the last example, or we can use the minus sign (-) operator to
specify a range:

Regex Matches Description

[abc] xyzabcxyz Matches any character in the set abc

[a-zA-Z] xyzabcxyz Matches any lower or uppercase letter

We use curly brackets ({ }) to specify the amount of repetition so we can match more than
one character. For example, if we used {2,5} then that would mean we want to match at
least 2 characters, but no more than 5 characters:

Regex Matches Description

[a-z]{2,5} xyzabcxyz Matches 2 to 5 lowercase letters

[a-z0-9]{2,5} xyzabcxyz Matches 2 to 5 lowercase letters or numbers

The caret (^) at the beginning means we want to match at the beginning and the dollar sign
($) means match at the end. We can use these two special characters to match a full string.
For example, the ^[a-z]{0,5}$ pattern will match a string only if there are between 0 and
5 lowercase letters. The match will fail if there are any other characters besides lowercase
letters or more than five characters:

Regex Matches Description

^[a-z]{2,5}$ xyzabcxyz Fails more than five characters

[a-z0-9]{0,5} xyz12 Matches five lowercase or number characters

Finally, let's look at some additional special characters within regular expressions. These are
characters that need to be escaped using the backslash (\) and have special meaning:

Character Definition

. The dot matches any single character

\n Matches a newline character

\t Matches a tab

Extensions

[65]

\d Matches a digit [0-9]

\D Matches a non-digit

\w Matches an alphanumeric character [a-zA-Z0-9]

\W Matches a non-alphanumeric character

\s Matches a whitespace character

\S Matches a non-whitespace character

There is a lot more to regular expressions than we have just seen. In this section, we only
gave enough information to help you understand the text validation examples in this
chapter. If you plan on using regular expressions on a regular (pun intended) basis, I would
suggest reading more about them.

Now, let's look at how we would develop our validation framework without protocol
extensions. We will begin by defining a protocol named TextValidation that will define
the requirements for any type used for text validation. This will allow us to use the
TextValidation protocol in place of implementation types. If you recall, this is a form of
polymorphism:

protocol TextValidation {

 var regExMatchingString: String {get}
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
 func validateString(str: String) -> Bool
 func getMatchingString(str: String) -> String?
}

In this protocol, we define three properties and two methods that any type that conforms to
this protocol must implement. The three properties are:

regExMatchingString: Regular expression string used to verify that the input
string contains only valid characters.
regExFindMatchString: Regular expression string used to retrieve a new string
from the input string that contains only valid characters. This regular expression
is generally used when we need to validate the input in real time, as the user
enters information, because it will remove all characters starting with the first
invalid characters to the end of the string.
validationMessage: This is the error message to display if the input string
contained non-valid characters.

Extensions

[66]

The two methods for this protocol are:

validateString: This method will return true if the input string contains only
valid characters. The regExMatchingString property will be used in this
method to perform the match.
getMatchingString: This method will return a new string that contains only
valid characters. This method is generally used when we need to validate the
input in real time, as the user enters information, because it will remove all
characters starting with the first invalid characters. We will use the
regExFindMatchString property in this method to retrieve the new string.

Now let's see how we would create a class that conforms to this protocol. The following
class would be used to verify that the input string contains 0 to 10 alpha characters:

class AlphabeticValidation1: TextValidation {
 static let sharedInstance = AlphabeticValidation1()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
 var regExMatchingString: String {
 get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of: regExMatchingString,
 options: .regularExpression){
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of: regExFindMatchString,
 options: .regularExpression) {
 return str.substring(with: newMatch)
 } else {
 return nil
 }
 }
}

Extensions

[67]

In this implementation, the regExFindMatchString and validationMessage properties
are stored properties and the regExMatchingString property is a computed property. We
also implement the validateString() and getMatchingString() methods within the
class to conform to the protocol.

Normally, we would have several different types that conform to the TextValidation
protocol where each one would validate a different type of input. As we can see from the
AlphabeticValidation1 class, there would be quite a bit of code involved with each
validation type. The worst part is a lot of the code would need to be duplicated for each
validation type. This is not ideal. However, if we wanted to avoid creating a class hierarchy
with a superclass containing the duplicate code, we would have no other choice. Protocol
extensions give us a better option. Let's look at how we would implement our text
validation types with protocol extensions.

With protocol extensions, we need to think about the code a little differently. The big
difference is that we do not need, nor want to define, everything in the protocol. With
standard protocols or when we use a class hierarchy, all methods and properties that we
want to access using the interface provided by the generic superclass or protocol type must
be defined within the superclass or protocol. With protocol extensions, it is actually
preferable for us to not define a computed property or method in the protocol if we are
going to implement it with a protocol extension. Therefore, when we rewrite our text
validation types with protocol extensions, the TextValidation protocol would be greatly
simplified and would look like this:

protocol TextValidation {
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
}

In the original TextValidation protocol, we defined three properties and two methods.
As we can see in this new protocol, we are only defining two properties. Now that we have
the TextValidation protocol defined, let's create a protocol extension where we
implement the other two methods and the computed property:

extension TextValidation {
 var regExMatchingString: String {
 get {
 return regExFindMatchString + "$"
 }
 }
 func validateString(str: String) -> Bool {
 if let _ = str.range(of: regExMatchingString,
 options: .regularExpression){
 return true

Extensions

[68]

 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of: regExFindMatchString,
 options: .regularExpression){
 return str.substring(with: newMatch)
 } else {
 return nil
 }
 }
}

In the TextValidation protocol extension, we implement the two methods and the
computed property that were defined in the original TextValidation protocol, but not
defined in the new one.

Now that we have created our protocol and protocol extension, we are able to define our
text validation types. In the following code, we define three classes that we will use to
validate text:

class AlphabeticValidation: TextValidation {
 static let sharedInstance = AlphabeticValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

class AlphaNumericValidation: TextValidation {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z0-9]{0,15}"
 let validationMessage = "Can only contain Alpha Numeric characters"
}

class DisplayNameValidation: TextValidation {
 static let sharedInstance = DisplayNameValidation()
 private init(){}
 let regExFindMatchString = "^[\\s?[a-zA-Z0-9\\-_\\s]]{0,15}"
 let validationMessage = "Display Name can contain only contain
 Alphanumeric Characters"
}

Extensions

[69]

In each of the text validation classes, we create a static constant and a private initiator so we
can use the class as a singleton. For more information on the singleton pattern please see
The singleton design pattern section of Chapter 7, Adopting Design Patterns in Swift.

After we define the singleton pattern, all we do for each type is set the values for the
regExFindMatchString and the validationMessage properties. Now we have virtually
no duplicate code between the types except the code to implement the singleton pattern.
Even if we could, we would not want to define the singleton code in the protocol extension
because we would not want to force that pattern on all conforming types. We can also see
that we are able to define these three classes with less code than it took to define the one
class without protocol extensions.

We could use these validation classes as follows:

var myString1 = "abcxyz"
var myString2 = "abc123"
var validation = AlphabeticValidation.sharedInstance
validation.validateString(str: myString1)
validation.validateString(str: myString2)

validation.getMatchingString(str: myString1)
validation.getMatchingString(str: myString2)

In this example, we create two String types, each containing a different string value. We
then get the shared instance of the AlphabeticValidation type. We use the
validateString() method of the AlphabeticValidation instance to validate the
strings, which verifies that the whole string matches the regular expression pattern defined
in the AlphabeticValidation instance. We then use the getMatchingString() method
of the AlphabeticValidation instance to return a new string that contains only the valid
characters defined in the regular expression pattern.

The validateString() method returns a true value for the myString1 String because
the value of myString1 matches the regular expression pattern; however, it returns a
false value for the myString2 instances because their value contains numbers that do not
match the ^[a-zA-Z]{0,10}regular expression pattern defined in the
AlphabeticValidation type.

The getMatchingString() method returns the full value of myString1 String because
the value matches the regular expression pattern defined in the AlphabeticValidation
type. However, for the value of the myString2 instance, it only returns an instance of the
String type that contains the value of abc because that is the only part of the myString2
value that matches the pattern.

Extensions

[70]

As we mentioned in Chapter 2, Our Type Choices it is important to understand that the
majority of the Swift standard library is made up of structures (value types) and protocols.
In this next section, we will see why that is so important.

Extensions with the Swift standard library
Let's say that, in our application, we needed to calculate the factorial of some integers. A
factorial is written as 5!. To calculate a factorial, we take the product of all the positive
integers that are less than or equal to the number. The following example shows how we
would calculate the factorial of five:

5! = 5*4*3*2*1
5! = 120

We could very easily create a global function to calculate the factorial, and we would do
that in most languages, however, in Swift, extensions give us a better way to do this. The
Integer type in Swift is implemented as a structure which we can extend to add this
functionality directly to the type itself. The following example shows how we can do this:

extension Int {
 func factorial() -> Int {
 var answer = 1
 for x in (1...self).reversed() {
 answer *= x
 }
 return answer
 }
}

We could now calculate the factorial of any integer, as follows:

print(10.factorial())

If we run this code, we will see that the correct answer of 3628800 is returned. In this
example, we also see how easy it is to extend a type to add extra functionality even if we do
not have the code for the type.

If we will be doing a lot of comparison of our custom types, it is a good idea to have them
conform to the Equatable protocol. In the next section, we will see how we can do this
with extensions.

Extensions

[71]

Conforming to the Equatable protocol
In this section, we will show how we can conform to the Equatable protocol using
extensions. When a type conforms to the Equatable protocol, we can use the equal-to (==)
operator to compare for equality and the not-equal-to (!=) operator to compare for
inequality.

If you will be comparing instances of a custom type, it is a good idea to
have that type conform to the Equatable protocol because it makes
comparing instances very easy.

Let's start off by creating the type that we will compare. We will name this type Place:

struct Place {
 let id: String
 let latitude: Double
 let longitude: Double
}

In the Place type, we have three properties that represent the ID of the place and the
latitude and longitude coordinates for its location. If there are two instances of the Place
type that have the same ID and coordinates, then they would be considered the same place.

To implement the Equatable protocol, we could create a global function. However, that is
not the recommended solution for protocol-oriented programming. We could also add a
static function to the Place type itself but sometimes it is better to pull the functionality
needed to conform to a protocol out of the implementation itself. The following code would
make the Place type conform to the Equatable protocol:

extension Place: Equatable {
 static func ==(lhs: Place, rhs: Place) -> Bool {
 return lhs.id == rhs.id &&
 lhs.latitude == rhs.latitude &&
 lhs.longitude == rhs.longitude
 }
}

Extensions

[72]

We can now compare instances of the Place type like this:

var placeOne = Place(id: "Fenway Park", latitude: 42.3467, longitude:
-71.0972)
var placeTwo = Place(id: "Wrigley Field", latitude: 41.9484, longitude:
-87.6553)

print(placeOne == placeTwo)

This would print false because Fenway Park and Wrigley Field are two different
baseball stadiums.

You may be wondering why we said that it may be better to pull the functionality needed to
conform to a protocol out of the implementation itself. Think about some of the larger types
that you have created in the past. Personally, I have seen types that had several hundred
lines of code and conformed to numerous protocols. By pulling the code that is needed to
conform to a protocol out of the type's implementation and putting it in its own extension,
we are making our code much easier to read and maintain in the future because the
implementation code is isolated in its own extension.

Summary
In this chapter, we looked at extensions and protocol extensions. In the original version of
Swift, we were able to use extensions to extend structures, classes, and enumerations, but
since Swift 2, we have also been able to use extensions to extend protocols.

Without protocol extensions, protocol-oriented programming would not be possible, but we
need to make sure that we use protocol extensions where appropriate and do not try to use
them where regular extensions should be used.

In the next chapter, we will look at the final piece of the protocol-oriented puzzle: Generics.

4
Generics

I received a lot of feedback about protocol-oriented programming after the first version of
this book was released. Almost all the feedback was very positive, however there was one
conversation that I had, with one of the smartest people that I have had the privilege to
meet, about what protocol-oriented programming was. One of the comments that he made
was that I should not forget about generic programming. The conversation that we had
about generic programming really stuck with me and when I had the opportunity to write a
new version of this book, I took that opportunity to include this chapter on generics.

What we will learn in this chapter:

What generics are
How to create generic functions
How to create generic types
How to use Generic subscripts
How to implement Copy-on-write
How to design very flexible and reusable types with protocols and generics

Generics allow us to write very flexible and reusable code that avoids duplication. With a
type-safe language, such as Swift, we often need to write functions or types that are valid
for multiple types. For example, we might need to write a function that swaps the values of
two variables, however, we may want this function to swap two String types, two
Integer types, and two Double types. Without generics, we will need to write three
separate functions. With generics, we can write one generic function to provide the swap
functionality for different types.

Generics allow us to tell a function or type "I know Swift is a type-safe language, but I do
not know the type that will be needed yet. I will give you a placeholder for now and will let
you know what type to enforce at runtime."

Generics

[74]

Whether you realize it or not, generics play a very large part of every program written in
Swift because generics play such a large part in the Swift language itself. We can look at
arrays as an example of where generics are used in the Swift standard library. Generics
allow us to create an array that contains instances of any type.

Optionals are another example of where generics are used in the Swift language. The
optional type is defined as an enumeration with two possible values: None and Some(T),
where T is the associated value of the appropriate type. If we set the optional to nil, then it
will have a value of None, and if we set a value for the optional then it will have a value of
Some with an associated value of the appropriate type. Internally, an optional is defined as
follows:

enum Optional<T>{
 case None
 case Some(T)
}

Here, T is the type to associate with the optional. The T placeholder is used to define a
generic. As we will see later in this chapter, we are not limited to using just the T as a
placeholder, but for most of the examples in this chapter, we will use either the T or E to
represent a generic because those are the standard placeholders used in most
documentation to represent a generic type.

In Swift, we have the ability to define both generic functions and generic types. Let's start
by looking at how we would create a generic function.

Generic functions
To fully understand generics, we need to understand the problem that they are designed to
solve. Let's say that we wanted to create functions that swapped the values of two variables
(as described in the first part of this chapter) however, for our application, we have a need
to swap the instances of two Integer types, two Double types, and two String types.
Without generics, this would require us to write the following three functions:

func swapInts (a: inout Int,b: inout Int) {
 let tmp = a
 a = b
 b = tmp
}

func swapDoubles(a: inout Double,b: inout Double) {
 let tmp = a
 a = b

Generics

[75]

 b = tmp
}

func swapStrings(a: inout String, b: inout String) {
 let tmp = a
 a = b
 b = tmp
}

With these three functions, we can swap the instances of two Integer types, two Double
types, and two String types. Now, let's say as we develop our application further, we find
out that we also need to swap the values of two UInt32 types, two Float types, or even a
couple of custom types. We might easily end up with eight or nine swap functions. The
worst part is each of these functions would contain duplicate code because the only
difference between them is the parameter types. While this solution does work, generics
offer a much more elegant and simple solution that eliminates all the duplicate code. Let's
see how we would condense all three of the preceding functions into a single generic
function:

func swapGeneric<T>(a: inout T, b: inout T) {
 let tmp = a
 a = b
 b = tmp
}

Let's look at how we defined the swapGeneric(a:b:) function. The function itself looks
pretty similar to a normal function, except for the capital T placeholder used in the function
definition. This placeholder tells Swift that we will be defining the type at runtime. We can
then use that placeholder type in place of any type definition within the parameter
definitions, the return type, or the function itself. The big thing to keep in mind is that, once
the placeholder is defined as a type, all the other placeholders assume that type. Therefore,
any variable or constant defined with that placeholder must be an instance of that type.

There is nothing special about the capital T, we could use any valid identifier in place of it.
The following definitions are perfectly valid:

func swapGeneric <G>(a: inout G, b: inout G) {
 //Statements
}

func swapGeneric <xyz>(a: inout xyz, b: inout xyz) {
 //Statements
}

Generics

[76]

In most documentation, generic placeholders are defined with either T (for type) or E (for
element). For standard purposes, we will use T to define most generic placeholders in this
chapter. It is also good practice to use T to define a generic placeholder within our code so
the placeholder is easily recognized when we are looking at the code.

Let's look at how we would call a generic function. The following code will swap two
integers:

var a = 5
var b = 10
swapGeneric(a: &a, b: &b)
print("a: \(a) b: \(b)")

If we run this code, the output would be: a: 10 b: 5. We can see that we do not have to
do anything special to call a generic function. The function infers the type from the first
parameter and then sets all the remaining placeholders to that type. Now, if we needed to
swap the values of two String, we could use the same function as follows:

var c = "My String 1"
var d = "My String 2"
swapGeneric(a: &c, b: &d)
print("c:\(c) d:\(d)")

We can see that we call the function in exactly the same way as we called it when we
wanted to swap two integers. One thing that we cannot do is pass two different types into
the swapGeneric() function because we defined only one generic placeholder. If we
attempt to run the following code, we will receive an error:

var a = 5
var c = "My String 1"
swapGeneric(a: &a, b: &c)

The error that we would receive is; cannot convert value of type String to
expected argument type Int, which tells us that we are attempting to use a String
type where an Integer type is expected. The reason the function is looking for an Integer
value is that the first parameter that we pass into the function was an instance of the
Integer type, therefore all of the generic types in the function defined with the T
placeholder became Integer types.

Generics

[77]

If we need to use multiple generic types, we can create multiple placeholders by separating
them with commas. The following example shows how to define multiple placeholders for
a single function:

func testGeneric<T,E>(a:T, b:E) {
 print("\(a) \(b)")
}

In this example, we are defining two generic placeholders, T and E. In this case, we can set
the T placeholder to one type and the E placeholder to a different type.

This function will accept parameters of different types however, since they are of different
types, we would be unable to swap the values. There are also other limitations on generics
as well. For example, we may think that the following generic function would be valid,
however, we would receive an error if we tried to implement it:

func genericEqual<T>(a: T, b: T) -> Bool{
 return a == b
}

The error that we receive is binary operator '==' cannot be applied to two 'T'
operands. Since the type of the arguments is unknown at the time the code is compiled,
Swift does not know if it is able to use the equal operator on the types, which causes the
error to be thrown. We might think that this is a limit that would make generics hard to use;
however, we have a way to tell Swift that we expect the type will have certain functionality.
This is done with type constraints.

Type constraints with Generics
A type constraint specifies that a generic type must inherit from a specific class or conform
to a particular protocol. This allows us to use the methods or properties defined by the
parent class or protocol with the generic types. Let's look at how to use type constraints by
rewriting the genericEqual() function to use the Comparable protocol:

func testGenericComparable<T: Comparable>(a: T, b: T) -> Bool{
 return a == b
}

To specify the type constraint, we put the type or protocol constraint after the generic
placeholder, where the generic placeholder and the constraint are separated by a colon. This
new function works as we might expect, and it will compare the values of the two
parameters and return true if they are equal or false if they are not.

Generics

[78]

We can declare multiple constraints just like we declare multiple generic types. The
following example shows how to declare two generic types with different constraints:

func testFunction<T: MyClass, E: MyProtocol>(a: T, b: E) {
}

In this function, the type defined by the T placeholder must inherit from the MyClass class,
and the type defined by the E placeholder must implement the MyProtocol protocol. Now
that we have looked at generic functions and type constraints, let's look at generic types.

Generic types
A generic type is a class, structure, or enumeration that can work with any type, just like
Swift arrays and optionals can work with any type. When we create an instance of our
generic type, we specify the type that the instance will work with. Once a type is defined, it
cannot be changed for that instance.

To demonstrate how to create a generic type, let's create a simple List class. This class will
use a Swift array as the backend storage and will let us add items or retrieve values from
the list.

Let's begin by seeing how to define our generic List type:

struct List<T> {
}

The preceding code defines the generic List type. We can see that we use the <T> tag to
define a generic placeholder, just like we did when we defined a generic function. This T
placeholder can then be used anywhere within the type instead of a concrete type
definition.

To create an instance of this type, we would need to define the type of items that our list
will hold. The following examples show how to create instances of the generic List type for
various types:

var stringList = List<String>()
var intList = List<Int>()
var customList = List<MyObject>()

Generics

[79]

The preceding example creates three instances of the List type. The stringList instance
can be used with instances of the String type, the intList instance can be used with
instances of the Integer type, and the customList instance can be used with instances of
the MyObject type.

We are not limited to using generics only with structures. We can also define classes and
enumerations as generic types. The following examples show how to define a generic
structure and a generic enumeration:

class GenericStruct<T> {
}

enum GenericEnum<T> {
}

The next step in our List type is to add the backend storage array. The items that are
stored in this array need to be of the same type as we define when we initiate the class,
therefore we will use the T placeholder for the array's definition. The following code shows
the List class with an array named items:

struct List<T> {
 var items = [T]()
}

Now, we will need to add the add(item:) method that will be used to add an item to the
list. We will use the T placeholder within the method declaration to define that the
parameter will be of the same type as we declared when we initiated the type. Therefore, if
we create an instance of the List type to use the String type, we would be required to use
the string type as the parameter for this method.

Here is the code for the add() function:

mutating func add(item: T) {
 items.append(item)
}

When we created a standalone generic function, we added the <T> declaration after the
function name to declare that it is a generic function. When we use a generic method within
a generic type, we do not need this declaration because we already specified that the type
itself is generic with the T type. To define a generic method, within a generic type, all we
need to do is to use the same placeholder that we defined in the type declaration.

Generics

[80]

Now, let's add the getItemAtIndex(index:) method that will return an item from the
backend array, at the specified index:

func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
}

The getItemAtIndex(index:) method accepts one argument which is the index of the
item we want to retrieve. We then use the T placeholder with the return type. The return
type for this method is an optional that might be of type T or might be nil. If the backend
storage array contains an item at the specified index, we will return that item, otherwise, we
return nil .

Now, let's look at our entire generic list class:

struct List<T> {
 var items = [T]()

 mutating func add(item: T) {
 items.append(item)
 }

 func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
 }
}

As we can see, we initially defined the generic T placeholder type in the structure's
declaration. We then used this placeholder type within the structure in three places. We use
it as the type for our items array, as the parameter type for the add(index:) method, and
as the value for the optional return type in the getItemAtIndex() method.

Generics

[81]

Now, let's look at how to use the List type. When we use a generic type, we define the
type to be used within the instance between angle brackets. The following code shows how
to use the List class to store String types:

var list = List<String>()
list.add(item: "Hello")
list.add(item: "World")
print(list.getItemAtIndex(index: 1))

In this code, we start off by creating an instance of the List type called list and define
that it will store String types. We then use the add(index:) method twice to store two
items in the list instance. Finally, we use the getItemAtIndex() method to retrieve the
item at index number 1, which will display Optional(World) to the console.

At the end of this chapter we will look at the List type again and show how to design and
develop a List type in a protocol oriented way with the Copy-on-write feature.

We can also define our generic types with multiple placeholder types, similar to how we
use multiple placeholders in our generic methods. To use multiple placeholder types, we
would separate them with commas. The following example shows how to define multiple
placeholder types:

class MyClass<T,E>{
}

We then create an instance of the MyClass type that uses instances of the String and
Integer types, like this:

var mc = MyClass<String, Int>()

Type constraints can also be used with generic types. Once again, using a type constraint for
a generic type is exactly the same as using one with a generic function. The following code
shows how to use a type constraint to ensure that the generic type conforms to the
comparable protocol:

struct MyStruct<T: Comparable>{}

So far, in this chapter, we have seen how to use placeholder types with functions and types;
however, this book is about protocol-oriented programming. When we declare generic
types in a protocol, they are known as associated types.

Generics

[82]

Associated types
An associated type declares a placeholder name that can be used instead of a type within a
protocol. The actual type to be used is not specified until the protocol itself is adopted.
While creating generic functions and types, we used a very similar syntax, as we have seen
throughout this chapter. Defining associated types for a protocol, however, is a little
different. We specify an associated type using the associatedtype keyword.

Let's see how to use associated types when we define a protocol. For this example, we will
create a simple protocol named MyProtocol:

protocol MyProtocol {
 associatedtype E
 var items: [E] {get set}
 mutating func add(item: E)
}

In this protocol, we declare an associated type named E. We then use that associated type as
the type for the items array and also the parameter type for the add(item:) method.

We can now create types that conform to this protocol by providing either a concrete type
or a generic type for the associated type. Let's see how we could create a type that conforms
to the MyProtocol protocol using a concrete type:

struct MyIntType: MyProtocol {
 var items: [Int] = []
 mutating func add(item: Int) {
 items.append(item)
 }
}

In this code, we create a type named MyIntType that conforms to the MyProtocol
protocol. We then implement the items array and the add(item:) method using the
Integer type. Swift recognizes that we are using the integer type in place of the associated
type. We do need to make sure we use the same type wherever the associated type was
used. Now let's see how we would use a generic type when creating a type that conforms to
the MyProtocol protocol:

struct MyGenericType<T>: MyProtocol {
 var items: [T] = []
 mutating func add(item: T) {
 items.append(item)
 }
}

Generics

[83]

This code should look very familiar, as it is very similar to how we created a generic type.
The T placeholder is used wherever the associated type is used in the protocol and when we
create an instance of the MyGenericType type we will need to define what type to use.

Let's look at generic subscripts which were added to Swift with version 4.

Generic subscripts
Prior to Swift version 4, we could use generics with subscripts only if the generic was
defined in the containing type, however we were unable to define a new generic type
within the subscript definition. For example, if we had a List type we could use the generic
type defined by the List type within the subscript as shown in this example:

struct List<T> {
 /* other implementation code here */

 subscript(index: Int) -> T? {
 return getItemAtIndex(index: index)
 }
}

With Swift version 4 and later, we are able to define generic types within the subscript
definition itself. To see how we would do this, let's go ahead and create another very basic
generic List type. The following code shows how to do this:

struct List<T> {
 private var items = [T]()
 public mutating func add(item: T) {
 items.append(item)
 }
 public func getItemAtIndex(index: Int) -> T? {
 if items.count > index {
 return items[index]
 } else {
 return nil
 }
 }
 public subscript(index: Int) -> T? {
 return getItemAtIndex(index: index)
 }
}

Generics

[84]

This List type gives us the very basic functionality of adding an item to the end of the list
and retrieving an item at a specific index. We would obviously need additional
functionality to make a functional List type but for our example this is enough to show
how a generic subscript works.

Now, let's say that we have a requirement to retrieve a range of elements from the list using
a subscript. With generic subscripts we can do this very easily with the following code:

public subscript<E: Sequence>(indices: E) -> [T] where E.Iterator.Element
== Int {
 var result = [T]()
 for index in indices {
 result.append(items[index])
 }
 return result
}

This subscript will take a sequence of indices and will return an array containing the values
at each index. We define a generic type (E) that must conform to the Sequence protocol and
then use that type as the parameter for the subscript. With the where clause we are
requiring that the elements in the iterator, within the E type, must be of the Integer type.

We can now use the subscript as shown in the following code:

var myList = List<Int>()
myList.add(item: 1)
myList.add(item: 2)
myList.add(item: 3)
myList.add(item: 4)
myList.add(item: 5)

var values = myList[2...4]

In this code, we create an instance of the List type and specify that it will contain instances
of the Integer type. We then add five values to the list. In the last line, we use the
subscript that we just added to the List type to retrieve an array that contains the values at
indices 2, 3 and 4. The values array will contain the last three elements of the list instance.

In Chapter 2, Our Type Choices we briefly mentioned COW. At that time, we mentioned that
Apple provided the COW feature for some of the types in the Swift standard library. Let's
look at this feature again and see how we can add it to our custom types.

Generics

[85]

Copy-on-write
Normally, when we pass an instance of a value type, such as a structure, we create a new
copy of the instance. This means that if we have a large data structure that contains 50,000
elements, every time we pass that instance, we would have to copy all 50,000 elements. This
can have a detrimental impact on the performance of our applications especially, if we pass
that instance to numerous functions.

To solve this issue, Apple has implemented the COW feature for all the data structures
(Array, Dictionary, and Set) within the Swift standard library. With COW, Swift does
not make a second copy of the data structure until a change is made to that data structure.
Therefore, if we pass an array to 50,000 elements to another part of our code, and that code
does not actually make any changes to the array, we will avoid the runtime overhead of
copying all the elements.

This is a very nice feature and can greatly increase the performance of our applications,
however, our custom value types do not automatically get this feature by default. In this
section, we will see how we can use reference and value types together to implement the
Copy-on-write feature for our custom value types. To do this, we will create a very basic
queue type.

We will start off by creating a backend storage type called BackendQueue and will
implement it as a reference type. The following code gives our BackendQueue type the
basic functionality for a queue:

fileprivate class BackendQueue<T> {
 private var items = [T]()

 public func addItem(item: T) {
 items.append(item)
 }

 public func getItem() -> T? {
 if items.count > 0 {
 return items.remove(at: 0)
 } else {
 return nil
 }
 }
 public func count() -> Int {
 return items.count
 }
}

Generics

[86]

The BackendQueue type is a generic type that uses an array to store the data. This type
contains three methods to add items to the queue, retrieve an item from the queue, and to
return the number of items in the queue. We use the fileprivate access level to prevent
the use of this type outside of the defining source file because it should only be used to
implement the COW feature for our main queue type.

We now need to add a couple of extra items to the BackendQueue type so we can use it to
implement the COW feature for the main queue type. The first thing that we will add is a
public default initializer and a private initializer that can be used to create a new instance of
the BackendQueue type. The following code shows the two initializers:

public init() {}
private init(_ items: [T]) {
 self.items = items
}

The public initializer will be used to create an instance of the BackendQueue with any items
in the queue. The private initializer will be used internally to create a copy of itself. Now we
will need to create a method that will use the private initializer to create a copy of itself
when needed:

public func copy() -> BackendQueue<T> {
 return BackendQueue<T>(items)
}

It would be very easy to make the private initializer public and then let the main queue type
call that initializer to create the copy, however it is good practice to keep the logic needed to
create the new copy within the type itself. The reason that you should do this is if you need
to make changes to the type that may affect how the type is copied, the logic that you need
to change is embedded within the type itself and easy to find. Additionally, if you use the
BackendQueue as the backend storage for multiple types, you will only need to make the
changes to the copy logic in one place.

Here is the final code for the BackendQueue type:

fileprivate class BackendQueue<T> {
 private var items = [T]()

 public init() {}
 private init(_ items: [T]) {
 self.items = items
 }

 public func addItem(item: T) {
 items.append(item)

Generics

[87]

 }

 public func getItem() -> T? {
 if items.count > 0 {
 return items.remove(at: 0)
 } else {
 return nil
 }
 }
 public func count() -> Int {
 return items.count
 }
 public func copy() -> BackendQueue<T> {
 return BackendQueue<T>(items)
 }
}

Now, let's create our Queue type that will use the BackendQueue type to implement the
COW feature. The following code adds the basic queue functionality to our Queue type:

struct Queue {
 private var internalQueue = BackendQueue<Int>()

 public mutating func addItem(item: Int) {
 internalQueue.addItem(item: item)
 }
 public mutating func getItem() -> Int? {
 return internalQueue.getItem()
 }
 public func count() -> Int {
 return internalQueue.count()
 }
}

The Queue type is implemented as a value type. This type has one private property of the
BackendQueue type which will be used to store the data. This type contains three methods
to add items to the queue, retrieve an item from the queue, and to return the number of
items in the queue. Now let's see how we would add the COW feature to the Queue type.

Swift has a global function named isKnownUniquelyReferenced(). This function will
return true if there is only one reference to an instance of a reference type or false if there
is more than one reference.

Generics

[88]

We will begin by adding a function to check if there is a unique reference to the
internalQueue instance. This will be a private function named
checkUniquelyReferencedInternalQueue. The following code shows how we would
implement this method:

mutating private func checkUniquelyReferencedInternalQueue() {
 if !isKnownUniquelyReferenced(&internalQueue) {
 internalQueue = internalQueue.copy()
 print("Making a copy of internalQueue")
 } else {
 print("Not making a copy of internalQueue")
 }
}

In this method, we check to see if there are multiple references to the internalQueue
instances. If there are multiple references then we know that we have multiple copies of the
Queue instance, therefore we create a new copy.

The Queue type itself is a value type, therefore when we pass an instance of the Queue type
within our code, we are passing a new copy of that instance. The BackendQueue type,
which the Queue type is using, is a reference type, therefore when a copy is made of a
Queue instance, that new copy receives a reference to the original Queue's BackendQueue
instance and not a new copy. This means that each instance of the Queue type has a
reference to the same internalQueue instance. As an example, in the following code both
queue1 and queue2 have references to the same internalQueue instance:

var queue1 = Queue()
var queue2 = queue1

Within the Queue type, we know that both the addItem() and getItem() methods change
the internalQueue instance, therefore before we make these changes we will want to call
the checkUniquelyReferencedInternalQueue() method to create a new copy of the
internalQueue instance. Lets update these methods to the following code:

public mutating func addItem(item: Int) {
 checkUniquelyReferencedInternalQueue()
 internalQueue.addItem(item: item)
}
public mutating func getItem() -> Int? {
 checkUniquelyReferencedInternalQueue();
 return internalQueue.getItem()
}

Generics

[89]

With this code, when either the addItem() or getItem() methods are called, which will
change the data within the internalQueue instance, we use the
checkUniquelyReferencedInternalQueue() method to create a new instance of the
data structure if needed.

Let's add one additional method to the Queue type which will let us see if there is a unique
reference to the internalQueue instance or not. Here is the code for this method:

mutating public func uniquelyReferenced() -> Bool{
 return isKnownUniquelyReferenced(&internalQueue)
}

Here is the full code listing for the Queue type:

struct Queue {
 private var internalQueue = BackendQueue<Int>()

 mutating private func checkUniquelyReferencedInternalQueue() {
 if !isKnownUniquelyReferenced(&internalQueue) {
 print("Making a copy of internalQueue")
 internalQueue = internalQueue.copy()
 } else {
 print("Not making a copy of internalQueue")
 }
 }

 public mutating func addItem(item: Int) {
 checkUniquelyReferencedInternalQueue()
 internalQueue.addItem(item: item)
 }
 public mutating func getItem() -> Int? {
 checkUniquelyReferencedInternalQueue();
 return internalQueue.getItem()
 }
 public func count() -> Int {
 return internalQueue.count()
 }
 mutating public func uniquelyReferenced() -> Bool{
 return isKnownUniquelyReferenced(&internalQueue)
 }
}

Generics

[90]

Now let's see how the COW functionality works with the Queue type. We will start off by
creating a new instance of the Queue type, add an item to the queue, and then see if we
have a unique reference to the internalQueue instance. The following code shows how to
do this:

var queue3 = Queue()
queue3.addItem(item: 1)

print(queue3.uniquelyReferenced())

When we add the item to the queue, the following messages will be printed to the console.
This tells us that within the checkUniquelyReferencedInternalQueue() method it was
determined that there was only one reference to internalQueue instance:

Not making a copy of internalQueue

We can verify this by printing the results of the uniquelyReference() method to the
console. Now let's make a copy of the queue3 instance by passing it to a new variable like
this:

var queue4 = queue3

Now let's see if we have a unique reference to the internalQueue instances of either the
queue3 or queue4 instance. The following code will do this:

print(queue3.uniquelyReferenced())
print(queue4.uniquelyReferenced())

This code will print two false messages to the console letting us know that neither
instance has a unique reference to their internalQueue instances. Now let's add an item to
either one of the queues. The following code will add another item to the queue3 instance:

queue3.addItem(item: 2)

When we add the item to the queue, we will see the following message printed to the
console:

Making a copy of internalQueue

Generics

[91]

This message tells us that when we add the new item to the queue, a new copy of the
internalQueue instance was created. To verify this, we can print the results of the
uniquelyReferenced() methods to the console again. If you do check this, you will see
two true messages printed to the console this time rather than two false messages. We
can now add additional items to the queues and we will see that we are not creating new
instances of the internalQueue instance because each instance of the Queue type now has
its own copy.

If you are planning on creating your own data structure that may contain
a large number of items, it is recommended that you implement it with the
Copy-on-Write feature as shown here.

Let's see how we would use generics in a protocol-oriented design.

Generics in a protocol-oriented design
Now that we have seen how to use generics, let's see how we can use them in a protocol-
oriented design. In a previous example in this chapter, we created a generic List type,
however, we can greatly improve on this design by using what we learned throughout this
chapter. We will include only a small subset of the actual requirements for a List type so
we can focus on the design rather than all the requirements.

With a protocol-oriented design, we always start with the protocol. The following code
shows the List protocol:

protocol List {
 associatedtype T
 subscript<E: Sequence>(indices: E) -> [T]
 where E.Iterator.Element == Int { get }
 mutating func add(_ item: T)
 func length() -> Int
 func get(at index: Int) -> T?
 mutating func delete(at index: Int)
}

Generics

[92]

We start the List protocol by defining the associated type T. This associated type will be
the type of data stored in the list. We use the T type as the parameter for the add(item:)
method. We also use the T type as the return type for the get(index:) method and the
subscript. The add(item:) method will be used to add an item to the list. The
get(index:) method and the subscript will be used to retrieve the item(s) at the specified
index of the list. The length() method will return the number of items in the list and the
delete(index:) method will remove an item from the list.

From previous examples in this book, we may think that we would create a protocol
extension for the List protocol; however, we want to keep our List protocol as generic as
possible so we can use it for any type of list. We will see how this works as we go through
the examples in this section.

Since the List types will be data storage structures, let's create a backend storage type that
we can use to implement the COW feature for any List type that is implemented using a
value type. Using the knowledge we learned from the COW section of this chapter, we
could implement this type like this:

private class BackendList<T> {
 private var items: [T] = []

 public init() {}
 private init(_ items: [T]) {
 self.items = items
 }

 public func add(_ item: T) {
 items.append(item)
 }
 public func length() -> Int {
 return items.count
 }
 public func get(at index: Int) -> T? {
 return items[index]
 }
 public func delete(at index: Int) {
 items.remove(at: index)
 }
 public func copy() -> BackendList<T> {
 return BackendList<T>(items)
 }
}

Generics

[93]

The BackendList type implements all the functionality needed to add, get, and delete
items from the array, which is storing the items for our data structure. We also have
methods to get the length of the array and to make a new copy of the BackendList. All this
code should look very familiar at this point.

Now let's create an ArrayList type that will use the BackendList as the storage
mechanism. This code shows how we create a type that conforms to the List protocol and
implements the COW feature:

struct ArrayList<T>: List {
 private var items = BackendList<T>()

 public subscript<E: Sequence>(indices: E) -> [T]
 where E.Iterator.Element == Int {
 var result = [T]()
 for index in indices {
 if let item = items.get(at: index) {
 result.append(item)
 }
 }
 return result
 }

 public mutating func add(_ item: T) {
 checkUniquelyReferencedInternalQueue()
 items.add(item)
 }
 public func length() -> Int {
 return items.length()
 }
 public func get(at index: Int) -> T? {
 return items.get(at: index)
 }
 public mutating func delete(at index: Int) {
 checkUniquelyReferencedInternalQueue()
 items.delete(at: index)
 }

 mutating private func checkUniquelyReferencedInternalQueue() {
 if !isKnownUniquelyReferenced(&items) {
 print("Making a copy of internalQueue")
 items = items.copy()
 } else {
 print("Not making a copy of internalQueue")
 }
 }
}

Generics

[94]

We can create an instance of the ArrayList type and add items, as shown in the following
code:

var arrayList = ArrayList<Int>()
arrayList.add(1)
arrayList.add(2)
arrayList.add(3)

This code will create an instance of the ArrayList type that contains integers and adds
three items to it.

Let's look at our design now. The following images show how we designed this data
structure:

This diagram shows that the ArrayList type conforms to the List protocol and uses the
BackEndList type. Now we can very easily add other types that conform to the List
protocol and if they are implemented as a value type, we can also use the same
BackEndList type to implement the COW feature. The following diagram illustrates this:

Generics

[95]

Now that we have seen how to design a basic data structure in a protocol oriented way with
generics, let's look at how generics are used in the Swift standard library.

Generics in the Swift standard library
Generics are used extensively within the Swift standard library and they are what allows
the Swift collection types to store instances of any type. To see this, let's go to http:/ /
swiftdoc.org/ and look at the Array type. If you click on the Array link off the main page,
you will see the documentation on the Array type. The documentation will look like this:

At the top of the page, we see that the Array type is defined as struct Array<Element>.
This tells us that the Array type is implemented as a generic value type using a structure. If
we now look at the Set, we will see that it is also implemented as a generic structure.

http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/
http://swiftdoc.org/

Generics

[96]

Summary
Generics in Swift are extremely powerful. With protocols, we are able to use a common
interface to interact with various types that conform to the protocol. Also, when we use
generics, we are able to create generic types that can accept instances of any type. When we
combine protocols and generics, as we saw with the List types in this chapter, we are able
to create very powerful libraries that do not only meet our present needs, but also our
future needs.

Apple has stated that Generics are one of the most powerful features of Swift and that much
of the Swift standard library is built using generics. You should keep this in mind as you are
writing your applications.

Since protocol-oriented programming was introduced, there has been a lot of comparison
between it and object-oriented programming. In order to do a proper comparison between
the two, let's briefly take a look at object-oriented design with Swift.

5
Object-Oriented Programming

I was first introduced to object-oriented programming in college where I had a brief
introduction to C++. At the time, the C++ programming language was still relatively new. In
fact, the first edition of the language was only released three years prior to my introduction
to it. The object-oriented programming paradigm was a radical departure from the
procedural programming paradigm that I learned in the past and at the time seemed quite
overwhelming. Even though I was introduced to object-oriented programming with C++, I
really did not do any serious development with it until I learned Java much later.

In this chapter, you will learn the following:

How Swift can be used as an object-oriented programming language
How we can develop an API in an object-oriented way
What are the benefits of an object-oriented design
What are the drawbacks of object-oriented programming

While this book is about protocol-oriented programming, we really need to discuss how
Swift can be used as an object-oriented programming language before looking at how it can
be used as a protocol-oriented language. Having a good understanding of object-oriented
programming will help us understand protocol-oriented programming and give us some
insight into the issues protocol-oriented programming is designed to solve.

Object-Oriented Programming

[98]

What is object-oriented programming?
Object-oriented programming is a design philosophy. Writing applications with an object-
oriented programming language is fundamentally different from writing applications with
older procedural languages, such as C and Pascal. Procedural languages use a set of
instructions to tell the computer what to do step-by-step by relying on procedures (or
routines). Object-oriented programming, however, is all about the object. This may seem
like a pretty obvious statement given the name, but essentially, when we think about object-
oriented programming, we need to think about the object.

The object is a data structure that contains information about the attributes of the object, in
the form of properties, and the actions performed by or to the object, in the form of
methods. Objects can be considered things and in the English language they would
normally be considered nouns. These objects can be real-world or virtual objects. If you look
around you will see many real-world objects and, virtually all of them can be modeled in an
object-oriented way with attributes and actions.

As I am writing this chapter, I look outside and see numerous trees, grass, my dog, and the
fence in our backyard. All of these items can be modeled as objects with both properties and
actions.

I am also thinking about one of my all-time favorite energy drinks. That energy drink is Jolt
Cola. I'm not sure how many people remember Jolt, but I would not have made it through
college without it. A can of Jolt can be modeled as an object with attributes (volume,
quantity of caffeine, temperature, and size) and actions (drinking and temperature change).

We could keep the cans of Jolt in a cooler to keep them cold. This cooler could also be
modeled as an object because it has attributes (temperature, cans of Jolt, and maximum
number of cans) and actions (adding and removing cans).

Defining the properties and actions of an object is good, but we also need to understand
how the object interacts. As an example, when we place a can of Jolt Cola in a cooler that
has ice in it, the can will start to get colder, however, if there isn't any ice in the cooler then
the can stays at room temperature. Understanding these interactions is important to
designing your objects correctly.

Within a computer application, we cannot create an object without a blueprint that tells the
application what properties and actions to expect from the object. In most object-oriented
languages, this blueprint comes in the form of a class. A class is a construct that allows us to
encapsulate the properties and actions of an object into a single type that models the entity
we are trying to represent in our code.

Object-Oriented Programming

[99]

We use initializers within our classes to create instances of the class. We usually use these
initializers to set the initial values of the properties for the object, or to perform any other
initialization that our class needs. Once we create the instance of a class, we can then use it
within our code.

It is important to understand that the class is the backbone of object-oriented programming.
Without the class and the object that is created from the class, we would not have object-
oriented programming. It is equally important to understand that the class is a reference
type and, unless defined otherwise, can have super and sub classes.

All of this explanation about object-oriented programming is fine, but nothing demonstrates
the concepts better than the actual code. Before we can begin coding, we will need to define
some requirements. In this chapter, we will show how we could design vehicle types for a
video game in an object-oriented way. In the next chapter, we will then show how we can
design the same classes in a protocol-oriented way. Let's look at the requirements for the
vehicle types.

Requirements for the sample code
When we develop applications, we usually have a set of requirements that we need to work
towards. Our sample project in this chapter and the next are no different. The following is a
list of requirements for the vehicle types that we will be creating:

We will have three categories of vehicle: sea, land, and air. A vehicle can be a
member of multiple categories.
Vehicles may move or attack when they are on a tile that matches any of the
categories they are in.
Vehicles will be unable to move to or attack on a tile that does not match any of
the categories they are in.
When a vehicle's hit points reach zero, the vehicle will be considered
incapacitated. We will need to keep all active vehicles in a single array that we
can loop through.

For our design in this chapter, we will be demonstrating the design with only a few
vehicles, but we know that the number of vehicle types will grow as we develop the game.
In this chapter, we will not be implementing a lot of the logic for the vehicles because our
focus is the design and not the code that makes the vehicles move and attack.

Let's begin designing our vehicles in an object-oriented way.

Object-Oriented Programming

[100]

Swift as an object-oriented programming
language
Swift provides full support for developing applications in an object-oriented way. Prior to
Swift 2, I considered Swift to be primarily an object-oriented language in the same way that
I considered Java and C# to be object-oriented languages. In this section, we will be
designing the vehicle types in an object-oriented way and looking at the advantages and the
disadvantages of this design.

Before we look at the code, let's create a very basic class diagram that shows how we would
design the vehicle class hierarchy for the object-oriented design. In an object-oriented
design, we use class hierarchies to group the similarly related classes. Since Swift is a single
inheritance language, a class can only have one super class that it inherits from. The root
class in a class hierarchy is the only class without a super class.

I usually start off by doing a very basic diagram that simply shows the classes themselves
without much detail. This helps me picture the class hierarchy in my mind. The following
diagram shows the class hierarchy for the object-oriented design:

This diagram shows that we have one superclass named Vehicle and five subclasses
named Tank, Amphibious, Submarine, Jet, and Transformer. With a class hierarchy,
each of the subclasses will inherit all the properties and methods from the superclass,
therefore, any common code and properties can be implemented within the Vehicle
superclass and all the subclasses will then inherit it.

Object-Oriented Programming

[101]

We may think that, with the three categories (land, air, and sea) in our requirements, we
would want to create a larger class hierarchy where the middle layer would contain
separate superclasses for land, air, and sea vehicles. This would allow us to separate the
code for each category into its own superclass, however, that is not possible with the
requirements. The reason this is not possible is any vehicle type may be a member of
multiple categories (land, air, and sea) and with a single inheritance language such as Swift,
each class can have one and only one, superclass. This means, as an example, that if we
created separate land and sea superclasses then the Amphibious class could be a subclass of
either the land or the sea type, but not both. The following figure illustrates this:

Since Swift is a single inheritance language, and we can have only one superclass for all the
vehicle classes, that superclass will need to contain the code required for each of the three
categories. Having a single superclass such as this is one of the drawbacks of object-oriented
design because the superclass can become very bloated.

We will start forming our object-oriented design by creating a TerrainType enumeration
that will be used to define the different vehicle, attack, and movement types. The
TerrainType enumeration is defined like this:

enum TerrainType{
 case land
 case sea
 case air
}

Object-Oriented Programming

[102]

Now let's look at how we would define the Vehicle superclass and the properties within
this class:

class Vehicle {
 fileprivate var vehicleTypes = [TerrainType]()
 fileprivate var vehicleAttackTypes = [TerrainType]()
 fileprivate var vehicleMovementTypes = [TerrainType]()
 fileprivate var landAttackRange = -1
 fileprivate var seaAttackRange = -1
 fileprivate var airAttackRange = -1
 fileprivate var hitPoints = 0
}

We start the Vehicle type off by defining seven properties. The first three properties are
arrays of the TerrainType type. These three arrays will keep track of the vehicle type
(vehicleTypes array), the types of terrain the vehicle can attack from
(vehicleAttackTypes array), and the types of terrain the vehicle can move to
(vehicleMovementTypes array).

The next three properties (landAttackRange, seaAttackRange, and airAttackRange)
will contain the attack range of the vehicle for each of the different terrain types. If the
attack range is less than zero then we assume that we cannot do that type of attack. Finally,
the last property will keep track of the hit points of the vehicle.

The preference is for each of these properties, except for the hitPoints property, to be
constants; however, a subclass cannot set/change the value of a constant defined in a
superclass. This means that we will need to rely on Swift's access control functionality to
control the access to these properties.

We defined the properties as fileprivate variables because we need to set them apart
from the subclasses, however, we do not want external entities to change them. This access
control was introduced in Swift 3, and allows access to the properties and methods from
any code within the same source file that the item is defined in. In order for this to work, the
subclass needs to be defined in the same physical file as the superclass, which is definitely
not the ideal solution because this file could get very large. However, in this object-oriented
design, it is the best option that we have to prevent these properties from being changed by
instances of other types. If we find that we have more than a handful of vehicle types we
would probably change the access control to internal so we could put the implementation of
the vehicles in separate files.

Object-Oriented Programming

[103]

Since the properties are marked as fileprivate, we will need to create some getter
methods that will retrieve the values of the properties. We will also create methods to see
what types of terrain the vehicle can attack from and move to. Let's look at these methods:

func isVehicleType(type: TerrainType) -> Bool {
 return vehicleTypes.contains(type)
}
func canVehicleAttack(type: TerrainType) -> Bool {
 return vehicleAttackTypes.contains(type)
}
func canVehicleMove(type: TerrainType) -> Bool {
 return vehicleMovementTypes.contains(type)
}
func doLandAttack() {}
func doLandMovement() {}

func doSeaAttack() {}
func doSeaMovement() {}

func doAirAttack() {}
func doAirMovement() {}

func takeHit(amount: Int) { hitPoints -= amount }
func hitPointsRemaining() ->Int { return hitPoints }
func isAlive() -> Bool { return hitPoints > 0 ? true : false }

The isVehicleType method accepts one parameter of the TerrainType type and it will
return true if the vehicleTypes array contains that terrain type. This will allow the
external code to see if the vehicle is of a certain type. The next two methods also accept a
parameter of the TerrainType type and will return true if the vehicleAttackTypes or
vehicleMovementTypes arrays contain that terrain type. These two methods would be
used to see whether a vehicle can move to or attack from a certain type of terrain.

The next six methods define the attacks to or movement from different terrains for the
vehicle. The next two methods will be used to deduct hit points when the vehicle takes a hit
and returns the remaining hit points. The final method will be used to determine if the
vehicle is still alive or not. There are a couple issues we can see right away with this design.
Let's take a quick look at these before we move on.

Object-Oriented Programming

[104]

One big issue to this design, as we noted earlier, is if we want to use the fileprivate
access control that will prevent direct access to the properties, then all the subclasses need
to be in the same physical file as the Vehicle superclass. Given how large the vehicle
classes can be, we probably don't want them all in the same source file. To avoid this, we
could set the property's access controls to internal, but that would not prevent the
properties from being changed by instances of other types. This is a major drawback of
object-oriented design because we do not want external types to have direct access to the
properties.

Another issue of the object-oriented design is that we need to provide methods that will
allow the vehicle to attack from and move to each of the different terrain types, even though
most vehicles will not be able to attack from and move to all the different terrains. Even
though there is no code in the method implementations, external code will still be able to
call any of the attack and movement methods. For example, even though our Submarine
type is a sea-only type, external code will be able to call the movement and attack methods
for land and air types.

Superclasses that are bloated, such as this one, are a major issue with single-inheritance,
object-oriented programming languages such as Swift. With bloated superclasses such as
our Vehicle type, it is very easy to make a mistake and give a type functionality it should
not have or deny it functionality it should have. For example, it would be very easy to set
the airAttackRange property for the Submarine type giving it the ability to attack from
the air, which a submarine obviously cannot do.

In this example, we are only defining a very small subset of the
functionality that would be needed for our vehicle types in a video game.
Imagine how big the Vehicle superclass could be if all the functionality
was being implemented.

Let's look at how we would subclass the Vehicle class by creating the Tank, Amphibious,
and Transformer classes. We will start with the Tank class:

class Tank: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land]

 vehicleAttackTypes = [.land]
 vehicleMovementTypes = [.land]
 landAttackRange = 5
 hitPoints = 68
 }

 override func doLandAttack() {

Object-Oriented Programming

[105]

 print("Tank Attack")
 }
 override func doLandMovement() {
 print("Tank Move")
 }
}

The Tank class is a subclass of the Vehicle class, and we begin this class by overriding the
default initializer. In the initializer, we set several inherited properties. Notice that we add
the land value to the vehicleTypes, vehicleAttackTypes, and
vehicleMovementTypes arrays. This specifies that the Tank type is a land vehicle and can
attack from and move to land tiles.

Using arrays to keep track of the type of vehicle the class is and the types of terrain the
vehicle can move to and attack from is another issue of this object-oriented design. Even for
the most experienced developer, it is very easy to enter the wrong value into the arrays,
causing unexpected behavior.

In the Tank class, we also override the doLandAttack() and doLandMovement() methods
from the Vehicle superclass since the Tank class is a land vehicle. We do not override the
other attack and movement methods from the Vehicle superclass because the tank should
not be moving to or attacking from the sea or air terrains. Even though we do not override
these methods, they are still a part of the Tank class because they are inherited from the
Vehicle superclass, and there isn't any way to prevent external code from calling these
methods.

Now let's look at the Amphibious and Transformer classes. These classes are very similar
to the Tank class, except they can move to and attack from multiple terrain types. We will
look at the Amphibious class first. This class can move to and attack from both land and sea
terrains:

class Amphibious: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land, .sea]
 vehicleAttackTypes = [.land, .sea]
 vehicleMovementTypes = [.land, .sea]

 landAttackRange = 1
 seaAttackRange = 1

 hitPoints = 25
 }
 override func doLandAttack() {
 print("Amphibious Land Attack")

Object-Oriented Programming

[106]

 }
 override func doLandMovement() {
 print("Amphibious Land Move")
 }
 override func doSeaAttack() {
 print("Amphibious Sea Attack")
 }
 override func doSeaMovement() {
 print("Amphibious Sea Move")
 }
}

The Amphibious class is very similar to the Tank class that we just saw. The difference
between the two types is the Tank type was defined as a land-only unit while the
amphibious type is defined as both a land and a sea unit. Since it is a land and sea unit, we
override the land's attack and movement methods as well as the sea's attack and movement
methods. We also add both the sea and land value to the vehicleTypes,
vehicleAttackTypes, and vehicleMovementTypes arrays.

Now let's see the Transformer class. This type will have the ability to move and attack
from all three terrain types:

class Transformer: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land, .sea, .air]
 vehicleAttackTypes = [.land, .sea, .air]
 vehicleMovementTypes = [.land, .sea, .air]

 landAttackRange = 7
 seaAttackRange = 10
 airAttackRange = 12

 hitPoints = 75
 }

 override func doLandAttack() {
 print("Transformer Land Attack")
 }
 override func doLandMovement() {
 print("Transformer Land Move")
 }

 override func doSeaAttack() {
 print("Transformer Sea Attack")
 }
 override func doSeaMovement() {

Object-Oriented Programming

[107]

 print("Transformer Sea Move")
 }

 override func doAirAttack() {
 print("Transformer Air Attack")
 }
 override func doAirMovement() {
 print("Transformer Air Move")
 }
}

For the Transformer type we override all three movement and attack methods from the
Vehicle superclass since the Transformer has the ability to move and attack from all
three terrain types. We also added all three terrain types to the vehicleTypes,
vehicleAttackTypes, and vehicleMovementTypes arrays.

Now that we have created the vehicle types, let's look at how they would be used. One of
the original requirements was to be able to keep instances of all the vehicle types in a single
array. This will give us the ability to loop through all active vehicles and perform any
actions needed. For this we will use polymorphism.

Polymorphism comes from the Greek words poly (for many) and morph (for forms). In
computer science, we use polymorphism when we want to use a single interface to
represent multiple types within our code. Polymorphism gives us the ability to interact with
multiple types in a uniform manner. With object-oriented programming languages, we can
achieve polymorphism through subclassing, where we interact with the various subclasses
using the interface provided by the superclass.

Let's see how we would use polymorphism to keep all instances of the various vehicle types
in a single array and interact with them. Since all the vehicle types are subclasses of the
Vehicle superclass, we can create an array of vehicle types, and store instances of any type
that is a subclass of the Vehicle superclass, as shown here:

var vehicles = [Vehicle]()

var vh1 = Amphibious()
var vh2 = Amphibious()
var vh3 = Tank()
var vh4 = Transformer()

vehicles.append(vh1)
vehicles.append(vh2)
vehicles.append(vh3)
vehicles.append(vh4)

Object-Oriented Programming

[108]

Now we can loop through and interact with each instance with the interface presented by
the Vehicle type. The following code illustrates this:

for (index, vehicle) in vehicles.enumerated() {
 if vehicle.isVehicleType(type: .air) {
 print("Vehicle at \(index) is Air")
 if vehicle.canVehicleAttack(type: .air) {
 vehicle.doAirAttack()
 }

 if vehicle.canVehicleMove(type: .air) {
 vehicle.doAirMovement()
 }
 }

 if vehicle.isVehicleType(type: .land){
 print("Vehicle at \(index) is Land")

 if vehicle.canVehicleAttack(type: .land) {
 vehicle.doLandAttack()
 }
 if vehicle.canVehicleMove(type: .land) {
 vehicle.doLandMovement()
 }
 }
 if vehicle.isVehicleType(type: .sea) {
 print("Vehicle at \(index) is Sea")
 if vehicle.canVehicleAttack(type: .sea) {
 vehicle.doSeaAttack()
 }
 if vehicle.canVehicleMove(type: .sea) {
 vehicle.doSeaMovement()
 }
 }
}

In this code, we loop though the vehicles array and use the isVehicleType(type:)
method to determine if the vehicle is of a certain type, and then call the appropriate
movement and attack methods. Note that we do not use an if-else or a switch statement
here because any vehicle may be a member of multiple types, and we want to recheck the
type, even if the vehicle matched a previous type.

Object-Oriented Programming

[109]

If we wanted to filter the results to only return instances of the Vehicle types that were air
units we could use the where clause with the for loop. The following code illustrates this:

for (index, vehicle)in vehicles.enumerated() where
vehicle.isVehicleType(type: .air) {
 if vehicle.isVehicleType(type: .air) {
 print("**Vehicle at \(index) is Air")
 if vehicle.canVehicleAttack(type: .air) {
 vehicle.doAirAttack()
 }

 if vehicle.canVehicleMove(type: .air) {
 vehicle.doAirMovement()
 }
 }
}

This code would only perform the attack and movement methods if the
isVehicleType(type:) method returned true for the air type.

This design works well enough, but as we will see in Chapter 6, Protocol-Oriented Design,
with Swift, we are able to resolve a lot of the issues presented here with a protocol-oriented
design. Let's review the drawbacks of object-oriented design so we can see how protocol-
oriented programming addresses them in the next chapter.

Issues with the object-oriented design
Two of the issues that we saw with the object-oriented design were directly related to each
other, and are the result of Swift being a single-inheritance language. Remember a single-
inheritance language is a language that limits a class to having not more than one super-
class.

An object-oriented design with a single-inheritance language, such as Swift, can lead to
bloated superclasses because we may need to include functionality that is needed by only a
few of the subclasses. This leads to the second issue related to Swift being a single-
inheritance language, which is the inheritance of functionality that a type does not need.

Object-Oriented Programming

[110]

In our design, we had to include the functionality for all three terrain types because the
vehicle types may be able to move or attack in any of the terrain types. Having this extra
functionality may lead to errors in our code if we are not careful. It is really easy to
accidently create a class like this:

class Infantry: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land]
 vehicleAttackTypes = [.land]
 vehicleMovementTypes = [.sea]

 landAttackRange = 1
 seaAttackRange = 1

 hitPoints = 25
 }
 override func doLandAttack() {
 print("Amphibious Land Attack")
 }
 override func doLandMovement() {
 print("Amphibious Land Move")
 }
}

Looking at this code, we can easily see that the vehicleMovementTypes array contains the
sea type rather than the land type, but it is also easy to make mistakes like this.

Another issue in the object-oriented design is we could not create constants in our
superclass that can be set by the subclasses. In our design, there were several properties that
we would like to set in the initializer of our subclasses and then never change. It would be
ideal if we could make these constants, however, a constant defined in one class cannot be
set in a subclass of that type.

The last issue that we saw was the inability to set a property or method to be accessible only
by subclasses of that type. To get around this, we used the fileprivateaccess control to
say that only code defined in the same source file could access the properties; however, this
workaround is not an ideal solution because we may not want to put all the subclasses in
the same source file as the superclass. If we did put the subclasses in a separate file we
would have to set the access controls to internal, however, this would not prevent other
types within the project from modifying them.

Object-Oriented Programming

[111]

Summary
In this chapter, we saw how we could design vehicles for a video game in an object-oriented
way. We also saw how we could use polymorphism with a class hierarchy. There were
several issues with this object-oriented design and most of these drawbacks are directly
related to Swift being a single-inheritance language.

In the next chapter, we will look at how we can design the same vehicle types in a protocol-
oriented way to see how it addresses the issues we saw with the object-oriented design.

6
Protocol-Oriented Programming

This book is about protocol-oriented programming. When Apple announced Swift 2 at the
World Wide Developers Conference (WWDC) in 2015, they also declared that Swift was
the world's first protocol-oriented programming language. From its name, we may assume
that protocol-oriented programming is all about the protocol; however, this would be a
wrong assumption. Protocol-oriented programming is about so much more than just the
protocol; it is actually a new way of not only writing applications, but also how we think
about programming.

In this chapter, you will learn:

What is protocol-oriented programming
How we can use protocol composition
How we can use protocol inheritance
How protocol-oriented programming compares to object-oriented programming

In Chapter 5, Object-Oriented Programming, we saw how we could design vehicle types in
an object-oriented way. In this chapter, we will design the same vehicle types in a protocol-
oriented way and compare the two designs.

After some of the more advanced topics discussed in previous chapters, the examples in
this chapter may seem a little basic, almost a step back. This was done on purpose. The
examples in this chapter are written to help you to begin thinking in a protocol-oriented
way and to help your mind break free of the object-oriented way of thinking that you are
probably used too. Once you do that, you can begin incorporating some of the more
advanced topics that we have previously covered.

Protocol-Oriented Programming

[113]

The designs that we present in this chapter will show the basics of a protocol-oriented
design and are written to help you to begin thinking in a protocol-oriented way. You should
not forget about some of the more advanced features that we covered earlier in this book
such as Generics.

Let's start off by reviewing the requirements for our vehicle types.

Requirements for the sample code
When we develop applications we usually have a set of requirements that we need to work
towards. Our sample projects in this chapter and the next are no different. The following is
a list of requirements for the vehicle types that we will be creating:

We will have three categories of vehicle: sea, land, and air. A vehicle can be a
member of multiple categories.
Vehicles may move or attack when they are on a tile that matches any of the
categories they are in.
Vehicles will be unable to move to or attack on a tile that does not match any of
the categories they are in.
When a vehicle's hit points reach zero, the vehicle will be considered
incapacitated. We will need to keep all active vehicles in a single array that we
can loop through.

For our design in this chapter, we will be demonstrating the design with only a few
vehicles, but we know that the number of vehicle types will grow as we develop the game.
In this chapter, we will not be implementing a lot of the logic for the vehicles because our
focus is the design and not the code that makes the vehicles move and attack.

Now let's look at how we could design the vehicles in a protocol-oriented way.

Swift as a protocol-oriented programming
language
As we did with the object-oriented design, we will start off by creating a very basic diagram
that shows how to design the vehicle types in a protocol-oriented way. Just like the object-
oriented diagram, this will be a very basic diagram that simply shows the types themselves
without much detail:

Protocol-Oriented Programming

[114]

The protocol-oriented design is quite a bit different from the object-oriented design. In the
object-oriented design, we started the design with the superclass, which became the focus of
the design and all subclasses inherited functionality and properties from that superclass.

In the protocol-oriented design, we start the design with the protocol. The protocols and
protocol extensions are the focus of the protocol-oriented design; however, as we have seen
throughout this book, protocol-oriented design isn't simply about the protocol.

In this new design, we use three techniques that make protocol-oriented programming
significantly different from object-oriented programming. These techniques are protocol
inheritance, protocol composition, and protocol extensions.

Protocol inheritance is where one protocol can inherit the requirements from other
protocols. This is similar to class inheritance in object-oriented programming; however,
instead of inheriting functionality from a superclass we are inheriting requirements from
the protocol. One advantage that protocol inheritance has over class inheritance in Swift is
that protocols can inherit the requirements from multiple protocols. In our example, the
LandVehicle, SeaVehicle, and AirVehicle protocols inherit the requirements from the
Vehicle protocol.

Protocol-Oriented Programming

[115]

It is also important to note that with a combination of protocol extensions and protocols, we
do have the ability to inherit functionality.

Protocol composition allows types to conform to more than one protocol. In our example,
there are some types (Tank, Submarine, and Jet structures) that conform to a single
protocol; however, there are also two types (Amphibious and Transformer structures)
that take advantage of protocol composition by conforming to multiple protocols.

Protocol inheritance and composition are extremely important to protocol-oriented design
because they allow us to create smaller and more specific protocols. This allows us to avoid
the bloated superclasses as we saw with the object-oriented designs. We do need to be
careful not to create protocols that are too granular because they will become hard to
maintain and manage.

Protocol extensions allow us to extend a protocol to provide method and property
implementations to conforming types. This gives us the ability to provide common
implementations to all the conforming types, eliminating the need to provide an
implementation for each individual type or the need to create a class hierarchy. While
protocol extensions may not seem too exciting, once you understand how powerful they
are, they will transform the way you think about application design.

Let's begin the implementation by creating the Vehicle protocol. The Vehicle protocol,
for this example, will define a single property named hitPoints that will keep track of the
vehicle's remaining hit points:

protocol Vehicle {
 var hitPoints: Int {get set}
}

If you recall from our object-oriented design, we had three methods defined in the
superclass that all vehicle types used. These methods were takeHit(amount:),
hitPointsRemaining(), and isAlive(). The implementation for these methods would
be the same for every vehicle type; therefore, they are great candidates to be implemented
with protocol extensions. The following code shows how we would create a Vehicle
protocol extension, and how we would implement these three methods within the
extension:

extension Vehicle {
 mutating func takeHit(amount: Int) {
 hitPoints -= amount
 }
 func hitPointsRemaining() -> Int {
 return hitPoints }
 func isAlive() -> Bool {

Protocol-Oriented Programming

[116]

 return hitPoints > 0 ? true : false
 }
}

Now, any type that conforms to the Vehicle protocol, or any type that conforms to a
protocol that inherits from the Vehicle protocol, will automatically receive these methods.
Protocols that inherit requirements from another protocol also inherit the functionality
provided by the protocol's extensions.

Now let's look at how we would define the LandVehicle, SeaVehicle, and AirVehicle
protocols:

protocol LandVehicle: Vehicle {
 var landAttack: Bool {get}
 var landMovement: Bool {get}
 var landAttackRange: Int {get}

 func doLandAttack()
 func doLandMovement()
}

protocol SeaVehicle: Vehicle {
 var seaAttack: Bool {get}
 var seaMovement: Bool {get}
 var seaAttackRange: Int {get}

 func doSeaAttack()
 func doSeaMovement()
}

protocol AirVehicle: Vehicle {
 var airAttack: Bool {get}
 var airMovement: Bool {get}
 var airAttackRange: Int {get}

 func doAirAttack()
 func doAirMovement()
}

There are a couple of things to note about these protocols. The first is they all inherit the
requirements from the Vehicle protocol, which also means they inherit the functionality
from the Vehicle protocol extension.

Protocol-Oriented Programming

[117]

Another thing to note about these protocols is that they only contain the requirements
needed for their particular vehicle types. If you recall, the Vehicle superclass from the
object-oriented design contained the requirements for all vehicle types. Dividing the
requirements up into three separate protocols makes the code much safer, easier to
maintain, and easier to manage. If we do need some common functionality, we can add a
protocol extension to any or all the protocols.

We defined the properties for these protocols with only the get attribute, which means we
will be defining the properties as constants within the types that conform to these protocols.
This is a really big advantage of using the protocol-oriented design because it prevents
external code from changing the values once they are set, which could introduce errors that
are hard to trace.

Now let's look at how we would create types that conform to these protocols. We will create
the same Tank, Amphibious, and Transformer types that we implemented in the object-
oriented design. Let's start with the Tank type:

struct Tank: LandVehicle {
 var hitPoints = 68
 let landAttackRange = 5
 let landAttack = true
 let landMovement = true

 func doLandAttack() { print("Tank Attack") }
 func doLandMovement() { print("Tank Move") }
}

There are several differences between the Tank type defined here and the Tank type
defined in the object-oriented design. To see these differences, let's look at the Tank type
that was defined in the object-oriented design:

class Tank: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land]
 vehicleAttackTypes = [.land]
 vehicleMovementTypes = [.land]
 landAttackRange = 5
 hitPoints = 68
 }

 override func doLandAttack() { print("Tank Attack") }
 override func doLandMovement() { print("Tank Move") }
}

Protocol-Oriented Programming

[118]

The first thing that we can see is that the Tank type from our object-oriented design is a
class, which is a reference type, while the Tank type designed in a protocol-oriented way is
a structure, which is a value type. Protocol-oriented design does not tell us we must use
value types, but it does say that they are preferred. This means that we could define the
Tank type as a class in both paradigms and it may be preferable to do so depending on the
overall design of our application.

One of the main reasons to choose value types over reference types is safety. If we always
get a unique copy of the value type instances then we can trust that no other parts of our
code can change that instance. This is especially helpful within a multithreaded
environment where we would not want another thread to change the data while we are
using it because this can create hard to replicate and track bugs. In our case, we will
probably need the ability to allow one part of our code to make a change to the vehicle
instances and have that change persisted. While this is not the normal behavior of a value
type we can use an inout parameter to achieve this. We will see how this is done later in
this chapter.

Another difference between the two of the Tank types is the one designed in a protocol-
oriented way can use the default initializer that the structure provides, and we are able to
define the properties as constants. Since the properties are constants they can't be changed
once they are set. In the Tank type from the object-oriented design, we had to override the
initializer and then set the properties within the initializer. The properties in the object-
oriented design were defined as variables, which allows them to be changed after they are
set.

One thing that we do not see when we look at the two Tank types is that the Tank type
from the protocol-oriented design contains only the functionality for land vehicles. The
Tank type from the object-oriented design inherits the functionality and properties for both
the sea and air types as well as the land type, even though it does not need that
functionality.

Now let's see how we would create the Amphibious type:

struct Amphibious: LandVehicle, SeaVehicle {
 var hitPoints = 25
 let landAttackRange = 1
 let seaAttackRange = 1

 let landAttack = true
 let landMovement = true

 let seaAttack = true
 let seaMovement = true

Protocol-Oriented Programming

[119]

 func doLandAttack() {
 print("Amphibious Land Attack")
 }
 func doLandMovement() {
 print("Amphibious Land Move")
 }
 func doSeaAttack() {
 print("Amphibious Sea Attack")
 }
 func doSeaMovement() {
 print("Amphibious Sea Move")
 }
}

The Amphibious type is very similar to the Tank type; however, it uses protocol
composition to conform to multiple vehicle types. This allows it to have the functionality
from both the land and sea types. Now let's see how we would implement the
Transformer type:

struct Transformer: LandVehicle, SeaVehicle, AirVehicle {
 var hitPoints = 75
 let landAttackRange = 7
 let seaAttackRange = 5
 let airAttackRange = 6

 let landAttack = true
 let landMovement = true

 let seaAttack = true
 let seaMovement = true

 let airAttack = true
 let airMovement = true

 func doLandAttack() {
 print("Transformer Land Attack")
 }
 func doLandMovement() {
 print("Transformer Land Move")
 }
 func doSeaAttack() {
 print("Transformer Sea Attack")
 }
 func doSeaMovement() {
 print("Transformer Sea Move")
 }
 func doAirAttack() {
 print("Transformer Sea Attack")

Protocol-Oriented Programming

[120]

 }
 func doAirMovement() {
 print("Transformer Sea Move")
 }
}

Since the Transformer type can move to and attack from all three terrain types we use
protocol composition to have it conform to the LandVehicle, SeaVehicle, and
AirVehicle protocols.

Now let's see how we would use these new types. As with our object-oriented design, we
have the requirement to be able to keep instances of all the vehicle types in a single array.
This enables us to loop through all active vehicles and perform any actions needed. For this,
we will use polymorphism just as we did with our object-oriented design, however, with
the protocol-oriented design, we will use the interface provided by the protocols to interact
with the instances of the vehicle types. Let's see how we would do this by creating an array
and putting several instances of the vehicle types into it:

var vehicles = [Vehicle]()

var vh1 = Amphibious()
var vh2 = Amphibious()
var vh3 = Tank()
var vh4 = Transformer()

vehicles.append(vh1)
vehicles.append(vh2)
vehicles.append(vh3)
vehicles.append(vh4)

This code looks exactly like the code from our object-oriented design. In this code, we create
an array that will store instances of types that conform to the Vehicle type. With protocol
inheritance, this means the array will also accept types that conform to protocols that inherit
the Vehicle protocol. In our example, this means that the array will accept instances of
types that conform to the LandVehicle, SeaVehicle, AirVehicle, and Vehicle
protocols.

The array, in this example, is defined to contain instances of types that conform to the
Vehicle protocol. This means that we can use the interface defined by the Vehicle
protocol to interact with the types in the array. Looking at the Vehicle protocol, that really
is not very useful; however, we can attempt to typecast the instance to see if they conform
to a particular protocol. The following code illustrates this:

for (index, vehicle) in vehicles.enumerated() {
 if let Vehicle = vehicle as? AirVehicle {

Protocol-Oriented Programming

[121]

 print("Vehicle at \(index) is Air")
 }
 if let Vehicle = vehicle as? LandVehicle {
 print("Vehicle at \(index) is Land")
 }
 if let Vehicle = vehicle as? SeaVehicle {
 print("Vehicle at \(index) is Sea")
 }
}

In this code, we use a for loop statement to loop through the vehicles array. We use an
as? typecast operator to see if the instances conform to one of the protocols (AirVehicle,
LandVehicle, and SeaVehicle protocols), and if so, we print out a message.

Accessing the vehicle types in this manner is very similar to how we accessed them in the
object-oriented example, however, what if we only wanted to get one type of vehicle rather
than all vehicles? We can do this with the where clause. The following example shows how
to do this:

for (index, vehicle) in vehicles.enumerated() where vehicle is LandVehicle
{
 let vh = vehicle as! LandVehicle
 if vh.landAttack {
 vh.doLandAttack()
 }
 if vh.landMovement {
 vh.doLandMovement()
 }
}

In this example, we use the where keyword to filter the results of the for loop to retrieve
only instances that conform to the LandVehicle protocol. We can then typecast any
instance that is returned from the for loop as an instance that conforms to the
LandVehicle protocol and interact with it using the interface provided by the protocol.

Now that we have finished redesigning, let's summarize how protocol-oriented
programming differs from object-oriented programming.

Protocol-Oriented Programming

[122]

Summarizing protocol-oriented
programming and object-oriented
programming
In this chapter and Chapter 5, Object-Oriented Programming we saw how Swift can be used
as both an object-oriented programming language and a protocol-oriented programming
language. In these chapters, we saw there were two major differences between the two
designs.

The first major difference that we saw is that with a protocol-oriented design we should
start with the protocol rather than a superclass. We can then use protocol extensions to add
functionality to the types that conform to that protocol or types that conform to protocols
that inherit from that protocol. With object-oriented programming, we started with a
superclass. When we designed our vehicle types in a protocol-oriented way we converted
the Vehicle superclass, from the object-oriented design, to a Vehicle protocol, and then
used a protocol extension to add the common functionality needed.

In the protocol-oriented example, we used protocol inheritance and protocol composition to
allow us to create protocols with very specific requirements. This lets us create concrete
types that only contained the functionality needed for that type. In the object-oriented
design, the concrete types inherited all the functionality provided by the Vehicle
superclass.

The second big difference that we saw was the use of value types (structures) rather than
reference types (classes) for our vehicle types. Apple's documentation states that developers
should prefer value types over reference types where appropriate. In our example, we used
structures that are value types; however, we could have used reference types. We will
discuss this difference further later in this chapter.

Both the object-oriented design and the protocol-oriented design used polymorphism to let
us interact with different types using a single interface. With the object-oriented design, we
used the interface provided by the superclass to interact with all the subclasses. In the
protocol-oriented design, we used the interface provided by the protocols and the protocol
extensions to interact with the types that conform to the protocols.

Now that we have summarized the differences between object-oriented design and
protocol-oriented design, let's take a closer look at these differences.

Protocol-Oriented Programming

[123]

Differences between object-oriented
programming and protocol-oriented
programming
I mentioned at the beginning of the chapter that protocol-oriented programming is about so
much more than just the protocol, and that it is a new way of not only writing applications,
but also thinking about programming. In this section, we will examine the differences
between our two designs to see what that statement really means.

As a developer, our primary goal is always to develop an application that works properly,
but we should also be focused on writing clean and safe code. Clean code is code that is
very easy to read and understand. It is important to write clean code because any code that
we write will need to be maintained by someone, and that someone is usually the person
who wrote it. There is nothing worse than looking back at code you wrote and not being
able to understand what it does. It is also a lot easier to find errors in code that is clean and
easy to understand.

By safe code, we mean code that is hard to break. There is nothing more frustrating for us
developers than making a small change in our code and then have errors pop up
throughout the code base. By writing clean code, our code will be inherently safer because
other developers will be able to look at the code and understand exactly what it does.

Now let's compare protocol and protocol extensions to superclasses.

Protocol and protocol extensions compared with
superclasses
In the object-oriented programming example, we created a Vehicle superclass from which
all the vehicle classes were derived from. In the protocol-oriented programming example,
we used a combination of protocols and protocol extensions to achieve the same result;
however, there are several advantages to the protocol-oriented design.

To refresh our memory of the two solutions, let's look at the code for both the Vehicle
superclass and the Vehicle protocol and protocol extension. The following code shows the
Vehicle superclass:

class Vehicle {
 fileprivate var vehicleTypes = [TerrainType]()
 fileprivate var vehicleAttackTypes = [TerrainType]()

Protocol-Oriented Programming

[124]

 fileprivate var vehicleMovementTypes = [TerrainType]()

 fileprivate var landAttackRange = -1
 fileprivate var seaAttackRange = -1
 fileprivate var airAttackRange = -1

 fileprivate var hitPoints = 0

 func isVehicleType(type: TerrainType) -> Bool {
 return vehicleTypes.contains(type)
 }
 func canVehicleAttack(type: TerrainType) -> Bool {
 return vehicleAttackTypes.contains(type)
 }
 func canVehicleMove(type: TerrainType) -> Bool {
 return vehicleMovementTypes.contains(type)
 }
 func doLandAttack() {}
 func doLandMovement() {}

 func doSeaAttack() {}
 func doSeaMovement() {}

 func doAirAttack() {}
 func doAirMovement() {}

 func takeHit(amount: Int) { hitPoints -= amount }
 func hitPointsRemaining() -> Int { return hitPoints }
 func isAlive() -> Bool { return hitPoints > 0 ? true : false }
}

The Vehicle superclass is a complete type that we can create instances of. This can be a
good or a bad thing. There are times, such as this example, when we should not be creating
instances of the superclass. For this, we can still use protocols with object-oriented
programming, however, we will need to use protocol extensions to add the common
functionality, and that leads us down the protocol-oriented programming path.

Now let's look at how we used protocols and protocol extensions in the protocol-oriented
design. We will start off by looking at the Vehicle protocol and the Vehicle protocol
extension:

protocol Vehicle {
 var hitPoints: Int {get set}
}

extension Vehicle {
 mutating func takeHit(amount: Int) {

Protocol-Oriented Programming

[125]

 hitPoints -= amount
 }
 func hitPointsRemaining() -> Int {
 return hitPoints
 }
 func isAlive() -> Bool {
 return hitPoints > 0 ? true : false
 }
}

We then created three additional protocols, one for each type of vehicle, and used protocol
inheritance to inherit the requirements and functionality from the Vehicle protocol. The
following are the LandVehicle, SeaVehicle, and AirVehicle protocols:

protocol LandVehicle: Vehicle {
 var landAttack: Bool {get}
 var landMovement: Bool {get}
 var landAttackRange: Int {get}

 func doLandAttack()
 func doLandMovement()
}

protocol SeaVehicle: Vehicle {
 var seaAttack: Bool {get}
 var seaMovement: Bool {get}
 var seaAttackRange: Int {get}

 func doSeaAttack()
 func doSeaMovement()
}

protocol AirVehicle: Vehicle {
 var airAttack: Bool {get}
 var airMovement: Bool {get}
 var airAttackRange: Int {get}

 func doAirAttack()
 func doAirMovement()
}

The code in both solutions is pretty safe and easy to understand; however, the protocol-
oriented design is safer. By separating the implementation from the definition and dividing
the requirements into small, more specific protocols, we are able to eliminate the need for a
bloated superclass, and also prevent types from inheriting functionality they do not need.

Protocol-Oriented Programming

[126]

There are three clear advantages that protocols/protocol extensions have in our design. The
first advantage is that types can conform to multiple protocols. What this means is that we
can create numerous protocols that contain very specific functionality rather than creating a
single monolithic superclass. We can see this in our example where the Vehicle superclass
contained the functionality for land, sea, and air vehicles while, in the protocol-oriented
design, we were able to create three protocols, one for each type of vehicle.

The second advantage that protocol/protocol extensions have is that we can use protocol
extensions to add functionality without needing the original code. What this means is that
we can extend any protocol, even the protocols that are a part of the Swift language itself.
To add functionality to our superclass we need to have the original code or we would need
to subclass the type, however, that would create a new type. We could use extensions to
add functionality to a superclass; however, generally, we use extensions to add
functionality to a specific class rather than adding functionality to a class hierarchy. In
Chapter 3, Extensions we saw why we should use caution when using extensions to add
functionality to a class hierarchy.

The third advantage that protocols/protocol extensions have is that protocols can be
adopted by classes, structures, and enumerations, while class hierarchies are restricted to
class types. Protocols/protocol extensions give us the option to use value types where
appropriate.

Implementing vehicle types
The implementations of vehicle types were slightly different between the object-oriented
example and the protocol-oriented example; however, the difference is pretty significant.
We will look at the differences between these two examples, but first, let's take a look at the
code again to remind us how we implemented the vehicle types. We will look at how we
implemented the Tank type in the object-oriented example first:

class Tank: Vehicle {
 override init() {
 super.init()
 vehicleTypes = [.land]

 vehicleAttackTypes = [.land]
 vehicleMovementTypes = [.land]
 landAttackRange = 5

 hitPoints = 68
 }

 override func doLandAttack() {

Protocol-Oriented Programming

[127]

 print("Tank Attack")
 }
 override func doLandMovement() {
 print("Tank Move") }
}

This class is a subclass of the Vehicle superclass, and it implements a single initializer.
While this is a pretty simple and straightforward implementation, we really need to fully
understand what the superclass expects in order to implement the type properly. For
example, if we do not fully understand the Vehicle superclass, we may forget to set the
landAttackRange property. In our example, forgetting to set this property will cause the
instances of the Tank type to be unable to attack properly.

Now let's look at how we implemented a vehicle type in the protocol-oriented
programming example:

struct Tank: LandVehicle {
 var hitPoints = 68
 let landAttackRange = 5
 let landAttack = true
 let landMovement = true

 func doLandAttack() { print("Tank Attack") }
 func doLandMovement() { print("Tank Move") }
}

The Tank type from the protocol-oriented design conforms to the LandVehicle protocol
and uses the default initializer provided by the structure. We can say that the protocol-
oriented design is a lot safer and easier to understand because of the way properties and
initializer are implemented in both these examples.

In the object-oriented programming example, all the properties are defined in the superclass
as variables. We will need to look at the code or the documentation for the superclass to see
what properties are defined and how they are defined. If we forget to set something in a
subclass, the compiler will happily compile the application and not warn us.

With protocols, we also need to look at the protocol itself or the documentation for the
protocol to see which properties to implement. The difference is, if we forget to implement
any of the requirements the compiler will warn us and refuse to compile until we properly
set everything. We also have the ability to define any of the properties as constants, whereas
with the object-oriented design we had to define them as variables.

Protocol-Oriented Programming

[128]

Using value and reference types
In this chapter, we implemented the vehicle types as structures, which are value types. We
also mentioned that it may be preferable to implement these types as reference types. The
reason we say this is instances of the vehicle types represent a single vehicle in our game
and anytime something happens to that instance, such as taking damage from another
vehicle, we would like that change to be persisted.

When we pass an instance of a value type to another part of our code, we are passing a copy
of that instances and not the instance itself. This can cause problems when we want to
persist changes that are applied to our types. Let's look at this problem with some code. We
will start off by creating a function that will apply damage to a vehicle type when it is
implemented as a reference type as we did with the object-oriented design:

func takeHit(vehicle: Vehicle) {
 vehicle.takeHit(amount: 10)
}

We can then use this function like this:

var vh = Tank()
takeHit(vehicle: vh)
print(vh.hitPointsRemaining())

This works as expected and at the end of the code the vh instance of the Tank type will have
58 hit points remaining. This code will not work for value types. Even if the Swift compiler
would let us do this, the vehicle instance in the takeHit(vehicle:) method is a copy of
the vh instance that we passed in, therefore any changes made to the vehicle instance
would not persist back to the original vh instance. There are a lot of times that we want this
behavior, but there are also times, like with our vehicle types, that we want the changes to
persist. We can replicate the behavior of reference types with value types, but it does take a
little more code. The following function shows how we could create a function that accepts
an instance of a value type and persist any changes made to the original instance:

func takeHit<T: Vehicle>(vehicle: inout T) {
 vehicle.takeHit(amount: 10)
}

This function is defined as a generic function that has one parameter that conforms to the
Vehicle protocol. The parameter is also marked as an input parameter, which means any
changes made to that parameter, within the function, is persisted back to the original
instance.

Protocol-Oriented Programming

[129]

We would then use this function like this:

var tank = Tank()
takeHit(vehicle: &tank)
print(tank.hitPointsRemaining())

When we call this function, we need to put an ampersand (&) before the instance of the
Vehicle type, which means we are passing a reference to the instance and not the value.
This means that any changes to make within the function will be persisted back to the
original Vehicle instance.

Which programming paradigm is better? Let's find out.

The winner is...
As we were reading through this chapter, and seeing the advantages that protocol-oriented
programming has over object-oriented programming, we may think that protocol-oriented
programming is clearly superior to object-oriented programming. That assumption may not
be totally accurate.

Object-oriented programming has been around since the 1970s, and is a battle-tested
programming paradigm. Protocol-oriented programming is the new kid on the block, and
was designed to correct some of the issues with object-oriented programming. I have
personally used the protocol-oriented programming paradigm in a couple of projects and I
am very excited about its possibilities.

Object-oriented programming and protocol-oriented programming have similar
philosophies, such as creating custom types that can model real-world or virtual objects.
They both use polymorphism to use a single interface to interact with multiple types. The
difference is in how we design the application.

In my opinion, the code base in a project that uses protocol-oriented programming is much
safer and easier to read as compared to a project that uses object-oriented programming.
This does not mean that I am going to abandon object-oriented programming altogether. I
can still see plenty of need for class hierarchy and inheritance.

Remember, when we are designing our application, we should always use the right tool for
the right job. We would not want to use a chainsaw to cut a piece of 2 x 4 timber, but we
also would not want to use a circular saw to cut down a tree. Therefore, the winner is the
developer, where we have the choice of using different programming paradigms rather
than being limited to only one.

Protocol-Oriented Programming

[130]

Summary
In this chapter, we saw how we could design vehicles for a video game in a protocol-
oriented way. We saw how we could use protocol composition and protocol inheritance,
which allowed us to create smaller and more specific protocols as compared to using a
single superclass. We also saw how the protocol-oriented programming resolved some of
the issues that we encountered with the object-oriented design.

In the next chapter, we will look at how we can implement some of the more popular
design patterns with Swift.

7
Adopting Design Patterns in

Swift
While the first publication of the Gang of Four's Design Patterns: Elements of Reusable Object-
Oriented Software was released in October of 1994, I have only been paying attention to
design patterns for 10 to 12 years. Like most experienced developers, when I first started
reading about design patterns, I recognized a lot of the patterns because I had already been
using them without realizing what they were. In the past ten years or so, I do not believe I
have written a serious application without using at least one of the Gang of Four's design
patterns. I will tell you that I am definitely not a design pattern zealot, and if I get into a
conversation about design patterns, there are usually only a couple of them that I can name
without having to look them up. But the one thing that I do remember is the concepts and
philosophies behind the major patterns and the problems they are designed to solve. This
way, when I encounter one of these problems, I can look up the appropriate pattern and
apply it. So, remember, as you go through this chapter, to take the time to understand the
concepts behind the design patterns rather than trying to memorize the patterns
themselves.

In this chapter, you will learn about the following topics:

What design patterns are
What types of patterns make up the creational, structural, and behavioral
categories of design patterns
How to implement the builder, factory method, and singleton creational patterns
in Swift
How to implement the bridge, facade, and proxy structural patterns in Swift
How to implement the strategy, command, and observer behavioral patterns in
Swift

Adopting Design Patterns in Swift

[132]

What are design patterns?
Every experienced developer has a set of informal strategies that shapes how they design
and write applications. These strategies are shaped by their past experiences and the
obstacles that they have had to overcome in previous projects. While these developers
might swear by their own strategies, it does not mean that their strategies have been fully
vetted. The use of these strategies can also introduce inconsistent implementations between
different projects and developers.

While the concept of design patterns dates back to the mid 80s, they did not gain popularity
until the Gang of Four released their Design Patterns: Elements of Reusable Object-Oriented
Software book, published in 1994. The book's authors, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (also known as the Gang of Four), discuss the pitfalls of object-
oriented programming and describe 23 classic software design patterns. These 23 patterns
are broken up into three categories: creational, structural, and behavioral.

A design pattern identifies a common software development problem and provides a
strategy to deal with it. These strategies have been proven, over the years, to be an effective
solution for the problems they are intended to solve. Using these patterns can greatly speed
up the development process because they provide solutions that have already been proven
to solve several common software development problems.

Another advantage that we get when we use design patterns is consistent code that is easy
to maintain because, months or years from now, when we look at our code, we will
recognize the patterns and understand what the code does. If we properly document our
code and document the design pattern we are implementing, it will also help other
developers understand what our code is doing.

The two main philosophies behind design patterns are code reuse and flexibility. As a
software architect, it is essential that we build reusability and flexibility into our code. This
allows us to easily maintain our code in the future and makes it easier for our applications
to expand to meet future requirements because we all know how quickly the requirements
change.

While there is a lot to like about design patterns, and they are extremely beneficial for
developers and architects, they are not the solution for world hunger that some developers
make them out to be. At some time in your development career, you will probably meet a
developer or an architect who thinks that design patterns are immutable laws. These
developers usually try to force the use of design patterns even when they are not necessary.
A good rule of thumb is to make sure that you have a problem that needs to be fixed before
you try to fix it.

Adopting Design Patterns in Swift

[133]

Design patterns are starting points for avoiding and solving common programming
problems. We can think of each design pattern as a recipe for a food dish. Just like a good
recipe, we can tinker and adjust it to meet our particular tastes. But we usually do not want
to stray too far from the original recipe because we may mess it up.

There are also times when we do not have a recipe for a certain dish that we want to make,
just like there are times when there isn't a design pattern to solve the problem we face. In
cases such as this, we can use our knowledge of design patterns and their underlying
philosophy to come up with an effective solution for our problem.

Design patterns are split into three categories. They are as follows:

Creational patterns: Creational patterns support the creation of objects
Structural patterns: Structural patterns concern types and object compositions

Behavioral patterns: Behavioral patterns communicate between types

While the Gang of Four defined over 20 design patterns, we are only going to look at
examples of some of the more popular patterns in this chapter. Let's start off by looking at
creational patterns.

Design patterns were originally defined for object-oriented programming.
In this chapter, we will focus on implementing the patterns in a more
protocol-oriented way where possible. Therefore, the examples in this
chapter may look a little different from examples in other design pattern
books, but the underlying philosophy of the solutions will be the same.

Creational patterns
Creational patterns are design patterns that deal with how an object is created. There are
two basic ideas behind creational patterns. The first is encapsulating the knowledge of
which concrete types should be created and the second is hiding how instances of these
types are created.

Adopting Design Patterns in Swift

[134]

There are five well-known patterns that are a part of the creational pattern category. They
are as follows:

Abstract factory pattern: This provides an interface for creating related objects
without specifying the concrete type
Builder pattern: This separates the construction of a complex object from its
representation, so the same process can be used to create similar types
Factory method pattern: This creates objects without exposing the underlying
logic of how the object (or which type of object) is created
Prototype pattern: This creates an object by cloning an existing one
Singleton pattern: This allows one (and only one) instance of a class for the
lifetime of an application

In this chapter, we are going to show examples of how to implement the singleton, builder
and factory method patterns in Swift. Let's start off by looking at one of the most
controversial and possibly overused design patterns, the singleton pattern.

The singleton design pattern
The use of the singleton pattern is a fairly controversial subject among certain corners of the
development community. One of the main reasons for this is that the singleton pattern is
probably the most overused and misused pattern. Another reason this pattern is
controversial is that the singleton pattern introduces a global state into an application,
which provides the ability to change the object at any point within the application. The
singleton pattern can also introduce hidden dependencies and tight compiling. My personal
opinion is that if the singleton pattern is used correctly, there is nothing wrong with using
it. However, we do need to be careful not to misuse it.

The singleton pattern restricts the instantiation of a class to a single instance for the lifetime
of an application. This pattern is very effective when we need exactly one instance to
coordinate actions within our application. An example of a good use of a singleton is if our
application communicates with a remote device over Bluetooth and we also want to
maintain that connection throughout our application. Some would say that we could pass
the instance of the connection class from one page to the next, which is essentially what a
singleton is. In my opinion, the singleton pattern, in this instance, is a much cleaner
solution, because with the singleton pattern, any page that needs the connection can get it
without forcing every page to maintain the instance. This also allows us to maintain the
connection without having to reconnect each time we go to another page.

Adopting Design Patterns in Swift

[135]

Understanding the problem
The problem the singleton pattern is designed to address is when we need one, and only
one, instance of a type for the lifetime of our application. The singleton pattern is usually
used when we need centralized management of an internal or external resource, and a
single global point of access. Another popular use of the singleton pattern is when we want
to consolidate a set of related activities, needed throughout our application, that does not
maintain a state.

In Chapter 3, Extensions, we used the singleton pattern for our text validation types because
we wanted to create a single instance of the types that could then be used by all the
components of the application without requiring us to create new instances of the types.
These text validation types did not have a state that could be changed. They only had
methods that performed the validation on the text and constants that defined how to
validate the text. While some may disagree with me, I believe types such as these are
excellent candidates for the singleton pattern because there is no reason to create multiple
instances of these types.

Understanding the solution
There are several ways to implement the singleton pattern in Swift. The way that is
presented here uses class constants that was first introduced in version 1.2 of Swift. With
this method, a single instance of the class is created the first time we access the class
constant. We will then use the class constant to gain access to this instance throughout the
lifetime of our application. We will also create a private initializer that will prevent external
code from creating additional instances of the class.

Note that we use the word class in this description and not type. The
reason for this is that the singleton pattern can only be implemented with
reference types.

Implementing the singleton pattern
Let's look at how we implement the singleton pattern with Swift. The following code
example shows how to create a singleton class:

class MySingleton {
 static let sharedInstance = MySingleton()
 var number = 0
 private init() {}
}

Adopting Design Patterns in Swift

[136]

Within the MySingleton class, we create a static constant named sharedInstance that
contains an instance of the MySingleton class. A static constant like this can be called
without having to instantiate the class. Since we declared the sharedInstance constant
static, only one instance will exist throughout the lifecycle of the application, thereby
creating the singleton pattern. We also created the private initiator that will restrict external
code from creating another instance of the MySingleton class.

Now, let's see how this pattern works. The MySingleton pattern has another property
named number, which is of the, Integer type. We will monitor how this property changes as
we use the sharedInstance property to create multiple variables of the MySingleton
type, as shown in the following code:

var singleA = MySingleton.sharedInstance
var singleB = MySingleton.sharedInstance
var singleC = MySingleton.sharedInstance
singleB.number = 2
print(singleA.number)
print(singleB.number)
print(singleC.number)
singleC.number = 3
print(singleA.number)
print(singleB.number)
print(singleC.number)

In this example, the sharedInstance property was used to create three variables of the
MySingleton type. The number property was initially set to the number 2 using the second
MySingleton instance (singleB). When the value of the number property for singleA,
singleB, and singleC was printed to the console, we saw that all three equaled the
number 2. Then the value of the number property was changed to the number 3 using the
third MySingleton instance (singleC). Now when the value of the number property, for
all three instances is printed to the console, they all have the value of 3. This example
verifies that all three instances of the MySingleton type point to the same instance because
when the value of the number property in any of the instance changes, the values of all
three instances change.

In this example, the singleton pattern was implemented using a reference (class) type
because we wanted to ensure that only one instance of the type existed throughout the
application. If this pattern was implemented with a value type, such as a structure or an
enumeration, we would run the risk of having multiple instances of this type. If you recall,
each time an instance of a value type is passed, the code is actually passing a copy of that
instance. This means that if the singleton pattern was implemented with a value type, then
each time an instance of the type was passed to another part of the code, that code would
receive a new copy of the instance, thereby breaking this pattern.

Adopting Design Patterns in Swift

[137]

The singleton pattern can be very useful when the state of an object must be maintained
throughout the lifecycle of the application, however, we should be careful not to overuse it.
The singleton pattern should not be used unless there is a specific requirement for having
one, and only one, instance of a class throughout the lifecycle of the application. If the
singleton pattern is used simply for convenience, then it is probably being misused.

Keep in mind that while Apple recommends that we prefer value types to reference types,
there are still plenty of examples, such as the singleton pattern, where a reference type is
needed. When we continuously tell ourselves to prefer value types to reference types, it can
be very easy to forget that there are times where a reference type is needed. Don't forget to
use reference types with this pattern.

Now, let's look at the builder design pattern.

The builder design pattern
The builder pattern helps with the creation of complex objects and enforces the process of
how these objects are created. This pattern is generally used to separate the creation logic
from the complex type and put it in another type. This will be the same construction process
used to create different representations of the type.

Understanding the problem
The problem that the builder pattern is designed to address is when an instance of a type
requires numerous configurable values. The configuration options could be set when an
instance of the type is created, but that can cause issues if the options are not set correctly or
the proper values for all the options are unknown. Another issue is the amount of code that
may be needed to set all the configurable options each time an instance is created.

Understanding the solution
The builder pattern solves this problem by introducing an intermediary known as a builder
type. This builder type contains most, if not all, of the information necessary to create an
instance of the original complex type.

Adopting Design Patterns in Swift

[138]

There are two methods that can be used to implement the builder pattern. The first method
is to have multiple builder types where each of the builder types contains the information to
configure the original complex type in a specific way. The second method implements the
builder pattern with a single builder type that sets all of the configurable options to a
default value which can then be changed as needed.

In this section, we will look at both ways to use the builder pattern because it is important
to understand how each works.

Implementing the builder pattern
Let's start off by looking at how to create a complex structure without the builder pattern to
see the problem the builder pattern is designed to solve.

The following code creates a structure named BurgerOld and does not use the builder
pattern:

struct BurgerOld {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool
 init(name: String, patties: Int, bacon: Bool, cheese: Bool,
 pickles: Bool, ketchup: Bool, mustard: Bool,
 lettuce: Bool, tomato: Bool) {
 self.name = name
 self.patties = patties
 self.bacon = bacon
 self.cheese = cheese
 self.pickles = pickles
 self.ketchup = ketchup
 self.mustard = mustard
 self.lettuce = lettuce
 self.tomato = tomato
 }
}

Adopting Design Patterns in Swift

[139]

In the BurgerOld structure, there are several properties that define which condiments are
on the burger and the name of the burger. These properties must be known when an
instance of the BurgerOld structure is created therefore the initializer requires us to define
each item. This can lead to some complex initializations throughout the application, not to
mention that if there were more than one standard burger type (bacon cheeseburger,
cheeseburger, hamburger, and so on) then we would need to make sure that each is defined
correctly. Let's see how to create instances of the BurgerOld class:

// Create Hamburger
var burgerOld = BurgerOld(name: "Hamburger", patties: 1, bacon: false,
 cheese: false, pickles: false, ketchup: false,
 mustard: false, lettuce: false, tomato: false)

// Create Cheeseburger
var cheeseburgerOld = BurgerOld(name: "Cheeseburger", patties: 1,
 bacon: false, cheese: false,
 pickles: false, ketchup: false,
 mustard: false, lettuce: false,
 tomato: false)

Creating instances of the BurgerOld type in this manner requires a lot of code. Now, let's
see how we can improve the creation of these types by using the builder pattern. This
example will use multiple builder types where each builder type will define the condiments
that are on a particular type of burger. Let's start by creating a BurgerBuilder protocol
that will have the following code in it:

protocol BurgerBuilder {
 var name: String {get}
 var patties: Int {get}
 var bacon: Bool {get}
 var cheese: Bool {get}
 var pickles: Bool {get}
 var ketchup: Bool {get}
 var mustard: Bool {get}
 var lettuce: Bool {get}
 var tomato: Bool {get}
}

This protocol simply defines the nine properties that will be required for any type that
implements this protocol. Now, let's create two structures that implement this protocol, the
HamburgerBuilder and the CheeseBurgerBuilder structures:

struct HamburgerBuilder: BurgerBuilder {
 let name = "Burger"
 let patties = 1
 let bacon = false

Adopting Design Patterns in Swift

[140]

 let cheese = false
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

struct CheeseBurgerBuilder: BurgerBuilder {
 let name = "CheeseBurger"
 let patties = 1
 let bacon = false
 let cheese = true
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

The HamburgerBuilder and CheeseBurgerBuilder structures simply define the values
for each of the required properties. In more complex types, we might need to initialize
additional resources.

Now, let's look at the Burger structure, which will use instances of the BurgerBuilder
protocol to create instances of itself. The following code shows this new Burger type:

struct Burger {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(builder: BurgerBuilder) {
 self.name = builder.name
 self.patties = builder.patties
 self.bacon = builder.bacon
 self.cheese = builder.cheese
 self.pickles = builder.pickles
 self.ketchup = builder.ketchup
 self.mustard = builder.mustard
 self.lettuce = builder.lettuce
 self.tomato = builder.tomato

Adopting Design Patterns in Swift

[141]

 }

 func showBurger() {
 print("Name:\(name)")
 print("Patties: \(patties)")
 print("Bacon:\(bacon)")
 print("Cheese:\(cheese)")
 print("Pickles: \(pickles)")
 print("Ketchup: \(ketchup)")
 print("Mustard: \(mustard)")
 print("Lettuce: \(lettuce)")
 print("Tomato:\(tomato)")
 }
}

In the previous BurgerOld structure, the initializer took nine arguments, one for each
constant defined in the structure. In the new Burger structure, the initializer takes one
argument, which is an instance of a type that conforms to the BurgerBuilder protocol.
This new initializer allows us to create instances of the Burger class as follows:

// Create Hamburger
var myBurger = Burger(builder: HamburgerBuilder())
myBurger.showBurger()

// Create Cheeseburger with tomatos
var myCheeseBurgerBuilder = CheeseBurgerBuilder()
var myCheeseBurger = Burger(builder: myCheeseBurgerBuilder)

// Let's hold the tomatos
myCheeseBurger.tomato = false
myCheeseBurger.showBurger()

If we compare how instances of the new Burger structure are created to the earlier
BurgerOld structure, it is pretty clear that it is easier to create instances of this new Burger
structure. We also know that we are correctly setting the property values for each type of
burger because the values are set directly in the builder classes.

There is a second method that can be used to implement the builder pattern. Rather than
having multiple builder types, there can be a single builder type that sets all the
configurable options to default values. The values can then be changed as needed. I use this
implementation method a lot when I am updating older code because it is easy to integrate
it with preexisting code.

Adopting Design Patterns in Swift

[142]

For this implementation, a single BurgerBuilder structure is created. This
BurgerBuilder structure will be used to create instances of the BurgerOld structure and
will, by default, set all the ingredients to their default values. There will also be several
methods in the BurgerBuilder structure that can be used to change the default values
prior to creating an instance of the BurgerOld structure. The following code shows this
new BurgerBuilder type:

struct BurgerBuilder {
 var name = "Burger"
 var patties = 1
 var bacon = false
 var cheese = false
 var pickles = true
 var ketchup = true
 var mustard = true
 var lettuce = false
 var tomato = false

 mutating func setPatties(choice: Int) {self.patties = choice}
 mutating func setBacon(choice: Bool) {self.bacon = choice}
 mutating func setCheese(choice: Bool) {self.cheese = choice}
 mutating func setPickles(choice: Bool) {self.pickles = choice}
 mutating func setKetchup(choice: Bool) {self.ketchup = choice}
 mutating func setMustard(choice: Bool) {self.mustard = choice}
 mutating func setLettuce(choice: Bool) {self.lettuce = choice}
 mutating func setTomato(choice: Bool) {self.tomato = choice}

 func buildBurgerOld(name: String) -> BurgerOld {
 return BurgerOld(name: name, patties: self.patties,
 bacon: self.bacon, cheese: self.cheese,
 pickles: self.pickles, ketchup: self.ketchup,
 mustard: self.mustard, lettuce: self.lettuce,
 tomato: self.tomato)
 }
}

In the BurgerBuilder structure, the nine properties (ingredients) are defined for the
burger. There is also a setter method for each of the properties except for the name property.
We also create one method named buildBurgerOld() that will create an instance of the
BurgerOld structure based on the values of the properties for the BurgerBuilder
instance. The BurgerBuilder structure can be used as follows:

var burgerBuilder = BurgerBuilder()
burgerBuilder.setCheese(choice: true)
burgerBuilder.setBacon(choice: true)
var jonBurger = burgerBuilder.buildBurgerOld(name: "Jon's Burger")

Adopting Design Patterns in Swift

[143]

In this example, an instance of the BurgerBuilder structure is created. The setCheese()
and setBacon() methods are used to add cheese and bacon to the burger. Finally, the
buildBurgerOld() method is called to create the instance of the Burger structure.

Both of these methods used to implement the builder pattern greatly simplify the creation
of the complex type. Both methods also ensured that instances were properly configured
with default values. If you find yourself creating instances of types with very long and
complex initialization commands, I would recommend that you look at the builder pattern
to see if you can use it to simplify the initialization.

For our last example of a creational pattern, we will look at the factory method pattern.

The factory method pattern
The factory method pattern uses methods to create instances of objects without specifying
the exact type that will be created. This allows the code to pick the appropriate type to
create at runtime.

I find that the factory pattern is one of the patterns that I use a lot. It is also one of the
patterns that developers tend to recognize when they first start reading about design
patterns because they have used it in previous projects.

Understanding the problem
The problem that the factory pattern is designed to solve is when there are multiple types
that conform to a single protocol and the appropriate type to instantiate needs to be chosen
at runtime.

Understanding the solution
The factory method pattern encapsulates the logic used to select which type to instantiate
within a single method. This method exposes only the protocol (or base class) to the code
that calls it and does not reveal the details of how a particular type was selected.

Adopting Design Patterns in Swift

[144]

Implementing the factory method pattern
To demonstrate how to use the factory method pattern, we will use the text validation types
that were created in Chapter 3, Extensions. In this example, a function will be created that
will determine which text validation type to use based on the parameters passed into the
factory method by the code that called it. As a refresher, the code for the TextValidation
protocol and the TextValidation protocol extension are shown in the following code:

protocol TextValidation {
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
}

extension TextValidation {
 var regExMatchingString: String {
 get {
 return regExFindMatchString + "$"
 }
 }

 func validateString(str: String) -> Bool {
 if let _ = str.range(of: regExMatchingString,
 options: .regularExpression) {
 return true
 } else {
 return false
 }
 }

 func getMatchingString(str: String) -> String? {
 if let newMatch = str.range(of: regExFindMatchString,
 options: .regularExpression) {
 return String(str[newMatch])
 } else {
 return nil
 }
 }
}

Within the TextValidation protocol, two properties are defined named
regExFindMatchString and validationMessage. Within the protocol extension, one
computed property is implemented named regExMatchingString and two methods
named validateString() and getMatchingString() are implemented.

Adopting Design Patterns in Swift

[145]

Now three types that conform to the TextValidation protocol are created as shown in the
following code:

class AlphaValidation: TextValidation {
 static let sharedInstance = AlphaValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

class AlphaNumericValidation: TextValidation {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}
 let regExFindMatchString = "^[a-zA-Z0-9]{0,10}"
 let validationMessage = "Can only contain Alpha Numeric characters"
}

class NumericValidation: TextValidation {
 static let sharedInstance = NumericValidation()
 private init(){}
 let regExFindMatchString = "^[0-9]{0,10}"
 let validationMessage = "Display Name can contain a maximum of
 15 Alphanumeric Characters"
}

The AlphaValidation class can be used to validate strings to ensure that they contain a
maximum of 10 alpha characters. The NumericValidation class can be used to validate
strings to ensure that they contain a maximum of 10 numeric characters. Finally, the
AlphaNumericValidation class can be used to validate strings to ensure that they contain
a maximum of 10 alpha and/or numeric characters.

To use these validation classes, there needs to be a way to determine which class to use to
validate a string value. The factory method pattern can help with this determination and
can be implemented as shown:

func getValidator(alphaCharacters: Bool, numericCharacters: Bool) ->
TextValidation? {
 if alphaCharacters && numericCharacters {
 return AlphaNumericValidation.sharedInstance
 } else if alphaCharacters && !numericCharacters {
 return AlphaValidation.sharedInstance
 } else if !alphaCharacters && numericCharacters {
 return NumericValidation.sharedInstance
 } else {
 return nil
 }
}

Adopting Design Patterns in Swift

[146]

The getValidator() method accepts two parameters both of the Boolean type named
alphaCharacters and numericCharacters. These parameters define the type of
validation needed. An optional type whose value conforms to the TextValidation
protocol is returned based on the values of the parameters.

One of the biggest advantages for using this pattern is that all the logic on how the text
validation types are selected is encapsulated in this one function. This means that if the
logic used to select the text validation type changes, the only code that needs to change is
the code in that function and we will not need to refactor the entire code base. As an
example, if we wish to replace the AlphaValidation class with a new
AlphaSpacesValidation class, the only code that needs to change is within this function.

We would use the getValidator() method, as shown in the following code:

var str = "abc123"
var validator1 = getValidator(alphaCharacters: true,
 numericCharacters: false)
print("String validated: \(validator1?.validateString(str: str))")

var validator2 = getValidator(alphaCharacters: true,
 numericCharacters: true)
print("String validated: \(validator2?.validateString(str: str))")

In this code, the validator1 variable contains an instance of the AlphaValidation type.
When the validateString() method is called for this instance, it returns a false value
because the str variable contains numeric values. The validator2 variable contains an
instance of the AlphaNumericValidation type. When the validateString() method is
called for this instance, it returns true because the validation class looks for both alpha and
numeric characters.

One of the key ideas behind creational patterns is that we take the logic about how and
what to create out of our general code base and put it into specific types or functions. Then,
when we need to make changes to our code in the future, the logic is encapsulated in a
single spot and can be easily changed, rather than having the logic spread throughout our
code.

Now, let's look at structural design patterns.

Adopting Design Patterns in Swift

[147]

Structural design patterns
Structural design patterns describe how types can be combined to form larger structures.
These larger structures can generally be easier to work with and hide a lot of the complexity
of the individual types. Most patterns in the structural pattern category involve connections
between objects.

There are seven well-known patterns that are part of the structural design pattern type.
These are as follows:

Adapter: This allows types with incompatible interfaces to work together
Bridge: This is used to separate the abstract elements of a type from the
implementation, so the two can vary
Composite: This allows us to treat a group of objects as a single object
Decorator: This lets us add or override behavior in an existing method of an
object
Facade: This provides a simplified interface for a larger and more complex body
of code
Flyweight: This allows us to reduce the resources needed to create and use a
large number of similar objects
Proxy: This is a type acting as an interface for another class or classes

In this chapter, we are going to give examples of how to use bridge, facade, and proxy
patterns in Swift. Let's start off by looking at the bridge pattern.

The bridge pattern
The bridge pattern decouples the abstraction from the implementation so that they can both
vary independently. The bridge pattern can also be thought of as a two-layer abstraction.

Understanding the problem
The bridge pattern is designed to solve a couple of problems, but the one we are going to
focus on here tends to arise over time as new requirements come in with new features. At
some point, as these new requirements and features come in, there will be a need to change
how the features interact. Usually, without the bridge pattern, this will require us to refactor
the code base.

Adopting Design Patterns in Swift

[148]

In object-oriented programming, this is known as an exploding class hierarchy, but it can
also happen in protocol-oriented programming as well.

Understanding the solution
The bridge pattern solves this problem by taking the interacting features and separating the
functionality that is specific to each feature from the functionality that is shared between
them. A bridge type can then be created, which will encapsulate the shared functionality,
bringing them together.

Implementing the bridge pattern
To demonstrate how to use the bridge pattern, we will create two features. The first feature
is a message feature that will store and prepare a message that will be sent out. The second
feature is the sender feature that will send the message through a specific channel such as
email or SMS messaging.

Let's start off by creating two protocols named Message and Sender. The Message
protocol will define the requirements for types that are used to create messages. The
Sender protocol will be used to define the requirements for types that are used to send the
messages through the specific channels. The following code shows how we would define
these two protocols:

protocol Message {
 var messageString: String {get set}
 init(messageString: String)
 func prepareMessage()
}

protocol Sender {
 func sendMessage(message: Message)
}

The Message protocol defines one stored property named messageString of the String
type. This property will contain the text of the message and cannot be nil. One initiator
and one method named prepareMessage() are also defined. The initiator will be used to
set the messageString property and anything else required by the message type. The
prepareMessage() method will be used to prepare the message prior to sending it. This
method can be used to encrypt the message, add formatting, or do anything else to the
message prior to sending it.

Adopting Design Patterns in Swift

[149]

The Sender protocol defines one method named sendMessage(). This method will send
the message through the channel defined by conforming types. In this function, we will
need to ensure that the prepareMessage() method from the message type is called prior
to sending the message.

Now let's see how to define two types that conform to the Message protocol:

class PlainTextMessage: Message {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 //Nothing to do
 }
}

class DESEncryptedMessage: Message {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 // Encrypt message here
 self.messageString = "DES: " + self.messageString
 }
}

Each of these types contains the required functionality to conform to the Message protocol.
The only real difference between these types is in the prepareMessage() methods. In the
PlainTextMessage class, the prepareMessage() method is empty because there is
nothing to be done to the message prior to sending it. The prepareMessage() method of
the DESEncryptionMessage class would normally contain the logic to encrypt the
message, but for this example we will just prepend a DES tag to the beginning of the
message, letting us know that this method was called.

Now let's create two types that will conform to the Sender protocol. These types would
typically handle sending the message through a specific channel, however, in this example
we will simply print a message to the console:

class EmailSender: Sender{
 func sendMessage(message: Message) {
 print("Sending through E-Mail:")
 print(" \(message.messageString)")
 }
}

Adopting Design Patterns in Swift

[150]

class SMSSender: Sender {
 func sendMessage(message: Message) {
 print("Sending through SMS:")
 print(" \(message.messageString)")
 }
}

Both the EmailSender and the SMSSender types conform to the Sender protocol by
implementing the sendMessage() function.

These two features can now be used as shown in the following code:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()
var sender = SMSSender()
sender.sendMessage(message: myMessage)

This would work great and code similar to this could be added anywhere it is needed to
create and send a message. Now let's say that one day soon, a new requirement is received
to add functionality that would verify the message prior to sending it to make sure it meets
the requirements of the channel it is being sent through. To do this, we would start off by
changing the Sender protocol to add the verify functionality like this:

protocol Sender {
 var message: Message? {get set}
 func sendMessage()
 func verifyMessage()
}

A new method named verifyMessage() and a property named message were both
added to the Sender protocol. The definition of the sendMessage() method was also
changed. The original Sender protocol was designed to simply send the message. This new
protocol is designed to verify the message prior to calling the sendMessage() function
therefore, we couldn't simply pass the message to the sender as we did in the previous
definition.

The types that conform to the Sender protocol now need to change to conform to this new
protocol. The following code shows how we would make these changes:

class EmailSender: Sender {
 var message: Message?
 func sendMessage() {
 print("Sending through E-Mail:")
 print("\(message!.messageString)")
 }
 func verifyMessage() {

Adopting Design Patterns in Swift

[151]

 print("Verifying E-Mail message")
 }
}

class SMSSender: Sender {
 var message: Message?
 func sendMessage() {
 print("Sending through SMS:")
 print(" \(message!.messageString)")
 }
 func verifyMessage() {
 print("Verifying SMS message")
 }
}

The code that uses these types would now need to change since the types themselves
changed. The following example shows how these types would now be used:

var myMessage = PlainTextMessage(messageString: "Plain Text Message")
myMessage.prepareMessage()
var sender = SMSSender()
sender.message = myMessage
sender.verifyMessage()
sender.sendMessage()

These changes are not that hard to make; however, without the bridge pattern, we would
need to refactor the entire code base and make the change everywhere that messages are
being sent. The bridge pattern tells us that when we have two hierarchies that closely
interact together such as this, we should put this interaction logic into a bridge type that
will encapsulate the logic in one spot. This way, when we receive new requirements or
enhancements, the change can be made in one spot, thereby limiting the refactoring that is
required. We could make a bridge type for our message and sender hierarchies, as shown in
the following example:

struct MessagingBridge {
 static func sendMessage(message: Message, sender: Sender) {
 var sender = sender
 message.prepareMessage()
 sender.message = message
 sender.verifyMessage()
 sender.sendMessage()
 }
}

Adopting Design Patterns in Swift

[152]

Now the logic of how the messaging and sender hierarchies interact is encapsulated into the
MessagingBridge structure. Therefore, when the logic needs to change, the change can be
made in this single type rather than having to refactor the entire code base.

The bridge pattern is a very good pattern to remember and use. There have been (and still
are) times that I have regretted not using the bridge pattern in my code because, as we all
know, requirements change frequently and being able to make the changes in one spot
rather than throughout the code base can save us a lot of time in the future.

Now, let's look at the next pattern in the structural category: the facade pattern.

The facade pattern
The facade pattern provides a simplified interface to a larger and more complex body of
code. This allows us to make libraries easier to use and understand by hiding some of the
complexities. It also allows us to combine multiple APIs into a single, easier to use API,
which is what we will see in our example.

Understanding the problem
The facade pattern is often used when there is a complex system that has a large number of
independent APIs which are designed to work together. Sometimes it is hard to tell where
the facade pattern should be used during the initial application design. The reason for this
is that we normally try to simplify the initial API design, however, over time and as
requirements change and new features are added, the APIs become more and more
complex. At this point it becomes pretty evident where the facade pattern should have been
used. A good rule to use is this: if you have several APIs that are working closely together
to perform a task, the facade pattern should be considered.

Understanding the solution
The main idea of the facade pattern is to hide the complexity of the APIs behind a simple
interface. This offers several advantages, with the most obvious being that it simplifies how
external code interacts with the APIs. It also promotes loose coupling, which allows the
APIs to change without the need to refactor all the code that uses them.

Adopting Design Patterns in Swift

[153]

Implementing the facade pattern
To demonstrate the facade pattern, we will create three APIs: HotelBooking,
FlightBooking, and RentalCarBooking. These APIs will be used to search for and book
hotels, flights, and rental cars for trips. While it would be very easy to call each of the APIs
individually, we are going to create a TravelFacade structure that will consolidate the
functionality of all three APIs into a single call.

Let's begin by defining the three APIs. We will start off by implementing the hotel API:

struct Hotel {
 //Information about hotel room
}

struct HotelBooking {
 static func getHotelNameForDates(to: NSDate, from: NSDate) ->
 [Hotel]? {
 let hotels = [Hotel]()
 //logic to get hotels
 return hotels
 }

 static func bookHotel(hotel: Hotel) {
 // logic to reserve hotel room
 }
}

The hotel API consists of Hotel and HotelBooking structures. The Hotel structure will be
used to store the information about a hotel room. The HotelBooking structure will be used
to search for and book the hotel rooms. The flight and rental car APIs are very similar to the
hotel API. The following code shows both of them:

struct Flight {
 //Information about flights
}

struct FlightBooking {
 static func getFlightNameForDates(to: NSDate, from: NSDate) ->
 [Flight]? {
 let flights = [Flight]()
 //logic to get flights
 return flights
 }

 static func bookFlight(flight: Flight) {
 // logic to reserve flight
 }

Adopting Design Patterns in Swift

[154]

}

struct RentalCar {
 //Information about rental cars
}

struct RentalCarBooking {
 static func getRentalCarNameForDates(to: NSDate, from: NSDate)
 -> [RentalCar]? {
 let cars = [RentalCar]()
 //logic to get flights
 return cars
 }

 static func bookRentalCar(rentalCar: RentalCar) {
 // logic to reserve rental car
 }
}

In each of these APIs, there is a structure that is used to store information and a structure
that is used to provide the search/booking functionality. In the initial design, it would be
very easy to call these individual APIs within our application, however, as we all know,
requirements tend to change, which causes our APIs to change over time. By using the
facade pattern here, we hide how the individual APIs are implemented; therefore, if we
need to change how they work in the future, only the code in the facade type needs to
change rather than refactoring the whole code base. This makes the code easier to maintain
and update in the future. Now let's look at how we will implement the facade pattern by
creating a TravelFacade structure:

struct TravelFacade {

 var hotels: [Hotel]?
 var flights: [Flight]?
 var cars: [RentalCar]?

 init(to: NSDate, from: NSDate) {
 hotels = HotelBooking.getHotelNameForDates(to: to, from: from)
 flights = FlightBooking.getFlightNameForDates(to: to, from: from)
 cars = RentalCarBooking.getRentalCarNameForDates(to: to,
 from: from)
 }

 func bookTrip(hotel: Hotel, flight: Flight, rentalCar: RentalCar) {
 HotelBooking.bookHotel(hotel: hotel)
 FlightBooking.bookFlight(flight: flight)
 RentalCarBooking.bookRentalCar(rentalCar: rentalCar)
 }

Adopting Design Patterns in Swift

[155]

}

The TravelFacade structure contains the functionality to search the three APIs and also
book a hotel, flight, and rental car. This type can now be used to search for hotels, flights,
and rental cars without having to directly access the individual APIs. This structure can also
be used to book hotel, flights, and rental cars without having to access the individual APIs.

At the start of this chapter, we mentioned that it is not always obvious where the facade
pattern should be used in the initial design. A good rule to follow is this: if we have several
APIs that are working together to perform a task, the facade pattern should be considered.

Now, let's look at our last structural pattern, which is the proxy design pattern.

The proxy design pattern
With the proxy design pattern, one type will act as an interface for another type or API. This
wrapper type, which is the proxy, can then add functionality to the object, hide the
implementation of an API, or restrict access to the object.

Understanding the problem
The proxy pattern can be used to solve numerous problems, but I find that I mainly use this
pattern to solve one of two problems.

The first problem that I use the proxy pattern for is when I want to create a layer of
abstraction between a single API and my code. The API could be a local or remote API, but I
usually use this pattern to put an abstraction layer between my code and a remote service.
This will allow changes to the remote API without the need to refactor large portions of the
code base.

The second problem that I use the proxy pattern to solve is when I need to make changes to
an API, but I do not have the code or there is already a dependency on the current API
elsewhere in the application.

Understanding the solution
To solve these problems, the proxy pattern tells us that we should create a type that will act
as an interface for interacting with the other API. In the example here, we will show how to
use the proxy pattern to add a layer of abstraction between our code and a remote API.

Adopting Design Patterns in Swift

[156]

Implementing the proxy pattern
In this section, we will look at how we can use the proxy pattern to put a layer of
abstraction between our code and a remote API. This will enable us to hide the
implementation details of the remote API within the local proxy type. For this example, we
will create a proxy type that will retrieve information from Apple's iTunes API.

For this example to work, we will need to implement the networking code
within the proxy type to interact with Apple's iTunes API. While we will
show the code, we will not cover how it works. Instead we are going to
focus on how the proxy pattern is implemented.

To implement this pattern, we will need to begin by creating a type that will act as the
proxy for the iTunes API. Since the networking part of the code will be asynchronous, we
will use a closure to return the results when the iTunes API returns the results to the proxy
type. The typealias for the closure is defined like this:

public typealias DataFromURLCompletionClosure = (Data?) -> Void

Next let's create the proxy type which we will name ITunesProxy:

public struct ITunesProxy {
 public func sendGetRequest (searchTerm: String, _ handler: @escaping
 DataFromURLCompletionClosure) {

 let sessionConfiguration = URLSessionConfiguration.default

 var url = URLComponents()
 url.scheme = "https"
 url.host = "itunes.apple.com"
 url.path = "/search"

 url.queryItems = [
 URLQueryItem(name: "term", value: searchTerm),
]

 if let queryUrl = url.url {
 var request = URLRequest(url:queryUrl)
 request.httpMethod = "GET"
 let urlSession = URLSession(
 configuration:sessionConfiguration, delegate: nil,
 delegateQueue: nil)

 let sessionTask = urlSession.dataTask(with: request) {
 (data, response, error) in

 handler(data)

Adopting Design Patterns in Swift

[157]

 }

 sessionTask.resume()
 }
 }
}

Once the proxy type is completed, it can be used anywhere in the code to access the iTunes
API like this:

let proxy = ITunesProxy()
proxy.sendGetRequest(searchTerm: "jimmy+buffett”, {
 if let data = $0, let sString = String(data: data, encoding:
 String.Encoding(rawValue: String.Encoding.utf8.rawValue)) {

 print(sString)

 } else {
 print("Data is nil")
 }
})

This provides us with a layer of abstraction between the application code and the code
needed to interact with the iTunes API. The biggest advantage that we get with the proxy
pattern is that the implementation code to interact with the iTunes API is isolated in one
type. This means, as an example, if Apple changes the URL from https:/ /www. apple. com/
itunes/ to http://itunesapi.apple.com/, or anything else changes with the API calls, we
will only need to make the change in one type.

Most experienced developers will recognize this pattern as one they have used in the past.
It is common practice to create a layer of abstraction between our code and remote APIs like
this.

Now, let's look at behavioral design patterns.

Behavioral design patterns
Behavioral design patterns explain how types interact with each other. These patterns
describe how different instances of types send messages to each other to make something
happen.

https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
https://www.apple.com/itunes/
http://itunesapi.apple.com/

Adopting Design Patterns in Swift

[158]

There are nine well-known patterns that are part of the behavioral design pattern type.
They are as follows:

Chain of responsibility: This is used to process a variety of requests, each of
which may be delegated to a different handler.
Command: This creates objects that can encapsulate actions or parameters so that
they can be invoked later or by a different component.
Iterator: This allows us to access the elements of an object sequentially without
exposing the underlying structure.
Mediator: This is used to reduce coupling between types that communicate with
each other.
Memento: This is used to capture the current state of an object and store it in a
manner that can be restored later.
Observer: This allows an object to publish changes to its state. Other objects can
then subscribe so they can be notified of any changes.
State: This is used to alter the behavior of an object when its internal state
changes.
Strategy: This allows one out of a family of algorithms to be chosen at runtime.
Visitor: This is a way of separating an algorithm from an object structure.

In this section, we are going to give examples of how to use strategy, observer, and
command patterns in Swift. Let's start off by looking at the command pattern.

The command design pattern
The command design pattern lets us define actions that can be executed later. This pattern
generally encapsulates all the information needed to call or trigger the actions later.

Understanding the problem
There are times when there is a need to separate the execution of a command from its
invoker. Typically, this is when there is a type that needs to perform one of several actions,
however, the choice of which action to use needs to be made at runtime

Adopting Design Patterns in Swift

[159]

Understanding the solution
The command pattern tells us that we should encapsulate the logic for the various actions
into a separate type that conforms to a command protocol. We can then provide instances of
the command types for use by the invoker. The invoker will use the interface provided by
the protocol to invoke the needed actions.

Implementing the command pattern
In this section, we will demonstrate how to use the command pattern by implementing the
logic for a simple calculator. To do this, we will start with a protocol that all the types that
implement the math functions of the calculator must conform to. Let's name the protocol
MathCommand and put the following code in it:

protocol MathCommand {
 func execute(num1: Double, num2: Double) -> Double
}

The MathCommand protocol requires one function to be implemented by any type that
conforms to it. This function is named execute() and takes two parameters of the Double
type and returns a value also of the Double type. The types that conform to this protocol
will perform some mathematical function with the two parameters.

Now we will create four types that conform to the MathCommand protocol. These types will
be named AdditionCommand, SubtractionCommand, MultiplicationCommand, and
DivisionCommand:

struct AdditionCommand: MathCommand {
 func execute(num1: Double, num2: Double) -> Double {
 return num1 + num2
 }
}

struct SubtractionCommand: MathCommand {
 func execute(num1: Double, num2: Double) -> Double {
 return num1 - num2
 }
}

struct MultiplicationCommand: MathCommand {
 func execute(num1: Double, num2: Double) -> Double {
 return num1 * num2
 }
}

Adopting Design Patterns in Swift

[160]

struct DivisionCommand: MathCommand {
 func execute(num1: Double, num2: Double) -> Double {
 return num1 / num2
 }
}

Each of these command types conforms to the MathCommand protocol by implementing the
execute() method. Within this method, we perform the mathematical function that the
type's name implies.

We now need to create an invoker. This invoker will know how to execute any command
that conforms to the MathCommand protocol. This will enable the calculator to perform any
function that has a type, that conforms to the MathProtocol, associated with it. The
following code shows how we would create such an invoker:

struct Calculator {
 func performCalculation(num1: Double, num2: Double,
 command: MathCommand) -> Double{
 return command.execute(num1: num1, num2: num2)
 }
}

The Calculator type has one method named performCalculation(). This method
accepts three parameters: two of the Double type and one of an instance of any type that
conforms to the MathCommand protocol. Within the method we return the results from the
execute() method of the MathCommand instance using the two Double values passed into
the method as parameters. Now let's see how this works by using the calculator to solve the
following equation: (25 - 10) * 5

var calc = Calculator()
var startValue = calc.performCalculation(num1: 25, num2: 10, command:
SubtractionCommand())
var answer = calc.performCalculation(num1: startValue, num2: 5, command:
MultiplicationCommand())

We start off by creating an instance of the Calculator type. We then use the
performCalculation() method to subtract 10 from 25 with the resulting value being 15.
We do this by passing the values of 25 and 10 as the first two parameters of the
performCalculation() method and then an instance of the SubtractionCommand type
as the last parameter.

Adopting Design Patterns in Swift

[161]

In the last line we use the results from the first calculation, which was 15, and multiply it by
5. The final result will be 75.

There are several benefits to using the command pattern. One of the main benefits is that we
are able to set which command to invoke at runtime, which also lets us swap the commands
out with different implementations that conform to the command protocol as needed
throughout the life of the application. Another advantage of the command pattern is that
we encapsulate the details of the command implementations within the command types
themselves rather than in the container type.

Now, let's look at the strategy pattern.

The strategy pattern
The strategy pattern is similar to the command pattern where both are designed to decouple
implementation details from the calling type. Both of these patterns also allow for the
implementations to be swapped out at runtime. The big difference is the strategy pattern is
intended to encapsulate algorithms. When an algorithm is swapped out, the object is
expected to perform the same functionality, but in a different way. In the command pattern,
when the command was swapped out, it was expected to change the behavior of the object.

Understanding the problem
There are times in our applications when we need to change the backend algorithm that is
used to perform an operation. Typically this is when we have a type that has several
different algorithms that can be used to perform the same task, however, the choice of
which algorithm to use needs to be made at runtime.

Understanding the solution
The strategy pattern tells us that we should encapsulate the algorithm in a type that
conforms to a strategy protocol. We can then provide instances of the strategy types for use
by the invoker. The invoker will use the interface provided by the protocol to invoke the
algorithm.

Adopting Design Patterns in Swift

[162]

Implementing the strategy pattern
In this section, the strategy pattern will be demonstrated by showing how compression
strategies can be swapped out at runtime. Let's begin this example by creating a
CompressionStrategy protocol that each one of the compression types will conform to.

protocol CompressionStrategy {
 func compressFiles(filePaths: [String])
}

This protocol defines one method named compressFiles() that accepts a single
parameter, which is an array of strings that contain the paths to the files to compress. Now
let's create two structures that conform to the CompressionStrategy protocol named
ZipCompressionStrategy and the RarCompressionStrategy:

struct ZipCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using Zip Compression")
 }
}

struct RarCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using RAR Compression")
 }
}

Both of these structures implement the CompressionStrategy protocol by implementing
the method named compressFiles() which accepts an array of strings. Within these
methods, we simply print out the name of the compression that we are using. Normally we
would implement the compression logic in these methods.

Now, let's look at our CompressContent type, which will be called to compress the files:

struct CompressContent {
 var strategy: CompressionStrategy
 func compressFiles(filePaths: [String]) {
 self.strategy.compressFiles(filePaths: filePaths)
 }
}

Adopting Design Patterns in Swift

[163]

This type has one property named strategy that will contain an instance of a type that
conforms to the CompressStrategy protocol. It also has one method named
compressFiles() that accepts an array of strings that contain the paths to the files that we
wish to compress. In this method, we compress the files by calling the
compressFiles(filePaths:) method of the strategy instance.

We will use the CompressContent type as follows:

var filePaths = ["file1.txt", "file2.txt"]
var zip = ZipCompressionStrategy()
var rar = RarCompressionStrategy()

var compress = CompressContent(strategy: zip)
compress.compressFiles(filePaths: filePaths)

compress.strategy = rar
compress.compressFiles(filePaths: filePaths)

An array of strings is created that contains the files to compress. Instances of both the
ZipCompressionStrategy and the RarCompressionStrategy strategy types are then
created as well as an instance of the CompressContent type. Initially the compression
strategy is set to the ZipCompressionStrategy instance, and the compressFiles()
method is called, which prints the Using zip compression message to the console. Then
the compression strategy is changed to the RarCompressionStrategy instance and
compressFiles() method is called again, which prints the Using rar compression
message to the console.

The strategy pattern is good for setting the algorithms to use at runtime, which also lets us
swap the algorithms out with different implementations as needed by the application. This
pattern also allows us to encapsulate the details of the algorithm within the strategy types
themselves and not in the main implementation type.

Now let's look at one last pattern, the observer pattern.

The observer pattern
The observer pattern is used to implement distributed event handling where an observer
type is notified when an event occurs within another type. The observer pattern allows
groups of objects to cooperate with one another with few dependencies between them. This
pattern is so widely used that you have probably come across it many times if you have
developed applications using any modern UI framework such as Cocoa or Cocoa Touch.

Adopting Design Patterns in Swift

[164]

Understanding the problem
There are times where we need to perform an action in one or more parts of our code when
some event happens in another part of our code. This is a very common requirement with
most modern UI frameworks, where we wish to be notified when the user has had some
interaction with our user interface.

Understanding the solution
With the observer pattern, the observer registers to be notified when an event happens.
When the event is triggered, any instance that has registered for the event receives a
notification that the event has occurred. In Swift, there are several ways that we can
implement the observer pattern and in this section we will look at two of them. We are
looking at multiple solutions for this pattern because each of these solutions helps us
implement the observer pattern under specific circumstances. We will talk about when to
use each one of these solutions as we talk about the solutions themselves.

Implementing the observer pattern
For the first solution, we will use the NotificationCenter class. The
NotificationCenter class provides us with a mechanism to register for, post, and receive
notifications. All Cocoa and Cocoa Touch-based applications have a default notification
center when they are running. There is no need to create our own instance of the
NotificationCenter class.

When we use the notification center we need to provide a name for each notification. One
thing we never want to do is to hardcode the name in both the notifying type (the type that
posts the notifications) and the receiving types (the types that receive the notifications).
Instead we will want to define the name in a global constant and use it for both the
notifying and the receiving types; therefore, we will begin this example by defining the
name for our notification as follows:

let NCNAME = "Notification Name"

Adopting Design Patterns in Swift

[165]

Now we will create the type that will post our notifications. In this example, our type will
simply post a notification to the default notification center when we call a method named
post:

class PostType {
 let nc = NotificationCenter.default
 func post() {
 nc.post(name: Notification.Name(rawValue: NCNAME), object: nil)
 }
}

Finally, we will create a type that will receive the notifications when they are posted to the
notification center. This type will register a selector (in this example, a method named
receivedNotification()) with the notification center that will be called when new
notifications, identified by the name, are posted to the notification center:

class ObserverType {
 let nc = NotificationCenter.default
 init() {
 nc.addObserver(self,
 selector: #selector(receiveNotification(notification:)),
 name: Notification.Name(rawValue: NCNAME), object: nil)
 }
 @objc func receiveNotification(notification: Notification) {
 print("Notification Received")
 }
}

When we use NotificationCenter, we have to remember to prefix the method that will
be called with the @objc attribute. The @objc attribute makes our Swift API available to the
Objective-C runtime. This allows us to use the receiveNotifications() methods with
NotificationCenter.

We can now use these types as follows:

var postType = PostType()
var observerType = ObserverType()
postType.post()

If we run this example, we will see that the Notification Received message from the
ObserverType instance is printed to the console when we execute the post() method on
the instance of the PostType type. Using the notification center is a very easy and quick
way to add the observer pattern to your code.

Adopting Design Patterns in Swift

[166]

If our notifier or observer types are written in Objective-C, then we should use the
notification center as shown in this example. It is also easier to notify multiple recipients
with the notification center than it is with the following solutions because that functionality
is built into the notification center.

This second solution demonstrates how notifications are handled in the Cocoa and Cocoa
Touch framework where we register an instance of a type, which conforms to a specific
protocol, to receive notifications from instances of another type. In this example, we want to
be notified when a zombie turns or spots us. Let's start by defining a protocol that any type
that wants to receive the notifications must conform to. This protocol will be named
ZombieObserver:

protocol ZombieObserver {
 func turnLeft()
 func turnRight()
 func seesUs()
}

This protocol will require that conforming types implement the three functions defined in
the protocol. These will be the methods that are called to notify us when the zombie turns
or spots us.

Now let's define the observer that will receive the notifications from the Zombie type. We
will name this class MyObserver and it will conform to the ZombieObserver protocol so it
can receive the notifications when the zombie does something:

class MyObserver: ZombieObserver {
 func turnLeft() {
 print("Zombie turned left, we move right")
 }
 func turnRight() {
 print("Zombie turned right, we move left")
 }
 func seesUs() {
 print("Zombie sees us, RUN!!!!")
 }
}

Adopting Design Patterns in Swift

[167]

Finally, we will implement the Zombie type. The Zombie type will send out notifications to
the observer when it turns or spots someone:

struct Zombie {
 var observer: ZombieObserver

 func turnZombieLeft() {
 //Code to turn left
 //Notify observer
 observer.turnLeft()
 }
 func turnZombieRight() {
 //Code to turn right
 //Notify observer
 observer.turnRight()
 }
 func spotHuman() {
 //Code to lock onto a human
 //Notify observer
 observer.seesUs()
 }
}

In the Zombie type, we define one property that is of the ZombieObserver type. This is the
instance that will receive the notifications when the zombie does something. Also in the
Zombie type, we create three methods that are called when our zombie turns left, turns
right, or spots a human. Notice that in each of the methods we notify the observer of the
event that happened. Generally, these notifications would happen on new threads, but to
simplify the code here we took this code out.

We would use our Zombie and observer types, as shown in the following example:

var observer = MyObserver()
var zombie = Zombie(observer: observer)

zombie.turnZombieLeft()
zombie.spotHuman()

When this code is run, Zombie turned left, we move right, and Zombie sees
us, RUN!!!! messages from the MyObserver instance are printed to the console when the
turnZombieLeft() and spotHuman() methods are called.

Adopting Design Patterns in Swift

[168]

Implementing the observer pattern as shown in this example is the method used by most of
the UI elements in the Cocoa and Cocoa Touch framework. If we need a single observer,
this is usually the method we should use. If we need multiple observers, we could make our
observer property an array of MyObserver types, but then each time we notified the
observers we would need to loop through the array and notify each observer individually.

It is much easier to notify multiple observers using the NSNotificationCenter class
because the logic to call multiple observers is already implemented for us.

Summary
Design patterns are solutions to software design problems that we tend to see over and over
again in real-world application design. These patterns are designed to help us create
reusable and flexible code. Design patterns can also make our code easier to read and
understand for other developers and also for ourselves when we look back at our code
months/years later.

If we look at the examples in this chapter carefully, we will notice that one of the backbones
of design patterns is the protocol. Almost all design patterns (the singleton design pattern is
an exception) use protocols to help us create very flexible and reusable code.

If this was the first time that you really looked at design patterns, you probably noticed
some similarities to strategies that you have used in the past in your own code. This is
expected when experienced developers are first introduced to design patterns. I would also
encourage you to read more about design patterns because they will definitely help you to
create more flexible and reusable code.

8
Case Studies

Ever since I bought my first computer, a Commodore Vic-20, I have been continuously
learning new computer languages. I cannot count the number of computer languages that I
have learned over the years. Even when I was working as a network engineer and security
specialist, I learned languages such as Perl, Python, and Shell scripting to automate
administrative tasks. Learning all those languages has taught me that the best way to learn
a new programming language or a programming paradigm is to come up with several
small projects and figure out how to implement them in the language or programming
paradigm that I was trying to learn. With that in mind, for this chapter, we will take two
small projects and see how we will implement them using Swift and the protocol-oriented
programming paradigm. I recommend that you read the requirements for the project and
then try to implement your own solutions prior to reading the solution presented in this
book. This will help you to begin thinking about application design using the protocol-
oriented programming paradigm. I do have one hint for you: don't forget to use design
patterns in your solutions.

In this chapter, you will learn the following topics:

How to apply the protocol-oriented programming paradigm in real-world
situations
How to use design patterns with protocol-oriented programming to create real-
world solutions

Protocol-oriented programming isn't just about using protocols, protocol extensions, and
value types. If you are focused solely on using protocols and value types, then you are
missing the main point of this programming paradigm. Protocol-oriented programming is
about the overall design of the application or framework. Protocol-oriented programming
with design patterns focuses on ensuring that we have a very flexible and easy-to-maintain
code base that will enable us to very easily meet the needs of today and tomorrow.

Case Studies

[170]

Focusing on how we will maintain and expand our applications and frameworks in the
future may seem like a waste of time with the tight deadlines we are always on; however, in
the long-term, the time spent on making sure that our code base is easy to maintain and
expand always ends up saving us time, as the requirements will change and new features
will be added. We need to ensure that our code base is prepared for these changes.

In this chapter, we will be looking at two real-world case studies to see how we can apply
the protocol-oriented paradigm with design patterns to write solutions for real-world
projects. These two case studies are as follows:

Creating a logging service for our applications
Creating a data access layer

In the first case study, we will look at how we will use the protocol-oriented programming
paradigm to create a logging framework that can be easily maintained and expanded by our
users. In the second case study, we will see how we can use the protocol-oriented
programming paradigm to create a data access layer that is ready for different storage
mediums.

Let's start by looking at how we can create a logging service for our application.

Logging service
If I counted the lines of code that I have written in each language over the course of my life,
it would probably show that Java is the language that I have used the most. Java has its
good and bad points, but one of the things that I really liked about developing applications
in Java is all the different logging frameworks that are available.

These logging frameworks make it incredibly effortless to turn on log messages which
makes debugging very easy while the application is being developed. These debugging
messages can then be turned off when it is time to build the production release of the
application. To do this, these logging frameworks let us define how and where we wish to
log the messages for predefined log levels. Logging levels can also be ignored if we do not
need them. The log levels range from info (used purely for debugging) all the way up to
fatal (when something really bad happens).

Some of the logging frameworks that I have used with Java are Log4j, the Java Logging
API, and Apache Commons Logging. For this project, we will create a logging service
similar to these, but with the Swift language. The first thing we need to do is to define the
requirements for our logging service.

Case Studies

[171]

Requirements
Our logging service has several requirements, as defined in the following list:

We will need to have multiple log levels. The log levels that our framework will
support are Fatal, Error, Warn, Debug, and Info.
We will need to have multiple logging profiles. The framework will define two
profiles by default: LoggerNull and LoggerConsole. The LoggerNull profile
will do nothing with the log message (it will pretty much ignore the message and
not log it anywhere) while the LoggerConsole profile will print the log message
to the console.
The user will have the ability to add their own logging profile so that they can log
messages to a database, a UILabel, or any other location they want.
We must have the ability to configure the logging framework when the
application starts and keep that configuration throughout the life cycle of the
application. We do not want to force the users of our framework to reconfigure
the framework every time they need to use it.
We can assign multiple logger profiles to a single log level to give the user the
ability to display or store the logs to multiple profiles.

Before reading further, based on these requirements, see the type of design that you come
up with. Once you have worked out your design, then continue reading and compare your
design with the one presented here.

The design
We are going to separate the design into two sections. The first section will be the logger
profile section that will contain the types that will do the actual logging of the messages to a
storage medium, or display them. The second section will be the logger section that will
contain the types that the applications interface with. The logger types will determine the
log level of the message and then pass the message to the appropriate logger profiles to log
the message. Let's start off by looking at the logger profile section.

We will begin the logger profile design by creating a protocol named LoggerProfile. This
protocol will define the interface that the logger profiles will present, and any type that
conforms to this protocol can be used to log messages. The out-of-the-box framework will
provide two types that will conform to the LoggerProfile protocol. These types will be of
the LoggerNull and LoggerConsole types.

Case Studies

[172]

By starting the design with the LoggerProfile protocol and using the interface exposed
by the protocol to write log messages to the display/storage medium, we are using
polymorphism. This will allow the users of our framework to add additional logging
profiles by creating types that conform to the LoggerProfile protocol. These types
provide a means to log messages to any display or storage medium that meets their
requirements, such as a database, file, or even UILabel.

Let's look at a diagram that shows how we implement this design. The diagram shows that
we extend the LoggerProfile protocol to add a method named
getCurrentDateString(). This method will return a formatted string that contains the
current date and time. The diagram also shows that the LoggerNull and LoggerConsole
types will conform to the LoggerProfile protocol:

Let's look at how we implement this design. We will start off by looking at the
LoggerProfile protocol and the LoggerProfile protocol extension:

protocol LoggerProfile {
 var loggerProfileId: String {get}
 func writeLog(level: String, message: String)
}

extension LoggerProfile {
 func getCurrentDateString() -> String{
 let date = Date()
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy hh:mm"
 return dateFormatter.string(from: date)
 }
}

Case Studies

[173]

The LoggerProfile protocol defines one property and one function. The property is
named loggerProfileId, which is of the String type. This property is used to uniquely
identify the logging profile. This property will be used in the framework to ensure that the
logger profile is not added to the log level more than once. The method defined in the
protocol is named writeLog() and will be called to write the log message to the display or
storage medium defined by the profile.

We created a protocol extension for the LoggerProfile protocol, which adds a method
named getCurrentDateString(). This method returns a formatted date string of the
current date and time. While types that conform to the LoggerProfile protocol can elect
not to use the getCurrentDateString() method provided by the protocol extension, it is
recommended that they do in order to ensure that all the logger profile types provide a date
and time string with a consistent format.

Now let's look at the LoggerNull and LoggerConsole types:

struct LoggerNull: LoggerProfile {
 let loggerProfileId = "hoffman.jon.logger.null"
 func writeLog(level: String, message: String) {
 // Do nothing
 }
}

struct LoggerConsole: LoggerProfile {
 let loggerProfileId = "hoffman.jon.logger.console"
 func writeLog(level: String, message: String) {
 let now = getCurrentDateString()
 print("\(now): \(level) - \(message)")
 }
}

Both logger profiles have a unique ID defined in the loggerProfileId constant. Reverse
DNS name notation is used as the format for this ID. Reverse DNS notation is a naming
convention that is commonly used for naming components, packages, and other types. A
reverse DNS notation string is usually based on a registered domain name, but the names
are in the reverse order. For these examples, I am using my name rather than a registered
domain name.

Case Studies

[174]

We also provide, for both types, an implementation of the writeLog() method that is
required by the LoggerProfile protocol. For the LoggerNull type, the writeLog()
method does not do anything with the message because this type is written to ignore any
messages as if the messages were being sent to /dev/null. The writeLog() method for
the LoggerConsole type retrieves a string that represents the current date and time using
the getCurrentDateString() method provided by the LoggerProfile protocol
extension and then writes the log message to the console.

The next part of our logger service will be of the logger type. This type will keep track of
which logger profiles are assigned to the various log levels. Applications will primarily use
the interface provided by the Logger protocol as the means to configure the logger service
and to log messages.

While the initial design of the framework only contains one type that conforms to the
Logger protocol, we will still begin this design with a protocol to give us the ability to add
additional types that conform to the Logger profile in the future. It will also allow the users
to add additional types that conform to the Logger profile if they want. It may not seem
like that big of a deal right now, but two or three years down the road, as requirements
change and new features are added, we will be glad that a protocol was used here.

Let's begin by defining the log levels that our framework will offer. We will use an
enumeration to define these levels, as there is a finite number of these levels. The following
enumeration defines the log levels for our logging framework:

enum LogLevels: String {
 case fatal
 case error
 case warn
 case debug
 case info

 static let allValues = [fatal, error, warn, debug, info]
}

The LogLevels enumeration defines five log levels. It also provides an array that contains
all the five levels. This array can be used to retrieve all the log levels if needed. Now let's
look at the Logger protocol:

protocol Logger {
 static var loggers: [LogLevels:[LoggerProfile]] {get set}
 static func writeLog(logLevel: LogLevels, message: String)
}

Case Studies

[175]

The Logger protocol defines one property, named loggers, of the Dictionary type. This
dictionary has a log level that is defined in the LogLevels enumeration as the key and an
array of types that conform to the LoggerProfile protocol as the value. We also define
one method in the Logger protocol named writeLog(). This method is called within the
application to write a message to the logs. This method takes two arguments: the first
argument is the log level to write the log message and the second is the log message itself.

We define both the loggers property and the writeLog() method as static, so they can be
accessed without having to create an instance of the Logger type. Properties and methods
that are defined with the static keyword are known as type properties and type methods.
Another reason these are created as static is because one of the requirements for the logger
framework is to be able to configure the framework once and have the ability to keep that
configuration throughout the life cycle of the application. By creating these as static, there
will be one and only one instance of them throughout the life cycle of the application,
thereby fulfilling this requirement. We could use the singleton pattern to fulfill this
requirement; however, using type methods/properties would seem to work better in this
situation. We will see the advantage of this when we look at how we will use our logging
framework.

Now, let's look at the methods that the Logger protocol extension provides to types that
conform to the Logger protocol. The protocol extension will provide six type (static)
methods:

logLevelContainsProfile(logLevel: LogLevels, loggerProfile:

LoggerProfile) -> Bool: This will check the log level and return true if it
already contains the logger profile
setLogLevel(logLevel: LogLevels, loggerProfile: LoggerProfile):
This adds a logger profile to the log level
addLogProfileToAllLevels(defaultLoggerProfile: LoggerProfile):
This will add the logger profile to all the log levels
removeLogProfileFromLevel(logLevel: LogLevels, loggerProfile:

LoggerProfile): This removes the logger profile from the log level if it is
defined for that level
removeLogProfileFromAllLevels(loggerProfile: LoggerProfile): This
removes the log profile from all the log levels
hasLoggerForLevel(logLevel: LogLevels) -> Bool: This returns true if
there is any logger profile configured for the log level; otherwise, it returns false

Case Studies

[176]

Let's look at the code for the individual methods by starting off with the
logLevelContainsProfile() method:

static func logLevelContainsProfile(logLevel: LogLevels, loggerProfile:
LoggerProfile) -> Bool {
 if let logProfiles = loggers[logLevel] {
 for logProfile in logProfiles where
 logProfile.loggerProfileId == loggerProfile.loggerProfileId {
 return true
 }
 }
 return false
}

This method will return true if the log level contains the logger profile and will be used by
the setLogLevel() and addLogProfileToAllLevels() methods to ensure that we do
not add a logger profile to a log level more than once. This method starts off by using
optional binding to retrieve a list of logger profiles assigned to the log level. The for-in
statement is used with a where clause to loop through the list of logger profiles where the
loggerProfileId property matches the loggerProfileId property of the profile it is
looking for. If any item in the array matches this property, the method returns true;
otherwise it returns false.

Next, let's look at the setLogLevel() method:

static func setLogLevel(logLevel: LogLevels, loggerProfile: LoggerProfile)
{

 if let _ = loggers[logLevel] {
 if !logLevelContainsProfile(logLevel: logLevel,
 loggerProfile: loggerProfile) {
 loggers[logLevel]?.append(loggerProfile)
 }
 } else {
 var a = [LoggerProfile]()
 a.append(loggerProfile)
 loggers[logLevel] = a
 }
}

Case Studies

[177]

The setLogLevel() method uses the logLevelContainsProfile() method to verify
that the logger profile is not already assigned to the specified log level; if it isn't, then it will
add the logger profile to that level. This method begins by using optional binding to
retrieve the list of logger profiles assigned to the log level. This is done to verify that there is
a valid array assigned to the log level. The logLevelContainsProfile() method is used
to verify that the logger profile is not already assigned to the level and, if not, it is added.

If the optional binding fails at the start of the method, then a new array is created, the
logger profile is added to this new array, and the array is assigned to the log level within
the loggers dictionary.

Next let's look at the addLogProfileToAllLevels() method:

static func addLogProfileToAllLevels(defaultLoggerProfile: LoggerProfile)
{
 for level in LogLevels.allValues {
 setLogLevel(logLevel: level, loggerProfile: defaultLoggerProfile)
 }
}

The addLogProfileToAllLevels() method is used to add a logger profile to all the log
levels. This can be used to initialize the logger framework by adding a single profile to all
the levels. This method loops through each of the log levels and then calls the
setLogLevel() method to try to add the logger profile to each individual log level.

The next method we will look at is the removeLogProfileFromLevel() method:

static func removeLogProfileFromLevel(logLevel: LogLevels, loggerProfile:
LoggerProfile) {
 if var logProfiles = loggers[logLevel] {
 if let index = logProfiles.index(where:
 {$0.loggerProfileId == loggerProfile.loggerProfileId}) {
 logProfiles.remove(at: index)
 }
 loggers[logLevel] = logProfiles
 }
}

The removeLogProfileFromLevel() method will remove the logger profile from the
specified log level. This method starts off by using optional binding to retrieve the list of
logger profiles for the log level. The indexOf() method is used to locate the index of the
logger profile that matches the logger profile that needs to be removed. If the profile is
found, it is removed.

Case Studies

[178]

The next method is the removeLogProfileFromAllLevels() method:

static func removeLogProfileFromAllLevels(loggerProfile: LoggerProfile) {
 for level in LogLevels.allValues {
 removeLogProfileFromLevel(logLevel: level,
 loggerProfile: loggerProfile)
 }
}

The removeLogProfileFromAllLevels() method will attempt to remove a logger profile
from all the log levels. This method will loop through all of the log levels that have been
defined and call the removeLogProfileFromLevel() method in an attempt to remove the
logger profile from that level.

The final method in the Logger protocol extension is the hasLoggerForLevel() method:

static func hasLoggerForLevel(logLevel: LogLevels) -> Bool {
 guard let _ = loggers[logLevel] else {
 return false
 }
 return true
}

The hasLoggerForLevel() method returns true if the log level contains any logger
profiles; otherwise, it returns false. This method uses optional binding with a guard
statement to retrieve the list of logger profiles assigned to the log level. If the optional
binding statement fails, then a false value is returned; otherwise, a true value is returned.

Now, let's look at our Logger type, which will conform to the Logger protocol:

struct MyLogger: Logger {
 static var loggers = [LogLevels: [LoggerProfile]]()
 static func writeLog(logLevel: LogLevels, message: String) {
 guard hasLoggerForLevel(logLevel: logLevel) else {
 print("No logger")
 return
 }
 if let logProfiles = loggers[logLevel] {
 for logProfile in logProfiles {
 logProfile.writeLog(level: logLevel.rawValue, message: message)
 }
 }
 }
}

Case Studies

[179]

The MyLogger type has one property named loggers, which is a dictionary whose key is a
log level defined in the LogLevels enumeration and whose value is an array of types that
conform to the LoggerProfile protocol. The writeLog() method is used within the
applications to write a message to the log, and it takes two arguments. The arguments are
the log level to write the log message for and the log message itself.

The MyLogger type can be used as follows:

MyLogger.addLogProfileToAllLevels(defaultLoggerProfile: LoggerConsole())
MyLogger.writeLog(logLevel: LogLevels.debug, message: "Debug Message 1")
MyLogger.writeLog(logLevel: LogLevels.error, message: "Error Message 1")

This sample code begins by adding the LoggerConsole logger profile to all the log levels.
This will cause all the log messages, no matter what the log level is, to be logged to the
console. The Debug log level is then used to log the Debug Message 1 message, which will
be written to the console. Finally, the Error log level is used to log the ErrorMessage 1
message. This message will also be written to the console.

If you are familiar with the design patterns from Chapter 7, Adopting Design Patterns with
Swift, you will recognize that we are using the command pattern with this solution. The
command pattern lets us define actions that can be executed later by encapsulating the logic
for the action into a type. In this solution, we'll define the logic to execute into the logger
profile types. Then, the logger type will execute the logic when needed.

In this example, we can see that we do not need to create an instance of the Logger type to
configure it or to log messages. The reason for this is that we made the properties and
methods static (type methods and type properties). When we are creating frameworks that
should have a very small footprint, for instance, this logger framework, using type methods
and properties to avoid instantiation of the types that can make the frameworks
significantly easier to use.

Conclusion
The basis of both the logger profiles and the loggers themselves are protocols, therefore
making it easy to add additional profiles and loggers by creating new types that conform to
these protocols. Protocol extensions were used to add functionality to types that conform to
the protocol. These new types also automatically receive the functionality defined within
the protocol extensions. Designing frameworks in this manner allows us to very easily add
functionality and new features as we receive new requirements. It also allows the users of
the framework to expand it to suit their needs.

Case Studies

[180]

When designing frameworks or applications, one thing that all good architects keep in the
back of their mind is not only implementing the current requirements, but also how they
can expand the framework or application to meet future needs. This is the idea behind
using protocols and using the interface provided by the protocol rather than concrete types.
Using the interface provided by the protocol gives the ability to use any type that conforms
to the protocol. This adds a lot of flexibility and expandability to our frameworks and
applications.

Now, let's look at how we can create a data access layer that can be easily expanded to use
different data storage mediums.

Data access layer
The most serious applications need to persist some amounts of data. This data could be
transactional data, user preferences, or the current state of the application. There are many
ways that data can be persisted in our applications. Determining the appropriate way to
persist this data can be one of the most critical decisions that an architect needs to make.

As an architect, we should separate the actual data storage from the business logic. This will
allow the application to change how the data is persisted in the future without having to
change the business logic. This is called a data access layer.

It is important when designing an application to design a good data access layer because
having a good data access layer will make the code much easier to maintain as the
requirements change. If we separate the data access layer from the main business logic, then
if the backend data store changes, only the code within the data access layer needs to
change.

Requirements
Our data access layer will have several requirements:

All access to the backend data storage should go through the data helper types.
These data helper types will handle all the Create, Read, Update, Delete (CRUD)
functionalities to the backend storage.
Code external to this data access layer should not know or care how the data is
persisted.

Case Studies

[181]

For our example, we will need to create two types--one named player, which
will contain information about a baseball player, and one named team, which
will contain information about a baseball team. Each baseball player will contain
the team ID and information about the team that they play for.
For our example, we will store the data in an array; however, we will need the
ability to change the storage mechanism without having to touch our business
logic code.

Before reading further, based on these requirements, see what type of design you come up
with. Once you have worked out your design, continue reading and compare your design
to the one we present.

The design
The data access layer will consist of three layers. The bottom-most layer, known as the Data
Helper Layer, will consist of types that will be used to persist the data. For this example, the
data will be stored in an array, but these types should be easily updatable to persist the data
any way we need to in the future.

The next layer is the Data Model Layer, which will contain tuples that model how the data
is stored in the data helper layer pretty closes. These tuples will be used as temporary
storage to read and write data to/from the data store. Some people prefer using structures at
the model layer, but I find that tuples work just as well because these types should not
contain any business logic.

The final layer is the Bridge Layer, which converts the data from the business logic layer
into the data access layer. The bridge layer is the layer that separates our business logic
from the data access logic. This layer will contain types that our business logic will use to
access the data, and will contain bridge types that will convert the data types used in the
business access layer to the data types used in the data access layer.

Case Studies

[182]

In this example, there will be two types of data stored in two tables. These will be the Teams
and the Players tables. From the preceding description, this means that two data helper
classes are needed (TeamDataHelper and PlayerDataHelper) with two tuples (Team and
Player). The data access layer design will look like this:

Let's start off by looking at the data model layer since it will be the communication layer
between the bridge layer and the data helper layer.

Data model layer
There are two types defined in the data model layer. These types are used to transfer the
data between the data helper layer and the bridge layer. Since these types should be used
exclusively to transfer the data, using value types and, in particular, tuples, is preferred.
Keep in mind that we want to avoid tightly coupling the business logic with the data access
layer; therefore, these types should not be used outside the data access layer. If we avoid
tightly coupling the business logic with the data access layer, we will have the ability to
change either one independently of the other. The following code shows the types in the
data model layer:

typealias TeamData = (teamId: Int64?, city: String?, nickName: String?,
 abbreviation: String?)
typealias PlayerData = (playerId: Int64?, firstName: String?,
 lastName: String?, number: Int?, teamId: Int64?,
 position: Positions?)

We will have a bridge that will convert the data from these types into data structures used
by the business logic layer. We will implement these bridges later in this section.

Case Studies

[183]

In the Player tuple, there is an element named position of the Positions type. The
Positions type is an enumeration that contains all the valid positions that a player can
play. The following code shows how to define the Positions type:

enum Positions: String {
 case pitcher = "Pitcher"
 case catcher = "Catcher"
 case firstBase = "First Base"
 case secondBase = "Second Base"
 case thirdBase = "Third Base"
 case shortstop = "Shortstop"
 case leftField = "Left Field"
 case centerField = "Center Field"
 case rightField = "Right field"
 case designatedHitter = "Designated Hitter"
}

Now let's look at our data helper layer that will be used to persist our data.

Data helper layer
In a design such as this, there is a need to have good error checking, which will let external
code know when something bad happens; therefore, we will start the data helper layer by
defining the errors that can be thrown. Swift's error-handling framework will be used;
therefore, the errors are defined in an enumeration, as follows:

enum DataAccessError: Error {
 case datastoreConnectionError
 case insertError
 case deleteError
 case searchError
 case nilInData
}

We will see how these errors are thrown as we go through the code. Depending on the type
of persistence that is used, the error types may change to give more details about the actual
errors that occurred.

The data helper layer will be used to persist the data. This is the layer that will change as
our storage mechanism changes. In this example, the data will be stored in an array;
however, the types in this layer should have the ability to change as different storage
mechanisms are needed in the future. This layer will contain one type for each data type in
our data model layer. These types will be used to read and write the data.

Case Studies

[184]

We will begin by creating a DataHelper protocol that will define the minimum set of
methods that each data helper type must implement. The DataHelper protocol looks as
follows:

protocol DataHelper {
 associatedtype T
 static func insert(_ item: T) throws -> Int64
 static func delete(_ item: T) throws -> Void
 static func findAll() throws -> [T]?
}

Within this protocol, we define three methods. These are as follows:

insert: This inserts a row into the table
delete: This deletes a row from the table
findAll: This returns all the rows in the table

There is only one method defined to query the data. This is done because the methods to
query each individual data type may vary depending on the data; therefore, the method(s)
needed to query these types could be different. We need to evaluate the query method(s)
needed for each data type on an individual basis.

Now let's build the TeamDataHelper type that will conform to the DataHelper protocol.
This type will be used to persist the team data:

struct TeamDataHelper: DataHelper {
 // Code goes here
}

This type starts by defining an associatedtype and then creates an array to store the data
in the following:

typealias T = TeamData
static var teamData: [T] = []

The teamData array is defined as static, so there will be one and only one instance of this
array in the code. The typealias T variable is set to the TeamData type. Now, let's look at
how we can implement each of the three methods defined in the DataHelper protocol plus
one extra method that will search the data by its unique identifier of the team. We will not
discuss the implementation details here because we are more concerned with the design
rather than how we store/search the information in an array.

Case Studies

[185]

The first method that we will implement is the insert() method, which will insert an item
into the array. This method will return an Int64 value representing the unique ID of the
item if everything was stored properly. This method will also throw an error if there is an
issue with the data. If another storage mechanism was being used, this method may need to
throw additional errors:

static func insert(_ item: T) throws -> Int64 {
 guard item.teamId != nil && item.city != nil && item.nickName !=
 nil && item.abbreviation != nil else {
 throw DataAccessError.nilInData
 }

 teamData.append(item)
 return item.teamId!
}

Now, let's create the delete() function to remove an item from the array. This method will
throw an error if the item does not exist or if teamId is nil:

static func delete (_ item: T) throws -> Void {
 guard let id = item.teamId else {
 throw DataAccessError.nilInData
 }
 let teamArray = teamData
 for (index, team) in teamArray.enumerated() where team.teamId == id {
 teamData.remove(at: index)
 return
 }
 throw DataAccessError.deleteError
}

Now, let's implement the findAll() method, which will return all of the teams in the
array. This method can throw an error, but that is more for future needs:

static func findAll() throws -> [T]? {
 return teamData
}

Finally, the find() method is implemented to search and return a single item from the
team array. We may need additional find() methods depending on needs, but this method
will return the team with the particular teamId. This method is also marked to throw an
error, but it is also for future needs. If teamId is not found in the array, it will return a nil
value:

static func find(_ id: Int64) throws -> T? {
 for team in teamData where team.teamId == id {

Case Studies

[186]

 return team
 }
 return nil
}

The PlayerDataHelper type is implemented just like the TeamDataHelper type. To see
the code for the PlayerDataHelper class, please download the code from the Packt
website.

Ideally, for the data access layer, the data (PlayerData and TeamData) and data helper
(PlayerDataHelper and TeamDataHelper) types would be decoupled from the main
business logic. If we look through the design patterns that we discussed earlier in this book,
we will see that the bridge pattern can be used here. Let's see how we will use the bridge
pattern to maintain a good separation layer between our data access layer and our
application code.

We will want to start off by defining how to model the data within the application itself.
This data can be modeled exactly like the data model within the data access layer, or it can
be designed significantly differently.

I usually find that if I properly normalize my data, there are usually
significant differences between how I store the data and how I use it
within my application. By separating our data access layer from our
application code, we are also able to model our data differently between
these two layers.

Let's now look at how we will design our bridge layer.

Bridge layer
In this example, the data in the data access layer and the application layer will have only
one small difference. The difference will be when a player is retrieved, the information
about that team will be retrieved with it and will be a part of the player's data structure.
Let's see how to define the team and the player in the bridge layer. Let's start off by defining
the Team type because it is needed within the Player type:

struct Team {
 var teamId: Int64?
 var city: String?
 var nickName:String?
 var abbreviation:String?
}

Case Studies

[187]

Value types are being used for the data structures in this example. When we use value types
for data structures such as this, we need to remember that changes to these types are only
persisted in the scope that the changes are made in. If we need to persist the changes
outside the scope the changes were made in, we must use inout parameters. Ultimately,
the choice between using a value or reference type is yours; the key is to be consistent and
document the type used.

In this example, the Team structure is designed to mirror the TeamData tuple that
represents the teams in the data helper layer. Now let's look at the Player structure:

struct Player {
 var playerId: Int64?
 var firstName: String?
 var lastName: String?
 var number: Int?
 var teamId: Int64? {
 didSet {
 if let t = try? TeamBridge.retrieve(teamId!) {
 team = t
 }
 }
 }
 var position: Positions?
 var team: Team?

 init(playerId: Int64?, firstName: String?, lastName: String?, number:
Int?, teamId: Int64?, position: Positions?) {
 self.playerId = playerId
 self.firstName = firstName
 self.lastName = lastName
 self.number = number
 self.teamId = teamId
 self.position = position
 if let id = self.teamId {
 if let t = try? TeamBridge.retrieve(id) {
 team = t
 }
 }
 }
}

Case Studies

[188]

The Player structure is similar to the PlayerData tuple, except an additional optional
property of the Team type is added. This property will hold the information about the team
that the player is on. We use a property observer to load the information about the team
from the data store whenever the teamId property is set. We also load the team information
in the initializer. Remember that the property observers are not called during the
initialization of a type; therefore, the didSet observer is not called when we set teamId
during initialization.

Now, let's look at the bridge types that will be used as a bridge between our data access
layer and our application code. We will start off with our TeamBridge structure:

struct TeamBridge {
 static func save(_ team: inout Team) throws {
 let teamData = toTeamData(team)
 let id = try TeamDataHelper.insert(teamData)
 team.teamId = id
 }
 static func delete(_ team: Team) throws {
 let teamData = toTeamData(team)
 try TeamDataHelper.delete(teamData)
 }
 static func retrieve(_ id: Int64) throws -> Team? {
 if let t = try TeamDataHelper.find(id) {
 return toTeam(t)
 }
 return nil
 }
 static func toTeamData(_ team: Team) -> TeamData {
 return TeamData(teamId: team.teamId , city: team.city,
 nickName: team.nickName, abbreviation:
 team.abbreviation)
 }
 static func toTeam(_ teamData: TeamData) -> Team {
 return Team(teamId: teamData.teamId, city: teamData.city,
 nickName: teamData.nickName, abbreviation:
 teamData.abbreviation)
 }
 }

Case Studies

[189]

The TeamBridge structure has five methods. The first three methods use the functionality
from the TeamDataHelper structure to insert, delete, and retrieve data from the data access
layer. Notice that in the save() method, an inout parameter is used because we are
making changes to the team parameter that we want to persist outside of the scope for this
method. The last two methods will convert the data between the TeamData tuple (data
access layer) and the Team class (application layer). Now, if (when) requirements change,
we can change either the data access layer or the application layer independently of each
other. The bridge structure may need to change as either the data access layer or the
application layer changes, but it is a lot easier to make this single bridge type rather than
refactoring the entire code base.

Now let's see the PlayerBridge structure:

struct PlayerBridge {
 static func save(_ player: inout Player) throws {
 let playerData = toPlayerData(player)
 let id = try PlayerDataHelper.insert(playerData)
 player.playerId = id
 }
 static func delete(_ player:Player) throws {
 let playerData = toPlayerData(player)
 try PlayerDataHelper.delete(playerData)
 }
 static func retrieve(_ id: Int64) throws -> Player? {
 if let p = try PlayerDataHelper.find(id) {
 return toPlayer(p)
 }
 return nil
 }
 static func toPlayerData(_ player: Player) -> PlayerData {
 return PlayerData(playerId: player.playerId, firstName:
 player.firstName, lastName: player.lastName,
 number: player.number, teamId: player.teamId,
 position: player.position)
 }
 static func toPlayer(_ playerData: PlayerData) -> Player {
 return Player(playerId: playerData.playerId, firstName:
 playerData.firstName, lastName: playerData.lastName,
 number: playerData.number, teamId: playerData.teamId,
 position: playerData.position)
 }
}

Case Studies

[190]

The PlayerBridge structure is very similar to the TeamBridge structure, except that we
are converting between the PlayerData tuple (data access layer) and the Player class
(application layer). Once again, this allows us to change either the data access layer or the
application layer independently of the other.

Using the data access layer
Now, let's see how to use the data access layer by creating a team and a player:

var bos = Team(teamId: 0, city: "Boston",
nickName: "Red Sox", abbreviation: "BOS")

try? TeamBridge.save(&bos)
var ortiz = Player(
playerId: 0,firstName: "David", lastName: "Ortiz", number: 34,
teamId: bos.teamId, position: Positions.designatedHitter)

try? PlayerBridge.save(&ortiz)

In this code, we created one team, the Boston Red Sox and one player, David Ortiz. We
also put David Ortiz on the Boston Red Sox team, by assigning Red Sox team id to
the player's team id. This information can now be retrieved, as shown in the following
code:

if let team = try? TeamBridge.retrieve(0) {
 print("--- \(team?.city)")
}

if let player = try? PlayerBridge.retrieve(0) {
 print("---- \(player?.firstName) \(player?.lastName) plays for
 (player?.team?.city)")
}

This code will print out the following results:

--- Optional("Boston")")
---- Optional("David")") Optional("Ortiz")") plays for Optional("Boston")")

Case Studies

[191]

By using the TeamBridge and PlayerBridge types, we do not need to be concerned about
how the data is being stored in the backend. It can use an SQLite database, an array, or even
a file to store the information. We are also able to change the backend storage
independently of the main application code. This will allow us to change the backend
storage to meet any new requirements that we may have in the future without having to
refactor all the main application code.

Conclusion
Creating separate layers, as we showed in this example, may take additional time when we
initially build our application, but it will save us time in the long-term because
requirements will change and new features will be added; therefore, our code needs to be
easy to change to meet these needs. Creating separate layers, and using the bridge pattern
to connect these layers, gives us the ability to change either layer easily and independently
of the other.

Summary
In this chapter, we looked at two case studies to see how we can use Swift with the
protocol-oriented programming paradigm and how to use design patterns to create easy-to-
maintain and flexible applications. If you worked through the designs yourself and your
design was different from the ones presented here, that is OK. There are many correct
answers for each of these problems. The key is to make sure your applications are designed
to be easily maintained and very flexible.

As an architect, your focus should not only be on meeting the requirements of your
framework or application but also on making your code base easy to maintain and expand
in order to meet future requirements. Using a programming paradigm, such as protocol-
oriented programming, and emphasizing the use of design patterns in our application's
design can help us meet these requirements.

Index

A
Apache Commons Logging 170
Apple
 URL 157
associated types
 about 82
 with protocols 19

B
behavioral design patterns
 about 157
 chain of responsibility 158
 command design pattern 158
 iterator 158
 mediator 158
 memento 158
 observer 158
 observer pattern 163
 state 158
 strategy 158
 strategy pattern 161
 visitor 158
Bridge Layer 181
bridge pattern
 about 147
 implementing 148, 152
 problem 147
 solution 148
builder design pattern
 about 137
 implementing 138
 problem 137
 solution 137

C
Collection protocol
 about 28
 URL 60
command design pattern
 implementing 159
 problem 158
 solution 159
copy-on-write 85, 91
Create, Read, Update, Delete (CRUD) 180
creational patterns
 about 133
 abstract factory pattern 134
 builder design pattern 137
 factory method pattern 143
 prototype pattern 134
 singleton design pattern 134

D
data access layer
 about 180
 bridge layer 186, 190
 conclusion 191
 data helper layer 183, 186
 data model layer 182
 design 181
 requisites 180
 using 190
Data Helper Layer 181
Data Model Layer 181
delegation 20
design patterns
 about 132
 behavioral patterns 133
 creational patterns 133
 structural patterns 133

[193]

E
Equatable protocol
 conforming 71
ExpressibleByArrayLiteral protocol
 URL 62
extension
 defining 57, 59
 used, in Swift standard library 70

F
facade pattern
 about 152
 implementing 153, 155
 problem 152
 solution 152
factory method pattern
 about 143
 implementing 144
 problem 143
 solution 143

G
GameplayKit 60
generic functions 74
generic type 78, 81
generics
 subscripts 83
 type constraints 77
 using, in protocol-oriented design 91, 95
 using, in Swift standard library 95

L
logging service
 conclusion 179
 creating 170
 design 171, 179
 requisites 171

O
object-oriented design
 issues 109, 110
object-oriented programming language
 about 98, 100, 109
 protocol extensions, comparing with superclass

123

 protocol, comparing with superclass 123
 reference type, using 128
 summarizing 122
 value types, using 128
 vehicle types, implementing 126
 versus protocol-oriented programming 123, 129
observer pattern
 about 163
 implementing 164, 168
 problem 164
 solution 164
Open Service Gateway Initiative (OSGi) 7

P
polymorphism
 with protocols 16
protocol composition 13, 115
protocol extensions
 about 59, 115
 comparing, with superclass 123
protocol inheritance 12, 114
protocol-oriented design
 generics 91, 95
protocol-oriented programming language
 about 113, 121
 protocol extensions, with superclass 123
 protocol, comparing with superclass 123
 reference type, using 128
 summarizing 122
 value type, using 128
 vehicle types, implementing 126
 versus object-oriented programming 123, 129
protocol
 associated types 19
 comparing, with superclass 123
 defining 9
 designing 23, 27
 method requisites 10
 optional requisites 11
 polymorphism 16
 requisites 10
 syntax 9
 type casting 18
 using, as type 15

 using, in Swift standard library 27
proxy design pattern
 about 155
 implementing 156
 problem 155
 solution 155

S
sample code
 requisites 99, 113
Sequence protocol 28
singleton design pattern
 about 134
 implementing 135
 problem 135
 solution 135
strategy pattern
 about 161
 implementing 162
 problem 161
 solution 161
structural design patterns
 about 147

 adapter pattern 147
 bridge pattern 147
 composite pattern 147
 decorator pattern 147
 facade pattern 152
 flyweight pattern 147
 proxy design pattern 155
superclass
 protocol, comparing 123
Swift standard library
 extensions 70
 generics 95
 protocols 27
Swift
 URL 8

T
text validation 63, 69
type casting
 with protocols 18

W
World Wide Developers Conference (WWDC) 7,

112

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Starting with the Protocol
	Protocol syntax
	Defining a protocol
	Property requirements
	Method requirements
	Optional requirements

	Protocol inheritance
	Protocol composition
	Using protocols as a type
	Polymorphism with protocols
	Type casting with protocols
	Associated types with protocols
	Delegation
	Designing with protocols
	Protocols in the Swift standard library
	Summary

	Chapter 2: Our Type Choices
	Classes
	Structures
	Access controls
	Enumerations
	Tuples
	Protocols
	Value and reference types
	Recursive data types for reference types only
	Inheritance for reference types only
	Dynamic dispatch
	Swift's built-in types
	Copy-on-write
	Summary

	Chapter 3: Extensions
	Defining an extension
	Protocol extensions
	Text validation
	Extensions with the Swift standard library
	Conforming to the Equatable protocol
	Summary

	Chapter 4: Generics
	Generic functions
	Type constraints with Generics
	Generic types
	Associated types
	Generic subscripts
	Copy-on-write
	Generics in a protocol-oriented design
	Generics in the Swift standard library
	Summary

	Chapter 5: Object-Oriented Programming
	What is object-oriented programming?
	Requirements for the sample code
	Swift as an object-oriented programming language
	Issues with the object-oriented design
	Summary

	Chapter 6: Protocol-Oriented Programming
	Requirements for the sample code
	Swift as a protocol-oriented programming language
	Summarizing protocol-oriented programming and object-oriented programming
	Differences between object-oriented programming and protocol-oriented programming
	Protocol and protocol extensions compared with superclasses
	Implementing vehicle types
	Using value and reference types

	The winner is...
	Summary

	Chapter 7: Adopting Design Patterns in Swift
	What are design patterns?
	Creational patterns
	The singleton design pattern
	Understanding the problem
	Understanding the solution
	Implementing the singleton pattern

	The builder design pattern
	Understanding the problem
	Understanding the solution
	Implementing the builder pattern

	The factory method pattern
	Understanding the problem
	Understanding the solution
	Implementing the factory method pattern

	Structural design patterns
	The bridge pattern
	Understanding the problem
	Understanding the solution
	Implementing the bridge pattern

	The facade pattern
	Understanding the problem
	Understanding the solution
	Implementing the facade pattern

	The proxy design pattern
	Understanding the problem
	Understanding the solution
	Implementing the proxy pattern

	Behavioral design patterns
	The command design pattern
	Understanding the problem
	Understanding the solution
	Implementing the command pattern

	The strategy pattern
	Understanding the problem
	Understanding the solution
	Implementing the strategy pattern

	The observer pattern
	Understanding the problem
	Understanding the solution
	Implementing the observer pattern

	Summary

	Chapter 8: Case Studies
	Logging service
	Requirements
	The design
	Conclusion

	Data access layer
	Requirements
	The design
	Data model layer
	Data helper layer
	Bridge layer
	Using the data access layer
	Conclusion

	Summary

	Index

