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Preface 

Motivation for the book 
Communication protocols – for short protocols – form the basis for the opera-

tion of computer networks and telecommunication systems. They are behavior 
conventions which describe how communication systems interact with each other 
in computer networks. Protocols define the temporal order of the interactions and 
the formats of the data units exchanged. Communication protocols comprise a 
wide range of different functions and mechanisms, such as the sending and receiv-
ing of data units, their coding/decoding, error control mechanisms, timer control, 
flow control, and many others. Protocols essentially determine the efficiency and 
reliability of computer networks. The processes in protocols, however, may be ve-
ry complex and sophisticated. Concurrent processes and the nondeterministic ap-
pearance of events increase the complexity of protocol behaviors. The diversity of 
the involved mechanisms is often in conflict with the hoped for efficiency. 

Communication systems use defined protocol hierarchies which are based on 
fixed architectural principles like in the Internet architecture. Protocols provide a 
specific functionality which is offered in the form of a service to other protocols or 
to an application. Different principles have been applied for the design of protocol 
hierarchies. Closed or proprietary architectures are dedicated to the requirements 
of a certain application or to the products of a company. Open architectures, in 
contrast, provide unified interaction principles which allow one to set up hetero-
geneous networks.  

Communication protocols can be implemented in either hardware or software. 
Implementations in software prevail, especially in higher layers. The implementa-
tion of protocols is closely connected to the target execution environment, in par-
ticular to the given operating system. The manner in which a protocol is imple-
mented influences its efficiency just as strongly as its design. 

The experience of almost error-free use of services in the Internet hides the ef-
forts needed for the development of communication protocols. Before protocols 
can be installed in a network they have to be designed, described, verified, adap-
ted, implemented, and tested. The development of protocols – from design to in-
stallation – is a complex, tedious, and error-prone process which is only in part 
automated nowadays. Protocol development raises similar questions and problems 
as software engineering. Many of the typical phases and features of software de-
velopment are also contained in the protocol development process. However, the 
distributed character of communication protocols raises a number of additional is-
sues which go beyond traditional software development. For that reason, Protocol 
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VIII  Preface  

Engineering1 has become a sub-discipline in the telecommunication area which 
comprises the design, validation, and implementation of communication protocols. 

The crucial aspect in protocol development is to find an appropriate description of 
the protocol. Informal descriptions have proved inappropriate due to their ambigu-
ity. Therefore formal descriptions based on formal semantic models are preferred. 
The use of formal description techniques (FDTs) for the design, validation, and 
implementation of communication protocols is the characteristic feature of Proto-
col Engineering. Formal description techniques guarantee a unique interpretation 
of the protocol specification. They are the foundation for the systematic develop-
ment of communication protocols as well as distributed systems as an engineering 
discipline. They establish the basis for providing tools to support the different de-
velopment stages and to automate parts of the development phases.  

What are the features of communication protocols which justify the establishment 
of Protocol Engineering as an independent sub-discipline? These features relate to 
a number of particularities which characterize protocol development and distin-
guish it from traditional software development: 
 
 The protocol notion used commonly comprises, exactly speaking, two con-

cepts: that of the service and that of the protocol. The service denotes the re-
sult of the interaction between network components, when running a protocol. 
It can be used by other protocols or an application. The protocol describes 
how the service is provided. It is quasi its “implementation”. This has conse-
quences for the description of services and protocols. In contrast to the tradi-
tional software specification not only a What-specification, which describes 
the “service”, is required, but also a How-specification is needed to specify 
how this service is provided, i.e., its “implementation”. 

 Protocol entities, which form the communicating partners in a protocol, must 
be capable of reacting simultaneously to different events and communication 
requirements, respectively. This can result in concurrent execution threads 
and the nondeterministic appearance of events. 

 Unlike many other areas in computer science, the protocol area is character-
ized by (international) standards. Many protocols are defined as a standard. 
This is necessary so that the protocol can be implemented multiple times in 
different execution environments. The various implementations must be able 
to work together, i.e., they must be interoperable. Standardization usually cuts 
off the design stage from subsequent phases, such as verification, implemen-
tation, and testing. It also requires specific methods, such as the conformance 
test, to prove compliance with the standard. 

 Protocols are subject to high demands on efficiency and reliability. The com-
plexity of protocols is often contradictory to these requirements. The distrib-
uted nature of protocols results in complex state spaces in which design and 

                                                           
1 The name was first introduced by Piatkowski in 1983 [Piat83]. 



  Preface IX 

implementation errors are difficult to find. To prove the correctness of the de-
sign and implementations special methods have to be applied.   

 The development of protocols is expensive. It binds much manpower over a 
long period. To make this process more efficient tools are required which im-
plement the protocol-specific development methods.  

 
With regard to the existence of a world-wide communication infrastructure like 

the Internet, one might assume that the development of new protocols is not re-
quired any more. This is not true. Novel technological possibilities and innovative 
developments put new demands on the communication infrastructure and their 
protocols. In recent years many new protocols have appeared, in particular for 
wireless communication or peer-to-peer applications. With the development of 
new Internet applications and technologies the development of new protocols will 
continue in the future. 

Objective of the book 
The book is dedicated to the fundamentals of Protocol Engineering. It intro-

duces the reader to the world of protocols, their basic principles, their description, 
and their development. The book considers both the theoretical and the practical 
aspects of Protocol Engineering and tries to link both parts which are often con-
sidered independently. At the same time it aims to point out the possibilities and 
limitations of the various methods. Last but not least, the book aims to encourage 
the reader to apply these methods in their practical work. 

The book is primarily a book about formal description techniques for commu-
nication protocols and related methods. In the introductory part it presents the 
fundamentals of communication protocols as they are needed for further reading. 
The book is not a general introduction to computer networks; this is given in the 
well-known teaching books of Tanenbaum and Whetherall, Stallings, Peterson and 
Davie, and Kurose and Ross. It deals with a specific, but important area of the de-
velopment of computer networks and telecommunication systems and thus it sup-
plements the above mentioned books. 

For whom is the book written? 
This book is written for students and engineers of computer science and com-

munication technology who want to introduce themselves to the field of commu-
nication protocols and their development. It also addresses specialists who want to 
deepen their knowledge of Protocol Engineering or look up applied methods. The 
book may be also of interest to software engineers who work on the development 
of distributed systems. Many of the presented methods for describing and validat-
ing protocols can also be applied to distributed systems. 

The book does not require special knowledge of this topic. It is merely assumed 
that the reader possesses basic knowledge in computer networks and software en-
gineering. 

 



X  Preface  

Structure of the book 
The book consists of three parts. The first part contains the fundamentals of 

communication protocols. It describes the working principles of protocols and im-
plicitly also those of computer networks. In this part we introduce the basic con-
cepts service, protocol, layer, and layered architecture. Applying analogies from 
everyday life we try to familiarize the reader with the in-part-complicated proce-
dures in protocols. In parallel, we introduce the basic elements for the description 
of protocols using a model language. Thereafter we present the most important 
protocol functions. Finally we give as a case study an overview of the TCP/IP pro-
tocol suite.  

The second part of the book deals with the description of communication proto-
cols. We give a comprehensive overview of the various methods and techniques 
for describing protocols. Beginning with the requirements on formal description 
techniques we first introduce the fundamental description methods which are in 
part used as semantic models for the formal description techniques. Thereafter we 
give an example of the various approaches of formal description techniques to-
gether with an overview of a representative language. The languages considered in 
this way are SDL-2000, MSC, LOTOS, cTLA, and ASN.1. We also give an out-
look on the use of UML for describing protocols. 

The third part presents the protocol life cycle and the most important develop-
ment stages. We consider the following phases: design, specification, verification, 
performance evaluation, implementation, and testing and present the most relevant 
methods applied in these stages. The reader gets acquainted with approaches for a 
systematic protocol design, with basic techniques for the specification of proto-
cols, with various verification methods, with the main implementation techniques, 
and with strategies for their testing, in particular with the conformance and the in-
teroperability tests. In the testing chapter we also give an overview of the test de-
scription languages TTCN-2 and TTCN-3. 

The connection between the three parts of the book is formed by the XDT 
(eXample Data Transfer) protocol. XDT is a simple data transfer example proto-
col which applies the go back N principle. It is used as a reference protocol 
throughout the book to exemplify the different description techniques as well as to 
demonstrate important validation and implementation approaches. This is sup-
posed to give the reader the possibility to compare the different techniques and 
methods. The complete formal descriptions of the XDT protocol in the various 
formal description techniques are available at the web site of the book (see below). 

 
 
 
 
 
 
 



  Preface XI 

How should the book be read? 
The first part of the book deals with the fundamentals of communication proto-

cols. It introduces the principles and the elements for describing protocols as they 
are presumed in the following two parts. This part addresses readers who want to 
familiarize themselves with basic protocol principles. Readers who have a good 
knowledge about protocols can omit this part. It is recommended, however, to 
read the short introduction to the XDT protocol in order to understand the refer-
ence examples in the later chapters. 

The second part deals with the description of protocols. It introduces the basic 
description methods and the most important formal description techniques. The 
way protocols are described plays a central role in the protocol development pro-
cess, since the selection of the description technique, in particular of the associated 
semantic model, determines the applied design and validation methods. For that 
reason, we separate the introduction of the formal description techniques from the 
description of the protocol development phases. We recommend the reader first 
concentrates on the description methods and the basic concepts of the description 
techniques he/she is most interested in. 

The third part describes the development phases typical for communication 
protocols. Since communication protocols are seldom developed continuously, 
i.e., from design to implementation/installation, many protocol engineers special-
ize in certain phases, e.g., verification. Therefore, it is up to the readers how deep-
ly they immerse themselves in the respective subject. 

We provide for almost all chapters exercises which should help the reader to 
better understand the presented contents and to practice various description tech-
niques.  

Website for the book  
A website is available to provide online materials and additional information on 

the subject of the book. These materials are available via the following URL: 

http://www.protocol-engineering.tu-cottbus.de 

The website contains among others: 

 lecture materials related to the book including exercises  
 the informal description of the XDT protocol 
 an animated simulation of the XDT protocol to visualize the protocol behavior 
 formal descriptions of the XDT protocol in the various FDTs presented in the 

book 
 additional information and references. 

 
Cottbus/Dresden, Germany                                                                Hartmut König 
Autumn 2011 

http://www.protocol-engineering.tu-cottbus.de
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Part I: Principles of communication protocols 

 
 
The first part of the book deals with the fundamentals of communication proto-

cols. It introduces basic concepts and mechanisms of protocols. Since many proto-
col mechanisms are borrowed from human communication paradigms, we exem-
plify in the beginning protocol principles using analogies from everyday life. 
Simultaneously we introduce important fundamentals for describing communica-
tion services and protocols. 

The notions and concepts of this introduction follow the OSI reference model 
of the International Organization for Standardization (ISO) and the TCP/IP Inter-
net architecture. We do not, however, give prominence to the architectures them-
selves, but focus on the introduction of the concepts relevant for protocol theory. 
The introduction is top down. We start with the service concept. Thereafter we in-
troduce the notion of protocol and proceed to the layering principle, and finally to 
layered architectures. The experience of many classes has shown that this ap-
proach facilitates the understanding of the basic protocol concepts. Therefore, we 
consider the layered architectures only briefly at the end of this introduction. 

The first four chapters on Services, Protocols, Layers, and Layered architec-
tures are structured in the same way. In the section Principles we introduce the 
theoretical foundations of the respective concept. In Description we present the el-
ements required for their (formal) description followed by a demonstration using 
the XDT (eXample Data Transfer) protocol in the section Example.  

In order to explain the basics of formal protocol descriptions we use a model 
language which applies basic terms of the service and protocol concept. The lan-
guage aims at an intuitive understanding of the concepts. It uses a multi-level ap-
proach that allows a differentiated consideration of the various aspects. In Exam-
ple we describe the XDT protocol in the model language. XDT is a simple con-
nection oriented data transmission protocol which applies the go back N-principle. 



4  Part I: Principles of communication protocols 

The protocol is used as a reference protocol throughout the book to demonstrate 
the various description, validation, and implementation approaches. It shall give 
the reader a means to compare the expressiveness of the various formal descrip-
tion techniques presented in the book. 

Readers who are familiar with the foundations of communication protocols and 
their description may omit this part. We recommend, however, that they acquaint 
themselves with the introduction to the XDT protocol in Sections 1.3, 2.3, and 3.3, 
which we will refer to throughout the book. 

 
 



1 Services  

Computer networks provide services. These services allow us to exchange da-
ta, programs, music files, pictures, movies or other documents. They can be used 
to download programs, to start them remotely, to update remote data bases, or to 
access web sites; they can also help users to communicate with others partners, 
and much more. The term service is of fundamental importance for the under-
standing of the processes in computer networks. It is closely related to the term 
protocol and represents an essential element for their description, validation, and 
use. This chapter deals with services. We start with a short overview of the differ-
ent kinds of services. Thereafter we introduce the model of a communication ser-
vice and present the basic concepts for its formal description using a model lan-
guage. Finally we describe the service provided by our example protocol XDT and 
give a formal description of it using the model language. 

1.1 Principles 

Kind of services  
In computer networks two kinds of services are distinguished: asymmetric and 

symmetric services (see Figure 1.1/1). Asymmetric services are services which 
apply the client/server paradigm. The service, e.g., a web page, is provided by a 
server in the network. It is called by a user, the client, on demand. The majority of 
services provided in computer networks are asymmetric services. These are in par-
ticular those services which are directly perceived by network users. They are 
therefore also called network services. The interaction between the client and the 
server follows the elementary scheme of service request and service provision. It 
is mostly implemented by means of a remote procedure call (RPC). More com-
plex applications today use so-called distribution platforms, such as CORBA, or 
web services, which support transparent service provision, i.e., the client does not 
need to know the location of the server. In addition, they provide supplementary 
services to handle security demands, timing, and other related problems [Tane 02].  

Symmetric services in contrast are services that simultaneously provide the of-
fered service at two or more service access points. They are communication ser-
vices which serve the exchange of data. Network services use communication ser-
vices to transport the service request and the results of the service provision. 
Hence, the execution of asymmetric services is connected to symmetric communi-
cation services (see Figure 1.1/1). Often a logical communication relation – a so-
called connection – is established between the access points to guarantee reliable 
transmission. There are also symmetric network services. They have a prevailing 
communicative character, e.g., a peer-to-peer video conference service. In this 
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8  1  Services 

In the context of the OSI reference model (see Section 4.3.1) a notation for ser-
vice primitives was developed, which is still used today, mostly a bit simplified. 
According to this notation service primitives are specified by a name, a type and 
parameters, e.g.,  

CONNECT request(called address, calling address, QoS parameters, user data)  
DATA indication(user data). 

Further a label of the protocol layer may be added. We introduce them only in 
Chapter 3.  

The name of a service primitive is not prescribed. It usually reflects the purpose 
of the service, e.g.,  

CONNECT  - connection set up,  
DISCONNECT - connection release,  
DATA            - data transmission,  
ABORT  - connection abort. 

The type specifies the function of the primitive. Four types are distinguished: 

request   - invocation of a service at an access point,   
indication - related indication at the partner access point,  
response - response to an indication primitive at the partner access point,  
confirm   - confirmation of the service invocation at the requesting service access  
      point.  

Service primitives of type request and respond are always triggered by the ser-
vice user, while indication and confirm primitives are responses of the service 
provider (see Figure 1.1/4). The parameters are used to transport the data between 
the service user and provider. Typical parameters are addresses, options, and user 
data to be transferred. Nowadays the rather troublesome OSI notation is usually 
applied in a simpler form, e.g., CONrequ, CONind, or DATrequ. We also use such 
abbreviations in the following. 

Service primitives are mostly not called accidentally. There are dependencies 
between the service primitives which require a defined invocation order. Such a 
defined order is, for instance, needed for setting up a telephone call.  The follow-
ing actions or “service primitives” prelude a telephone call: pick up receiver  
listen to dial tone  dial number  ringing or busy tone. In order to specify de-
pendencies between service primitives time sequence diagrams are used. They 
describe the sequence of interactions at the service access points. The time se-
quence diagrams “break up” the communication service model of Figure 1.1/3 by 
shifting the service provider into the middle of the presentation (see Figure 
1.1/4a). The interaction sequence is specified along the time line directed down-
wards. Note that the comments given in Figure 1.1/4a serve for explanation and 
are usually omitted. Figure 1.1/4 contains examples of typical call sequences. 
Time sequence diagram a) depicts a confirmed service (see below), which con-
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tween two partners during a telephone call. A connection can support different 
kinds of data transmission: in one direction (simplex), alternating in both direc-
tions (half duplex), or simultaneously in both directions (duplex). Communication 
protocols mostly support duplex transmission.  

Connection-oriented services are characterized by the following features: (1) 
they assure a complete data transmission, and (2) they preserve the transmission 
order of the sent data. This means that all data handed over at the sender SAP are 
delivered in the same order at the receiver SAP. This is the same principle as ap-
plied during a telephone call: all words spoken into the microphone are delivered 
in the same order at the remote receiver. The activities needed to ensure these fea-
tures are not visible to service users.  

Connection-oriented services consist of three phases: 

  connection establishment,  
  data transmission, and 
  connection release. 

These three phases represent partial services, which are characterized by de-
fined interaction orders at the service interface. They can in principle be combined 
with other partial services to create another service.  

The connection establishment or set up has the task to establish a connection 
between the service access points of the two service users. The interactions, which 
take place at the service interface, correspond to those of a confirmed service in 
Figure 1.1/4a. The connection set up is initiated by the service user, called the ini-
tiator in the sequel, by means of a CONNECT request primitive. The connection 
set up request is indicated to the partner – the responder – by a CONNECT indica-
tion primitive. The responder has the choice to accept or to reject the connection 
set up request. If the responder accepts the connection it responds with a 
CONNECT response primitive, which triggers a CONNECT confirm to the initia-
tor to close the connection establishment successfully. In case of rejection, the re-
sponder sends a DISCONNECT request primitive. The initiator is informed about 
this by a DISCONNECT indication. Reasons for the rejection of the connection 
may be lack of resources to handle the connection. Usually the number of connec-
tions is limited by the implementation.  

After setting up a connection the data transmission phase can start2. The data 
transmission corresponds to the unconfirmed service of Figure 1.1/4b. The data 
are handed over to the service provider using DATA request primitives. Their de-
livery at the receiver SAP is indicated by a DATA indication primitive. The con-
nection ensures reliable transmission. An additional acknowledgment (at least at 
the service interface) is not required.  

                                                           
2 The variant of the connection set up described here is called explicit connection set up. The 

complement is the implicit connection set up which allows the data transmission to start before 
the connection set up has been confirmed. It will be considered in Section 5.3.1. 
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Connectionless services  
Connection-oriented data transmission causes an overhead to establish, main-

tain, and release the connection. This does not matter if larger amounts of data are 
transmitted and/or if a certain quality of service is demanded. In cases where only 
some short data units have to be exchanged this overhead is often not justified. In 
such cases connectionless services are preferred which do not require an explicit 
communication relation between the partners to send data. An example of a con-
nectionless service in everyday life is the mail service. Letters are sent without in-
forming the receivers beforehand. The destination is found by means of the ad-
dress of the partner’s access point which must be attached to the data unit sent. 
The reception of the data is not acknowledged. Connectionless services are there-
fore unconfirmed services according to Figure 1.1/4b. They do not guarantee reli-
able delivery of data units and they do not preserve their transmission order. Data 
losses must be detected by the service users which have to retransmit the data if 
required.  

1.2 Description 

1.2.1 Service specification 

It is necessary for the service user to exactly know how to invoke a service. In 
normal life one also has to know how services have to be invoked. For example, 
the activities or “service primitives” sequence described above has to be per-
formed to make a telephone call. The description of how to use a service is pro-
vided in the service specification. A service specification defines the require-
ments on a service and the steps of its invocation. Typical elements of the service 
specification are the provided (partial) services, the service primitives including 
the dependencies between them, their parameters and (mostly optionally) the de-
pendencies between parameters. Time sequence diagrams are often used in prac-
tice to specify services, but they do not allow, as discussed above, a complete ser-
vice description. 

In international standards of ISO and ITU-T communication services and pro-
tocols are usually described in separate standards. The elaboration of service spec-
ifications is not self-evident. It is mainly applied in ISO and ITU-T documents, 
less so in the Request for Comments (RFCs) of the IETF (Internet Engineering 
Task Force). The notion of service appeared in the context of the OSI reference 
model in the 1980s. In the Internet world it is less explicitly used. For a systematic 
development of protocols, however, a service specification is essential, since only 
thus a systematic verification of the protocol design is possible (see Chapter 11). 

The description of services (and protocols) in international standards is mostly 
informal using a verbal, textual description supplemented by time sequence dia-
grams, state diagrams, and tables. Informal descriptions, however, have proved in-
sufficient for the specification and the development of communication services 
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The following example depicts a fragment of the XDT service specification of 
Section 1.3 (comments are line bounded and start with //).  

service {DATA_TRANSFER:          //  Service provided  
 requested XDATrequ(conn: integer optional, 
        source_addr: address optional, 
        dest_addr: address optional, 
        eom: boolean, 
        data: array [] of byte 
        ) 
 responded XDATind(conn: integer, 
            eom: boolean, 
                         data: array [] of byte 
           ), 
     XDATconf(conn, sequ: integer), 
       .  .  . 
 } 

The service primitives are defined by their name, type, and parameters. We dis-
tinguish between two types of primitives: requested and responded. The re-
quested primitives are primitives that are invoked by the service users; the re-
sponded primitives are triggered by the service provider. The parameters of the 
primitives must be specified with their data types. We do not explicitly introduce 
these data types; their context should make them self-explanatory. Some service 
primitives may contain parameters which are not included in every invocation of 
the primitive. These parameters are marked as optional. The optional feature can 
be used for describing variable data structures, which often appear in service and 
protocol specifications.  

1.2.3 Dependencies between service primitives  

To specify the causal dependencies between service primitives one has to dis-
tinguish between local and global behavior. The local behavior describes the al-
lowed interactions between a service user and the provider at the service access 
point. The global behavior specifies the dependencies between the local interac-
tions at the remote partners’ access points (see Figure 1.2/2). The relation between 
local and global behavior can be illustrated by a telephone call. The dialing is a lo-
cal behavior at the initiator site, the ringing the associated local behavior at the 
partner site. Only the global behavior defines that the dialing must precede the 
ringing. Time sequence diagrams are a means to partially describe global behav-
ior.  

The dependencies between service primitives are specified in the behavior 
specification of our model language (see above). The behavior specification con-
sists of one or several sap-specifications. 
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The service users put their service primitives in the downward queue. Analo-
gously internal events of the service provider are enqueued into the upward queue. 
The local behavior is defined by all possible sequences of events which may ap-
pear at the service access point, and the associated reactions of the service users 
and service provider, respectively. The downward queue contains only requested 
primitives; the upward queue only internal events, which indicate certain states of 
the service provider (see below). How these events are triggered is not described 
(as we do not learn the reason when a telephone call is interrupted by a disconnec-
tion tone).  

Although service specifications are primarily used for specifying the externally 
visible behavior at the service interface, internal events are applied to describe ex-
ceptional situations like the failure of the communication link, which lead to reac-
tions at the service interface. The use of internal events is a trick to take the behav-
ior of the service provider into account. The description of internal events is hand-
led differently in the various formal description techniques. Automata-based des-
cription techniques use spontaneous transitions that are triggered without any 
input event. Algebraic description techniques define an explicit internal action 
(see Chapter 7). 

In our model language we use different internal events to describe the various 
states of the service provider. They are interpreted as signals and must be declared 
at the beginning of the sap-specification in a signal-declaration, e.g., 

signal abort, break 

A signal is set, when it enters the upward queue. It is not described how this is 
done. 

The interactions appearing at the service interface are described in a so-called 
behavior description. For this, the same description principle is applied in almost 
all formal description techniques. This also relates to protocol descriptions, which 
we consider in the next chapter. The description of an interaction, or more gener-
ally of an action, has the following structure: 

event [condition][0:n]: action 

The (inter)action is triggered by an event. In a service specification an event 
may be a service primitive or an internal event. In some cases, one or more addi-
tional conditions must be fulfilled to trigger the (inter)action. These conditions de-
scribe context dependencies, e.g., the reached protocol phase or the value of some 
parameters. They are sometimes also called guards. In our example language con-
ditions are connected to an event through and, e.g.,  

XDATrequ and sequ=1: connection establishment 

 
 



  1.2  Description 17 

When the specified event occurs and all possible conditions are fulfilled, then 
the associated action is executed as a reaction to this event. Formal description 
techniques differ in the execution semantics of the action part. Some techniques 
apply an atomic execution, others not.  

Since events do not occur continuously at the service interface, the service us-
ers and the provider are forced to wait. Furthermore, they usually do not wait only 
for one event but for several. In state-oriented descriptions like finite state ma-
chines, waiting is implicitly expressed through the state (see Section 7.4). The as-
sociated transitions describe the reactions to the awaited events. When an event 
occurs, the associated transition is triggered. In a procedure-oriented description, 
as here, an explicit wait-statement is needed. We introduce a wait event-statement 
for this purpose: 

wait event{ 
    event1 [condition][0:n]: action1  | 
    .   .   . 
    eventn [condition][0:n]: actionn 
}. 

The wait event-statement only reacts to the first occurring event. After execut-
ing the associated reaction it leaves the wait event-statement. For example, the 
statement 

wait event{ 
 break_over: respond XDATconf | 
 abort: respond XABORTind     
      set CONNECT 
} 

would either trigger an XDATconf-primitive or abort the transmission by means of 
an XABORTind. 

An associated action may consist of several statements which are executed se-
quentially. One possible statement is the wait event-statement itself. Another 
statement is the respond-statement:  

respond service primitive(parameters), 

e.g.,  

respond XDATind(conn,eom,data). 

The respond-statement describes the sending of a service primitive from the 
service provider to the service user including the associated parameter values. A 
respond-statement is triggered by an internal event.  
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Communication protocols often distinguish several phases, such as connection 
establishment, data transmission, and connection release. Protocol phases com-
prise a subset of the protocol procedures. They are a useful means to structure the 
protocol. This structuring is also reflected in the service specification. In most 
formal description techniques the specification of protocol phases is left to the 
specifier. In our model language we explicitly introduce phases to support better 
readability. A phase is considered as a condition which can be set and polled. Pro-
tocol phases are introduced in the phase-specification, e.g., 

phase CONNECT:  XDATrequ, XDATconf, XDISind; 
     DATA TRANSFER: XDATrequ, XABORTind, XBREAKind; 

For each phase, the service primitives that occur in this phase are specified. A 
phase is set in the action part by means of a set-statement, e.g., 

set CONNECT. 

This means that the protocol changes to the specified phase. The preceding 
phase is implicitly reset. 

Global behavior 
The global behavior describes dependencies between the local behaviors at the 

partners’ service access points, exactly speaking between their service primitives. 
The representation of these dependencies is not that easy. There are no established 
means for this as can be seen in Chapter 8, where we introduce different formal 
description techniques. In our model language we define two special constructs to 
represent global dependencies: the cause statement and the triggering event. The 
cause-statement 

local event:  SAP.event 

describes a reaction to a local event that triggers the specified event at the partner 
SAP after a limited time. For example, a triggering request-primitive eventually 
causes an indication-primitive at the partner access point, e.g., 

XDATrequ:  receiver.XDATind 

The statement does not describe how this happens. It only establishes a (global) 
relation between these two events. The names of the service access points used in 
the cause-statement must be introduced in a sap-specification. The triggering 
event is indicated without parameters.  

The triggering event (without parameters) represents the counterpart to the 
cause-statement. It is used in the specification of the partner SAP to establish a re-
lation to the causing reaction, e.g., 
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wait event{ 
  sender.XDATrequ: respond XDATind 
      .   .   . 
}. 

Another important feature of the service specification is the description of de-
pendencies between the parameters of the service primitives. This is usually ap-
plied to indicate whether the values of the parameters change during transmission 
or not. In some ISO standards, e.g., for the transport service [ISO 8072], tables 
were used for this. In formal description techniques parameter relations are rarely 
specified, since the specifications may be pretty long winded. For that reason, we 
do not specify parameter relations here to simplify the examples. 

1.2.4 Nondeterminism 

An important element in describing services and protocols is the use of 
nondeterminisms. They are applied, when it is not possible or even not wanted to 
specify exactly the occurrence order of certain events. Two kinds of 
nondeterminisms are used in service and protocol specifications:  

 the simultaneous occurrence of events and 
 the assignment of different reactions to the same event. 

Simultaneous occurrence of events 
The simultaneous occurrence of events is caused either by simultaneous inter-

actions at the service interface or by concurrent processes within the service pro-
vider that do not allow one to determine the exact order in which the events occur. 
There are two possibilities to handle concurrent events: (1) truly concurrently, 
what is often difficult to realize, or (2) in an interleaved manner. The latter is a 
common model for concurrent systems which is also applied in the protocol area. 
In the interleaving model all events of a concurrent execution of processes are ar-
ranged in a linear order, called the interleaving sequence [Clar 00]. The concur-
rently executed events appear arbitrarily ordered with respect to one another. All 
interleaving sequences represent possible externally observable behavior of the 
system. Figure 1.2/4 demonstrates the principle. All ordering combinations are 
possible interleaving sequences. It is only possible to define a partial order for the 
occurrence of events which determines that a certain event must occur before an-
other one. In verification this has to be taken into account because it may lead to 
very large state spaces which are difficult to handle. For this purpose, methods 
have been introduced to reduce the state space by considering only selected inter-
leaving sequences (see Section 11.3.2 for this). 

Taking the simultaneous occurrence of events into account we can now com-
pletely describe the (local) behavior at an access point in our model language. For 
this, we introduce the par event-statement.  
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The par event-statement runs endlessly. It is executed as follows. The service 
access point alternately reads the first event from one of the event queues (cp. 
Figure 1.2/3) and examines whether it is awaited in one of the alternatives. If the 
event is awaited then the associated execution is started, otherwise the event is 
discarded. If the same event occurs twice, while the first one is still being handled 
then the execution is postponed until the handling of this event is finished. In case 
of empty input queues the service access point waits for further incoming events. 
If a wait event-statement is included in a par event-statement then the service ac-
cess point examines for both statements whether the event is awaited. The par 
event-statement has priority over the wait event-statement in this case, i.e., the 
event is assigned to the former statement.  

Assignment of different reactions 
In certain situations it is useful to assign several reactions to the same event. 

This allows one to describe alternative behaviors. At the specification level it re-
mains open which of the specified reactions will be selected. The following exam-
ple shows this situation: 

wait event{ 
 XDATrequ:  receiver.XDATind         //  connection set up 
      wait event{ 
      connected: respond XDATconf  |    //  confirmed   
      abort: respond XABORTind     //  abort  
      } | 
 XDATrequ:  receiver.XDATind        //  data transmission 
}. 

In this wait event-statement two different reactions are specified for an 
XDATrequ primitive. In the first case a connection set up procedure is finished (ei-
ther successfully or not), while in the second case the received data are handed 
over to the receiver. This example might seem a little bit artificial, but at this stage 
of the introduction in our example protocol there are not that many options for 
presentation, yet. However, similar representations can be found in many specifi-
cations. The advantage of nondeterministic descriptions lies in the simplification 
of the description because alternative behaviors do not need to be assigned to dif-
ferent states. Furthermore, it increases flexibility because the decision, which al-
ternative to be chosen, is postponed until implementation or another development 
phase. This allows it to adapt more flexibly to the target environment.  

The application of nondeterminism in formal descriptions strongly depends on 
the abstraction level of the specification. More abstract description techniques use 
it more frequently than implementation-oriented techniques. In the implementa-
tion phase nondeterminisms are usually dissolved. 
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specification XDT { 
service XDT-DATA_TRANSFER:       //  PROVIDED SERVICE 
  requested XDATrequ(conn: integer optional,  //  Connection reference 
          sequ: integer,    //  Sequence number 
         source_addr: address optional,  //  Source address 
         dest_addr: address optional,  //  Destination address 
         eom: boolean,      //  End of message 
         data: array [] of byte    //  User data 
         ) 
  responded XDATind(conn,sequ: integer, eom: boolean, data: array [] of byte), 
      XDATconf(conn,sequ: integer), 
      XBREAKind(conn: integer), 
      XABORTind(conn: integer optional), 
      XDISind(conn: integer) 
 
 sap sender{         //  BEHAVIOR AT SENDER SAP 
 signal connected, abort, eom, break, break_over 
 phase CONNECT: XDATrequ, XDATconf, XDISind;  //  Connection set up phase 
       DATA TRANSFER: XDATrequ, XABORTind, XBREAKind;  
 par event{            //  Data transmission phase 
  XDATrequ(1,source_addr,dest_addr,eom,data)  // Connection set up 
       and CONNECT:  
                            receiver.XDATind      
                      wait event{connected: respond XDATconf(1,conn) 
                // Connection established 
                        set DATA TRANSFER  |      // Phase change 
                                    abort: respond XABORTind                 // Set up aborted 
        } || 
  XDATrequ(conn,sequ,eom,data)     //  Data transfer phase 
    and DATA TRANSFER: respond XDATconf(conn,sequ) 
            receiver.XDATind ||   // To receiver 
  break: respond XBREAKind(conn)                     // Break 
         wait event{ 
        break_over: respond XDATconf(conn,sequ)  |  // End of break 
        abort:      respond XABORTind(conn)     // Abort during break 
            set CONNECT  
     } || 
  abort: respond XABORTind(conn)              //  Transmission fails 
        set CONNECT || 
  eom: respond XDISind(conn)                         //  Connection release 
       set CONNECT 
 } // Sender-SAP 
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 sap receiver{             //  BEHAVIOR AT RECEIVER SAP  
 signal abort, eom 
 phase CONNECT, DATA TRANSFER: XDATind 
 par event{ 
  sender.XDATrequ and CONNECT:       //  Connection set up 
     respond XDATind(conn,1,eom,XDATrequ.data) 
     set DATA TRANSFER  || 
  sender.XDATrequ and DATA TRANSFER:    //  Data transmission 
     respond XDATind(conn,sequ,eom,XDATrequ.data)  || 
  abort: respond XABORTind(conn)          //  Transmission abort 
        set CONNECT  || 
  eom: respond XDISind(conn)            //  Connection release 
       set CONNECT 
 }// Receiver SAP 
} //XDT 

Further reading 
Introductions to the service concept can be also found in all introductory books 

about computer networks, such as the books of Kurose and Ross [Kuro 08], 
Stallings [Stal 08], Peterson and Davie [Pete 07], and Tanenbaum and Wetherall 
[Tane 10]. 

Exercises 
(1) What is a service? What kinds of services are distinguished? Explain the dif-

ferences between them. 
(2) Describe the model of a communication service. Explain the role and the 

function of its elements. 
(3) Explain the service elements used for the following scenarios: 

- mail service 
- telephone service 
- directory assistance. 

  Which of these scenarios represent symmetric services? 
(4) What is a connection? Between what points is a connection set up: between 

the service users or between the service access points? What are the phases 
of a connection-oriented service? 

(5) Explain the difference between a connection-oriented and a connectionless 
service. What are the advantages/disadvantages of each? When should they 
be applied? 

(6) What is the purpose of the service specification? 
(7) Explain the difference between local and global behavior in a service speci-

fication. 
(8) What is meant by nondeterminism? How is it used in formal descriptions? 
(9) What is interleaving? How is it expressed in formal descriptions? What is the 

alternative approach to interleaving? 
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(10) What is the purpose of internal events used in service specifications? 
(11) Replace the implicit connection acceptance of the receiver in the XDT ser-

vice by an explicit one, i.e., the receiver no longer accepts every connection; 
it can accept or reject a connection. 
a) Describe this extension by means of time sequence diagrams. Introduce       

appropriate service primitives. 
b) Change the state diagrams of Figure 1.3/3, which describe the local be-

havior at the XDT SAPs, appropriately. 
c)  Describe the changes in the model language. 

(12) Extend the XDT service at the receiver side by a mechanism by which the 
service user may interrupt the reception of data for a certain time period. The 
time is given as a parameter to the service provider which controls the break 
duration and continues to deliver data after the time has elapsed. Describe 
the changes as in exercise (11) using time sequence diagrams, state dia-
grams, and the model language. 

(13) Replace the implicit connection release in the XDT service by an explicit 
one that is triggered by the receiver by an XDISrequ when it has received the 
last PDU. The sender releases the connection with an XDISind, after which 
the receiver also releases the connection with XDISind. 
a)  Describe this extension by means of time sequence diagrams. 
b)  Change the state diagrams of Figure 1.3/3 appropriately to express global 

dependencies between the service primitives. 
c)  Describe the changes in the model language. 
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the data formats. Therefore other languages introduced their own data description. 
The algebraic language LOTOS incorporated the algebraic data type language 
ACT ONE. This proved a failure because the data format specification appeared 
expensive. SDL first defined its own notation based on algebraic representations 
of abstract data types. Later it was integrated the abstract syntax notation ASN.1, 
which is preferred for describing the data formats of communication protocols 
nowadays. We will introduce it in Section 8.5. 

In our model language we use for readability reasons elements of modern pro-
gramming languages for describing the data structures, as we already did for the 
description of the service primitives at level S. The PDU formats are described in 
the message-specification which follows the service-specification of level S: 

specification name{ 
 service specification         // unchanged from level S 
 message specification 
    .   .   . 
} 

In the message-specification all protocol data units that appear in the protocol 
have to be listed, e.g.,  

message{ 
 DT: struct(length: 0..255,        // Data PDU 
     code: bits, 
     source-addr: address optional, 
     dest-addr: address optional, 
     conn: integer optional, 
     sequ: integer, 
     eom: boolean, 
     data: [] byte 
         ) 
 ACK: struct (code: bits,       // Acknowledgment DT 
         conn: integer, 
         sequ: integer 
        ) 
} 

To describe the access to components of a protocol data unit, we use the dot-
notation which is often applied in connection with struct- and record-constructs 
in high-level programming langages, e.g., DT.sequ or ACK.conn. 

2.2.4 Description of protocol procedures 

In general, there are two approaches to formally describe communication pro-
tocols: constructive and descriptive techniques (see Section 7.3). Constructive 
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protocol 
 connection set up: XS.connect_s  XR.connect_r 
 data transfer: XS.transfer_s  XS.ack_handler  XR.connect_r 

The entity-specification constitutes the main part of the level-P specification. 
It describes the communication behavior of the protocol entities. In symmetric 
protocols only one entity-specification is needed; in asymmetric protocols sepa-
rate entity-specifications must be introduced for describing the sender and the re-
ceiver entity. The entity-specification consists of a specification and declaration 
part and an action part. 

entity name 
sap-specification        // Specification and  declaration part 
signal-declaration    
var-declaration 
timer-declaration 
par event{          // Action part 
 .  .  . 
}. 

The specification and declaration part begins with the sap-specification, which 
is mandatory. The sap-specification specifies the service access points which are 
served by the entity. The given access points must relate to a service access point 
of the level-S specification, e.g., 

sap sender. 

In the signal-declaration, which is optional like the other declarations, the sig-
nals must be declared which are exchanged internally between protocol parts, e.g., 

signal break, credit. 

The signals indicate the occurrence of certain events in the respective protocol 
part, e.g., the change of the protocol phase or the arrival of a new credit for flow 
control. Internal events are also represented by signals. It is not described how 
these signals are set.  

The var-declaration is used for introducing variables like in programming 
languages. Each variable has a data type. Here the same data types are allowed as 
introduced in the level-S specification. A variable may be initialized by indicating 
an initial value after init, e.g.,  

var i, j: integer, 
 sequ: integer init(1), 
 last: boolean init(false) 
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The declared variables are valid for all protocol parts of the entity. They can be 
used to exchange data between protocol parts. Access to the variables is assumed 
to be exclusive, i.e., only one protocol part can read a variable or assign a new 
value at a given instant. 

The timer declaration contains the timers used in the entity to detect message 
losses. The timers are also globally declared for the entity. For each timer, the 
time interval is specified including the used time unit (ms, s, min, h), e.g.,  

timer t1: 0..100 ms, 
    t2: 0..? s. 

If no upper bound is to be specified at this specification level a question mark is 
indicated instead. The role of timers in protocols is discussed in detail below. 

The action part of an entity is described through a par event-statement (cp. 
Section 1.2.4). It describes the parallel execution of the protocol parts. The invoca-
tion of a protocol part is described by the triggering event (service primitive, PDU, 
timeout, signal, and others) followed by the name of the protocol part, e.g., 

par event{ 
 XDATrequ: connect_s  || 
 data transfer: transfer_s  || 
 run_ah: ack_handler 
} 

The protocol parts are represented by their name which acts like a call. A pro-
tocol part may have parameters (see below). For readability reasons, protocol parts 
are separately described. They follow the main specification spec{ … }. 

A protocol part is activated as follows. An entity reads the first event from its 
input queue and checks whether this event is an expected one. Expected events are 
those events that are awaited in a par event- or wait event-statement. If the event 
is awaited then the respective protocol part or the respective reaction in the wait 
event-statement is executed, otherwise the event is discarded. An event cannot be 
assigned if the respective protocol part is currently in execution. In that case it is 
delayed until the protocol part terminates. If the input queue is empty the entity 
waits for new incoming events.  

The description of the protocol parts consists like the entity-specification of a 
declaration and an action part: 

protocol part name (peer entity) 
signal-declaration           // Declaration part 
var-declaration 
timer-declaration 
event: begin              // Action part 
 statements 
end 
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In the header of the protocol part after the key word peer the peer entity (or en-
tities) is specified. This is a formal parameter that represents the communication 
partner. It must be replaced by the name of the entity when the protocol part is in-
voked. In symmetric protocols the peer entity can be omitted. 

The declaration part corresponds to that of the entity-specification. All three 
declarations are optional. In the signal-declaration all signals must be listed that 
are expected in this protocol part. Variables and timers declared in a protocol part 
are only valid within that protocol part.  

The action part of a protocol part consists of the triggering event and the corre-
sponding reaction. A triggering event may be a service primitive, a PDU, a 
timeout, or a signal. The event must be the same as specified in the action part of 
the respective entity-specification. The reaction, embedded in begin ... end, con-
sists of one or several statements which are executed sequentially. We introduce 
these statements next. Some of them are already known from the S-specification. 

Interactions with the peer entity are described by the send-statement, e.g., 

DT  receiver. 

It describes the sending of a message to the peer entity. The message must be 
specified in the message-specification, the name of the receiver entity correspond-
ingly in the header of the protocol part. The receiving of a message is correspond-
ingly represented by an arrow in the reverse direction, e.g., 

ACK  receiver. 

The receiving of a PDU represents an event, the so-called receive event. It may 
appear as triggering event of a protocol part or in a wait event-statement.  

The sending of a service primitive to the service user is described by the re-
spond-statement, e.g., 

respond XDATrequ. 

The waiting of the entity in a protocol part is described by the wait event-
statement, which was introduced in Section 1.2.3. Triggering events may be: ser-
vice primitives, PDUs, time-outs, and signals. As in the service specification, 
awaited events may be connected to an additional condition to express context de-
pendencies, e.g., 

wait event{ 
 DT  sender and DT.sequ = 1: . . . 
}. 

In this case, the respective alternative is only selected if also the additional 
condition is fulfilled. 
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The sending of a signal to another protocol part is described by means of a set-
statement, e.g., 

set break. 

The set-statement causes the signal to be written into the event queue like any 
other event. It has now the value true. After the signal has been read out and trig-
gered some reaction, its value is set to false again. The change of protocol phases 
can be handled by signals, if this is taken into account in the specification. 

Timers 
Timers are used in protocols to monitor communication procedures to avoid 

waiting indefinitely for certain events. If an event does not occur in a defined time 
interval, a so-called time-out is triggered. A time-out is handled as an event that 
triggers an alternative reaction to the awaited one, e.g., an error procedure. This 
prevents the entity from running into a deadlock state. 

The representation of time and the declaration of timers are differently handled 
in formal description techniques. Some languages do not or only partially support 
time, others do support it. In our model language we assume a continuous progress 
of time. Timers are declared in the timer-declaration introduced in the preceding 
section, e.g., 

timer t1: 0..100 ms, 
    t2: 0..? s. 

The upper value of the time interval defines the time-out. Different time units 
can be used: h, min, s, and ms. Timers that are declared in an entity-specification 
are valid in all protocol parts, whereas timers declared in a protocol part are only 
valid locally in this part.  

Timers are started by means of a start-statement, e.g., 

start t. 

A running timer may be stopped using the reset-statement, e.g., 

reset t. 

If a start-statement is applied on a running timer, the timer is implicitly reset first. 
A time-out is indicated by a timeout event in a par or wait event-statement, e.g., 

start t 
wait event{ 
 DT  sender: reset t         // awaited event 
      .  .  .  | 
 timeout t:  reaction       // alternative reaction after time-out 
 
}
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 A time-out causes the timeout event to enter the event queue (cp. Figure 2.2/3). 
When it is an awaited event, it is read-out, otherwise it remains in the input queue 
and might be selected if the par and wait event-statements are executed again. To 
avoid any trouble from this it is recommend to reset timers when an awaited event 
is processed, as is done in the example above. The reset-statement does not just 
stop the timer. It also removes the timeout event from the input queue. 

Local actions 
Protocol specifications describe the external behavior of communicating enti-

ties, i.e., their interactions. To run a protocol actions are also needed which are on-
ly of local importance, e.g., the coding/decoding of PDUs, the analysis of the re-
ceived values, cyclic redundancy checks, start and reset of timers, and others. We 
call these actions local actions in the following. To what extent local actions are 
considered in a protocol specification depends on the abstraction level of the ap-
plied description technique. To represent and to verify the protocol flow they are 
unlikely to be required because mainly the interactions between the entities are of 
interest here. Local actions, however, are required for the implementation of the 
protocol. Therefore, more abstract formal description techniques, such as LOTOS 
[ISO 8807], scarcely consider them, while less abstract techniques like SDL [ITU-
T 100] do.  

In our model language we describe local actions. We use statements for the de-
scription of the control flow which are known from high-level programming lan-
guages, such as the if-statement, the case-statement, the loop-statement, and the 
empty statement skip. Thereby loops are unlimited. They can be unconditionally 
left by means of exit or conditionally by specifying a condition after exit when. 
Increment and decrement statements (incr, decr) can be used for counting the 
number of loops. Moreover, we introduce the statement  

exit name 

to prematurely leave a protocol part. In exceptional cases it might be useful to 
cancel the protocol execution. This is expressed by  

cancel protocol  

It terminates all protocol parts, resets the variables and timers, and removes all 
events from the input queues. 

Coding and Decoding of PDUs 
The coding of PDUs at sender side and their decoding and analysis at receiver 

side are another example of local actions. They represent a large part of the proto-
col code and can take a considerable part of the protocol execution time. Cod-
ing/decoding is also differently handled in the various formal description tech-

 

niques. Abstract techniques, such as LOTOS or Petri nets, do not consider them, 
whereas the coding/decoding can be described in more implementation-oriented 
techniques like SDL. 



  2.3  Example 43 

In our model language we also forego for readability reasons an explicit de-
scription of PDU coding/decoding. Instead we represent them by means of a pre-
defined procedure coding_PDU using the concrete PDU names for PDU, e.g., 

coding_DT(data,sequ). 

Parameters are the data that have to be coded. For simple PDUs, which do not 
transport user data, the coding is sometimes omitted. The decoding at receiver side 
is indirectly described by using selections, e.g., 

DT.data, 

when PDU data are used in a respond- or another statement. 

Informal descriptions 
Informal descriptions do not belong in a formal description. Nevertheless they 

are allowed, for example, in SDL. Informal descriptions may be useful during the 
design phase to describe protocol steps the formal representation of which would 
not be useful or needed at this level of abstraction. In this sense informal descrip-
tions are also used in our model language. We mainly describe local actions this 
way to avoid a too implementation-oriented representation. The same applies to 
the description of conditions in if-, case-, and exit when-statements. 

Instantiations 
Up to now we have only considered language features for describing the proto-

col behavior. Several formal description techniques, e.g., SDL, also provide the 
possibility to create instances of their description elements (modules, objects, and 
others). This allows, for example, in addition to the description of the protocol 
flow to describe the establishment of a connection. This might be useful for the 
prototyping of the specification. However, it often requires the explicit setting up 
of communication paths, e.g., channels, between these instances. This requires a 
lot of additional language features and rules which are actually not related to pro-
tocols, but may constitute a large part of the protocol description (see the SDL 
XDT specification in Section 8.1.4). In our model language we confine ourselves 
to the pure protocol description. 

2.3 Example 

We now continue the description of the XDT protocol started in Section 1.3. 
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specification  XDT{ 
service                // XDT-S specification remains preserved 
message           
 DT: record(length: 0..255,       // Data PDU 
    code: bits, 
       source-addr: address optional, 
    dest-addr: address optional, 
    conn: integer optional, 
    sequ: integer, 
    eom: Boolean, 
    data: array [] of byte) 
 ACK: record(code: bits,       // Acknowledgement PDU 
              conn: integer, 
              sequ: integer) 
 ABO: record(code: bits,         // Abort PDU 
              conn: integer) 
protocol            // Sub-protocols 
 connection set up: XS.connect_s  XR.connect_r 
 data transfer: XS.transfer_s  XS.ack_handler  XR.connect_r 
entity XS            // SENDER ENTITY 
 sap sender           // associated SAP 

   signal DATA TRANSFER       // indicating data transmission 
 var conn: integer,         // Connection reference 
  sequ: integer init(1),        // current sequence number 
  last: integer init(0),        // Sequence number of last PDU 
  buffer: array [1..m] of DT,      // DT-Buffer with upper limit m 
  go_back_N: boolean init(false),     // true, if go back N is running 
  break: boolean init(false)       // true, if break  
 par event{ 
  XDATrequ  
        and XDATrequ.sequ = 1: connect_s ||  // Connection set up 
  XDATrequ  
   and not go_back_N  
    and not break: transfer_s                  ||  // Data transfer phase 
  DATA TRANSFER: ack_handler         // ACK monitoring 
 } // XS 
 
entity XR            // RECEIVER ENTITY 
 sap receiver           // associated SAP 
 signal DATA TRANSFER       // indicating data transmission 
 var conn: integer          // Connection reference 
 par event{ 
  DT  sender and DT.sequ = 1: connect_r   ||  // Connection set up 
  DATA TRANSFER: transfer_r     // Data transfer phase 
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 } // XR 
} // XDT 

The protocol parts connect_s and connect_r describe the connection set up at 
the sender and receiver side. They are the only protocol parts that are active during 
the connection set up phase. 

protocol part connect_s (peer receiver)  // CONNECTION SET UP SENDER 
timer t: 0..? ms            // Timer: ACK monitoring 
XDATrequ and XDATrequ.sequ = 1:      // triggering event 
 begin 
  coding_DT (XDATrequ.source-addr,XDATrequ.dest-addr,1,XDATrequ.data) 
  DT  receiver          // sending DT_1 
  start t             // start ACK monitoring 
  wait event{           // awaiting ACK 
   ACK  receiver and ACK.sequ=1:    // ACK received 
      reset t         // stop ACK timer 
      conn:= ACK.conn 
      respond XDATconf(conn,1)   // connection is set up 
      set DATA TRANSFER  |       // change of the phase 
   timeout t: respond XABORTind     // abort connection set up 
  } 
 end //connect_s 
 
protocol part connect_r (peer sender)   // CONNECTION SET UP RECEIVER 
DT  sender and DT.sequ = 1:        // Timer: ACK monitoring 
 begin 
  determine connection reference(conn) 
  respond XDATind(conn,1,DT.data,DT.eom)   // deliver XDATind_1 
  coding_ACK (conn,1)         // coding ACK_1 
  ACK  sender          // sending ACK_1 
  set DATA TRANSFER          // change of the phase 
 end //connect_r  

During data transmission the protocol parts transfer_s and ack_handler are ac-
tivated at sender side, at receiver side only the protocol part transfer_r is activat-
ed. The protocol part transfer_s maps the data units received from the sender into 
DT-PDUs and sends them to the receiver. A copy of each PDU is stored in a buff-
er. When the buffer is full, a break is indicated to the sender through an 
XBREAKind and the condition break is set. No break is triggered when the DT-
PDU is transmitted, i.e., eom = true. 

protocol part transfer_s (peer receiver)  // DATA TRANSMISSION SENDER 
XDATrequ  
 and not go_back_N and not break: 
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 begin 
  incr sequ           // next sequence number 
   coding_DT (conn,sequ,XDATrequ.data)  
   if (DT.eom)          // last data unit? 
      {last:=sequ}         // number of the last data unit 
   copy DT in buffer 
   DT  receiver         // sending DT 
   if (buffer is full and not last=sequ) 
      {break:=true         // break 
        respond XBREAKind(conn) 
         } 
       else respond XDATconf(conn,sequ)   // deliver sending confirmation 
 end //transfer_s 

The protocol part ack_handler monitors the arrival of the acknowledgements 
from the receiver. It runs in parallel to transfer_s. All arriving correct acknowl-
edgements erase the respective DT-copy in the buffer. If the entity is in a break 
state the break is finished. After receiving the acknowledgement of the successful 
transmission of the last DT-PDU the connection is released with an XDISind to the 
sender. If no correct ACK-PDUs arrive within time interval t2 the ack_handler 
calls the go back N-procedure. Since the ack_handler is always active, it also ac-
cepts the ABO-PDU in case of a connection abandonment and terminates the pro-
tocol. Moreover, it monitors the activity of the receiver entity. If no ACK-PDU ar-
rives from XR within the time period t1 the ack_handler assumes that the XR is 
not active any more and releases the connection at sender side. 

protocol part ack_handler(peer receiver)    // MONITORING ACKNOWLEDGEMENTS 
var N: integer init(1),  // last confirmed PDU 
   i: integer               // auxiliary variable 
timer t1: 0..? ms            // timer: activity receiver 

     t2: 0..? ms            // timer: ACK monitoring 
DATA TRANSFER:           // starting event 

begin 
 start t1             // start activity timer 
 loop{ 
  start t2            // start ACK monitoring 
  wait event{           // awaiting ACK 
   ACK  receiver:          // ACK arrival 
    reset t1          // stop activity timer 
    reset t2          // stop ACK timer 
    if (ACK.sequ>N)       // ACK correct?  
    {N:=ACK.sequ       // store sequence number 
         erase DT copy  
         if (break) 
      {respond XDATconf(conn,sequ)    // terminate break 
        break:=false 
      } 
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     if (N=last+1)       // all ACKs received? 
      {respond XDISind(conn)    // connection release 
        sequ:=1        // reset sequ, last 
        last:= 0 
        exit ack_handler      // leaving ack_handler 
      } 
     }  
     start t1  |         // restart activity timer 
  timeout t2: go_back_N:=true    // missing ACK 
          i:=N+1         
          loop{         // starting go back N 
   coding_DT (buffer[i]) 
   DT  receiver      // resending DT[i] 
   exit when i=sequ     // end of retransmission  
   incr i 
          } 
          go_back_N:=false |       // end go back N 
  ABO  receiver: respond XABORTind(conn) // protocol abortion by receiver 
         sequ:=1       // reset sequ, last 
         last:= 0 
         exit ack_handler  |    // leaving ack_handler 
  timeout t1: respond XABORTind(conn)   // inactive receiver 
          sequ:=1         // reset sequ, last 
          last:= 0 
          exit ack_handler        // leaving ack_handler 
       } 
 } 
end //ack_handler 

The protocol part transfer_r describes the reception of the DT-PDUs in the re-
ceiver entity XR. DT-PDUs that arrive in correct order are confirmed by an ACK. 
The user data are delivered to the receiver. PDUs out of order are discarded. If the 
sending order cannot be re-established within the time interval t transfer_r aborts 
the transmission by means of an ABO-PDU. The timer t also acts as an activity 
timer to track whether the sender entity XS is still active. After receiving the last 
DT-PDU the connection is released at receiver side. 

protocol part transfer_r (peer sender)    // DATA TRANSFER RECEIVER 
var N: integer init(2)          // awaited sequence number 
timer t: 0..? ms            // timer: order monitoring 
DATA TRANSFER:          // triggering event 
 begin 
  start t            // start order monitoring 
  loop{ 
   wait event{          // awaiting DT 
     DT  sender: if (DT.sequ = N)    // correct sequence number? 
          {reset t     // correct order / stop timer t 
            respond XDATind(conn,N,DT.data,DT.eom) 
                // delivering data to receiver 
            ACK(conn,incr N)  sender 
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                // sending ACK 
            if (DT.eom)    // last data unit ? 
          {respond XDISind(conn)  
                // connection release 
           set CONNECT  // change of phase 
           exit transfer_r   // leaving transfer_r 
          } 
 
            start t     // restart order monitoring 
          } 
           else discard DT   |   // DT out of order 
     timeout t: respond XABORTind(conn)  // order not re-established 
       ABO(conn)  sender    // abort transmission  
       set CONNECT      // change of phase 
    exit transfer_r      // leaving transfer_r 
  } 
 } 
end //transfer_r 

Further reading 
As for services, introductions to the protocol concept can be also found in all 

introductory books on computer networks, such as [Kuro 08], [Stal 08], [Pete 07], 
and [Tane 10]. 

Exercises 
(1) What are entities? What is their role within the service provider? 
(2) What is a protocol? What is its relation with services? What is the difference 

between symmetric and asymmetric protocols? 
(3) Why has the structure of protocol data units to be known to both entities? 
(4) Explain the principle of transparency. Why is it needed? Which well-known 

network method is based on this principle? 
(5) What are typical parameters of the protocol control information? 
(6) How are connections handled in a protocol? 
(7) What is the purpose of the protocol specification? 
(8) What is the task of timers in protocols? What are the basic timer functions? 
(9) Explain the need for the reset function. What could happen if no reset func-

tion is available? 
(10) Concurrency is a characteristic feature of protocol entities. Consequently, in-

terleaving is a possible model to describe concurrent behavior. The XDT 
sender entity executes the sending of data PDUs and the reception of 
acknowledgements concurrently. Give some possible interleaving sequences. 

(11) Replace the implicit connection acceptance in the XDT protocol according to 
exercise (11) in Chapter 1 by an explicit one, i.e., the receiver no longer ac-
cepts every connection; it can accept or reject a connection. 
a) Describe this protocol extension by means of time sequence diagrams. In-

troduce appropriate PDU names. 
b) Describe the protocol changes for both entities in the model language. 
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(12) When the transmission order in XDT cannot be re-established the receiver 
entity XR aborts the transmission with an ABO-PDU. The reception of ABO 
at the sender entity XS is not monitored by XR. How does the protocol be-
have when ABO gets lost?  

(13) In exercise (12) of Chapter 1 we extended the XDT service at the receiver 
side by a mechanism by which the service user may interrupt the reception of 
data for a certain time period. The time was given as a parameter to the ser-
vice provider which controls the break duration and continues to deliver data 
after this time has elapsed. Extend the XDT receiver entity specification ap-
propriately to handle this extension. Describe the protocol changes in time 
sequence diagrams and in the model language. 

(14) Replace the implicit connection release in the XDT protocol by an explicit 
one that is triggered by the receiver through an XDISrequ when it has re-
ceived the last PDU. The sender releases the connection with an XDISind, af-
ter which also the receiver releases the connection with an XDISind. 
a) Describe this extension by means of time sequence diagrams. Introduce  
     appropriate PDU names. 
b) Describe the changes for both entities in the model language. 
 

 



3 Layers 

After introducing the notion of protocol as the basis for the provision of ser-
vices in the last chapter, we now consider how the communication between the 
peer entities is implemented. This leads us to the notion of layer. The wide range 
of tasks to be fulfilled in a computer network forces one to structure the communi-
cation software. For this, a horizontal layering of functions has prevailed. This 
chapter introduces the concept of layering. The structure of the chapter corre-
sponds to that of the previous ones. We begin with the principles of layering. Next 
we discuss their description. We finish the chapter with the introduction of the last 
part of the XDT protocol in which it is integrated into a layered architecture. 

3.1 Principles 

A layer comprises all entities that provide the same functionality. Each layer 
may provide one or several services. The principles of service provision are the 
same as described in the previous chapter. Thereby it is not described and even not 
of interest how these services are provided. In a layered architecture the entities 
use the services of the adjacent lower layer for exchanging messages (see Figure 
3.1/1). Thus, an entity becomes both service user and service provider.  

The layering principle is a design approach which has been borrowed from eve-
ryday communication. For example, a mailing service is based on the use of 
transport services, e.g., railway, airway, or shipping services, which perform the 
transport of the letters to the destinations. The transport services receive the letter 
at an agreed service access point, e.g., at a railway station. The further transport is 
their responsibility. The transport services may hire other companies to perform 
the transport for certain routes. At the destination the transport service delivers the 
letters to the mailing service at an agreed service access point. 

Notation 
In order to denote the layers and their elements in a layered architecture the fol-

lowing notation is often applied. A certain layer is denoted as the (N)-layer, the 
adjacent higher layer as the (N+1)-layer, and the lower layer as the (N-1)-layer. 
An (N)-layer provides an (N)-service to the (N+1)-layer. Accordingly, other ele-
ments of the (N)-layer, such as service access points, protocol, protocol data units, 
etc., are denoted as (N)-SAPs, (N)-protocol, and (N)-PDUs, respectively (see Fig-
ure 3.1/1). In some communication architectures like the OSI reference model the 
layers are named. Then the abbreviations, e.g., T for transport layer, are used to 
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The parameters of the service primitives as well as the relation among them is 
not specified because this information is contained in the (N-1)-service specifica-
tion. The signal-specification serves for indicating signals which are expected 
from other protocol parts. Furthermore, variables and timers may be declared lo-
cally. 

The action part is simple. It consists of an endless loop that comprises a wait 
event-statement. The SAP handler always reads the first event from its input 
queue and executes the associated action. It might be possible that some events, 
e.g., sending of PDUs, are mapped on the same service primitive. In such cases 
several events may be assigned to an (N-1)-action, e.g., 

wait event{ 
    ABO, ACK: request YDATrequ 
} 

Two further statements are required to describe the protocol behavior in the 
SAP handler: the request-statement and the set event-statement. The request- 
statement is the counterpart of the respond-statement. It describes the call of a 
service primitive of the (N-1)-layer, e.g., 

request YDATrequ. 

The set event-statement serves for indicating events, e.g., the arrival of a PDU, 
to the protocol parts, e.g., 

set event DT. 

The set event-statement writes the event into the upper waiting queue to (re-) 
activate a protocol part which is waiting for this event. 

3.3 Example 

3.3.1 XDT protocol 

In order to demonstrate the layering principle in our example we assume that 
XDT runs over a layer Y (see Figure 3.3/1). The Y-layer provides a connectionless 
data transmission service that can be used in both directions. The service primi-
tives of the Y-service are YDATrequ and YDATind. All XDT connections are 
mapped on this service. 
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 loop{ 
  wait event{ 
   DT: request YDATrequ | 
   YDATind: Assign arriving PDUs to their connection conn 
      case code of { 
          ACK: set event ACK | 
          ABO: set event ABO 
           } 
         }  
    } 
} //XS 

The SAP handler of the sender entity XS describes the handover of the DT- 
PDUs by means of the YDATrequ primitives to the Y-layer and the arrival of 
ACK- and ABO-PDUs from this layer. For the latter, first it has to be determined 
to which connection the PDUs are assigned. This is done by using the conn pa-
rameter. This is informally described here. After that the type of the PDU is de-
termined by means of the code field in the PDU. Finally the PDU is moved to the 
upper input queue by the set event-statement. 

The integration of the SAP handler into the receiver entity XR is similar. Note 
that the PDUs ACK and ABO are assigned to the same action. 

entity XR            // Receiver entity 
 sap receiver 
 var conn: integer 
 begin 
  DT  sender and DT.sequ = 1: connect_r   ||  // Connection set up 
  DATA TRANSFER: transfer_r     // Data transfer phase 
 end //XR 
 
sap handler XR 
 service Y-DATA TRANSFER: requested YDATrequ 
             responded YDATind 
 loop{ 
  wait event{ 
   ACK, ABO: request YDATrequ | 
   YDATind: Assignment of the received DT-PDUs to their connection 
      set event DT  
         } 
 } 
} //XR 
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Further reading 
The layering principle is usually explained together with the service and proto-

col concept in introductory books on computer networks, such as [Kuro 08], [Stal 
08], [Pete 07], and [Tane 10]. 

Exercises 
(1) What is the advantage of the deployment of the layering principle in net-

working? Give an example of its use in everyday life. 
(2) Explain the layering principle. Between which entities is a communication 

allowed? What does an (N)-layer know about the (N-1)-layer? What happens 
if protocol errors occur at lower layers? 

(3) What is the consequence of the principle of transparency for layering? 
(4) Assume that the Y-layer in our XDT example provides a connection-oriented 

service. Introduce the necessary changes in the specification in our model 
language given above. What has to be done when the connection is broken? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 Layered architectures 

In computer networks and communication systems defined layered architec-
tures are used, in which the communication protocols are embedded. These archi-
tectures define the functionality of the different layers and specify the interaction 
principles between them. They are mostly specified by standardization bodies or 
industrial consortia. Layered architectures are usually the product of a lengthy de-
velopment process that is often influenced beside technical requirements by com-
panies’ strategies and political trade-offs. Protocol developers have little influence 
on this process and must accept the architecture as given. In this chapter we pre-
sent several examples of layered architectures and discuss the differences among 
the approaches. We first introduce related terms. Next we present as examples the 
OSI reference model, the TCP/IP architecture, and the B-ISDN reference model. 

4.1 Principles 

Layered architectures can be principally differentiated into closed and open ar-
chitectures. 

Closed architectures  
A layered architecture that aims at a specific application area and that takes 

particular requirements of this area into account is called a closed architecture. 
These are dedicated architectures that have a limited application area, usually that 
of homogenous networks which consist of computers of the same type or family. 
A special variant of closed architectures are producer-oriented closed architec-
tures that are optimized in connecting the hardware and software products of a 
certain producer. These architectures are called proprietary architectures. Fa-
mous examples are SNA (Systems Network Architecture), DNA (Digital Network 
Architecture) and Novell Netware, which were used in the past as the basis for 
network products of the firms IBM, DEC, and Novell over a long time. The ad-
vantage of closed architectures is that they are optimized for the application area. 
They also can be quickly adapted to changing conditions. Their main disadvantage 
is that the integration of non-proprietary systems is expensive because special 
adaptors/gateways have to be implemented. The same applies to the adaptation to 
other network concepts. For this reason, closed architectures are not suitable for 
setting up heterogeneous networks as we find them in the Internet. Closed archi-
tectures have lost their importance in the Internet age. Their use is confined to 
specific applications. Existing proprietary architectures have opened to the Inter-
net architecture. 
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Open architectures  
Open architectures define a unified communication interface for communi-

cating with other computers. Hence, open architectures aim at establishing hetero-
geneous networks. The term open means that each system that follows these rules 
can be integrated into the respective network. The best known examples of open 
systems are the OSI communication architecture [ISO 7498], [Tane 03] and, of 
course, the Internet architecture [Kuro 08], [Stal 08], [Tane 03]. 

Standardized protocols  
The objective of an open communication can be achieved only if the protocols 

contained in the different layers of the layered architecture are also standardized. 
This happened for both aforementioned architectures, but in different ways. The 
services and protocols of the OSI architecture were standardized by the Interna-
tional Organization for Standardization (ISO) in the 1980s after standardizing the 
OSI reference model. This was a very lengthy process, which hampered the broad 
practical deployment of the protocols and the development of commercial prod-
ucts. The Internet protocols were standardized by the Internet Engineering Task 
Force (IETF). In contrast to the ISO approach, the core protocols TCP, UDP, and 
IP existed and could be used from the very beginning. The development of new 
protocols proved to be more flexible as well because they were not developed in 
standardization bodies but in working groups of experts. The proposals were/are 
published in the Request for Comments (RFC) and are open for discussion world-
wide. To become a standard, two independently developed implementations must 
be reported. 

Protocol profiles 
Specifications of communication protocols often contain options. These options 

concern protocol parameters and procedures. The decision which option is taken is 
made as a rule by the protocol implementer. Depending on the application context, 
different options may be selected. In addition, there often exist several versions of 
a protocol. This may lead to the situation that different implementations of the 
same protocol cannot work together, i.e., they are not interoperable because they 
support different options and/or versions (see also Section 14.4 for this). To avoid 
this situation so-called protocol profiles were introduced, which were used espe-
cially in the OSI context. A protocol profile is a tailored protocol hierarchy dedi-
cated to a certain application that specifies the protocol options and versions used 
in the different layers. Protocol profiles require pretty large efforts for their speci-
fication, implementation, and testing. Therefore, a large number of protocol pro-
files appeared disadvantageous. 

Communication versus protocol architectures 
There are two ways of defining layered architectures. The OSI architecture de-

fined a communication architecture by introducing architectural elements for 
describing the basic model elements, e.g., entities, service access points, and oth-
ers. These elements had to be implemented, but it was not prescribed how this was 
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to be done in the respective implementation context, i.e., they did not define im-
plementation rules. In the Internet protocol architectures are applied. Protocol ar-
chitectures are in some ways similar to protocol profiles. They define a dedicated 
layering of protocols which are often used for a certain class of applications, e.g., 
conference applications. Protocol architectures differ from communication archi-
tectures by the fact that the interfaces between the protocols are defined by the 
protocols themselves and not by some generalized architectural element like a ser-
vice access point or a specific layer concept. Protocols may thus appear in various 
protocol architectures. Nowadays protocol architectures are mainly used because 
they have proved more flexible, although they require a detailed knowledge of the 
interfaces of the protocols (see Section 4.3.2 for this). 

Protocol stack 
Another term which is often used is that of the protocol stack. It is more a col-

loquial term. A protocol stack refers to a dedicated protocol hierarchy in a com-
munication or protocol architecture that specifies the protocols used. 

Communication software 
The software that implements a communication or protocol architecture is 

called communication software. This software does not actually belong to the 
operating system under which it runs, although protocol implementations are al-
ways integrated in the context of a certain operating system. This is because com-
munication protocols are designed independently of a concrete execution envi-
ronment. They do not relate to a certain computer type or operating system. Their 
task is to connect computers independently of the system software applied. There-
fore, communication protocols are principally independent of operating systems. 
When implemented, however, communication protocols use operating system 
functions to fulfil their task (see Chapter 13). In this sense communication soft-
ware can be considered as operating system software with an enhanced meaning. 

4.2 Description 

Layered architectures are variously described. No special descriptions beside 
graphical representations are used for describing protocol architectures because 
the definition of the protocols is given by their service and protocol architectures. 
Communication architectures, in contrast, were described by using reference mod-
els.  

A reference model is quasi the specification of the communication architec-
ture. It is a framework from which different concrete communication architectures 
may be derived. The reference models describe the components of the communi-
cation architecture and the interaction principles applied. They further define the 
number of layers and their functionality. The terminology applied in the various 
models is often different. Usually reference models also specify the protocols that 
are used in the different layers. Well-known examples of such reference models 
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are the already mentioned OSI reference model and the B-ISDN reference model. 
The Internet TCP/IP architecture is a protocol architecture rather than a reference 
model, although it is often called so in the literature. We discuss this below. 

Reference models are mostly described informally owing to their complexity. 
There were some approaches to formally describe architectural concepts, e.g., in 
the LOTOS context with the development of the concept of architectural seman-
tics [Viss 88]. They argued that architectural elements like service access points, 
entities, or connections have some influence on the implementation and must 
therefore be semantically correctly defined. This approach was demonstrated in 
[Turn 93] by describing the architectural elements of the OSI reference model us-
ing the standardized formal description techniques Estelle, LOTOS, and SDL. The 
architectural semantics concept did not achieve practical relevance later because 
of its complexity and the fact that the Internet context mainly uses protocol archi-
tectures.  

4.3 Examples 

In this section we give as examples an overview of three layered architectures 
and discuss some of their features. They are the OSI reference model, the Internet 
architecture, and the B-ISDN reference model. We introduce further principles of 
layered architectures in the context of this discussion.  

4.3.1 OSI reference model 

The OSI reference model (Open Systems Interconnection Reference Model, 
OSI/RM) [ISO 7498] was the reference model of the International Organization 
for Standardization (ISO) which was developed for setting up open heterogeneous 
networks. Development began in the late 1970s. The model fell short of the high 
expectations which arose especially in the 1980s. It lost its practical importance 
with the breakthrough of the Internet. Its importance now lies in the theoretical 
contributions of its development. 

The OSI reference model consists of seven layers (see Figure 4.3/1), which 
were selected according to specific design criteria (cp. [Tane 03]). The lower four 
layers are called transport-oriented layers; the upper three application-oriented 
layers. The interface between them is called the transport interface. It represents 
an important interface in a layered architecture because it separates transmission-
oriented aspects from application-oriented ones in communication. 
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The transport layer (T) establishes an end-to-end relation between the 
source and destination nodes – the end systems – which is also called end-to-end 
communication. While the communication relation in the lower layers is point-to-
point, the transport layer obscures this by considering only the communication be-
tween end systems. The reference model expresses this by the fact that the inter-
mediate protocol stack of passed nodes only comprises the first three layers. Start-
ing from the transport level, only direct communication between end systems is 
considered (cp. Figure 4.3/1). For this reason, the transport interface is an appro-
priate interface for setting up applications.  

The concepts pursued with the application-oriented protocols of the OSI refer-
ence model did not prevail. Many of these functions are nowadays realized in a 
different and more flexible manner through middleware which is superimposed on 
the transport interface. For this reason, we briefly mention the functionality of 
these layers for the sake of completeness. 

The session layer (S) serves for the synchronization of the communication 
concerning the contents. This comprises among others the resynchronization of 
the communication after interrupts, the resuming of the communication, and the 
assignment of sending rights. The session concept, however, is reused in various 
protocols, e.g., in the security area. 

The presentation layer (P) ensures a uniform interpretation of data in hetero-
geneous network environments independently of their possibly different represen-
tation on the particular computer systems. The function of the presentation layer 
corresponds to that of the translators in our philosophers example in Section 3.1. 
The presentation layer negotiates in cooperation with the application layer a so-
called presentation context. It defines an abstract syntax to describe the data for-
mats of the application. A transfer syntax is derived from the abstract syntax for 
exchanging the application data. The abstract syntax notation ASN.1 was devel-
oped for describing these abstract syntaxes. It is often applied for describing data 
formats in protocol specifications (see Section 8.5). 

The application layer (A) provides means to implement the transition between 
the protocol stack and the application. Like the physical layer, it is not a layer as 
introduced in Section 3.1. There are, for instance, no service access points. OSI 
defined a special model for the application layer which was very complex and did 
not find acceptance. 

In the 1980s the OSI reference model was adopted by the committee 802 of the 
American Institute of Electrical and Electronics Engineers (IEEE) for the defini-
tion of a reference model for local area networks (LAN), which emerged in the 
1970s. Unlike WANs with their meshed topology, LANs originally used a shared 
medium that connected all end systems (stations). Typical topologies were/are the 
bus, the ring, and the star. The stations compete for access to the shared medium 
by means of special access procedures. The most important ones are CSMA/CD 
(Carrier Sense Multiple Access/Collision Detection), which is the base of 
Ethernet, and the token methods. To integrate the different topologies and access 
methods a trade-off was found, which is still used in this form today in the Internet 
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communication architectures in practice because it is more comprehensive than 
other models which describe the functionality of computer networks. Further mer-
its of the model are some important conceptual contributions, in particular the dis-
tinction between service and protocol. This is an important presumption for the 
description and validation of protocols, which is the subject of this book. Finally, 
it must be mentioned that much research work was done during the OSI develop-
ment which had a fundamental influence on the development of computer net-
works. One example is the development of a testing methodology for communica-
tion protocols that we introduce in Chapter 14.  

4.3.2 TCP/IP protocol suite 

The TCP/IP protocol suite is the layered architecture of the Internet. It origi-
nates from the first wide area network of the world, the ARPANET. The TCP/IP 
protocol suite does not represent a reference model in the sense introduced above. 
It is a protocol architecture which has been established around the core Internet 
protocols: the connectionless network protocol IP (Internet Protocol), the connec-
tion-oriented transport protocol TCP (Transmission Control Protocol), and the 
connectionless transport protocol UDP (User Datagram Protocol). In contrast to 
the OSI reference model, these protocols were the starting point of the develop-
ment. The TCP/IP architecture does not provide a common framework for the de-
sign of communication architectures. It mainly describes the cooperation of the 
core protocols with other protocols of the Internet. This is the reason why we 
avoid the notion “TCP/IP reference model” here, although it can be found in the 
literature. 

TCP, IP, and UDP owe their success primarily two things: their simplicity and 
their early integration in Berkeley UNIX which was freely available at that time 
and very popular in the academic community. With the Internet established as the 
global computer network infrastructure, TCP/IP will remain the dominant layered 
architecture for computer networks for a long time. Changes will be introduced in 
an evolutionary manner, e.g., by introducing new protocol versions like for IP. 

The TCP/IP architecture consists of four “layers” (see Figure 4.3/3), of which 
exactly speaking only the IP layer (corresponds to OSI layer 3) and the TCP/UDP 
layer (OSI layer 4) are layers in the sense introduced above. Their objective is to 
provide stable transmission of data between end systems in the Internet independ-
ently of changing network conditions. Unlike OSI, the TCP/IP architecture in-
cluded the concept of internetworking from the very beginning. The solution has 
been to apply the connectionless data transmission protocol IP in the network 
layer. The connection-oriented TCP above ensures reliable communication be-
tween end systems in the transport layer, when needed. Applications that do not 
require reliable transmission, e.g., in multimedia communication, can use the con-
nectionless UDP instead. 
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The TCP/IP architecture applies several concepts of interactions in the protocol 
stack (see Figure 4.3/4). We start from the application point of view. An applica-
tion is bound to a port, which is identified by a 16 bit number. Ports are commu-
nication end points. They correspond to the OSI/RM service access points. One 
can say likewise that an application is characterized by its associated port. Stan-
dard Internet applications possess fixed port numbers, e.g., ports 21 and 22 for ftp, 
port 23 for telnet, or port 80 for the WWW. Such ports are called well-known 
ports and assigned by the Internet standardization bodies. Ports for other applica-
tions are assigned dynamically.  

The application accesses the transport interface via a socket. Sockets are the 
application programming interface (API) of the transport interface to support the 
porting of applications and services. The interactions are programmed by means of 
special routines. Each socket is identified by an address that consists of the IP ad-
dress and the (local) port number. Sockets are the end points of connections. 
Unlike OSI, connections are not characterized by references but by the tuple 
(socketi,socketj). TCP/IP does not know the concept of connection end points as 
introduced in Section 1.1.  

The interaction between the transport protocols and IP is controlled by the pro-
tocol number. This is an entry in the IP protocol header. The protocol number de-
termines the receiver protocol of the user data in the IP payload part. In other 
words: it addresses the “service user” the user data are assigned to. The concept of 
protocol numbers applies not only to the transport protocols but to all protocols 
which run in the IP layer, such as ICMP (Internet Control Message Protocol), 
IGMP (Internet Group Management Protocol), ARP (Address Resolution Proto-
col), and others. IP defines this kind of handover for about 100 protocols. Some of 
them, like ICMP, also interact with it. The protocol number is the tag for IP to de-
liver the user data to the correct receiver protocol or respective “service user”. 

Access to the IP layer is defined by the IP address that at the same time also 
defines the interface to the network. Each host in the Internet possesses an IP ad-
dress, which may be statically or dynamically assigned. A host may simultane-
ously have several IP addresses to access different networks. Such systems are 
called multi-homed. Furthermore, a host can support different protocol stacks, e.g., 
for IPv4 and IPv6. The distinction and selection of the protocol stack takes place 
at the network interface by means of the version indication in the IP header.  

If a host is located in a local area network the network interface is determined 
by the MAC address. A MAC address is a flat address that does not contain any 
information about the location of the host. In contrast to the point-to-point com-
munication paradigm of IP, the data delivery in shared medium LANs applies a 
broadcast transmission principle which ensures that the frames pass along all con-
nected stations. Therefore the IP address has to be mapped onto the MAC address. 
For this, the Address Resolution Protocol (ARP) is used, and the Reverse ARP 
(RARP) for the opposite mapping. 
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protocols. This principle is called out-of-band signalling contrary to in-band sig-
nalling, in which, as introduced in Section 2.1, connection management and data 
transmission run over the same connection. The separation of signalling and data 
transmission is convenient for the transmission of large data volumes as in multi-
media communication. It allows fast transmission of the signalling data between 
the partners which is not delayed by the user data stream. Out-of-band signalling 
is typical for protocols in high performance communication. Many Internet proto-
cols also apply this principle. 

The second difference is the integration of the network management into the 
reference model. This is based on experience gained with the OSI reference model 
and the TCP/IP architecture which originally did not include network manage-
ment. It was supplemented by separate models in both architectures only in the 
late 1980s. 

 

Further reading 
As in the chapters before layered architectures are also described in many in-

troductory books about computer networks, such as [Kuro 08], [Stal 08], [Pete 
07], and [Tane 10]. 

Exercises 
(1) Explain the difference between closed and open layered architectures. What 

are their benefits and shortcomings? Which of these layered architectures is 
often called a proprietary architecture? How do you characterize the Internet 
architecture? 

(2) What is the role of standardized protocols in the context of layered architec-
tures? 

(3) What is the difference between a communication and protocol architecture? 
Give examples of such architectures. 

(4) The transport layer and the transport interface play an important role in the 
OSI reference model and the Internet architecture. Explain why this is so and 
what is their importance. 

(5) Give some of the major differences between the OSI reference model and the 
TCP/IP protocol suite. 

(6) How have local area networks been integrated into layered architectures? 
(7) What possibilities exist to set up applications above the transport interface?  
(8) What are the end points of connections in TCP? Are several connections al-

lowed between the same end points? 
(9) Describe how the interaction between layers and protocols is realized in the 

Internet architecture. Explain in particular the role of the protocol number in 
the IP protocol.  

(10) What is the difference between in-band and out-of-band signalization? Give 
examples of their application. 

 



5 Protocol functions 

After introducing the basic concepts of services, protocols, and layered archi-
tectures in previous chapters we return once more to the protocol as the main con-
cept to have a closer look at it. Communication protocols typically contain a num-
ber of procedures and mechanisms which appear in many protocols. These 
procedures are usually called protocol functions. Many of these protocol func-
tions in turn use other protocol functions. Which protocol functions are applied in 
a protocol depends on the purpose of the protocol. Protocols in higher layers usu-
ally apply other functions than those in lower layers. There are, however, many 
functions that are applied in many protocols, such as connection management, 
flow control, error control, or synchronization. These and other protocol functions 
are introduced in this chapter. With this introduction, we want to give the reader a 
deeper insight into the most important protocol mechanisms, the diversity of their 
procedures, and the complexity resulting from this. 

5.1 Error control 

One of the most important tasks of (connection-oriented) communication pro-
tocols is to ensure that the protocol data units are correctly and reliably transmit-
ted, even if the underlying communication channel is unreliable. Protocols must, 
therefore, possess means to detect transmission errors and to react appropriately to 
them. This is the task of the error control which is one of the most important pro-
tocol functions. There are different error control methods which are deployed in 
varying contexts. Some of these methods are fundamental for protocols. For that 
reason we begin this chapter with this protocol function. 

Confirmations 
When an entity sends off a PDU, it wants to know whether it reached the re-

ceiver entity. For this, explicit acknowledgements are used which are sent back 
by the receiving entity if the PDU arrived completely and correctly. Acknowl-
edgements are the simplest and most frequently used means to confirm a success-
ful transmission. There are two principle approaches: positive and negative ac-
knowledgments. Mostly positive acknowledgments are used to confirm the 
reception of a PDU. The sequence number is usually added to the confirmation, as 
a rule increased by one to indicate the next expected sequence number (see Figure 
5.1/1). To reduce the number of acknowledgments and thus the network load cu-
mulative acknowledgments may be used that confirm several PDUs with one ac-
knowledgement (see Figure 5.1/1).  
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start t              // Start timer 
wait event{ 
 ACK  receiver:  reset t 
       decode ACK  | 
 timeout t: respond XABORTind     // Reaction to time-out 
} 

The time-out represents an alternative event to the events being expected in a 
waiting state. It allows the entity to leave the waiting state and thus to avoid a 
deadlock. The time-out is handled like other events (e.g., a PDU or a service 
primitive). Note that the timer must be stopped when one of the other expected 
events occurs. This is usually done by a reset operation.  

Another important application of timers is activity monitoring of the communi-
cation partner, i.e., the peer entity. When the peer entity for whatever reason stops 
communicating, the active partner may also deadlock. Such situations can be 
avoided using an activity timer to signal the inactivity of the peer partner. The ac-
tivity timer is restarted each time a PDU arrives. The timer must have a reasonably 
large time-out value to distinguish PDU delays from inactivity of the peer entity. 
The following specification fragment from Section 2.3 depicts the use of the activ-
ity timer t1 in the XDT protocol. In this case the sender entity closes the connec-
tion when the receiver is signalled inactive. 

start t1              // Start activity timer 
loop{ 
 start t2            // Start ACK monitoring 
 wait event{          // Await ACK 
  ACK  receiver: reset t1 // Reset activity timer
            reset t2      // Reset ACK supervision 
         .  .  .      // ACK decoding 
            start t1  |     // Restart activity timer 
       .  .  . 
  timeout t1: respond XABORTind(conn)  // Receiver entity inactive 
       set CONNECT     // Sender closes connection 
       sequ:=1; last:=0     // Reset variables 
       clear_queue(conn) 
       exit ack_handler       // Leaving protocol part 
 } 
} 

It must be mentioned that timer management is one of the most important tasks 
when configuring a protocol. The crucial task is to appropriately determine the 
time-out interval for end systems in different, sometimes far away networks. If the 
time interval is too small then this causes frequent time-outs and unnecessary re- 
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84 5  Protocol functions 

2-way handshake 
The 2-way handshake consists of a simple message exchange between the peer 

entities. The initiator side starts with a connect request PDU, the responder side 
confirms the connection set up. The following example shows the principle for the 
XDT protocol in a slightly simplified way: 

   Initiator         Responder 
 
XDATrequ_1: 
 DT  responder wait event{
 wait event{          DT  initiator:  
      ACK  responder:                                                     respond XDATind
            respond XCONconf ACK  initiator
       set DATA TRANSFER                    set DATA TRANSFER 
}             } 
 . . .          . . . 

After confirming the connection set up, the responder assumes that the connec-
tion is successfully established. This is sufficient for a unidirectional transmission. 
The responder receives with the connection set up message all parameters from 
the initiator and can wait for the messages. Even if its confirmation gets lost the 
connection is established and the receiver is ready to accept protocol data units. In 
a bidirectional or duplex communication, which is usually assumed for connec-
tions, this might become a problem. Assume that the responder starts sending 
PDUs immediately after sending its set up confirmation. If the confirmation mes-
sage gets lost the communication between initiator and responder becomes incon-
sistent because the connection set up has not been confirmed to the initiator. This 
may lead to data loss or message reordering which contradicts the connection-
oriented transmission paradigm (cp. Section 1.1). The use of timers does not rem-
edy the problem because it only leads to a reaction at one side, whilst the other 
side continues to assume that the connection is set up. Only a further handshake 
provides a safe solution. 

3-way handshake 
The 3-way handshake requires that the initiator confirms the reception of the 

confirmation with a further message. Only when receiving this message the re-
sponder may begin sending its data units. Thus, it is ensured that both sides have 
the same knowledge about the state of the connection. It is not necessary that a 
special connection set up PDU is used for the second confirmation. This can be 
done by means of the first data PDU. Even if this PDU gets lost the initiator can 
rely on the successful connection set up and send further messages which are then  
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interpreted as the second confirmation by the responder. When applying a 3-way 
handshake the XDT example changes as follows1:  

  Initiator          Responder 
 
XDATrequ_1: 
 DT  responder wait event{
 wait event{          DT  sender:  
      ACK  responder:                                        respond XDATind 
  respond XCONconf ACK  initiator
  set DATA TRANSFER             wait event{ 
 }                DT  sender:
    .  . .              set DATA TRANSFER 
 DT  responder         }     . . . 
              } 

5.3 Connection management 

Connection management comprises all activities that are required to set up, to 
maintain, and to release a connection in connection-oriented protocols. These 
comprise many more activities than the three phases – connection establishment, 
data transfer, and connection release – foreshadow at first glance. 

5.3.1 Connection establishment 

To set up a connection two activities are required: to establish the connection 
and to negotiate the quality of service parameters (QoS). The connection estab-
lishment requires that both partners synchronize for the acceptance or refusal of 
the connection. For this, the aforementioned handshake procedures are applied. A 
responder may also refuse a connection establishment offer. The reasons for this 
are mostly a lack of resources, i.e., the responder is not able to handle the connec-
tion, or the incapability to fulfill the desired QoS requirements. The latter play a 
less important role in traditional protocols. Here only a few parameters are used, 
such as throughput, transmission delay, residual error rate, or error probabilities. 
The negotiation procedure is simple. The initiator submits an offer to the re-
sponder that it accepts, reduces, or rejects. In case of a reduction the initiator now 
has the choice to accept or reject it. By this the negotiation is finished. In tradi-
tional protocols quality of service rules were applied rarely. In modern protocols, 
in particular for high performance and multimedia communication, more complex 
mechanisms are applied. Special models have been developed to make contracts 

                                                           
1 Note that the XDT protocol actually does not require a 3-way handshake be-

cause it only supports unidirectional transmission. 



8

b
m
th

E

c
(s
s

F

I

tr
c
n
c
d
d
la
tr
s
fo
th
(s
s
th
is

6 

betw
mod
hem

T

Expl
E

char
see 
hak

 

Figur

mp
E

rans
creas
nific
cepta
delay
deno
ay. 
rans
igna

for t
he h
send
hak
he h
s us

 
 
 
 

ween
dels 
m fu
Ther

licit
Expl

acte
Fig

ke is

re 5.

licit
Expl
smis
sing

cantl
able
y pr
otes 

Th
smis
al d
the p
high
ding

ke, i
high
suall

5  P

n th
are
rthe
e ar

t co
icit 
erize
gure
s app

.3/1:

t co
icit 
ssio
g tra
ly l
e an
rodu
the

e la
ssio

delay
pow
h pe
g an
s ab

h pe
ly n

Proto

e se
e co
er he
re tw

onne
con

ed b
e 5.
plie

: Ex

onne
con

on r
ansm
arge
nym
uct 
e pro
atter
on a
y of

werf
rfor
nd c
bout
erfor
not t

ocol

ervi
mpl
ere.
wo p

ecti
nne
by a
3/1)

ed. 

xplici

ecti
nnec
ate 
mis
er s

more
for 
odu
r co

as w
f 10
ful o
rma
con
t 20
rma
toler

 fun

ice u
lex 
. 
prin

ion 
ctio
a se
). D

it co

ion 
ctio
of 
sion
o th

e. F
a lo

uct o
omp

well.
00 μ
one.
ance
nfirm
0 ms
ance
rabl

nction

user
and

ncip

set 
on e
epar
Depe

onne

set 
on se
sev
n ca
hat d
igur
ow 
of th
pris
 In 
μs p
. As
e net
ming
sec. 
e ne
le in

ns 

rs a
d do

al w

up 
estab
rate 
end

ction

up 
et u

veral
apac
dela
re 5
and
he t
es t
this

per b
s a c
two
g) i
Du

etwo
n hi

and 
o no

way

blish
set 

ding 

n set

up is
l m
city
ays 
5.3/2
d a h
tran
the 
s ex
bit f
con

ork c
in th
uring
ork. 
gh p

the 
ot d

s to

hme
up 
on

t up

s no
ega

y the
like
2 sh
high
smi
del

xam
for 

nsequ
com
he t
g th
Th

perf

pro
direc

o set

ent 
pha

n the

ot ex
abits
e vo
e th
how
h pe
issio
lays

mple 
the 
uen

mpar
trad

his ti
is d
form

ovid
ctly

t up 

is a
ase 
e pr

xped
s pe
olum

hat o
ws t
erfor
on r
s fo
we
low

nce, 
red 
ditio
ime

delay
man

der, 
y rel

a c

appl
bef

roto

dien
er se
me 
of th
this 
rmin
rate 
or s
e ass
w pe

mu
to th

onal
e 20 
y as

nce n

and
late 

onn

lied
fore
ocol

nt fo
econ
of d

he c
dif

ng l
(ba
end
sum
erfo
ultip
he t
 ne
Mb

s we
netw

d to
to 

nect

d in 
 the
 co

or hi
nd. 
data
conn
ffere
link

andw
ding
me a
ormi
ple m
trad
etwo
byte
ell a
work

 enf
pro

ion

the
e da
ntex

igh 
The

a in
nect
ence
k. Th
widt
g an
a lin
ing 
mes
ditio
ork, 
e of
as d
ks.

forc
otoc

: ex

e ma
ata t
xt a

per
e re

n tra
tion
e re
he b
th) 

nd r
nk le

net
ssag
onal 

nee
dat

delay

ce th
ols.

xplic

ajor
tran
a 2-

rform
easo
ansm
n set
elate
band
and
rece
engt
wor

ges a
one
ede
ta co
ys b

hese
 W

citly

rity 
nsmi
-way

man
on i
miss
t up
ed t
dwi

d the
eivin
th o
rk a
are 
e. T
d fo
ould
by r

e co
We d

y or 

of p
issio
y or

nce 
s th
sion

p ph
to th
idth
e tra
ng 
of 10
and 
in t

The r
for a
d be
retra

ontr
o n

imp

prot
on p
r 3-

pro
hat w
n be
ase 
he b

h-de
ansm
data
000
of 

tran
roun
a 2-
e tra
ansm

racts
not c

plic

toco
phas
-wa

otoc
with

ecom
are
ban
lay 
miss
a an
0 km
1 ns
smi
nd t
-wa
ansm
mitt

s. T
cons

citly

ols. 
se s

ay h

ols 
h an
mes 
e no
ndwi

pro
sion
nd 

m w
s pe
issio
trip 
y h

mitte
ing 

Thes
side

y. 

It i
start
hand

wit
n in
sig

ot ac
idth

oduc
n de
thei

with 
er bi
on i
tim

hand
ed i
dat

se 
er 

is 
ts 
d-

th 
n-
g-
c-
h-
ct 
e-
ir 
a 
it 
n 

me 
d-
n 
ta 

 



 

F
[B

tr
w
in
th
m
d
c

F

5

c
c
tw

Figur
Brau

T
rans

with
ng a
he p

must
draw
conn

Figur

5.3.2

D
conn
conc
wee

re 5
u 95]

The i
smis

hout 
and 
prin
t be

wbac
nect

re 5.

2 C

Durin
nect
cern
en (N

 

5.3/2
]) 

imp
ssio
wa
con

ncipl
e ret
ck i
tion 

.3/3:

Con

ng 
tion 
n rea
N)- 

2: Ba

plici
on s
aitin
nfir
le. I
tran
is ac
set 

: Im

nnec

data
wh

acti
and

andw

it co
tart

ng fo
rmin
If th
nsmi
ccep
up,

mplici

ctio

a tr
hich
ions
d (N

width

onne
s im
or th
ng t
he re
itted
pted
, als

it co

on m

rans
h rem
s to 
N-1)

h-de

ecti
mme
he c
the 
espo
d, if
d for
so sp

onne

main

smis
mai
a b

)-co

elay 

on s
edia
conf
set 
ond
f th
r th
pec

ction

nten

ssion
in u
brea
nne

pro

set u
ately
firm
up 

der r
his i
he be
ific

n set

nan

n v
unno
akdo
ectio

duct

up d
y af

mati
is f

refu
s st
ene
PD

t up

nce

vario
otice
own
ons.

t in 

diffe
fter 
on o
fully

uses 
till n
fit o

DUs 

ous 
ed b
n of
 

netw

fers 
sen
of t
y us
the

need
of a
ma

me
by t
f an

work

from
ndin
he s
sed 
e con
ded

a bet
ay b

easu
the 
n (N

ks w

m th
ng th
set u
for

nne
, du
tter 
e us

ures 
serv

N-1)

5.3

with 

he e
he f
up. 

r sen
ectio
urin

tran
sed 

are
vice
)-co

3  Co

diff

expl
first
Thu

ndin
on th
g th
nsm
as f

e re
e us

onne

onne

feren

licit
t con
us,
ng d
he d
he n

miss
for t

equi
ser. 
ectio

ectio

nt tra

t one
nne
the 
data
data
next
ion 
the 

ired
Th

on a

on m

ansm

e by
ectio

gap
a. Fi
a PD
t set
rate
exp

d fo
hese 
and 

manag

missi

y th
on s
p be
igur

DUs
t up
e. F

plici

r m
me
the

gem

ion 

e fa
set u
etwe
re 5
s get
p att
For t
it se

main
easu
e m

ment 

rate

act t
up m
een 
5.3/3
t los
tem
the 

et up

ntain
ures

mapp

s (so

that 
mes
trig

3 sh
st. T

mpt. 
imp

p.  

ning
s ma
ping

87

ourc

dat
ssag
gger
how
The
Thi

plici

g th
ainl
g be

7 

ce 

ta 
ge 
r-

ws 
y 
is 
it 

he 
y 

e-

 

 



8

R

re
u
c
m
is
r

M

c
b
p
ti

F

s
fo
su
v
m

n
th
w

F

 
 

8 

Re-e
In

equ
uppe
can b
mean
s no

reas

Mul
A

conn
be fa
plexi
ing)

Figur

M
eve

for c
upp

versa
mitti

M
need
hat 

whet

For m

 Sc
si

esta
n a 
uires
er pr
be d
ns t
ot p
sign

ltipl
Anot
nect
favo
ing)
) (se

re 5.

Mult
eral 
certa
port 
a us
ing 

Mult
ded 
brin
ther

mul

che
imu

5  P

ablis
lay

s an
roto
don
hat 
ossi
nme

lexi
ther
tion
orab
) or
ee F

.3/4:

tipl
(N-
ain 
dif

sefu
the 

tiple
in a
ng a
r thi

ltipl

duli
ultan

Proto

shm
yered
n ap
ocol
ne e

the
ible
ent 

ing 
r tas
s. M
le t

r vic
Figu

: Ma

exin
-1)-c
reas

ffere
ul, w
(N)

exin
a on
alon
is ov

lexin

ing 
neou

ocol

ment
d ar
pro
l usu
ithe
 bro

e the
to a

and
sk o
Mos
to m
ce v

ure 5

appin

ng o
con
son
ent 
whe
)-co

ng a
ne-to
ng a
verh

ng, 

of 
us a

 fun

t of
rchi
pria
uall

er by
oken
e co
anot

d sp
f th
tly 

map 
vers
5.3/4

ngs 

of (N
nnec
s se
fun

en th
omm
and 
o-on
an a
head

the

(N)
arriv

nction

f con
itect
ate r
ly tr
y re
n (N
omm
ther

plitti
he co
a on
 sev

sa o
4). 

of (N

N)-
ction
ever
nctio
he r
mun
spli
ne m
addi
d is 

se a

)-co
val o

ns 

nne
ture
reac
ries 
esyn
N-1)
mun
r (N

ing 
onn
ne-t
vera

one 

N)- o

-con
ns fo
ral (
ons,
relia

nicat
ittin
map
ition
acc

are: 

onne
of P

ectio
e th
ction
to r

nchr
)-co
nicat
N-1)-

necti
to-o
al (N
(N)

onto

nnec
for e
(N)-
 e.g
abili
tion

ng, h
ppin
nal 
cept

ectio
PDU

ons
e br
n o
re-e
roni

onne
tion
-con

ion 
one 
N)-
)-co

o (N-

ction
effic
-con
g., e
ity 

n ov
how
ng. T

ove
table

ons 
Us on

reak
f th

estab
izat
ectio
n via
nnec

man
map
con

onne

-1)- 

ns i
cien
nnec
erro
of t
er s

weve
Thes
erhe
e w

reg
n (N

kdow
he ad
blish
ion 
on i
a th
ctio

nag
ppin

nnec
ectio

conn

is us
ncy 
ction

or ha
the 
seve
er, r
se m

ead. 
hen

gard
N)-c

wn 
djac
h th
or 
s re

he (N
on. 

geme
ng i
ction
on o

necti

sefu
reas
ns a
and
tran

eral 
requ
mea

Th
n lay

ding
conn

of 
cent
he (N
by 

e-est
N)-c

ent 
is ap
ns o
onto

ions

ul w
sons
are 

dling
nsm
(N-

uire 
asure
heref
yerin

g an
nect

a c
t hig
N-1
rea
tabl
con

is th
ppli
onto
o se

 

when
s. S
set 
g. S

missi
-1)-c
add

es im
fore
ng p

n (N
tion

conn
ghe

1) co
ssig
lishe
nec

he m
ied.
o on
ever

n it 
Som

up o
Split
ion 
con
ditio
mpl
e, it
prot

N-1
ns, 

nect
er la
omm
gnm
ed b

ction

map
 In 
ne (
ral (

is n
etim
ove
ttin
is t

nnec
onal
ly fu
t mu
toco

)-co

tion 
ayer
mun

ment
by th
n m

ppin
som

(N-
(N-1

not f
mes 
er an
g o
to b
ction
l me
furth
ust 
ols.

onne

for
r. In
nica
. Re
he (

may b

ng o
me s
1)-c
1)-c

favo
it m

n (N
f co

be in
ns.
easu
her p
care

ecti

r wh
n thi
ation
esyn
(N)-
be c

f (N
situ
conn
conn

orab
may
N-1)
onn
ncre

ures
prot
eful

ion

hate
is si
n rel
nch
-ent
cont

N)- o
atio
nect
nect

ble t
y be
)-co
ecti

ease

s wh
toco
lly b

to 

ever
itua
latio

hron
titie
tinu

onto
ons 
tion
tion

to m
 use
nne
ions
ed b

hich
ol fu
be a

con

r re
ation
on. 
niza
s. If

ued 

o (N
it m

n (m
ns (s

main
eful
ectio
s is 
by tr

h are
unct
asse

ntrol

aso
n th
Thi

ation
f thi
by 

N-1)
migh
multi
split

ntai
l tha
on t
vic

rans

e no
tion
esse

l th

n 
he 
is 
n 
is 
a 

)- 
ht 
i-
t-

n 
at 
to 
ce 
s-

ot 
ns 
d 

he 



  5.3  Connection management 89 

 Flow control2  on (N)-connections to regulate the capacity of the (N-1)-connec-
tion, 

 Assigning arriving (N-1)-PDUs to their associated (N)-connections. For this, 
connection references are used. 

For splitting, the following additional functions are required: 

 Scheduling of the PDU assignment to (N-1)-connections when splitting the (N)- 
connection, 

 Re-establishing the (N)-PDU sequence when reuniting the (N-1)-connections at 
receiver side due to varying arrival times.  

5.3.3 Connection release 

Connection release is usually initiated by the service users when the data 
transmission is finished or other circumstances (e.g., errors) force the transmission 
to be terminated. It can also be triggered by the service provider due to internal 
conditions.   

There are two kinds of connection release: 

 explicit connection release and 
 abrupt connection release. 

Explicit connection release 
The explicit connection release is triggered by one of the service users (or 

sometimes also simultaneously by both). When closing a connection the service 
provider has to solve two problems: 

 to synchronize the connection release between partners and 
 to ensure complete data delivery. 

The objective of the synchronization during connection release is to ensure that 
both entities close the connection. Otherwise, this might result in a half-open con-
nection in which one entity is in the state closed, the other one in state connected. 
Unfortunately, this problem is not as easy as it looks. The problem is known as the 
“two army problem” and is described in detail in [Tane 03]. The two army prob-
lem describes a situation in which a blue army intends to attack a white army in a 
valley. The blue army, however, is split on two hills and has to coordinate the at-
tack. To do so they send a messenger to the other side to deliver the time of the at-
tack and to return with the confirmation. The problem is that the messenger can be 
captured. This can happen at very different moments. Figure 5.3/5 shows some of 
these situations related to the connection release. 

 
 

                                                           
2 For flow control, see Section 5.8. 
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Bookkeeping does not work in the case a connection breaks down. Therefore 
bookkeeping is not applied in practice. Instead entities wait until all PDUs still in 
transmission must have arrived or are discarded. Only then they are again ready to 
set up a new connection. This waiting time depends on the protocol applied (see 
Section 6.2.1 for this). 

Sequence number overflow 
Sequence numbers are assigned modulo a maximum number, since only a finite 

number of bits can be reserved for the sequence number in the PDU header. Se-
quence number overflow is not checked in the protocol. It is performed automati-
cally. An important issue is, therefore, to determine an appropriate maximum 
value for the sequence number. If the maximum value is too small then new se-
quence numbers can correlate with outstanding PDUs. TCP uses a maximum 
value of 232 (see Section 6.2.1). In high performance communication this causes 
problems. If we assume a maximum PDU lifetime tmax of 2 minutes the overflow 
is reached when transmitting 286 Mbps. To ensure a conflict free reuse of se-
quence numbers high performance protocols have either to provide a sufficiently 
large range for them or to limit the lifetime of the PDUs correspondingly. Another 
solution is the additional use of time stamps to correlate PDUs with equal se-
quence numbers. 

5.8 Flow control 

Flow control regulates the number of PDUs exchanged between sender and re-
ceiver entities. Its objective is to protect the receiver entity from overload situa-
tions, which may occur when the receiver is not able to accept all incoming PDUs 
due to differences in processing power of the hosts or available buffer capacities. 
There are two types of flow control: 

 window-based flow control, and  
 rate-based flow control. 

5.8.1 Window-based flow control 

In the window-based approach the receiver provides the sender a range of 
PDUs – the “window” – within which the sender can send PDUs. Window-based 
flow control is a pure end-to-end regulation between sender and receiver entities 
which only takes the receiver’s situation into account and not that of the network 
connecting them. This regulation only relates to the first transmission of PDUs but 
not to retransmissions due to PDU loss or transmission errors. Retransmissions are 
performed independently. There are several methods for implementing window- 
based flow control: 

 start/stop procedures,  
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 credit procedures, and  
 the sliding window protocol. 

Start/stop procedures 
The simplest way to install a flow control is a start/stop mechanism in which 

the receiver sends a stop signal to the sender entity when it is not capable to accept 
further PDUs. The drawback of this approach is that frequent start/stop signals en-
gender a discontinuous, bursty data flow which is usually not desired. In addition, 
the receiver entity has to provide sufficient buffer to store all PDUs which are still 
in transmission when the stop signal is sent out. 

Credit procedures 
An essentially more elegant method represents the allocation of credits. The 

receiver entity allocates the sender entity a credit, usually specified as a range of 
sequence numbers. The sender can use up the credit by sending out PDUs whose 
sequence numbers are in the specified range. When the credit is used up, the send-
er has to stop transmission until a new credit is allocated. Normally, credits are al-
located continuously so that interruptions and bursty data flow are avoided. We 
demonstrate the principle of credit allocation taking XDT as an example. For this 
purpose, we extend the data transmission phase by a credit mechanism. Credit al-
location and acceptance are activities which run in parallel to the sending and re-
ceiving of data PDUs. They are, therefore, represented by concurrent activities in 
the par event-statement. We first consider the behavior of the sender. 

message DT = ... 
     UPDATE = record (code: bits; credit, credit_nr: integer) 
     ACKupdate = record (code: bits; credit_nr: integer) 
  .   .   . 
entity sender 
signal new_credit 
var credit: integer 
par event{ 
 XDATrequ: code_DT        // SENDING DT 
      if (credit > 0) 
      {DT  receiver}
      else wait event{     // Wait for credit 
          new_credit: DT  receiver
             } 
      decr credit  ||       // a credit unit is used up 
  
 UPDATE  receiver: // RECEPTION CREDIT
        if (UPDATE correct)     // New credit-PDU? 
        {credit :=  UPDATE.credit 
          code_ACKupdate (incr UPDATE.credit_nr) 
          ACKupdate  receiver // Confirmation credit
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          set new_credit     // Signal to SENDING DT 
        } 
} //sender 

The sending of DT-PDUs now depends on whether the sending entity still has 
credit. When the credit is used up, the entity has to wait. The UPDATE-PDUs, 
which arrive independently of sending DT-PDUs, increase the credit and decontrol 
a waiting DT-PDU. For each UPDATE-PDU, it is checked whether it contains a 
new credit or represents a duplication of an already received UPDATE-PDU. Only 
in the first case, the credit is increased. Furthermore, it is necessary to detect 
losses of credit PDUs. Otherwise, a deadlock may eventuate because the sender is 
unable to send data, whereas the receiver believes that no data are ready to be sent. 
For that reason, the sender has to acknowledge the reception of credits with an 
ACKupdate-PDU which contains the sequence number of the UPDATE-PDU in-
creased by one.  

The receiver supervises the credit acknowledgments with a timer which is star-
ted when sending the UPDATE-PDU. If no acknowledgement arrives the credit al-
location is repeated. 

entity receiver 
timer t: 0..? ms 
var new_credit, credit_nr: integer init(1) 
par event{ 
 DT  sender: ...   || // RECEPTION DT
 loop{            // PT: CREDIT ALLOCATION 
  determine credit(new_credit) 
  code_UPDATE (new_credit) 
  loop{ 
   UPDATE  sender // New credit to sender 
   start t 
   wait event{         // Await credit confirmation 
    ACKupdate  sender:  
        credit_nr := ACKupdate.credit_nr
        exit  | 
    timeout t: skip        // Repeat credit allocation 
   } 
  } 
 } 
} //receiver 

Usually the credit values are chosen so that they correspond to the sequence 
numbers of the PDUs. They show the sender entity which PDUs it can send next. 
In this case one can waive the explicit credit acknowledgement, since the receiver 
knows from the PDU sequence number that the sender received the credit. 
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riod, the so-called burst, and by controlling the minimum gap between bursts. 
During a burst phase the sender can send as many data packets as the burst size al-
lows. When the limit is reached or the burst period is over, the sending procedure 
is interrupted. The efficiency of this regulation depends on the precision of the de-
ployed timers. Here differences exist between software and hardware timers. 
Software timers are not precise enough to determine the interval between the data 
units to accurately approximate the burst rate. This may cause a bursty data flow. 
Hardware timers are more exact in this respect and guarantee a continuous data 
flow. Rate-based flow control further differs from window-based control by also 
taking retransmissions into account.  

In practice rate-based flow control is often applied together with window-based 
control to avoid both network congestion and overloading of the receiver. Rate- 
based flow control, however, allows one to define larger windows. An example of 
the combined use of both mechanisms is the slow start concept of TCP, which we 
consider in Section 6.2.2. 

 

Further reading 
The basic protocol functions are described in varying levels of detail in most of 

the well-known introductions into the fundamentals of computer networks, such as 
the books of Kurose and Ross [Kuro 08], Stallings [Stal 08], Peterson and Davie 
[Pete 07], and Tanenbaum and Wetherall [Tane 10]. These books also describe the 
handling of corrupted protocol data units which is not considered here because it 
is not in the main focus of the book. 

A broader introduction into protocol design principles is given in the book of 
Sharp [Shar 08] which besides protocol principles and functions deals with ad-
dressing schemes, routing, PDU encoding principles, security protocols, applica-
tion protocols, and other related topics. 

 

Exercises 
(1) Explain the role of protocol functions. 
(2) Which are the most important mechanisms for error control used in commu-

nication protocols? Give a short summary of each function. 
(3) For various reasons, the transmission of PDUs over a network may be dis-

turbed. The probability of such problems is much higher than for a commu-
nication within a computer. Assume now that entity A sends six PDUs to en-
tity B. The transmission of the third PDU is disturbed; that of the others not. 

a) What are the possible practical implications of such a disturbance of this  
PDU? 

b) How can some of the effects of a) be avoided without feedback to the 
sender entity? 

c) Instead of (or in addition to) b) feedback measures are used to correct the 
effects mentioned under a). What might this feedback look like? 
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d) The feedback mentioned under c) has the goal to retransmit the PDU. 
Describe the two different versions of the retransmission of the PDU. 
What are the consequences for the transmission of the PDUs and the re-
quired buffer resources? 

e) In d) we discussed two retransmission methods. Discuss now to what ex-
tent in both approaches single and cumulative acknowledgments should 
be used. 

f) The feedback mentioned under c) can also be lost. What are the possible 
consequences of this? How can the problem be solved? 

(4) What are the reasons that the receiver entity may receive the same PDU 
twice? Give a time sequence diagram to illustrate the reasons. 

(5) We assume a connection-oriented protocol in which entity A sends the PDUs 
1 to 5 to entity B at intervals of 2 msec.  The propagation delay is 3 msec; the 
serialization delay is neglected. Entity B confirms promptly each correctly 
received PDU. Entity A repeats the transmission of a PDU when it does not 
receive a confirmation within 10 msec. Repeated confirmations are also sent 
immediately by entity B. 

a) We assume that the first transmission of PDU 3 gets lost. Present the 
transmission of PDUs 1-5 in a time sequence diagram, once for the go 
back N-method and once for the selective repeat-procedure. Indicate the 
times for sending and receiving packets as well as, if needed, which 
PDUs are dropped by the receiver entity. 

b) Now we assume that it is not PDU 3 that gets lost but the acknowledge-
ment for this PDU. Present also this case in two time diagrams. Indicate 
again the times for sending and receiving of the PDUs and the packets 
that are dropped by the receiver entity. 

c) Finally we assume that the transmission of PDU 3 is not delayed only 3 
msec but 9 msec. Present the time sequence diagrams for this situation 
for both methods. Indicate the times and the dropped packets as above.  

(6) Replace the go back N procedure in the XDT protocol by a selective repeat.  

a) Describe this extension by means of time sequence diagrams. Introduce 
appropriate PDU names. 

b) Describe the changes to both entities in the model language. 

(7) What are handshake procedures used for? What is the difference between a 
2-way and a 3-way handshake? When are they recommended to be applied? 

(8) The XDT protocol uses a 2-way handshake. Explain why this can be done. 
What changes to the XDT protocol would require the use of a 3-way hand-
shake? 

(9) What is the difference between an explicit and implicit connection set up? In 
what situations are they used? 
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(10) XDT uses an explicit connection set up although no special PDUs were in-
troduced for this. Replace the XDT connection set up by a confirmed implic-
it one. For this, we remove the constraint that the service user only hands 
over a new data unit after receiving an XDATconf primitive. Represent the 
solution in a time sequence diagram for an accepted and a rejected connec-
tion. 

(11) Explain why a 2-way or 3-way handshake does not ensure a reliable connec-
tion release. 

(12) A feasible solution for a reliable connection release is a timer-controlled re-
lease. Describe the procedure of this approach. What is the role of the activi-
ty timer in this context? 

(13) When the order of the PDUs cannot be restored in the XDT protocol, the re-
ceiver entity XR aborts the connection sending an ABO-PDU. However, the 
reception of ABO by the sender entity XS is not checked by XR. How does 
the protocol behave if ABO gets lost? 

(14) XDT in its current specification contains a “blemish”. It may happen that all 
DT-PDUs are transmitted successfully, but some acknowledgments are lost. 
This can cause the receiver entity to indicate the service user a successful 
transmission, while on the sender side an abandonment of the transmission is 
signaled. Discuss whether this problem can be resolved and how the protocol 
must be changed to guarantee the same protocol outcome for both sides. 

(15) Replace the implicit connection release in the XDT protocol by an explicit 
one that is triggered by the receiver with an XDISrequ when it has got the 
last PDU. The sender releases the connection with an XDISind, after which 
also the receiver releases the connection with an XDISind. 

a) Describe this extension by means of time sequence diagrams. Introduce 
appropriate PDU names. 

b) Describe the changes for both entities in the model language. 

(16) Explain the difference in coding PDUs in normal protocols and in text-based 
protocols. Why do application level protocols often prefer the text-based co-
ding? 

(17) Sequence numbers play an important role in protocols. Why are they so im-
portant and what problems occur with their use? 

(18) What is the purpose of flow control? Why is it needed? 
(19) What are the methods applied for window-based flow control? 
(20) The XDT protocol uses a break function (XBREAKind) at the sender side 

which represents a special variant of a flow control procedure. What flow 
control method does it correspond to? Who are the sender and the receiver 
here, i.e., which data flow controls this function? Why is it needed? 

(21) The credit mechanism represented in Section 5.8.1 as an extension of the 
XDT protocol contains concurrent protocol procedures. As argued in Section 
1.1, this can be described by an interleaving semantics. Give some possible 
interleaving sequences for this example. 
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(22) Extend the XDT protocol with the sliding window protocol. Describe the ex-
tension in the model language. 

(23) Assume a connection between entity A and B. On this connection only PDUs 
of constant size are exchanged. The serialization delay is always 1 msec, the 
propagation delay 2 msec. For flow control, a sliding window protocol is ap-
plied, the window size is 3 PDUs, the sequence numbers are assigned modu-
lo 8. A sends PDUs to B at the following times: 0 msec, 1 msec, 3 msec, 7 
msec, 8 msec. B confirms each received PDU at the following times: 3 msec, 
7 msec, 9 msec, and 10 msec. (The times relate to the first bit of the PDU.) 

a) Draw a time sequence diagram of the exchanged PDUs DT and ACK 
with the contained sequence numbers (acknowledgements increased by 
one). The first PDU has the sequence number 0. Specify for the follow-
ing times the sequence number range and the remaining free size of the 
sliding windows: 2.5 msec, 6.5 msec, 14.5 msec. 

b) Does A adhere to the sliding window protocol at any time? Justify your 
answer! If A does not always conform to the sliding window protocol: 
what was the reaction of B and why has B acted so? 

(24) What is the difference between a window- and a rate-based flow control?  
(25) We assume again a connection between entities A and B. The propagation 

delay is 2 seconds in both directions; the serialization delay can be neglected. 
Now a rate-based flow control is applied. Initially one PDU may be sent per 
second. After 5 seconds, B informs A that it can send only one PDU every 
three seconds from now on. Draw the corresponding time sequence diagram 
in which A is to send 10 PDUs as soon as possible. Indicate for each packet 
the sending and receiving time. 
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  6.1  IP layer 109 

 Version: Indicates the protocol version, i.e., IPv4 or IPv6. According to this in-
formation the respective protocol stack is selected if the host supports both pro-
tocol stacks (cp. Section 4.3.2).  

 IHL: Length of the IP header in 32-bit words. The minimum value is 5, if no 
options are applied, and the maximum value is 15, i.e., 40 bytes can used to de-
scribe options (see below). 

 Type of Service: This field is provided for specifying the handling of packets in 
routers. It is often not used in practice. Type of service specifies how packets 
are handled related to delay, throughput, and reliability, and which service pa-
rameters are applied (e.g., minimum delay, maximum throughput, maximum 
reliability and others). In order to support modern applications with dedicated 
quality of service demands this field is used differently, when the differentiated 
service model is applied. It indicates the supported QoS class.  

 Total length: Indicates the total length of the IP packet, i.e., header and user 
data. The maximum length is 65,535 bytes. 

 Identification: Identifier to denote all fragments of an IP packet. It allows the 
receiver host to distinguish fragments of different packets. 

 DF (Don’t Fragment): Flag that indicates to the router that the packet may not 
be fragmented. 

 MF (More Fragments): Flag that indicates that further fragments of this packet 
will follow. In the last fragment MF is not set.  

 Fragment Offset: Indicates the position of the fragment based on which the re-
ceiver re-establishes the packet. 

 Time to Live: Counter to limit the lifetime of the packet. It is supposed to count 
in seconds. The maximum value is 255 sec. The counter is decremented each 
time the packet passes a router. When the value is zero, the packet is discarded 
and a message is sent back to the source host. The time to live counter prevents 
packets from ceaselessly wandering around in the network and thus overload-
ing it. 

 Protocol: Indicates the receiver protocol of the user data carried with the IP 
packet. We discussed this principle in detail in Section 4.3.2. The protocol 
numbers are specified in RFC 1700.  

 Header Checksum: Check sequence to prove the correctness of the transmis-
sion (cp. Section 5.1). Note that in IP this checksum only relates to the header. 
The checksum must be proved and recalculated at each node because at least 
the time to live value changes. 

 Source Address, Destination Address: IP addresses of the source and destina-
tion hosts. They have their origin in the well-known class-oriented address 
scheme of IPv4 and are usually written in the dotted decimal notation, e.g., 
141.43.10.3. As argued in Section 4, we do not consider address schemes in 
this book. 

The IPv4 header fields have the followingg meaning: 
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The options allow defining additional constraints for the transmission of the IP 
packets. The original intention for introducing options was to provide room for 
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routes in the network. The close dependency between IP and ICMP explains 
why a new version ICMPv6 has been required for IPv6. 

 IGMP (Internet Group Management Protocol) 
IGMP applies to the management of multicast groups in IP multicast. It is used 
to indicate the join or leave of group members.  

 ARP (Address Resolution Protocol) 
ARP is used to determine the respective MAC address for a given IP address, if 
the destination host is located in a local area network. It is needed because the 
communication paradigms in WANs and LANs are different. In WANs we 
have point-to-point communication at layer 3, in LANs broadcast-like com-
munication at layer 2. MAC addresses are flat addresses which do not contain 
any information about the location of the host in the LAN. Before forwarding 
the packet to the LAN the MAC address of the destination hosts has, therefore, 
to be determined at the interface between the networks using ARP.  

 RARP (Reverse Address Resolution Protocol) 
Contrary to ARP, RARP determines the IP address of a given MAC address. It 
is applied if hosts do not possess a hard disc on which they can store their IP 
address. 

 RIP (Routing Information Protocol) 
RIP is a routing protocol that applies the distance vector routing approach. It is 
a so-called intra-domain protocol which is used for path finding in autonomous 
systems, i.e., in network structures with their own administration authority. It is 
preferentially applied in smaller or medium-sized wide area networks. 

 OSPF (Open Shortest Path First) 
OSPF is also an intra-domain protocol which takes the states of the links into 
account (link state routing). It is used in large wide area networks and is the 
more powerful and flexible protocol compared to RIP. 

 BGP (Border Gateway Protocol) 
BGP is an inter-domain routing protocol for path finding between autonomous 
systems. It is not directly related to IP, but it is essential for the path finding of 
IP packets and currently one of the most important protocols in the Internet. 

 RSVP (Resource ReserVation Protocol) 
RSVP is used for the reservation of resources along the transmission path [RFC 
2205]. It is mainly used in the context of high performance and multimedia 
communication to ensure a defined transmission quality. 

Another characteristic feature of ICMP and IGMP is that they use IP, i.e., a 
protocol of the same layer, to transport their PDUs. The “internal service user” is 
indicated by means of the protocol number, as explained in Section 4.3.2. Such a 
design of a “service interface” is possible because IP represents a connectionless 
protocol which provides only a data transmission service. 
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6.2 Transport layer 

In the transport layer of the Internet protocol suite two basic transport protocols 
are used: the connection-oriented TCP and the connectionless UDP. Another pro-
tocol which has also been defined for the transport layer is the Stream Control 
Transmission Protocol (SCTP). SCTP is a session-oriented transport protocol 
which provides a reliable transport service together with a number of functions 
that are critical for telephony signalling transport [RFC 3286]. It does not have the 
importance of TCP and UDP. We confine ourselves to the latter here. 

6.2.1 TCP 

The Transmission Control Protocol (TCP) is the connection-oriented trans-
port protocol of the Internet. It was designed, as previously mentioned, together 
with the IP protocol. TCP ensures a reliable end-to-end transmission between two 
communication partners over the unreliable IP. TCP as one of the oldest protocols 
uses a set of mechanisms which were not applied again in such a manner in other 
protocols. But TCP is the most used transport protocol and above all a living pro-
tocol, which has been supplemented again and again by new mechanisms which 
have taken many years of experience with TCP into account. 

The original version of TCP is specified in [RFC 793]. Later this specification 
was corrected and extended [RFC 1122], [RFC 1323]. In this section we introduce 
the most important mechanisms of TCP. As with the introduction to IP, we focus 
on those aspects which are of interest for protocol theory. Comprehensive intro-
ductions to TCP can be found today in many books about the Internet. We subdi-
vide the introduction for the sake of clarity into the description of the TCP service 
interface and the TCP protocol, even if the term TCP service is not explicitly used 
in the standard.  

TCP service interface 
TCP provides a connection-oriented reliable transport service. Data losses and 

changes to the sending order are recognized and repaired during the transmission, 
i.e., the data are delivered to the receiver in the same order as they were handed 
over to the protocol. The data exchange over a connection is duplex, i.e., in both 
directions. There is also the possibility of an accelerated data transmission. 

Byte stream principle 
One of the most important singularities of TCP is byte stream transmission. 

TCP does not use the concept of a service data unit as we introduced it in Section 
2.1. It regards the data to be transmitted as a sequential byte stream. As a conse-
quence, the data units handed over by the sender to the protocol do not have to be 
identical with the data units delivered to the receiver (see Figure 6.2/1). So, for 
example, the protocol can deliver instead of four units of 1024 bytes handed over 
to it a unit of 4096 bytes to the receiver, but the sequence of the bytes remains pre-
served! Unlike many protocols, there is no obligation for the accepting and deliv-
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byte stream principle because the latter only relates to the data exchange at the 
service interface. It does not affect the kind of data exchange applied within the 
protocol. A TCP segment consists of a TCP header and a user data part. The struc-
ture of the TCP header is important for understanding the protocol. It is introduced 
first. Beforehand, however, it is necessary to explain some further singularities of 
the protocol. 

Some singularities of TCP 
In contrast to many other protocols, TCP possesses only one protocol data unit 

type, i.e., all segments have almost the same structure. The unified segment struc-
ture facilitates the handling of the segments in the sender and receiver entities. 
Necessary functional differences of the segments are expressed by means of flags 
(see Figure 6.2/3). Depending on the flag set, the segments possess a different se-
mantics which is exploited in the protocol procedures. In many TCP descriptions 
the flags are used to name the segments. One speaks of SYN- or RST-segments. 
Thus, different segment types are introduced indirectly, although there is only one 
segment structure. 

A further characteristic feature of TCP as well as of UDP is its close relation 
with IP. So TCP segments do not address the hosts. They only contain the port 
numbers which identify the application. The host addresses are contained in the IP 
packet which also transports the TCP segment as user data. Therefore the TCP/ 
UDP header extended by the IP header is sometimes called a “pseudo header”. 

Another special feature of TCP concerns the sending of data. The data handed 
over to the protocol have not to be sent immediately. They can be stored until 
enough data are collected to form a segment of reasonable size. If, however, the 
PSH-flag (see below) is set the data are sent off immediately. As a consequence, 
the segments may have different lengths. In order to restore the transmission order 
the TCP sequence numbers do not refer to the number of the segment but to the 
position of the first byte of the transported data in the byte stream. 

Furthermore, segments are not confirmed by an explicit confirmation segment. 
The confirmation is rather “stuck” to an arbitrary segment sent in the opposite di-
rection by piggybacking (cp. Section 5.1). The sequence number used for confir-
mation is contained as the Acknowledgement Number in the segment header. Si-
multaneously the ACK flag is set. The Acknowledgement Number also refers to 
the position in the byte stream. It indicates the number of the byte expected next. 

TCP segment 
The TCP segment consists of a header of at least 20 bytes and the user data 

part. The header is divided into a firm part (20 bytes) and an optional one. The 
maximum size of a segment can be negotiated during connection set up. The de-
fault value is 536 bytes. The structure of a TCP segment is presented in Figure 
6.2/3. 
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period the connection is closed. The partner will eventually notice the inactivity of 
the opposite site, when the activity timer elapses. 

Data transmission 
After setting up the connection both sides can send data. If the PSH-flag is set 

the data are not buffered. They are transferred immediately. This is, for instance, 
useful in the case of remote access to another computer by means of telnet to 
transmit the entered characters. Otherwise the data are transmitted when the seg-
ment is full. The correctness of the transmission is proved by means of the check-
sum in the segment header. The receipt of each segment which contains data must 
be confirmed by a (piggybacked) ACK. When a confirmation is missed, a retrans-
mission is triggered. This monitoring is performed by the retransmission timer. 
For retransmission, the go back N-principle is applied (cp. Section 5.1). 

The flow control in TCP is based on the sliding window protocol (cp. Section 
5.8.1). TCP does not use explicit credit PDUs. Instead it indicates the current win-
dow size in the Window-field together with an ACK to the sender. If this window 
update contains the value zero the window is closed and the transmitter must wait. 
The window reopens when the application on the receiver side reads data from the 
receiving buffer. This is communicated to the sender with another ACK-segment 
containing the window update. TCP permits, however, the sending of data in two 
exceptional cases, when the window is closed. First urgent data (URG-flag is set) 
can always be sent. This can, for example, be used to cancel a process at receiver 
side. Secondly 1-byte-segments may be sent to resend a segment with a window 
update. This can be used to prevent deadlocks, when the announcement of the re-
opening of the receiver window has been lost. 

The piggybacking principle for the confirmation of received segments causes 
another specific protocol mechanism, the delayed acknowledgement. Piggyback-
ing becomes a problem when no segments are available for transmission in the 
opposite direction to carry the acknowledgement, because a missing confirmation 
triggers the retransmission of the segment. The delayed acknowledgement mecha-
nism prevents this by forcing an explicit acknowledgement, if in a defined time 
period no segment will be transferred in the opposite direction. Figure 6.2/6 shows 
the principle. The acknowledgement process is monitored by the delayed ack-
nowledgement timer, which triggers an additional ACK-segment when the de-
layed acknowledgement timer times out. The time-out value is generally adjusted 
to 200 msec, at the most however to 500 msec. 

Extensions 
TCP has been extended several times. These extensions are based on experi-

ence with the practical use of TCP in the Internet over many years. They concern 
the performance of the protocol as well as defects in certain protocol procedures. 
Examples of such extensions are the Nagle algorithm, the silly window syndrome, 
the slow start algorithm, the Internet congestion algorithm, and the dynamic timer 
management. We limit ourselves here to explanation of the slow start and conges-
tion control algorithms, which are interesting additions to the flow control and the 
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eight bytes (see Figure 6.2/10). As already argued for TCP, UDP is closely related 
to IP. The UDP header only indicates the port numbers of the application. The IP 
addresses are contained in the IP header. The computation of the checksum is not 
necessarily demanded, but it is supported by many implementations. Protocols that 
run over UDP are, for example, RIP (Routing Information Protocol), SNMP (Sim-
ple Network Management Protocol), RPC (Remote Procedure Call), LDAP 
(Lightweight Directory Access Protocol), RTP (Real-time Transport Protocol), 
SIP (Session Initiation Protocol), and others.  

6.3 Applications and high-level protocols 

The application layer comprises the applications and services that the network 
user perceives as proper network services (cp. Section 1.1). These applications and 
services are provided in cooperation with the underlying protocol layers as de-
scribed in the previous chapters. Within the protocol stack, the transport interface 
represents the border between the communication and the application-oriented 
protocols. The latter are dedicated to support the applications. How applications 
are put on the transport interface is not prescribed in the Internet architecture. 
There are several possibilities: 

 Network services. Many well-known Internet services like telnet, ftp, email, 
dns, the web, and others are directly provided above the transport layer (cp. 
Figure 4.3/3). These services use a connection-oriented or connectionless 
transport service according to their requirements. They are assigned to fixed 
port numbers known as the well-known port numbers (cp. Section 6.2.1). Each 
of these services uses its own protocol, e.g., SMTP or HTTP (see below). 
These application-oriented protocols are usually much simpler than the proto-
cols described beforehand. They mostly comprise only a few interactions. In 
addition, application-supporting features are included like the Multipurpose 
Internet Mail Extensions (MIME) for the Simple Mail Transfer Protocol 
(SMTP) to represent different languages and alphabets. 
 Web applications. Many applications in the Internet are based on the World 
Wide Web today. These applications represent a special variant of network 
services. They are based on the Internet application protocol HTTP (HyperText 
Transfer Protocol) which is used as transfer protocol within the World Wide 
Web. Web applications are client/server applications (see below) in which the 
client by means of a browser accesses content on a web server. The design of 
web applications applies a wide range of rules and methods which are beyond 
the topic of this book. 
 Self-developed applications. Every user can develop its own application on 
top of the transport interface. There are different ways to build applications. 
Simple applications can be directly implemented on the transport interface. In 
this case the application developer has to directly program the interactions with 
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the transport layer at the respective socket, as explained in Section 6.2.1. Most 
applications, however, need additional protocol support. This can be either a 
specific middleware (see below) or additional application-oriented protocols, 
e.g., RTP (Real-Time Transport Protocol) for the transmission of multimedia 
data [RFC 1889]. The number of these protocols is not limited and depends on 
the application.  
- Middleware platforms. Many distributed applications require a lot of generic 

functions or services, e.g., a name service, a mediation service, a timer ser-
vice, security management, and others. These functions are nowadays sub-
sumed in middleware platforms that are provided on the top of the transport 
interface. CORBA has been a typical example. Middleware platforms ensure 
distribution transparency, e.g., concerning the location of objects, access to 
servers, and errors. They also comprise functions which were formerly as-
signed to layers 5-7 of the OSI reference model (cp. Section 4.3.1). Middle-
ware platforms are also described by reference models though these are dif-
ferent to those considered here. Nowadays web services [Alon 04] are often 
applied to provide these functions. Web services are software applications 
identified by a URI (Unique Resource Identifier) which can be bound over 
the Internet. For their advertisement, search, and binding, XML-based proto-
cols are used, such as SOAP. 

- Client/server applications. The majority of applications in the Internet apply 
the client/server paradigm. Client/server applications are asymmetric ser-
vices in which a client accesses a service which is remotely provided by a 
server (cp. Section 1.1). To provide and call these services a middleware is 
usually deployed. For the design of client/server applications, separate lay-
ered models, e.g., 2-tier or 3-tier models, are applied [Alon 04].  

- Peer-to-peer applications. In the last decade peer-to-peer applications have 
emerged which represent an alternative to the client/server paradigm. Peer-
to-peer applications are distributed applications among equally privileged 
and acting participants. So a peer can be simultaneously a client and/or a 
server.  Peer-to-peer systems often implement an abstract overlay network on 
top of the transport interface. These networks use their own protocols. Well-
known examples are Chord, Kademlia, Gnutella, Skype, and others. 

 

Further reading 
Introductions to Internet protocols can be found nowadays in many books and 

articles, among them the books we referred to in previous chapters. These books 
as well as [Shar 08] also contain descriptions of application-oriented protocols and 
functions. 

Exercises 
(1) What distinguishes the Internet Protocol from other connectionless proto-

cols? 
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(2) IP is often used by other protocols to transport their data. How does IP learn 
what is the receiving protocol? 

(3) Currently two versions of IP are deployed, IPv4 and IPv6. What are the most 
important differences between the two versions? 

(4) For fragmenting packets, the second row of the IPv4 header is reserved. 
What solution is applied in IPv6? What is the benefit of this approach? 

(5) Explain the byte stream principle of TCP. What is the difference to the pro-
tocol principles introduced in Section 2.1? How does the byte stream princi-
ple influence the TCP segment header information? 

(6) Explain why a 3-way handshake must be applied in TCP. How many se-
quence numbers are consumed during connection set up? Why are the se-
quence numbers different in the two directions? 

(7) How many connections can be set up between two sockets? 
(8) Why are sockets not immediately released after a connection has closed? 
(9) What is the difference between the sliding window protocol used in TCP and 

that described in Section 5.8.1? 
(10) TCP exceptionally allows data to be sent when the window is closed. Ex-

plain why this is useful. 
(11) Piggybacking has been supplemented by the delayed acknowledgement 

mechanism. Why this is needed? 
(12) How must the XDT protocol be changed in principle in order to apply pig-

gybacking? 
(13) Explain the principle of the slow start and the congestion avoidance algo-

rithms. Why have these algorithms supplemented TCP? Discuss in particular 
how we determine the size of the window that indicates how many bytes can 
be sent. 

(14) There is no fixed time-out value for the retransmission timer. The value is 
dynamically adapted based on the response time. Explain how this is done. 

(15) Determine the time-out value of the retransmission timer for the following 
situation. We assume that the estimated round trip time is currently 80 msec 
and the estimated standard deviation 20 msec. The smoothing factor  should 
be 7/8. Calculate the time-out value when the next acknowledgements arrive 
after 64, 150, and 200 msec.  

(16) UDP is a connectionless unreliable protocol like IP. Why do applications use 
UDP and not directly IP?  

(17) Describe the various possibilities to put applications on the transport inter-
face. 

 

 



 

 

 

Part II: Description of communication protocols 

 
 
The accurate description of the procedures in communication protocols is an 

important precondition for their correct implementation and successful operation. 
Informal descriptions have proved to be insufficient for this because they permit 
ambiguous interpretations of the specification text. The goal of an accurate de-
scription can only be achieved by the deployment of formal description methods 
and techniques. The use of formal methods for the design, description, and valida-
tion of communication protocols and distributed systems forms the essence of 
Protocol Engineering. They are an important precondition for the development of 
tools to support computer-aided validations of protocol designs, specifications, 
and implementations. Furthermore, practical experience has shown that the elabo-
ration and examination of formal descriptions are helpful for a better understand-
ing of the protocol procedures. 

The second part of the book is dedicated to the formal methods and description 
techniques applied to describe services and protocols. We begin with a short dis-
cussion of the need for formal descriptions for communication protocols and their 
requirements. Next we present the most important constructive and descriptive de-
scription methods which form the basis for the semantic models of the derived 
formal description techniques (FDTs). In particular, we consider finite state ma-
chines, extended finite state machines, Petri nets, process calculi, and temporal 
logics. 

The main part of the representation is dedicated to introductions to various 
formal description techniques used in the protocol field. We introduce one repre-
sentative technique for each of the main description approaches. So we consider 
the standardized FDTs SDL and LOTOS as examples of descriptions based on ex-
tended finite state machines and process calculi. Further we present MSC as an 
example of a communication-oriented description. In addition, we present with 
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cTLA an example of a language which is related to descriptive methods. For the 
description of the data formats in protocols, ASN.1 has proved useful and is de-
ployed as a supplement to other FDTs. It is introduced as well. Finally, we discuss 
the use of UML 2 for protocol development.  

The introduction to the various description techniques (besides UML) follows a 
fixed structure. We first give an overview of the basic concepts of each language. 
Next we introduce the most important language elements. The principles of the 
applied formal semantics are described as well. For each language, we present a 
description of the XDT service and protocol or a fragment thereof to demonstrate 
the expressiveness of the considered formal description technique in a more com-
plex application. This is to allow the reader to compare the various description 
principles. The complete specifications in this chapter are available at the book 
web site. The introduction concludes with a discussion of the pros and cons of 
each technique. 

 
 



7 Formal description methods 

Various methods are used to describe communication protocols. The search for 
suitable description methods for communication protocols in the 1980s yielded a 
broad range of approaches out of which some fundamental methods have crystal-
lized. These methods constitute the basis of the semantic models of the various 
formal description techniques. Therefore we first consider the most important de-
scription methods in this chapter before we turn to the formal description tech-
niques. From these, finite state machines, Petri nets, process calculi, and temporal 
logics have crystallized as the most important and most common ones. Apart from 
these methods, other approaches were also investigated, such as the use of gram-
mars, data flow languages, and functional languages. They did not receive wider 
attention because they were not applied to real-life protocols. The use of high-
level programming languages was considered likewise. Programming languages 
support the algorithmic description of protocol procedures as well as the genera-
tion of prototypes, but they usually do not possess a formally defined semantics. 
In addition, programming languages are primarily implementation languages and 
not specification languages. They often yield descriptions which are close to an 
implementation. For that reason, high-level programming languages are not used 
for protocol description. Many formal description techniques, however, use pro-
gramming language features. 

We begin this chapter with a discussion of the requirements on service and pro-
tocol specifications. Thereafter we give a classification of the various approaches 
followed by the introduction of the methods themselves. 

7.1 Service and protocol specifications 

Communication protocols are prevailingly implemented in software. This soft-
ware is called communication software. Their production principally follows the 
same procedures as the development of software (see Chapter 9). Communication 
protocols, however, are characterized by a set of singularities which shape this 
process as well as their description.  

The description and/or specification (the terms are used synonymously here) of 
communication protocols forms the basis of the protocol development process. It 
documents the requirements on the services and protocols. The service and the 
protocol specification serve further as a reference for their implementation and 
validation (verification, testing, etc.). They form quasi “the blueprint” for the pro-
tocol developer based on which all contentious questions are decided later.  
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Constructive methods can be further differentiated into state and transition-
oriented description methods. State-oriented description methods focus on the rep-
resentation of the states of an entity and the state transitions. The resulting repre-
sentation is a behavior-oriented one (cp. Section 7.1). State-oriented descriptions 
are easy to produce, which is why they are preferentially used in practice. The 
transition-oriented description methods, in contrast, emphasize the representation 
of the transition sequences to be executed. States are not explicitly represented 
thereby; they are implicitly given through the execution sequence. The transition-
oriented methods can be again differentiated into process and interaction-oriented 
methods. The process-orientated methods describe the execution order within an 
entity, while the interaction-oriented methods represent the interaction between 
two (or even several) entities (cp. Section 7.1). Transition-oriented descriptions 
are more challenging to develop in comparison with behavior-oriented ones, since 
it is in general substantially more complicated to derive the transition sequences 
from an informal protocol description [Boch 87]. The difficulty is in particular the 
detection of existing concurrent execution paths rather than the states themselves, 
which are usually given by state tables. In Figure 7.3/1 examples of different de-
scription methods and techniques are given for each approach. Some methods and 
techniques can contribute under more than one approach. We will refer to the re-
spective description method when we introduce the methods below. 

Descriptive methods 
Descriptive methods specify the properties the protocol to be designed should 

meet using mathematical logics. They do not provide a model of the protocol. The 
advantage of descriptive methods is the explicit specification of desired protocol 
properties and their verification for appropriateness under complete abstraction of 
an implementation. This supports, in particular, the verification process. It is, how-
ever, not generally decidable whether a specification describes the desired proto-
col properties completely.  

The deployment of descriptive methods has proved useful during the early de-
sign phase to formulate requirements on the protocol without already modeling the 
protocol behavior by a prototype and thus making design decisions [Herr 00]. 
Their continuous employment though is only efficient if the transition from the 
problem-oriented specification to the model and later implementation is supported 
by a unified technology and appropriate development tools, which are not suffi-
ciently available so far. Descriptive methods need a high familiarity with the 
mathematical basics. Therefore they are less used for protocol development in 
practice. 

We now introduce the most important methods for describing protocols. 
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7.4 Finite state machines 

Finite state machines (FSMs) specify a protocol by describing the behavior of 
the peer protocol entities. In symmetric protocols only one entity has to be de-
scribed, in asymmetric protocols both entities. Sometimes the behavior of the (N-
1)-service provider is described by an additional automaton2. Finite state machines 
are a simple and natural model for the description of protocol entities because they 
permit one to directly represent the waiting of the entities for certain events (in-
puts), and their reaction to them (outputs) including the transition to a successor 
state. 

A finite state machine is a quintuple <S,I,O,T,s0> with 
S – finite, non-empty set of states, 
I – finite, non-empty set of inputs, 
O – finite, non-empty set of outputs,  
T  S  (I  { })  O  S – a state transition function, and
s0  S – initial state of the automata.

A transition t  T is defined by the quadruple <s, i, o, s'> whereby s  S de-
notes the current state, i  I  { } an input (event), o  O the associated output, 
and s'  S the successor state. The special event   I designates an empty input. 
It is used for modelling spontaneous transitions to describe internal events (cp. 
Section 1.2).  

Finite state machines are usually represented by state transition diagrams. Other 
presentation forms are state tables and state transition matrices. Figure 7.4/1 
shows the finite state machine for the receiver entity of the XDT protocol. State 
transition diagrams represent the states by labeled circles and the transitions by la-
beled, directed edges. The respective input/output events i  I and o  O are as-
signed in the form i/o to each edge. The state machine in Figure 7.4/1 deviates 
somewhat from the definition given above. It permits several outputs per input. 
This is a frequently used simplification to avoid too complex representations of 
the automaton. Moreover, the figure contains an empty output . This means that 
the automaton does not make an output on a given input for a defined finite time. 
The set of output events O' of the state machine represented in such a way is de-
fined by O’ = (O) { , with (O) as power set of O. The state transition 
function T' is modified accordingly to T’  S  (I { })  O’  S. 

 
 
 
 
 

                                                           
2 The terms finite state machine and automaton are used synonymously below. 



 

F

to
a
e
c
in
o
th
im
e
w
e
tr
su
fo

c
s
to

Figur

M
o de

asyn
ent c
cutio
nter

or in
he a
mpl

exec
whic
er. T
rans
upp

for th
F

contr
ente
oma

re 7.

More
escr

nchr
com
ons 
racti
nfini
asso
lem
cutio
ch re
The 
sitio
ports
he v
init
rol 
ed. 
aton

 

.4/1:

e co
ribe
rono

mmu
of t
ions
ite F

ociat
enta
on o
epre
exe

ons 
s a m
veri
e st
flow
For

n of

: Sim

omp
 the

ous 
unic
the t
s (e
FIFO
ted 
atio
of t
esen
ecut
are
mor
fica
tate 
w. C
r ex
f Fi

mpli

plex
e co
and
atio
tran
ven
O q
tran
ns (
the 
nts t
tion
 ex
re c
ation
ma

Cha
amp
gur

fied 

x pro
omm
d syn
on p
nsiti
nts, 
queu
nsiti
(see
rela

the 
n of
ecu
omp
n. 

achin
ange
ple, 
e 7

fini

otoc
mun
nch
para
ions
mes

ues. 
ion.

e Se
ated
outp

f the
uted 
preh

nes 
es in

if w
.4/1

te st

cols
nicat
hron
adigm
s in 
ssag
The

. Th
ctio
d tr
put 
e tr
con

hens

onl
n th
we 
1 it 

tate m

s are
tion
ous
ms.
the 

ges)
e re

his k
on 1
ansi
eve
ansi
ncu
sive

ly d
he d
wis
wo

mac

e of
n wi
s cou
 W
sub

) am
eceiv
kind
3.3)
ition
ent o
ition

urren
e mo

desc
data 
sh to
ould 

hine

ften
ith t
upli
hen
b-au
mon
ving
d of 
). Sy
ns i
of o
ns t
ntly
ode

cribe
stru

o m
be 

e of t

n fur
the
ing
n asy
utom
g th
g au

f cou
ync
in b

one 
take
. Sy
ling

e th
uctu

mode
ne

the X

rthe
sub
[Ho
ync

mata
he s
utom
upli
chro
both
auto

es p
ynch
g of 

e fu
ures
el th
cess

XDT

er di
b-au
olz 9
chro
a ar
sub-
mato
ng i

onou
h au
oma

plac
hron

f the

unct
s, i.e
he u
sary

T rec

ivid
utom
91],
nou
e no
-auto
on t
is c
us c
utom
aton
e si
nou

e int

tion
e., t

use o
y to

7.4

ceive

ded 
mata
, [H
us c
ot c
oma
take
lose
oup
mata
n an
imu

us co
terac

nal p
the 
of s

o int

4  Fi

er en

into
a the

Holz
oup
oup
ata 

es th
er to
pling
a to

nd th
ultan
oup
ctio

prot
dat

sequ
trod

inite 

ntity

o su
ere 
 04]

pling
pled
are 

he fi
o th
g, in
o a 
he in
neou
pling
ons w

oco
a fl

uenc
duce

stat

ub-a
are 
] wh
g is

d wit
exc

irst 
at a
n co
syn

npu
usly
g is
whi

ol pr
low,
ce n
e a 

te ma

auto
tw

hich
s app
th e
chan
eve

appl
ontra
nchr

ut ev
y. A
s mo
ch h

roce
, ca

num
sep

achi

omat
o p
h m
plie

each
nge

ent a
ied 
ast,
roni
vent

All n
ore 
has 

edur
anno

mber
para

nes 

ta. I
ossi
ode

ed, t
h oth
d v
and 
in p
bou

izin
t of 
not-
abs
adv

res, 
ot b
s in

ate s

In o
ibili

el di
the 
her.

via f
trig

prot
und

ng e
the 
cou
strac
vant

i.e.
e re

n the
state

139

orde
ities
iffer
exe
 Th

finit
gger
toco
s th

even
oth

uple
ct. I
tage

., th
epre
e au
e fo

9 

er 
s: 
r-
e-
he 
te 
rs 
ol 
he 
nt 
h-
d 
It 
es 

he 
e-
u-
or 

 



140  7  Formal description methods 

each sequence number value. This soon makes the automaton very complex. 
Therefore, we simplified the automaton and waived the representation of the se-
quence numbers in Figure 7.4/1. The description of the XDT sender entity by a fi-
nite state machine would be almost impracticable for that reason. 

Pros and cons 
Finite state machines are an adequate and intuitive means for modelling the be-

havior of protocol entities. They are often used. However, finite state machines 
may soon become too complex, which is why they are only limitedly applied for 
protocol specifications; instead extended finite state machines (see below) are pre-
ferred. FSM representations are mostly used for illustrating single protocol proce-
dures. Another important application area is the derivation of test cases. The basic 
test case derivation methods are based on FSM presentations of the protocol enti-
ties (see Section 14.3). 

7.5 Extended finite state machines 

Extended finite state machines (EFSMs) extend the FSM description by the use 
of variables to store context information. This significantly reduces the complexity 
of the automaton.  

An extended finite state machine is a tuple <S,C,I,O,T,s0,c0> with 
S – finite, non-empty state of states, 
C = domain(v1)  . . .  domain(vn) – non-empty set of contexts with vi  V, where V de-

notes a finite, non-empty set of variables and domain(vi) a non-empty, countable set 
of values - the range of vi,  

I – finite, non-empty set of inputs, 
O – finite, non-empty set of outputs,  
T  S  C  (I  { })  O  S  C – a state transition function,
s0  S – initial state, and
c0  C – initial context of the automaton. 

A context C is given by the current values of the variables. A transition t  T is 
defined by the tuple <s,c,i,o,s',c'>, where s  S denotes the current state, i  I an 
input, c  C the context before executing the transition, o  O the associated out-
put, s'  S the successor state, and c'  C the context after executing the transition. 
The empty transition  is also used here to model spontaneous transitions. The 
states s  S are also called major states, accordingly the states characterized by s 

 S and c  C minor states. 
Using EFSMs we can describe the sender entity of our XDT protocol, since the 

required context information on missing acknowledgements or required retrans-
missions of DT-PDUs can be stored in the variables now. Figure 7.5/1 depicts the 
automaton. We apply the same simplifications as in the last section. Again several 
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The neighbor nodes of a node are differentiated into a pre- and a post-domain. 
If x  P  T is a net node then •x denotes the pre-domain of x. This is the set of all 
nodes y from which an edge leads to x:

•x := {y | (y,x)  F}. 

Accordingly the post-domain x• comprises the set of all nodes z to which an 
edge from x leads: 

x• := {z | (x,z)  F}.

If x is a place, i.e., x = p  P, then •p denotes the set of pre-transitions and p• 
the set of post-transitions. Accordingly •t refers to the set of pre-places or input 
places of t and t• to the set of post-places or output places. The input and output 
places represent pre- and post-conditions of the transition. Figure 7.6/1 indicates 
the input and output places of each transition. 

Marking 
The reaching of certain system states is expressed by tokens which circulate in 

the net. They are represented by black dots on the respective places (see Figure 
7.6/1). The mapping m: P  Nat of the places on the set of the natural numbers is 
called the marking of P. The number of tokens on place p is described by m(p). A 
marking indicates a system state. The marking of the initial state of the net is 
called the initial marking m0. The initial marking of our example net in Figure 
7.6/1 is m0: m0(p1) = 1; m0(p2) = 0; m0(p3) = 0; m0(p4) = 0. A sequence of markings 
forms a token flow that reflects a course of changes in the system. 

Petri nets 
A Petri net or a place/transition net (P/T-Net) is a 5-tuple N=(P,T,F,V,m0) 

where  
(P,T,F) is a net, 
V – a mapping V: F  Nat that assigns to each arc f  F a number V(f) denot-

ing the number of tokens consumed from a place by a transition, or pro-
duced by a transition and put on each place, and

m0 – the initial marking of P. 
Petri nets with V(f)=1 are called ordinary Petri nets. They are the only kind con-
sidered here. An interesting point is that both ordinary and non-ordinary Petri nets 
have the same modeling power. They differ in the efficiency and convenience in 
modeling [Mura 89]. 

Execution of Petri nets 
The behavior of a Petri net is described in terms of system states and their 

changes. System states are represented by the current marking indicating condi-
tions which are fulfilled in the respective state. Changes of system states are mod-
eled by the firing of transitions. A transition can fire, when the respective pre-
conditions of the transition are fulfilled, i.e., all input places p •t contain a token, 
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Basic elements 
Process calculi generalize the classic automata theory. They allow one to model 

concurrent systems by cooperating smaller components which can be composed to 
modular, hierarchical system structures. The system components are represented 
by processes, i.e., they enforce a process-oriented description (cp. Section 7.3). 
The modeling considers only their externally visible behavior, i.e., their interac-
tions with the environment or with other processes. The basic elements of the de-
scription are actions and composition operators. Actions denote the interactions of 
the processes. They are considered to be atomic at the given abstraction level. The 
composition operators define how the processes are composed to build larger 
system components. This can be done by sequential or parallel composition. Fur-
ther abstraction is achieved by hiding internal details of the composition. Process 
calculi possess a formal semantics which maps the system descriptions onto La-
beled Transition Systems (LTS) (see Section 8.3.6). They define various equiva-
lence relations to determine the equivalence between processes or specifications, 
respectively.  

The most commonly used process calculi in Protocol Engineering is the Calcu-
lus of Communicating Systems (CCS) by Milner [Miln 89], which was used as 
the basis for the development of the formal description technique LOTOS (see 
Section 8.3). In CCS a system is described by its externally visible actions which 
express its behavior. An action a  Act denotes an atomic, synchronous interac-
tion with another system or process in its environment. It represents a process ac-
tivity or an external event. Actions are represented by labels. These are port 
names denoting the points of interaction. Usually the names of the activities or 
events appearing at the interaction points are used as labels. In contrast to finite 
state machines, process calculi do not distinguish explicitly between input and 
output events. Thus, the set of actions Act is defined by the set of labels L and the 
action : 

Act = L  { }.

The action  denotes an internal action that is not visible externally. It can be 
used to model internal events (cp. Section 1.2.3). 

The system behavior is described by a behavior expression. CCS distinguishes 
five basic expressions which can be composed to more complex expressions. The-
se expressions are prefix, summation, composition, restriction, and relabeling. We 
adumbrate the principle for the XDT connection set up in the following. We con-
fine ourselves here to the first three expressions. The other two are considered in 
the context of LOTOS in Section 8.3. 

Prefix 
The appearance of an action a  Act is described by a prefix

B = a . B’ 
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where B and B’ are behavior expressions. Action a transfers the system from be-
havior expression B = a.B’ to behavior expression B’. This represents a state tran-
sition. The states, however, are not represented explicitly in this notation. They 
can be derived implicitly from the action sequence. 

We assume that S describes the (local) behavior at the Sender-SAP of the XDT 
service. Then 

S = XDATrequ . S’   with XDATrequ  Act

describes the occurrence of the XDATrequ primitive, while S’ denotes the succes-
sor behaviour expression. S’ is defined by  

S’ = XDATconf . S” 

describing the occurrence of XDATconf  Act. The behaviour expression for a 
successful connection set up can also be written as

S = XDATrequ.XDATconf.S”. 

Since we do not consider the data transfer phase here, the connection set up is 
finished and the process may be activated again to set up another connection. This 
is expressed by recursion of the behaviour expression S: 

S = XDATrequ.XDATconf.S . 

Analogously, we can describe the behavior R at the Receiver-SAP: 

R = XDATind.R  

Summation 
Summation expresses alternative behavior  

B = B1 + B2. 

It means that expression B behaves either like B1 or like B2. Using summation 
we can now describe both behavior alternatives at the XDT-Sender-SAP in one 
expression: 

S = XDATrequ.(XDATconf.S + XABORTind.S). 

Composition 
Composition is used to express concurrent behavior  

B = B1 | B2. 
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communication protocols [Gotz 92], [Herr 00]. Temporal logics provide a formal 
system for describing systems with reference to the time in an abstract sense, like 
“before” or “after”, to represent desired properties as well as causal and temporal 
dependencies between them. The system to be modeled is thereby described by 
(infinitely) long sequences of moments in time according to the applied notion of 
time. These moments represent system states. Absolute time is not of interest here, 
only the temporal relation in which things happen. In contrast to constructive tech-
niques like finite state machines and Petri nets, which model the system behavior, 
temporal logics formulate assertions on the temporal behavior of the system in 
question, which can be true or false, allowing one thus, to reason about how the 
truth values of these assertions change over time. Adherence to these properties in 
the designed system can be verified by deductive verification and model checking 
(see Chapter 11). 

Assertions are expressed by formulas using propositional logic combined with 
modal operators which express changes over time. A formula is satisfied in a 

model (written , iff3 it is true for some states of  It is said to be valid 

(written  iff it is true for the entire behavior of the system. Temporal logics 
are particularly suitable for the description of the properties of concurrent, nonde-
terministic, and/or continuously operating systems, such as distributed systems, 
communication protocols, and hardware designs.  

The correctness properties of interest in distributed system design are safety 
and liveness properties: 

 Safety properties are system properties which describe expected, wanted be-
havior, i.e., if something happens then it is a desired behavior. They formulate 
the conditions that are needed to avoid unwanted (bad) system behavior and 
consequently the system may not violate the specified behavior. Note that safe-
ty properties are already fulfilled if nothing happens. Safety properties in the 
XDT design are the constraints that no data unit passed to the service provider 
will get lost and that they will be delivered to the receiver in the order they 
were sent. 
 Liveness properties ensure that the specified events eventually occur and the 
desired states are reached. They describe the expected (good) system proper-
ties that consequently the system must satisfy. A liveness property of the XDT 
example is that after a successful connection set up the data transfer phase will 
be reached. 

A variety of temporal logics has been proposed. They differ in their expressive-
ness on the time relations, e.g., past or future, they permit one to describe. There 
are different classifications as well. Generally temporal logics are divided into lin-
ear-time and branching-time temporal logics [Clar 00]. Linear-time temporal 
logics assume a linear course of time, i.e., there is always only one possible future 
                                                           

3 iff – if and only if 
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moment. A representative of linear-time logics is Linear Temporal Logic (LTL). 
They are mainly applied in software verification. Branching-time temporal 
logics consider different paths from a given state, i.e., time may split into different 
courses representing alternative future developments. The best known example of 
a branching-time temporal logic is the Computational Tree Logic (CTL). Other 
classifications distinguish between the use of past- and future-tense operators, be-
tween the use of points in time or intervals, and between discrete and continuous 
time. Introductions to the different kinds of temporal logics and their application 
are given, among others, in [Emer 90], and [Clar 00]. 

We present a simple LTL as an example. This LTL permits statements about 
the present and the future. It uses the following propositional operators for state-
ments about the present: negation ( ), conjunction ( ), disjunction ( ), implica-
tion ( ), and logical equivalence ( ). Statements on the future are represented by 
the following temporal operators, where p denotes an atomic statement: 

  – henceforth (also always); p means that statement p is true now and in 
future, e.g., 

(S.XDATrequ_1  phase  CONNECT)4 

i.e., the first XDATrequ at the XDT-Sender-SAP S can only be accepted in the 
CONNECT phase. 
 

  – eventually (also sometime); p means that p is true or will be eventually 
true in future, e.g., 

(S.XDATrequ  R.XDATind) 

i.e., after XDATrequ at the XDT-Sender-SAP S follows eventually an 
XDATind at the Receiver-SAP R. 
 

  – next (also nexttime); p means that if there is a next state then p is true in 
this state, e.g., 

(phase  DATA TRANSFER  S.XABORTind  (phase  CONNECT)) 

i.e., if the transmission is cancelled then the XDT protocol returns to the CON-
NECT phase. 
 

 U – until; p U q means that q eventually becomes true and until then p holds, 
e.g., 

                                                           
4 The letters S and R stand for Sender- and Receiver-SAP, respectively. 
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(4)  (S.XDATconf  phase  (DATA_TRANSFER U(S.XDISind state  abort))) 
(5)  ((S.XDATrequ  S.XDATrequ.sequ  1) 

                                                                                    (R.XDATind  S.XABORTind)) 
(6)  (R.XDATind  (phase  DATA_TRANSFER U (R.XDISind  state  abort))) 
(7)  (phase  DATA_TRANSFER   (S.XDATrequ  S.XDATrequ.sequ  1)) 
(8)  ((S.XDATrequ  phase  DATA TRANSFER) 
                             (S.XDATconf  S.XBREAKind  S.XABORTind)) 
(9)  ((S.XDATrequ  phase  DATA TRANSFER) 
                                                              (R.XDATind  S.XABORTind))  
(10)  (S.XBREAKind  (state  break U (S.XDATconf  state  abort))) 
 

(11)  (S.XDATconf  (  (S.XDATrequ  
              S.XDATrequ.sequ  S.XDATconf.sequ + 1)  state  abort)) 
(12)  ((S.XDATrequ  XDATrequ.eom)   state  eom) 
(13)  (state  eom   (R.XDISind  state  abort)) 
(14)  ((S.XDATconf  state  eom)   (S.XDISind  state  abort)) 
(15)  ((S.XDISind R.XDISind)   phase  CONNECT) 
(16)  (state  abort   (S.XABORTind R.XABORTind phase  CONNECT)) 

 

The specification contains safety and liveness properties. Statements (1), (2), 
(7) and (10) are safety properties which demand that the connection set up can on-
ly be initiated in the CONNECT phase and that the data units are delivered in or-
der. The other properties are liveness properties which describe the protocol pro-
gress. 

Pros and cons 
The advantage of the use of temporal logics for describing communication pro-

tocols consists above all of the fact that the desired safety and liveness properties 
can be explicitly specified. The general validity of the properties in the designed 
system can be formally proven by deductive verification or model checking. The 
application of temporal logics requires, however, unless appropriate previous 
knowledge exists, a high learning expenditure. Therefore, their application in pro-
tocol development is limited. In addition, there is a lack of tools to support the 
transition from the abstract specification into an implementation.  

For this reason, it is recommended to use temporal logics complementarily to 
constructive techniques, e.g., during the early design to define desired properties 
without anticipating design decisions by the modeling process [Gotz 92], [Herr 
00]. In order to support a uniform development process, descriptive and construc-
tive methods are combined. An example of this is the Hennessy-Milner logic 
[Henn 85] which combines a modal logic with the algebraic CCS calculus (cp. 
Section 7.7). Other approaches combine descriptive and constructive elements into 
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a description technique, such as TLA (Temporal Logic of Actions) [Lamp 94] and 
cTLA (compositional TLA) (see Section 8.4). Another way to improve the ap-
plicability of descriptive techniques is the framework approach developed in [Herr 
00]. This framework consists of a set of specification modules and theorems for 
transport protocols. The modules describe basic service and protocol mechanisms. 
The theorems state how service interactions are provided by the protocol mecha-
nisms. The validity of the theorems is proven. More complex service and protocol 
specifications can be developed by composing the modules. Verification of whe-
ther a protocol provides the desired service essentially reduces then to a consisten-
cy proof of the associated theorems of the framework. 

7.9 Hybrid methods 

Comparing the presented methods it is obvious that none of them fully meets 
all the demands of protocol description as discussed at the beginning of this chap-
ter. This limits their applicability. This realization has led to the development of 
hybrid methods which combine different description methods to profit from their 
advantages and to compensate for their shortcomings. Strictly speaking, all formal 
description techniques used today are more or less hybrid approaches. The specifi-
cation language SDL (see Section 8.1) is an example of this. It combines extended 
finite state machines with programming language concepts and includes the data 
description notation ASN.1 (see Section 8.5). In the literature (see [FORTE], 
[SDL Forum]) further approaches are presented, e.g., the combination of formal 
description techniques with Petri nets. The complexity of the communication pro-
tocols and the diversity of their mechanisms can hardly be handled with homoge-
neous methods. The combined application of different description methods is 
therefore essential for practical protocol development.  

Further reading  
The summary of description levels and principles given at the beginning of this 

chapter extracts facts which are contained in many publications on protocols and 
their description. Besides the cited works we recommend the proceedings of the 
FORTE conference series [FORTE] including its predecessor PSTV (Protocol Sp-
ecification, Testing, and Verification) for further studies. 

More information about finite state machines can be found in standard text 
books giving an introduction to automata theory, such as [Ande 06], [Hopc 07]. 

Introductions to Petri nets are given among others in [Gira 01] as well as in the 
cited tutorials of Murata [Mura 89] and Heiner et al. [Hein 08]. Although the latter 
is devoted to biochemical networks it describes basic Petri net principles which 
are also relevant for protocol description. 

The most authentic introduction to CCS remains of course the book of Milner 
[Miln 89]. A comprehensive description of the fundamentals of algebraic specifi-
cations can be found in the book of Bowman and Gomez [Bowm 06]. 
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More insight into the fundamentals of temporal logics are contained in the book 
of Kröger and Merz [Krög 07] as well as in the cited books and tutorials [Emer 
90], [Clar 00], and [Gotz 92].   

 

Exercises 
(1) Explain the relationship and the differences between the service and the pro-

tocol specifications. For what purposes are they needed? 
(2) Explain why informal descriptions are less suited for protocol descriptions 

than formal ones? 
(3) What characterizes a formal description technique? Which are the most im-

portant requirements imposed on on formal description techniques? 
(4) Describe the advantages and the disadvantages of behavior and communica-

tion-oriented protocol descriptions. 
(5) What characterizes constructive description methods? What variants exist? 

Give examples of each variant. 
(6) What characterizes descriptive methods? Discuss the advantages and disad-

vantages compared to constructive methods. 
(7) What are the most important description methods for communication proto-

cols? 
(8) What characterizes a protocol description using finite state machines? What 

kind of description principle is supported? What are the advantages and 
shortcomings of this description method? 

(9) Discuss the difference between finite state machines and extended finite state 
machines. 

(10) Modify the FSM and EFSM descriptions of the XDT entities in Figures 7.4/1 
and 7.5/1 to integrate into XDT an explicit connection set up as described in 
exercise (11) of Chapter 2. 

(11) Change the FSM presentation of the XDT receiver entity (cp. Figures 7.4/1) 
to integrate into XDT the data delivery regulation described in exercise (13) 
of Chapter 2. 

(12) Modify the FSM and EFSM descriptions of the XDT entities in Figures 7.4/1 
and 7.5/1 to integrate into XDT the explicit connection release described in 
exercise (15) of Chapter 5. 

(13) In task (6) of Chapter 5 we replaced the go back N procedure by selective re-
peat. Change accordingly both automata representations of the XDT entities 
for the use of selective repeat instead of go back N. 

(14) What characterizes a protocol description using Petri nets? What kind of de-
scription principle is supported? What are the advantages and shortcomings 
of this description method? 

(15) Introduce the protocol changes of exercises (10) and (11) into the Petri nets 
of Figure 7.6/4. Modeling of the environment is not yet required in this exer-
cise. 
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(16) What characterizes a description using CCS? What kind of description prin-
ciple is supported? What are the advantages and shortcomings of this de-
scription method? 

(17) Describe the services related to the protocol changes of exercises (10) and 
(11) by means of behavior trees. 

(18) What characterizes a protocol design using temporal logics? What kind of 
description principle is supported? What are the advantages and shortcom-
ings of this description method? 

(19) Explain what is expressed by safety properties. Give some examples from 
the protocol field. 

(20) Explain what is expressed by liveness properties. Give some examples from 
the protocol field. 

(21) Describe the services related to the protocol changes of exercises (10) and 
(11) using the simple temporal logics of Section 7.8. Take the service speci-
fication of the same section as a basis. Indicate for each property whether it 
is a safety or liveness property. 



8 Formal description techniques 

The description methods introduced in the preceding chapter form the basis for 
the development of specification languages or formal description techniques. They 
are applied as semantic models for these techniques. In contrast to the description 
methods, formal description techniques (FDTs) permit an (almost) complete de-
scription of services, protocols, and distributed systems. The requirements on the 
design of formal description techniques resemble at first glance those of program-
ming language design. Important requirements are a high expressiveness, i.e., the 
description technique should be able to represent all relevant elements of a service 
and a protocol, a reasonable level of abstraction to make no reference to possible 
implementations, the presence of suitable structuring features to promote the un-
derstanding and handling of the specification in the further development steps, and 
the suitability of the language features such that they do not limit or inadequately 
affect further development stages. Unlike programming languages, formal descrip-
tion techniques demand a formally defined syntax and semantics. The latter repre-
sents the crucial difference. It is required to ensure the unique interpretation of the 
formal specifications. 

In the last 30 years mainly three formal description techniques have been de-
ployed and fostered for the description of communication protocols: Estelle, 
LOTOS, and SDL. The first two languages were standardized by the Interna-
tional Organization for Standardization (ISO). Their development traces back to 
the foundation of an ad hoc group for formal description techniques within the 
WG1 of the ISO TC 97/SC 16 at the beginning of the 1980s. This ad hoc group 
was split into three sub-groups. Sub-group A dealt with architectural concepts to 
support the work of the other two sub-groups. Sub-group B was devoted to de-
scription techniques on the basis of extended finite state machines, while sub-
group C developed algebraic-based description techniques. The work of sub-
groups B and C led to the definition of the formal description techniques Estelle 
and LOTOS. In the mid-1980s SDL joined these languages; it had been developed 
in the 1970s, but was not primarily designed for describing protocols. These three 
languages formed the formal description techniques in a narrow sense for a long 
time. The situation has changed since the end of the last century. Only SDL has 
found a broad application in practice. Estelle disappeared and is not used any 
more. LOTOS found only theoretical importance. Another reason for this situation 
is the appearance of UML (Unified Modeling Language) which is a popular mod-
eling technique in software engineering. Although UML is not a formal descrip-
tion technique in the sense defined above, it provides features for describing pro-
tocols and is widely deployed for that purpose.  

Furthermore, the deployment of formal description techniques also inspired the 
application of techniques which complement the formal description techniques. 
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160  8  Formal description techniques 

The most important ones are the abstract syntax notation ASN.1 for data format 
description and MSC (Message Sequence Charts) for the graphical representation 
of protocol sequences. 

In this chapter we introduce the principles of the most important formal de-
scription techniques for communication services and protocols. We consider the 
basic approaches: EFSM-based description, communication-oriented description, 
algebraic specification, and descriptive specification as well as the description of 
data formats. Each of these approaches represents not only a different way to de-
scribe services and protocols; they also represent different thinking models which 
shape the whole development process. 

We introduce for each approach an example language: SDL for EFSM-based 
description, MSC for communication-oriented description, LOTOS for algebraic 
description, cTLA (compositional TLA) for descriptive specification, and ASN.1 
for data formats. Finally we give a short overview of UML 2 features for protocol 
description. The introductions are confined to the protocol relevant features of the 
languages to give the reader an insight into the language approach and to allow 
him/her to understand the subsequent example. Readers with a deeper interest in 
the languages are referred to the standards and the indicated references. The intro-
ductions follow the same structure. They begin with a short overview of the basic 
language concepts, followed by an introduction to the most important language 
features and to the respective formal semantics after that. Next a complete or par-
tial description of the XDT service and protocol is given as an example. This is to 
give the opportunity to the reader to compare the expressiveness of the various de-
scription techniques with one another. Especially the service description reveals 
large differences between the considered techniques. A final discussion of the pros 
and cons of the applicability of the techniques concludes the overview. 

8.1 EFSM-based description – Example: SDL 

SDL (Specification and Description Language) [ITU-T 100] is the formal de-
scription technique of the International Telecommunications Union–Telecommu-
nication Standardization Sector (ITU-T) (formerly Comité Consultatif Interna-
tional Teléphonique et Telégraphique (CCITT)). The development of SDL began 
already at the beginning of the 1970s. It was originally developed for the specifi-
cation of telecommunication systems, but later it was successfully applied to the 
description of protocols. The language definition has been continuously developed 
in so-called study periods of the ITU-T Study Group 10. Every four years till 2000 
a new version of the language was released. Language versions with important ex-
tensions and changes were the versions SDL'88, SDL'92, and the current version 
SDL-2000, which was revised in 2006. A new version SDL-2010 is under discus-
sion. The public forum to promote SDL is the SDL Forum Society (http://www. 
sdl-forum.org/). It is a non-profit organization to provide and disseminate informa-
tion on the development and use of SDL. It runs several conferences, among them 

http://www.sdl-forum.org/
http://www.sdl-forum.org/
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the SDL forum [SDL Forum]. Nowadays the SDL forum regards itself as a forum 
that also relates to other languages, such as ASN.1, MSC, TTCN, and UML, 
which we consider later in this chapter and book. SDL is the only of the three tra-
ditional, standardized formal description techniques for which commercial tools 
have been developed. In the meantime SDL gained strong competition with UML. 
SDL tries to meet the challenge by the unification of language concepts with UML 
and by the definition of a UML profile for SDL in the standard Z.109 to promote 
the use of SDL under UML (see Section 8.6 for this). 

The following introduction refers to the current language version SDL-2000 in-
cluding the revisions of 2006. SDL-2000 contains a sequence of fundamental 
changes in relation to the previous version SDL'96. These removed poorly used 
constructs, harmonized the remaining language elements, and introduced a num-
ber of new concepts. Important changes are the introduction of the agent concept, 
the integration of signal routes into the channel concept, and the replacement of 
the service-construct by the concept of state aggregation. Further extensions con-
cern the interface descriptions, the exception handling, composite states, and an 
improved integration of ASN.1. Moreover, a new formal semantics definition was 
introduced. For the sake of brevity, it is not possible to give a comprehensive rep-
resentation of all language concepts of SDL-2000 here, in particular also due to 
the fact that SDL was not exclusively designed for the description of protocols. 
We confine ourselves therefore to those concepts which are relevant for the proto-
col description. The differences to the preceding language versions are not repre-
sented either (see for this [Reed 01]). A short overview of the development of the 
language in the different language versions can be found on the above mentioned 
web page of the SDL Forum Society. 

8.1.1 Basic Concepts 

Notations 
SDL provides two notations: a graphical and a textual one. They are both based 

on the same semantic model. The graphical notation SDL/GR (Graphical Repre-
sentation) is the preferred representation. It provides graphical elements for most 
important language concepts. The graphical representation is supplemented by 
textual notations for those language elements for which a graphic representation is 
not appropriate. The predominantly graphic representation of SDL specifications 
forms the basis for the success and the high acceptance of the language. The later- 
developed SDL/PR (Phrase Representation) provides a purely textual representa-
tion. It is mainly used for compiler development. All language elements of 
SDL/GR that are represented textually form a subset of SDL/PR (see Figure 
8.1/1). Both notations can be transferred automatically into one another. Starting 
from 2002 the Z.100-Standard contains only the graphic version. Thus today, SDL 
is primarily defined as a graphical language. 
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The outermost block of a specification is called the system. It describes the in-
teraction with the environment. 

Each agent possesses an identifier and a lifetime. Further an infinite input 
queue is assigned to each agent to buffer incoming stimuli. These are events that 
trigger the firing of a transition which transfers the agent into a new state. A tran-
sition is always triggered by the first stimulus in the queue. 

Communication 
SDL-2000 distinguishes three basic types of communication: 

 asynchronous message exchange, 
 remote procedure call, and 
 shared variables. 

Asynchronous message exchange is the most important form of interaction be-
tween agents. Remote procedure calls correspond to the interaction paradigm of 
client/server applications. Shared variables permit a read only access to a remote 
variable. 

Asynchronous message exchange uses signals to transport user data. A signal 
has a name and contains an implicit sender identification. Signals are exchanged 
via channels. A channel is a uni- or bi-directional communication path between 
two agents which ensures a reliable, order-preserving transmission of the signals. 
The transmission in a channel can be either delayed or delay-free. The end points 
of the channels are gates. A gate marks external communication points of an 
agent. SDL distinguishes explicit gates, which have a name, and implicit gates. 

Composite states and state aggregation 
Apart from structuring a specification by agents, SDL-2000 offers the possibil-

ity, following UML, to structure the description of a state machine in a hierarchi-
cal manner, i.e., a state is described by another state machine. There are two con-
cepts: composite states and state aggregation. Composite states allow the nesting 
of states. The agent can be in more than one (sub-states); exactly one transition is 
always executed. All states have a common input queue. A state aggregation par-
titions the state space of the agent. Each partition handles a different set of input 
stimuli. Enabled transitions are executed in an interleaved manner.  

Exceptions 
SDL-2000 introduced the concept of exception handling, which is also very 

useful for describing protocols, e.g., to describe error cases. An exception can be 
triggered explicitly or implicitly. In this case it interrupts the normal control flow 
and assigns the exception to the next exception handler which reacts to this situa-
tion. The exception handler is described explicitly. Exception handlers can be as-
signed to nearly all elements of the behavior description. After handling the ex-
ception the execution returns to the place of the interruption, unless the exception 
handler terminates the system. 
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input queue are discarded and that the agent is transferred into an implicit stop 
state. The agent remains in this state until all contained agents are terminated. In 
the stop state no further stimuli are accepted except the access to global variables 
via implicit remote procedure calls. When all contained agents are terminated, the 
agent terminates too. 

 
Agent instances can be dynamically created by means of the cre-
ate-symbol. They are created in the agent executing the create-
statement. This implies the assignment of the indicated actual pa-

rameters and the creation of the internal structure of the agent. If the maximum 
number of defined instances is reached no further agent is instantiated. 

8.1.2.2 Variables 

Variables can be declared in agents to store data. A variable declaration is 
represented in a text-symbol starting with the terminal dcl. It follows familiar 
structures. An initialization of the variables is possible, e.g., 

dcl i,j Integer; 
      n Integer:= 0; 
      exported class Integer; 

Variables are distinguished concerning access and visibility into private, local, 
and exported ones.  

Private variables are visible only within the state machine of an agent. They 
cannot be accessed by other agents. 

Local variables are visible to the agent’s state machine and all contained ag-
ents. They can access these variables. In blocks local variables are administered by 
the state machine of the block. Access by contained agents to these variables is 
mapped on implicit get- and set-remote-procedures. Simultaneously occurring re-
mote-procedure calls are sequenced by the input queue of the agent. In processes 
access collisions are avoided by the alternating execution of the transitions of the 
contained processes. 

Exported variables are public variables which provide read access to other 
agents. They represent an abbreviation of a signal exchange between agents. A 
variable is marked as public if the attribute exported is indicated in its declaration, 
e.g., 

dcl exported ack Boolean. 

An agent that will access this variable must introduce it by a remote-decla-
ration, e.g., 

dcl remote ack Boolean. 
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The remote variable is made visible by the possessing agent through the ex-
port-statement, e.g., 

export ack. 

In order to access the variable in the importing agent an import-statement is 
required, e.g., 

import ack. 

In the import-statement additional constraints concerning the communication 
path can be indicated. 

Address information 
Each agent possesses four anonymous variables of the pre-defined sort Pid 

(Process Identity). They store address information. These variables are self, par-
ent, offspring, and sender. The address information is assigned implicitly during 
agent creation. They can be accessed by other agents: 

 self  – address of this agent instance, 
 parent  – address of the creating agent instance. The Pid-value is zero if  
    the agent was created during system initialization,  
 offspring – address of the last agent instance created by this instance. The  
    Pid-value is zero if no agent was created 
 sender  – address of the agent that sent the last consumed signal. The Pid- 
    value is zero if no signal has been received. 

8.1.2.3 State machine 

The behavior of an agent may be described by an extended finite state machine, 
for short state machine. SDL provides various constructs to describe the operation 
sequences of the state machine. The most important ones are introduced here. In 
Figure 8.1/5 we give a final example of how they are used to describe a transition. 

States and transitions 

The state in which the transition is triggered is described by the 
state-symbol. It can occur several times in the description. This 

allows structuring the descriptions of the state machine not only by 
states, but also by signals. 

The state-symbol contains the name of the state. Several names may be indi-
cated if they possess the same follow-on behavior. If the described follow-on be-
havior refers to all or almost all states then the “*”- notation may be used as a 
shortcut. The states which are not concerned are listed after the “*”-symbol in 
square brackets [...]. 
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An exception (instance) is created using the raise-symbol in the 
behavior description, i.e., in a transition. The raise-symbol bran-

ches to the next possible exception handler. Actual parameters may 
be assigned to the exception. 

8.1.2.11 Object orientation 

SDL-2000 is a completely type-oriented language. An agent definition is ex-
plicitly or implicitly derived from an agent type. Agent definitions which are not 
type based are transformed implicitly into an agent type definition and an agent 
definition which is based on this type. 

The basic principle of the type definition in SDL is object orienta-
tion. The terms type and instance are used for historical reasons 
instead of the terms class and object. There are various types, e.g., 
system, block, and process types, to define agents, composite 
state types, procedure types, signal types, and the normal data 
types (see below). Special graphical symbols are provided for the 
agent and the composite state types. They are derived from the in-
stance symbols by using a double fringe. Instances are created 
from the types. Instances of agent types are, for example, created 

by means of the create-symbol (see above). Types may be further specialized into 
sub-types. SDL provides here the possibility to supplement existing types with 
further elements. In addition, sub-types can be derived also by redefinition of ele-
ments. 

SDL-2000 offers a set of concepts for a type and/or object oriented specifica-
tion. We do not enlarge on this further here, since it does not change anything in 
the basic principle of describing protocols with SDL. Because protocol specifica-
tions only describe the demanded external behavior of the protocol entities their 
implementations need not necessarily be object-oriented, even if the specification 
is object-oriented. 

8.1.2.12 Data type definitions 

The SDL data type concept is based on the abstract data type approach. Two 
kinds of data types are principally distinguished: 

 value types, and 
 object types. 

Value types correspond to conventional data types, familiar from high-level 
programming languages. Object types define pointers which refer to values. These 
references are local to the respective agent. A transformation between the two 
kinds of types is possible. 
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Alternatively SDL permits the use of ASN.1 (see Section 8.5) for the descrip-
tion of data formats. ASN.1 definitions can be inserted into SDL specifications in 
text-symbols. They are mapped onto SDL data types. The rules for this mapping 
are described in the ITU-T recommendation Z.105 [ITU-T 105]. Since we intro-
duce ASN.1 separately in Section 8.5, we do not expand on it further here. 

Data type definitions 
The basic form of a data type definition in SDL is represented in Figure 8.1/14 

for the value type definition. An object type definition has a syntactically similar 
form. A data type definition consists of the definition of the set of values which 
belong to this data type – the sort – and the definition of the operations and meth-
ods to manipulate the values. A description of the semantic properties of the op-
erations by means of axioms is not contained any more since SDL-2000. For each 
object type definition, the operations Make and Null for the creation of the data 
structure and the null pointer are defined implicitly. 

value type Boolean 
 literals true, false 
 operators  not:  Boolean  Boolean 
  and: Boolean,Boolean  Boolean 
  or: Boolean,Boolean  Boolean 
    .  .  . 
endvalue type Boolean 

Figure 8.1/14: Value type definition 

The set of values of a data type can be defined by enumeration or derived from 
other sorts. SDL offers three constructors for this: literals, struct, and choice. 

Literals and synonyms 
Literals are constants with an implicitly defined value. They must be introdu-

ced by enumerating by means of literals, e.g., 

literals true, false; 
literals 0, 1; 

A set of operations is implicitly defined over the enumerated values, such as 
first, last, succ, pred, and others. There is further the possibility to introduce syn-
onymous names for constants. They are declared with the keyword synonym: 

synonym pi Real 3,14; 

Besides sub-range types, so-called syntypes can be defined which cover a sub-
set of a sort. The range limit (constraint) is indicated after constants. Syntypes 
have the same properties as the basic type, but now the affiliation to the subset is 
proved, e.g., 

4
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syntype Nat = Integer constants >= 0 endsyntype. 

Structures 
Compound data types are represented by structures which are defined using the 

struct-constructor in the familiar way, e.g., 

value type ABO_type 
    struct 
 code: Bitstring default ’1101’B, 
 conn: Bitstring, 
 reason: error   
endvalue type. 

The field elements can be supplemented by optional and default if the element 
can be contained optionally and/or an initial value is assigned. Apart from the op-
eration make, three further operations are implicitly defined for structures: modify 
for inscribing values, extract for reading out values, and present for testing the 
presence of a field element. The latter can be accessed by “!”, e.g., 

dcl ABO ABO_type; 
 .  .  . 
ABO!reason:=2; 

A further possibility for assigning values to a structure is the use of the paren-
theses (. and .), e.g.,  

ABO:= (. ’1101’B,’1’B,0 .); 

Choice 
The choice-constructor defines a data type consisting of several alternatives. 

Exactly one alternative applies in each case, e.g., 

XDT-pdu_type ::= choice{ 
                                   dt    dt_type, 
  ack ack_type, 
  abo abo_type 
          }.  

This data type has been introduced for compatibility reasons with ASN.1which 
uses the same type (see Section 8.5.3). 

Parameterized data types 
Data types can be parameterized, e.g., 

object type queue<type element> 
 operators make(element)  queue 
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 methods enter: element,queue  queue 
   remove: queue  element 
  IsEmpty: queue  Bool 
endobject type. 

The concrete data type is derived by inheritance (see below) from the above de-
finition: 

object type in_queue inherits queue <XDT-pdu_type>; 
dcl input in_queue; 
make(20); 
input.enter(ABO) 

Specialization 
Data types can be specialized in order to derive further (sub-)types. Specializa-

tion is based on inheritance (inherits). It defines a new data type that is different 
from the basic type. The new type takes over all literals and the indicated opera-
tors. The literals and operators may be renamed, e.g., 

value type bit 
 inherits Boolean 
   literals 1 = true, 0 = false; 
   operators ("not","and","or") 
 adding 
   operators xor: bit,bit  bit 
endnewtype bit;  

There are two possibilities to specialize a data type: adding new elements and 
the redefinition of elements of the basis type. New literals and operators are intro-
duced after adding. Elements which can be redefined must be marked in the basis 
type by virtual, the redefined elements accordingly by redefined. 

Any 
Each value and object type is directly or indirectly a sub-type of the object type 

Any. This type can be used in variable, type, operator, and method definitions to 
indicate that here values of any type are allowed. 

Predefined data types 
Frequently used data types and operations are standardized for use in each SDL 

specification. These data types and operations are defined in the package Prede-
fined (see also Section 8.1.2.14). These are data types familiar from other lan-
guages, such as Boolean, Integer, Natural, Real, Character, Characterstring, Bit, 
Bitstring, Octet, and Octetstring. Further SDL-specific data types are defined, 
which we mentioned in part already: 
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sets of SDL are currently supported by tools. These SDL subsets are called SDL 
profiles. They cover a wide range of applications and have proved sufficient in 
practice. An overview of available tools can be found on the web site of the SDL 
Forum Society. 

A decisive factor for the success of SDL is its standardization by the Interna-
tional Telecommunication Union (ITU), which continuously develops the lan-
guage further and adapts it to new requirements, as well as its support by the SDL 
Forum which organizes the user community. Thus SDL is a living language. The 
language though is losing importance with the emergence of UML. The SDL 
community has tried to cope with this by approaching the UML methodology. An 
SDL-UML profile was designed to use the SDL methodology in the context of 
UML. We enlarge on it in Section 8.6. 

8.2 Communication-oriented description – Example: MSC 

Message Sequence Charts (MSC) is a specification language of the ITU-T for 
the representation/visualization of interactions between independent message-pas-
sing system components. A message sequence chart describes a selected interac-
tion scenario. MSC can be deployed in various engineering phases, e.g., for over-
view specifications, requirement specifications, documentations, and test case 
descriptions. Originally MSC was not designed as a formal description technique. 
It aimed at the visualization of interaction scenarios. The principle of message se-
quence charts goes back to a suggestion of Rudolph and Grabowski, which was 
based on OSI time sequence diagrams (cp. Section 1.1) and ISDN information 
flow diagrams. MSC was standardized between 1989 and 1992 by the Interna-
tional Telecommunication Union in the recommendation Z.120 [ITU-T 120]. This 
version was called MSC '92. In the following ITU-T study periods the language 
was developed further and the versions MSC '96 and MSC-2000 were defined. 
The latter is the current version. With the version '96, a formal semantics was de-
fined based on process calculi. It is contained in annex B of the Z.120-Standards 
(see also [Mauw 96, 99]). Thus, MSC changed into a self-contained formal de-
scription technique. In the same version MSC was extended by means for combin-
ing message sequence charts to build complete specifications. This structuring 
concept is called High-level MSC (HMSC). In MSC-2000 data types, remote 
method calls, and object orientation were added. The concept of time was extend-
ed. Apart from absolute time, relative time was introduced. 

MSC is not bound to a particular specification language. It is frequently used in 
connection with SDL, which substantially contributed to its high acceptance. The 
transformation of MSC into SDL representations and vice versa is supported by 
tools. The basic principles of the MSC representation, also called Basic MSC, are 
very simple. It spread fast and attained large popularity. UML 2 adopted the MSC 
representation principle for its sequence diagrams. 



 

M
to
ti

8

N

a
re
s
c
ti

M

a
c
c
a
te
s
m
re
c

F

c
ti

In
MSC
o pr
ion 

8.2.1

Nota
M

and 
epre
erve

cally
ion.

Mes
T

an M
comp
chart
agen
erac
age

mess
espe

cede
 

Figur

F
cont
ives

n th
C an
rese
pro

1 B

atio
MSC

a te
esen
es a
y tra
 

sag
The b
MSC
pon
t is 

nt in
ct b
es. T
sage
ecti

es th

re 8.

igur
ains
s de

 

he f
nd so
ent t
oced

Basi

on fo
C is 
extu
nts t
as a 
ansf

ge se
basi
C d
nent

lim
n SD
etw

Thes
e. S
ive 
he re

.2/1:

re 8
s tw
scri

follo
ome
the p
dure

ic c

orm
a g

ual n
the 
rep

ferre

equ
ic e

diagr
ts, th

mited
DL, 
ween

se a
end
axis
ecei

: Me

8.2/1
wo in
ibe t

owin
e ad
prin

es.  

conc

ms 
grap
nota
not

pres
ed i

uenc
elem
ram
he i
d by
is r

n ea
are r
ding
s. T
ive 

essag

1 sh
nsta
the 

ng i
dditi
ncip

cept

phic
ation
atio
enta
into

ce ch
ment
m. It
insta
y a 
epre

ach 
repr
g an
The 
eve

ge se

how
ance
com

8

intro
iona

ples 

ts 

cal s
n fo
on re
atio

o the

har
t of 
t de
anc
fram

esen
othe
rese
d re
inte
nt. 

eque

ws a 
e ax
mmu

8.2  

odu
al st
of t

scen
orm
elev

on fo
e te

rt 
the

escr
es, 
me 
nted
er a
nted

ecei
erac

ence 

mes
xes f
unic

Com

uctio
truc
this 

nari
: M
vant
orm
extu

 des
ribes
as w
tha

d by
and/
d by
ving
ction

cha

ssag
for 
cati

mmu

on w
cturi

freq

io la
MSC/

t for
mat f
ual o

scrip
s th
well
at re
y a v
/or w
y ho
g a 
ns a

art fo

ge s
the 
on w

unica

we 
ing 
que

angu
/GR
r pra
for t
one.

ptio
he i
l as

epre
vert
with
oriz
me
are 

or a (

sequ
pro

with

ation

con
con

ently

uag
R an
acti
tool
. W

on is
nter
 wit
sen
ical
h th
onta
ssag
asy

(succ

uenc
otoc
h th

n-orie

nfine
ncep
y us

ge w
nd M
ical 
ls. T

We c

s th
ract
th t

nts th
l axi
he e
al a
ge a
ynch

cess

ce c
col e
he en

ente

e ou
pts. 
sed g

whic
MSC
app

The 
ons

he m
tion
the e
he e
is (s

envi
arrow
are d
hron

ful) 

hart
entit
nvir

ed de

urse
A g
grap

ch p
C/PR
plica

gra
sider

mess
s b
env
env
see 
ron
ws w
diff
nou

XD

t fo
ties 
ronm

escri

elve
goal
phic

poss
R. T
atio
aphi
r he

age
etw

viron
iron
Fig
men
with
feren
s. T

T co

r th
XS

men

ption

es to
l of 
c de

sess
The

ons. 
ic n
ere 

e seq
ween
nme
nme
gure 
nt b
h th
nt e
The 

onne

he X
S and
nt, in

n – E

o a 
this

escri

es l
e gra

The
notat
only

quen
n tw
ent. 
ent. 

8.2
by th
he na
even

sen

ectio

XDT
d XR
n th

Exam

des
s sh
iptio

like
aphi
e tex
tion
y th

nce
wo o

A m
An

2/1).
he e
ame

nts w
nd e

n se

T co
XR. T
his c

mple

scrip
hort 
on o

 SD
ical
xtua

n can
he g

e cha
or s
mes

n ins
. Th
exch
e of
whic
even

t up

nne
The 
case

e: M

ptio
intr

of c

DL 
l no
al fo
n be

grap

art, 
seve
ssag
stan
he in
han
f the
ch o
nt a

ectio
ser

e wit

MSC 

on o
rodu
omm

a gr
tatio
orm
e au

phic

als
eral 
ge se
nce, 
nsta
nge 
e res
occu
alwa

on s
rvic
th th

of B
uctio
mun

raph
on f

m ma
utom
cal n

o ca
sy

equ
e.g

ance
of m
spec
ur a
ays 

set u
e pr
he X

199

Basi
on i
nica

hica
form
ainl
mati
nota

alle
stem

uenc
g., a
es in
mes
ctiv

at th
pre

up. I
rimi
XDT

9 

ic 
is 
a-

al 
m 
y 
i-
a-

d 
m 
ce 
an 
n-
s-
ve 
he 
e-

It 
i-
T 

 



200  8  Formal description techniques 

service users. It is assumed that the environment is able to send and/or receive 
messages to/from the chart. The behavior of the environment is nondeterministic, 
but it is additionally presupposed that the communication with the environment 
follows the interaction sequence specified in the message sequence chart. 

There is no global time scale in a message sequence chart. Concerning time, it 
is assumed that it progresses along each instance axis from top to bottom except in 
coregions which describe concurrent behavior. The events occurring in the in-
stances are arranged in the order of the message exchange. A message must al-
ways be sent first, before an acknowledgment can be received, but this is not ex-
pressed in the time axis. A message sequence chart describes a partial order over 
the events which has to be preserved. 

MSC provides further constructs needed for describing the interaction/com-
munication flow between the instances, such as system states, timers, gates, ac-
tions, process creation, and process termination. In addition, there is the possibility 
to combine partial sequences by means of so-called inline expressions in order to 
represent alternatives, options, loops, exceptions, and concurrency. 

Data definitions 
Starting from MSC-2000 there is the possibility to declare data for use in mes-

sages, actions, or timers, or as parameters. MSC has no data description of its 
own. It permits the use of the data notation preferred by the user. The semantics of 
the data notation used is linked by interface modules with the MSC description. 

8.2.2 Language constructs              

MSC achieved considerable complexity with the extensions introduced in the 
different language versions. They cover a broad range of applications. Not all lan-
guage concepts are relevant for protocols. We consider here those elements which 
are relevant for protocol description. 

Basic MSC 
The MSC document forms the frame of a descrip-
tion in MSC. It is represented by a frame symbol fol-
lowed by further MSC diagrams. The MSC docu-
ment contains the name of the document and de-

scribes the structure of the specification. The name can optionally refer to an SDL 
specification (if the document is provided for such a specification). Moreover, it 
can contain inheritance clauses, message and timer declarations as well as the in-
terface module for the data description. 

A message sequence chart is also represented by a 
frame. It forms the environment of the interaction se-
quence in question. Each message sequence chart has 
a name which is indicated after the keyword msc. 

After the keyword inst the instances in question can be listed. In addition, the as-

mscdocument namemscdocument name

msc namemsc name
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handle. High-level MSC mitigates this problem, but nevertheless the advantage is 
not that large compared to other description techniques. MSC is like SDL also 
supported by various tools for developing and validating message sequence charts. 
Finally it must be mentioned that due to the success and broad acceptance of MSC 
it has been incorporated into UML 2 as sequence diagrams (see Section 8.6 for 
this).   

8.3 Algebraic-based description – Example: LOTOS 

The formal description technique LOTOS (Language of Temporal Ordering 
Specification) is our representative of algebraic description techniques. It is based 
on the CCS calculi of MILNER (cp. Section 7.7). LOTOS was standardized by 
ISO [ISO 8807]. A graphical variant GLOTOS as well as an enhanced version E-
LOTOS to support real-time applications were defined later, but they did not find 
broad acceptance. The significance of LOTOS derives from the theoretical foun-
dations for concurrent systems, which are still relevant today [Bowm 06]. For that 
reason, it is worthwhile to consider the basic principles of LOTOS in the context 
of this chapter because the language presents an entirely different approach to the 
description of protocols than we have seen so far. 

8.3.1 Basic concepts 

LOTOS consists of two parts: the behavior description and the data description. 
The behavior description relies on the process calculi CCS of Milner (cp. Section 
7.7) and CSP (Communicating Sequential Processes) of Hoare [Hoar 85]. For data 
description, the algebraic specification language ACT ONE [Ehri 85] is used. 
These two parts results in two language levels. The behavior description, which 
only describes the process interactions, is called Basic LOTOS. Basic LOTOS and 
ACT ONE combined form Full LOTOS which describes both the process interac-
tions and the data exchange. 

Processes 
The basic concept of description in LOTOS is the process. A process is descri-

bed by its externally visible behavior, i.e., its interactions with the environment 
(see Figure 8.3/1). A process can consist of several sub-processes, which again 
can contain further sub-processes. Thus, a hierarchy of process definitions devel-
ops. 

Actions 
Interactions between the processes are described by actions which designate 

events. Actions take place at special points of interaction, the gates. The interac-
tion is atomic and synchronous (rendezvous principle). Basic LOTOS describes 
only the synchronization between processes. Therefore, gate and action names co-
incide. Figure 8.3/1 shows the principle for an example process PQ which inter-
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The identifier denotes the name of the process. The gate list refers to the pro-
cess gates and thus to the externally visible actions. Functionality indicates wheth-
er a process runs into a deadlock (noexit) or terminates properly (exit). The ob-
servable behavior of the process is described by the behavior expression. If the 
behavior expression contains further sub-processes their definition is included af-
ter the keyword where. Example 8.3/1 shows the definition of the process PQ of 
Figure 8.3/1. 

process PQ [a,b,c]: noexit := 
      .   .   . 
P[a,d] | [d] | Q[b,c,d] 
 where 
  process P [a,d]: noexit := 
   .   .   . 
  endproc (* P *) 
  process Q [b,c,d]: noexit := 
   .   .   . 
  endproc (* Q *) 
endproc (* PQ *) 

Example 8.3/1: Definition of the process PQ 

Behavior description 
Basic LOTOS provides various language elements for describing the process 

behavior. 

Inactive behavior 
Inactivity of a process is represented by stop. It describes situations, in which 

processes are no longer able to interact with their environment, i.e., they are in a 
deadlock. Processes that end with stop have the functionality noexit. In the behav-
ior tree representation stop represents a leaf node. Note that this is an important 
difference to others FDTs. LOTOS explicitly describes deadlocks! 

Action prefix 
The action prefix which corresponds to the prefix in CCS (cp. Section 7.7) is 

used to describe the sequencing of actions. 

a;B  

is a behavior expression that will perform action  and then behaves 
like B. In this way sequential behavior can be specified, e.g., 

a;b;c;stop. 

Apart from visible actions,  also includes the internal action i 
which cannot be observed from the outside. It models an internal event of the pro-
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Recursion 
The language elements introduced so far permit only the description of finite 

behavior. A LOTOS specification though generally describes infinite behavior. 
This is achieved by a recursive invocation of processes in process definitions, 
e.g., 

process R[a,b,c]: exit:= 
 a;b;R[a,b,c] 
  [] c; exit 
endproc 

If a process ends with stop it cannot be invoked recursively. This is only possi-
ble if the process terminates successfully. The successful termination of a pro-
cess is represented by exit, e.g., 

process S[a,b,c,]: exit:= 
 a;b;c;exit 
endproc  

A successful process termination must be specified by the functionality exit in 
the head of the process definition. 

Sequential composition 
The action prefix describes action sequencing within a behavior expression. To 

describe sequencing between behaviors sequential composition has to be applied. 
LOTOS offers two operators for this. The enabling-construct 

B1 >> B2  

expresses that the behavior expression B2 will only be activated if B1 terminates 
successfully. For example, we can describe the succession of protocol phases by 
means of the enabling-construct: 

Connection establishment >> Data transmission >> Connection release. 

The second operator, the disabling-construct, describes the disabling of a nor-
mal behavior B1 by an exceptional behavior B2  

B1 [> B2. 

The disabling-construct [> means that the execution of B1 is aborted when the 
triggering event B2 occurs. Subsequently, the behaviour expression behaves as B2. 
If B1 terminates successfully it cannot be disabled by B2 any more. We can use the 
disabling-construct to express that a protocol phase can be interrupted because the 
connection is aborted, e.g., 

(Connection establishment >> Data transmission) [> Connection abandonment 
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Parallel composition 
Concurrent behavior can be described through parallel composition, which cor-

responds to composition in CCS. LOTOS distinguishes three forms of parallel 
composition which differ in their level of synchronization. 

General parallel operator 
The general parallel operator 

B1 |[a1, ... ,an]| B2 

describes the composition of two behavior expressions B1 and B2 which synchro-
nize with respect to the events a1,…., an indicated in the square brackets. The be-
havior expression 

P[a,d] |[d]| Q[b,c,d] 

describes the parallel composition of process P and Q of Figure 8.3/1. The two 
processes synchronize with respect to d. The actions a and/or b, c are interactions 
of the processes P and/or Q with the environment. Parallel compositions can be in-
terpreted by either interleaving or true concurrency semantics (cp. Section 1.2.4). 
The standard interpretation is interleaving (see [Bowm 06] for this). 

Full synchronization 
If B1 and B2 synchronize with respect to all events one speaks of full synchroni-

zation 

B1 || B2. 

Note that parallel composition can be represented alternatively by means of the 
action prefix and the choice-operator. Example 8.3/2 shows this for full synchro-
nization. Since the event d is not expected in process U, the alternative w;v;exit in 
V will not be executed so the process UV behaves as the expression indicated at 
bottom right. 

process UV[a,b,c,d]: exit :=  
 U[a,b,c] || V[a,b,c,d] 
 where 
  process U[t,u,v]: exit := 
   t;u;exit [] v;exit 
  endproc (* U *) 
  process V[t,u,v,w]: exit := 
   t;u;exit [] w;v;exit [] v;exit 
  endproc (* V *) 
endproc (* UV *)                                             corresponds to  a;b;exit [] c;exit 

Example 8.3/2: Alternative representation of full synchronization 
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Independent parallelism 
The case that two behavior expressions B1 and B2 do not synchronize with re-

spect to any action is called independent parallelism  

B1 ||| B2 . 

The behaviors evolve concurrently. They only interact with the environment. Ex-
ample 8.3/3 shows again the alternative representation using action prefix and 
choice-operator. The resulting behavior expression contains the possible interleav-
ing sequences (cp. Section 1.2.4) 

process UV[a,b,c,d]: exit :=  
 U[a,b,c,d] ||| V[d] 
 where 
  process U[t,u,v,w]: exit := 
   t;u;exit [] v;w;exit 
  endproc (* U *) 
  process V[w]: exit := 
   w;exit 
  endproc (* V *) 
endproc (* UV *) 

 corresponds to d;(a;b;exit [] c;d;exit) [] c;d;d;exit [] a;(b;d;exit [] d;b;exit) 

Example 8.3/3: Alternative representations of independent parallelism 

If sequential and parallel compositions are combined attention must be paid to 
the fact that parallel composition only terminates after all sub-processes have ter-
minated successfully. Accordingly, B is never reached in the following behavior 
expression  

(a;b;exit |[b]| b;c;stop) >> B 

because sub-process b;c;stop runs into a deadlock. 

Multi-way synchronization 
Parallel composition can also be applied to several behavior expressions and/or 

processes simultaneously, if they synchronize with respect to the same action, e.g., 

P[a,b] |[b]| Q[b,c] |[b]| R[b,d]. 

Action b can only be performed if the processes P, Q, and R all participate. 

Hiding 
So far we have assumed that the synchronizing actions of parallel behavior ex-

pressions are visible to the environment. Sometimes it is appropriate to consider 
the communication between two behavior expressions and/or sub-processes as in-

k
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ternal and hide it from the environment. This concept is called hiding. It corre-
sponds to restriction in CCS. To hide interactions the hide-construct hide x in 
must be used. Now the internal communication between P and Q of Figure 8.3/1 
can be described as follows: 

process PQ[a,b,c]: exit:=               
hide d in 
 P[a,d] |[d]| Q[b,c,d] 
 where 
    .  .  . 
endproc 

Note that d does not appear as an action of PQ because it is no longer visible to 
the environment. Example 8.3/4 shows the complete description of the process PQ 
at the end of our introduction to Basic LOTOS. 

process PQ[a,b,c]: exit :=             
 hide d in 

 P[a,d] |[d]| Q[b,c,d] 
 where 
  process P[a,d]: exit := 
   a;d;exit 
  endproc (* P *) 
 process Q[b,c,d]: exit := 
  d;b;c;exit 
 endproc (* Q *) 
endproc (* PQ *) 

Example 8.3/4: Complete specification of process PQ 

8.3.3 Data type definition 

Before coming to Full LOTOS we have to consider how data types are repre-
sented in LOTOS. In the original LOTOS definition the algebraic data description 
language ACT ONE [Ehri 85] was used for specifying data formats. ACT ONE is 
an abstract data type language which supports an implementation-independent 
representation of data formats. The use of ACT ONE has proved cumbersome 
though, and is considered to be a hindrance to the broader use of LOTOS. In E-
LOTOS another data language was introduced. Since we do not consider E-
LOTOS [ISO 15437], we sketch the principles of the original LOTOS data de-
scription here, which more or less shaped the use of LOTOS in the protocol field. 
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Basic types 
In LOTOS all data types including the elementary ones must be defined. Fre-

quently used data types can be included in a standard library. Their use must be 
indicated in the library-reference at the beginning of the specification, e.g., 

library 
 Boolean, Character, NaturalNumber 
endlib.  

Data type definition 
A data type definition consists of two parts: the description of the signature and 

the definition of semantic properties. The signature refers to the sort and opera-
tors of the data type. The sorts denote the sets of values that form the data type. 
The operations define mapping rules between sorts. Each operation possesses a 
domain, which comprises zero or several sorts, and a range of values, which con-
sist of exactly one sort.  

Example 8.3/5 shows examples of type definitions. The elements of a sort are 
called as terms. Accordingly the terms of sort s are referred to as s-terms, e.g., 
bool-terms. 

Operations with n arguments are called n-ary operations. The operations not 
and succ in Example 8.3/5 are accordingly unary operations. Constants like true 
and false are operations without an argument or null-ary operations. 

The sort of the left- and right-hand sides of the equations is indicated after of-
sort. 

Example 8.3/5: Data type definitions 

type Boolean is 
sorts Bool 
opns 
 true,false:  Bool 
 not: Bool  Bool 
eqns 
 ofsort Bool 
  not(true) = false; 
  not(false) = true; 
endtype 
 
type Nat_Numbers is 
sorts Nat 
opns 
 0:   Nat 
 succ: Nat   Nat 
endtype 
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The signature defines the syntax of the data type. The semantic properties of 
the operations are described by additional equations, which directly follow the 
definition of the operations (see Example 8.3/5). The equations define which 
terms are equal, e.g., not(true) = false. 

Extension and combination  
New data types can be derived by extension from existing data types using oth-

er sorts and operations. Example 8.3/6 shows an extension of the data type 
Nat_Numbers. The type definition contains only the extensions. The definitions of 
the basis type are inherited by the new type. The underscore symbols indicate an 
infix operator. The forall-construct in the eqns-part defines free variables of a cer-
tain sort which are used in the following equations. 

 

Example 8.3/6: Extension of a data type 

Complex data types can also be defined by the combination of several already 
existing types. Example 8.3/7 shows the definition of a queue type using the data 
types NaturalNumber and Boolean. 

type Nat_queue is NaturalNumber, Boolean 
sorts Queue 
opns 
 create:     Queue 
 enter: Nat,Queue   Queue 
 first: Queue    Nat 
 isEmpty: Queue   Bool 
eqns forall x,y: Nat,q: Queue 
 ofsort Bool 
  isEmpty(create) = true; 
  isEmpty(enter(x,q)) = false; 
 ofsort Nat 
  first(enter(x,create)) = x; 
  first(enter(x,enter(y,q))) = first(enter(y,q)) 
endtype 

Example 8.3/7: Combinations of data type definitions 

type Extended_Nat_Numbers is Nat_Numbers; 
opns 
 _+_ : Nat,Nat  Nat 
eqns forall x,y: Nat 
     ofsort Nat 
  x+0=x 
  x+succ(y)=succ(x+y); 
endtype 
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Parameterization 
Data type definitions can be parameterized. A parameterization is possible for 

sorts (denoted by formalsorts in the specification), operations (formalopns), and 
equations. Example 8.3/8 shows this for the above queue type definition. The data 
type definition must be updated when it is applied. That happens in a separate ac-
tualization definition (see Example 8.3/8). The formal sorts and operations are re-
placed by actual parameters similarly to parameter transfer in procedures. 

type Generic_queue is Boolean 
formalsorts Element 
sorts Queue 
opns 
 create:      Queue 
 enter: Element,Queue  Queue 
 first: Queue     Element 
 isEmpty: Queue    Bool 
eqns forall x,y: Element,q: Queue 
 ofsort Bool 
  isEmpty(create) = true; 
  isEmpty(enter(x,q)) = false; 
 ofsort Element 
  first(enter(x,create)) = x; 
  first(enter(x,enter(y,q))) = first(enter(y,q)) 
endtype 
 
type Nat_queue is Generic_queue actualizedby Nat_Number using 
sortnames 
  Nat for Element 
endtype 

Example 8.3/8: Parameterized data type definitions with actualization 

Renaming 
A further possibility for introducing new contextual types is renaming. The 

new data type is completely independent. Beside the type also the sort and opera-
tion names are changed. Names which are not changed apply invariably in the new 
type definition (see Example 8.3/9). Renaming is frequently used in connection 
with extension by first introducing a new type through renaming and then extend-
ing it. Thus, conflicts with the basis type are avoided. 

The renaming in Example 8.3/9 introduces the new type Generic_connection 
with the new sort Channel, the formal sort Object as well as the operations send, 
receive, create, and isEmpty. The operations create and isEmpty are defined like-
wise over the sorts Channel and Object (operation overloading). 
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type Generic_connection is Generic_queue renamedby 
sortnames 
 Channel for Queue 
 Object for Element 
opnnames 
 send for enter 
 receive for first 
endtype 

Example 8.3/9: Renaming 

8.3.4 Full LOTOS 

Full LOTOS extends the description of process synchronization in Basic LO-
TOS by data which are exchanged at the gates. The data types are defined as de-
scribed in the previous section. The set of observable events in a Full LOTOS 
specification is usually infinite, since the values ranges of the data are often infi-
nite. 

Structured events 
Full LOTOS applies the concept of structured events to describe interactions. A 

structured event consists of the gate name that refers to the interaction point and 
a list of interaction parameters, the event offers. Two kinds of offers are distin-
guished: value offers and variable offers. 

Value offers denote a concrete value. They are represented by an exclamation 
mark followed by a value or a term, e.g., 

!0, !true, !(2+7), !(x+y), !ident. 

Variable offers describe a range of values. They generally possess the form     
?x: t, where x denotes a variable of the sort t, e.g., 

?x: Bool, ?A: Nat 

There are three different types of interactions: value matching, value passing, 
and value generation (see Table 8.3/1). 

Value matching describes synchronization with agreement of the expected 
values, otherwise a deadlock occurs. For example, in a process A with g!false; er-
ror the process error will only be activated if process B offers a value offer false 
at gate g. 
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Synchronization 
 
after Synchro-
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after Synchro-
nization 
 x = y = v for 
 v domain(t) 

 

Table 8.3/1: Interaction types of structured events 

Value passing describes the passing of a value between two processes. Process 
A hands a value g!E1 to process B (g?x:t). Thereafter the variable x in B possesses 
the value of E1. 

In value generation a value from the value range is handed over to a variable 
of the other process. Both variables participating in the synchronization have the-
reafter the same value (x = y). For example, during a synchronization of the proc-
esses A (g! x: Bool) and B (g? y: Bool) either true or false is handed over. Value 
generation is used to describe the exchange of values not known a priori (e.g., ad-
dresses, connection references).  

The value range of variables in variable offers can be limited by means of the 
selection predicate, e.g., 

(g?x: Nat[x < 5];B) || (g?y: Nat[y > 2];C) 

In this case an interaction only takes place if x offers the values 3 or 4. This can, 
for instance, be used to describe negotiations between protocol entities.  

Conditional behavior 
Full LOTOS, like other FDTs, offers the possibility of predicating behavior on 

conditions. These conditions, called guards, precede the behavior expression, e.g., 

[x>0]  sap!x; B; 

If the condition holds then the behavior B is expected, otherwise a deadlock 
(stop) occurs. In the conditions variables can be used. For example, a case selec-
tion can be represented using guards and the choice-construct as follows: 
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     [x>=0]  sap!x; process1 
  [][x < 0]  sap!-1; stop. 

Parameterized processes 
Processes can be parameterized in Full LOTOS. The data parameters are en-

closed in parentheses and positioned between gate list and functionality (see Ex-
ample 8.3/10). 

process range[inp,outp](min,max: Nat): exit := 
 inp ?x: Nat; 
 (    [(x<min) or (x>max)]  outp!false; exit 
   [] [(x>=min) and (x=<max)]  outp!true; exit 
 ) 
endproc 

Example 8.3/10: Parameterized process 

When the process is activated, the actual parameters substitute the formal ones, 
e.g., 

range[input,output](0,100). 

The actual parameters are value expressions of the same sort. They substitute 
the formal parameters of the process according to the call by value principle. If the 
values of the parameters have to be changed then this can only take place via a re-
cursive process invocation, e.g., 

process range[inp,outp](min,max: Nat): exit:= 
 … 
 range[inp,outp](min+10,max+10) 
 … 
endproc (* range *) 

Parameterized exit 
Full LOTOS permits values to be handed over to another process when a pro-

cess terminates successfully. The parameters to be handed over are listed as value 
expressions after exit, e.g., 

exit(x+y+3, any Bool, any Nat). 

The any-construct indicates that any value of the sort can be handed over. The 
exit-construct of Basic LOTOS is a special case of parameterized exit without pa-
rameter list. 
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Using a parameterized exit the process range of Example 8.3/10 can be simpli-
fied (see Example 8.3/11). 

process range [inp](min,max: Nat): exit(Bool):= 
 inp ?x: Nat; 
 (    [(x < min) or (x > max)]  exit(false) 
  [] [(x >= min) and (x =< max)]  exit(true) 
 ) 
endproc 

Example 8.3/11: Parameterized exit 

Parameterized sequential composition 
Parameterized exit is used in the generalized form of sequential composition: 

parameterized sequential composition. The values passed to the follow-up process 
are indicated in the accept-construct which follows the enabling-construct, e.g., 

range[input](0,100) >> accept b: Bool in (    [b=true]   ... 
                [] [b=false]   ... 
               ) . 

It is demanded that the functionality of the process before the enabling-
construct corresponds to that of the accept-parameter list. 

The functionality func of a process or behavior expression that does not have a 
linear structure must be derived by rules. The functionality of a process is deter-
mined by the functionality of its behavior expression. These rules are summarized 
in Table 8.3/2. 

Local variable definitions 
To make the representation more readable and compact it is possible to intro-

duce local names for value expressions. This can be done in the following form: 

let x1:t1=E1, ... ,xn:tn=En in B, 

e.g., 

let x:Nat=a+b+c, y:Nat=a*b*c in ([p>=0] g!x [] [p<0] g!y). 

These names represent local variables whose use, however, is restricted. They 
cannot be modified by value assignments as in other languages. The only possibil-
ity to pass their values to another process is the invocation of the processes within 
the let-construct or a parameterized exit. 
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Operator Conditions Functionality 

stop - noexit 

exit - <> 

exit (v1 … vn) sort(v1) = s1, …, sort(vn) = sn <s1, …, sn> 

a;B - func(B) 

B1 [] B2 

func(B1) = func(B2) func(B1) 

func(B1) = noexit func(B2) 

func(B2) = noexit func(B1) 

otherwise not permitted 

B1 >> B2 - func(B2) 

B1 [> B2 as B1 [] B2 like B1 [] B2 

B1 parop B2 
2 func(B1) = func(B2) func(B1) 

 

func(B1) = noexit noexit 

func(B2) = noexit noexit 

otherwise not permitted 

Table 8.3/2: Rules for determining the functionality of a process or behaviour expression 

Generalized choice and parallel composition 
Full LOTOS offers two further constructs for a more compact representation: 

generalized choice and generalized parallel composition. 

Generalized choice 
Generalized choice subsumes identical behavior expressions. There are two 

possibilities:  
 
(1) Choice between gates 

choice g in [g1,...,gn] [] B[g] 

e.g., 

choice g in [a,b], h in [c,e] process[g,h]  

                                                           
2 parop: ||, |[…]|, |||  
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as abbreviation for 

   process[a,c] 
[] process[a,e] 
[] process[b,c] 
[] process[b,e].  

(2) Choice between values 

choice x1:t1,...,xn:tn [] B(x1,...,xn), 

e.g., 

choice x:Nat [] B(x).  

This defines a choice over the Nat value range for B, i.e., x may be any value of 
Nat. 

Generalized parallel composition 
Generalized parallel composition has a similar syntactical structure, but it ex-

clusively refers to gates 

par g in [g1,...,gn] parop B[g], 

where parop stands for one of the parallel operators ||, ||| or |[…]| . For example, 
the composition  

par g in [a,b,c] |[f]| B[f,g]  

stands for  

B[f,a] |[f]| B[f,b] |[f]| B[f,c]. 

8.3.5 Structure of a LOTOS specification 

After introducing the basics of the two language variants we finally consider 
the structure of a LOTOS specification. The frame of a LOTOS specification is 
defined by the process specification which contains the complete protocol and/or 
system description. The syntax of the frame process is very similar to that of the 
process definition as the following example shows: 

specification S[a,b,c]: noexit 
library  Boolean, ...  endlib 
type x-type is  . . . 
  sorts x-sort 
  opns x-Op: x-sort  x-sort 
endtype 



  8.3  Algebraic-based description – Example: LOTOS 229 

behaviour 
hide d in 
    P[a,d] | [d] | Q[b,c,d] 
 where 
  process P 
   .   .   . 
  endproc (* P *) 
  process Q 
   .   .   . 
  endproc (* Q *) 
endspec (*S *) 

The process specification differs from a normal process definition through the 
behavior expression which describes the global behavior of the system. It begins 
with the keyword behaviour instead of the sign “:=”. In addition, the process 
specification may contain a library-reference to pre-defined data type definitions. 
All definitions (processes, data types) in specification are global, i.e., they apply 
to all included processes. Definitions in a process definition apply only locally 
within the respective process. 

8.3.6 Formal semantics 

Different semantic models have been associated with LOTOS, such as trace 
semantics, labeled transition systems, event structure semantics, or trace-refusal 
semantics. Labeled transition systems is the semantic model used as formal se-
mantics in the LOTOS standard [ISO 8807]. It represents the standard semantics 
of LOTOS and is considered here. Comprehensive introductions to the other se-
mantic models can be found in [Bowm 06]. 

Labeled transition systems 
Labeled transition systems (LTS) model systems as behavior trees (cp. Section 

7.7), solely in terms of sequence and choice. Sequences denote sequences of arcs, 
choices branching nodes, respectively. The nodes represent the states, which are 
not named. The arcs represent the transitions, and the triggering actions including 
the internal action are the labels assigned to the transitions. Unlike finite state ma-
chines, labeled transition systems do not distinguish between input and output. 

Formally, a labeled transition system is defined as a quadruple <S,Act,T,s0> with 
S  –  non-empty set of states, 
Act  –  set of observable actions, 
T    –  set of  transition relations with T = {-a S S | a Act  { }}, 
s0  S –  initial state. 
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Pure LTS describe the semantics of Basic LOTOS. The rules of the operational 
semantics to interpret a LOTOS specification are not given here. Important rules 
are described in [Bowm 06]. Some examples are given below. 

Structured labeled transition systems 
Labeled transition systems model process behavior as it can be described in 

Basic LOTOS, i.e., only the interactions without data exchange. In order to model 
also the data exchange at the gates an extended semantic model is needed that 
combines labeled transition systems with many-sorted algebras. This model is 
called structured labeled transition system and is the semantic model of Full 
LOTOS. 

A structured labeled transition system (SLTS) is a quintuple <S, L  {i}, A, T, s0> 
with 

S – non-empty set of states, 
L – non-empty set of labels or gates, 
i  L – internal event, 
A = <D,O> – many-sorted algebra with  
 D – set of sorts and 
 O – set of operations, 
T={t | t = s -<e,c> s’} – set of transitions, where 
 • s, s’  S, 

 • c – condition for e, 
s0  S – initial state. 

A structured labeled transition system is a special case of a labeled transition 
system in which the actions are represented by structured events consisting of a 
label or gate followed by the data value. The latter represents the result of the ac-
tion. 

Formal interpretation of LOTOS specifications 
Before a LOTOS specification can be interpreted as a labeled transition system, 

the LOTOS specification must be transformed. This transformation consists of 
two steps: the static semantics phase and the dynamic semantics phase. 

The static semantics phase proves the static semantics requirements and trans-
forms the LOTOS specification into an abstract syntax structure, the canonical 
LOTOS specification. The static semantics requirements comprise all rules con-
cerning the use of the LOTOS language elements that cannot be derived solely 
from the syntax definition. The canonical LOTOS specification (CLS) is the result 
of the application of a partial syntax transformation function, the flattening func-
tion, which transfers all data structures to a global definition level, removes all 
nested process definitions, and defines all identifiers globally unambiguously. The 
transformation is partial because only LOTOS specifications that fulfill the static 
semantics requirements are mapped into the canonical form. The result of a trans-

• e – structured event of the form g 1, ... n with g L and i D, 
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formation of a LOTOS specification which breaks this requirement is not defined. 
The canonical LOTOS specification consists of two parts: the algebraic specifica-
tion AS for the data types and the flattened behavior specification BS. 

In the dynamic semantics phase the canonical LOTOS specification is inter-
preted as a structured labeled transition system. For this purpose, the canonical 
LOTOS specification is transformed into a class of structured labeled transition 
systems that defines a structured labeled transition system for each substitution of 
the formal parameters of the specification by current actual ones. 

The interpretation of dynamic semantics is divided into the interpretation of the 
data type part AS and the behavior part BS. The interpretation of the formal model 
of the LOTOS data types AS is a particular many-sorted algebra Q(AS), the quo-
tient term algebra of AS, which is used for the interpretation of the behavior part 
BS in the following. The interpretation of the behavior part is a class of structured 
labeled transition systems over the quotient term algebra Q(AS) or more exactly a 
function with that class as its range of values. This function maps each correct 
substitution of the formal specification parameters by actual parameters into a 
structured labeled transition system which serves as model for the dynamic behav-
ior of the respective instance of the LOTOS specification. We demonstrate the 
mapping for simplicity reasons for some rules for Basic LOTOS using the opera-
tional style of [Herm 98]. It associates with every valid LOTOS expression P a tu-
ple (P, -a ), where P denotes the initial state and 

A complete list of the interference rules is contained in [ISO8807]. 

8.3.7 E-LOTOS 

LOTOS was revised in the second half of the 1990s. The standardization proc-
ess was finished in 2001 (see [ISO 15437]). A number of new features were 
added, such as a new data language, time, imperative features (assignments, 
loops), generalized parallel and disabling constructs, exception handling and oth-

-a S  S | a Act { } 
represents a possible transition between states. Further A denotes the synchroniza-
tion set in parallel composition, i.e., P|[A]|Q. We list subsequently the inference 
rules for prefix, choice, hiding, and variants of parallel composition as examples.  

a; P-a P 
if P-a P’ then P[]Q -a P’ 
if Q-a Q’ then P[]Q -a Q’ 
if P-a P’ and a  then hide A in P - i  hide A in P’ 
if P-a P’ and a  then hide A in P -a  hide A in P’ 
if P-a P’ and a  then P|[A]|Q -a P’|[A]|Q 
if Q-a Q’ and a  then P|[A]|Q -a P|[A]|Q’ 
if P-a P’ and Q-a Q’ and a  then P|[A]|Q -a P’|[A]|Q’ 
if P-a P’ and P=P1 ||| P2 then P1 ||| P2 -a P’  

ers. E-LOTOS maintains compatibility with LOTOS, but in principle it is a com-
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pletely new language. In the protocol field E-LOTOS has not been applied 
broadly. Therefore it not considered further here.  

8.3.8 Specification styles 

Before considering our example specification we have to address the specifica-
tion styles developed for LOTOS [Viss 88]. These give a good impression of how 
LOTOS specifications look. Specification styles define a coordinated procedure 
for the elaboration of a specification in order to emphasize certain characteristics 
of the system to be described. For LOTOS, mainly four specification styles were 
proposed: the monolithic, constraint-oriented, state-oriented, and resource-orien-
ted styles. The first two styles aim at system design. They reflect above all the 
functional behavior of the system. The other two styles are more implementation- 
oriented. They represent internal interrelations of the system. 

Monolithic style 
The monolithic style describes the behavior of the system through one process. 

There is no reference to the local origins of the actions or to the internal structure 
of the system. Only the action prefix and the choice-construct are allowed in the 
specification. Cyclic behavior is expressed through recursive process invocations. 
Example 8.3/12 describes the (successful) XDT connection set up in the monolith-
ic style. Note that the entire behavior at the service interface is described by this 
process. Gate S represents the sender SAP, gate R the receiver SAP. 

process XDT_connect [S,R]: exit:= 
 S!XDATrequ; R!XDATind; S!XDATconf; exit 
endproc 

Example 8.3/12: Monolithic style 

Each LOTOS specification can be translated into a monolithic representation 
(cp. Examples 8.3/2 and 8.3/3 for this). The monolithic style is recommended as 
an initial step for the development of a specification. Its use for the description of 
more complex systems is less appropriate due to the lack of internal structure. 

Constraint-oriented style 
The constraint-oriented style describes the behavior of the system by several 

sub-processes which are related to each other by means of parallel composition 
and a constraint (cp. Section 7.7). Here independent parallelism (interleaving) de-
notes an OR operation to represent alternative behavior and synchronizing paral-
lelism an AND operation to express existing dependencies. The constraint-orien-
ted style supports separation of local and remote constraints. It is particularly 
recommended therefore for the early design phase, e.g., for the service specifica-
tion. Example 8.3/13 contains the constraint oriented variant of the successful 
XDT connection set up of Example 8.3/12. The two processes local_S and local_R 
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describe the local behavior at the respective service access points S and R. The 
process global_SR specifies global dependencies between the two processes. 

 

Example 8.3/13: Constraint-oriented style 

State-oriented style 
The state-oriented style supports the explicit representation of system states, 

which is unusual in LOTOS specifications, including the events that trigger the 
transitions. The state-oriented representation is applied as a preliminary step for 
transferring the specification into an implementation specification. Example 
8.3/14) shows the XDT connection set up in this style. 

type StateType is Boolean 
sorts State 
opns  open: State 
  remote: State 
  closed: State 
  _==_: State, State: Bool 
endtype 
 
process XDT_connect[S,R] (st: State): exit:= 
  [st == closed]  S!XDATrequ; XDT_connect[S,R](remote); exit 
  [] [st == remote]  R!XDATind; XDT_connect[S,R](open); exit 
  []  [st == open]  S!XDATconf; exit 
endproc 

Example 8.3/14: State-oriented style 

process  XDT_connect[S,R]: :=
   (local_S[S] ||| local_R[R])
  ||
   (global_SR[S,R])
where
  process   local_S[S]: exit :=
     S!XDATrequ; S!XDATconf; exit
  endproc
  process   local_R[R]: exit :=
      R!XDATind;  exit
  endproc
  process  global_SR[S,R]: exit :=
    S!XDATrequ; R!XDATind; S!XDATconf; exit
  endproc
endproc 

exit

The state-oriented style, like the monolithic style, describes the behavior of the 
system by only one process. It also allows solely the use of the action prefix and 
the choice-construct. The system states are introduced by a data type definition. 
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The description lists the states and the actions which trigger the transitions, as is 
typical for state-oriented description. Since labeled transition systems permit only 
one interaction per state with the environment, only one action can occur in each 
state. The transition to the new state is represented by a recursive invocation of the 
process, where the new state is handed over as parameter. 

We present still another example of the state-oriented representation: the mod-
eling of a timer. Time is not contained in LOTOS. Example 8.3/15 shows how to 
model timers in a specification. Another example of timer modeling is given in 
Section 8.3.9 when we describe the XDT protocol in LOTOS. 

type TimerType is Boolean 
sorts T_msg,T_state 
opns start:  T_msg 
  stop:  T_msg 
  timeout:  T_msg 
  waiting:  T_state 
  running:  T_state 
  _==_: T_state,T_state  Bool 
eqns ofsort Bool 
  waiting == waiting = true; 
  waiting == running = false; 
  running == waiting = false; 
  running == running = true; 
endtype (* TimerMsgType *) 

 
process timer[T](st:T_state): exit:= 
     [st == waiting]  T!start; Timer[T](running) 
  [] [st == running] T!stop; Timer[T](waiting) 
  [] i; T!timeout; exit 
endproc (* timer *) 

Example 8.3/15: Modeling of a timer in the state-oriented style 

Resource-oriented style 
The resource-oriented style supports likewise an implementation-oriented rep-

resentation that describes both the behavior observable from the environment and 
interactions between system components. It refines the constraint-oriented repre-
sentation by an internal structuring which permits it to identify the system compo-
nents – the abstract resources – and their interfaces. Each resource is defined by 
their internal and external interactions. The resources are implemented separately 
and can consequently be described in another style, e.g., monolithic or state-
oriented. The internal communication uses internal gates (hidden gates). The ob-
servable (external) behavior of the system is represented by parallel composition 
of the abstract resources. The resource-oriented description can be gradually re-
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Finally example 8.4/16 shows the modeling of the successful XDT connection 
establishment in the resource oriented representation3. In contrast to the constraint- 
oriented description, the global behavior between the two service access points is 
now enforced by the use of the internal gate SR through which the processes Send-
er and Receiver synchronize. Another variant would be the introduction of a fur-
ther process Association as in the constraint-oriented variant which connects the 
two processes Sender and Receiver and thus models the behavior of the service 
provider. This variant would be useful for a complete description of the XDT ser-
vice specification. 

process XDT_connect[S,R]: exit:= 
hide SR in 
 Sender[S,SR] | [SR] | Receiver[SR,R] 
where 
 process Sender[S,SR]: exit:= 
  S!XDATrequ; SR!XDATrequ; S!XDATconf; exit 
 endproc 
 process Receiver[SR,R]: exit:= 
  SR!XDATrequ; R!XDATind; exit 
 endproc 
endproc 

Example 8.3/16: Resource-oriented style 

8.3.9 Example 

We conclude the introduction to LOTOS with a specification of the XDT pro-
tocol in Full LOTOS as we did for SDL and MSC. The description comprises the 
service and the protocol specification, where we consider in the protocol speci-
fication as in the SDL specification only the virtual communication between the 
protocol entities. 

Service specification 
The XDT service specification describes the behavior at the service interface 

with the service access points Sender_SAP and Receiver_SAP, for short S and R. 
The specification uses the resource-oriented style because it allows a more de-

                                                           
3 The resource-oriented style is actually not used for the service specification 

because the protocol only determines the implementation of the service. We use 
this style here to demonstrate all specification styles using the same example. 
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specification XDT-Service[S,R]: noexit 
library 
 Boolean, NaturalNumber 
endlib 
              (* DATA TYPE DEFINITION  *) 
type Ext_Nat is NaturalNumber 
opns 1:  Nat 
  2:  Nat 
  _==_  : Nat,Nat  Bool  
  _>_  : Nat,Nat  Bool 
eqns forall a, b: Nat 
ofsort Bool 
 a   ==  a   = true; 
 succ(a) ==  0   = false; 
 0   ==  succ(a)  = false; 
 succ(a) ==  succ(b)  = a == b; 
 a   >  a   = false; 
 succ(a) >  0   = true;  
 0   >  succ(a)  = false; 
 succ(a) >  succ(b)  = a > b;  
endtype (* Ext_Nat *) 
 
type DataType is         (* Place holder for user data *)  
sorts Data  
opns data1,data2,data3 :  Data  
  data    :  Data  
endtype (* DataType *)  
 
type SPType is DataType,Boolean,NaturalNumber   (* XDT service primitives  *) 
sorts X_sp  
opns XDATrequ  : Nat,Nat,Bool,Data  X_sp 
  XDATind   : Nat,Nat,Bool,Data  X_sp 
  XDATconf  : Nat,Nat     X_sp 
  XABORTind  : Nat      X_sp 
  XBREAKind  : Nat      X_sp 
  XDISind   : Nat      X_sp 
  transport   : X_sp  X_sp  
         (* Transport/Conversion XDATrequ  XDATind   *) 
  map    : X_sp  Nat  
         (* Mapping service primitive  natural number  *) 
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  IsXDATrequ  : X_sp  Bool  

        

  (* Identification function, which delivers true if  *) 
         (* the service primitive is XDATrequ           *) 

  IsXDATind  : X_sp  Bool     
          (*Identification function for XDATind     *)  
  CONN   : X_sp  Nat       
          (* Function for accessing parameter conn    *) 
  DATA   : X_sp  Data 
          (* Function for accessing the data part     *) 
  EOM    : X_sp  Bool         
         (* Function for accessing the parameter eom   *) 
eqns forall c: Nat, d: Data, e: Bool, s: X_sp  
ofsort X_sp  
 transport(XDATrequ(c,d,b))  = XDATind(c,d,b); 
ofsort Nat  
 map(XDATrequ(c,s,e,d))   = 0; 
 map(XDATind(c,s,e,d))   = succ(0); 
 map(XDATconf(c,s))   = succ(succ(0)); 
 map(XABORTind(c))   = succ(succ(succ(0))); 
 map(XBREAKind(c))   = succ(succ(succ(succ(0)))); 
 map(XDISind(c))    = succ(succ(succ(succ(succ(0))))); 
ofsort Bool 
 EOM(XDATrequ(c,s,e,d))  = e; 
 EOM(XDATind(c,s,e,d))   = e; 
 IsXDATrequ(s)     = map(s) == 0; 
 IsXDATind(s)     = map(s) == succ(0); 
ofsort Data 
 DATA(XDATrequ(c,s,e,d))  = d; 
 DATA(XDATind(c,s,e,d))  = d; 
ofsort Nat 
 CONN(XDATrequ(c,s,e,d))  = c; 
 CONN(XDATind(c,s,e,d))  = c; 
endtype (* SPType *)  
         (* BEHAVIOR AT THE SERVICE INTERFACE *)  
behaviour 
 hide SA,RA in 

  

sender[S,SA] |[SA]| association [SA,RA] |[RA]| receiver[R,RA] 
 where 
    process sender[u,v]: exit:=        (* Behavior at Sender-SAP      *) 
        CONNECT[u,v](0) >> accept conn: Nat in  
            DATA_TRANSFER[u,v](conn,2,eom,false) 
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where 

     

process CONNECT[u,v](conn:Nat): exit(Nat):=      (* Connection set up *) 
    u?sp:X_sp; (  [IsXDATrequ(sp)]          

         

 ( v!sp     (* XDATrequ to association   *) 
           u!XDATconf(conn,1);  (* Set up confirmed *) 

           

exit(conn)         
           [] u!XABORTind(conn);         
                     (* Abandon connection set up   *) 
               CONNECT[u,v](0) 
          ) 
             [] [not(IsXDATrequ(sp))]  CONNECT[u,v](0)  
                        (* ignore other events *) 
      ) 

     

endproc (* CONNECT *)  

 
    

process DATA_TRANSFER[u,v](conn,sequ:Nat;eom,break:Bool): exit:=  
                     (* Data transmission *)  
      [(not(break)) and (not(eom))] 

     

 u?sp:X_sp;        
      (   [IsXDATrequ(sp)]   
        ( v!sp      (* XDATrequ to association *) 
          u!XDATconf(conn,sequ) 
          DATA_TRANSFER[u](conn,succ(sequ),EOM(sp),false) 
                 (* Data transmission  *) 
        ) 
       [] [not(IsXDATrequ(sp))]  DATA_TRANSFER[u,v](conn,sequ, 
                            eom,break) 
                       (* ignore other events *) 
      ) 
      [] v?XBREAKind(conn);       (* Break       *) 
      u!XBREAKind(conn); 
      DATA_TRANSFER[u,v](conn,sequ,EOM(sp),true) 
      [] [break] u!XDATconf(conn,sequ);    (* End of break       *) 
            DATA_TRANSFER[u,v](conn,succ(sequ),EOM(sp),false) 
       [] [(not(break)) and eom]  u!XDISind(conn); (* Regular connect. release*) 
                CONNECT[u,v](0)   
      [] v?XABORTind(conn)                      (*Abandon connection     *) 
     u!XABORTind(conn);              
     CONNECT[u,v](0) 

    

endproc (* DATA_TRANSFER *)  

   

endproc (* sender *)  
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    process receiver[v,u]: noexit:=       (*  BEHAVIOR AT RECEIVER-SAP    *) 
      CONNECT[v,u] >> accept conn:Nat in DATA_TRANSFER[v,u](conn)   

  where 
     process CONNECT[v,u]: exit(Nat):=      (* Connection set up  *) 
   v?sp:X_sp;      
   (   [IsXDATind(sp)]  u!sp       (* XDATind_1      *) 
          DATA_TRANSFER[u](CONN(sp)) 
                            (* Connection set up  *) 
    [] [not(IsXDATind(sp))]  CONNECT[v,u]             (* ignore other events *) 
   ) 
    endproc (* CONNECT *)  
 
    process DATA_TRANSFER[v,u](conn: Nat): noexit:=  (* Data transmission *) 
   v?sp:X_sp;     
   (   [IsXDATind(sp)]  
      (    [EOM(sp)] u!sp      (* XDATind to receiver  *) 
            u!XDISind(conn);   (* Regular conn. release  *) 
            CONNECT[v,u] 
      [] [not(EOM(sp))]  u!sp     (* XDATind to receiver  *) 
              DATA_TRANSFER[v,u] (conn) 
                      (* continue data transfer  *) 
         ) 
   [] IsXABORT(sp));                   (* Abandon transmission *)  
        CONNECT[v,u](0) 
    [] [not(IsXDATind(sp) or IsXABORT(sp))]  
      DATA_TRANSFER[v,u] (conn: Nat)   (* ignore other events    *)  
   ) 
       endproc (* DATA_TRANSFER *)  
      endproc (* receiver *)  
 
      process association[s,r]: noexit:=      (* BEHAVIOR TRANSPORT MEDIUM *)  
        s?sp: X_sp; (  [IsXDATrequ(sp)]             
         ( r!transport(sp);    (* Forwarding XDATrequ to R     *) 
          association[s,r]   
             ) 
              [] [not(IsXDATrequ(sp))] association[s,r] (* ignore other events *) 
       )               
        [] i; s!XBREAKind(conn); association[s,r]       (* Internal event: break     *) 
        [] i; s!XABORTind(conn);           (* Internal event: abort     *) 
           r!XABORTind(conn); association[s,r]  
        [] s?sp: X_sp; association[s,r]      (* ignore other primitives at S *)  

           endproc (* association *)  
 endspec (* XDT-Service *)  
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Protocol specification 
The protocol specification adds three new data type definitions: PduType, 

BufferType, and TimerMsgType. The XDT PDUs are specified in the data type 
PduType, while the data type BufferType describes the buffer for the DT-copies 
and the associated operations. The last data type TimerMsgType defines timer 
events. Moreover, we introduce the signals ack_N, go_back_N, abort, and end for 
internal communication between the processes transfer_s and ack_handler at 
sender side. 

specification XDT-Protocol[S,R]: noexit 
library 
 Boolean,Nat_Number 
endlib 
type Ext_Nat is NaturalNumber          (* analogous to service specification *)  
   .  .  . 
endtype (* Ext_Nat *) 
type DataType is             (* analogous to service specification *)  
   .  .  . 
endtype (* DataType *) 
type SpType is DataType,Boolean,NaturalNumber          

            (* analogous to service specification *) 
   .  .  .            
endtype (* SpType *) 
 
type PduType is DataType,Boolean,NaturalNumber     (* XDT PDUs    *) 
sorts X_pdu 
opns  DT  : Nat,Ext_Nat,Bool,Data  X_pdu 
 ACK  : Nat,Ext_Nat     X_pdu 
 ABO  : Nat       X_pdu 
 map  : X_pdu      Nat 
 IsDT  : X_pdu      Bool 
 IsACK : X_pdu      Bool 
 IsABO : X_pdu      Bool 
 SEQU   : X_pdu      Nat 
 EOM   : X_pdu  Bool 
 generate_conn:       Nat 
 CONN     : X_pdu      Nat 
 DATA     : X_pdu      Data 
eqns forall c,n:Nat, e:Bool, d:Data, p:X_pdu 
ofsort Nat 
 map(DT(c,n,e,d))  = 0; 
 map(ACK(c,n))   = succ(0); 
 map(ABO(c))   = succ(succ(0)); 
 SEQU(DT(c,n,e,d))  = n; 
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 SEQU(ACK(c,n))  = n; 
 CONN(DT(c,n,e,d))  = c; 
 CONN(ACK(c,n))  = c; 
ofsort Data 
 DATA(DT(c,n,e,d))  = d; 
ofsort Bool 
 EOM(DT(c,n,e,d))  = e; 
 IsDT(p)     = map(p) == 0; 
 IsACK(p)    = map(p) == succ(0); 
 IsABO(p)    = map(p) == succ(succ(0)); 
endtype (* PduType *) 
 
type SignalType is                   
sorts X_signal 
opns 
 ack_N:    X_signal 
 go_back_N:   X_signal 
 abort :    X_signal 
 end :    X_signal 
endtype (* SignalType *) 

The buffer for the DT copies is defined by the data type BufferType. It defines 
the operations for storing and removing the DT PDUs as well as for querying the 
current allocation. The buffer contains maximally five DT PDUs. 

type BufferType is PduType,Boolean,NaturalNumber 
sorts X_buffer 
opns empty :  X_buffer 
  put : X_buffer,Nat,X_pdu  X_buffer 
  get : X_buffer,Nat  X_pdu 
  remove : X_buffer,Nat  X_buffer 
  size : X_buffer  Nat 
  IsEMPTY : X_buffer  Bool 
      IsFULL : X_buffer  Bool 
  maxbuffer :   Nat 
eqns forall p: X_pdu, b: X_buffer, n, k: Nat 
ofsort X_buffer 
 remove(empty,k)       = empty; 
 get(empty,k)        = empty  
ofsort X_pdu 
 get(empty,k)        = 0; 
 n == k   get(put(b,n,p),k)  = p 
ofsort Nat 
 size(empty)        = 0; 
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 size(put(b,n,p))       = succ(size(b)); 
    size(get(b,k))        = pred(size(b))  
ofsort Bool 
 IsEMPTY(empty)      = true; 
 IsEMPTY(put(b,n,p))     = false; 
 IsFULL(b)        = size(b) == maxbuffer 
endtype (* BufferType *) 

Time cannot be directly represented in LOTOS as we already discussed above. 
The basic functionality of a timer (start, stop, time-out) can be modeled, however. 
For this purpose, we introduce the type TimerMsgType which describes the well-
known timer functions. The timer process is described further below. 

type TimerType is Boolean 
sorts T_event 
opns start :   T_event 
  stop :   T_event 
  timeout :   T_event 
  _==_ : T_event,T_event   Bool 
eqns 
 ofsort Bool 
 start == start   = true; 
 start == stop  = false; 
 stop == start  = false; 
 stop == stop  = true; 
endtype (* TimerMsgType *) 

The LOTOS specification of the XDT protocol follows the structure of the ref-
erence specification in Section 2.3. It is written in the resource-oriented style. The 
specification is divided into the three processes sender, medium, and receiver (see 
Figure 8.3/6) that are connected by the internal gates SM and RM: 

hide SM,RM in 
  sender[S,SM] |[SM]| medium[SM,RM] |[RM]| receiver[RM,R]  

The process sender with gate S to the service user describes the sender behav-
ior, the process receiver with gate R correspondingly the receiver behavior. The 
process medium models the communication between the entities. The processes 
sender and receiver subdivide according to the XDT phases into the sub-processes 
CONNECT and DATA_TRANSFER which are successively activated 

CONNECT[u,v] >> DATA_TRANSFER[u,v]. 
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      where 
     process CONNECT[u,v]: exit(Nat):=       (* Connection set up    *) 
     hide t in 
    connect_s[u,v,t] | [t] | timer[t] 
       where 
          process connect_s[u,v,T]:exit(Nat):=   (* SET UP AT SENDER     *) 
       u?sp: X_sp;        
       (  [IsXDATrequ(sp)]  v!DT(0,1,EOM(sp),DATA(sp)); 
                    T!start;       (* Timer ACK monitoring  *) 
                    wait[u,v,T]  
              >> accept conn: Nat in exit(conn) 
         [] [not(IsXDATrequ(sp))]  CONNECT[u,v,T]    
               (* Ignore other primitives  *) 
         [] v?pdu:X_pdu;CONNECT[u,v,T]  (* Ignore other PDUs   *) 
      ) 
       where 
     process wait[u,v,T]: exit(Nat):=   (* Waiting for ACK   *) 
    v?pdu: X_pdu;        
    ( [IsACK(pdu)]  (  [SEQU(pdu)==1]  (* ACK.sequ = 1   *) 
             T!stop; 
                  u!DATconf(CONN(pdu),1);     
                      (* Confirm set up         *) 
                 exit(conn) 
                 [][not(SEQU(pdu)==1)]  wait[u,v,T]   

                 (* ACK.sequ  1 *) 
                        ) 
        [] [not(IsACK(pdu))]  wait[u,v,T]       
     ) 
        [] T!timeout;         (* no connection set up *) 
      u!XABORTind(0); 
     connect_s[u,v,T] 
    endproc (* wait *) 
     endproc (* connect_s *) 
 
    process timer[T]: noexit:=       (* Timer modeling   *) 
       waiting[T] 
       where 
           process waiting[T]: noexit:= 
               T?m: T_event;        
                (   [m == start]  running[T] 
                 [] [not(m == start)]  waiting[T] 
                         ) 
                    endproc (* waiting *) 
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   process running[T]: noexit:= 
                T?m:T_event;  
                (   [m == stop]  waiting[T] 
                  [][not(m == stop)]  running[T] 
                 ) 
              [] i;T!timeout;waiting[T]            
            endproc (* running *) 
      endproc (* timer *) 
         endproc (* CONNECT *) 

The process DATA_TRANSFER consists at sender side of the processes trans-
fer_s, ack_handler, and timer. The processes transfer_s and ack_handler have the 
same tasks as in the reference specification in Section 2.3. Since there are no sha-
red variables in LOTOS, all actions over the DT-PDU-buffer are included in pro-
cess transfer_s, in contrast to the reference specification. For this, the processes 
exchange the signals ack_N, go_back_N, abort, and end via the internal gate Q. 

         process DATA_TRANSFER[u,v](conn,sequ:Nat,eom:Bool,b:X_buffer):  
                                                                                                                                   noexit:= 

          hide q,t1,t2 in 
              transfer_s[u,v,I](conn,sequ,eom,b)|[q]|    
                       ack_handler[u,v,q,t1,t2](conn,sequ,0,eom) |[t1]| timer[t1] |[t2]| timer[t2] 
          where 
                process transfer_s[u,v,q] (conn,sequ:Nat;eom:Bool;b:X_buffer):exit:= 
          [(not(IsFULL(b)))]  u?sp: X_sp; 
        (  [IsXDATrequ(sp)] 
         v!DT(CONN(sp),sequ,EOM(sp),DATA(sp));  (* Sending DT *) 
        [EOM(sp)]  q!sequ;         
               (* Sequence number of last DT to ack_handler  *) 
   (   [not(succ(size(b)) = maxbuffer)]             
           u!XDATconf(conn,sequ);    (* Confirmation sending*) 
         transfer_s[u,v,q](conn,succ(sequ),EOM(sp), 
                          put(b,succ(size(b)),DT(CONN(sp), 
                 sequ,EOM(sp),DATA(sp)))) 
          [] [succ(size(b)) = maxbuffer] 
              u!XBREAKind(conn)            (* Break  *) 
             transfer_s[u,v,q] (conn,succ(sequ),EOM(sp), 
                       put(b,succ(size(b)),DT(CONN(sp), 
                  sequ,EOM(sp),DATA(sp)))) 
        ) 
    [][not(IsXDATrequ(sp))]  transfer_s[u,v,q](conn,sequ,eom,b) 
        ) 
                [] q?s: X_signal; 
           ( [s = ack_N]  q?n: Nat;         (* ACK received          *) 



  8.3  Algebraic-based description – Example: LOTOS 247 

              [IsFULL(b)]  u!XDATconf(conn,sequ)    
                           (* Break terminated     *) 

              remove(b,n)             (* Remove DT copy          *) 
            [] [s = go_back_N]  q?N: Nat;             (* go back N           *) 
                 resend_DT[P](N,sequ,b)        
            [] [s = abort]  exit                (* Abandon transmission  *) 
            [] [s = end]  exit           (* Connection released     *) 
          ) 

         
where 

       process resend_DT[P](N,sequ:Nat,b:X_buffer): exit:=     (*  go back N *) 
       [not(N > sequ)] P!get(b,N); 
                 resend_DT[P](succ(N),sequ,b) 
            [][N > sequ]  exit 
      endproc (* resend_DT *) 

       
endproc (* transfer_s *) 

  
           

process ack_handler[u,v,q,t1,t2](conn,last,N:Nat,eom:Bool):noexit:= 
           t1(waiting)!start;         (* Start activity timer  *) 
           t2(waiting)!start;           (* Start timer ACK monitoring *) 
           v?pdu:X_pdu;  
         (  [IsACK(pdu)]       

              
 (  [SEQU(pdu) > N] 

          
 (t2!stop;            (* correct ACK    *) 

           q!ack_N        (* ACK number to transfer_s *) 
           q!SEQU(pdu)-N 
         (  [eom and (SEQU(pdu) = last)] 

           
 u!XDISind(conn);  (* reg. connection release *) 

           q!end; 
           sender[u,v] 
          [][not(eom and SEQU(pdu) = last)]  

                                                     
T!start; 

                                                          ack_handler[u,v,q,t1,t2](conn,last,SEQU(pdu),eom) 
         ) 
              [][not(SEQU(pdu) > N)]    
               ack_handler[u,v,q,t1,t2](conn,last,N,eom) 
            ) 
               [] [IsABO(pdu)]  u!XABORTind(conn); (* Abandon transmission  *) 
                 q!abort;          (* abort signal to transfer_s   *) 
                 sender[u,v] 
             ) 
            []  q?last;              (* Hand over sequence number of last DT *) 
            ack_handler[u,v,q,t1,t2](conn,last,N,true) 
            [] t2!timeout;            (* no correct ACK     *) 
            q!go_back_N;      (* go back N signal to transfer_s *) 
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          q!N; 
          ack_handler[u,v,q,t1,t2](conn,last,N,eom) 
           [] t1!timeout;               (* Receiver inactive   *) 
           u!XABORTind(conn);    (* Sender aborts transmission    *) 
           q!abort;        (* Abort signal to transfer_s    *) 
          sender[u,v] 
              endproc (* ack_handler *) 
           
                 process timer[T]: noexit:= (* see CONNECT *) endproc               (* timer *) 
             endproc (* DATA_TRANSFER *) 
         endproc (* sender *) 

The process medium models the transmission. It consists of two channels with 
opposite directions. During the transmission PDUs may be lost. 

         process medium[s,r]: noexit:= 
         channel[s,r] ||| channel[r,s] 
         where 
         process channel[s1,s2]: noexit:= 
         s1?pdu:X_pdu;  
          (   s2!pdu;channel[s1,s2]        (* Sending PDU    *) 
           [] i;channel[s1,s2]                (* PDU loss      *) 
          ) 
             endproc (* channel *) 
         endproc (* medium *) 

The process receiver corresponds in its structure also to the reference specifica-
tion. It consists of two processes CONNECT and DATA_TRANSFER for the pro-
tocol phases between which the variables conn and eom are exchanged. 

         process receiver[v,u]:noexit:= 
         CONNECT[v,u] >> accept conn: Nat in T!start;               

                                                                                           DATA_TRANSFER[v,u](conn,2) 
         where 
            process CONNECT[v,u]: exit(Nat):= 
            hide t in 
                connect_r[v,u,t] | [t] | timer[t] 
            where 
        process connect_r[v,u,T]: exit(Nat):=     (* CONN. SET UP RECEIVER *) 
   v?pdu:X_pdu;        
   (  [IsDT(pdu)]  (  [SEQU(pdu) == 1)]          
            let conn: Nat=generate_conn in 
           (u!XDATind(conn,1,EOM(pdu),DATA(pdu)); 
                  (* Indication of new connection*) 

v!ACK(conn,1);     (* ACK_1 to sender *) 
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            exit(conn) 
           ) 
          [][not(SEQU(pdu) == 1)]   connect_r[v,u,T] 
            )  
       [][not(IsDT(pdu))]  connect_r[v,u,T]              (* Ignore other PDUs *) 
      ) 
           endproc (* connect_r *) 
        
                   process timer[T]: noexit:= (* see sender/ CONNECT *) endproc  
            endproc (* CONNECT *) 
 
         process DATA_TRANSFER[v,u](conn,sequ:Nat):noexit:= 
            hide t in 
               transfer_r[v,u,t](conn,sequ) |[t]| timer[t] 
            where 
       process transfer_r[v,u,T](conn,sequ:Nat) 
        P?pdu:X_pdu;             (* Waiting for DT      *) 
        (  [IsDT(pdu)] 
                                  (  [SEQU(pdu) == sequ]                 (* Correct DT            *) 
            T!stop; 
           u!XDATind(conn,sequ,EOM(pdu),DATA(pdu)); 
           v!ACK(conn,sequ);         

           (  [EOM(pdu)]  u!XDISind(conn) 
               receiver[v,u] 
                (* reg. connection release*) 
            [][not(EOM(pdu))]         
              T!start; 
              transfer_r[v,u,T](conn,succ(sequ)) 
           ) 
        [][not(SEQU(pdu) == sequ)] 
             DATA_TRANSFER[v,u](conn,sequ) 
            ) 
        [][not(IsDT(pdu))]  DATA_TRANSFER[v,u](conn,sequ) 
       ) 
        []T!timeout;        (* Order not re-established    *) 
           u!XABORTind(conn);                     (*Abandon of the connection *) 
           v!ABO(conn); 
           receiver[v,u] 
               endproc (* transfer_r *) 
          
               process timer[T]: noexit:= (* see sender/CONNECT *) endproc 
         endproc (* DATA_TRANSFER *) 
          endproc (* receiver *) 

      endspec (* XDT Protocol *) 

-
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8.3.10 Applicability 

LOTOS is the only algebraic specification technique that was developed spe-
cifically for the description of protocols and distributed systems. It has achieved 
therefore a corresponding popularity in algebraic-minded communities, also be-
cause of its usefulness for verification and testing as we will see later. The FDT 
LOTOS is characterized by a relatively small and expressive set of operators that 
allows describing many basic features of protocols and distributed systems in a 
very concise manner. This is appropriate for algebraic validations and other analy-
ses. It also leaves much freedom to the implementer.  

The resulting specifications though are quite abstract. This is acceptable for 
small example protocols (see [Bowm 06]), but when applying LOTOS to realistic, 
complex protocols these abstract specifications very soon become difficult to read, 
to understand, and to handle. The specification of the still relatively small XDT 
protocol demonstrates this. Although LOTOS supports a transition-oriented speci-
fication style (cp. Section 7.3) the protocol flow is difficult to derive. There are 
several reasons for this. The nested process structure of the specification “blan-
kets” the proper protocol flow. In addition, LOTOS specifications do not contain 
those features which protocol engineers like to have in a specification: explicit 
state and interaction representations, respectively. Moreover, LOTOS does not 
provide appropriate means for representing timers, local actions, and the data for-
mats of service primitives and protocol data units. Especially the latter has proved 
impracticable for the original LOTOS definition. Therefore, complex speci-
fications become difficult to handle. Admittedly, several case studies about suc-
cessful applications of LOTOS in practice have been reported in the literature 
[FORTE], but mostly these studies were performed by specialists. In practical pro-
tocol developments LOTOS has attained little relevance. Its main application has 
been in theoretical research. LOTOS and the related process calculi represent 
powerful and compact means for abstract reasoning on concurrent systems, but for 
real protocol developments with all their complex relations and detailed depend-
encies it is less suited. 

8.4 Descriptive specification – Example: cTLA 

After looking at different constructive techniques we now briefly give an ex-
ample of a more descriptive language: cTLA (compositional Temporal Logic of 
Actions) which goes back to Herrmann [Herr 00]. cTLA is a variant of Lamport’s 
Temporal Logic of Actions (TLA) [Lamp 94]. It is a descriptive specification 
technique that is extended by elements of imperative programming languages. 
Therefore it is more a hybrid concept rather than a pure descriptive language. In 
contrast to other formal description techniques introduced in this chapter, cTLA 
was designed with the objective of explicit verification support. A cTLA specifi-
cation is composed of processes which can be used to describe service and proto-
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col features and functions. These processes can be combined with other processes 
to model more complex service and protocol behavior. With each of these defini-
tions, a set of constraints or desirable properties is specified which have to be ful-
filled by the protocol. The preservation of these constraints in the composition can 
be proved formally. 

8.4.1 Basic concepts                 

cTLA describes state transition systems in a process-like specification style (cp. 
Section 7.3). Processes are distinguished into simple and compositional processes. 

Simple process 
A simple process serves for modeling single system resources or constraints. Its 

structure is defined in a process type definition in a programming language-like 
syntax (see Examples 8.4/1). The process header contains the name of the process 
and a list of process parameters. The parameters enable one to create several in-
stances of the process type. As in programming languages, first local constants 
and variables are defined. The variables declared determine the state space of the 
process. After the keyword INIT the initial state of the process is specified. The 
operator  is used for this as well as for other definitions. The action definition 
part begins with the keyword ACTIONS. It defines the actions which belong to 
this process. An action is a predicate about a pair of the current state of a variable 
and its next state. The latter is referenced by primed variable identifiers, e.g., 
channel’. The actions model the set of possible state transitions of the process. Ac-
tions may have parameters to describe data transfer between processes. 

 

Example 8.4/1: Simple process for sending and receiving PDUs 

Example 8.4/1 defines a process communication with actions for sending and 
receiving PDUs. The medium is modeled by the variable channel which is of 
pdu_type. In the initial state this variable is set to FREE indicating that the channel 
is free. When a PDU is sent, the channel must be free. After execution the channel 
contains the PDU. 

≜

PROCESS communicate(pdu_type: ANY) 
CONSTANTS FREE  pdu_type 
BODY 
 VARIABLES channel: pdu_type 
 INIT ≜ channel = FREE 
 ACTIONS 
  send(sd: pdu_type) ≜ channel = FREE  channel’ = sd; 

  receive(rd: pdu_type) ≜ channel  FREE  channel = rd  channel’ = FREE; 
END    
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Example 8.4/2: Timer process 

Example 8.4/2 contains the definition of a timer process with the operations we 
introduced in Section 2.2.4. The respective actions do not describe the procedures 
themselves. They formulate conditions that have to be fulfilled when the actions 
are executed. The additional action tick was introduced to express the progress of 
time. Note that parameters are not variables but only placeholders for values, e.g., 
to = true. Here no primed variable is used because it does not indicate a new state. 

Compositional processes 
Compositional cTLA processes are used to describe the behavior of systems 

and sub-systems as compositions of cTLA processes that cooperate by means of 
synchronously executed process actions. The processes which compose the com-
positional process are listed after PROCESSES. For each process, an instantiation 
is created which is represented by a name. Example 8.4/3 shows a fragment of the 
compositional process connect_s for setting up an XDT connection. The complete 
process is given in Section 8.4.4. We assume in this example that a data type defi-
nition for the DT-PDU is imported from another process definition. 

In the action part ACTIONS of the compositional process definition the de-
sired properties and constraints are defined in a descriptive manner using the logi-
cal operators conjunction ( ) and disjunction ( ). The operator = means that after 
the execution of this action the expression of the right side equals the expression 
of the left side. The constructs, operators, expressions, and symbols are reused 
from the Temporal Logic of Actions [Lamp 94]. 

 
 
 
 
 

 

 

PROCESS timer 
BODY 
 VARIABLES  
  state: {“idle”,“active”} 
  t,ti: natural  
    INIT ≜ state = “idle”  t = 0; 
    ACTIONS     
     start(tov: natural) ≜ state = “idle”  state’ = “active”  ti’=tov; 

     reset ≜ state = “active”  state’ = “idle”  t’ = 0;  

     time-out(to: bool) ≜ state = “active”  t  ti  state’ = “idle”  to = true  t’ = 0; 

     tick ≜ state = “active”  t’ = t+1  state’ = state; 
END 
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PROCESS connect_s 
IMPORT DT-PDU 
BODY  
 VARIABLES 

      state: {“idle”,“wait connection”,“connected”}; 
 INIT  state = “idle”; 
 PROCESSES 
  C: communicate(pdu: pdu_type); 
  t: timer(ti: natural); 
    . . . 
 ACTIONS 
  Con-Init(pdu: pdu_type)  pdu.type = “DT”  pdu.sequ = 1  state = “idle”  
                                                          state = “wait connection”  C.send(pdu)  t.start(5); 
        . . . 

 END 

Example 8.4/3: Compositional process connect_s 

8.4.2 Language elements 

A process type definition in cTLA has a fixed structure (see Figure 8.4/1). Each 
section begins with a defined keyword. Some of the elements are optionally. 

PROCESS 
IMPORT 
CONSTANTS 
BODY 
 VARIABLES 
 INIT 
 PROCESSES 
 ACTIONS 
END 

Figure 8.4/1: Segments of a cTLA process type definition 
 

PROCESS 
Processes are described in a process type definition which is enclosed by the 

keywords PROCESS and END. The process header may contain formal type dec-
larations, which are replaced by concrete ones when instantiating the process, e.g.,   

 
 
 
 

≜

≜
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PROCESS communicate(pdu_type: ANY) 
 . . . 
END 

IMPORT   
cTLA supports the importing of definitions contained in other process type def-

initions. These processes have to be listed after IMPORT, e.g., 

IMPORT timer, address; 

Similarly to LOTOS, cTLA demands the definition of all symbols, constants, data 
types, and functions used in the specification. Such definitions may be imported 
from previously defined modules. 
 
CONSTANTS 

Constants can be introduced directly in the process type definition in the 
CONSTANTS segment, e.g.,  

CONSTANTS 
     Maxpdu  10; 
     DTpdu  [type = “DT”, conn: int; sequ: int; eom: bool; data: byte];  

A constant may be an identifier which is equal to a certain type or it may refer to a 
data structure. The latter can be used to define the structure of service primitives 
and protocol data units. 

BODY 
The proper specification of the process type is contained after this keyword. 

VARIABLES 
The variables used in the process have to be declared in this section. These 

variables form the state space of the process. The variables are only accessible in-
side the BODY-part. The syntax of the variable definition corresponds to defini-
tions in programming languages, e.g., 

VARIABLES 
    source-addr: address; 
    dest-addr: address; 
    conn: natural; 
    sequ: natural; 
    eom: bool; 
    data: [natural  byte]; 

 
 

≜
≜
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Each variable is associated with a data type. cTLA distinguishes system-defined 
and user-defined data types. The former are data types, such as int, natural, short, 
bit, byte, and bool, which can be used by default. Furthermore, enumeration types 
are allowed. User-defined data types can be imported from previously defined 
modules. 

INIT 
The key word INIT specifies the initial state of the process by assigning initial 

values to the variables, e.g., 

INIT state = “idle”  phase = “CONNECT”  to = false; 

A cTLA process always identifies the state defined in INIT as the beginning of 
the execution. 

PROCESSES 
The section PROCESSES appears only in compositional process definitions. 

It declares the process instances which are used in the composition. A process in-
stance is defined by a name and the respective process type, e.g., 

PROCESSES 
    C: communicate(pdu_type); 
    t: timer; 

In system action definitions the actions defined in the processes can be accessed 
by the instance name followed by the related action, e.g.,  

 C.send(sd); 
     t.start(5). 

ACTIONS 
The action definition part describes the actions belonging to the process. An 

action describes a transition transferring the system from a given state to the next 
state. The current state is referenced by variables, the next state by primed varia-
bles, e.g.,  

ACTIONS 
     Con-Init(pdu: pdu_type)  pdu.type = “DT”  pdu.sequ = 1  state = “idle”  
                                                          state = “wait connection”  C.send(pdu)  t.start(5); 

Action definitions can contain actual parameters. The variables, the initial state 
(INIT), and the actions of a process define a state transition system which de-
scribes a set of state sequences. A state sequence starting from the initial state 
models a certain process behavior. An action describes a number of transitions 
[Herr 00]. 

≜

≜
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8.4.3 Formal semantics 

Like the other formal description techniques introduced in this chapter, cTLA 
possesses a formal semantics. It is directly based on TLA [Lamp 94]. Unlike other 
FDTs which concentrate more on a structured and readable formal description, 
cTLA was designed with the objective of explicit verification support. The close 
relation to TLA enables TLA-based verification. 

Each cTLA process instance corresponds to a TLA formula. This correspond-
ence defines the formal semantics of cTLA. Formally, a cTLA process, whether 
simple or compositional, can be expressed through a canonical TLA formula. The 
following example shows the canonical formula C for the process Timer defined 
above: 

The formula states that the predicate INIT holds in the first state of every state 
sequence modeled by C and that the expression which follows the conjunction op-
erator has to hold in all states of all state sequences. The expression [pp] (to,t) de-
fines that either the predicate pp holds or a stuttering step takes place in which 
the annexed variables do not change their state, i.e., to’ = to and t’ = t. Stuttering 
steps are needed for refinement proofs. The actions may have parameters of the 
given variable types. Accordingly, a cTLA process specifies that the initial pro-
cess state fulfills INIT and that any state change must either comply with an action 
or be a stuttering step.  

The TLA formulae which are derived from cTLA formulae possess certain 
constraints to facilitate coupling with cTLA actions. So a process may only have 
access to variables defined within the process. Actions have to be uniquely identi-
fied to be used as references to process actions in compositional processes. Fur-
thermore, some rules are introduced to guarantee liveness [Herr 00]. 

8.4.4 Example 

In order to demonstrate the cTLA description principle we show here a frag-
ment of the XDT protocol specification, namely the connection set up phase. Ac-
cording to Section 2.3, the set up phase is formed by the processes connect_s and 
connect_r which are shown here. We assume here that the simple cTLA process 
response for responding service primitives as well as the service primitive and 
PDU types (sp_type, pdu_type) have been defined in other processes. Further we 
use in this example two standard functions defined in cTLA: unchanged to indi-
cate the variables which do not change when an action is executed, and stutter to 
express stuttering steps. 

 
 

C INIT   [  to, t  natural: start(t)  reset()  time-out(to)](to,t) 
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PROCESS connect_s 
IMPORT SP, PDU;  ! Import of service primitive and  
 BODY  ! PDU definitions 
 VARIABLES 
      state: {“idle”,“wait connection”,“connected”}; 
      phase: (“CONNECT”, “DATA TRANSFER”); 
     to: bool; 
 INIT ≜ state = “idle”  phase = “CONNECT”  to = false; 
 PROCESSES 
  C: communicate(pdu_type); 
  t: timer; 
  R: response(sp_type) ! Service primitive to user 
   ACTIONS 
  Con-Init(XDATrequ: sp_type, DT: pdu_type) ≜ 
   XDATrequ.sequ = 1  state = “idle”  state  = “wait connection”  
    C.send(DT)  t.start(5)  unchanged(phase,to);  

 Con-Conf(XDATconf: sp_type, ACK: pdu_type) ≜ 
  C.receive(ACK)  ACK.sequ = 1  state = “wait connection”  t.reset 
                R.response(XDATconf)  state  = “connected”  
                   phase = “DATA TRANSFER”  unchanged(to); 
 Con-Abort(XABORTind: sp_type) ≜ 
    t.time-out(true)  state = “wait connection”  state  = “idle” 
                    R.response(XABORTind)  unchanged(phase); 
 Tick ≜ t.tick; 

END 
 
PROCESS connect_r 
IMPORT SP, PDU;  ! Import of service primitive and  
BODY  ! PDU definitions 
 VARIABLES 
      state: {“idle”, “connected”}; 

      phase: (“CONNECT”, “DATA TRANSFER”); 

 INIT ≜ state = “idle”  phase = “CONNECT”; 

 PROCESSES 
  C: communicate(pdu_type); 

  R: response(sp_type)  
 ACTIONS 
  Con-Init(DT, ACK: pdu_type, XDATind: sp_type) ≜ 
                      C.receive(DT)  DT.sequ = 1  state = “idle”  R.response(XDATind) 
                               C.send(ACK)  state = “connected”  phase = “DATA TRANSFER”; 

END 
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have to specify the complete system. This is done below with the definition of the 
process connect including the process instances of the XDT entities XS and XR. 
Since we only consider the connection set up in this example, XS and XR are in-
stantiations of the processes connect_s and connect_r, respectively. The actions 
defined in connect establish the relation between the respective processes defined 
in connect_s and connect_r. In two definitions in XR only the stutter function is 
performed. This indicates that there are no state changes in XR, only in XS. Fur-
thermore, we introduce a process for the global time sTick. This can be defined in 
cTLA as an internal invisible action using the key word INTERNAL. 

8.4.5 Applicability 

cTLA is the only descriptive specification technique that was developed 
especially for the description of communication protocols and distributed systems. 
The significant advantage of cTLA is its explicit support of verification. As a tem-
poral event-based system, it is possible to rewrite cTLA processes in a canonical 
form. This form can be used to verify the system behaviors by introducing an ap-
propriate verification mechanism. It is also possible to formulate properties – 
safety and liveness ones – and to prove whether they hold in the specification. 
cTLA possesses a relatively small set of language elements. The basic elements 
are processes. Simple processes can be composed to make more complex ones. 
Properties of the simple processes are transferred to the composed process by 
superposition. The correctness of the properties of the composed processes can be 

The two process definitions above describe the properties that the two entities 
should fulfill regarding the connection set up. To complete the specification we 

PROCESS connect 
IMPORT SP, PDU; 
BODY  
 PROCESSES  
  XS: connect_s; 
  XR: connect_r; 
 ACTIONS 
  sCon-Init(XDATrequ, XDATind: sp_type, DT, ACK: pdu_type) ≜ 
    XS.Con-Init(XDATrequ: sp_type, DT: pdu_type)  
     XR.Con-Init(DT, ACK: pdu_type, XDATind: sp_type);  
  sCon-Conf(XDATconf: sp_type, ACK: pdu_type) ) ≜ 
    XS.Con-Conf(XDATconf: sp_type, ACK: pdu_type)  XR.stutter; 
  sCon-Abort(XABORTind: sp_type) ≜ 
    XS.Con-Abort(XABORTind: sp_type)  XR.stutter; 
 INTERNAL 
  sTick ≜ XS.tick  XR.stutter; 
 END 
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Section 11.1). Of course the elaboration of a cTLA specification for a complex 
protocol is cumbersome because many processes have to be defined and verified. 
For that reason, a framework for transfer protocols which contains a lot of verified 
components has been developed [Herr 00, 02]. 

 The use of cTLA in practical protocol design is limited. This is because the us-
er needs experience in cTLA, its semantics TLA, and related verification methods. 
This is often not a given. It is also difficult for a developer unfamiliar with cTLA 
to trace the developed modules. Like LOTOS, cTLA does not support those 
features which protocol engineers like to have in a specification: an explicit 
representation of major states and interactions. Moreover, cTLA does not provide 
appropriate means for representing local actions and access to data structures. 
cTLA specifications are quite abstract. They leave much freedom to the 
implementer, but they also require experience of how to derive implementations. 
For that reason, cTLA can be considered more as a supplementary technique 
which is especially useful for verification purposes. Due to its program-like struc-
ture, it can also be used as a base for model transformations, e.g., onto program-
ming languages like JAVA and C++, and verification languages like PROMELA. 

8.5 Data format description – Example: ASN.1 

The data formats of the service primitives and protocol data units used in ser-
vices and protocols are described separately from the protocol procedures. As we 
have seen in the preceding sections the formal description techniques use different 
methods for the data format definition. SDL uses an abstract data type notation; 
LOTOS the more sophisticated ACT ONE. Estelle used Pascal data types, which 
proved, however, too implementation-oriented. Nowadays the abstract syntax 
notation ASN.1 is often used for the description of data formats. ASN.1 was orig-
inally developed in the context of the ITU-T X.400 message handling system for 
solving the data conversion problem of applications in heterogeneous environ-
ments (see below). It was integrated into the OSI reference model. Later it became 
a widely accepted standard for describing data formats in protocols. It has even 
been kept alive in the today’s TCP/IP world. SDL and the test notations TTCN-2/-
3 (see Section 14.6) adopted ASN.1. For that reason, ASN.1 should not remain 
unmentioned in an introduction to Protocol Engineering. 

8.5.1 Basic concepts 

ASN.1 (Abstract Syntax Notation One) aimed originally at converting machine-
specific encodings so that data are consistently interpreted in heterogeneous net-
works. Later it was used more and more for data type descriptions. The develop-

proved by means of a theorem prover [Herr 02] or model checker [Krae 09a]. 
cTLA supports the description of both services and protocols. It allows one to 
verify that the specified service is really provided by the specified protocol (see 
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protocols. Two years later it became an ISO standard, and again two years later a 
self-contained ITU-T standard. The standard was revised several times in 1989/ 
90, 1994, 1997, and 2002. 

The ASN.1 standard consists of two parts: the actual abstract syntax notation, 
now defined in ITU-T recommendation X.680ff and ISO/IEC 8824ff, and the en-
coding rule, which define how ASN.1 data values are encoded at bit level for 
transfer syntaxes. There are various encoding rules. They are defined in the ITU-T 
X.690ff and ISO/IEC 8825ff standards [ISO 8824], [ISO 8825]. The first encoding 
rules were the Basic Encoding Rules (BER). The division of ASN.1into two levels 
is due to the conversion approach originally applied with it.  

ASN.1 was designed to solve the problem of varying data representations in 
computer systems which result from the heterogeneous data representation modes 
of different machine architectures (e.g., Big and Little Endian presentation) and 
from the diversity of programming languages which all possess their own internal 
coding. In heterogeneous networks this represents a problem because distributed 
environments need a unique interpretation of data. Communication protocols with 
binary coded protocol data units overcome this problem by the use of a “common 
language”: the unique bit representation. Thus, both sides can consistently inter-
pret PDU headers and trailers (if used). This does not solve, however, the problem 
of the application data which are passed as user data to the protocol stack and 
which would remain untouched unless special measures are taken to guarantee a 
consistent interpretation. The ASN.1 approach is a widely accepted solution for 
this. Another solution is the textual coding of protocol data, e.g., using ASCII cod-
ing, as applied in many Internet application protocols, e.g., HTTP and SIP. 

The ASN.1 approach ensures the consistent and unambiguous interpretation of 
data in a heterogeneous network environment by defining an abstract syntax for a 
distributed application (or a class of distributed applications). This abstract syntax 
is described in ASN.1. It defines a generic representation for the data types and 
values used in the distributed application which is independent of their concrete 
coding in the individual computers, i.e., of their local syntax. In order to exchange 
data between end systems an appropriate encoding is required to ensure that the 
coded data are properly recognized by the peer machine. This encoding is de-
scribed by the transfer syntax. It encodes the data as triplets consisting of the 
type, the length, and the value. The transfer syntax relates to the abstract syntax. It 
specifies how the data is to be transmitted according to the abstract syntax. Note 
that several transfer syntaxes may be defined for an abstract syntax. The transfor-
mation from the local syntax into the transfer syntax and back is determined by 
associated encoding rules. 

Which abstract syntax and which of the transfer syntaxes are applied for an ap-
plication is negotiated between the partners. Figure 8.5/1 illustrates the principle. 
The agreed combination is called the presentation context. Thereby context ne-

ment began in the 1980s. ASN.1 was first defined in the ITU-T X.409 standard, 
which belonged to the X.400 message handling series. From 1984 onwards it was 
considered the notation-of-choice for the specification of OSI application layer 
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gotiation and the transfer process run in the presentation layer, although the ab-
stract syntax actually relates to the application layer.  
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tiations. The module body contains the type and the value definitions of the data 
structure or the abstract syntax to be described. There is no fixed order prescribed 
for arranging the definitions. Repeated blanks or blank lines are interpreted as one 
blank. Further there is the possibility to export and/or import definitions to/from 
other modules. 

Lexical conventions 
Unlike many programming languages, ASN.1 uses obligatory rules for deno-

ting objects (modules, data types, and values): 

 Names of data types and modules begin with a capital letter. 
 Names of standard data types only consist of capital letters. 
 Names of values begin with a small letter. 

Apart from that, usual naming conventions are applied. Names can consist of 
large and small letters, numbers, and hyphens. 

Comments are introduced by the symbol “--”. A comment is limited by the end 
of a line. 

8.5.3 Data type definitions 

Similarly to other languages, ASN.1 distinguishes simple data types, compound 
data types, and further specific type forms. New data types can be derived from 
these data types by a type definition. 

Type definition 
Beside the value definition the type definition is one of the fundamental con-

structs in an ASN.1 description. It introduces a new data type for the basis type 
indicated to the right of the assign symbol (::=), e.g., 

Role ::= BOOLEAN.  

The basis type can be a simple or composed type, a subtype, a tagged type, a 
CHOICE type, or an ANY type. The new data type is equivalent to the basis type. 

Simple types 
The simple data types (built-in data types) in ASN.1 are defined by the stand-

ard. These are BOOLEAN, INTEGER, BIT STRING, OCTET STRING, REAL, 
ENUMERATED, and NULL. Most of these types are familiar from other lan-
guages and need no special explanation here. The representation of the type 
ENUMERATED is shown by the following example: 

Error ::= ENUMERATED{unknown | no-connection | sequence-error | pdu-error}. 
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Composed types 
Further data types can be derived from simple and composed types by means of 

type constructors. These constructors are SEQUENCE, SEQUENCE OF, SET, 
SET OF, and CHOICE. The included types must not be defined explicitly before-
hand because forward and backward references are permitted.  

The SEQUENCE-constructor defines a data structure which consists of com-
ponents of different data types (comparably with the record- or struct-type of oth-
er languages). The sequence of the components is significant. The components are 
identified by their names which can be used at the same time to illustrate their 
meaning, e.g., 

DT ::= SEQUENCE 
   {length  INTEGER, 
     code  BIT STRING DEFAULT ’1110’B, 
     sequ_nr INTEGER OPTIONAL 
     COMPONENTS OF DP-type1 
   }. 

In SEQUENCE types the following supplemental specifications can be used 
additionally: 

 OPTIONAL indicates that the component can be contained optionally. The 
sender of the packet decides whether it is contained. 

 DEFAULT <value> denotes a default value which can be included optionally 
into the data type definition. Defaults can only be used if all components of the 
SEQUENCE type are assigned to different tags (see below). The keyword DE-
FAULT must not be supplemented by OPTIONAL. 

 COMPONENTS OF inserts at this position all components of the indicated 
SEQUENCE type. 

A SEQUENCE OF-constructor describes a sequence of elements of the same 
type (comparable to the array-type of many languages), e.g., 

Data ::= SEQUENCE OF OCTET STRING. 

The length of the sequence is variable. The order of the elements is fixed. 
The SET-constructor defines a set. It corresponds to the SEQUENCE con-

structor except that the order of the component types is not fixed here any longer 
(as in the set-type of some languages). The options OPTIONAL, DEFAULT, and 
COMPONENT are applied as discussed above. 

The specific data type NULL is used if only the information is of interest but 
not its value. This can be used to signal that a certain event occurred, e.g., 

Signal ::= NULL. 
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CHOICE describes selection from a set of alternative data types (comparable 
to the union-concept in C). The alternative data types are listed after CHOICE in-
cluded in curly brackets and separated by commas, e.g., 

XDT-pdu-type ::= CHOICE{ 
       dt  pdu-type1, 
         ack pdu-type2, 
         abo pdu-type3 
      }. 

From the indicated alternatives exactly one is true in each case. 

Sub-types 
As in many languages, sub-range types and/or sub-types can be defined in 

ASN.1. They are derived from the respective basis type by indication of the sub-
range which applies to the subtype, e.g., 

Reason1 ::= Error (unknown | pdu_error) 
Index ::= INTEGER(0..99). 

ASN.1 provides different means for defining subtypes on which we do not en-
large further here (see [Dubu 00] for this). 

Tagging 
Up to this point the data type definitions do not differ in principle in ASN.1 

from those of many specification and programming languages. The qualitative dif-
ference that distinguishes the ASN.1-notation from others consists in adding a 
unique identification – the tag – to each data type by which all simple data types, 
constructors, and composed types can be identified unambiguously. The tag repre-
sents a coding of the data type which is needed for the exchange of type infor-
mation. It allows the receiver of a data unit to relate the received data with the 
specified data type. A tag consists of the tag class and the number of the data type 
or the constructor within this class, respectively. It is included to square brackets 
and placed in front of the respective type. ASN.1 differentiates four tag classes: 

 UNIVERSAL, 
 APPLICATION, 
 PRIVATE, 
 context-specific. 

Similarly the SET OF-constructor describes in correspondence to SEQUEN-
CE OF a set with elements of the same type, e.g., 

Digits ::= SET OF ENUMERATED {0,1,2,3,4,5,6,7,8,9}, 

where the order is again not relevant. 
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respective application, i.e., it must be distinguishable from all data types used in 
this application.  

PRIVATE is used for own definitions or user specific extensions of interna-
tional standards which are used, for instance, in companies or organizations. 

Context-specific tags do not possess a special keyword. They are symbolized 
only by the tag number. The interpretation of the tags is determined by the context 
in which they are used. Their scope is the marking of the component types in 
composed data types SEQUENCE, SET, or CHOICE, e.g., 

Abo ::= SEQUENCE{ 
     code  [0] BIT STRING DEFAULT ’1101’B, 
     conn  [1] BIT STRING, 
     reason [2] Error 
         }. 

Implicit tagging 
Tagging causes a certain overhead for coding/decoding as well as for writing 

and reading the specification which is not always required. Therefore the use of 
tags has gradually been simplified. While in the original ASN.1 explicit tagging 
was essential, the introduction of implicit and automatic tagging made the han-
dling of tags substantially more comfortable. Implicit tagging means that the cod-
ing of data types is suppressed when IMPLICIT is added to the type (except for 
CHOICE types). It presumes that the type derives clearly from the context, e.g., 

Abo ::= SEQUENCE{ 
      code  [0] BIT STRING DEFAULT ’1101’B, 
      conn  [1] IMPLICIT BIT STRING, 
      reason [2] IMPLICIT INTEGER 
          }. 

Without IMPLICIT, the tags for BIT STRING and INTEGER would be coded 
and transferred. After decoding the first component of Abo the receiver can de-
duce the data types of the following values. A coding of these types would unnec-
essarily extend the bit sequence to be transferred. The indication of IMPLICIT be-
fore the types prevents this. The data type coding can also be waived for the entire 
module definition if the uniqueness of the data types is ensured. In this case the 
IMPLICIT mode has to be indicated in the module header, e.g., 

xdt_data DEFINITIONS IMPLICIT TAGS ::= 

The class UNIVERSAL is assigned to data types that apply to all specifica-
tions. These are the standardized types. They are defined in the ASN.1-Standard. 
For example, BOOLEAN possesses the tag [UNIVERSAL 1] and the constructor 
SEQUENCE the tag [UNIVERSAL 16]. 

The tag class APPLICATION defines data types that apply only to a certain 
standard, e.g., for the transport protocol. A tag of this class must be unique for the 
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explicit and vice versa by indicating EXPLICIT (or IMPLICIT) before the respec-
respective type. 

Automatic Tagging 
With implicit tagging ambiguous situations may occur occasionally as the fol-

lowing example of a modified Abo specification illustrates. 

xdt_data DEFINITIONS IMPLICIT TAGS::= 
BEGIN  
 .  .  .   
 Abo::= SEQUENCE{ 
    code BIT STRING DEFAULT ’1101’B, 
      conn INTEGER OPTIONAL, 
      reason INTEGER, 
    info  INTEGER OPTIONAL 
      } 
  .  .  . 
END. 

Here the decoder is no longer able to distinguish uniquely which values are as-
signed to which fields. In order to avoid such conflicts when using implicit tags 
the automatic tagging mode was introduced. It completely releases the specifier 
from the explicit indication of tags. If he/she declares AUTOMATIC TAGS in the 
module definition the tags are generated automatically, e.g., 

xdt_data DEFINITIONS AUTOMATIC TAGS ::= 
BEGIN  
 .  .  . 
  Abo ::= SEQUENCE{ 
        code  BIT STRING DEFAULT ’1101’B,  -- associates tag [0] 
          conn  INTEGER OPTIONAL,    -- associates tag [1] 
          reason INTEGER,        -- associates tag [2] 
        info  INTEGER OPTIONAL    -- associates tag [3] 
      } 
  .  .  . 
END. 

BEGIN  
 .  .  . 
END 

Analogously, the explicit tagging mode can be assigned to a module by EX-
PLICIT TAGS. Furthermore, it is possible to change from implicit tagging to 
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Protocol_Class ::= [1] INTEGER. 

The new type Protocol_Class now has the context-tag [1] instead of the 
INTEGER tag [UNIVERSAL 2].  

Predefined character string types 
In order to open ASN.1 to a wider field of application a series of predefined 

character sets has been introduced using tagged types. Examples of such character 
sets are: NumericString, PrintableString, TeletexString, VideotexString, Visible-
String, IA5String (International Alphabet Number 5 = ASCII), GraphicString, and 
GeneralString. They are derived from the simple type OCTET STRING. The set 
of predefined character sets has been continually expanded. In one of the latest 
language versions the new fonts BMPString, Universal String, and UTF8String 
were introduced which allow, in particular, the use of strings on the basis of the 
ISO/IEC 10646 standards which support signs and symbols of many languages. 

Further types 
There are other types defined in ASN.1 which we mention here for the sake of 

completeness. These are OBJECT IDENTIFIER and the so-called useful types. 
OBJECT IDENTIFIER denotes the description of abstract information objects 
which can be used to describe the structure of standards or specifications. In this 
way universally unique identifiers for objects may be defined. The useful types 
encompass data definitions which can appear in many specifications. Currently 
there are four types defined: UTCTime and GeneralizedTime to describe time in 
seconds or other units, ObjectDescriptor for describing information objects in the 
character set Graphic String, and EXTERNAL for the integration of data values of 
other abstract syntaxes. 

8.5.4 Value definitions 

Another key element of an ASN.1 description is the representation of values. In 
order to represent the values of simple data types, value representations were de-
fined. They are essentially representations of the familiar values in high-level pro-
gramming languages like TRUE and FALSE for BOOLEAN, integer numbers for 
INTEGER, binary strings and hexadecimal sequences for BIT STRING and 
OCTET STRING as well as character strings for the predefined character sets, 
such as IA5String and others (see above). 

Automatic tagging implies implicit tagging except for a few exceptions, e.g., 
CHOICE types. This means that the specifier can in principle forget the tags. For 
that reason, automatic tagging is the recommended mode today. 

Tagged types 
In ASN.1 new data types can also be defined using tags. They are called tagged 

types. These are types that are equivalent to the respective basic type, but they 
have a different tag, e.g., 
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Value definitions can also be applied to composite types, e.g., 

states ::= SEQUENCE OF VisibleString  
sender states::= {"idle","await","connected"}. 

8.5.5 Extensibility 

An important feature in the use of ASN.1 is the possibility to extend 
specifications in order to take changes and extensions of a specification into 
account. For this reason, the latest version of ASN.1 introduced means to support 
the upward and downward compatibility of specifications. The extensibility of 
definitions can be specified in two ways: by using the local extensibility marking 
"..." or by globally specifying EXTENSION IMPLIED in the module header. The 
concrete extensions are always included in double brackets "[[" and "]]". Thus, for 
instance, different versions of a protocol can be defined, e.g., 

     {XDT-Version 1.0}         {XDT-Version 2.0} 
 
 Ack ::= SEQUENCE        Ack ::= SEQUENCE 
   {conn [0] INTEGER,       {conn [0] INTEGER, 
     sequ [1] INTEGER          sequ [1] INTEGER, 
     ...             [[ credit [2] INTEGER ]]  
   }              ... 
               } 

The first version defines the ACK-PDU as we have used it so far. It contains the 
extensibility marker “…” to indicate that extensions are possible. The second defi-
nition shows the ACK-PDU of a possible second protocol version with flow con-
trol support. For this purpose, the data unit incorporates a field for updating cred-
its. Further protocol versions can be defined by including the extensions in double 
brackets. 

The extension mechanism allows the decoder to accept data units which con-
tain unknown components. It recognizes through the extensibility marker that the 
data unit contains extensions which do not belong to the current protocol version. 
They are treated as optional components and the data unit can be delivered to the 
application. 

In addition, there is the possibility to introduce symbolic names for certain val-
ues using value definitions similarly to a constant declaration. A value definition 
contains the symbolic name – the value reference – and the data type left of the 
assignment symbol :: = and right of it the value, e.g., 

class0 INTEGER ::= 0 
open BOOLEAN ::= TRUE  
dt-code BIT STRING ::= ’1000’B 
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special form of comment to describe restrictions which would be too expensive to 
express by other ASN.1 means, e.g., 

PDU code ::= BIT STRING (CONSTRAINED BY { -- each string must contain a 1 in  
                     the first bit --}). 

8.5.7 Parameterization 

ASN.1 offers the possibility of parameterization of type and value definitions. 
The formal parameters are listed after the type or value identifier, e.g., 

PDU-type1{INTEGER: min, INTEGER: max}::= 
                    SEQUENCE{ 
                     length INTEGER(min..max), 
                        code BIT STRING DEFAULT ’1110’B, 
                       sequ_nr INTEGER OPTIONAL 
                     COMPONENTS OF DP-type1 
                } . 

The actual parameters are indicated in the references to the type and/or value 
definition, e.g., 

Small-DT ::=  PDU-type1{10,100} 
Large-DT ::=  PDU-type1{10,1000} . 

8.5.8 Example 

We conclude the introduction to ASN.1 as usual with an example specification; 
in this case with the description of the XDT service primitives and PDUs. In order 
to demonstrate the use of tags we apply implicit tagging rather than the simpler 
automatic tagging. The service primitives and PDUs are described using SE-
QUENCE types, for which PRIVATE tags are introduced. They are collected in 
CHOICE types. For demonstration purposes, we define the PDU identification co-
de by means of value definitions. The XABORTind primitive serves as an example 
to highlight value assignment to composite types by introducing an error code in 
contrast to the original XDT specification.  

 

8.5.6 Constraints 

In certain ASN.1 definitions it is possible to define restrictions concerning the 
contents of certain elements. These restrictions are defined in constraint specifi-
cations. There exist different constraint specifications: user defined constraints, 
tabular constraints, and component relational constraints. The last two relate to 
information objects, which we do not consider here. User defined constraints are a 
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   xdatconf XDATconf-type, 
   xabortind XABORTind-type 
        } 

 XDT-data-transfer ::= CHOICE{ 
   xdatrequ XDATrequ-type, 
   xdatind XDATind-type, 
   xdatconf XDATconf-type, 
   xbreakind XBREAKind-type, 
   xabortind XABORTind-type, 
   xdisind XDISind-type 
                             } 

  -- Auxiliary type definitions 

  XDATrequ-type  ::= [PRIVATE 0] DP-type1 
  XDATind-type ::= [PRIVATE 1] DP-type1 
  XDATconf-type  ::= [PRIVATE 2] DP-type2 
  XBREAKind-type   ::= [PRIVATE 3] DP-type3 
  XDISind-type  ::= [PRIVATE 4] DP-type3 
  XABORTind-type ::= [PRIVATE 5] DP-type4 
   DP-type1 ::= SEQUENCE{ 
   conn  [0] INTEGER, 
   sequ  [1] INTEGER, 
   source-addr [2] BIT STRING OPTIONAL, 
   dest-addr [3] BIT STRING OPTIONAL, 
   eom  [4] BOOLEAN, 
   data  [5] SEQUENCE OF OCTET STRING 
   } 
  DP-type2 ::= SEQUENCE{ 
   conn  [0] INTEGER, 
   sequ  [1] INTEGER 
   } 
  DP-type3 ::= SEQUENCE 
   conn  [0] INTEGER, 
   sequ  [1] NULL 
   } 

 

xdt-data DEFINITIONS IMPLICIT TAGS::= 
BEGIN 
 -- XDT sub-services 
 XDT-connect ::= CHOICE{ 
   xdatrequ XDATrequ-type, 
    xdatind  XDATind-type, 
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  -- XDT-PDUs 
  XDT-pdu-type ::= CHOICE{ 
    dt  PDU-type1, 
    ack  PDU-type2, 
    abo  PDU-type3 
   } 
  PDU-type1 ::= [PRIVATE 10] SEQUENCE{ 
   length [0] INTEGER,    
   code [1] BIT STRING DEFAULT dt-code, 
   source-addr [2] BIT STRING OPTIONAL, 
   dest-addr [3] BIT STRING OPTIONAL, 
   conn [4] INTEGER, 
   sequ [5] INTEGER, 
   eom [6] BOOLEAN, 
   data [7] SEQUENCE OF OCTET STRING 
   } 
  PDU-type2 ::= [PRIVATE 11] SEQUENCE{ 
   code [0] BIT STRING DEFAULT ack-code, 
   conn [1] BIT STRING, 
   sequ [2] INTEGER 
   } 
  PDU-type3 ::= [PRIVATE 12] SEQUENCE{ 
   code [0] BIT STRING DEFAULT abo-code, 
   conn [1] BIT STRING, 
   reason [2] ENUMERATED{unknown, 

        no-connection, out-of-order} 
   } 

 
  -- XDT value definitions 
  dt-code  BIT STRING::= ’1000’B 
  ack-code BIT STRING::= ’1001’B 
  abo-code BIT STRING::= ’1010’B 

 
END  -- XDT-Data format description 
 
 
 
 

 

  DP-type4 ::= SEQUENCE{ 
   conn  [0] INTEGER 
   reason [1] ENUMERATED{unknown,  no-connection, 

                  out-of-order} 
   } 
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ceding sections. So in principle no words should be spent on UML here. But UML 
has been applied in recent years for describing protocols and probably will be ap-
plied more often for this purpose in future. Therefore, it is necessary to speak 
about UML in this context. We do not intend to introduce UML here in the man-
ner we did this for the various FDTs beforehand. There are a lot of books and tuto-
rials on UML available on the market which introduce the language. What we are 
discussing here is the use of UML for describing communication protocols. 

 The purpose and the origin of UML are different from that of the formal de-
scription techniques presented in this chapter. UML is a standardized language de-
veloped by the OMG (Object Management Group) for the modeling of systems 
which is used in software engineering to support and facilitate software develop-
ment. It aims at the development of software blueprints as a basis for the software 
development process. UML is based on the object oriented language paradigm. It 
is primarily a graphical language which can be used in different phases of the 
software life cycle to specify, construct, visualize, and document software objects 
or artifacts [Booc 05], [Lano 09]. UML provides a vocabulary and the rules to 
combine words of this vocabulary to create models and to work with them. The 
models serve the communication among people involved in a project. They can be 
refined and varied using different viewpoints.  

 UML is a general-purpose modeling language that can be applied to many ap-
plication areas, such as business processes, systems engineering, and representa-
tion of organizational structures. As a consequence, UML is a very complex lan-
guage with a large number of diagrams and constructs, which make the learning 
and use of the language not easy. The development of UML has passed through 
several stages since its creation in the 1990s. The current version is UML 2, to 
which we refer here. 

When comparing UML with the formal description techniques of this chapter 
one can find a lot of overlaps concerning their deployment, application, and the 
description elements used, but there are just as many differences. UML is above 
all a modeling language whose purpose is to develop models and not to document 
a concrete design process. The models developed can be mapped onto different 
platforms and languages, including formal description techniques. FDTs are more 
focused on their application field, e.g., on communication systems or protocols. 
They do not aim at developing models for a broader application range. The model-
ing capabilities of FDTs are limited by the semantic model defined through their 
formal semantics.  

UML offers all the elements needed to describe communication services and 
protocols. It provides 13 diagram types, which are grouped into structure and be-
havior diagrams. This broad range of diagrams allows the user to model protocols 
in a natural way, i.e., in a behavior- or communication-oriented way. In contrast, 

8.6 Protocol description with UML 2 

To say it at the very beginning UML is not a formal description technique as 
defined in this chapter and like the specification languages presented in the pre-
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most FDTs force the users to follow the given semantic constraints of the lan-
guage when describing a system or protocol like the process-oriented description 
in LOTOS or the agent-oriented one in SDL. Two of the various UML diagrams 
can be directly used for protocol description: the state machine diagram and the 
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define UML. It is designed as a four-layered architecture with a meta-meta-model 
at the top layer. This model is the language used by MOF to build meta-models, 
such as the UML meta-model that describes UML itself. These models describe 
elements of models in the related languages, e.g., models written in UML. The last 
layer is the data layer which is used to describe real-world objects. This kind of 
meta-modeling is not the same as the formal semantics discussed in Chapter 7 and 
8. So UML cannot directly benefit from the advantages of formal semantics. To 
overcome the formal semantics problem three approaches are applied [Wet 05]: 

 
 A frequently applied approach is to map a subset of UML diagrams as a 
work-around to existing formal methods. 
 An alternative approach is to merge UML with a formal language, e.g., by 
defining UML profiles as has been done in the UML profile SDL Combined 
with UML defined by ITU-T in the standard Z.109 [ITU-T 109]. Profiles 
provide extension mechanisms which allow the specialization of meta-
classes from existing meta-models to tailor them for specific application 
areas. The Z.109 recommendation specifies a UML subset using stereotypes, 
tagged values, constraints, and notational elements to work in an SDL 
environment. 
 Another possibility is of course the definition of a formal semantics for a 
defined subset of UML diagrams as done, for instance, in [Kali 10]. 
 

On the other hand, UML has attracted huge attention and many more users than 
the FDTs introduced here. Many people are familiar with the basic structures of 
UML and use them in practice. Students learn them in their basic courses on soft-
ware engineering. Thus the number of people is constantly growing who are fa-
miliar with UML and are capable of using it. In addition, much research has been 
carried out on UML and its applicability meanwhile. The great attraction and ap-
plication of UML can be therefore also seen as a chance to bring formal methods 
to a broader audience. UML offers the user sufficient means to describe commu-
nication protocols and their services. It can therefore be expected that it will be 
more widely used for describing protocols. The semantics problem will be a mat-
ter of further research. A possible approach for applying UML for protocol devel-
opment is presented in [Kali 10]. 

Further reading  
Since SDL has been a widely used language for protocol description as well as 

for the design of telecommunication systems, there are many publications about 
the language and its application. Further introductions to the language can be 
found in [Mits 01] and [Dold 03]. The first book considers the language in the 
context of performance engineering, while the second one focuses on simulation 
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different aspects of the use of SDL have been published. Last but not least, we re-
refer to the web site of the SDL Forum Society (http://www.sdl-forum.org/) which 
contains information about recent publications, conferences, and workshops on 
SDL. At this web site the reader can also find information about the on-going 
revision of SDL 2000 towards SDL 2010. 

Regarding MSC, there are no book publications. A comprehensive introduction 
to MSC-2010 can be found in [Haug 01]. Further tutorial material and other 
information are also contained at the SDL Forum Society web site. 

There are various publications which introduce LOTOS. A very comprehensive 
introduction is given in the tutorial of Bolognesi and Brinksma during the 
standardization of the language [Bolo 87]. Another comprehensive introduction 
that also considers various semantic models can be found in the book of Bowman 
and Gomez [Bowm 06]. A further tutorial can be found at the CADP toolbox web 
site [CADP]. 

Comprehensive descriptions of cTLA are contained in [Herr 00] and [Herr 02]. 
Currently, cTLA is used to define formal semantics for UML diagrams. Examples 
can be found in [Krae 09b] and [Kali 10]. 

Beside the standard there are two books that give a detailed introduction to 
ASN.1. These are the already cited books [Larm 99] and [Dubu 00]. They contain 
descriptions of the various encoding rules which we did not consider here. ASN.1 
encoding with the Basic Encoding Rules is also described in [Shar 08]. 

Exercises 
(1) Explain the description approach applied in SDL, its basic elements and the 

differences between them. How are SDL specifications structured? Which 
description principle related to the classifications given in Chapter 7 is en-
forced by SDL? 

(2) SDL supports the separation of automata descriptions into sub-automata. De-
scribe how this can be done. 

(3) Explain how state transitions from one state into various states are described 
in SDL. What kinds of triggering events exist? How can additional transi-
tions be added to the triggering events? How is the next state indicated? 

(4) What is the purpose of the save-symbol in SDL? When must it be used? 
(5) Describe the various kinds of interactions between agents. Give examples of 

when they should be used. 
(6) Modify the SDL specification of Section 8.1 to integrate an explicit connec-

tion set up into XDT as described in exercise (11) of Chapter 2. Change both 
the service and the protocol specification. 

(7) Modify the SDL specification of Section 8.1 to integrate the data delivery 
regulation described in exercise (13) of Chapter 2. Change both the service 
and the protocol specification. 

and validation. It describes in particular the use of the SDL tools Tau and 
ObjectGeode for performing simulations of SDL specifications. We further refer 
to the conference series [FORTE] and [SDL Forum], where various papers on 

http://www.sdl-forum.org/
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(9) In exercise (6) of Chapter 5 we replaced the go back N procedure by selec-
tive repeat. Replace accordingly the go back N procedure of the SDL speci-
fication in Section 8.1 by a selective repeat procedure. Sketch the integration 
of the latter into the SDL specification. 

(10) Explain the description approach applied in MSC and its basic elements. 
What is the advantage of this kind of description? 

(11) Describe the explicit connection set up of exercise (11) in Chapter 2 using 
MSC for the service and protocol specification. Consider the rejection of a 
connection in the same chart. 

(12) Describe the data delivery regulation of exercise (13) in Chapter 2 using 
MSC for the service and the protocol specification. 

(13) Describe the explicit connection release of exercise (15) in Chapter 5 using 
MSC for the service and the protocol specification. 

(14) Describe the replacement of the go back N procedure by selective repeat of 
exercise (9) using MSC. 

(15) Explain the description approach applied in LOTOS and its basic elements. 
How is a LOTOS specification structured? What is the difference between 
Basic and Full LOTOS? Which description principle related to the classifica-
tions given in Chapter 7 is enforced by LOTOS? 

(16) Explain the difference between processes which terminate with stop and ex-
it. What process functionality corresponds to these terminations? 

(17) Give for the process 
 
process UV[a,b,c,d]: exit :=  
 U[a,b,c,d] || V[a,b,d] 
 where 
  process U[t,u,v,w]: exit := 
   t;u;exit [] u;w;exit [] v;exit 
  endproc (* U *) 
  process V[t,u,w]: exit := 
   t;u;exit [] u;w;exit [] t;exit 
  endproc (* V *) 
endproc (* UV *). 
 
the alternative representation using only the action prefix and the choice-
operator. Draw the behavior tree for the resulting behavior expression.   
Change the process UV so that the resulting behavior expression contains 
nondeterministic behavior.    
 

(8) Modify the SDL specification of Section 8.1 to integrate the explicit connec-
tion release into XDT as described in exercise (15) of Chapter 5. Change 
both the service and the protocol specification. 



  8.6  Protocol description with UML 2 279 

     P[a,b,c,d] ||| Q[d] 
     where 

 
process P[t,u,v,w]: exit := 

 t;u;exit [] u;w;exit [] v;exit 
endproc (* P *) 
process Q[t]: exit := 

 t;exit 
endproc (* Q *) 

endproc (* PQ *) 

using only the action prefix and the choice-operator. What do the resulting 
event sequences represent? 

(19) What is the purpose of hiding? What can it be used for? 
(20) Two processes synchronize at gate g with the value true. What kind of event 

offer has to be used? Write the synchronization down. If either true or false 
can be exchanged what event offer can be taken and what does the synchro-
nization look like? 

(21) Compare the definition of labeled transition systems with that of finite state 
machines. What do they have in common and what are the differences? 

(22) Describe an explicit connection set up service including a possible rejection 
at the responder side in the monolithic, constraint-oriented, state-oriented, 
and resource-oriented specification styles. 

(23) Modify the LOTOS specification of Section 8.3 to integrate an explicit con-
nection set up into XDT as described in exercise (11) of Chapter 2. Change 
both the service and the protocol specification. 

(24) Modify the LOTOS specification of Section 8.3 to integrate the regulated da-
ta delivery into XDT as described in exercise (13) of Chapter 2. Change both 
the service and the protocol specification. 

(25) Similarly to exercise (9) sketch the replacement of the XDT go back N by se-
lective repeat in the LOTOS specification of Section 8.3. 

(26) Modify the LOTOS specification of Section 8.3 to integrate the explicit con-
nection release into XDT as described in exercise (14) of Chapter 2. Change 
both the service and the protocol specification. 

(27) Explain the description approach applied in cTLA. What are the basic lan-
guage elements of cTLA? What is the difference in the description compared 
to the other FDTs introduced beforehand? 

(28) In Section 8.4 we specified the XDT connection set up in cTLA. Give ac-
cordingly the corresponding specification for the explicit connection set up 
as described in exercise (11) of Chapter 2. 

(18) Rewrite the process  
 
process PQ[a,b,c,d]: exit :=  
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(30) Describe the description principle applied in ASN.1 including its basic lan-
guage elements. Explain in particular the role of tagging. What is it needed 
for? 

(31) Transform the following ASN.1 definition 
PDU-type1 ::= [PRIVATE 10] SEQUENCE{ 
  length [0] INTEGER,    
  code   [1] BIT STRING DEFAULT dt-code, 
  source-addr [2] BIT STRING, 
  dest-addr [3] BIT STRING OPTIONAL, 
  conn [4] INTEGER, 
  sequ [5] INTEGER, 
  eom [6] BOOLEAN, 
  data [7] SEQUENCE OF OCTET STRING 
           } 

    into a data type definition in any programming language of your preference. 
 

(32) Change the XDT data format definition of Section 8.5.8 to introduce the ser-
vice primitives and the protocol data units needed for the explicit connection 
set up as described in exercise (11) of Chapter 2. 

(29) Outline the presentation of time and the modeling of timers in the presented 
description techniques and discuss their applicability for protocol descrip-
tion. 



 

 

 

Part III: Development of communication protocols 

 
 
The third part of the book deals with the typical development steps of commu-

nication protocols. It first presents the protocol life cycle and discusses the differ-
ences to traditional software development. Subsequently, the main stages of the 
protocol life cycle are introduced and discussed in more detail. These phases are: 
design, specification, verification, performance evaluation, implementation, and 
testing.  

The chapter Design covers the phases design and specification. It gives a brief 
overview of approaches proposed for a systematic protocol design. Since the de-
sign process is closely related to the development of the (formal) protocol specifi-
cation to document design decisions, we consider afterwards rules and recommen-
dations for the development of formal specifications.  

In the chapter Verification we first discuss typical errors that may occur when 
designing a communication protocol. Thereafter we introduce the most important 
techniques to verify the correctness, consistency, and completeness of protocol de-
signs. The methods we consider in detail are reachability analysis, Petri net-based 
verification, algebraic verification, and model checking. 

The chapter Performance evaluation outlines methods for the evaluation of the 
expected performance behavior of the designed protocol in the considered target 
execution environment. These evaluations may be used to optimize the protocol 
design and to look for alternative implementation solutions. 

In the chapter Implementation we describe the steps and decisions that have to 
be passed through to implement a protocol. We present the basic approaches used 
for protocol implementations: the server model and the activity thread model in-
cluding related interfaces. Furthermore, we consider several special implementa-
tion methods. We give an example implementation of the XDT protocol for the 
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server and the activity thread models. Finally we give an overview of automated 
implementation techniques. 

The chapter Testing deals with the testing of protocol implementations. We 
consider the two main forms of protocol testing: the conformance and the interop-
erability tests. Based on the ISO 9646 conformance testing methodology, we in-
troduce the characteristic architectures, concepts, and procedures for running con-
formance tests. In a separate section we present various methods for the derivation 
of test cases which are not part of the standardization. We consider both the deri-
vation of test cases from finite state machines and from labeled transition systems. 
Next we briefly discuss the use of passive testing methods. Thereafter we argue 
the need for interoperability tests and present various architectures for their execu-
tion. The chapter ends with an overview on test description languages. We present 
the basic features of the standardized test notations TTCN-2 and TTCN-3 which 
are used preferably for describing test cases and test scenarios in the protocol area. 
As in the other chapters, most examples are related to the XDT protocol. 

The final chapter Outlook concludes the book with a discussion on the extent of 
the use of formal description techniques in practice, related issues, tool require-
ments, and conditions for their widespread use. 

 
 
 
 



9

d
sp
T
p
F

9

w
e
d
P
d

F

9 

C
deve
pon

Ther
proc
First

9.1 

T
wate
ed w
deal 
Phas
do n

Figur

Pr

Com
elop
nd p
re a
cess 
t we

The p
erfal
with 

her
ses l
not d

re 9.

oto

mmun
pmen
prin
are, 

its 
e giv

D

pha
ll m
the

re w
like
diffe

.1/1:

oco

nica
nt s
cipa
how
ow

ve a

Dev

ases 
mode
e arr
with 
e pro
er fu

: Wa

l d

atio
stag
ally
wev

wn s
a sho

velo

of 
el as
row
the

otoc
und

aterf

eve

n p
es o
 to 

ver, 
spec
ort i

opm

the
s de

ws w
e ph
col o
ame

fall m

elop

roto
of a
the
a n

cific
intr

men

 pro
epic
whic
hase
oper
enta

mod

pm

ocol
a pro
e ph
num
c ch
rodu

nt p

otoc
ted 

ch sy
s be
ratio
ally 

el of

men

ls a
otoc
hase

mber 
hara
uctio

pha

col 
in F
ymb
etwe
on a
from

f the

nt p

are i
col 
es k

of 
acter
on t

ase

dev
Figu
boli
een
and
m th

e pro

proc

imp
from

know
diff

r. W
o th

es 

velop
ure 
ize 
req
ma

hose

otoco

ces

lem
m it
wn 
ffere
We d
he m

pme
9.1/
the 

quir
ainte
e in

ol de

ss 

ment
ts d
from

ence
disc

main

ent 
/1. T
tran
eme
enan
n nor

evelo

ted 
desig
m s
es th
cuss
n ph

pro
The
nsit
ents
nce
rma

opme

for 
gn t
oftw
hat
s the
hase

oces
e res
tion
s an
are 

al so

ent p

the
to in
ware
giv
ese 
s of

ss ar
sults
s be
alys
not

oftw

proc

 mo
nteg
e de

ve th
dif

f the

re o
s of
etwe
sis a
t co

ware

ess

ost p
grati
eve
he p
ffere
e pr

often
f eac
een 
and
nsid

e dev

part
ion/
lopm

prot
ence
rotoc

n pr
ch p
the
pro

dere
velo

t in 
/inst
men
oco
es in
col 

rese
phas
e ph
otoc
ed h
opm

sof
talla
nt [
ol de
n th
dev

ente
se a
hase
col i
here
ment

ftwa
ation
Som
evel
his 
velo

d u
are a
es. W
insta
, sin
t. 

are. 
n co

mm 
lopm
cha

opm

sing
asso
We 
alla
nce 

Th
orre
00]

men
apter
ent.

g th
ociat

onl
ation

the

he 
e-
]. 
nt 
r. 
.  

he 
t-
y 
n. 
y 

283

 

 

  © Springer-Verlag Berlin Heidelberg 2012
H. König, Protocol Engineering, DOI 10.1007/978-3-642-29145-6_9,

m
in

T
ment
nter

The 
t pr
racti

wat
roce
ions

terfa
ess w
s be

fall m
whic
etwe

mod
ch h
een 

del 
high
the

is a
hligh
e sta

a fa
hts 
ages

airly
in p
s are

y ro
parti
e no

ugh
icul
ot e

h rep
lar t
expr

pres
the d
ress

sent
diff
ed. 

tatio
feren
In 

on o
nt s
ord

of t
tage
er t

the 
es. D
to b

pro
Dep
e ab

toco
pend
ble

ol d
denc
to d

deve
cies
desc

elop
s an
crib

p-
nd 
be 

thhe sspeccificcs oof pprottocool developmmennt mmore acccurateely we usee a moore detaailed  



2

F

r
q
c
to
d
th
d
c
fi

84  

Figur

T
rem
quire
cons
oco

deriv
he s

desig
cific
ficat

re 9.

The 
ent
eme
sists
l. S
ved 
serv
gne
atio
tion

9  P

.1/2:

pro
s an
ents
s ide
Som

ind
vice 
d se

on, r
s fo

Proto

: Pha

toco
naly
 are
eally

metim
direc

con
ervi
resp

or th

ocol

ases

ol d
ysis
e us
y of
mes 
ctly
ncep
ce a

pect
he fu

 dev

s of t

deve
 to 
sual
f tw
onl

y fro
pt is
and 
tivel
urth

velop

the p

elop
fix 
lly w

wo st
ly th
om 
s no
pro

ly. T
her d

pmen

proto

pme
the 
writ
teps
he p
it. T

ot p
otoc
The
deve

nt pr

ocol 

ent b
req

tten
s: th
prot
This
art 

col a
ese s
elop

roce

dev

beg
quire
n do
he d
toco
s is
of t

are d
spec
pme

ss 

elop

ins 
eme

own
desig
ol is
 oft
the 
doc
cific

ent s

pmen

like
ents

inf
gn o
s de
ten 
TCP

cum
cati
step

nt pr

e an
s on
form
of t
esign
the 
P/IP
ente
ons

ps. 

roces

ny s
n the
mall
he s
ned
cas

P ar
ed i
s are

ss 

softw
e pro
ly. T
serv

d. Th
se w
rchit
n th
e th

war
otoc
The
vice
he s
with
tect

he s
e bl

re d
col 

e sub
e an
serv
h In
ture
ervi
luep

deve
to b
bse

nd th
vice
ntern
 (cp
ice
prin

elop
be d
que
he d
, if 
net p
p. S
and

nts o

pmen
deve
ent d
desi
req
prot
ecti

d the
or re

nt w
elop
desi
gn 

quire
toco
ion 
e pr
efer

with
ped. 
ign 
of t
ed, m
ols 
4.3

roto
renc

h re
Th
pro

the 
mus
bec
.2). 
col 

ce sp

equi
he re
oces
pro
st b

caus
Th
spe

peci

i-
e-
ss 
o-
be 
se 
he 
e-
i-

d
f
d
p

dev
fall 
dica
prop

elop
mo

ated
pert

pme
odel
d in 
ties 

ent m
, th
rec
wh

mod
e ph
ctan
ich 

del 
hase

ngle
infl

here
es a
s. W
luen

e. It
are i
We 
nce 

t is 
indi
intr
the

repr
icate
rodu
dev

rese
ed b
uce 
velo

ente
by a

the
opm

ed in
arrow
e sta

ment

n Fi
ws, 
age
pro

igur
wh

s ne
oces

re 9.
hile 
ext.
ss ar

.1/2
the

. Th
re d

2. In
 res
he c
discu

n con
spec
char
usse

ntra
ctive
ract
ed a

ast t
e re
eris

after

to th
esult
stic 
rwar

he w
ts ar
pro
rds.

wate
re in

otoc
  

er-
n-
ol 



  9.1  Development phases 285 

The design phase is followed up by the verification stage in which the func-
tional correctness of the design is proved. In general, the design and the verifica-
tion processes require several iterations. Protocol verification differentiates be-
tween the verification of special and general properties. The verification of the 
specific properties examines whether the designed protocol really provides the 
specified service. The verification of the general properties proves the logical con-
sistency of the design. In practice, however, a complete verification of the proto-
col design is usually not possible so errors in the service and protocol specification 
are sometimes discovered even years later. 

The protocol design does not refer to a specific target system. It has a generic 
character, since protocols should run under any execution environment or operat-
ing system, respectively. Due to the implementation independence of the protocol 
specification, it does not contain any system-related specifications. In order to im-
plement the protocol on a concrete target system a third design phase – imple-
mentation design – is needed. It maps the protocol onto the target system taking 
the constraints of the execution environment into account. This includes also the 
selection of protocol options and implementation-related refinements of the proto-
col specification to dissolve abstractions, such as nondeterminisms or internal 
events. The decisions made are fixed in the implementation specification which 
forms the basis for the coding of the protocol. 

The implementation process may be accompanied by a performance evalua-
tion to assess whether the specified protocol meets the desired performance re-
quirements in the target system. This allows the implementer to optimize the im-
plementation design and to reason about implementation alternatives. Such eva-
luations are especially of interest for protocols that have to satisfy real-time re-
quirements, such as multimedia protocols. Performance analyses require addi-
tional implementation-dependent information about the target system, such as 
resource availability, time constraints, and the expected workload. These nonfunc-
tional parameters are usually not contained in a formal specification. They must be 
added in an appropriate way. Based on this extended specification an assessable 
performance model is generated. The execution of the performance model results 
in various performance measures. This is done by analytical methods or simula-
tion. 

The implementation process may be accompanied by further validation steps. 
Possible validations could be a consistency check between the protocol specifica-
tion and the implementation specification or the use of program verification. In 
practice, however, this is rarely done due to the complexity of the protocols, espe-
cially as the implementation specification is often not explicitly worked out. Con-
sistency checks are usually left in practice to the final test phase. Tools for auto-
mated code generation ensure consistency through defined transformation rules. 
Their use though is limited. 

The protocol test has the task to detect errors in the implementation of the pro-
tocol. Different kinds of tests are applied in the protocol development process. Er-
rors made during the implementation and coding phase are detected and fixed by 
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classical white box testing and debugging. The main form of protocol testing is the 
conformance test which proves compliance between the implemented protocol 
and the specification. The conformance test is a black box test that considers only 
the exterior behavior of the implementation. The conformance test is mainly de-
ployed to prove compliance with the protocol standards. Compliance can be con-
firmed in an authorized test laboratory in a certification procedure which issues 
an official certificate as a quality measure. For the integration of protocol imple-
mentations in real network environments, another test plays an important role in 
practice: the interoperability test. It tests the interoperability capabilities of vari-
ous implementations of the same protocol. This is to identify differences in the in-
terpretation of the specification/standard by the implementers as well as the use of 
different protocol options and parameters. Additional tests are the robustness test, 
which examines the robustness of the implementation against incorrect inputs, and 
the performance test, which evaluates the performance of the implementation. 

Finally the tested protocol is integrated in the execution environment and con-
figured according to its demands. Only now network addresses and time-out val-
ues are set. 

9.2 Singularities of protocol development 

Protocol development differs from traditional software development by a num-
ber of singularities. Some of these are reflected directly in the protocol develop-
ment process, but mostly they influence the various development stages. Compar-
ing the protocol development process with traditional software life cycle models, 
the presence of several specification levels is in evidence first. The service speci-
fication corresponds in its essence to the requirement specification of software de-
velopment, which specifies the expected exterior behavior of a program or a mod-
ule. The service specification describes the interactions at the service interface, 
i.e., the interactions the service users may observe. It makes no statements about 
how the service is provided by the service provider. This is the task of the proto-
col specification, which defines which interactions at the system interface have to 
take place to provide the service. Consequently, the protocol specification can be 
interpreted as an abstract implementation of the service specification. This also 
explains why the development of formal description techniques for protocols has 
been a challenging task compared to traditional software specification. Protocol 
specifications describe abstract implementations rather than only summarizing re-
quirements. Unlike conventional software, a protocol is implemented several 
times on different computer systems with various operating systems. This has two 
consequences. First, the protocol description must be implementation independent, 
i.e., it must be sufficiently abstract and does not rely on a specific operating sys-
tem. Second, implementation independence forces the protocol description to 
leave certain decisions open and shift them to the implementation to ensure system 
independence and to support a broad application range. This is often solved by 



  9.2  Singularities of protocol development 287 

means of protocol options. The mapping of the protocol description in a specific 
target environment requires therefore a further refinement of the specification con-
cerning the constraints of the target system. For this, a third specification is requi-
red: the implementation specification.  

The different purposes of the service and protocol specifications also explain 
the need for a specific protocol verification. The purpose of the protocol verifica-
tion is to prove that the designed protocol really provides the specified service, 
i.e., that the abstract implementation of the service is correct and consistent. The 
protocol verification (ideally) confirms the correctness of the service and protocol 
specifications as a precondition for their multiple implementations.  

One consequence of the implementation independence of protocol descriptions 
is the need for international standardization of protocols. Standards play an im-
portant role in the protocol development process. All protocols used today in open 
networks are published as standards. Internet protocols are published in Requests 
for Comments (RFCs). The majority of standards are described informally. The 
elaboration of standards is often the result of long empirical design work of work-
ing groups in international standardization bodies, such as the IETF, the ITU-T, 
and industry consortia. Systematic design methods are rarely used. After elaborat-
ing the standard the purpose of the working group is mostly finished. Implementa-
tions of the protocol are usually performed independently from the original design. 
Errors in the standards are only detected by subsequent verifications, often in the 
academic environment. Hence, there is rarely a consistent development of com-
munication protocols from scratch, i.e., from requirements analysis via design and 
verification to implementation and installation. The majority of the protocol de-
velopers are hardly involved in the protocol design itself but rather in the subse-
quent phases of its implementation and validation. The standards form the inter-
face between the two stages of protocol development. 

The importance of standards in the protocol development process explains the 
need for additional tests. First, it must be proved whether a protocol implementa-
tion is in compliance with the standard. This is tested in the conformance test. 
The outcome can be officially assessed by a certificate, which is especially need-
ed as a quality measure for commercial use. The conformance test alone is not suf-
ficient to guarantee the interoperability of various implementations of a protocol. 
The reason for this is the freedom that the standards leave to the implementers, 
e.g., the already mentioned protocol options. So it may happen that two conform-
ing implementations do not run together. Therefore, a further test – the interoper-
ability test – is required to examine the interoperability of various implementa-
tions of the same protocol. Other requirements, such as the robustness of the 
implementation and its performance, are not covered by the functional conform-
ance test. For this, complementary tests may be applied. 

 
 



10 Design 

The protocol development process, as it was described in the previous chapter, 
contains several design phases: the service design, the protocol design, and the 
implementation design. Although the design phases comprise in detail many im-
portant and creative design decisions, relatively little attention has been paid to the 
design issue in the literature. Many publications use the word design in their head-
lines, but they refer more to the specification and the validation phase rather than 
to the design process itself. Nowadays protocols are still prevailingly developed 
empirically using more or less heuristic design methods. In contrast to the other 
phases of the development process, no established methods or techniques exist for 
protocol design. Therefore, we restrict ourselves in this chapter to a brief overview 
of interesting approaches related to systematic protocol design. Since the design 
process is closely related to the development of the (formal) protocol specification 
to document design decisions, we also discuss some issues concerning specifica-
tion development in this chapter. 

10.1 Systematic protocol design 

Communication protocols are mainly developed empirically, mostly in standar-
dization bodies, at universities, or in research institutions. Often they are the result 
of a long development process in working groups, e.g., in the IETF. Systematic 
design methods are rarely applied. This is because systematic design methods, on 
the one hand, are still not mature enough and, on the other hand, the various de-
mands on protocols regarding data formats, services provided, communication re-
lations, and interactions with the environment are hard to cover with existing de-
sign methods.  

The design issue has attracted large theoretical interest because systematic de-
sign methods promise interesting benefits, such as reduced error rates, a faster de-
velopment speed, and documentation support. Various approaches have been re-
ported using CCS/LOTOS models [Kant 96], FSM/EFSM models [Higa 93], and 
in particular different types of Petri nets [Yama 07].  

Design methods for protocols can be divided into synthetic and analytical ap-
proaches [Prob 91], which we consider next. 

Synthetic design methods 
Synthetic design methods have been intensively investigated since the begin-

ning of Protocol Engineering [Zafi 80]. The basic idea is to synthesize the proto-
col by completing a given partial draft. This can be done either interactively or au-
tomatically, by applying a given set of rules or a derivation algorithm, respecti-
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vely. The main benefit of the synthetic approach is its ability to ensure important 
correctness properties, such as deadlock and livelock freedom, and termination 
(see Chapter 11) through the design. This allows one in principle to avoid an ex-
plicit verification phase, but most approaches are tied to certain assumptions (e.g., 
synchronous communication, limited state space) that restrict this benefit (see 
[Prob 91]).  

There are two approaches to deriving a protocol specification from a given par-
tial draft: (1) starting from the service specification or (2) using the peer entity 
specification. Examples of the first approach are the methods described in [Prob 
91], [Higa 93], [Kant 96]. The approach of [Prob 91] uses finite state machines. It 
analyses the interactions at the service interface and generates the related transi-
tions according to predefined transformation rules. The rules are determined by 
the structure of the service specification, the communication direction of the ser-
vice primitives, and their causal dependencies. The method assumes a reliable 
communication channel. The derived protocol specification meets important pro-
perties, such as deadlock and livelock freedom. It contains no unspecified events. 
An extended version of the approach also supports the specification and treatment 
of parallel processes at the service access points and the use of an unreliable 
transmission medium. 

An example of the derivation of the protocol specification from the peer entity 
is given in [Rama 85]. The approach starts from a Petri net specification of the en-
tity. It is converted into an FSM representation and verified for correctness. From 
this specification the partner FSM is derived using various transformation rules. 
This can be done automatically or interactively. The derived FSM is mapped into 
a Petri net again. It was used to re-design the ITU-T X.21 protocol. Later it was 
extended for unreliable communication.  

A different approach is the structured synthesis proposed in [Choi 87]. This 
technique applies an interactive synthesis based on previously designed smaller 
protocol units that represent closed interaction patterns, which are derived from 
typical interaction scenarios, such as connection set up. These units possess exact-
ly defined interfaces via which they are connected with the other units. The result-
ing design is finally converted into an FSM representation. The method guarantees 
a deadlock-free synthesis with no unspecified events. The applicability of the me-
thod was also demonstrated by re-designing the X.21 protocol. A similar approach 
– the SDL design patterns – is presented below. 

In summary, it has to be mentioned that protocol synthesis is primarily of theo-
retical interest. The scope of the various approaches is not limited to communica-
tion protocols. It is much broader and comprises distributed applications and sys-
tems in general, collaborative computations, control systems, and others [Yama 
07]. The assumptions made are often simplifying or use contexts which are not 
typical for real-life communication protocols. So in [Kant 96], the existence of a 
central controller and more than two entities is assumed. The controller sends syn-
chronization messages to coordinate the different process runs. In substance, syn-
thesis methods provide means to map a given service specification (or a peer entity)
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pattern. For this, they can ensure a correct design according to the applied descrip-
tion method or technique, respectively. These methods do not take into account 
design aspects – and this is their limitation – which cannot (or only with great dif-
ficulty) be derived from the service specification, such as data format specifica-
tions, error handling procedures, and others. Especially, protocol functions that are 
related to the underlying layer, such as flow control, fragmentation, connection 
mappings etc., cannot be derived this way. For this reason, protocol synthesis will 
have limited importance as a design approach for real protocols in the near future. 

Analytical design methods 
The analytical design methods correspond to the traditional approach of a step-

wise protocol design based on more or less accurate requirement definitions. The 
first design steps are typically ad hoc; e.g., by defining the exchanged messages or 
describing the first interactions. For this, MSCs are often used (cp. Section 8.2). 
These designs are verified, revised, and refined in several iteration steps until the 
protocol (fragment) is completely specified. In contrast to the synthetic design 
methods, these approaches do not guarantee an error-free design. Therefore the 
design has to be verified. 

In order to diminish the ad hoc nature of this approach systematic design meth-
odologies are needed. Such a methodology, for example, was developed for 
LOTOS and tested in several case studies [Viss 92], but it did not achieve practi-
cal relevance. Another example is the SDL design pattern approach described in 
[Gotz 03], [Dors 05]. 

The SDL design pattern approach is based on the design pattern technique 
applied in software engineering for the reuse of design decisions. An SDL design 
pattern is a reusable, generic template, described in SDL, for a recurring protocol 
sequence. It is stored in a pattern pool. The integration of SDL design patterns into 
the design is part of the overall protocol development process. The objective of 
this process is the development of an SDL specification. The starting point is a set 
of design requirements which are analyzed and summarized in an analysis model 
consisting of an architectural part described in terms of a UML object model and 
collaboration scenarios described in MSC. Based on the analysis model the de-
signer selects appropriate patterns from the pattern pool (see Figure 10.1/1). The 
selected patterns are adapted to the given embedding context creating pattern in-
stances. The adaptations are restricted by constraints of the SDL context, and by 
renaming and refinement rules in the pattern definition. Finally the pattern in-
stance is included in the SDL specification. Thereafter, the next set of design re-
quirements is considered. This results in an incremental design process that even-
tually leads to a complete SDL specification.  

into a protocol specification based on a relatively simple message exchange 
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For the protocol specification, protocol-specific heuristics are applied, such as 
 

H5 Refine the service design 
 
H6 Add flow control, if applicable 
 
H7 Add multiplexing, if applicable 
 
H8 Gradually relax the reliable communication assumption by taking 

transmission errors and/or reordering into account, if applicable 
 

and others. A demonstration of the design process for the InRes protocol is given 
in [Gotz 03]. 

The SDL design pattern approach supports the reuse of design templates and 
experience of various applications. It speeds up the development of the specifica-
tion, and facilitates the documentation of the design as well as its validation, since 
refinements and adaptations can more easily be traced back. Experiments have 
shown that the approach remarkably reduces error rates during the design phase 
[Gotz 03]. The focus of the SDL design pattern approach, however, is more ori-
ented towards an incremental and systematic development of SDL specifications 
rather than to a creative protocol design process as discussed above. Many crea-
tive design decisions, such as system architecture design or message exchange, are 
described in terms of UML and MSC. Nevertheless, the approach can essentially 
improve the quality of the service and protocol specifications and help to diminish 
some of the problems encountered when developing formal specifications, as dis-
cussed in the following section. The approach has been successfully applied to the 
engineering and re-engineering of several communication protocols and systems, 
such as the Internet Stream Protocol ST2+, a subset of the RTP protocol, a con-
troller area network, a light control in a building, and others. The basis for a suc-
cessful application is the size of the pattern pool which has grown up in various 
projects, although the number of patterns required for a specification has proved to 
be not that large. 

10.2 Specification development 

After discussing different aspects of the design process, we now address the 
development of formal specifications. Although much has already been said about 
the specification in the previous chapters, certain aspects of specification devel-
opment have not yet been mentioned. This we do now.  

The specification documents the design decisions. Since the design of a proto-
col usually requires several iterations, it is recommended to use formal description 
techniques already during the design phase to verify the various versions of the 
draft and, where appropriate, to assess their performance. For this reason, there is 



  10.2  Specification development 295 

no sharp line between the design process and the specification development. Nev-
ertheless, the service and protocol specifications represent important steps in the 
protocol development process because both specifications provide the basis for the 
further protocol development stages, which have particular demands in terms of 
accuracy and completeness. Important aspects for the development of both speci-
fications are the selection of the description technique and the way the specifica-
tion is accomplished.  

10.2.1 Selection of the description technique 

The selection of the formal description method or technique is a priori not an 
easy decision because there is no method that meets all requirements. The exist-
ence of standard description techniques has laid an emphasis on these languages, 
but the existence of several languages has partitioned the users in “fan communi-
ties”. Sometimes, other techniques, e.g., in-house solutions, are preferred in order 
to use existing tools or for administrative reasons. 

As long as the development of new protocols is not directly linked to a certain 
formal description technique, there will always be a broader range of techniques 
and methods which may be applied. On the one hand, this may be prejudicial, 
since, as we have seen in Chapter 8, changing between FDTs is not that easy and 
their use requires experience. On the other hand, it may be useful because differ-
ent methods and techniques emphasize varying aspects of the design. For instance, 
more abstract representations, such as Petri nets or temporal logics, are better suit-
ed for analysis and verification purposes than descriptions in SDL, which better 
support the implementer. The combined use of different formal techniques is, 
therefore, an advantage for the protocol and system development process as a 
whole. The problem is the mapping of the various representations (possibly auto-
matically) onto each other preserving the semantics of the specification. This is 
very difficult to achieve due to the complexity of the formal descriptions. 

Now the question is what are the criteria to select the description method or 
technique, respectively? Generally speaking, one should select that technique 
which meets best the requirements of the protocol or system to be designed. In 
practice, the decision is much more complicated because many criteria may influ-
ence the selection. The selection criteria can be differentiated into general and spe-
cific ones. 

General selection criteria 
The general selection criteria relate to the context of the application of the for-

mal description technique or method. Important criteria include: 

 Pursued objectives 
The description techniques are based on different semantic models and con-
sequently have divergent properties which support the various phases of the 
protocol development process differently. Therefore, the selection depends 
substantially on the objectives of the respective design. 
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 Administrative background 
Often, a company or organization prescribes the use of certain description tech-
niques. A typical example is the use of SDL in the telecommunication sector. 

 Psychological aspects 
Users’ experience and training have a considerable influence on the selection of 
formal techniques. It may also influence administrative decisions. 

 Availability of tools 
The support of the description technique through applicable, mature, and/or 
commercially available tools can often be a decisive factor in the selection. 

Special selection criteria 
The special selection criteria relate to the specific characteristics of the de-

scription techniques themselves. They reflect the users’ assessment of how the 
demands on formal description techniques are met, as we formulated them at the 
beginning of Chapter 8. Some important selection criteria are listed in Table 
10.2/1. The assessment is of course essentially influenced by subjective factors. 

 

Applicability 

Is the description technique appropriate for the design, i.e., does it 
meet its specific requirements? Does it allow one to specify service 
and protocol in a reasonable form? What is the application range of 
the technique? 

Interpretation 
Does the description technique guarantee a unique, comprehensible, 
and readable presentation, which avoids different interpretation and 
thus makes varying implementations of the protocol unlikely? 

Naturalness 
Does the description technique correspond to the needs of the appli-
cation area and its related requirements? Does it support the intui-
tive reasoning of the users? 

Homogeneity 
Do the features of the description technique belong to the same 
model world or do they complement each other? 

Completeness 
Does the description technique allow one to describe all relevant re-
quirements of the design? 

Abstraction Does the description technique possess the capability to abstract 
away irrelevant details? 

Ease to learn What is the effort required to learn the description technique? 

Design sup-
port 

Can the description technique be applied during the design phase? 
How does it support the subsequent phases up to implementation and 
testing? 

Tool support What kinds of tools are available? 

Table 10.2/1: Specific criteria for the selection of a description technique 
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This holds in particular for constructive techniques which represent quasi-
implementations of the protocol or system design on a more abstract level (cp. 
Section 7.3). Thus, the resulting specification is not always optimal and some of 
the benefits of formal descriptions may get lost. This can only be avoided if au-
thorized formal descriptions are provided by standardization bodies for use as ref-
erence specifications. Only thus, the uniqueness and binding character of the spec-
ifications as well as an optimal specification structure can be ensured. This is not 
yet the case. With few exceptions, most formal descriptions are developed in the 
academic environment. They can hardly be used as binding reference specifica-
tions because they are mostly not complete. Furthermore, formal descriptions are 
often only available after the first protocol implementations have appeared. This 
reduces their importance. 

 

Further reading  
As with Chapters 7 and 9, this chapter extracts facts which are contained in ma-

ny publications on protocols and their description. Besides the cited papers we 
again recommend the proceedings of the FORTE conference series [FORTE] in-
cluding its predecessor PSTV (Protocol Specification, Testing, and Verification) 
for further studies. 
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are summarized in Table 11.1/1. For each property, we give the respective protocol
behavior. 

 

 
Table 11.1/1: Important general properties to verify 

 
The verification of special properties examines properties that are determined 

by the semantics of the designed protocol. The purpose of this verification is to 
prove that the designed protocol provides the specified service.  

11.2 Verification techniques 

Verification techniques for communication protocols can be generally divided 
into 

 model-based, 
 deductive, and 
 hybrid 

methods. Model-based verification checks the correctness, completeness, and con-
sistency of the specification using proof techniques which operate directly on the 
semantic model of the applied formal description technique. Examples of model- 
based verification are the reachability analysis of finite state machines and the 
static and dynamic analysis of Petri nets. 

Deductive verification is based on the use of axioms and inference rules to 
prove the correctness of the design. It uses the syntax of the description technique 

No unreachable actions 
The protocol does not contain any actions which will 
never be executed. 

Deadlock freedom 
The protocol will never reach a state which it cannot 
leave any more and in which, consequently, no further 
interactions with the environment are possible. 

Livelock freedom 
The protocol will never enter an unproductive cycle 
(e.g., the repeated exchange of the same message) 
which it cannot leave by itself. 

Fault tolerance and  
resynchronization 

After an error or in an abnormal situation, the proto-
col will return within finite time to a state from which 
it can continue with a specified behavior. 

Completeness 
The protocol does not contain unspecified events, i.e., 
for all possible events a reaction is specified. 

Termination 
The protocol will always reach one of the possible fi-
nal states; in cyclic protocols the initial state.  

the consistency and completeness of the design. The most important properties are 
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as a formal basis extended by axioms on semantic relationships and inference 
rules, thus forming a calculus which purely syntactically permits conclusions on 
the correctness of the specified statements. Syntactic deduction leads to a chain of 
theorems that are derived from each other and proved. These proofs require expe-
rience and are often performed by hand. A theorem prover can support this pro-
cess. The proof of protocol invariants is part of the deductive verification, such as 
the order of message sequences or buffer limits. Manual verifications, however, 
have proven too expensive, lengthy, and error-prone. They are of little importance 
for practical protocol verification, particularly as not all properties of interest can 
be verified with reasonable efforts [Holz 91]. 

Hybrid techniques try to take advantage of both approaches by combining the 
good tool support of the model-based techniques with the clear deduction rules of 
syntactic verification. The best known example is model checking.  

The choice of the verification method depends crucially on the used description 
technique or method, respectively. Different techniques are applied to the various 
specification methods. The standardized formal description techniques have not 
been designed for the specific needs of verification. They are primarily designed 
to meet specification requirements. Therefore many formal protocol descriptions 
cannot be directly used for verification. They must be transferred into a suitable 
intermediate representation which can be used as input for the verification process. 

In the subsequent sections we present the most important verification tech-
niques for communication protocols. We discuss their application fields and the 
conditions for their use. 

11.3 Reachability analysis 

The most commonly used verification method for FSM/EFSM based protocol 
descriptions is reachability analysis which aims at the exhaustive exploration of 
all possible behaviors of the protocol entities by generating all reachable states and 
transitions described by the finite state machines. 

11.3.1 Reachability graph 

For this purpose, the reachable states of the “protocol systems” are generated, 
which comprises the two entities and the communication channel between them. 
Starting from the initial state, a graph is generated that contains all reachable states 
as nodes and the associated state transitions as edges. This graph is called a 
reachability graph. The states of the reachability graph represent global system 
states.  

Figures 11.3/1-2 illustrate the principle for the connection set up of the XDT 
protocol according to Figures 7.4/1 and 7.5/1. The figures only represent the major 
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respect to the equivalence of the externally visible behavior [Krum 90]. Thus, it 
can be shown that the protocol specification really provides the specified service. 

Reachability analysis consists of two steps: the generation of the reachability 
graph and its subsequent analysis. The graph is generated iteratively by traversing 
all possible execution paths of the protocol system. The derivation begins with the 
initial state by generating the successor state for all executable transitions. Each 
generated state is stored. In addition, each new state is examined to see whether it 
has been already reached via another execution path to avoid the state is being an-
alyzed several times. The generation of the reachability graph terminates when no 
new successor state is found. Consequently, it does not terminate for an infinite 
state space. 

In the 1990s on-the-fly techniques were developed which connect the graph 
generation with the analysis of system properties. The graph generation stops 
when an error in the specification has been revealed. The benefit is that this avoids 
the storing of the graph states for further analysis (see below). Figure 11.3/3 con-
tains the algorithm for an on-the-fly analysis. The presented principle is that of full 
search, in which all states of the graph are inspected. The algorithm uses two sets: 
the working set S and the set of generated states W. The set S contains all states 
that still have not been fully analyzed, i.e., their successor states have not been ful-
ly generated. The set W contains all states generated up to now. In case of a suc-
cessful completion of the analysis these are all reachable states of the system. 

full_search()  
   {add(W,q0); // q0 - Initial state 
     add(S,q0); 
     while  empty(S) do 
          {q = select(S); 
            remove(S,q); 
            if (error_state(q)) 
                {error_report()}; // Abort analysis 
            forall successor states p of q // Generation of successor states 
                 {if (  member(W,p)) 
                       {add(W,p); 
                         add(S,p); 
                       } 
                 } 
          } 
   } 

Figure 11.3/3: Principle of full search (after [Holz 91]) 
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because the states cannot be stored any longer. This phenomenon is called state 
space explosion. It represents the central issue of the applicability of reachability 
analysis, although the number of reachable states that can be analyzed has in-
creased considerably in the past two decades. Even smaller protocols often reach a 
state space size from 105 to 109 states as the following assessment of the XDT pro-
tocol demonstrates. It takes the major and minor states into account, where for the 
latter only the possible value ranges are counted. We omit the input queue for the 
sake of simplicity. 

 
        XDT                                Sender entity                    Receiver entity 

                                               _____________________________________ 
 
 Major states                                   5                                       3 
 
 Minor states                     sequ:  n                              N:     n 
                                                 last:  2                     
                                                 buffer:   k 
                                                 N:          n 
                                                 i:  k 
 
The constants n and k indicate the number of data units to be transferred and the 
size of the buffer to store unconfirmed DT-PDUs. If we assume the values 50 and 
5 for n and k 6 states, i.e., 
approximately 108 states. 

Exhaustive search remains therefore restricted to smaller protocols (up to 109 
states). Most protocols have a larger state space. However, not all states and inter-
leaving sequences are of interest for the protocol execution and the error search. 
Mechanical detection and removal of such states might be more difficult than the 
continuous analysis of the state area. Therefore, other procedures have been re-
quired to cope with the complexity of the state space.  

Coping with the state space problem 
The state space explosion problem has been studied intensively. A number of 

approaches have been developed. Some important ones are sketched here. More 
detailed representations can be found in [Holz 91], [Lai 98], and [Clar 00]. 

Decomposition and partitioning 
Decomposition and partitioning is one the oldest approaches to solve this pro-

blem [Chow 85]. It uses the relative autonomy of protocol parts and phases by an-
alyzing these parts separately which results in smaller state spaces for each. But 
this method hardly covers dependencies between the protocol parts. 

Projection 
This approach reduces the size of the reachability graph by model simplifica-

tion without changing the externally visible behavior of the protocol automata 

, the state space of the XDT protocol comprises 93.75*10
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[Lam 84], [Krum 90]. For this purpose, a projection function is created for each 
function to be verified by grouping states and the associated events in one state. 
As a consequence, the logical behavior of the whole protocol cannot be analyzed 
any longer. This requires several projections. 

Controlled partial search 
Controlled partial search analyses only a subset of the reachable states to hold 

the number of states to be stored within feasible limits. The principle of the full 
search of Figure 11.3/3 is modified for this so that not all successor states of the 
reached state are generated: 

 
  for some successor states p of q // Generation of successor states 
        {if (  member(W,p)) 
            {add(W,p); 
              add(S,p) 
            } 
         } 
 
The size of the state space which can be analyzed by partial search depends on 

the applied search method and the available memory. It should be arranged that 
the main protocol sequences are covered, but this cannot be guaranteed. The cov-
erage of controlled partial search has some commonalities with the test coverage 
(see Section 14.3.4) because only parts of the state space are examined. As with 
testing, criteria have to be formulated to evaluate the quality of the search. Here 
the analysis coverage and the error detection rate are used. The analysis coverage 
is characterized by the ratio of the analyzed states to the number of all possible 
system states. This measure indicates how well the search covers the possible sys-
tem states, but it gives no indication whether the relevant protocol sequences are 
covered. The error detection rate is defined by the ratio of detected errors to the to-
tal number of existing errors, though this is difficult to capture.  

There are a couple of different techniques to control the partial search. They 
range from depth restricted search, via scattered search, guided search, probabil-
ity-based search to partial ordering search. A detailed description of these tech-
niques can be found in [Holz 91]. 

Random search 
In contrast to controlled partial search, random search (random walk) selects 

the next state to be analyzed arbitrarily (see Figure 11.3/5). The analyzed states do 
not to have be stored. Random walk is a method for very large systems, when it is 
no longer possible to store a reasonable set of states in order to apply other analy-
sis methods. The random search is independent of the size of the system to be ana-
lyzed. Like testing (see Chapter 14), it can only detect errors, but it cannot prove 
the absence of errors because it is not decidable whether all achievable states were 
analyzed. A good error detection rate has nevertheless been stated for longer anal-
ysis times [West 89]. 
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random_search()  
   {p:= q0; // q0 - Initial state 
     repeat until analysis stop 
         {if (error_state(p)) 
             {error_report();  
               p:= q0 
             }         
             else p:=a successor state of p 
        } 
    } 

Figure 11.3/5: Principle of random search (after [Holz 91]) 

Symbolic Algorithms 
An essential reduction of the presentation of the state space can be achieved by 

using a symbolic representation. For this, the reachability graph is represented by 
mapping successor relations between states of the reachability graph onto ordered 
binary decision diagrams (OBDDs) [Brya 86], [McMi 93], a very popular repre-
sentation for Boolean functions. They provide a canonical representation for Boo-
lean functions which is often much more compact than other representations and 
can be manipulated very efficiently. OBDDs are widely used, especially in hard-
ware verification [Eben 05]. Unlike the methods mentioned previously, the state 
space is not generated explicitly when using OBDDs. It is represented by Boolean 
functions as described in [McMi 93], [Clar 00]. 

OBDDs are a variant of the more general binary decision diagrams (BDDs). A 
BDD is a rooted directed acyclic graph which is derived from a binary decision 
tree by merging isomorphic sub-trees and by using two types of terminal nodes: 0-
terminal and 1-terminal nodes (see Figure 11.3/6). Each non-terminal node is la-
beled by a variable xi and has two successor nodes low(v) and high(v). A binary 
decision diagram B with root v determines a Boolean function fv(x1, …, xn) as fol-
lows [Clar 00]: 

(1) If v is a terminal node: 
 - if (value(v) = 1 then fv(x1, …, xn) = 1 

         - if (value(v) = 0 then fv(x1, …, xn) = 0 
     (2) If v is a non-terminal node with var(v) = xi then fv is the function 
               fv(x1, …, xn) = (xi ∧ flow(v)(x1, …, xn))∨ (xi ∧ fhigh(v)(x1, …, xn)). 

Figure 11.3/6a shows an example of a BDD. The solid lines are used for high-
edges, whereas dashed lines indicate a low-edge. Ordered binary decision dia-
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non-stubborn transitions. The stubborn set contains generally a subset of all con-
currently executable transitions that are not affected by the switching of other 
transitions and they do not themselves affect other transitions. Only one of the 
possible interleaving sequences of this subset is taken into account when generat-
ing the state space. It is not trivial though to determine this subset. Often heuristics 
are applied [Clar 00]. 

Supertrace algorithm 
Another way to mitigate the state space explosion problem is to improve the 

storable number of states, given by the ratio of available space and the number of 
bytes needed to store a state. This was done in the supertrace algorithm developed 
by Holzmann that is described in [Holz 91]. The algorithm reduces the memory 
needed to store a state to one bit so that a larger reachable space can be analyzed. 
A new state is stored in the memory using a hash function. This function always 
returns the same value for the same state thus indicating that the state already has 
been reached. Hash conflicts are the steering element here. If state space is sparse 
and the available memory is sufficiently large the method shows good results. It 
behaves like full search for smaller protocols. When this relation declines, the al-
gorithm converts into a randomized partial search for larger protocols. Compared 
to other controlled partial search algorithms, however, it behaves more optimally.   

11.4 Petri net analysis 

Petri net analysis is another interesting approach to protocol verification. Its ca-
pabilities are briefly outlined in this section. As in Section 7.6, we focus on the 
verification of place/transition nets. Examples of the use of other net types are 
contained among others in [Bill 99]. 

11.4.1 Preparation of the Petri net for analysis 

In order to perform a Petri net analysis it is required that the specification either 
exists as a Petri net or can be derived automatically from the protocol specification 
(cp. Section 7.6). If the specification consists of several networks the partial nets 
have to be merged at the fusion places. Figure 11.4/1 shows the Petri net for the 
connection set up phase of the XDT protocol that has been formed from the sub-
nets of the protocol parts connect_s and connect_r (cp. Figure 7.6/4). The fusion 
places are grey. In addition, the behavior of the environment must be modeled to 
ensure that the net has a bounded state space. The interactions at the service inter-
face are modeled through the behavior of the service users. The network in Figure 
11.4/1 contains further some fusion places which are only connected by an edge. 
These places refer to timers and to the beginning of the DATA_ TRANSFER 
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11.4.2 Behavioral properties of Petri nets 

To verify communication protocols with the help of Petri nets it is necessary to 
map the protocol properties onto properties of the Petri net to assess them by 
means of the net analysis. The most important properties of place/transition nets 
are boundedness, liveness, and reversibility. These properties are orthogonal and 
cannot be derived from each other. So a reversible net, for example, may be boun-
ded or not bounded and live or not live.  

Boundedness 
A Petri net N = (P, T, F, m0) is called bounded if the marking set RN(m0) (cp. 

Section 7.6), i.e., the set of all reachable markings from the initial marking m0, is 
finite. Otherwise, the network is unbounded. A Petri net is bounded exactly, if 
there is a number np Nat for each place p P, so that for all m  RN(m0) we 
have m(p) np, i.e., the number of tokens on place p does not exceed a certain val-
ue np for each marking. A Petri net with np = 1 for all places is called safe or 1-
bounded. Boundedness is a safety property (cp. Section 7.8) which excludes unde-
sirable system properties, such as the requirement of unlimited resources or chan-
nel capacities. At the same time it is an important prerequisite for the analysis of 
the nets. Unbounded Petri nets are more difficult to analyze. 

Liveness 
A Petri net N = (P, T, F, m0) is said to be live if for all transitions t T and each 

marking m RN(m0) there exists a successor-marking m' RN(m) of m in which t is 
enabled. In a live net each transition is able in principle to fire again. Liveness ex-
presses the ability of the modeled system that its elements can be executed again 
and again. The verification of liveness may be costly and impractical for large sys-
tems. For that reason, different levels of liveness have been introduced [Mura 89]. 

 
Important net properties are related to liveness: 

 Reachability 
 A marking and/or a state m' is reachable if there exists a sequence of transi-

tions that transfers the net from the initial marking m0 to the marking m', i.e., 
m' RN(m0). 
 Deadlock freedom 

 A Petri net N = (P, T, F, m0) is deadlock-free if it never reaches a marking or a 
state m RN(m0), respectively, in which no transitions are enabled and conse-
quently no more transitions can fire. A live net is also deadlock-free. One dis-
tinguishes between partial and total deadlocks. In a partial deadlock there is a 
state m RN(m0) and a subset T ' T of transitions, so that for all states 
m' RN(m) reachable from m there is no transition from T'' which is enabled in 
m'. These transitions are not live. A partial deadlock blocks only a subsystem, 
while other parts of the system can be executed. A total deadlock, in contrast, 
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blocks the entire system, i.e., it reached a state in which no transition can fire 
any longer.  
 Dead transitions 

 A Petri net N = (P, T, F, m0) may contain transitions that will never fire. Dead 
transitions indicate unreachable actions in the modeled system. Transitions that 
are already dead in the initial marking m0 are called m0-dead, but transitions 
may also later become dead after reaching another marking m. A Petri net that 
contains dead transitions is not live. 
 Livelock freedom 

 A Petri net N = (P, T, F, m0) is livelock-free if the net never reaches a marking 
m RN(m0) from which it can repeat endlessly the same transition sequence 
(unproductive cycles). Livelocks can arise, for example, through conflicts (cp. 
Section 7.6). 

Reversibility 
A Petri net N = (P, T, F, m0) is said to be reversible if m0 is reachable from m 

for any marking m RN(m0) so that the net is always able to return to the initial 
state independently of the current marking. Note that it is not always necessary to 
return to the initial state but rather to other selected states. These states are called 
home states [Mura 89]. Reversibility implies system features, such as fault toler-
ance and self-synchronization, that indicate whether the system can return after an 
error or from an abnormal state to a state with a specified reaction. 

11.4.3 Analysis methods 

The analysis methods of Petri nets may be divided into three classes [Hein 98]: 

Net-based animations 
Net-based animation checks the functional behavior of the modeled system by 

simulating the token flow. There are various tools. Net-based animation is a spe-
cial form of prototyping and not, strictly speaking, a verification method accord-
ing to the discussion in the introductory section of this chapter. It may give a 
deeper insight into the operation of the modeled system, but it is not a substitute 
for systematic net analyses. 

Static analyses 
Static analyses inspect the net without creating the state space. They derive be-

havioral net properties from the structure of the net. The methods of static analysis 
are simpler than those of the dynamic analysis. They often require less memory, 
since they do not generate the reachable states of the net. Static analyses serve 
primarily for the analysis of general properties. The main methods are: 

 Net-based animations, 
 static analyses, and 
 dynamic analyses. 
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Net reduction 
The complexity of the nets is one of the major weaknesses of Petri nets. Net re-

duction attempts to reduce the net size by substituting subnet structures by smaller 
ones preserving the net properties. Reduction rules have been defined for this. 
Simple examples are the fusion of series of places and/or transitions or the elimi-
nation of self-loop places and/or transitions [Mura 89]. A set of reduction rules is 
said to be complete, if they transform each net into a minimal one that possesses 
the same properties with respect to boundedness and liveness. However, relatively 
few reduction rules can be defined for ordinary Petri nets, such as place/transition 
nets, so net reduction is of little importance for these nets. 

Structural analyses 
Structural analysis examines local structures of the net. These are the nodes and 

their immediate environment (pre- and post-transitions or -places). For example, 
in a net in which the number of input and output places is equal for all transitions 
it can be concluded that the number of tokens remains constant, i.e., the net is 
bounded. Vice versa, it can be concluded from the existence of transitions that do 
not possess input places that the network is unbounded, as these transitions can 
always fire. Such analyses allow statements on boundedness and liveness even for 
complex nets without generating the set of reachable states. 

Net invariants 
The incidence matrix defines equations whose solution allows one to derive 

statements about the dynamic net behaviour and the modelled system, respec-
tively. The goal is to derive net invariants related to places and transitions, for 
short P- and T-invariants. To determine such invariants the following equations 
are derived from the incidence matrix 

C t = 0 and p C = 0 

where t = (t1, t2, …, tm) and p = (p1, p2, …, pn) represent vectors of transitions and 
places. The equation system for determining a place invariant is, for example, 

c11 p1 + c21 p2 + … + cn1 pn = 0 
c12 p1 + c22 p2 + … + cn2 pn = 0 

.  .  . 

c1m p1 + c2m p2 + … + cnm pn = 0. 

Each vector IP = (p1, p2, …, pn) that fulfills this equation system is a P-invariant. A 
P-invariant refers to a set of places whose weighted sum of tokens is constant, i.e., 

 net reduction, 
 structural analysis, and 
 net invariants. 
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m IP = m0 IP  

for all reachable markings m RN(m0) in N. If m IP = 1 then exactly one place 
can possess a token. This is called a 1-P-invariant. The places in the protocol part 
connect_r in Figure 11.4/1 without the fusion place CONNECT, for example, ful-
fill this condition. From the finite number of tokens of a P-invariant IP it follows 
that the associated places are bounded. If in a net all places belong to a P-invariant 
IP the net is bounded. Thus, P-invariants are a criterion to decide boundedness. 
Sometimes the equation system p • C  0 is used. The solutions are called sub-
invariants. A network is structurally bounded iff it can be completely covered with 
sub-invariants. P-invariants can be used for the verification of properties which 
imply a finite number of tokens. If the number of tokens is finite for a certain set 
of places then the fulfillment of these system properties can be deduced.  

Similarly, each vector IT that fulfills the equation system C • t = 0 is a T-
invariant. A T-invariant IT denotes a set of transitions whose firing reproduces a 
marking m. If one of the values t1, t2,…, tm is greater than 1 then the associated 
transition must fire multiply to reproduce the marking. T-invariants describe pos-
sible cycles in the reachability graph (see below). Not all derived T-invariants are 
executable. This is because of side conditions (see Figure 11.4/3) and the fact that 
the initial marking is not taken into account in the computation. With the help of 
T-invariants, for example, statements about liveness can be formulated. All transi-
tions which belong to an executable T-invariant are not dead regarding the initial 
marking m0. A necessary condition for the liveness of a bounded net is that all its 
transitions may be covered with T-invariants. 

Dynamic analyses 
Dynamic analysis methods have to be applied if the required net properties can-

not be derived by the less expensive static analysis methods. The classical ap-
proach here is also state space exploration by generating the reachability graph of 
the modeled system. The reachability graph of a Petri net N = (P, T, F, m0) is the 
graph 

RGN = [RN(m0),KN]  with KN = {[m,t,m’] | m, m’ RN(m0)  t T m t      m’}  

which contains as nodes all markings m reachable in N and as transitions the ac-
tions which transfer the system to a new state or marking. The procedure for gen-
erating the reachability graph corresponds to that described in Section 11.3.1.  

Figure 11.4/4 shows the beginning of the reachability graph for the Petri net of 
Figure 11.4/1. In this example we use marking vectors to represent the states of 
the state space. They indicate the places with tokens for the reached marking m: 

m = (m(p1), m(p2), … m(pn)). 
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Petri net analyses can be used to prove both general and special properties of 
the specification, in particular by analyzing the reachability graph [Hein 08]. The 
general properties can be verified as follows:  

 Boundedness: The Petri net is bounded if the generation procedure for the 
reachability graph terminates. If the graph cannot be generated it cannot neces-
sarily be concluded that the net is unbounded. A reason for this may be the 
lack of memory for storing the generated states. Instead the coverability graph 
may be calculated, but this is much more expensive. It, however, allows one to 
verify the boundedness of the net. 
 Dead transitions: Transitions that will never fire are recognized by the fact 
that there are no edges in the graph which are labeled with these transitions, 
i.e., there is no state transition performed by these transitions. 
 Total deadlock: A marking which cannot be left is represented in the reacha-
bility graph by a node without outgoing edges. Such a node is also called a 
leaf. 
 Liveness: In order to determine whether a net is live the reachability graph is 
partitioned into strongly connected components. Such a component relates to a 
set of states in which each state is reachable from each state. A strongly con-
nected component is called terminal if no other strongly connected component 
is reachable in the partitioned graph. The latter need not be generated explicit-
ly. It only reflects the procedure. The net is live, if all transitions are in termi-
nal strongly connected components.  
 Partial deadlock: A partial deadlock occurs when one or more of the terminal 
strongly connected components of the reachability graphs do not contain all 
transitions. When the system progresses in these areas it will happen that parts 
of the system do not progress because one or more transitions do not become 
enabled any more, while other parts of the system keep progressing. 
 Livelock: The possibility that the system contains unproductive cycles is re-
flected in the reachability graph by the fact that not all transitions are included 
in all cyclic execution paths of the graph. If this is the case there would be the 
possibility that a cyclic execution path can be omitted. 
 Reversibility: A Petri net is reversible if the reachability graph is strongly 
connected, i.e., it is possible to return from each state to the initial state. 
 

For the verification of special properties, different approaches can be chosen: 
 

 Model checking of special behavior properties: In Petri net analysis model 
checking is also applied to prove whether desired system properties hold. The 
properties are formulated in temporal logics and proved by generating the 
reachability graph. We enlarge on model checking in Section 11.7. 
 Verification of the protocol specification against the service specification: 
The question whether the specified protocol provides the offered service can 
be decided by means of Petri nets. For this purpose, both specifications, the 
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service and the protocol specification, are required in a Petri net representation. 
In the service specification the edges are labeled exclusively with service prim-
itives. The reachability graph is generated for both nets. In both graphs all in-
ternal state transitions, i.e., state transitions that are not visible at the service 
interface, are labeled as the empty transition . Subsequently, both graphs are 
minimized and compared. The protocol specification is consistent with the ser-
vice specification if there is an isomorphic relationship between the minimized 
reachability graphs of the service and protocol specifications. In [Gord 00], 
this approach was applied to colored Petri nets to check the compliance be-
tween the service and the protocol specification of the mobile communication 
protocol WAP Class 2 Wireless Transaction Protocol. Several inconsistencies 
were revealed. 

In summary, Petri nets can be considered a useful approach for the verification 
of the protocol design. A major strength of Petri nets is their ability to analyze 
many properties which are relevant for distributed systems and protocols. Also the 
possibility of static analyses is advantageous. However, the size of the net increas-
es quickly for ordinary Petri nets, even for small protocols like XDT. This requires 
resources and computing time. The use of net reduction methods or other net types 
can reduce the problem. Examples of successful use of colored Petri nets are de-
scribed in [Bill 04] and [Bill 08]. Another problem with Petri net-based protocol 
verification is that the errors indicated by the analysis relate to errors in the Petri 
net, but they do not refer directly to the origin of the error in the source specifica-
tion. This requires additional analyses. The crucial point, however, remains the 
elaboration or the derivation of the Petri net protocol specifications, as already ar-
gued in Chapter 7. This requires a good theoretical knowledge and experience. 
Therefore, the application of Petri nets in practical Protocol Engineering is lim-
ited.  

11.5 Algebraic verification 

After considering the verification of FSM- and Petri net-based specifications in 
the previous sections we now focus on aspects of the verification of algebraic spe-
cifications on the basis of labeled transition systems (LTS) (cp. Sections 7.7 and 
8.3.6). In order to verify LTS specifications, similar techniques as for finite state 
machines, such as reachability analysis and model checking, can be used. Reacha-
bility analysis is subsumed by model checking, which will be discussed in Section 
11.7. The special requirements of model checking in the context of algebraic spec-
ifications are described in detail in [Bowm 06]. We do not enlarge on this in this 
section. We focus on another important aspect on the verification of algebraic 
specifications: the checking of correctness relations. 
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11.5.1 Correctness relations 

Formal verifications based on correctness relations pursue the objective to 
compare different specifications to prove whether they are equal or refinements of 
each other under the associated semantics [Bowm 06]. For this, various correct-
ness relations have been defined to characterize the equivalence with or the rela-
tion to other specifications. These relations can be roughly grouped into equiva-
lence relations, refinement relations, and implementation relations.  

Equivalence relations express an equivalent behaviour between two specifica-
tions and/or behaviour expressions. The relation is reflexive, symmetric, and tran-
sitive. To assess the equivalence of two specifications observation criteria are ap-
plied. Two systems are said to behave equivalently if they are indistinguishable by 
the applied observation criteria, where only the external behaviour is taken into 
account (cp. Section 7.7). Concerning the observation criteria an internal or an ex-
ternal view can be applied. The internal view defines a relationship between two 
specifications with regard to their states and transitions. The external view intro-
duces an external observer to decide this question. Examples of these two views 
are observation equivalence and testing equivalence (see below). 

Refinement relations are used to assess specifications during the development 
process. They describe relations between specifications in a step-wise refinement 
process, e.g., by defining a preorder (see Section 14.3.2). In contrast to equiva-
lence relations, refinement relations are only reflexive and transitive.  

Implementation relations represent a less strong form of refinement. Instead 
of demanding that any subsequent stage should be somehow externally equivalent 
they permit integration of steps needed towards an implementation specification 
[Ledu 92]. So an implementation must be, for instance, more deterministic than 
the specification. In contrast to refinement specifications, implementation specifi-
cations are asymmetric relations, i.e., they are only reflexive. The service and pro-
tocol specifications are an example of such an asymmetric relation. An implemen-
tation relation demands that observations of the implementation can be related to 
the specification. Hence, an implementation relation defines the conditions for the 
conformance between a specification and an implementation of it. 

In the remainder of this section we focus on equivalence relations. Implementa-
tion relations are considered in the testing chapter (see Section 14.3.2). 

11.5.2 Bisimulation 

Unlike numerical equivalence, where the equivalence of expressions can be de-
termined by the value, the equivalence of two LTS or behaviour expressions can-
not be derived from the syntactical structure alone. Consider, for example, the two 
expressions in Figure 11.5/1. They are syntactically different, although their ob-
servable behaviour is the same because each of the three alternative paths in the 
right-hand expression executes a;b. 
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A test(T,S) of a labeled transition system S consists of a set of test cases T = (t1, t2, 
... tm) which examine the system behavior in individual experiments. Test cases 
are traces.  

A trace L* is a sequence of observable actions which transfers a Labeled 
Transition Systems from state s into a state s', s     s’,  where L* denotes the set of 
all possible finite action sequences over the set of labels L. The set of all traces 
which transfers a labeled transition system S from the initial state s0 into any pos-
sible state, is described by 

traces (S) = {  L*| s0   }2. 

The execution of a test case t||S can induce the following observations 

obs(t,S) = <{  L*| t||S    },{ L*| t||S t’||S’ a t’||S’ a  }>. 

The observer can either observe the expected event sequence or it ends after exe-
cuting a trace  in a state in which no further events can be observed, i.e., it has 
reached a deadlock.  

Two labeled transition systems S1 and S2 are testing equivalent TE if they can-
not be distinguished by executing all test cases t  T, i.e., they show the same ob-
servable behavior including deadlocks: 

 S1 TE S2    test(T,S1) = test(T,S2)    or 
 S1 TE S2   t  T: obs(t,S1) = obs(t,S2). 

Figure 11.5/7 shows an example with three LOTOS processes. The processes 
terminate except for the action sequence a;a;c which induces a deadlock. The pro-
cesses X and Y are testing equivalent, but not observational equivalent. Process Z 
is not testing equivalent to X and Y. The reason is the deterministic behavior of Z. 
It always accepts the test case a;c, while X and Y do not always do so because after 
accepting a they transfer into a state in which they may accept only action a or c, 
but not both.  

Trace equivalence 
Trace equivalence is the weakest of the equivalence relations considered here. 

Intuitively, it means that both systems accept the same sequences of actions. Be-
tween two labeled transition systems trace equivalence holds if all possible se-
quences of actions L* that each of the systems accepts are the same (see Fig-
ure 11.5/8): 

S1 TR S2  traces(S1) = traces(S2) 
                                                           

2 The notation used to represent the transition between two states in a labeled 
transition system is s    =

def s’: s    s’.  
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11.5.5 Tool support 

A number of tools have been developed to decide equivalence relations as de-
scribed above (see [FORTE]). The most established and mature one is CADP 
(Construction and Analysis of Distributed Processes) [CADP], a tool suite for the 
design of communication protocols and distributed systems. It has been developed 
by the VASY team at Inria Rhône-Alpes. The main focus of CADP is the verifica-
tion of LOTOS specifications, but it also supports other input notations, such as 
finite state machines and communicating automata. CADP provides two compil-
ers, CAESAR and CAESAR.ADT, to translate LOTOS specifications including 
data format descriptions into C code to be used for simulation, verification, and 
test case generation. It provides various tools for the assessment of bisimulation 
equivalence and model checking. In addition, it supports reachability analysis, al-
gorithms for deadlock and livelock detection, on-the-fly verification, and symbolic 
verification using binary decision diagrams. 

11.6 Deductive verification 

Deductive verification can be applied to prove statements on properties in de-
scriptive specifications (cp. Section 7.8) that the designed protocol should meet. 
As we learnt earlier these statements are usually formulated in a temporal logic. A 
deductive system for a temporal logic consists of axioms and inference rules. A 
statement or formula p is said to be provable if there exists a finite sequence of 
statements leading to statement p so that each statement is an instance of an axiom 
and/or follows from previous statements by applying one of the inference rules 
[Emer 90]. Examples of axioms of the linear time logic used in Section 7.8 are: 

p  p  (reflexivity) 
(p  q)  ( p  q) (consequence closure) 
p  p (transitivity) 
( p  q) ( q  p) (linearity)  
( (p  p)  p)  ( p  p) (discreteness)  

The inference rules consist of general rules, such as 

(1) if p is provable then also p is provable    (rule of generalization), 
(2) if p and p  q are provable then also q is provable (rule of modus ponens), 

and specific rules which refer to the used specification language, e.g., cTLA. The 
axioms and inference rules extend the specification language to a calculus. With 
the help of such a calculus a purely syntactic proof is possible by applying the ax-
ioms and inference rules and transforming formulas into new ones. A temporal 
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formula which was derived in this way is called a theorem. Thus, the syntactic 
deduction leads to a chain of theorems that are derived from each other. An im-
portant prerequisite is the choice of a suitable deductive system which ensures that 
the derived theorems are valid. A deductive system is sound if every provable 
formula is valid. It is complete if every valid formula is provable. 

Deductive verification performed by hand is time consuming and requires spe-
cial knowledge and experience. The process can be supported by tools that enforce 
the correct use of axioms and interference rules. These tools are called theorem 
provers. A fully automated proof is usually not possible, as the deduction systems 
for many specification languages are inherently incomplete and their efficiency is 
not acceptable. Therefore, interactive theorem provers are preferred. 

The use of deductive verification in practical protocol development is rare. This 
is explained, besides the high efforts required to perform the proof, by the limited 
availability of protocol specifications in a temporal logic or hybrid technique, such 
as cTLA (cp. Section 8.4). Approaches like the framework concept [Herr 00] can 
facilitate the verification process using specification module libraries with associ-
ated proven theorems. But they presume the development of corresponding frame-
works for certain protocol classes. This is hard to do in practice. Temporal logics, 
however, are widely applied as a complementary technique for the proving of cor-
rectness claims as with model checking, which we consider in the following sec-
tion. 

11.7 Model checking 

The methods presented in the preceding sections each pursue the goal to verify 
the entire system design. The analyses often encounter the boundaries of practical-
ity, since they are too expensive and too lengthy. A complementary approach to 
verify a formal description or model, which often leads more quickly to the de-
sired results, is model checking. This has become a popular and preferred method 
for verifying communication protocols, distributed systems and circuit designs. 

Model checking is an automated proof technique that systematically checks 
whether a system design satisfies claimed properties [Clar 00], [Holz 04]. It can be 
applied to designs specified with finite state machines, Petri nets, or labeled transi-
tion systems. The properties to be checked are formulated in temporal logics. Two 
types of temporal logics are applied. Linear temporal logics are mainly used for 
software verification and, of course, for protocol verification. Computational tree 
logics are preferred for the verification of circuit designs. The checking process 
generates the reachability graph and proves the validity of the formulated proper-
ty. LTL-based model checkers preferably apply on-the-fly verification (cp. Section 
11.3.1), while CTL-based checkers often use compressed state space representa-
tions using binary decision diagrams (cp. Section 11.3.2). The latter are also called 
symbolic model checkers. The result of model checking is yes or no. The model 
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checking algorithm will either terminate with true to indicate that the property 
holds or with false if the property is not satisfied. In the latter case a counterexam-
ple may be presented that shows why the formula does not hold. 

Unlike the methods considered previously, the model checking algorithm needs 
a finite state space to terminate with a definite answer. The state space exploration 
is limited by the available memory to store the state space. The state space explo-
sion problem is therefore the central issue of model checking. To reduce the state 
space the same methods are applied as we have got to know in connection with 
reachability analysis (cp. Section 11.3.2).  

11.7.1 Model checking with LTL 

In this section we describe the principle of LTL-based model checking as it is 
applied for protocol verification. 

Kripke structures and Büchi automata  
In model checking the systems to be modeled are mapped onto Kripke struc-

tures [Clar 00]. A Kripke structure is a state transition graph which consists of a 
set of states, a set of transitions between them, and a labeling function that assigns 
properties to each state which are true in this state. 

A Kripke structure is defined as a four-tuple <S,s0,R,L> with 
S – finite, non-empty set of states, 
s0 S – initial state, 
R  S  S – a transition relation, and 
L: S  2AP – a function that labels each state with a set of atomic propositions (AP) that 

are true in that state. 

A path in a Kripke structure represents a computation run. The labels at each 
state allow it to pursue changes along the execution timeline. 

In model checking (or in reachability analysis) the state exploration algorithm 
has to determine that a computation run reaches a valid final state [Holz 04]. Ma-
ny distributed systems, such as reactive systems and communication protocols, 
show an infinite behavior. Such infinite computation runs are called -runs. Au-
tomata which accept finite and infinite runs are correspondingly named -auto-
mata.  

An -automaton is defined as a quintuple <S,s0,L,T,F> with 
S – finite, non-empty set of states, 
s0 S – initial state, 
L – finite set of labels,  
T – set of transitions T  S  L  S, and 
F – set of final states F  S. 
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11.7.2 SPIN model checker 

Various model checkers have been developed. The most well-known ones are 
SMV and SPIN. SMV (Symbolic Model Verifier) [McMi 93], [Clar 00] and its 
successor NuSMV [NuSMV] are CTL-based model checkers for finite state ma-
chines, while SPIN is an LTL-based model checker. The latter has become the 
most popular model checker for distributed systems and communication protocols. 
The SPIN model checker was developed at Bell Labs by Gerard Holzmann in the 
1980s and 1990s. The tool has attracted a large user community. A yearly work-
shop has been established to report recent developments and applications. SPIN 
stands for Simple Promela Interpreter. PROMELA (PROcess Meta Language) is 
the input language for this verification tool. It aims at modeling process synchro-
nization and coordination in concurrent software systems. Although it contains 
many features of modern programming languages as well as many notational con-
ventions of the C programming language, it is not a computational language. 
PROMELA is a language for building verification models. We do not introduce 
the language here. Instead we refer to the introduction to PROMELA and all theo-
retical and practical aspects of SPIN given by Holzmann himself in the SPIN pri-
mer [Holz 04]. Figure 11.7/4 gives as an example a fragment of the PROMELA 
specification of the XDT protocol part together with some SPIN outputs to 
demonstrate the principle. A complete PROMELA specification of the XDT pro-
tocol may be found at the book web site. PROMELA is similar to our model lan-
guage, although they have different origins. This is because both languages apply 
the process- and communication-oriented description principle (cp. Section 7.1).  
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Exercises 
(1) What is the objective of protocol verification? What is the difference from 

protocol testing? 
(2) Discuss the terms validation and verification. What are the differences be-

tween them? 
(3) Protocol verification distinguishes between the verification of general and 

special properties. Explain these properties. 
(4) Give examples of typical protocol properties to be verified. 
(5) Characterize the verification techniques applied in protocol verification. 
(6) What are the most important methods for protocol verification? 
(7) What is the objective of reachability analysis? Sketch how the reachability 

graph is generated. Explain how important properties, such as deadlock and 
livelock freedom, no unreachable actions and termination, can be proved 
with the help of the reachability graph. 

(8) What is the reason for the state space explosion issue? What measures are 
taken to mitigate the problem? 

(9) Interleaving may increase the state space explosion problem considerably. 
What kinds of methods are applied to handle this issue in reachability analy-
sis? 

(10) Generate the reachability graph for the explicit XDT connection set up of 
exercise (11) in Chapter 2. Take the protocol system of Section 11.3.1 as a 
basis. 

(11) Introduce the XDT protocol changes of exercises (10) and (11) of Chapter 7 
(explicit connection set up, regulated data delivery) into the Petri net of Fig-
ure 11.4/1. Regarding exercise (10) consider only the successful set up, not 
the refusal. 

(12) Give the incidence matrix for the Petri net of Figure 7.6/1. 
(13) Explain the Petri net properties boundedness, liveness, and reversibility. De-

cide whether the Petri net of Figure 7.6/1 fulfills these properties. 
(14) Explain the net properties reachability, deadlock freedom, dead transitions, 

and livelock freedom. 
(15) Evaluate the Petri net given below of the explicit connection set up (without 

timers) regarding the properties mentioned in exercise (14). Assume that the 
fusion places XDATconf and DATA_TRANSFER are correct terminations.  
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16) 
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(27) Explain the verification principle applied in model checking. Define the 
terms Kripke structure and Büchi automaton. Describe the model checking 
procedure. 

(28) Translate the property (S.XDATrequ   (S.XDATconf W state  
break)) into a Büchi automaton. 

(29) Formulate LTL conditions for the regulated data delivery of exercise (11) of 
Chapter 7 which might be proved with model checking. Translate them into 
a Büchi automaton. 

 
 



12 Performance evaluation 

We are now approaching the implementation phase. The implementation be-
gins with an implementation design that will be considered in detail in Chapter 13. 
During implementation design it may be useful to assess the expected perform-
ance behaviour of the designed protocol in the target execution environment. Im-
plementers often require quantitative measures like throughput or response time to 
optimize their implementation and to reason about implementation alternatives. 

Software development and performance analysis are often considered two 
rather independent areas having their own models, methods, and tools. Consider-
ing performance evaluation as an “afterthought” induces various disadvantages 
because changes have to be introduced into the implementation to meet the per-
formance requirements that do not correspond to the original specification. For 
this reason, the performance evaluation community argues for integration of per-
formance evaluation in the development process [Mits 01]. This has also been in-
vestigated for the protocol development process. The approaches applied are con-
sidered in this chapter. 

12.1  Objectives 

Service and protocol specifications, as we have considered them until now, de-
scribe the functional behavior of services and protocols. In order to allow evalua-
tion of the performance of a protocol design, non-functional properties related to 
time and resources have to be added to the specification (see Figure 12.1/1). These 
properties include characteristics of the hardware devices, the achievable degree 
of  parallelism, concurrency due to non-sharable resources, scheduling strategies, 
processing speeds, the available bandwidth, buffer sizes, timer settings, the speci-
fication structure, the description of the expected load behavior (load model), traf-
fic characteristics etc.  

Based on the specified quantitative performance measures – and this is the 
benefit of the integrated approach – an executable performance model can be de-
rived. The model is completed by a load or traffic model which specifies, for in-
stance, the packet arrival rate (i.e., packets/sec). The execution of the performance 
model results in various performance measures depending on given input parame-
ters which describe the available resources and the workload. The simple M/M/1 
model well known from queuing theory is an example of such a performance 
model. In practice, however, much more complicated models are applied.  

341
  © Springer-Verlag Berlin Heidelberg 2012
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According to [Woli 93], there are three ways to introduce time into formal de-

scription techniques: 

 Delaying individual preconditions 
A delay is enforced between the fulfillment of a precondition and the time 
it becomes effective. Such delays have to be formulated separately for each 
precondition. 

 Delaying events 
A delay is enforced between the fulfillment of all preconditions and the oc-
currence of the event. 

 Introducing an execution duration of events 
Instead of assigning a duration time of zero, as usually assumed, a certain 
amount of time is introduced for handling events. 

Standardized formal description techniques do not define time in this form. 
Various proposals to integrate time in formal description techniques have been 
discussed. We present here some examples for the languages SDL and LOTOS. 

In SDL, the treatment of time is most advanced compared to other standardized 
formal description techniques, but it primarily serves the time surveillance of the 
communication (cp. Section 8.1.2.3). The time is incremented by a clock outside 
the system. No unit is defined. The expiration of a timer (time-out) does not di-
rectly lead to a reaction, since the event is enqueued into the input queue of the 
agent and only processed when all the events ahead are removed from the queue. 
Furthermore, there are no uniform rules for the time behavior of channels. They 
can delay the signal transmission or not, but it is not defined how long a delay 
lasts. Therefore no statements can be made on the execution duration of certain 
statement sequences. Moreover, it is not possible to define the quantitative load 
model required for performance evaluation. Several proposals have been made to 
extend the SDL semantics through time, such as Timed SDL by Bause and Buch-
holz [Baus 93], SPECS by Bütow, Kritzinger et al. [Büto 96], and timed exten-
sions by Bozga et al. [Bozg 01]. The first approach introduces for a relatively 
small subset of SDL probabilities for the switching of transitions and exponential 
time durations for their execution. Resources and work load, however, cannot be 
specified. The second approach introduces a time semantics to SDL, which en-
sures among other things that the exchange of signals over channels and the pro-
cessing of actions lasts a specified time. The third paper proposes the use of anno-
tations to express non-functional aspects in the specification. Two kinds of 
annotations are introduced: assumptions to express a priori knowledge or hypothe-
sizes on the execution environment and assertions which express expected behav-
ior. The proposed annotations are urgencies, durations, and periodicity of actions 
to control the time progress. Furthermore, a flexible channel concept is proposed 
that foresees message losses, reordering, propagation delay etc. 

LOTOS in its original form does not contain features to represent time or to 
support performance evaluation. Timers and their functionality can only be mod-
eled at separate processes as we did in Section 8.3.8. Time was only introduced in 



E-LOTOS (Enhancement to LOTOS) [ISO 15437], an attempt to extend the 
language to meet new requirements of distributed systems. To represent time E-
LOTOS introduces a time domain which is defined as a set of values of the sort 
time. The time domain can be discrete or continuous. There are two notations to 
describe time statements: the duration of an offer (cp. Section 8.3.4), which limits 
the period in which an offer can take effect, and the delay prefix for delaying the 
execution of actions. A detailed introduction is given in [Leon 97]. Another ap-
proach to the representation of time in LOTOS is the Timed Interacting Systems 
(TIS) described in [Woli 93] (see below). 

Quantization of nondeterminisms 
In addition to the integration of time, statements on nondeterminisms (cp. Sec-

tion 1.2.4) have to be taken into account for performance evaluations. This is done 
by specifying probabilities for the execution of state transitions or the switching of 
transitions. However, the simple indication of probabilities can be difficult be-
cause it is not always known how many and which events are involved in the 
nondeterministic selection. To solve the problem the assignment of weights to 
events was proposed from which the probability of the triggering of a transition 
can be derived [Woli 93]. The quantization of nondeterminisms can be further re-
fined using priorities. SDL and LOTOS support the presentation of 
nondeterminisms, but not their quantization. In both languages nondeterminism 
can be explicitly expressed by specifying different reactions to the same event or 
implicitly through spontaneous transitions (none) in SDL (cp. Section 8.1.2.5), 
and the internal action i (cp. Section 8.3.2) in LOTOS. An approach to integrating 
stochastic modeling and analysis into LOTOS is presented in [Herm 98]. 

Quantization of resource requirements 
Delays in the execution of processes are caused by lack of resources which may 

have different effects in load situations. Therefore, performance analysis needs 
statements about the used system resources, such as processors, memory, in-
put/output channels, or bandwidth. As discussed above, such statements are not 
possible without a focus on a dedicated target system. In practice, a machine mod-
el is usually specified to estimate the performance behavior of the system in re-
sponse to a given load. Examples are given below. Since standardized formal de-
scription techniques do not support the specification of these data, additional 
notations are used. 

12.3 Performance modeling techniques 

After setting up the formal description extended by quantitative performance 
measures including a workload description, an executable performance model has 
to be derived, i.e., the extended specification must be transformed into a quantita-
tively assessable representation that is executable or solvable. The following solu-
tion techniques are usually applied [Mits 99]: 

  345 12.3  Performance modeling techniques   
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 Stochastic modeling using queuing networks 

Here a class of so-called product-form queuing networks can be solved ex-
actly by analytical techniques. Further approximation methods are applied 
for models including non-exponential distributions, priorities, and blocking. 

 Markov chain techniques 
Markovian models are mapped to a set of linear equations that can be solved 
by numerical methods, e.g., Gaussian elimination or iteration techniques. 
Here also the problem of state-space explosion occurs. Nowadays already 
models with many million states can be solved. 

 Discrete event simulation 
Simulation is applied when analytical and numerical techniques cannot be 
applied. The problems with simulation are to find an appropriate simulation 
model, which does not contain too many details, to prove its correctness, and 
to interpret the large amounts of statistical data.  

Hybrid techniques which try to combine the benefits of different approaches are 
applied as well. 

12.4 Tools 

In the last two decades a number of tools for performance evaluation have been 
developed, mostly for SDL. We present three approaches as examples here. An 
overview of the whole range of approaches is given in [Mits 01]. 

SPECS 
The SPECS tool (SDL Performance Evaluation of Concurrent Systems) applies 

the above-mentioned supplement of the SDL semantics with time by Bütow, 
Kritzinger et al. (see [Büto 96]). It aims at the evaluation of concurrent systems 
which are specified in SDL-92. Accordingly a system is modeled by blocks which 
are executed on processors with varying speeds. The tasks belonging to each block 
are described as processes. They are executed concurrently if they belong to dif-
ferent blocks, otherwise their execution is quasi-parallel. Different weights can be 
assigned to the processes. By changing the weights and the assignment of the 
blocks to the processors the engineer can adjust the relative process speeds and 
thus evaluate different system behaviors.  

SPECS consists of a compiler, a graphical user interface, a simulation environ-
ment, and a trace analysis tool (see Figure 12.4/1). The compiler translates a sub-
set of SDL/GR into an internal code. The graphical user interface gives interactive 
user guidance and presents the progression and results of the simulation. It allows 
the user to specify the quantitative characteristics of the target environment, e.g., 

 Selection of the processes and blocks considered during the simulation,  
 Setting channel attributes (reliability, distribution of the delay time (deter-

mined, exponential, even)), 
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 Resources 
In a TIS specification global, passive resources – facilities – can be defined. 
Facilities are reusable and non-shareable resources. Their availability is a 
prerequisite for interactions. There are several different types of facilities, 
which again consist of equal elements. For each facility type, a serving stra-
tegy, e.g., FIFO, is defined. 

 Quantification and restrictions of nondeterminisms 
Two operators are introduced: the probability-related choice-operator to 
specify the probabilities for the selection of the various alternatives, and the 
parallel racing-operator to restrict nondeterminisms by allowing the parallel 
execution of time-related actions (similarly to our par event-operator in Sec-
tion 1.2.4). 

The performance evaluation of a TIS specification is performed by simulation. 
It supports an animated step-wise execution, the simulative execution, and the 
graphical representation of the results. 

QUEST 
The QUEST approach [Hint 01] is based on the usage of time-consuming machi-
nes that model congestions of processes due to limited resources. The concept 
consists of two components:  

the language QSDL and  
the QUEST tool. 

QSDL (Queuing SDL) extends SDL by constructs for the specification of re-
sources and work load. To remain compatible with the SDL standard these con-
structs are added in the form of annotations, i.e., specific comments, to the specifi-
cation. The resources are modeled by means of the machines which are assigned 
to the processes. Figure 12.4/2 shows this for an example specification. A machine 
provides a set of time-consuming services (see Figure 12.4/3). It is modeled by a 
waiting room, a number of servers, and a scheduling strategy. The machine ser-
vices are invoked by SDL signals. 

By adding workload models and defining respective mappings of the workload 
to the machines an assessable performance model is generated. The modeling of 
the workload is supported by various random distribution functions. Traffic pat-
terns can also be described by load generators which can be implemented as 
QSDL processes. An important option is the use of multiple-state sources, such as 
Markov modeled Poisson processes (known as MMPP) or Markov modeled Ber-
noulli processes (known as MMBP), which allow a flexible description of differ-
ent traffic patterns ranging from file transfer to audio/video transmissions. 

The time is explicitly assigned to time-related actions as a parameter to 
determine delays of preconditions and the execution duration of interactions. 
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13 Implementation 

After verifying the protocol design and possibly evaluating its expected per-
formance the protocol can be implemented in a concrete execution environment. 
Although at first glance it may not seem so, the implementation is one of the most 
expensive stages of the protocol development process. It requires a multitude of 
decisions which have a considerable influence on the efficiency and correctness of 
the final protocol realization. The implementation stage receives anyhow less at-
tention in Protocol Engineering research compared to the other phases of the pro-
tocol development process which is expressed in the small number of publications 
on this subject. One of the reasons is that implementation experiences are rarely 
generalized and published because of their strong system relation and the subjec-
tive character of implementations. In addition, the implementation phase provides 
few starting points for formalizations. Implementation in the context of formal de-
scription techniques means primarily prototyping, i.e., the execution of specifica-
tions on a computer. It primarily serves the validation of the protocol procedures 
during design. FDT compilers usually support this possibility. The efficiency of 
the generated code plays a minor role in this form of implementation. 

In this chapter we give an overview of the key implementation techniques for 
communications protocols and explain the resultant problems. In contrast to the 
previous chapters, the focus is less on formal aspects but on the description of pro-
tocol implementation techniques that are not bound to formal descriptions. Only 
towards the end of the chapter we present approaches to automatically derive im-
plementations from formal descriptions.  

13.1 From protocol specification to implementation 

The core problem of a protocol implementation is the mapping of the specified 
protocol functionality into the given target system. Experience of protocol imple-
mentations in practice has shown that the quality and efficiency of a protocol is far 
more determined by the implementation than by the design [Clar 89]. There are 
two main reasons for this. (1) Protocol specifications are implementation inde-
pendent and rarely contain implementation requirements. This gives the imple-
menters much freedom for an individual design of the protocol implementation. 
The quality and efficiency of the coded protocol therefore depend much on the in-
dividual skills and experience of the implementer. (2) Protocol implementations 
are heavily determined by the execution environment of the target system, notably 
by the operating system in which they are embedded. An overwhelming majority 
of the actions needed for the protocol execution are processed in the execution en-
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vironment. Since the anticipation of implementation decisions is explicitly avoided
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Analysis of system constraints 
A protocol implementation is always targeted to a concrete execution environ-

ment. Consequently, the implementation has to take its features and constraints in-
to account. These are the operating system used, possible implementation langua-
ges, and existing libraries. Sometimes it may also be important whether there is a 
specialized execution environment supporting protocol implementations (see be-
low). 

Local implementation matters 
Protocol specifications often leave certain decisions to the implementer for rea-

sons of implementation independence. Such decisions are referred to as local im-
plementation matters. They relate typically to the design of the interfaces to the 
execution environment, to protocol options, and to implementation choices. More-
over, nondeterminisms in the protocol specification must be dissolved, since pro-
tocol implementations are as a rule deterministic. Nondeterminisms give room for 
different implementation choices (cp. Section 1.2.4). The implementer has to re-
fine the specification and make concrete decisions for the possible options. These 
decisions require a high degree of experience, a good knowledge of the protocol, 
and a sure instinct as these decisions can affect the conformance and the interop-
erability capability of the protocol implementation [Svob 89]. 

Choice of the implementation model 
An important decision during implementation design is the choice of the im-

plementation model which determines how the implementation is mapped onto the 
process structure of the execution environment. This mapping does not necessarily 
mean a one-to-one mapping, since protocol specifications often only describe the 
behavior of an entity regarding one connection, whereas the implementation has to 
support a dynamically changing number of connections. Two basic implementa-
tion models have been established: the server and the activity thread models that 
we introduce in the next section. The evaluation of implementation choices can be 
supported by performance analyses as described in Section 12. 

Implementation specification 
The implementation design may be documented through an implementation 

specification. It forms the basis for the subsequent coding process. In contrast to 
the protocol specification, the implementation specification is basically related to 
the target system. The character of the implementation specification though is not 
as precisely determined as that of the protocol specification because it is mostly an 
internal working document of the implementation process. When using informal 
protocol descriptions usually only the key implementation decisions are fixed, 
while in the case of formal descriptions the implementation specification usually 
refines the protocol specification with implementation-specific decisions. Only au-
tomated protocol implementations require an explicit implementation specification 
as a starting point for the code generation (see Section 13.6). 
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13.1.2 Coding 

The subsequent implementation of the protocol in the narrow sense consists of 
two complementary steps: the coding of the protocol and its integration in the exe-
cution environment. 

Protocol coding 
The program code can mostly be derived relatively straightforwardly from the 

specification. A lot of additional functions, however, are required that cannot be 
derived directly from the specification, such as functions for the timer and the 
buffer management. Such functions must be provided by the execution environ-
ment. 

Execution environment 
The implementation of communication protocols strongly depends, as already 

mentioned above, on the execution environment. A protocol cannot be implement-
ed independently of the execution environment. It forms the implementation envi-
ronment of the protocol. The execution environment possesses a high share in the 
execution of the protocol. This share is often much higher than that of the proper 
protocol [Svob 89], [Clar 89], [Hutc 91], [Held 95]. Therefore, protocols with high 
efficiency demands, such as TCP/IP, are preferably implemented in the operating 
system kernel to execute the high share of actions belonging to the execution envi-
ronment as efficiently as possible. 

There are three variants for the inclusion of a protocol in an execution envi-
ronment:  

 integration into the operating system,  
 integration into the application, and  
 use of a protocol-specific execution environment. 

Usually transport-oriented protocols are embedded in the operating system, 
while application-oriented ones are implemented as applications or as part of 
them. The implementation environment is formed here by the operating system 
and, if needed, by a few additional functions. In this approach the protocol imple-
mentation is bound to the operating system. If the protocol implementation is not 
sufficiently supported by the operating system complementary functions must be 
provided. In this case it is recommended to use a protocol-specific execution envi-
ronment (see Figure 13.1/2) which covers the given operating system and provides 
a uniform interface to the protocols. This simplifies the integration of protocol 
software and facilitates its portability. In addition, the implementation environ-
ment can be better tailored to the specific needs of the protocol implementation. 
Examples of such implementation environments are presented in [Hutc 91], [Lang 
99b], and [Popo 06]. Separate implementation environments are of special im-
portance for the automatic derivation of protocol implementations. They are most-
ly applied here (see Section 13.6). 
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mentations can be achieved, since the events are processed immediately after their 
occurrence without any process change. The activity thread model, however, re-
quires a very careful design. Problems to be solved include the handling of con-
current threads, the resolution of possible cyclic procedure call sequences, and the 
treatment of internal events. 

13.3 Interface design 

The design of the interface between the layers and with the execution environ-
ment is an important task of the implementation design. It maps the logical service 
interfaces onto the interaction mechanisms of the given execution environment. 
Furthermore, additional mechanisms may be introduced as, for instance, an atomic 
execution of the events or a flow control to regulate the data exchange at the layer 
interface. Sometimes special data interface units are introduced for the data ex-
change which may contain several service data units or in the case of a long pay-
load only a subset of the data to be transferred. 

The interface design depends on the implementation model applied. Two prin-
cipal realizations are distinguished:  

 the buffering interface and 
 the procedure interface. 

Buffering interfaces are used in server model implementations; procedure inter-
faces in activity thread ones. Note that the rendezvous principle as applied in some 
formal description techniques, such as LOTOS (cp. Section 8.3), to express the 
semantic concept of synchronous interaction is rarely used in real-life protocol im-
plementations because it lowers the efficiency. 

13.3.1 Buffering interface 

Buffering interfaces transfer service data units or other events asynchronously 
via queues or process channels (see Figure 13.3/1). Depending on the mapping of 
the logical model onto the process structure, buffering interfaces can be realized 
across processes or internally in one process. In the first case, service access 
points can be implemented, for instance, using two opposed queues. In the second 
case various solutions are possible as operating system operations are rarely need-
ed.  

The drawback of the buffering handover is the efficiency loss due to data stor-
ing and queue management. Regarding the latter, the use of a common queue for 
all events of the protocol stack in which the event is stored together with the iden-
tifier of the destination entity has proved more favorable [Lang 99b]. 
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compared to the EFSM representation in Figure 7.5/1. We do not implement an 
explicit state for go back N because this would lead to a less manageable imple-
mentation. The reason is that this state will only be reached after this internal 
event has entered the input queue and been read-out again. Instead, go back N is 
directly integrated into two transitions in the state CONNECT. Note further that 
the presented implementation is not complete. It contains only the XDT layer, but 
not the implementation of the environment. In addition, it also does not take into 
account robustness requirements, such as responses to false input events etc. The 
procedures of the buffer and timer management are also not represented. 

The implementation possesses an input queue that is read-out with get_queue. 
It serves two output queues: one queue for the XDT user (put_user_queue) and 
one for the Y-layer (put_Y_queue). The XDT service primitives are represented in 
a simplified way through the name of the primitive together with the associated 
parameters. Since the XDT-PDUs are mapped one-to-one onto the Y-service 
primitives, we refrain from using Y-primitives and enqueue the PDUs directly in 
the Y-queue. There is another presentation problem regarding the abovementioned 
get_queue operation. All events dequeued from the input queue have a different 
type. In order to preserve clarity we describe all input events by the type event and 
assume that the auxiliary variable E to which the events are assigned accepts the 
specific type. 

 

/* TYPE DEFINITIONS AND FUNCTIONS  */ 
typedef enum {true,false} boolean; 
typedef enum {IDLE,AWAIT_ACK,CONNECTED,XBREAK} states; 
typedef enum {XDATrequ,DT,ACK,ABO,timeout_t1,timeout_t2} event; 
typedef struct {int sequ;boolean eom;data_array data} DT_type; 
typedef struct {int sequ,source-addr,dest-addr; boolean eom; data_array data} 
                     XDATrequ_type1; 
typedef struct {int conn,sequ; boolean eom; data_array data} XDATrequ_type; 
typedef struct {int conn,sequ } XDATconf_type, ACK_type; 
typedef struct {int conn} XABORT_type, XBREAK_type; 
typedef [ ]char data_array; 
                                           /* Functions for building PDUs and service primitives */ 
DT_type build_DT1(XDATrequ_type1);      
DT_type build_DT(XDATrequ_type); 
XDATconf_type build_XDATconf(int,int)         
XABORT_type build_XABORTind(int);         
XBREAK_type build_XBREAKind(int);          
XDIS_type build_XDISind(int);             
DT_type get_buffer(int);                        /* Functions for buffer management */ 
int put_buffer(DT_type);               
void free_buffer(int); 
void put_user_queue(event);            /* Functions for queue management */ 
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void put_Y_queue(DT_type);               
event get_queue(); 
void start(int,int);          /* Functions for timer management */      

     void reset(int);  
 
/* DECLARATION OF THE VARIABLES OF THE SENDER ENTITY */ 
int N, last, sequ; 
int conn ;                               /* Connection reference         */ 
int t1, t2;               /* Timer              */ 
event E;                 /* Auxiliary variable           */ 
states state;                    /* Current state      */ 
boolean not_stop = true; 

 
/* TRANSITIONS */ 
while(not_stop)              /* Central waiting loop    */   

     {E = get_queue();                  /* Reading-out of an event   */ 
    switch(state)             /* Current state  ?                    */ 
   {case(IDLE):                         /* State IDLE      */ 
    {if (E == XDATrequ)  
     {state = AWAIT_ACK;        /* IDLE  XDATrequ    */ 
       sequ = 1; 
       N = 0; 
       start(t2,50);           /* Timer connection set up    */ 

       put_Y_queue(build_DT1(E));      /* Transfer to Y-layer              */ 
     } 

    break; 
   } 
       case(AWAIT_ACK):            /* State AWAIT_ACK    */ 
     {if (E == timeout_t2)              /* AWAIT_ACK Time-out*/ 
     {state = IDLE;          /* No connection set up         */          
       put_user_queue(build_XABORTind(conn));  
          } 
       if (E == ACK)                       /* AWAIT_ACK  ACK   */ 

           {if (E.sequ == 1)              
                 {conn = E.conn;               /* ACK.conn            */   
                   N= 1; 
                   state = CONNECTED;                 
                   put_user_queue(build_XDATconf(conn,1)); 
                   reset(t2);                     /* Reset timer t2      */ 
                   start(t1,500);                    /* Start activity timer t1      */              
                       start(t2,50);  
                 } 
           } 
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     break; 
         } 
       case(CONNECTED):            /* State CONNECTED      */ 
    {if (E == XDATrequ)           /* CONNECTED  XDATrequ */ 
       {sequ++;           
         put_Y_queue(build_DT(E))   /* Transfer to Y layer                   */ 
         if (XDATrequ.eom)                                   /* last PDU ?           */ 
       last:=sequ;  
         if (put_buffer(DT) == 0)                           /* Buffer full ?     */   
                   {state = XBREAK;                               /* Break       */     

     put_user_queue(build_XBREAKind(conn));    /* XBREAKind     */ 
                   } 

        } 
      if (E == ACK)                 /* CONNECTED  ACK    */ 
   {reset(t1);          
     reset(t2); 
     if (E.sequ > N)                  /* ACK with correct number  */ 
    {N = E.sequ; 
         free_buffer(N); 
      if (N == last)                /* last ACK ?            */ 
          {put_user_queue(build_XDISind(conn)); /* Connection release */ 
      state = IDLE;  
         } 
     } 
     start(t1,500); 
     start(t2,50);  
   } 
     if (E == timeout_t2)                /* CONNECTED  timeout_t2  */ 
   {int i; 
     for (i=1; (i  sequ - N); i++)             /* go back N    */ 
     put_Y_queue(get_buffer(N+i)); 
   } 
     if (E == ABO)                /* CONNECTED  ABO     */ 
   {state = IDLE;              /* Protocol abortion by receiver   */ 
     put_user_queue(build_XABORTind(conn));  
   };  
      if (E == timeout_t1)               /* CONNECTED  timeout_t1  */ 
   {state = IDLE;         /* Inactive receiver                        */ 
     put_user_queue(build_XABORTind(conn)); 
   };  
      break;  
    } 
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case(XBREAK):                                   /* State XBREAK    */ 
    {if (E == timeout_t2)                            /* XBREAK  timeout_t2    */ 
   {int i;      
     for (i=1; (i  sequ - N); i++)                        /* go back N          */ 
     put_Y_queue(get_buffer(N+i)); 
    } 
       if (E == ACK)                          /* XBREAK  ACK       */ 
    {reset(t1);          
      reset(t2); 
      if (ACK.sequ > N)                        /*ACK with correct number */ 
        {N = ACK.sequ; 
   free_buffer(N); 
   put_user_queue(build_XDATconf(conn,sequ)); 
   state = CONNECTED;         /* Break finished    */ 
        } 
      start(t1,500); 
      start(t2,50); 
     } 
      if (E == ABO)                 /* XBREAK  ABO         */ 
    {state = IDLE;         /* Protocol abortion by receiver*/ 
      put_user_queue(build_XABORTind(conn));  
    } 
      if (E == timeout_t1)            /* CONNECTED  timeout_t1 */ 
   {state = IDLE;                                 /* Inactive receiver    */ 
     put_user_queue(build_XABORTind(conn)); 
    }  
      break; 
     } 
  } 
          } 

13.4.2. Activity thread implementation 

We now consider the activity thread implementation of the XDT sender entity. 
It consists of a set of procedures. These procedures can also be relatively readily 
derived from the state transition graph in Figure 7.5/1 by searching the transitions 
that belong to the external events of the (N+1)- or the (N-1)-layer. The transitions 
in turn may contain output events which trigger a procedure call in the higher or 
lower layer, respectively. Problems occur, as discussed above, if mutual depend-
encies between the procedures have to be taken into account. 

As for the server model implementation, we consider again only the XDT 
layer. For that reason, our example implementation contains only procedures 
which can be called by another entity or internally. These are the procedures for 
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the events XDATrequ, timeout_t1, timeout_t2, ACK und ABO. The implementation 
does not contain the procedures for events like XDATconf, XBREAKind, 
XABORTind, XDISind, or DT, which belong to the implementation of the XDT 
service user and the Y-layer which are not considered here. In the declaration 
these procedures are marked as external. Analogously to the server model imple-
mentation, we use procedure calls for the Y-primitives that refer to the name of 
the transported PDU, e.g., call_DT, call_ACK, and call_ABO. 

In contrast to the server model implementation, we introduce return codes in 
this implementation. A return code informs the calling entity whether the proce-
dure was executed completely or not. The return code “1” indicates a successful 
execution of the procedure in our example, the return code “0” that it failed. In the 
procedure call_ACK we use additionally the code “2” to indicate that the passed 
ACK is wrong. We demonstrate the use of the return code when calling procedures 
of the Y-layer. The respective error handling is carried out by the procedure 
failure which is not further specified here.  

Another problem of this implementation represents the access to the global va-
riables of the entity by concurrent threads. We solve this problem in our imple-
mentation by including all variables in the structure ECB (entity control block).  
The access to the ECB is exclusive and protected by semaphores. For clarity 
reasons,  the latter are  not represented in the following. 

/* TYPE DEFINITIONS */ 
typedef enum {true,false} boolean; 
typedef enum {IDLE,AWAIT_ACK,CONNECTED,XBREAK} states; 
typedef [ ]char data_array; 
typedef struct{int sequ;boolean eom;data_array data} DT_type; 
typedef struct {int conn,sequ,source-addr,dest-addr; boolean eom;  
                                                                      data_array data} XDATrequ_type; 
typedef struct {int N, last, sequ; states state; boolean no_buffer} ICB_type; 
 
/* PROTOTYPE DEFINITIONS FOR ALL PROCEDURES */ 
int call_XDATrequ(XDATrequ_type);             /* Procedures of the XDT sender entity */ 
int call_timeout_t1() 
int call_timeout_t2() 
int call_ACK(int,int); 
int call_ABO(int); 
extern void call_XDISind(int);                   /* Procedures of the XDT user   */ 
extern void call_XDATconf(int,int); 
extern void call_XABORTind(int); 
extern void call_XBREAKind(int); 
extern int call_DT(DT_type);               /* Procedures of the Y-entity      */ 
ICB_type *ECB;                /* Entity Control Block       */ 
int conn;                       /* Number of the connection      */ 
int t1,t2;                   /* Timer declarations        */ 
DT_type build_DT1(XDATrequ_type);          /* Function DT_1 coding            */ 
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DT_type build_DT(XDATrequ_type);           /* Function DT coding       */ 
DT_type get_buffer(int);                    /* Buffer functions           */ 
int put_buffer(DT_type); 
void free_buffer(int); 
void start(int,int);               /* Timer functions                      */ 
void reset(int); 
external void failure();              /* Error handling function        */ 
                       
/* PROCEDURES OF THE XDT SENDER ENTITY */ 
int call_XDATrequ(XDATrequ_type XDATrequ)      /* Procedure for XDATrequ      */ 
     {int rc; 
       DT_type DT; 
 switch(ECB state)  
    {case(IDLE):                 /* IDLE  XDATrequ       */ 
     {ECB state = AWAIT_ACK;       /* Connection set up        */ 
      ECB sequ = 1; 
       ECB N = 0; 
       start(t2,50); 
       rc = call_DT(build_DT1(XDATrequ)); 
       if (rc == 0) failure();               /* Evaluation return code      */ 
       return(1); 
    break; 
       } 
     case(CONNECTED):          /* CONNECTED  XDATrequ  */ 
      {ECB sequ++; 
        put_buffer(DT);  
        rc = call_DT(build_DT(XDATrequ)); 
         if (rc == 0 ) failure();        /* Evaluation return code      */       
                   call_XDATconf(conn,ECB sequ);     /* Confirmation sending      */ 
        if (XDATrequ.eom)         /* last PDU ?         */ 
        ECB last = ECB sequ;  
        if (no_buffer)          /* Buffer full ?        */ 
     {ECB state = XBREAK; 
       call_XBREAKind(conn);       /* Break          */ 
     } 
        return(1); 
        break;   
   } 
    default: return(0);            /* Procedure not executable      */ 
        }   
     } 
 

r
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 void call_go_back_N()          /* Procedure for go back N     */ 
  {int i,rc; 
   for (i=1; (i  ECB sequ – ECB N); i++) 
   rc = call_DT(get_buffer(ICB N+i)); 
   if (rc == 0) failure();        /* Evaluation return code      */ 
  } 
 
 int call_ACK(int c,sequ)        /* Procedure for ACK-PDU     */ 
  {switch(ECB state)  
    {case(AWAIT_ACK):       /* AWAIT_ACK  ACK     */ 
     {if (sequ == 1)        /* correct ACK              */ 
        {ECB state = CONNECTED;  
          conn = c; 
          call_XDATconf(conn,1); 
          reset(t2); 
          start(t1,500);  
          start(t2,50); 
          return(1);  
         } 
         else return(2);       /* wrong ACK        */ 
     break; 
         } 
     case(CONNECTED):       /* CONNECTED  ACK     */ 
     {if (sequ > ECB N)     /* correct ACK        */ 
          {reset(t1);       
      reset(t2); 
      ECB N = sequ; 
      free_buffer(sequ); 
      if (sequ == last)      /* last ACK ?         */ 
        {call_XDISind(conn);    /* Connection release             */ 
           ECB state = IDLE;  
         } 
          start(t1,500); 
     start(t2,50); 
     return(1);  
         } 
        else return(2);       /* wrong ACK        */ 
     break; 
         } 
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   case(XBREAK):        /* XBREAK  ACK      */ 
    {if (sequ > ECB N)     /* correct ACK        */ 
        {reset(t1); 
      reset(t2); 
     ECB N = sequ; 
     free_buffer(ECB N); 
     call_XDATconf(conn, ECB sequ);  /* Break finished     */ 
     start(t1,500); 
     start(t2,50); 
     return(1);  
         } 
        else return(2);       /* wrong ACK        */ 
     break; 
         } 
   default: return(0);        /* Procedure not executable      */ 
                   }        
              } 
 
 int call_ABO(int conn)         /* Procedure for ABO-PDU     */ 
  {switch(ECB state)  
   {case(CONNECTED):       /* CONNECTED  ABO     */ 
          case(XBREAK):        /* XBREAK  ABO      */ 
    {ECB state = IDLE;          
     call_XABORTind(conn);          /* Abort by receiver            */ 
     return(1); 
            break; 
              } 
         default: return(0);             /* Procedure not executable      */ 
        } 
  } 
 
 int call_timeout_t1()         /* Time-out activity timer      */ 
  {switch(ECB state) 
       {case(CONNECTED):            /* CONNECTED  timeout_t1*/ 
         case(XBREAK):              /* XBREAK  timeout_t1      */ 
   {ECB state = IDLE;      
     call_XABORTind(conn); 
     return(1); 
     break; 
               } 
        default: return(0); 
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                  }       
             } 
 
 int call_timeout_t2()         /* Time-out ACK timer      */ 
  {switch(ECB state)  
       {case(AWAIT_ACK):       /* AWAIT_ACK  Time-out   */ 
   {ECB state = IDLE; 
     call_XABORTind(conn);     /* no connection set up        */ 
     return(1); 
     break; 
                           } 
         case(CONNECTED):             /* CONNECTED  timeout_t2 */ 
         case(XBREAK):               /* XBREAK  timeout_t2      */ 
             {call_go_back_N;            /* go back N           */ 
   return(1); 
   break; 
             } 
          default: return(0);                  /* Procedure not executable       */ 
      }      
             } 

13.5 Specific implementation issues 

Independently of the chosen implementation model, a number of problems 
have to be solved for each implementation. Some of these problems are discussed 
in this section. 

13.5.1 Entities 

Additional functions 
The implementation of a protocol entity requires some additional functions that 

do not always depend on the chosen implementation model. Some of these func-
tions are:  

Activation of the entity 
If the input queue is empty the entity has to wait. Active waiting should be 

avoided for efficiency reasons. When using a buffering interface cyclic queries of 
the input queue can be used to leave the waiting state. This can be implemented by 
an interprocess communication mechanism that supports multiple alternatives. In 
the procedure interface activation is triggered by the call of the respective proce-
dure.  
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Reading-out and analyzing events 
Each event read-out from the input queue must be analyzed regarding type, cor-

rectness, and content. It has to be removed from the input queue to avoid multiple 
activations of the event. 

Access to the transition 
The incoming event and the current state of the entity determine the transition 

to be executed. The access to the code of the transition takes place centrally in 
server model implementations and is decentralized in activity thread implementa-
tions (cp. Section 13.4). In both cases there are two ways to access the transition 
code: the programmed and the table-driven access. The programmed access de-
termines the transition using nested if-and/or case-statements (see Figure 13.5/1a). 
The resulting code is relatively extensive in this case. For larger nesting depths (> 
4), this kind of access has proved less efficient than the table-driven one [Held 
95]. The latter is based on the use of a two-dimensional matrix (see Figure 
13.5/1b) that contains the transitions, e.g., represented by a reference to the transi-
tion code or by control parameters for a general transition procedure. The indices 
for the transition access are the major states, possibly also important minor states 
(see below), and the input events. 

Atomic execution of transitions 
The semantics of some formal description techniques demand an atomic execu-

tion of transitions. In this case, the actions of the transition must be protected by a 
synchronization mechanism that ensures that all outputs and all changes of variab-
les only become visible after executing the transition. 

Representation of states 
In both implementation models it is required that the state of the entity is 

uniquely represented. One distinguishes between major and minor states. Major 
states are the states that are explicitly indicated in the specification. They are usu-
ally implemented by a simple variable that indicates the current state. Minor states 
represent the current values of the entity variables V1 ... Vn. The number of possi-
ble minor states is determined by the value ranges of these variables. Hence, the 
set of all possible states of an entity is: 

{major states}  value range V1  ... value range Vn. 

Connection management 
The implementation of connection-oriented protocols requires special measures 

for the management of the connections in the entities. For this, the entities use 
connection tables which contain information about the managed connections (cp. 
Section 2.1), e.g., the local and the destination address, connection end points (if 
used), the current state of the connection, and others. The table entries are the lo-
cal connection references. For each incoming event, the entity has to determine 
which connection the event belongs to. 
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cution time. Before sending a PDU, the protocol control information and the user 
data have to be written into the specified PDU fields, i.e., they have to be shifted 
to the specified bit positions. Since protocol data units are mostly independent of 
each other, usually separate coding/decoding procedures are used for each PDU 
type. The data are transferred to the procedure as parameters. Sometimes larger 
data units have to be segmented (cp. Section 5.6). In this case, the coding proce-
dures have to include a segment offset into the PDU headers. 

The decoding of the protocol data units in the receiver entity consists of two 
steps. First it must be checked whether the received PDU is the expected one (oth-
erwise, it is usually discarded), and whether it was transferred correctly. Then the 
contents can be extracted and analyzed. When segmented data units are received, 
the complete service data unit must be re-established based on the segment offset 
in the PDU headers. 

Mapping between SDUs and PDUs 
The mapping of service data units onto protocol data units is often not explicit-

ly described in protocol specifications. The segmentation, blocking, and chaining 
of data units is quite often considered a local implementation matter. For segmen-
tation, for instance, this decision depends on whether the underlying protocol or 
connection requires a maximum value for the length of the protocol data units to 
be transferred. 

13.5.2 Interfaces 

When buffering interfaces are used, two further aspects have to be taken into 
account: the application of flow control mechanisms at the service interface and 
the atomic execution of events. 

Interface flow control 
In addition to the compensation of processing speed differences between peer 

entities, flow control mechanisms (cp. Section 5.8) can also be deployed for the 
regulation of the interaction between adjacent entities at the service interface1. 
Frequently used mechanisms are: 

 Finite input queues 
 Effective regulation can be achieved by the use of finite queues for each (N)-

connection. If the queue between the (N)- and (N-1)-layer is full, no further 
events can be read-out from the input queue of the (N)-entity. A back-pressure 
occurs which may continue upwards to the application. The same applies anal-
ogously to the other direction. 

 

                                                           
1 The break state (XBREAKind) of the XDT protocol is an example of such a 

flow control mechanism at the service interface. It is though part of the protocol 
and thus does not represent an implementation feature. 
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 Flow control through buffer allocation 
 The principle of finite input queues can also be implemented with the help of 

buffer allocations by providing only a limited number of buffers for the data 
exchange between adjacent layers in each direction. The receiving entity de-
lays the return of an empty buffer until it has in turn processed the received da-
ta and forwarded them. 
 Additional service primitives 

 Additionally, implementation-specific service primitives may also be introdu-
ced through which similar mechanisms can be implemented as are used be-
tween the peer entities, e.g., the granting of loans. 

Atomic execution of events 
Buffering and procedure interfaces resolve the atomicity of interactions at the 

service interfaces. This may result in event sequences which deviate from the 
specified ones. In order to ensure the atomicity of interactions, if demanded in a 
specification, again implementation-specific primitives can be used. For example, 
a DISCONNECT request primitive does not automatically trigger the removal of 
PDUs of this connection in the opposite queue. This can be achieved by a 2-way 
handshake through an additional service primitive, e.g., DISCONNECT complet-
ed, which confirms the removal of these protocol data units [Svob 89]. 

13.5.3 Buffer allocation and management 

The exchange of service data units at the service interface requires the use of 
appropriate exchange mechanisms. An obvious and simple solution would be the 
exchange of data through buffers. This requires a buffer pool in each layer. A 
buffer is allocated for encoding a protocol data unit which is then transferred as 
service data unit to the next layer.  Here the contents can be copied into a new 
buffer to add the protocol control information (PCI) of the associated protocol. 
Blocking, chaining, and segmentation can also be easily realized this way. This 
approach has proved, however, not to be efficient. Since the data units to be trans-
ferred may be pretty large, copying may cost a lot of time, especially as it is re-
peated at each interface. Today it is expected that protocol implementations should 
avoid the copying of data units within a protocol stack, wherever possible [Clar 
89], [Svob 89]. Instead shared data areas are used which all entities can access. 
Now only the references to the respective data areas have to be exchanged. The 
use of references, however, makes the mapping between service and protocol data 
units more complicated. In order to ensure efficient transfer of data units across 
multiple layers mainly two techniques are applied: 

 Offset method 
The offset method reserves a sufficiently large buffer in which the user data 
(payload) and the protocol control information (header) of all layers are stored 
(see Figure 13.5/2). The encoding of a protocol data unit can now very simply 
be done by writing the header information in this buffer and setting a reference 
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13.5.4 Timer implementation 

Although timers usually possess a relatively simple control functionality (start, 
reset and time-out), their implementation is not as easy as it looks. An entity, for 
example, which runs several connections, may need in certain situations a large 
number of timers. An implementation that uses separate processes with separate 
channels for interprocess communication for the timers may overload the operat-
ing system.  

There are two principal ways to implement timers:  

 by an independent process or  
 within a process. 

Implementation as a process 
The timer is implemented as an independent process. The timer functions are 

exchanged between the protocol and timer process as events. This allows use of 
the timer process by different entities, which helps in particular server model im-
plementations. It requires, however, additional interprocess communication. The 
timer process accepts start and reset orders from the entities. Start messages con-
tain the address of the calling entity for feedback, the time-out interval, and an or-
der ID selected by the protocol entity. The reset order contains the feedback ad-
dress and order ID to identify the timer to stop. The timer process periodically 
monitors the received orders taking the current time into account, and generates a 
time-out signal for the client entity when time elapses. The time-out message con-
tains the order ID, so that the entity can identify the respective timer. 

Implementation within a process 
If the overhead for interprocess communication is to be avoided the timer can 

also be implemented within the entity. The interface can be presented by procedu-
res for starting, resetting, and querying the timer. The query procedure is the most 
problematic one because it may conflict with entity activation and the reading-out 
of events from the input queue (cp. Section 13.5.1). Required blocking in this con-
text should not prevent entity activation by other incoming events, while converse-
ly waiting for new events should not delay the handling of a time-out. In activity 
thread implementations there is the additional problem that the entity may only be 
activated by an external procedure call. Therefore, the procedures should contain 
timer queries and respective time-out reactions. A specific solution has to be fore-
seen for situations when no external events occur, but time-outs are pending. This 
may be solved by an additional procedure "Test for time-outs" that is activated pe-
riodically by the runtime environment. 

13.5.5 Special protocol-related implementation techniques 

Several special implementation techniques have been developed, especially in 
the context of high performance communication which has triggered not only the 
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development of new protocols but also tried to increase the efficiency of their im-
plementations. Examples of such implementation techniques are integrated layer 
processing and parallel protocol implementations. Integrated layer processing 
(ILP) is an efficient implementation technique for protocol stacks especially to 
support multimedia applications [Abbo 93], [Ahlg 96]. It aims at reducing the 
number of memory accesses by executing data manipulation operations of differ-
ent layers simultaneously, when these data are in the main memory. Typical ex-
amples of such data manipulation operations are cyclic redundancy checks (CRC), 
data compression/decompression, and data encryption/decryption. The data ma-
nipulation operations which are processed form the so-called ILP-loop. ILP im-
plementations can achieve significant efficiency improvements, but are more so-
phisticated in the design because the ILP loop does not interrupt the protocol’s 
normal execution. In case of a protocol error a conventional implementation must 
be provided additionally.  

The goal of parallel protocol implementation techniques was to exploit the 
parallelism inherent in communication protocols by mapping parallel executable 
units onto different processors and thus increasing the data throughput. The types 
of parallelism taken into account were the parallelism of layers, connections, data 
flow directions, PDUs, and protocol functions. Especially the last two forms ap-
peared promising. Often though, the performance gain is balanced by the organi-
zational overhead. In addition, the derivation of suitable parallel units appears 
non-trivial. Both approaches – integration layer processing and parallel execution 
– are rarely applied any more. This is due to progress in computer processor tech-
nology which sufficiently supports multimedia applications nowadays. For that 
reason, we do not go in details here and refer the interested reader to the refer-
enced literature. Both techniques were also investigated regarding their applicabil-
ity for FDT-based implementations [Lang 99b], [Gotz 96b]. It has been shown that 
they are applicable in this context and may lead to performance improvements. 

Besides the development of efficient implementation techniques which map the 
specification more or less directly onto optimal implementation structures, there 
have been various activities that deal with the optimization of the runtime envi-
ronment. Even if these approaches seem “far away” from the viewpoint of formal 
protocol descriptions they represent an essential element in the development of ef-
ficient communication software. An example is the x-Kernel [Hutc 91], which 
tried to reduce the non-negligible share of the operating system in protocol 
execution by providing special functions for optimizing data and control flow as 
well as minimizing copy operations. Such optimized execution environments may 
particularly be used in execution environments with a limited number of appli-
cations. 
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13.6 Automated protocol implementation 

As already argued in former chapters, the development of a complete complex 
formal protocol description is a long process. The derivation of a running imple-
mentation from it may take as long as the development of the specification. This 
means the protocol is “described” quasi two times, once in the FDT and again in 
the programming language used for coding. This can almost double the time re-
quired. This double effort has motivated investigations to automatically generate 
implementations from a given formal specification. This would allow various im-
plementations to be generated based on a given specification. This intention has 
failed up to now due to the insufficient efficiency of the generated code which 
usually does not meet the demands of real-life communication. We come back to 
this issue at the end of this section. For this reason, automated code generation 
from formal descriptions serves primarily for prototyping, i.e., for executing the 
specifications to validate them or to trace certain protocol sequences. All FDT 
compilers nowadays support this feature and provide outputs for the generation of 
executable code. The efficiency of the generated code plays a minor role for proto-
typing.  

The ideas and techniques of automated protocol implementation coincide with 
the approaches of model-driven software development. Here too, the objective is 
to generate code from the model developed. Approaches to automated protocol 
implementation though go back to the 1980s.   

Benefits of automated protocol implementation 
The automated derivation of protocol implementations from formal descrip-

tions offers a number of advantages. The most important one is undoubtedly the 
significant (time) gain in the implementation process, but other benefits are also 
quite remarkable. Automated implementations may reduce the likelihood of im-
plementation errors because the compiler generates the code according to a de-
fined transformation procedure which has to be designed and proved during com-
piler development. For the same reason, generated code usually has a better 
compliance with the specification than manually written code. Automated code 
generation also avoids subjective implementation styles. Last but not least, it al-
lows a faster adjustment to protocol changes which have to be carried out only at 
specification level.  

Constraints of automated protocol implementation 
Automated protocol implementation is substantially different from traditional 

manual implementation. It is subject to a number of restrictive conditions which 
have to be taken into account when generating the code. We discuss these dif-
ferences on the basis of Figure 13.6/1 in the following. 

 
 
 



 

F

th
o
c
s
e
m
fo
F
ti
e
c
T

T
p
S
im
c
tr
m
c
T
im
p
  

ti

Figur

A
he p

of th
cutio
train

ed b
mall
form
F(SP

ion.
essar
corre
TOS

T
They
plem
SFDT 
mpl

can 
rans

most
can 
The 
mpl

proto
      

2 
ions

re 13

A m
prot
he (i
on e
nts 

by th
ly a

mity 
P), th
 Th
rily 
ectly

S spe
This 
y st

ment
of 

lem
only
sfor
t FD
be r
effi

lem
ocol
      
Her

s tha

3.6/1

manu
toco
info
envi
of t

he s
dap
wit

his 
he s

be 
y im
ecif
situ
art 
tatio
the 
enta
y be
rmat
DT c
read
icien
enta
l im
     
re w
at m

1: C

ual 
ol on
orma
iron
this 
subj
pt th
th th
serv
ema
pre

mpl
ficat
uatio
from

on, 
app

atio
e gu
tion
com
dily
ncy
atio

mple
      

we u
meet

Const

imp
nto 
al) p

nmen
ma

jecti
he im
he s
ves 
anti
eserv
eme
tion
on c
m a
an 

plied
n g
uara

n is 
mpil
y va
y of 
ns2 

eme
     

und
t the

train

plem
the

prot
nt, i

appi
ive 
mpl
spec
as a
cs o
ved 
ente
n do
chan
a for
auto
d FD
ene
ante
the 

lers 
alida

the
[He

entat
     
erst
e pe

nts o

men
e ex
toco
imp
ing. 
sty

lem
cific
a ba
of th
in 

ed. F
oes n
nge
rma
oma
DT 

erati
eed 

dir
do.

ated
 gen
eld 
tion
      
tand
erfor

f aut

ntatio
xecu
ol sp
plem

Th
le o
enta
catio
asis 
he f
the 
For 
not p
s w

al pr
ated
and

ion 
if th

rect 
 Th

d. Th
nera
95]

ns fu
     

d rea
rma

toma

on 
ution
peci

ment
he im
of th
atio
on. 
for

form
imp
exa

pres
when

roto
d im
d its
is p
he F
imp

he tr
he m
ated
], [G
urth
      
al-li

ance

ated 

M
n en
ifica
tatio
mple
he i
n to
If th

r the
mal 
plem
amp
serv
n au
ocol

mple
s im
perfo
FDT
plem
rans
mai
d co
Gotz
her o

     
ife p
e req

prot

ma
nvir
atio
on l
eme
imp
o th
he i
e un
des

men
ple, 
ve sy
utom
l de
emen

mple
form
T se
men
sform
in g
ode i
z 96
opti
   
prot
quir

13

toco

aps 
ronm
n SP
lang
enta
lem

he g
imp
niqu
scrip
ntati

a T
ync

mate
escri
ntat
men

med 
ema
ntati
mat

goal 
is u
6b].
imiz

toco
rem

3.6 A

ol im

a g
men
P an
guag
ation

ment
given
plem
ue in
ptio
ion 
TCP
chro
ed im
iptio
tion
ntat
aut

antic
ion 
tion
of 

usua
. In 
zatio

ol im
ents

Auto

mplem

iven
nt of
nd th
ge o
n is
ter. 
n en

ment
nterp
on te
as l

P im
onou
mpl
on F

n A
tion 
tom
cs i
of t
 is e
suc

ally 
ord

ons 

mpl
s of

omat

ment

n (o
f th
he i
of th
des
He/
nvir
ter s
pret
echn
long

mple
us co
eme
F(SP

A ha
env

atic
s pr
the 
easy
ch im
not

der 
are

lem
f rea

ed p

tatio

often
e ta
impl
he t
sign
/she
ronm
start
tatio
niqu
g as 
eme
omm
enta

SP). I
as to
viro
cally
rese
form
y to
mpl
 suf
to d

e req

enta
al ne

proto

on 

n in
arge
lem
arge

ned 
e ha
men
ts fr
on o
ue, h
the

entat
mun
ation
In c
o ta
onm
y. A
erve
mal

o per
lem
ffici
depl
quir

atio
etwo

ocol 

nfor
et sy

ment
et sy
indi

as th
nt, w
rom
of th
how

e pro
tion
nica
n te
cont
ake 

ment 
A co
ed. T
 FD
rfor

menta
ient
loy 
red.

ns t
orks

imp

rmal
yste
atio
yste
ivid
he p
whil

m a f
he p
weve
otoc

n de
ation
echn
trast
the 
ITS

orrec
The

DT s
rm a
atio
t for
this
 Th

to m
s. 

leme

l) sp
m. 

on c
em)
dual
poss
le r
form
prot
er, n
col p
erive
n. 
niqu
t to
for
into

ct im
e sim
sem
and 
ons i
r rea
s co

his c

mea

enta

pec
The
onte
 for

lly a
sibil
esp

mal 
oco
nee
pro
ed f

ues a
o a m
rmal
o ac
mpl
mpl

mant
its 
is p
al-li
ode 
can 

an im

tion 

ific
e se
ext 
rm t
and 
lity 
ecti
des

ol sp
ds n
ced
from

are 
man
l se
ccou
lem
est 
ics 
corr

proto
ife p
in 
be 

mpl

atio
eman
IC (
the 
imp
to 

ing 
scrip
peci
not 

dure
m a 

app
nual
eman
unt.
enta
form
SFD
rect
otyp
prot
real
don

eme

37

on o
ntic
(exe
con
pact
opti
con

ptio
ifica
nec
s ar
LO

plied
l im
ntic
 Th
atio
m o

DT, a
tnes
ping
toco
l-lif
ne i

enta

79 

of 
cs 
e-
n-
t-
i-
n-
n 

a-
c-
re 

O-

d. 
m-
cs 
he 
n 

of 
as 
ss 
g. 
ol 
fe 
n 

a-



3

tw
o
b

P

m
s
(c
re
in
fo
p
 

F

c
d
n
tr
c
e

d

80  

wo 
or by
below

Prin
T

mate
tart
cp. 
efin
ng, 

form
post-

Figur

T
catio
desc
nent
rans

cutab
envir

U
durin

way
y m
w. 

ncip
The p
ed p
ing 
Sec

nem
add

matio
-pro

re 13

The F
on. H
cribe
s, a
sfor
ble 
ronm

Unlik
ng i

13 

ys: b
mean

ple o
prin
prot
poi

ctio
ments
ditio
on i
oces

3.6/2

FDT
Her
es th
and 
rmat
cod
men
ke a
imp

 Imp

by m
ns of

of au
ncip
toco
int o
n 1
s ne
onal
is m
ssin

2: Pr

T co
re th
he s
the 
tion
de in
nt. 
a m
plem

plem

man
f op

uto
ple o
ol im
of th
3.1

eede
l inf

miss
g. 

rinci

omp
he F
struc
ma

n rul
nclu

manu
ment

menta

nual
ptim

mat
of co
mple
he c
.1) 
ed f
form
ing 

iple 

piler
FDT
ctur

anne
les f
udin

ual i
tatio

ation

l adj
mizin

ted 
ode 
eme
code
wh

for 
mati

the

of a

r ge
T co
re o
er o
for t
ng th

imp
on d

n 

just
ng t

cod
gen

enta
e ge

hich 
cod
ion 
e ge

autom

ener
omp

of th
f th
the 
he s

plem
desi

tmen
tran

de g
nera
ation
ener
con

de g
abo

ener

mate

rates
piler
he a
heir 

FD
serv

ment
ign,

nts 
sfor

gene
ation
ns [
ratio
ntai

gene
out
rated

ed co

s ex
r ap

autom
inte

DT c
vice

tatio
, the

of t
rma

erat
n is
[Hel
on p
ins 
erati
the 
d co

ode g

xecu
ppli
mat
erac
omp
 int

on, w
e im

the 
ation

tion
 bas
ld 9
proc
the 
ion
run

ode

gene

utab
es a
tical
ction
pile
terfa

whe
mple

gen
ns d

n 
sica
95], 
cess
im

on
ntim

wi

eratio

ble c
a sp
lly g
n. T
er to
ace 

ere 
eme

nerat
durin

ally 
[La

s is 
mplem

the 
me e

ll c

on o

code
peci
gen

The 
o ma
and

the 
enta

ted 
ng c

the 
ang
the 
men
tar

envi
onta

of pro

e fr
fic 

nerat
imp

ap t
d the

imp
ation

cod
com

sam
 99
im

ntati
rget 
iron
ain 

otoc

om 
imp
ted 
plem
he f
e in

plem
n m

de, a
mpila

me i
9b] (
plem
ion-
sys

nmen
gap

col im

the
plem
imp

men
form
nteg

men
mode

as o
atio

in al
(see
men
-rela
stem
nt i
ps w

mple

e im
men
plem
ntati
mal 
rati

ntati
el fo

often
n, w

ll ap
e Fi
ntat
ated

m. E
s re

whic

emen

mplem
ntat
men
on m
des
on i

ion 
for t

n do
whic

ppro
igur
tion
d in
Even
equi
ch r

ntati

men
tion
ntati
mod

scrip
into

mo
the 

one 
ch w

oach
re 1
n sp
nform
n fo
ired
requ

ons

ntat
n mo
on, 
del 
ptio
o the

odel 
aut

in p
we c

hes 
3.6/

peci
mat

or pr
d. If 
uire 

ion 
ode
its 
def
n on
e ex

is 
toma

prac
cons

to a
/2). 
fica
tion 
roto

f thi
ma

spe
el w
com

fines
nto 
xecu

sele
atic

ctice
side

auto
Th

ation
 an

otyp
s in

anua

ecifi
whic
mpo
s th
exe

utio

ecte
c im

e, 
er 

o-
he 
n 

nd 
p-
n-
al 

i-
h 

o-
he 
e-
n 

d 
m-



  13.6 Automated protocol implementation 381 

plementation has to be designed during the compiler development. At that time, 
neither the potential applications nor the implementation contexts are known. 

The generated code must be embedded into the target system. For automated 
protocol implementations, the use of a separate, manually coded implementation 
environment which is placed between the operating system and the protocol stack 
code has turned out to be appropriate (cp. Figure 13.1/2). This is an FDT-related 
execution environment that provides all functions that cannot be derived automati-
cally, in particular functions of the FDT semantics. Such an implementation envi-
ronment facilitates the generation of implementations for different implementation 
contexts. The separate execution environment virtually forms the “runtime sys-
tem” of the FDT compiler, which though is more strongly connected to the operat-
ing system than with conventional compilers. The separate runtime environment 
contains primarily routines for integrating the code into the operating system and 
special routines, e.g., for interface interactions, timer management, buffer man-
agement, and event scheduling. The routines may be parameterized by the compil-
er to better adapt them to the presetting of the implementation model. The runtime 
system can exist either as source code, which is then translated together with the 
generated code by the compiler of the target language into executable code, or as 
object code which is linked together with the generated code. 

Experience with such implementations has indicated that approximately 40-70 
per cent of the code can be generated automatically [Held 95], [Lang 99a]. This 
strongly depends on the type of the protocol implemented. It is, however, worth-
while to note that the manually coded routines of the runtime system are reused 
for other implementations. 

Optimized code generation 
The core problem of automated protocol implementation consists of the fact 

that the chosen implementation model defines a fixed transformation scheme. The 
structure of the implementation and the separation of functions are strongly influ-
enced by the semantics of the respective formal description technique. The rigid 
implementation model limits the effectiveness of the implementation, since very 
little room is left for local implementation matters and individual optimizations. 
These can only be carried out subsequently. 

Existing FDT compilers, e.g., [CADP], [Cind], aim primarily at prototyping. 
They straightforwardly map the FDT semantics and contain some optimizations to 
reduce the overhead incurred by the FDT semantics. Complex elements, such as 
efficient PDU coding/decoding or cross-layer implementations are usually not 
supported. The generated code can rarely be deployed in protocol implementations 
that can be deployed in real networks. To do so an optimized code generation is 
required. Several approaches have been published which have tried to increase the 
efficiency of the generated code, e.g., by optimizing the access to the transition 
code or by parallel execution [Held 95], [Gotz 96b], but the efficiency increase 
was limited. Two other approaches have proved more promising: (1) the integra-
tion of advanced manual implementation techniques and (2) the support of a flexi-
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tation from the intermediate format according to the selected implementation 
model. The intermediate representation also contains the runtime system. Note 
that ILP implementations are not generated alone, but always in context with an-
other implementation to which the system switches when protocol errors occur 
(cp. Section 13.5.5). The code repository contains segments to support the code 
generation, e.g., word filters for the adjustment of data formats between different 
data manipulation operations in ILP implementations or efficient (manually co-
ded) code segments to be included in the generated code. 

Applications of the COCOS compiler to different specifications have shown 
significant performance gains compared to existing commercial FDT compilers. 
For example, the derivation of an activity thread implementation from an SDL 
specification of the TCP/IP stack outperformed an implementation generated with 
the Cadvanced compiler of the former SDT tool suite of Telelogic Tau by 120 per 
cent [Lang 99b]. 

Despite such results, the automated generation of protocol implementations 
based on today’s formal description techniques will be always a trade-off between 
the implementation duration, the required efficiency, and the degree of automation 
of the implementation. This is mainly due to the semantic constraints of the speci-
fication languages and the relative rigidity of the transformation process. Possible 
approaches for solving these problems, besides a flexible adaptation to the imple-
mentation environment and the use of modern implementation principles, are 
modifications of the specification languages and the development of implementa-
tion-oriented specification styles. For this reason, implementations with high per-
formance demands are hardly the primary application field for automated protocol 
implementations. These are rather application protocols or novel protocols to 
quickly generate a running implementation on the basis of a formal protocol de-
scription that can be further optimized, if needed. 

Further reading  
As already argued in the chapter there are not that many publications which 

deal with the specific problems of protocol implementations. Besides the cited 
work a description of protocol implementation principles including an FSM li-
brary for protocol implementations can be found in the book of Popovic [Popo 
06]. A comprehensive introduction to protocol implementation principles is also 
given in the already mentioned book of Mitschele-Thiel [Mits 01]. The book de-
scribes in particular the implementation of SDL systems.       

 

Exercises 
(1) Describe the basic steps of protocol implementation design and coding. Dis-

cuss in particular the role of local implementation matters and the integration 
into the execution environment. 

(2) What is the purpose of prototyping? What is it used for? 
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(3) Explain the principle of the server and the activity thread model. What are 
the issues the implementer faces when using these models? Discuss the re-
turn of control and error information in activity threads. 

(4) Explain the use of buffering and procedure interfaces in the context of these 
models. 

(5) Sketch an implementation of the XDT receiver entity with an explicit con-
nection set up as described in exercise (11) in Chapter 2. 

(6) Sketch the same implementation using the activity thread model. 
(7) Integrate the regulated data delivery mechanism of exercise (13) in Chapter 2 

into the server model implementation of exercise (5). 
(8) What approaches exist to implement the access to the transition code? 
(9) How can states be represented in implementations? 
(10) How can the connection management be implemented? 
(11) What methods exist to optimally handle the exchange of SDUs within a pro-

tocol stack? 
(12) How can timers be implemented in protocols? 



14 Testing 

The protocol test has the task to check whether the implemented protocol 
works correctly and is in compliance with the specification. In contrast to verifica-
tion, which tries to prove the correctness, accuracy, and consistency of the proto-
col design, i.e., of its specification, testing focuses on implementations. Protocol 
verification and testing are therefore complementary methods. While verification 
is based on formal proofs, protocol testing validates physically existent, executa-
ble implementation by experiments. A test always relates to a dedicated imple-
mentation. It cannot make statements on other implementations derived from the 
same specification. The well-known statements on software testing also apply to 
protocol testing, such as that the goal of testing is to detect errors in the implemen-
tation or a test can only confirm the presence of errors but not their absence. Con-
sequently, the protocol test cannot guarantee the correctness of an implemented 
protocol; it can only increase trust in the functionality and reliability of the im-
plemented protocol.  

In this chapter we introduce the basic methods and techniques applied in proto-
col testing. After a brief overview of the various types of protocol testing, we fo-
cus on the conformance and the interoperability test which represent the primary 
forms of protocol testing. We first introduce the fundamentals of the ISO test 
methodology. After that, we deal with the derivation of test cases that are not cov-
ered by standardization. Finally, we give an outlook on test description languages, 
in particular the TTCN test notations. As in other chapters, we use the XDT proto-
col as an example for the representation of test cases. 

14.1 Types of protocol tests 

Protocol testing represents a variant of the testing of parallel and distributed 
systems. Compared to the testing of sequential programs, there are a number of 
differences [Baum 94], such as the non-reproducibility of events, the combinatory 
overlay of processes, the lack of a global system view with defined conditions, 
limited observability and control of the implementation, and the use of distributed 
test systems. The intrinsic distinctiveness of protocol testing compared to software 
testing, however, is the use of several specification levels, as discussed in the pre-
vious chapters (cp. Chapter 9), the role of standardization, and multiple implemen-
tations of communication protocols. The task of protocol testing is therefore not 
only to demonstrate that the implementation meets a given functional specification 
– the service specification – but also to show that the associated abstract imple-
mentation – the protocol specification – is interoperable with other implementa-
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tions of the protocol. The proof of interoperability of protocol implementations is 
complicated by protocol options and local implementation matters, and last but not 
least also by the incompleteness and ambiguity of informal protocol descriptions. 

Protocol testing is the most important validation method for communication 
protocols in practice. This has several reasons. The use of verification methods is 
limited in practice because of the complexity of protocol specifications. Moreover, 
it only relates to the design and not to the implementation of the protocol. The 
mapping of a (verified) protocol specification onto a concrete implementation in-
cludes a variety of steps and decisions that may be sources of errors as we have 
seen in the preceding chapter. This process is difficult to formally verify, since 
implementation details are often not disclosed. Hence, the correct functioning of a 
protocol implementation can only be validated by testing. 

Protocol testing comprises different types of tests. They can be roughly divided 
into:  

 debugging, 
 conformance test,  
 interoperability test, and   
 complementary tests. 

Debugging 
As always in programming, there is a need to find bugs or other defects in the 

code when implementing the protocol. This task is usually performed by the im-
plementer. The methods and principles applied here correspond to those of tradi-
tional software testing, such as the testing of single protocol parts as well as inte-
gration tests to examine their interactions. These tests are primarily white box 
tests that are based on knowledge of the source code and its structure (module 
structure, data structures, and control flow). The test cases can be derived directly 
from the source code. Other typical test methods like code inspection, walk-
throughs, or code supplements (queries, intermediate expressions) can also be ap-
plied to get information about the internal processes. These are general test meth-
ods which are not only typical of protocol testing. 

Conformance test 
The first characteristic protocol test is the conformance test that checks whether 

an implementation is in compliance with the specification. The conformance of an 
implementation with the respective specification is a necessary precondition for 
the interoperability of protocol implementations. The significance of the conform-
ance test derives from the existence of protocol standards. It validates compliance 
with the respective standard. Hence, it is an important means for the enforcement 
of protocol standards. The conformance test is a much sharper test than debug-
ging. It consists of a set of fixed rules, and is typically not performed by the im-
plementer. The conformance test is a black box test that checks the externally vis-
ible functional behavior of the protocol implementation. The test cases are derived 
from the specification; neither the program code nor other information about the 
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ard more precisely defines important basic concepts of testing methodology, such 
as the conformance notion. 

In the following sections we outline the fundamental procedures of conforman-
ce testing. In particular, we consider the conformance notion, the abstract testing 
methodology, the conformance assessment process, and the test execution. The 
reference to the respective standards is established by the abbreviations CTMF 
and FMCT, respectively. We begin always with the FMCT definitions. For those 
aspects of the testing methodology which FMCT does not dealing with, only the 
CTMF representation is considered.  

14.2.3 Notion of conformance 

The definition of when an implementation can be considered as compliant with 
the specification is decisive for the conformance test. FMCT and CTMF provide 
slightly different definitions for this.  

14.2.3.1 Conformance according to FMCT 

In defining the concept of conformance both standards distinguish between 
static and dynamic conformance. Static conformance refers to the instantiation of 
the specification and the IUT regarding the possible protocol options. It confirms 
that the options selected by the implementation are allowed. 

Dynamic conformance checks whether the behavior of the IUT observable by 
the test system corresponds to the expected specified behavior according to the 
applied conformance relation. For this, the implementation relation imp is used1 
(cp. Section 11.5.1): 

imp  MODS  SPECS. 

Here SPECS denotes the set of instantiated specifications and MODS the set of 
models that model the behavior of the implementations. The introduction of 
MODS requires some additional explanations. MODS is used to establish a formal 
relationship between the formal specification and the implementation which can-
not be done directly. Therefore, a relationship is established by constructing a 
formal model mIUT  MODS of the implementation under test IUT  IMPS, with 
IMPS – set of all implementations, which is compared with the specification. One 
can imagine this, for example, by means of a finite state machine that is construct-
ed from the test outcome and then checked for compliance with the specification 
S. FMCT only assumes that such a formal model exists; it need not be set up ex-

                                                           
1 The FMCT standard is based on algebraic test theory and uses the correspond-

ing terms. The notion of implementation relation can be equated with the term 
conformance relation used in the previous section. 
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r  RS: mIUT sat r, 

where r  RS denotes a single conformance requirement. For the set MS of all 
models compliant to S, we have correspondingly 

MS = {m  MODS | r  RS: m sat r}. 

14.2.3.2 Conformance according to CTMF 

The conformance notion of the previously defined CTMF standard is broader 
than that in FMCT. Conformance in the CTMF context means the compliance of a 
protocol implementation or of a real system with one or more ISO protocol stand-
ards or ITU recommendations. Note that this compliance relates only to the proto-
col specification, but not to the service specification! It is assumed that a conform-
ing protocol implementation provides the specified service correctly. This as-
sumption is ultimately only valid if the correctness of the service provision by the 
protocol can be formally verified and the interoperability with other implementa-
tions is given. 

Like FMCT, CTMF distinguishes between static and dynamic conformance re-
quirements. The static conformance requirements define the necessary precon-
ditions for the conformance of an implementation. They define the technical pre-
conditions for a test run, e.g., which of the specified functions and capabilities 
may be combined in an implementation. In particular, they specify the subset of 
capabilities required for interoperability between implementations. This includes 
global requirements, such as the support of protocol classes, as well as detailed 
specifications regarding the value ranges of parameters and time-out intervals. 
Moreover, specific decisions regarding the implementation of certain protocols as 
well as dependencies between the protocol layers may be given. 

The dynamic conformance requirements define the expected or allowed pro-
tocol behavior. They include all those requirements that concern the dynamic pro-
tocol flow, such as state transitions, expected service primitives and PDUs, proto-
col termination, error measures, etc. The dynamic conformance requirements can 
to a large extent be derived from the protocol specification. Their validation forms 
the main part of the testing process. The conformance requirements are formulated 
as commandments and prohibitions. They are differentiated into: 

 mandatory requirements which must always be observed,  
 conditional requirements which have to be met only under certain circum-
stances, and  
 options which take the specifics of the implementation into account. 
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ingly, the implementation relation imp must be supplemented by the context-
dependent implementation relation impc: 

mIUT impc S  mIUT,c imp c(S). 

The implementation relation impc is weaker than imp: 

mIUT imp S  mIUT impc c(S), 

since all conforming implementations of S are compliant in any other test context, 
while not all implementations that meet impc may prove as compliant in another 
test context. 

14.2.4.2 Test architecture in CTMF 

In contrast to FMCT, CTMF describes how tests can be set up in practice. It de-
fines several variants on how the test components can be arranged. To generalize 
their description CTMF introduces the notion of conceptual test architecture. 

Conceptual test architecture 
As argued before, CTMF defines several test architectures which vary in how 

they control and observe the IUT depending on the configuration of the options. 
The different test architectures are described by an abstract test methodology. 
The term abstract emphasizes the conceptual aspect, i.e., the implementation in-
dependence of the methodology. The abstract test method defines a conceptual 
test architecture that determines the manner in which the IUT and the test system 
interact. We have introduced the principle of the conceptual test architecture al-
ready in the introduction of Section 14.2.1 (cp. also Figure 14.2/4). Based on the 
conceptual test architecture, different abstract test methods (ATMs) are defined. 
As a consequence, the term test method is rather preferred in practice than test 
architecture. 

CTMF, like FMCT, regards the IUT together with the test context in which it is 
embedded. The test context and the IUT form the system under test (SUT). Two 
types of SUTs are distinguished: end systems and relay systems. The terms IUT 
and PCO are used as in FMCT, while the term implementation access point (IAP) 
is not used. An IUT may contain one or more protocols. Accordingly, one speaks 
of single protocol IUTs and multi-protocol IUTs. For the test of relay systems, it is 
demanded that the IUT shall include at least the protocol layer which performs the 
mapping between the different networks. 

The abstract test methods differ in the number and positions of the PCOs for 
the interaction between the test system and the SUT, and thus in the degree to 
which they can control and observe the IUT. The positioning of the PCOs also de-
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  14.2  Conformance test 403 

genc
imp: SPECS  (TESTS). 

Hereby SPECS denotes the set of instantiated specifications and (TESTS) the 
set of test suites in a given test notation TESTS. The derivation of a test suite is 
bound to the used implementation relation and the given test context. Another im-
plementation relation or a modified test context generates another test suite. All 
models of implementations conforming to S must be contained in the set of com-
pliant models MTS of the test suite TS to decide whether an IUT is compliant to S: 

m  MODS: m impc S m  MTS, with TS = genc
imp(S). 

Test suites are differentiated into three classes with respect to their ability to 
recognize compliant or non-compliant implementations: 

 exhaustive: A test suite TS is called exhaustive if the set of models MTS that 
are compliant to the test suite TS represents a subset of the set of compliant 
models MS, i.e., MTS  MS. All implementations that pass the test are compli-
ant with S. A non-compliant implementation cannot pass the test. However, 
there may also be conforming implementations which do not pass the test. 
 sound: A test suite TS is sound if the set of conforming models MS is a subset 
of the set MTS, i.e., MS  MTTS, i.e., all compliant implementations pass the 
test. There may, however, also be non-compliant implementations that pass the 
test suite and thus remain undetected. 
 complete: A test suite TS is complete if it is sound and exhaustive, i.e., MS = 
MTS. A complete test suite can exactly distinguish between compliant and non-
compliant implementations. 

Ideally, a test suite should be complete. But this is rarely feasible, since the der-
ivation of exhaustive test suites is very expensive. For this reason, the only practi-
cable demand is that a test suite should be sound. 

14.2.5.2 Test suite in CTMF 

Test suites are defined as abstract test suites in CTMF. An abstract test suite 
(ATS) is a complete set of test cases needed to test the dynamic conformance re-
quirements of a protocol. The add-on abstract indicates again that it is not an exe-
cutable test suite, yet. An abstract test suite consists of a set of test cases (see Fig-
ure 14.2/15). They form the main elements of a test suite. 
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beginning of the data transfer phase). If the test body ends in a stable testing state 
no postamble is required. 

14.2.6 Test realization 

The test realization is only considered in CTMF. Part 4 of the ISO 9646 stand-
ard describes the implementation of the abstract test methodology and the neces-
sary means of testing needed for the derivation, selection, parameterization, exe-
cution, and recording of test cases. We consider here only the implementation of 
the abstract test methods. The latter concerns first of all the implementation of the 
lower and the upper tester as well as the coordination between them. 

Lower tester 
To implement the lower tester usually two methods are applied: the encoder/ 

decoder method and reference implementation. 

Encoder/decoder method 
The encoder/decoder method simply implements the encoding/decoding of the 

PDUs and service primitives that form the test case. The protocol to be tested is 
not implemented in the lower tester. This is the advantage of the method because 
it avoids the effort for the implementation of the protocol in the lower tester. The 
test cases can be flexibly adapted to the test course. On the other hand, each test 
case has to be coded individually. For this, the context of the test must be taken in-
to account in the preamble and the postamble. In the case of very many test cases, 
this may be as costly as the implementation of the protocol itself [Baum 94]. 

Reference implementation 
When using a reference implementation, the lower tester contains a (tested) im-

plementation of the protocol. The implementation is complemented by additional 
components, such as error generators, a configuration module, and a test driver to 
realize various protocol behaviors. The advantage of this approach is that the en-
tire protocol is executed by the lower tester, but this requires a larger implementa-
tion effort. Therefore, in practice the encoder/decoder version is preferred. 

Upper tester 
There are several possibilities to implement the upper tester. It can be realized 

as a self-contained component or directly integrated into the SUT as in the remote 
test method. It is also possible that the test engineer can directly access the IUT 
via the user interface. 

Test coordination procedure 
As with the upper tester, the test coordination procedures can be implemented 

in different ways. Usually, they are realized by a scenario interpreter, implemented 
in the upper tester, which reads service primitives from a predefined file. Another 
possibility is the use of a test management protocol. If the test engineer can direct-
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14.2.7 Test execution 

14.2.7.1 Test execution in FMCT 

Test execution function and test verdicts 
The execution of a test suite TS  TESTS on an IUT in a given test context c is 

described in FMCT through the test execution function exec:  

exec: TESTS  MODS  OBS. 

The execution of a test with exec results in a set of observations obs OBS regar-
ding the model of the IUT mIUT,c MODS. These observations, which are stored 
in a log file, form the test outcome from which the test verdict verd is derived: 

verd: OBS  {pass,fail} 

FMCT distinguishes the test verdicts pass and fail depending on whether the mod-
el of the implementation satisfies the model of the test suite (mIUT,c MTS) or not 
(mIUT,c MTS). A test suite TS correspondingly subdivides the set of models of the 
implementation MODS into two disjoint subsets Mp(TS) = {mIUT,c MODS | 
mIUT,c passes TS} and Mf(TS) = {mIUT,c MODS | mIUT,c passes TS)}: 

MODS = Mp(TS)  Mf(TS) and Mp(TS)  Mf(TS) = 

The test verdict for the execution of a test suite TS is derived from the observa-
tions of all test cases of the test suite. An IUT passes a test case t  TS if  

IUT passes t  verdt( ) = pass 

holds, where   OBS refers to the observations obtained from the execution of 
the test case t relating of the model mIUT,c

: 

exec(t,mIUT,c) = 

An IUT passes a test suite TS  TESTS if and only if the IUT passes all test cases t 
 TS, i.e., 

IUT passes TS  t  TS: IUT passes t. 

Test purpose 
The subset of models of the implementation mIUT,c  MODS that fulfills the rela-
tionship IUT passes t  verdt(exec(t,mIUT,c)) = pass meets the test purpose Pt of t: 

Pt = {m  MODS | verdt(exec(t,m)) = pass}. 
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The goal of the execution of a test case t is therefore to prove whether mIUT,c is 
contained in Pt, i.e., 

IUT passes t  mIUT,c  Pt. 

If an IUT passes the test suite TS then this means that the model of the IUT mIUT,c 
is contained in all test purposes Pt,i , i.e., 

IUT passes TS  mIUT,c  PTS with PTS = Pt,i, i=1,...,n. 

The set of formal test purposes PTS of TS is a superset of the set of compliant 
models MS, i.e., PTS MS. If all conforming models mIUT,c pass a test suite TS gen-
erated for a set of test purposes PTS, i.e., PTS = MS, then this test suite is sound (cp. 
Section 14.2.5.1). 

14.2.7.2 Test execution in CTMF 

Although test execution looks quite simple in FMCT, it is much more compli-
cated and extensive in practice. In CTMF, the test execution is defined by the con-
formance assessment process. It comprises all activities that must be adhered to in 
order to prove the conformance of an implementation against the respective stand-
ard. The conformance assessment process consists of three phases: test prepara-
tion, test execution, and test evaluation including test report. 

Test preparation 
The test preparation includes several steps, such as selection of the test method, 

the provision of the needed test cases, and the preparation of the IUT as well as of 
the deployed test tools. Furthermore, a system conformance statement has to be 
filled out which contains administrative information and statements about the pro-
tocols to be tested. One of the main activities of test preparation is to fill out the 
conformance declarations PICS and PIXIT. They contain information from the 
implementer about the implemented protocol and the system under test. 

The protocol implementation conformance statement (PICS) documents in 
questionnaire form, the PICS form, statements of the implementer on the protocol 
implementation, such as the protocol classes and options used, the value ranges of 
the parameters, e.g., the PDU sizes, or the time-out values set. The PICS docu-
ment is needed for the static conformance assessment, the provision of the test 
suite (e.g., for adapting it to the selected protocol options), and as a reference doc-
ument for the evaluation of the test outcome. The structure of the PICS form is 
specified in Part 2 of the ISO 9646 standard.  

The protocol implementation extra information for testing (PIXIT) con-
tains information on the SUT, e.g., the SAP addresses, information about the real-
ization of the upper tester in the SUT, information about the protocol stack, and 
administrative information, such as the SUT version, the associated PICS form, 



4

a
la

e
h
fo
a
e
th
c
fo

T

ro
d
a

ic
c
fo
e
b
fo
th

10  

and 
abor

P
ecut
how 
form
abstr
each
he p

cutab
form

F

Test
T

owe
deter
and P

T
c co

conf
form
eteri
be fu
fore 
he c

mor
rato
ICS

tabl
the

matio
ract

h exe
poss
ble 

med 

igur

t exe
The 
er s
rmin
PIX

The t
onfo
form
man
ized
ully
CT

conf

14 

re. T
ory f
S an
le te
e tes
on i
t an
ecu
sible
form
dur

re 1

ecu
test
ens
ne h

XIT 
test 
orm

manc
nce a
d ba
y pe
TMF
form

Test

The
for 

nd P
est 
st ca
is su

nd e
tabl
e te
m. F
ring 

4.2/

ution
t ex
e. T
how
are 
con

man
ce r
asse

ased
erfor
F di
man

ting 

e PI
each

PIXI
suit
ases
uppo
exec
le te

est v
Fur
the

/18: 

n 
xecu
The 
w th

inc
nsis
ce 
requ
essm

d on
rme
stin

nce a

XIT
h ab
IT a
te (
s are
orte

cutab
est c
verd
rther
e tes

Der

ution
step

he st
corp
ts o
asse
uirem
men
n PIC
ed fo
ngui
and 

T de
bstr
are a
(ET
e se
ed b
ble 
case
dicts
rmo
st ru

rivat

n re
ps o
tatic

pora
of a 
essm
men

nt co
CS 

for e
ishe
thu

ecla
ract 
also
S). 

elect
by a 

tes
e co
s of 
ore, 
un w

tion 

epre
of t
c an
ted 
stat

men
nts 
omp
and

each
s fo

us re

arati
test

o req
CT
ted 
set 
t su

orres
an 
no 

whic

of e

sen
this 
nd d
in t

tic a
nt th
(cp
pris
d PI
h pr
our 
educ

ion 
t sui
quir

TMF
and
of 

uites
spon
abs
insp

ch g

exec

ts th
pro

dyna
the t
and 
he P
. Se
es t
IXIT
roto
typ
ce th

mu
ite a
red t
F of
d pa
rule
s. T
nds 
strac
pec

go be

cutab

he c
oces
amic
test 
a dy
PIC
ectio
the a
T. T
col 
es o
he t

st b
agai
to tr
ffers
aram
es in
Thus

to a
ct te
ction
eyo

ble t

con
ss ar
c co
pro

yna
CS i
on 1
actu
The 

imp
of te
test 

be fi
inst 
rans
s di
mete
n or
s, it
an a
est c
ns o
ond t

test s

nform
re p
onfo
oces
amic
is ev
14.2
ual t

con
plem
ests
effo

illed
wh

sfor
ffer

erize
rder 
t is 
abstr
case
of th
thos

suite

man
pred
orm
ss. 
c co
valu
2.3.2
test 
nfor
men
s wh
orts

d ou
hich 
rm a
rent 
ed (
to 
req

ract
e ha
he P
se d

es 

nce 
defin

manc

nfo
uate
2). 
exe

rma
ntati
hich
: 

ut b
the

an a
wa

(see
ensu

quir
t tes

ave t
PDU
defin

ass
ned
ce re

rma
ed r
The

ecut
ance
ion 
h gra

y th
e IU
abstr
ays 
e Fig
ure 
ed 
st ca
to b

U pa
ned 

essm
(se

equi

ance
rega
e su
tion
e ass
due
adu

he te
UT is

ract
to d

gure
con
amo
ase. 
be m
aram
in t

men
ee F
irem

e as
ardin
ubse
n. Th
sess
e to
ually

est 
s be
t tes
do t
e 14
nsist
ong
Th

main
mete
the 

nt p
Figu
men

sess
ng t
eque
he te
sme
 co

y m

clie
eing
st su
this
4.2/
tenc
 oth

he te
ntain
ers 
abs

proc
ure 1
nts in

sme
the 
ent
est 

ent p
st r
ake

ent a
g tes
uite 
 dep
18).
cy b
her 
est p
ned
sho
trac

ess 
14.2
nclu

ent. 
rele
dyn
suit
proc
easo
 sta

and 
sted.

into
pen
. Th
betw
thin

purp
in t

ould 
ct te

in 
2/19
udin

In t
evan
nam
te is
cess
ons
atem

the
. 
o an

ndin
he tr
ween
ngs 
pose
the 
be 

est s

the 
9). T
ng P

the 
nt s

mic 
s par
s ca
. Th

ment

e tes

n ex
g o
rans
n th
tha

e an
exe
per
uite

nar
The
PIC

stat
stati
con
ram

anno
here
ts o

st 

x-
n 
s-
he 
at 

nd 
e-
r-
e. 

r-
y 
S 

t-
ic 
n-
m-
ot 
e-
n 

 

 



 

1
c
p

T

lo
ti

F

 B
q
im
ti
 C
if
 B
r
 C
p
m
to

T
4.2

cam
pabi

Test
U

og f
ions

igur

Basi
quire
mpl
inua

Cap
fied

Beh
requ
Con
plian
men
o re

The 
/18)

mpai
lity 

t eva
Upon
file 
s tha

 

re 1

ic in
eme
lem
atio

pabi
d in 
avio

uirem
nfor
nce 

ntati
esolv

exe
) an
ign. 
test

alua
n co
and

at w

4.2/

nter
ents

menta
on of
ility
the 
or t
men
rma

req
on 
ve c

ecut
nd t

Th
t, an

atio
omp
d a 
were

/19: 

rcon
s of 
atio
f th

y tes
PIC

test
nts a
ance
quire
cap
cont

ion 
the 

he la
nd t

on 
pleti
test

e ob

Con

nne
the

on ac
e te
st th
CS. 
t tha
and 
e re
eme
abil
trov

of 
rec

atter
the b

ion 
t re

bserv

nform

ectio
e spe
ctua

est. 
hat d
It is
at e
rep
solu
ents
litie
vers

the
cord
r co
beh

of 
epor
ved 

man

on t
ecif
ally 

dete
s a f
exam
prese
utio
s. Th
es (e
ial i

e pa
ding 
omp
avio

the 
rt h
at t

nce a

test
ficat

pos

ermi
furt
mine
ents
on t
he r
e.g.,
issu

aram
of 

prise
or te

tes
has t
the

asse

tha
tion
sses

ines
ther 
es t
s the
test
reso
, res

ues.

mete
the

es th
est.

t ca
to b
PCO

ssm

at pr
n. It
sses

s wh
pre

the 
e ac
tha

oluti
set 

erize
e te
he b

amp
be w
Os d

ment 

rove
is a

s the

heth
elim
com

ctual
at m
ion 
mec

ed e
st o
basi

paig
writt
duri

proc

es w
a pr
e ne

her t
mina
mpli
l co

make
test
chan

exec
outc
ic in

n, t
ten.
ing 

cess

whet
relim
eces

the 
ary t
ianc

onfo
es y
ts se
nism

cuta
com
nter

the 
 Th
the

s (ac

ther
min
sary

IUT
test 
ce w
orma
yes/n
erve
ms).

able
me in

rcon

test
he te
 tes

ccord

r the
ary 
y ca

T in
to l

with
ance
no s
es f
. It

e tes
n a 
nnec

t is 
est l
st ca

14.2

ding

e IU
tes

apab

nclud
imi

h th
e tes
state
for a
is o

st s
log

ction

eva
log 
amp

2  Co

g to [

UT s
t to
bilit

des
t th

he d
st. 
eme
a se
optio

suite
g fil
n te

alua
file

paign

onfor

[ISO

supp
 fin

ties 

the
e te

dyna

ents
elect
ona

e (P
le a
est (

ated 
e co
n –

rman

O 96

port
nd o
to j

e cap
est e
amic

s on
tive

al an

PET
are c
(opt

bas
onta

the

nce t

646])

ts th
out w

usti

pabi
effor
c co

n spe
e tes
nd c

TS) 
call
tion

sed 
ins
 ob

test 

) 

he b
whe
ify t

iliti
rts. 
onfo

ecif
st of
can 

(cp.
led 
nal),

on 
all 
serv

basi
ether
the 

es s

orm

fic c
f im
be 

. Fi
the 
 the

the
inte
ved

41

c re
r th
con

spec

manc

com
mple
use

igur
tes

e ca

e tes
erac

d tes

1 

e-
he 
n-

c-

ce 

m-
e-
d 

re 
st 
a-

st 
c-
st 



412  14 Testing 

outcomes. In addition, information regarding the abstract test cases used is also 
contained. 

The test evaluation compares the test events (inputs) and the related test out-
comes with the expected behavior as defined in the specification. This comparison 
eventually results in a test verdict. The test cases and the expected outcomes are 
described by means of special test notations. The most important one is TTCN 
which we will introduce at the end of this section. The test evaluation can be par-
tially automated. A test outcome is called foreseen or expected if it corresponds to 
the specified test case. Otherwise, it is unforeseen or unexpected, respectively. 
Reasons for an unforeseen test outcome are either errors in the test case or aban-
donment. The former may be caused by errors in the specification or the imple-
mentation of the test case. An abandonment of the test case is triggered by the test 
system. 

It has to be pointed out that a conformance test can make no final statement on 
the conformance of an implementation because only a limited number of test cases 
can usually be executed due to cost reasons (see Section 14.3.4). Moreover, the in-
fluences of the test context have to be taken into account. Therefore, a tested im-
plementation can only be considered to be compliant as long as the contrary has 
not been proved. The aim of the test must be to minimize the probability of coun-
ter examples. 

Test verdict 
CTMF, like FMCT, distinguishes the test verdicts pass and fail, but since it is a 

more practical standard it also takes into account that there may be other reasons 
why a test may fail, e.g., influences of the test environment as mentioned above. 
For this reason, CTMF defines inconclusive as a third test verdict. The verdict in-
conclusive (not convincing) is assigned if it cannot be decided uniquely from the 
test outcome whether the test was successful or not. For example, such a situation 
may occur when a connection set up test failed. This may be caused by an error in 
the IUT or by the (N-1) service provider. In such a case, additional tests or a repe-
tition of the test run are needed. 

Test report 
The results of the conformance tests are summarized in a test report. Two test 

reports are distinguished. The system conformance test report documents the 
conformance status of the system under test (SUT). It summarizes the conform-
ance assessments of the single protocols contained in the system. The protocol 
conformance test report contains the outcomes of all executed test cases includ-
ing references to the related records of the test results. It also includes links to fur-
ther documents relevant to the assessment process. It is produced for each protocol 
of the tested system. 
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Repeatability, comparability, and verifiability of test results 
In order to achieve high confidence in the results of conformance tests repeated 

tests should produce the same outcome. This, however, is not always feasible be-
cause of the concurrency of the test processes as well as the limited invariance of 
the implementations with respect to time and environment [Baum 94]. The devel-
opers of abstract test cases and the test laboratories should therefore do everything 
possible to minimize the likelihood that repetitions of the same test cases result in 
different test outcomes. 

The comparability and verifiability of the test results are other important requi-
rements on the conformance assessment process. This requires a series of mea-
sures which cover the entire testing process. The comparison of test results re-
quires special care in the design and specification of the test cases, the test tools, 
and all other related procedures of the process. Further, it should be ensured that 
the test outcomes may be rechecked to prove that all conformance assessment pro-
cedures were executed correctly. Therefore, test laboratories are obliged to record 
all test outcomes to allow verification. 

14.2.8 Certification and test laboratories 

The confirmation of conformance is evidence about the quality of an imple-
mentation. As in other areas of software development, this may be confirmed by 
formally awarding a certificate to it. This process is called certification. The 
certification process is an important measure for the enforcement of protocol 
standards just as in the case of with other software products, such as compilers. 
Certification is ultimately justified commercially. It gives the customer of the 
communication software the confidence that the purchased product possesses the 
properties defined in the standard. On the other hand, it should help to avoid ex-
pensive tests at the customer side. 

The issuing of a certificate is an administrative act that is bound to the fulfill-
ment of a series of formal rules. Therefore, the certification is entrusted to desig-
nated test laboratories and other official certification bodies. For conformance 
testing, a test laboratory should be accredited. The accreditation is based on a 
longer review of the test laboratory to determine whether the test laboratory meets 
the requirements on the execution of conformance tests as defined in [ISO 9646]. 
This includes among other things, evaluations of whether the test laboratory is ca-
pable of running the tests, whether the appropriate tools are available, and whether 
the staff has the necessary expertise. The requirements on test laboratories and test 
customers are formulated in Part 5 of CTMF. Three types of test labs are distin-
guished: 

 First Party Testing Laboratories: These are the test laboratories that belong to 
the organizations or enterprises which implement the protocol or provide an 
implementation.  
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 Second Party Testing Laboratories: These are test labs of the customers or us-
ers of the protocol implementation which themselves want to assess the con-
formance of the product acquired.  
 Third Party Testing Laboratories: These are test laboratories that are inde-
pendent of the developers and users and which test the protocol on their behalf. 

Part 5 of the ISO 9646 standard defines the requirements that test laboratories 
and test customers must fulfill in this context to ensure that the test results obtain-
ed in different test laboratories for the same or similar implementations are com-
parable. It contains requirements on the testability of implementations regarding 
the abstract test methods, general requirements on test laboratories and test cus-
tomers for each conformance test, the exchange of technical and administrative in-
formation, the coordination between test laboratory and test customers regarding 
test configuration and test environment, and the structure and content of the test 
reports. This is primarily of organizational concern. Moreover, various activities 
have been launched to harmonize test results at a national and international level. 

For conformance testing, tests carried out by an independent third party labora-
tory test are undoubtedly the desired goal (also called third party guarantee). This 
goal was originally pursued with the development of the OSI conformance testing 
methodology. The approach, however, proved often to be too costly. Therefore, 
other forms of the mutual recognition of test results have been introduced, such as 
registration and developer statements. Registration means the test results are rec-
orded in a publicly accessible register managed by an organization (second party 
guarantee). An example was the U.S. NIST GOSIP register at the times when the 
OSI technology was still pursued in the United States. Inclusion in the register is 
based on predefined criteria. Registration can be used as a complement to a certi-
fication in this field. It is informative rather than carrying the liability of a certifi-
cate. The registration is not limited to implementations. It can also comprise test 
suites, test tools, and test services. In a developer statement the developer pub-
lishes its own test results (first party guarantee). Such a declaration does not usu-
ally have the objectivity of a certificate, but it is significantly cheaper. In Europe 
manufacturers may self-certify against the relevant harmonized standards and 
make an EU Declaration of Conformity. The European Telecommunications 
Standards Institute (ETSI) (http://www.etsi.org/) elaborates standards which can 
be used for this.  

To sum up, the original idea of certifying the compliance of implementations to 
protocol standards has not proved feasible. Nowadays it is applied in a restricted, 
economically justifiable manner. 

http://www.etsi.org/
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These steps can be set in correspondence with the test phases preamble, test 
body, postamble of CTMF (cp. Section 14.2.5.2) as follows. The preamble corre-
sponds to step (1). It transfers the IUT by external stimuli to the desired start state. 
The test body comprises the steps (2) and (3). These include the execution of the 
transition under test and verify that the expected state has been reached. It may be 
followed by a postamble that transfers the IUT back to the initial state. For this, a 
reset capability r is often used which describes this reset. Here it is assumed that 
the IUT generates a null output when the reset function is applied. 

The ability to transfer an IUT from the initial state into any desired state is 
called controllability, correspondingly the ability to recognize the reached state is 
observability. Controllability and observability of an implementation determine 
their testability which represents an indicator of whether a protocol is easy or dif-
ficult to test. For example, additional points of observation which in contrast to the 
PCOs only record the occurring events increase the testability of an implementa-
tion. Test methods that lead to shorter test suites also increase testability. A proto-
col design which purposefully supports the testing phase is called design for test-
ability [Vuon 94], [Köni 97], which, however, did not obtain much importance in 
protocol design. 

Fault model 
The FSM-based test theory does not use the terms implementation relation and 

model of the implementation, as introduced in Section 14.2.3.1. The conformance 
relation is defined here through the so-called fault model [Petr 96]. It takes into ac-
count that a variety of errors can be contained in the various implementations de-
rived from a specification S. A fault model defines a set of possible fault types that 
can occur in the implementations. When a test suite is derived, it relates to the de-
fined fault model. The test suite will detect any error in the implementations which 
belongs to the considered fault types [Math 08]. 

A fault model F(S) for a specification S defines the set of conforming imple-
mentations concerning a given type of errors or a certain error class. It divides the 
set of implementations  derivable from S into the set of compliant implementa-
tions Ip in relation to F(S) and the set of non-compliant implementations If con-
cerning this relation (see Figure 14.3/1). The set of non-compliant implementa-
tions If is referred to as the fault domain of the specification S in relation to F(S). 
Non-compliant implementations can also be obtained by changes (mutations) in 
the specification S, e.g., by inserting false outputs, or by changing or omitting 
transitions. An implementation that is derived from such a thus changed specifica-
tion is called a mutant.  

The ability of a test suite TS to reveal errors of a certain error model F(S) is re-
ferred to as fault coverage. It is a measure to estimate the detection power of a 
test suite. A test suite TSF(S) has full fault coverage in relation to F(S) if it detects 
all mutants defined by F(S), i.e., 

i  If  t  TSF(S):  (i passes t).  
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tions that end in the same state and have no output. The empty output is represent-
ed by . In Figure 14.3/2 dotted lines are used to mark these transitions. 

Derivation methods have been also investigated for FSMs that do not fulfill 
these conditions or only in part, e.g., nondeterministic automata. These methods 
are restricted by other, mostly less general constraints. The interested reader can 
find various approaches in the proceedings of the conference series FORTE and 
TestCom [FORTE], [TestCom]. 

Transition tour method 
A transition tour is an input sequence that transfers the automaton from the ini-

tial state back to the initial state passing each transition at least once. Example 
14.3/1 contains a transition tour for the incompletely specified finite state machine 
as shown in Figure 14.3/2 (i.e., the dotted transitions are not included). 

 

Example 14.3/1: Transition tour for the example automaton of Figure 14.3/2 

The transition tour method is the simplest of the derivation methods considered 
here. It may also be applied to incompletely specified automata. The transition 
tour method generates shorter test suites than the other methods. The length of a 
transition tour5 can be estimated by O(pn) with p the number of inputs and n the 
number of states. The fault detection power is lower compared to the other meth-
ods. A transition tour can only detect output errors. It is not capable of recognizing 
transfer errors, as it does not check the reached state. Figure 14.3/3 shows this in 
an example. Picture a) contains a slightly modified variant of the example automa-
ton of Figure 14.3/2 in which the transition b/z in state 3 has been replaced by the 
transition b/x. The transition tour remains unchanged, but the output behavior is 
now different. It is no longer capable of detecting the wrong implementation of the 
transition d/x in state 3 in picture b). 

The derivation of a transition tour is based on the well-known Chinese rural 
postman problem from graph theory. It is about finding the shortest path in a 
strongly connected graph whereby every edge is passed at least once. The tour is 
also called accordingly the Chinese Postman Tour.  

                                                           
4 This means that the IUT does not produce any output for a defined finite time. 
5 The length of a test suite is a measure of the test effort; the shorter a test suite 

the lower the cost for executing the tests. The maximum length of a test suite is of-
ten used to compare the various derivation methods. It is estimated using the O-
notation by the number of states and possible inputs.  

State 1 1 2 1 2 3 2 3 3 1 

Input b a d a b d b b a  
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sequence for the new automaton, since it produces the same output for the states 2 
and 4: 

 

State Distinguishing sequence Output 

1 bab zxx 

2 bab xxz 

3 bab zxz 

4 bab xxz 
 

A clear distinction between the states can be achieved by means of the charac-
terization set W = {ba,d} which generates the following outputs: 

 

State ba d 

1 zx  

2 xx y 

3 zx x 

4 xx  

                                                                                                                - empty output 

Similarly to the DS-method, the test suite TSW for a finite state machine is a-
gain formed by the concatenation of the transition cover TC with the characteristic 
set W and the reset capability r: 

TSW   = {r} TC W. 

The transition cover for the extended example automaton is 

TC = { , a, b, d, aa, ab, ad, aaa, aab, aad, aba, abb, abd} 

and the resulting test suite TSW 

rba rd raba rad rbba rbd rdba rdd raaba raad rabba rabd radba radd raaaba raaad  
     raabba  raabd raadba raadd rababa rabad rabbba rabbd rabdba rabdd. 

We can optimize the test suite by removing all test cases that are contained as a 
partial sequence in other test cases: 

rba rbba rbd rdba rdd raaba rabba radd raaaba raaad raabba raabd raadba  raadd  
     rababa rabad rabbba rabbd rabdba rabdd. 
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The W-method can also be used for the testing of implementations that imple-
mented a greater number of states m than the specified number of states n, where 
m must be known. In this case, W has to be replaced by the distinguishing set Z 
[Chow 78] which is defined by: 

Z = ({ X X2 Xm-n) W = X[m-n]  W 

             with X – set of inputs 
             n – number of specified states 
             m – number of implemented states. 

For m=n, Z is equal to W. 
The W-method has the highest error detection power of the methods presented 

here. It can reveal errors from all four error classes. However, the W-method gen-
erates much longer test suites than the other methods introduced here, since for 
each characterizing sequence, the automaton must be retransferred from the initial 
state into the state to be checked. The maximum length of the test suite is estimat-
ed for m  n with O(mn2pm-n +1) and for m = n with O(pn3) [Vasi 73]. 

Wp-method 
An extension of the W-method, which under certain conditions permits one to 

generate shorter test suites, is the partial W-method Wp described in [Fuji 91]. The 
Wp–method is similar to the W-method. It divides the test generation procedure 
into two phases and applies in the second phase a state identification set Wi instead 
of the characterization set W. The state identification set is a sequence of inputs 
that uniquely distinguishes the state from the other states. The union set of all state 
identification sets is the characterization set W (for the derivation of the state iden-
tification sets see [Math 08]). The Wp-method is applicable to all implementations 
which meet the initially given assumptions, also to implementations with m > n 
states. It has the same fault detection capability as the W-method. 

UIO sequence method 
The UIO sequence method uses unique input/output sequences (UIO sequen-

ces) to check the reached state. A UIO sequence is a minimal sequence of input/ 
output pairs that uniquely distinguishes a state from all other states, i.e., it defines 
an input/output behavior for the state that is different from the remaining states. If 
an input sequence is the same for several states then the output sequences must be 
different for these states. If the input sequence for all states is the same the outputs 
of all states have to be different. This corresponds to the distinguishing sequence, 
which represents a special case of UIO sequences. 

A procedure to derive minimal UIO sequences is described in [Math 08]. The 
method is also applicable to incompletely specified finite state machines. The UIO 
sequences for our extended example automata of Figure 14.3.5 are the following: 
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428  14 Testing 

 State idle:  a/u 
 State connected:  a/  e/  
 State await:  e/x7. 

By using the reset function r we arrive at the following test suite:  

r a a e    r a a a e    r a b a e    r a e a e    r a d a    r a c e   r a c b a e    r a c a e    
     r a c c e     r a c d a     r a c e a  

which can be optimized to  

r a a e   r a b a e    r a e a e    r a d a    r a c b a e  r a c a e    r a c c e    r a c d a    
     r a c e a, 

or with its original identifiers 

r DT_1 DT_1 to_t     r DT_1 DT DT_1 to_t     r DT_1 to_t DT_1 to_t     
r DT_1 DT_L DT_1     r DT_1 DT_F DT DT_1 to_t     r DT_1 DT_F DT_1 to_t    
r DT_1 DT_F DT_F to_t     r DT_1 DT_F DT_L  DT_1      r DT_1 DT_F to_t DT_1. 

14.3.2 Derivation of test cases on the basis of labeled transition systems 

Test cases that come from LTS specifications represent sequences of actions 
which lead from the start state to a dedicated state according to the specified test 
purpose. The basis for the derivation of test cases is the behavior tree of the speci-
fication or behavior expression, respectively (cp. Section 7.7). It describes the 
reachable states (see Figure 14.3/9). The behavior tree can be derived according to 
the transition derivation system defined in [ISO 8807] or by a simulation in which 
all possible state sequences are executed. The latter is supported, for instance, by 
the CADP tool [CADP]. The test cases that are derived depend on the applied im-
plementation relation (cp. Section 11.5.1).  

In contrast to FSM-based testing, an LTS test case does not check whether the 
IUT actually reached the specified state. It merely checks the execution of the 
specified sequence of actions. A transition into an incorrect state can only be de-
tected if the subsequent behavior causes an error. For this reason, sufficiently long 
tests have to be performed so that the wrong behavior can ultimately be detected. 
From a theoretical point of view, this is fulfilled, since test suites derived from an 
LTS specification are endless, in contrast to those from finite state machines. A  
 
 

                                                           
7 One may argue that the empty outputs are not very convenient for test execu-

tion, but the XDT automaton has not been designed for a test example but rather 
as an example protocol for demonstrating protocol principles. 
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In the literature a variety of approaches and methods for the (automatic) deriva-
tion of test cases from formal descriptions in different formal description tech-
niques have been published. The interested reader can find examples among others 
in the proceedings of the conferences TestCom [TestCom] and FORTE [FORTE] 
as well as in the annex to the FMCT standards [ISO 13245]. The proposed meth-
ods are usually restricted to subsets of the standardized specification languages or 
simplified intermediate models. The automatic derivation of test cases will there-
fore continue to remain a research subject. 

14.3.4 Selection of test cases 

The execution of the complete test suite is often not possible because of its 
length, which puts practical and economical restrictions on its execution. For that 
reason, the number of test runs must be limited to an appropriate subset of test 
cases in practical test execution. Two criteria apply with priority for the selection 
of test cases: 

 the test coverage and 
 the costs of the test execution. 

These are conflicting criteria because the reduction of the number of test cases 
lowers the cost of test execution, but it also reduces the test coverage. Conversely, 
the expenses increase if the test is more extensive. The selection of an appropriate 
subset of test cases is therefore an optimization problem with the goal to maximize 
the test coverage at the lowest possible cost level. 

There are basically two ways to select test cases. The selection can be part of 
the derivation process using test methods with explicit test purposes to generate 
only selected test cases. The other possibility is selection after deriving the com-
plete test suite. 

Test coverage 
The test coverage is a normalized measure for a test suite that indicates whether 

the test suite covers the relevant properties of an implementation and detects rela-
ted errors. The test coverage for a test suite TS described in the notation TESTS 
can be interpreted as a mapping on the range 0 to 1: 

cov: (TESTS)  [0,1] 

The test coverage represents a measure for the quality of a test suite. It can be 
used for the comparison of test suites. A test suite TS has higher test coverage than 
a test suite TS’ if it reveals more faulty implementations than the other one, i.e., 

F(S) \ MTS  F(S) \ MTS’  cov(TS’)  cov(TS) 

where F(S) = MODS \ MS is the fault domain of S, MS the set of conforming im-
plementations, and MTS the set of all implementation which pass TS. 
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There are in principle two approaches for determining the test coverage 

 the specification coverage and 
 the fault detection capability. 

The specification coverage is a measure of the “coverage of the structure” of 
the specification [Groz 96]. The structure of the specification is determined by the 
formal description technique applied and the underlying semantic model. When 
applying finite state machines, for example, possible typical coverages are the ex-
ecution of all paths (path coverage), the execution of all transitions (transition 
coverage), and the passing of all states (state coverage). In particular the state and 
transition coverage possess practical relevance, since the number of execution 
paths in a finite state machine is infinite in general. 

The fault detection capability is a measure of the ability of a test suite or a test, 
case to detect incorrect implementations. There are different interpretations of the 
fault detection capability in the literature, e.g., as the average probability that a test 
suite detects any non-compliant implementation or as a metric that indicates how 
closely a test suite approximates the (infinite) set of tests that fully covers a given 
specification. FMCT considers the fault detection capability as a normalized mea-
sure which indicates whether a test suite achieves full fault coverage with respect 
to a given fault model F(S) [ISO 13245]. The problem with all these definitions is 
that they relate more or less to the entirety of possible implementations which is 
difficult to determine in practice. Therefore, specification coverage is preferred as 
a measure. 

Cost 
Cost represents a measure of the efforts needed to run a test. It comprises the 

expenses for the derivation of the test suite, for its execution, and for the evalua-
tion of the test outputs. The cost of a test suite is in general proportional to its 
length. A long test suite requires more time and resources for its execution. The 
cost of the test execution can rarely be defined or measured precisely. It is based 
on estimates, which are mainly based on the experience of previous test runs. 
Analogously to the test coverage, we describe the cost of executing a test suite TS 

TESTS by a mapping on the set of real numbers : 

cost: (TESTS)  

Cost can be used as a measure for the comparison of test suites regarding the 
effort required for their execution: 

TS’  TS   cost(TS’)  cost(TS). 

The cost of a test suite summarizes the costs of the test cases: 

KTS =  t  TS
 Kt  
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Conformance testing is therefore only a step towards providing interoperable 
protocol implementations – a necessary precondition – that confirms compliance 
with the specification or the standard, respectively. To demonstrate interoperabil-
ity further tests are required. 

The interoperability test is a test that is applied in many areas to prove the col-
laboration capability of systems, devices, or implementations. The task of the in-
teroperability test in the protocol field is to validate the interaction capability of 
different protocol implementations. The interoperability test provides the buyer or 
the user of the communication software the certainty that it is able to cooperate 
with other systems which support the same services. Here, interoperability and in-
teroperability testing should not be equated. Like any other test the interoperability 
test cannot guarantee absolutely the interoperability of various protocol implemen-
tations due to testing limitations. 

There are several situations in which interoperability tests can be applied dur-
ing the development and installation of communication software:  

 when developing the implementation to prove that the implementation can in 
principle collaborate with other implementations,  
 when buying the software to validate that the promised interoperability capa-
bilities are provided,  
 when installing the software to validate its interoperability with the environ-
ment in detail,  
 in use to decide specific interoperability problems, and  
 when integrating updated versions of the implementation.  

The interoperability issue in communications protocols was originally caused 
by the use of options in protocol specifications. Incompatible option settings, 
which are nevertheless in compliance with the standard, may yield the situation 
that conforming implementations are not able to interoperate (see Figure 14.4/2). 
In the OSI world one tried to overcome this issue by defining protocol profiles 
(cp. Section 4.1) which, however, have proved too complicated to handle in prac-
tice. But there are many others reasons [Seol 04] that may cause interoperability 
problems, such as different time-out ranges, differences in parameter settings or 
PDU data formats, and last but not least influences of the execution environment 
not detected beforehand. 
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Test cases 
Interoperability test cases have a different character to conformance test cases. 

For example, let us consider the test cases for a passive interoperability test of the 
connection set up in the XDT protocol. The test case for the successful connection 
set up is XDATrequ, XDATind, XDATconf; the test case for the unsuccessful set up 
attempt: XDATrequ, XABORTind or XDATrequ, XDATind, XABORTind. The input 
stimulus is XDATrequ in both cases. In contrast to the conformance test, now only 
the test outputs at the service interface are observed. The test is passed if the prim-
itives XDATrequ and XDATconf can be observed at the sender SAP and XDATind 
at the receiver SAP, respectively. The test outcome is inconclusive if XABORTind 
is observed. An interoperability test case also implicitly tests the transitions in the 
protocol entities executed to provide the service. Figure 14.4/5 gives two exam-
ples. Picture a) shows the passed transitions for the connection set up (the dotted 
lines refer to transitions executed if the set up failed). Picture b) refers to an active 
test in which an ACK-PDU is discarded or changed in such a way that it will be re-
jected by the sender entity. As a consequence, it triggers the resending of the relat-
ed DT-PDU at the sender side and an error reaction at the receiver side due to the 
repeated PDU. Eventually, the go back N mechanism may be triggered.  

There are various approaches for systematically deriving interoperability test 
cases [Bess 02], [Hao 04], [Seol 04], but these methods are not as well established 
as those for conformance testing (cp. Section 14.3.1). Many approaches, such as 
[Seol 04], are based on the generation of the reachability graph of the SUT com-
prising both entities to derive the paths which cover the interactions between the 
entities.  

Running interoperability tests is basically an economical requirement to over-
come incompatibility problems between implementations provided by different 
providers. Unlike conformance testing, there is no general framework or method-
ology how to perform interoperability tests. The test procedures applied as well as 
the test cases used are mainly driven by practical requirements rather than based 
on a theoretical framework. On the other hand, interoperability tests are much 
shorter than conformance tests and consequently much less expensive. Since in-
teroperability test cases implicitly test the correct implementation of transitions 
needed for the particular service, one tries to combine both tests to reduce the test-
ing costs. The derivation of test cases that check both the correct interaction of the 
implementations and compliance with the specification represents the real chal-
lenge here. 
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tion, we have seen that all theoretical approaches for deriving test cases are based 
on certain assumptions, such as a known number of states and knowledge of the 
input/output set. Moreover, errors can easily occur in an implementation, such as 
false variable assignments or range overruns, which may be not detected by the 
derived test cases. Consequently, tests in practice are hardly capable of detecting 
all errors in an implementation. There remains always an uncertainty about the 
correctness of the implementation. To cope with this uncertainty passive testing 
has been proposed as an alternative approach [Lee 97]. In a passive test the IUT is 
monitored in normal operation by recording its input/output behaviors, i.e., their 
interactions (service primitives, PDUs) with the environment, without interfering 
with it by external stimuli. The observed interactions are then checked against the 
specification to detect deviations.  

Passive protocol testing consists of two phases. The first phase – called passive 
homing – tries to identify the current state of the IUT, whereas in the second fault 
detection phase one attempts to reveal errors based on detected discrepancies be-
tween the passively traced events and the related specification. Thus, the rationale 
behind passive testing corresponds to a proof by contradiction.  

The principle of the passive homing phase for an extended finite state machine 
(cp. Section 7.5) can be described by the algorithm given in [Lee 97] which is rep-
resented in slightly simplified form below. Here x  = {x1, x2, …, xn} denotes the 
current variable value vector and e(y ) an observed event with its current parame-
ter values y.  = {y1, y2, …, ym}. In passive testing no assumption is made about the 
state of the IUT when the test begins. It need not necessarily be the initial state, 
i.e., the entity may be in any of the states Sc = {s0,s1, … sn-1}, and, in addition, the 
values of the variables are assumed to be unknown.  

Given: IUT and observed events 
Output: Error indication 
begin 
 Sc = {s0,s1, … sn-1} /* Initialize current state set  */ 

 x     = {x1, x2, …, xn} xi := unknown, i = 1…p    /* Unknown variable values */  
        /* initially                             */ 
    for each e(y  ) do{ /* Next observed event        */ 
   Sc

’ := Ø /* Possible next state set      */ 
  for each transtion t  t.start_state  Sc do{ 
  if (t.event = e  t.condition(x      , y ))   /* Is transition fireable ?      */ 
     { Sc

’: = Sc
’ end_state

update (x    )       /* Assign new values to       */ 
     }    /* variables              */ 
      } 
   if (Sc

’ = Ø) return fault 
   Sc: = Sc

’ 

          } 
end 
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The current state is determined by elimination. Initially, all states are candidates. 
For each observed event, an executable transition t is searched for. A transition t is 
executable if the event is expected in the current state and if a possibly defined 
additional condition over the variables x    and the parameters y becomes true (for 
details see [Lee 97]). If the transition is fireable the end state is added to the next 
possible state set Sc

’. After investigating all possible states Sc is replaced by Sc
’, 

i.e., the states which do not wait for this event are eliminated. Sc
’ contains either 

the next possible state or is empty. In the latter case no transition has been found 
for the observed event, i.e., an error must have been occurred. Otherwise the proc-
ess continues with the next observed event. The algorithm does not describe the 
relations between the variables and parameters used to formulate additional condi-
tions. It is therefore not capable of revealing the respective errors. An extension of 
the algorithm to do this is also given in [Lee 97].  

Passive testing has attracted large theoretical interest [Tabo 99], [Wu 01], [Netr 
03], but its practical importance is limited. This is because protocol errors often 
cause network and application crashes or other severe faults. Therefore protocols 
must be tested actively before they can be put into operation. Passive testing is a 
supplement which may be applied to find further errors, e.g., the origins of some 
interoperability issues, but it can never be used as a replacement for active tests. 
The benefit of passive testing is that it can detect errors which are hard to detect in 
active testing due to its incompleteness, such as extra states, variable range viola-
tions, integration errors and so on by monitoring the system under test over a long 
period in operation. Other claimed benefits, such as no test system [Lee 02], are 
questionable, since protocols cannot be tested only passively as argued. In addi-
tion, passive tests need observation points which cannot automatically be included 
in implementations. 

14.6 TTCN-2 

In order to run tests the test cases have to be described adequately. For this, the 
use of formalized description means is appropriate. Several test description lan-
guages have been proposed [TestCom], [Forte] and also some of the specification 
languages presented in Chapter 8 have been tried. In practice, however, the test 
notation TTCN which was developed in the context of the OSI conformance test-
ing methodology [ISO 9646] (cp. Section 14.2.2) prevailed because it was in ac-
cordance with the requirements on practical test execution at that time. 

Once the current state has been determined the execution paths can be obser-
ved. If a deviation is detected the monitored system behaviour (observed input/ 
output sequence, state sets) can be used to find the source of the error. The causes 
of a faulty behaviour may also be resolved in an active test, e.g., by using instant 
replay techniques to force certain execution paths.
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TTCN (Tree and Tabular Combined Notation) is defined in Part 3 of the ISO 
9646 standard CTMF. The first version of TTCN was developed in 1992 for de-
scription of the test suites for OSI protocols. The characteristic elements of TTCN 
were behavior trees and tables. In the mid-1990s the notation was expanded for 
the description of test cases for multi-party tests. This version was published under 
the name Concurrent TTCN and/or TTCN-2 in the ITU-T recommendation [ITU-
T 292], [ETSI 99]. Several years ago the European Technology Standards Institute 
(ETSI) developed a new version of TTCN, called TTCN-3, which is no longer 
limited to OSI-based test systems. It also takes other types of tests into considera-
tion. TTCN-3 is not an extension and correction of the earlier versions, but a com-
pletely new language. The TTCN core language [ITU-T 161] represents a pro-
gramming language with test-specific extensions for describing test data, test ca-
ses, test configurations, and for handling events. Many of the characteristic 
TTCN-2 language elements, such as behavior trees and tables are no longer con-
tained in TTCN-3. Because of this breach in the language concept the meaning of 
the acronym TTCN was reinterpreted. In the TTCN-3 context it means Testing 
and Test Control Notation. TTCN-3 is supported by many organizations and tool 
providers, but often in such situations the former version continues to be used, es-
pecially in industry where many test suites are described in TTCN-2, so that actu-
ally two standards exist. For that reason, we give a short introduction to the basic 
concepts of both versions here.  
 TTCN-2 is characterized as an informal notation to describe abstract test cases 
independently from the test methods applied and the protocols being tested. It con-
tains an operational semantics that defines how to interpret the test cases. TTCN-2 
provides a notation which reflects the abstract testing methodology defined in the 
OSI conformance testing methodology [ISO 9646]. As in SDL, the notation di-
vides into two forms: TTCN/GR (graphical TTCN) and TTCN/MP (machine 
processable TTCN). TTCN/GR represents the human-readable tabular-oriented 
form to describe test cases, while TTCN/MP is a canonical representation for 
computer systems. Among others it is used when transferring TTCN test cases be-
tween different computer systems. The two forms are semantically equivalent. We 
consider here only the TTCN/GR notation and confine ourselves to the basic con-
cepts. These are behavior trees and tables. 

14.6.1 Behavior trees     

A behavior tree describes the events that may occur in a test case. It applies in 
principle the same concepts as we became acquainted with in Section 7.7 when in-
troducing process calculi. Figure 14.6/1 shows the behavior tree of a test case for 
the XDT sender entity which tests the connection set up and the beginning of the 
data transmission at the PCO above the IUT. The relation father node  son node 
defines here the temporal sequence in which the test events occur. Sibling nodes 
denote possible alternative test events. 
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selected. If the input queue is empty the snapshot is repeated when a new event 
occurs. Then the tester moves to the next level of indentation and repeats the pro-
cedure with the next event. It cannot return to the previous level of indentation 
(except by using the GOTO construct). To prevent endless waiting in an indenta-
tion level an exit can be introduced using ?OTHERWISE, which represents an ar-
bitrary test event that does not coincide with one of the expected alternative test 
events.  

 
Test Step Dynamic Behavior 

Test Step Name: ABC 
Group:   B1 
Objective:   Demonstration of TTCN features 
Default: 
Comments:       Not related to the above example 
 
Nr 

 
Label 

Behaviour Description Con-
straints 
Ref 

 
Verdict 

 
Comments 

1 
2 
3 
 
 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
16 
17 

F1 +Preamble 
  (I:=0, STOP:=FALSE) 
    REPEAT DATRANS(I,STOP) 
       UNTIL [I=K OR STOP] 
 
         [STOP] 
               +Postamble 
               GOTO F1 
         [I=K] DATABREAK 
                      . . . 
DATRANS(STOP:BOOLEAN, 
                    J: INTEGER) 
START T 
U!XDATrequ 
  U?XDATconf (J:=J+1) 
  U? OTHERWISE (STOP:=TRUE) 
  ?TIMEOUT T (STOP:=TRUE) 
 
DATABREAK 
 . . . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
XDR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PASS 
FAIL 
FAIL 

DT trans-
mission 
(without 
break) 
 
Test  
abortion 
DT trans-
mission 
(with break) 
Local 
sub-tree 
 
 
 
 
 
 
Local 
sub-tree 

Figure 14.6/4:  Example of a TTCN-2 table representation   

14.6.3 Tables 

Tables are the second basic element of TTCN-2. There is a variety of tables 
that have to be used in the different parts of the description. We do not introduce 
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them here. Figure 14.6/4 depicts one example table to illustrate the description 
principle. It shows the description of a test case which, however, is not related to 
the example given above. The test case description can be connected with con-
straints concerning the abstract service primitives and PDUs which have to be de-
scribed in other tables. ASN.1 may be used for this.  

14.6.4 Test verdicts 

As shown in Figure 14.6/4 test verdicts are indicated for the different outcomes 
of the test case. This can also be done by using an implicitly defined read-only 
variable R. The current value of R changes according to the rules given in Figure 
14.6/5. Note that there are some additional rules for deriving the final verdict 
which we do not consider here. 

 

Current value 
of R 

Entry in column Verdict 
(PASS)    (INCONC)   (FAIL) 

none pass     inconc     fail 

pass pass     inconc     fail 

inconc inconc     inconc     fail 

fail fail      fail      fail 

Figure 14.6/5:  Determination of the test verdict  

14.6.5 Distributed test configurations 

TTCN-2 supports the description of distributed test configurations. These are 
test configurations that consist of several test components which run concurrently. 
They are needed for multi-party test methods (cp. Section 14.2.4.2). The descrip-
tion of distributed test configurations is optional in TTCN-2. For this, special ta-
bles and mechanisms are defined. 

A distributed test configuration consists of a main test component and one or 
several parallel test components (see Figure 14.6/6). The main test component 
MTC takes over the control function of the lower tester. It is responsible for the 
creation and monitoring of the parallel test components, the management of the 
PCOs, and the coordination between the testers as well as the derivation of the fi-
nal test verdict. The parallel test components PTCs are deployed as lower and up-
per testers. 
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of alternatives depends on the test course, i.e., the test outcomes. There is the pos-
sibility to define defaults to describe behavior that will be executed if none of the 
alternatives is executable. Defaults can be explicitly enabled and disabled. 

A test case is started by the execute-statement in the control part of the module. 
TTCN-3 offers several possibilities to control the test execution. So the test cases 
can be repeated or other test cases can be activated depending on the test course. 

The test execution always results in a test verdict. TTCN-3 distinguishes five 
test verdicts, which are the values of the data type verdicttype. Apart from the test 
verdicts pass, fail, inconc, and none known from TTCN-2 (cp. Section 14.6.1), 
TTCN-3 uses the test verdict error when an error occurs in the test system. Each 
test component assigns a local test verdict which is forwarded to the main test 
component. The latter collects the local test verdicts and derives a global test ver-
dict for the execution of the test case. 

14.7.2 Language elements 

In the following we give an overview of the main elements of the TTCN-3 core 
language. Since the range of language concepts offered by TTCN-3 is very exten-
sive, they cannot be considered comprehensively here. For this, we refer to the 
standard [ETSI 03] and introductory articles [Schi 08]. We restrict ourselves to an 
overview of the most fundamental language concepts, whereby we follow the stru-
cture of the previous section. The reader will probably be familiar with the princi-
ple of a number of language concepts from other languages. They are therefore 
only mentioned briefly. This applies above all to the data type description which is 
similar to others concepts presented in this book. 

14.7.2.1 Modules 

Modules are the building blocks of a TTCN-3 description. They can describe 
complete test suites or only parts of them. A module consists optionally of a defi-
nition and a control part (see Figure 14.7/8), e.g., 

module XDT test suite 
  {modulpar{integer TS_variant:=1; boolean verdict}; 
  import XDT data formats from XDT basics; 
  control 
   {execute(XDT_XS_v12);} 
 } // XDT 

Modules can be parameterized for use in different test contexts. The parameters 
are listed after modulpar. It is also possible to assign default values to the param-
eters which remain valid as long as no other values are assigned to these parame-
ters during test execution. 
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TTCN-3 allows the reuse of definitions in other modules as well as the import 
of definitions from other specifications. Such definitions are included in the defi-
nition part with the help of the import-statement: import from module name. 
When all definitions of a module are imported, this has to be indicated by all after 
the module name. There exist a lot of special rules for the import of definitions. 
The export of definitions need not be identified explicitly. All definitions of the 
definition part can be exported by default.  

In order to improve the readability and the structure of the description defini-
tions can be grouped, e.g., 

group XDT data formats 
   {const integer conn := 1; 
   .  .  .  
  type record XDATrequ_type{ ... }; 
    } // A grouping of the XDT service primitives and PDUs 

Groupings may be nested, i.e., they can contain other groups. The group names in 
a module need not be unique, but different names must be used at the same hierar-
chical level. Groupings can also be imported. 

Control part 
The module control part begins with the key word control. It describes the ex-

ecution of test cases. The control part may contain local declarations, e.g., for con-
stants, variables, and timers, which are needed for controlling the test execution. 
Constant definitions (they can also be contained in the module definition (see 
above)) have the familiar syntactical structure except the assignment symbol that 
TTCN-3 uses because the values can be assigned both within and outside of a 
module, e.g., 

const integer sequ:=50; 
    boolean ok:=true; 
external const integer max; 

Constants which are defined outside of the module have to be labeled with the 
key word external. The TTCN-3-standard does not specify how this assignment is 
performed. 

Variables are declared with the familiar var-declaration. They can be initial-
ized, e.g., 

var integer i, j; 
 boolean eom:=false; 

Timers are declared in a similar way, e.g., 

timer t1, t2; 
timer t3:=5E-3; 
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Optionally, a default runtime (in seconds) can be defined for a timer. The assigned 
value must be a non-negative number of type float. Timers can also be passed as a 
parameter in functions. 

The task of the control part is to determine the execution order of test cases. 
The execution of a test case is triggered by execute, as mentioned above. The test 
case must first be defined in the definition part of the module (see below). The 
definition determines the test steps and describes the required test configuration. 
The statements needed are introduced below. A simple sequence of test cases can 
be generated by several execute-statements. The execution order of the test cases 
may depend on the test course. To control the execution order including possible 
repetitions, familiar programming statements can be used, such as the if-else-
statement, the for-statement, the while-statement, and the do-while-statement. Re-
garding assignments and expressions, the normal rules apply. The test execution 
may be stopped by means of the stop-statement. 

14.7.2.2 Data type definitions 

Data type definitions in TTCN-3 are largely based on familiar concepts. In ad-
dition, the data type concept has been harmonized with ASN.1. TTCN-3 distin-
guishes simple base types (e.g., integer, char, boolean), basic string types (e.g., 
bitstring, hexstring, octetstring, charstring), and structured types derived from 
them (e.g., record, set, enumerated, union). Compared to ASN.1, there are some 
syntactic changes, such as the use of record instead of SEQUENCE. In addition, a 
number of specific data types were introduced, such as objid, verdicttype, ad-
dress, port, component, and default for the description of the test configuration 
and the test course. The type anytype can be used to refer to all known types of a 
TTCN-3-module. Examples of data type definitions are given below in the context 
of message declaration. 

14.7.2.3 Test data 

Test data are created in two steps. First, their structure is determined by de-
scribing the data formats. After that instances of these data formats are generated 
with concrete value assignments. The data formats are described in data type or 
signatures definitions depending on whether message- or procedure-based com-
munication is used. For the generation of the test data, templates are deployed. 

Message declarations 
Messages are declared by means of data type definitions, usually a record-

type, e.g., 

type record XDATrequ 
  {integer  conn optional, 
    charstring source_addr optional, 
    charstring dest_addr optional, 
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    boolean eom, 
    char[1..n] data 
  }. 

Optional components are marked with optional as in ASN.1. 

Procedure signatures 
Procedure signatures, for short signatures, define the procedure interface for 

procedure-based communication. A signature consists of the procedure name, the 
parameter list (optional), and the specification of the interaction (blocking, non-
blocking), e.g., 

signature request_1(in integer a, out float b, inout boolean c); 
signature set(in integer x) noblock; 

In addition to the data type, each parameter is marked by in, out or inout to in-
dicate whether it is an input or an output parameter, or both. 

Signatures with the attribute noblock refer to a non-blocking call, i.e., the call-
er does not expect a return value. In the parameter list these signatures may have 
only in-parameters. All other signatures are blocking ones, i.e., synchronous com-
munication is applied in which the caller is usually waiting for a return value, e.g., 

signature request_2(in integer a, inout integer c) return boolean; 

The return of a value after completion of the procedure is explicitly indicated 
by return and the type of the return value. In addition, values can also be returned 
to the caller by means of out- and inout-parameters. Additionally, exceptions can 
be specified regarding the return value for blocking and non-blocking procedures 
which may be raised by the called remote component (SUT, test component), e.g., 

signature request_3(in integer a, inout integer c) return boolean; 
   exeption (integer); 

The conversion of the exceptional values in TTCN-3 data types is system or 
tool dependent. It is not defined by the TTCN-3 standard. 

Data templates 
The test data for the individual test cases are derived from the message or sig-

nature definitions using data templates. These templates create concrete value as-
signments to the message components and the parameters of the procedure calls. 
The following example shows the generation of a message template for the XDT 
XDATrequ primitive. 
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type record XDATrequ_type   template XDATrequ_type XDATrequ_N:=  
 {integer conn optional,     {conn := 10, 
      charstring source_addr optional,    source_addr := omit, 
      charstring dest_addr optional,     dest_addr := omit, 
      boolean eom,         eom := false, 
      char[1..n]data         data :=  * 
     }  // Message definition     } // Message template 

With this data template, a XDATrequ primitive is generated that is passed to the 
XDT service provider after successfully setting up a connection. Therefore, the 
optional address fields are omitted. But it is not the last primitive of a transfer se-
quence, as eom is set to false. The wildcard symbol “*” indicates that a sequence 
of any values may be contained.  

TTCN-3 defines various matching mechanisms that make it possible to deter-
mine whether the reactions of the SUT (messages or return values of procedures) 
correspond to the expected values. The data template for a DT PDU, for example, 
that would be sent out by the tester in response to an XDATrequ primitive would 
be  

type record DT_type                                               template DT_type  DT_N 
   {integer(0..255) length, {length := 0 to 255, 
    bitstring code,   code := ’1000’B, 
    charstring source-addr optional,   source-addr := omit, 
    charstring dest-addr optional,   dest-addr := omit, 
    integer conn  optional,   conn := 0 to 10, 
    integer sequ,    sequ := ?, 
    boolean eom,   eom := false, 
    char[1..n] data  data:= * 
   } // Message definition } // Message template 

There is a broad range of possibilities for matching the definitions. Some of 
them are contained in the above example. So lower to upper describes a range of 
integer values which the expected values may have. The symbol omit indicates 
the omission of a value, “?” any value (wildcard), and “*”, as already mentioned 
above, a sequence of values in an array. In addition, expressions can be given 
which result in a concrete value. 

The definition of signature templates follows a similar scheme. TTCN-3 also 
defines the parameterization and the modification of templates. 

14.7.2.4 Test configurations 

The components of the test configuration are described as data types. There are 
two data type definitions: the port type definition and the component type defini-
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The abstract test system interface (cp. Figure 14.6/12) is also defined as a com-
ponent because it is conceptually equivalent. 

Configuration operations 
Configuration operations are used to instantiate the used test configuration and 

to control and adjust it during the test run. These operations may only be applied 
in test cases, in functions, and in altstep-statements (see below). They are not used 
in the control part of a module. The configuration operations comprise operations 
to generate test components, to connect test components, and to control and moni-
tor their execution. The most important operations and the principle of their appli-
cation are described in the following. 

All test components must be explicitly created. An exception is the main test 
component MTC which is automatically created when a test case is executed. All 
other components, i.e., the parallel test components, are instantiated by create, 
e.g., 

var XDT_tester_type XDT_tester; 
    .   .   . 
XDT_tester := XDT_tester_type.create; 

The create-operation returns a reference to the generated test component, which is 
stored in a variable. Along with the test component, all ports will be generated. 
Their queues are empty. Test components can be created at any point in a behavior 
definition. The visibility of component references share the same scope rules vari-
ables. 

After creating the test component it must be connected to the ports of other 
components or to the test system interface. This can be done with the operations 
connect and map. The first one connects the in- and out-part of the listed ports, 
e.g., 

connect(XDT_tester: PCO1, mtc: PCO1); 

The operation mtc identifies the main test component. The operation map descri-
bes the mapping on the test system interface. It merely performs a name mapping 
through which the communication between the test component and the test system 
interface is referenced, e.g., 

map(XDT_tester: PCO2, system: PCOA); 

The operation system here analogously identifies the test system interface. For 
connecting the ports, TTCN-3 defines a set of rules to ensure the consistency of 
the connections. They are partially checked at compile time, otherwise at runtime. 
The connections can be released by disconnect and unmap. 

After creating a test component and connecting it with other test components it 
can be activated using the operation start, e.g., 
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XDT_tester.start(XDT_behavior1); 

The start-operation binds the associated test behavior to the test component. This 
behavior is previously defined in a function (see below). 

A test component can stop another test component or even itself using the stop-
operation, e.g., 

if (verdict = error) 
   XDT_tester.stop; 

There are two possibilities for a test component to stop itself: stop and self.stop. 
The operation self has a similar function to mtc and system; it provides a refer-
ence to the test component itself. When a test component stops, all resources are 
released. If the main test component is to stop all parallel test components, this can 
be abbreviated by 

all component.stop; 

Analogously, a test component can stop the main test component. This implies 
that all ongoing parallel test components will also be stopped, i.e., the test will be 
terminated. 

Furthermore, it can be queried through running whether a test component is 
still active, e.g., 

if (XDT_tester.running)          or           while(all component.running) 
  { .   .   .}                                                 { .   .   .}. 

The result value is true or false. Here again, there is the option to query using 
all whether all components are active. It may be further queried whether one or all 
component(s) have already finished their work using the done-operation, e.g., 

XDT_tester.done               or                 all component.done. 

The done-operation is not allowed to be used in logical expressions, only in alt-
statements (see below). Furthermore, the running- and the done-operation may 
only be applied to parallel test components. 

Communication operations 
TTCN-3 provides various operations for the communication between test com-

ponents. According to the applied communication paradigm, message- or proce-
dure-based communication can be used. We consider here only message-based 
communication. Messages can be sent and received by means of the send- and the 
receive-operation. The associated port has to be specified for each operation. The 
data to be sent are either indicated directly as a parameter or specified by a refer-
ence to a data template, e.g., 
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PCO1.send(5); 
PCO2.send(XDATrequ_x) to SUT; 

Optionally, the communication partner may still be specified through to. But this 
is only required for 1:N communication relations if a particular partner is being se-
lected. Similar rules apply to the receive-operation. Now variables or matching 
templates have to be used instead of parameters for accepting data. Again the 
sender can optionally be specified after from, e.g., 

PCOx.receive(a); 
PCOy.receive(XDATrequ_x_M) from SUT; 
any port.receive; 

The receive-operation removes the first message from the input queue of the port 
if it meets the specified matching criteria; otherwise the message remains in the 
queue. If the receive-operation is contained in an alt-statement (see below) the 
next alternative will be processed in this case. A receive with no argument remo-
ves the message from the queue if any matching criterion is met. The statement 
any port.receive describes the reception of a message at any port. 

If the first message is to be read and removed from the input queue the trigger-
operation has to used, e.g., 

PCOy.trigger(XDATrequ_x_M);  

It behaves like a receive-operation if the matching conditions are met, otherwise 
the message is discarded. 

Before send- and receive-operations can be executed, the port has to be started. 
For this, the start-operation is provided, e.g., 

PCO1.start; 

The start-operation clears the input queue and begins listening to the message ex-
change. By default, all ports are started implicitly when a test component is creat-
ed. When the input queue is to be cleared during the active phase of a port, the 
clear-operation is used, e.g., 

PCO1.clear. 

A port is closed with stop, e.g., 

PCO1.stop; 

Thereafter no further operations can be executed on the port. Operations that were 
initiated before the stop are still terminated. 
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14.7.2.5 Test cases 

In TTCN-3 test cases are defined as a specific form of a function (see below). 
Their execution is started in the module control part by execute (see Section 
14.7.2.1 above). The return value of a test case is a value of type verdicttype that 
indicates the test verdict. A test case consists of an interface part, a system part 
(optionally), and the test behavior, e.g., 

testcase XDT_V1() 
runs on XDT_tester_type   // Interface part 
system SUT_type   // System part 
 {  
     .  .  .   // Test behavior 
       }. 

In the interface part the component type of the main test component (MTC) is 
given after runs on. Thus, the ports become visible within the main test compo-
nent. The system part refers to the test system interface with the associated ports. 
This part can be omitted if only the main test component is instantiated in the test 
execution. In this case, the MTC type defines the ports of the test system interfac-
es. 

When starting a test case with execute the main test component is created im-
plicitly, i.e., without using create- and/or the start-operations. The ports of the 
main test component and test system interfaces are instantiated, and the specified 
test behavior is executed on the main test component. 

Test behavior 
TTCN-3 offers a wide range of statements for describing the test behavior. We 

have already introduced some of them. The basic statements were presented dur-
ing the explanation of the control part of the module (see Section 14.7.2.1), the 
configuration and communication operations accordingly with the test configura-
tions (see Section 14.7.2.4). Another important group comprises the statements 
which describe the behavior of the test components regarding the inputs and out-
puts at the ports. 

alt-statement 
The most important statement of this group is the alt-statement for describing 

alternative test behaviors, e.g., 

alt 
  {[] PCO1.receive(XDATconf_1)     // Alternative 1 
 {setverdict(pass); 
   PCO1.stop; 
 } 
    [] t.timeout;          // Alternative 2 
 {setverdict(inconc);} 



472  14 Testing 

    [else]             // else-branch 
 {error reaction_a; 
         setverdict(fail); 
   stop; 
 } 
   }. 

The alt-statement follows the same principle as the wait event-statement of our 
model language which we introduced in Section 1.2. The only difference is that 
the latter does not define an else-branch. 

The alt-statement can be multiply nested. For the selection of an alternative, a 
snapshot-like semantics as in TTCN-2 is applied (cp. Section 14.6.2). As a last al-
ternative an else-branch can be specified, which is executed if none of the trigger-
ing events for the other alternatives occurred. It is possible to trigger a new snap-
shot in the else-branch by means of the repeat-statement: 

[else] {repeat} 

which can lead to the selection of another alternative. The repeat-statement can 
also be used in other alternatives to trigger a reassessment of the alt-statement. 

As is familiar from the other formal description techniques the triggering event 
may also be connected with an additional condition, which here precedes the event 
in square brackets, e.g., 

[n>9] PCO1.receive(XDATconf_T1). 

interleave-statement 
A special variant of the alt-statement, which corresponds to the par event-sta-

tement of Section 1.2.4, is the interleave-statement which applies an interleaving 
semantics, e.g., 

interleave 
   {[] PCO1.receive(XDATrequ_T1)    // Behavior 1 
 { . . . } 
     [] PCO2.receive(ACK_T2)      // Behavior 2 
 { . . . } 
   } 

In contrast to the alt-statement, the interleave-statement reacts to all specified 
events in parallel, whereby their occurrence is random so that all interleaving se-
quences are possible (cp. Section 1.2.4). Thus, we can test, for instance, the con-
current arrival of XDATrequ primitives and ACK-PDUs in an XDT sender entity. 

The interleave-statement is a shorthand representation. Interleaving semantics 
can also be expressed by means of the alt-statement. The use of the interleave- 
statement is limited to certain statements, such as done, timeout, receive, trigger, 
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The initial value of the local test verdict is none. With the operation getverdict the 
current value of the test verdict can be read out for an evaluation, e.g., 

verdict:=getverdict. 

The final test case verdict is derived according to the overwriting rules con-
tained in Table 14.7/1. For example, if the current value of the test verdict is 
inconc and another test component returns pass then the value of the test verdict 
remains unchanged, i.e., inconc. 

Table 14.7/1: Overwriting rules for the verdict 

The test verdict is returned after executing the test case. It must be stored in a 
variable in the control part of the module, otherwise it gets lost. This is done most 
easily by an assignment of the test verdict to a variable after invoking execute, 
e.g., 

verdict:=execute(XDT_XS_v12); 

A comparison with the execute-statement in the introductory example above 
(cp. Section 14.7.2.1) shows that execute can be invoked both as a procedure and 
as a function. The former does not store the test verdict. A possibility to store the 
test verdict is the use of the log-operation, which writes a string into a log file 
which can be assigned to the test control or to a test component, e.g., 

log(„XDT_XS_v12   pass“);11 

The test case execution may be controlled by a timer. This may be done by in-
troducing a time-out in the execute-statement, e.g., 

verdict:=execute(XDT_XS_v12, 10E-3); 

                                                           
11 How the logging function is supported by the system is left open in the 

standard. 
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In this case, the execution of the test case is terminated by the time-out, i.e., 10 ms 
in our example. If the test case is not finished at the time-out the test case verdict 
is set to error. The timer used is a system timer that needs neither to be declared 
nor started. 

Functions 
TTCN-3 provides the opportunity to structure the description of the test behav-

ior by functions to encapsulate frequently recurring test procedures in separate, re-
callable units. The syntactic and semantic structure of functions in TTCN-3 corre-
sponds to conventional concepts. Functions may have one or no return value. The 
latter corresponds to a procedure, but this is not distinguished syntactically by a 
different keyword. The function can be called in an expression or explicitly in a 
call statement, e.g., 

function break(in DP DP_type) return boolean 
 { .  .  . 
   return x; 
 }; 
 
if break(SP) 
    setverdict(fail); 

The parameterization of the functions applies the same rules as for signatures 
(cp. Section 14.7.2.3). As usual, a function consists of a declaration part and a 
statement part. In the declaration part constants, variables, and timers can be lo-
cally introduced. Constants, variables, timers, and ports that are defined in a com-
ponent declaration may be used too. In this case, the component type must be 
specified in the function header after runs on, e.g., 

function break(in DP DP_type) return boolean runs on XDT_tester_type{. . .}; 

In the statement part all operations for the description of test behaviors introduced 
above can be used. 

 Functions may also be declared as being defined externally. In this case, only 
the interface of the function has to be specified. The declaration is preceded by the 
keyword external. Moreover, TTCN-3 provides a lot of pre-defined functions. 
These include functions for data type conversion, functions for determining the 
length or size of data structures, string functions, selection functions, and func-
tions to prove the presence of certain options. 

Defaults 
Defaults may be used to specify the test behavior to be executed when the ex-

plicitly defined behavior cannot be executed because the test course and thus the 
occurring events do not allow this. Defaults are described with the help of the 
altstep-statement, for short altstep, which are scope units similar to functions. alt-
step defines a set of alternatives, so-called top alternatives. The description of the 
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top alternatives has syntactically the same structure as the description of the alter-
natives in the alt-statement. Unlike the alt-statement, altstep defines its own scope 
in which local constants, variables, and timers may be declared. Access to varia-
bles and timers declared in a component declaration is also allowed. For this, the 
component has to be specified after runs on, e.g., 

altstep Default_1() runs on XDT_tester_type 
   {var integer n:=0; 
     [] PCO1.receive(DT_x); 
 {n:=n+1; 
      if (n>10) 
  setverdict(pass); 
  } 
      [] PCO2.receive(ABO_x); 
  {setverdict(inconc); 
    stop; 
   } 
      [] t.timeout           // t is declared in XDT_tester_type 
   {setverdict(fail); 
     stop; 
    } 
     } 

The alternatives are described by the familiar statements. Functions can be called 
as well. Altsteps can also be parameterized and declared as default. 

The invocation of an altstep is always connected to an alt-statement. There are 
two options: by an explicit call within an alt-statement or implicitly by a default 
mechanism. The explicit call is indicated like a function call by the name of the 
altstep as an alternative in the alt-statement, e.g., 

alt  
  {[] PCO1.receive { ... } 
    [] t1.timeout { ... } 
    [] Default_1()          // explicit call of an altstep 
   }; 

When an implicit call is applied, the altstep must be activated as a default by 
means of an activate-statement before the point of invocation is reached. For this, 
default references are used which are stored in predefined variables of the type de-
fault, e.g., 

var default d1 := null;         // null is an initialization 
    .  .  . 
d1 := activate(Default_1()); 
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14.7.4 Example 

As a final example, we give the TTCN-3 representation of the test case that we 
used in the introduction to TTCN-2 in Section 14.6. The purpose of the test case is 
to verify that the IUT of the XDT sender entity XS successfully sets up a connec-
tion and transfers the first data unit. 

We describe the test case by a module. The definition part contains the XDT 
data formats, the data templates, the test component, and the test case. The execu-
tion of the test case is represented in the control part. Since the XDT data format 
definitions are familiar from other sections of the book we do not list them here 
again. Instead we “import” these definitions from the module XDT_basics. The 
definitions are pooled in a group. The data template definitions are also not listed 
here. The principle has been demonstrated for some XDT data formats above (cp. 
Section 14.7.2.3). The test architecture used is a local tester. Accordingly, we de-
fine a lower and an upper port or PCO, respectively. Note that the communication 
directions of the ports are seen from the testers’ perspective. For this reason, the 
communication direction out is assigned to the primitive XDATrequ, for example. 
Since we have only one test component, the test case description does not contain 
a system part because the test execution is started by the main test component. The 
main test component is created implicitly through execute. 

The test case description reflects relatively straightforwardly the test course 
that leads to a positive test outcome (pass). The negative test outcomes are de-
scribed by two defaults. Default_1 is executed when other messages than the spec-
ified ones arrive at one of the ports or if the test execution is not completed within 
2 seconds. The latter is monitored by the timer ts. Default_2 describes the aban-
donment of the connection set up triggered by a time-out in the XS-IUT. Since this 
may be caused either by the implementation or by the test system, the test verdict 
inconc is assigned. 

module XDT_test_1 
                   // Test of a successful XDT connection set up with one data transmission 
  {import group XDT data formats from XDT basics; // Import definitions 
                 
   // Definition part 
                 // Data templates 
    template XDATrequ_type XDATrequ_1:=  {...}; // XDATrequ_1 
    template XDATrequ_type XDATrequ_N:=  {...}; // other XDATrequ 
    template XDATconf_type XDATconf_1:=  {...}; // XDATconf_1 
    template XDATconf_type XDATrequ_N:=  {...}; // other XDATconf 
    template XABORTind_type XABORTind:=  {...}; // XABORTind 
    template DT_type DT_1:=  {...}; // DT_1 
    template DT_type DT_N:=  {...}; // other DT 
    template ACK_type ACK_1:=  {...}; // ACK_1 
    template ACK_type ACK_N:=  {...}; // other ACK 
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    type port XS_U_type message  // Definition upper port (PCO) 
 {out XDATrequ_type ; 
   in XDATconf_type, XABORTind_type ; 
     } 
    type port XS_L_type message  // Definition lower port (PCO) 
 {in DT_type; 
   out ACK_type; 
     } 
    type component XDT_tester_type 
 {port XS_U_type U; // Upper port (service interface) 
   port XS_L_type L; // Lower port (Protocol interface) 
   timer ts:= 2.0;  // Timer for test supervision 
     } 
    altstep Default() runs on XDT_tester_type  // Default definition 1 
      {[] any port.receive {setverdict(fail); stop} 
        [] any timer.timeout {setverdict(fail); stop} 
    } 
    altstep AbortDefault() runs on XDT_tester_type  // Default definition 2 
 {[] U.receive(XABORTind); // Set up aborted 
             {setverdict(inconc); 
               stop; 
             } 
     } 
 
    testcase successful_set up() runs on XDT_tester_type  
 {activate(Default()); // Activation Default_1 
   U.send(XDATrequ_1); 
   ts.start; 
   L.receive(DT_1) ; 
   activate(AbortDefault()); // Activation Default_2 
   L.send(ACK_1); 
   U.receive(XDATconf_1); // Successful set up 
   U.send(XDATrequ_N); 
   L.receive(DT_N); 
   U.receive(XDATconf_N); 
   L.send(ACK_N); 
   setverdict(pass); 
   ts.stop; 
      } 
  // control part 
 control 
    {verdict:=execute(successful_set up (), 10);} // Test case execution 
  } // XDT_Test_1 // max. duration 10 s 
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// external XDT declarations 

module XDT_basics  
 {group XDT_data_formats 
  {type record XDATrequ_type {...}; 
    type record XDATconf_type {...}; 
    type record XABORTind_type {...}; 
    type record DT_type {...}; 
    type record ACK_type {...}; 
  } 
      } 

When considering the example one may wonder why the test case description 
does not contain an alt-statement, although two altsteps are activated. For this, we 
finally refer to a further specific definition in TTCN-3. A single receive-statement 
corresponds to an alt-statement with only one alternative. Thus, the statement 
L.receive (DT_1) implicitly opens an alt-statement which then also enables the de-
fault execution. 

Further reading 
There have been many papers published about testing communication proto-

cols, most of them in the conference series TestCom [TestCom] and Forte 
[FORTE]. The reader is referred to the proceedings for further reading, for refer-
ences to the original papers about the methods introduced in this chapter, and for 
information about recent research results. Unfortunately, there are not so many 
books about this topic.  

Introductions to the protocol conformance test methodology can be found in 
[Sari 93] and [Baum 94]. For detailed information, the reader should look in the 
standard texts of CTMF [ISO 9646] and FMCT [ISO 13245]. There are few book 
publications on interoperability testing because it is mainly driven by practical re-
quirements. Here we recommend again the proceedings of the TestCom series for 
recent results and the papers cited in Section 14.4.  

More details about the various methods for the derivation of test cases can be 
found in the original papers referred to in Section 14.3.  A comprehensive over-
view on the FSM-based derivation methods with the algorithms for deriving the 
various sets is given in the book of Mathur [Math 08]. Further background to the 
algebraic test derivation methods is given in [Tret 96a,b], [Brin 97], and in the 
book of Bowman and Gomez [Bowm 06]. A comparison of FSM- and algebraic- 
based test methods is contained in [Petr 94].  

The test description languages TTCN-2 and TTCN-3 are described in several 
publications. A compact introduction to TTCN-2 is contained in [Baum 94]. An 
analogous introduction to TTCN-3 is given in the book of Willcock et al. [Will 
05]. Further reading on TTCN-3 (tutorials and references to papers) besides the 
cited papers can be found on the ETSI’s official home page on TTCN-3: 
http://www.ttcn-3.org/. 

http://www.ttcn-3.org/
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Exercises 
(1) What is a test? What is the difference between testing and verification? What 

statements can a test make? 
(2) Explain the difference between the test types white box and black box test-

ing.  
(3) What is the task of conformance testing? Explain the principle of the con-

formance test and the steps needed to perform it. 
(4) Explain the notions test case, test purpose, and test suite. Why is the con-

formance test a specification-based test? 
(5) What is the difference between the test verdicts pass, fail, and inconclusive? 

How is the test verdict of a test suite derived? Is a protocol implementation 
error-free if it passed a test suite with verdict pass? 

(6) How is a protocol test architecture built up in principle? Explain the most 
basic components and their interaction. 

(7) What is the difference between local and distributed test methods? 
(8) Describe the main steps of the conformance assessment process in CTMF. 

Explain the difference between static and dynamic conformance require-
ments. What is the role of PICS and PIXIT in this process? 

(9) How is conformance defined in FMCT? 
(10) What is the purpose of certification in the context of conformance testing? 

Comment on the different forms of guarantees (first, second, third party). 
What measures of certification are preferred today? 

(11) Explain the principle of how a transition is tested in FSM-based testing. How 
do these steps correspond to the test phases preamble, test body, postamble 
of CTMF? How is the postamble usually presented? 

(12) What is a fault model? What are the most important fault models for FSM- 
based testing? When does a test suite have full fault coverage? 

(13) What is a mutant? What can it be used for? 
(14) What assumptions should a finite state machine meet to be used as a basis 

for test case derivation? 
(15) What is a transition tour? What is its limitation for testing? 
(16) What are the differences between the test derivation methods Distinguishing 

Sequence, W-Method, and UIO Sequence Method? When are they used ap-
propriately? How is a test suite principally defined for these methods? 

(17) Create the FSM description of the XDT receiver entity for the explicit con-
nection set up as described in exercise 11 of Section 2. Replace the input and 
output events by a unique letter. Characterize the automaton with respect to 
the conditions for a test case derivation mentioned in exercise (14)? 

(18) Derive a transition tour for the automaton of exercise (17). Construct an er-
roneous implementation of the automaton that cannot be detected by this test 
suite. 
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(31) Derive an interoperability test case for the XDT explicit connection set up as 
described in exercise 11 of Section 2. Indicate the transitions that should be 
passed in both entities when the test case is executed. 

(32) We assume an active interoperability test of the XDT protocol in which all 
ACKs are removed starting from ACKi. This finally leads to an abandonment 
of the connection. Indicate all transitions that should be passed in both enti-
ties after beginning the removal. 

 
 
 
 
 



15 Outlook 

The goal of this book was to give an introduction to the field of Protocol Engi-
neering. Starting from the basic principles of communication protocols we pre-
sented various methods and techniques used for the description, implementation, 
and validation of communication protocols. Throughout the book we tried to find 
a balance between the theoretical and the practical aspects of protocol develop-
ment, pointing out at the same time the possibilities and the limitations of the var-
ious approaches developed. Protocol Engineering was one of the hottest topics in 
the upswing of computer network technology. Meanwhile excitement has quieted 
down around Protocol Engineering. At the end of this book we want to discuss the 
reasons for this and give some prospects on future developments. 

Protocol Engineering combines aspects of telecommunication, distributed sys-
tems, software engineering, and theoretical computer science. This made it attrac-
tive for many researchers and initiated a lot of research work. Communication 
protocols though may be, as repeatedly emphasized in the book, very complex. 
Already relatively simple protocols like the XDT protocol show how difficult it is 
to properly understand the process flow in a communication protocol. The com-
plexity of protocol procedures, their partial concurrency, nondeterministic behav-
ior, and various requirements regarding performance, reliability, integration into 
the execution environment, etc. make protocol development complicated. The 
proof of the correct functioning of a protocol is therefore difficult and currently 
feasible only for less complex protocols. Theoretical research has yielded many 
contributions to tackle the related problems, but it has never really succeeded in 
meeting the demands of practical protocol development. Many approaches use 
simplifying assumptions or are proved with less complex protocols. Thus, few ap-
proaches come to practical importance. 

A systematic engineering design of communication protocols requires formal 
methods because exact design decisions, verification proofs, exact coding, and ef-
ficient tests are only possible based on precise descriptions and unambiguous in-
terpretations. The use of formal methods forms therefore the basis of Protocol En-
gineering. Several formal description techniques and various approaches have 
been investigated. The usefulness of formal techniques in the protocol develop-
ment process and for precise protocol specifications has been demonstrated in 
many ways. Despite the obvious advantages of formal description techniques and 
the state of development they have reached, they are only of limited use for practi-
cal protocol development. The majority of protocols are designed ad hoc and rare-
ly described formally. If applied, formal description techniques are mainly used as 
a supplement to support, for instance, single stages, e.g., test case derivations. The 
reason for this is that some aspects relevant in practice have been underestimated 
in theoretical research. We comment on some of these reasons in the following:   
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 User acceptance 
The utility of formal description techniques and their applicability to real pro-
tocol developments has not been demonstrated convincingly for many potential 
users. The arguments usually given are high learning efforts, high development 
costs for specifications, lack of tool support, and inadequate efficiency of de-
rived implementations. We address these aspects subsequently. The significant 
time pressure under which developers often work causes them to shy away 
from the alleged overhead in the use of formal description techniques. The nu-
merous success stories for the application of formal description techniques in 
practice cannot belie this fact. Often formal methods experts have a decisive 
part in such case studies. 

 Learning efforts 
Formal description techniques require a certain effort to learn the language and 
associated semantic model. This effort is comparable to that of learning a pro-
gramming language. It is often shied away from, especially when the benefit 
seems not to have been convincingly demonstrated, yet.  

 Specification development effort 
The development of a formal description based on a given informal specifica-
tion requires an effort which should not be underestimated. Since most formal 
description techniques represent constructive methods (cp. Section 7.3), the ef-
fort can be compared with that of an implementation. It can take several weeks 
or months. Specifications with a size from 2000 to 10,000 lines are not un-
common. The high cost stems from the complexity of the protocol procedures, 
the compliance with the formal semantics of the applied technique, and the 
time needed to validate the specification. The size of real-life formal protocol 
specifications also explains why more abstract description techniques, such as 
LOTOS, have failed to find wide practical application, while techniques with 
graphical support, such as SDL, MSC or increasingly UML, are more popular. 

 Tool support 
The success and acceptance of formal description techniques depend crucially 
on the availability of tools that support their application. The size of formal 
protocol descriptions and the complexity of the different verification and vali-
dation methods are not controllable without the support of tools. Only through 
tools is a convenient and efficient application of formal description techniques 
possible. They automate procedures that are difficult to perform manually and 
thus shorten the development time significantly. Tools at the same time also al-
low users who are less familiar with the theoretical background to access for-
mal description techniques. Figure 15/1 shows the possible application areas of 
tools in the protocol development. Tool development is not part of the stand-
ardization of formal description techniques. A variety of tools have been devel-
oped to support the various phases of the protocol development process. Most 
of them were created in universities or in the academic environment. These 
tools are mostly prototypes, which even though sometimes very mature seldom 
meet the requirements of commercial usage. Often the conditions for their 
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ing the specification, as discussed above, are as high as that of the implementa-
tion, the elaboration of the formal specification is often omitted. 

 Availability of formal descriptions 
One of the crucial problems in the use of formal description techniques is that 
there are too few formal protocol descriptions available, particularly of Internet 
protocols. Due to the high development effort, they are, if at all, generally only 
available after the first implementations. This reduces their importance as ref-
erence specifications, since the benefits of formal descriptions for the protocol 
development process cannot be fully exploited. In addition, many specifications 
are elaborated at universities and research institutions and are often not com-
plete enough to serve as reference specifications. Often formal specifications 
are an informative supplement. A positive step forward was made by the Euro-
pean Telecommunications Standards Institute (ETSI) which allows the use of 
formal techniques, in particular SDL, either as normative or informative (see 
[ETSI 99-2].  

The successful deployment of formal description techniques implies the will-
ingness to apply them. This willingness is given more in the vicinity of the devel-
opers, especially at universities and research institutions, than anywhere else. In 
order to place the development of communication software principally on a formal 
basis, a number of conditions and supportive measures are necessary to help to 
overcome the aforementioned shortcomings. We finally summarize them: 

 Early provision of formal descriptions 
Prerequisite for a broad use of formal description techniques and the full utili-
zation of all their benefits is the early provision of formal descriptions for new-
ly developed communication protocols and distributed systems. Specially writ-
ten formal descriptions are needed that are provided with the design as a 
reference specification. The provision should be made by recognized bodies so 
that these specifications can serve as a basis for a large number of protocol im-
plementations. As long as this is not the case, the effect of formal description 
techniques in protocol development will remain limited. 

 Further development of description techniques 
The continuous development of formal description techniques is an essential 
prerequisite for their widespread use in practical protocol development. Here it 
is especially necessary to adapt the techniques to new requirements. In re-
search, such issues are usually quickly taken up and elaborated in extension and 
amendment proposals. But only a few later go into new official language exten-
sions. Another important aspect is the development of language solutions that 
support the intuitive thinking of the protocol developer. Although controversial-
ly discussed in the Protocol Engineering area UML may play an important role 
in this context because it provides sufficient means to describe communication 
protocols and their services and attracts broad research activities. 
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The application of formal description techniques requires the willingness on the 
part of the protocol developer to learn them. The teaching of formal description 
techniques already during education may, as experience with programming 
languages shows, support this readiness. This approach is, however, ultimately 
only successful if the benefits of its application can be demonstrated convinc-
ingly. 

 Case studies 
Case studies will continue of one of the most important means of demonstrat-
ing the applicability of formal description techniques. Further experience re-
ports will undoubtedly support broader usage. 

 Tool support 
Tool development, as argued above, plays a key role in the enforcement of 
formal description techniques. The widespread use of formal description tech-
niques in particular needs tools which continually evolve. This is usually the 
case with commercial products or tool sets developed in research institutions 
over a longer period of time, such as CADP or SPIN. Furthermore, these tools 
should be easy and intuitive to operate so that their use does not depend on the 
expertise of a few developers. 

 Automation of the protocol development process 
The real breakthrough would be a largely automated protocol and system de-
velopment process which consistently supports all phases as a computer-aided 
design process which combines various methods in a single technological pro-
cess together with an automated mapping between different presentation forms. 
That would relieve the engineer from many troublesome transformation steps, 
and allow him/her largely to make design changes only in the specification. 
With current formal description techniques, such a full automation is difficult 
to realize. This requires a more general approach which in particular supports 
various presentations. The UML research may be helpful for this purpose. 

In the development and application of formal description techniques great pro-
gress has been made over the last 15 to 20 years. Many approaches have been de-
veloped and their applicability proved. Large contributions have been made to 
theory. Some proposed methods are successfully applied in practice. Nevertheless, 
it may be asked at the end of this book, why a limited engineering problem like 
protocol design and development has not been solved yet. The reason is that many 
approaches presented in this book aim primarily at the development of the related 
theory rather than solving the engineering problem. So Protocol Engineering will 
continue to pose interesting questions for future research. 

 Teaching formal description techniques 
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Glossary 

ASN.1 (Abstract Syntax Notation One): Informal notation of ISO and ITU-T to 
describe abstract syntaxes. It consists of two components: the abstract syntax nota-
tion and the coding rules. The latter can be chosen freely, the most famous coding 
rules are the Basic Encoding Rules (BER). ASN.1 was originally developed for 
the transformation of different data representations in heterogeneous computer 
networks as defined in layers 6 and 7 of the OSI reference model. Later it became 
a popular notation for describing the data formats (PDUs, service primitives) of 
communication services and protocols. ASN.1 is being combined with other for-
mal description techniques and notations, such as TTCN and SDL. 
 
Automatic repeat request (ARQ): Protocol function which automatically triggers 
the retransmission of a lost or corrupted PDU in a stream of PDUs. The retrans-
mission is triggered by a time-out due to a missing acknowledgement. There are 
two methods: go back N and selective repeat. With go back N, all PDUs starting 
from the missing Nth PDU are retransmitted, whereas selective repeat only re-
transmits the missing PDU. 
 
Behavior tree: Graphical representation of behavior expressions used in process 
calculi. A behavior tree is a transition-oriented representation of the (in general in-
finite) behavior which contains the possible sequence of actions. The edges corre-
spond to actions, the nodes to states, which, however, are not explicitly denoted. 
The root of the tree is the initial state. Alternative behavior is represented by dif-
ferent branches 
 
Bisimulation: A binary relation between state transition systems associating sys-
tems which behave equally in the sense that one system simulates the other and 
vice-versa. Bisimilar systems must be able to simulate in any state the possible 
behavior of the other system and always return to a bisimilar state. There are two 
variants of bisimulation: strong and weak bisimulation. Strong bisimulation takes 
internal actions into account, while weak bisimulation lifts this restriction. 
 
Certification: Administrative process for the award of a certificate that confirms 
the conformance of a protocol implementation with the associated protocol stand-
ard. 
 
Communication architecture: Defined architecture of protocol layers for compu-
ter networks which determines the functionality of the layers as well as the princi-
ples of interaction between them. Communication architectures define architectur-
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al elements for describing the interaction between layers, such as service access 
points. The OSI reference model is an example of a communication architecture.  
 
Communication protocol: see Protocol 
 
Communication service: see Service 
 
Communication software: Software that implements a protocol stack. It is em-
bedded in the operating system. 
 
Conformance test: Test to check whether a protocol implementation is compliant 
with the associated specification. With standardized protocols, compliance with 
the protocol standard is tested. Conformance is a necessary prerequisite for the in-
teroperability of different protocol implementations. The conformance test is a 
black box test that proves whether the implementation behaves externally as speci-
fied. It forms the basis of protocol testing. 
 
Connection: Logical relation between two service users for the duration of the 
communication that is established between the associated service access points. 
Protocols are differentiated regarding the establishment of a connection into con-
nection-oriented and connectionless protocols. Connection-oriented protocols gua-
rantee a reliable transmission of the data by preserving the transmission order. A 
connection must be explicitly set up before data transmission and released after-
wards. 
 
Constructive description methods: Specification methods for communication 
protocols that describe the protocol through an abstract model whose execution 
determines how the communicating entities behave. The description represents a 
quasi-implementation of the protocol on a more abstract level. Executable proto-
types can be derived from the specification to validate the design. Examples of 
constructive description methods are finite state machines and labeled transition 
systems. 
 
CTMF (Conformance testing methodology and framework): General framework 
of ISO for conducting conformance tests. It defines the notion of conformance and 
the steps needed to assess the conformance of a protocol implementation. Further, 
it provides methods, procedures, and guidelines for the practical execution of con-
formance tests in test laboratories. The methodology is described in the ISO stan-
dard IS 9646. CTMF represents the basis of conformance testing and has sustaina-
bly influenced research on protocol testing. It was later joined by FMTC (Formal 
Methods in Conformance Testing) which describes the use of formal methods in 
conformance testing. 
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Descriptive description methods: Description methods for communication pro-
tocols that formulate properties the protocol to be designed should meet. These 
properties are safety and liveness properties. The properties are usually expressed 
in a temporal logic. The advantage of descriptive methods is the explicit specifica-
tion of desired properties the design should meet and their verification for appro-
priateness under complete abstraction from an implementation. The derivation of 
implementations from a descriptive specification, however, is difficult. 
 
E-LOTOS (Enhanced LOTOS): Enhancement of the FDT LOTOS. It contains a-
mong other things a number of extensions, such as predefined data types, the in-
troduction of time, and a generalized parallelism operator. The enhancement did 
not find a broad application. 
 
Estelle (Extended State Transition Language): One of the three standardized for-
mal descriptions techniques developed in the 1980s. It was standardized by ISO 
for the description of distributed concurrent information processing systems, espe-
cially communication services and protocols. Estelle was defined as an extension 
of ISO-Pascal level 0 by means for the description of distributed systems using a 
hierarchical structure of communicating extended finite state machines. The lan-
guage is not used any more. 
 
Extended finite state machine (EFSM): Extension of the finite state machine by 
variables to store context information. A context is given by the current values of 
the variables. Extended finite state machines is the most popular description 
method for communication protocols. They form the basis for the semantic model 
of the FDTs Estelle and SDL. But EFSM descriptions may also become very com-
plex. 
 
Ferry clip method: Frequently used method for implementing the feedback be-
tween the test system and system under test (SUT) in distributed test settings. It 
uses an out-of-band signalization for transporting test data and test outcomes be-
tween them. In the test system an active ferry clip, which is connected with the 
lower and the upper tester, controls the communication. The counterpart is the 
passive ferry clip in the SUT which interacts with the IUT. All abstract test meth-
ods can be implemented using the ferry clip method.  
 
Finite state machine (FSM): Models behavior by an automaton composed of a fi-
nite number of states, transitions between the states, and actions, e.g., inputs and 
outputs. Finite state machines are a popular method for describing the behavior of 
protocol entities. The number of states, however, may soon become very large so 
that they are limitations on their applicability for larger protocol and system de-
scriptions because the representation often becomes too complex. Extended finite 
state machines are preferred instead. Finite state descriptions are used as a basis 
for test case derivations. 
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Flow control: Protocol function to regulate the number of PDUs exchanged be-
tween sender and receiver entity. It protects the receiver entity from being over-
loaded with PDUs it cannot process. There are two kinds of flow control: window-
based and rate-based flow control. The former is a pure end-to-end relation which 
indicates the number of PDUs to be sent by a “window” of sequence numbers 
which smoothly moves on when the reception of a PDU is confirmed. Rate-based 
flow control additionally takes the network load into account by admitting only so 
many PDUs to the network that they can pass smoothly through it. The allowed 
rate cannot exceed the number of PDUs accepted by the receiver entity. 
 
Formal description technique (FDT): Description technique with a formally de-
fined syntax and semantics. The formal semantics ensures a unique interpretation 
of the specification and represents the basis for tool developments. Examples are 
the classical standardized specification languages Estelle, LOTOS, and SDL. 
 
Fragmentation: see Segmentation 
 
Go back N: see Automatic repeat request 
 
Handshake: Protocol function used to synchronize communicating entities. One 
differentiates between 2-way and 3-way handshakes. The latter is needed for du-
plex communication. 
 
Implementation specification: Documentation of the implementation design. It 
forms the basis for the coding of the protocol. The implementation specification is 
typically a refinement of the protocol specification. In contrast to the protocol 
specification, however, it is focused on a target execution environment. 
 
Implementation relation: Asymmetric relation between a specification and an 
implementation that determines under what conditions the implementation can be 
considered as conformant to the specification. It defines the dynamic conformance 
requirements that determine the permissible observable behavior of the implemen-
tation. Implementation relations are particularly used in process calculi to describe 
the relationship between a specification and a refined, more deterministic presen-
tation – the implementation. 
 
IUT (Implementation under test): Reference to the (protocol) implementation to 
be tested. 
 
Interleaving: Often applied semantic model in Formal Description Techniques for 
concurrent processes. It interprets the concurrent execution as a linear order of 
events in which the executed events of the processes “interleave”, i.e., they appear 
arbitrarily ordered with respect to one another. All interleaving sequences repre-
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sent possible externally observable behavior of the system. The other semantic 
model is true concurrency, which, however, is less applied in the FDT context. 
 
Internal event: Means for describing events which originate nondeterministically 
inside the specified systems, e.g., system failures. Internal events are handled dif-
ferently in different formal description techniques, e.g., through spontaneous tran-
sitions in automata representations or as an explicit internal action in algebraic de-
scriptions. 
 
Interoperability test: Test to examine the interaction capability of different im-
plementations of the same protocol. The need for interoperability tests mainly re-
sults from the use of protocol options which, if selected differently, may lead to 
conformant but not interoperable implementations. 
 
Layer: Important element of the hierarchical structuring of communication or pro-
tocol architectures. A layer comprises all entities of the given communication or 
protocol architectures that cooperate in providing a service using a communication 
protocol. It provides one or more services to the upper layer. A layer may contain 
several communication protocols which use the service(s) of the underlying layer 
for communication. The service(s) is usually accessible at defined access points. 
 
Layered architecture: Defined architecture of protocol layers for computer net-
works. A layered architecture defines the functionality of the layers as well as the 
principles of interaction between them. It does not prescribe how the architecture 
is implemented in a computer system. There are two ways of defining layered ar-
chitectures. Communication architectures use architectural elements for describ-
ing the basis model elements, e.g., entities, service access points, and others. Pro-
tocol architectures define a dedicated layering of protocols which are often used 
for a certain class of applications. One further distinguishes between closed and 
open architectures. Closed architectures are targeted to a specific application field. 
They take the specific requirements of the application area into account. A special 
variant of closed architectures are the producer-related architectures (proprietary 
architectures), which are aligned with the hardware and software products of a 
certain company. Open architectures define uniform principles for communication 
among heterogeneous computer systems. Any computer system that follows these 
principles can be integrated into the network. Open architectures require standard-
ized communication protocols.  
 
Liveness properties: Important properties in the design of communication proto-
cols and distributed systems. Together with safety properties they are the subject 
of the verification process. Liveness properties state that eventually something 
good happens. They ensure that the specified events eventually occur and the de-
sired states are reached. Liveness properties describe the expected (good) system 
properties that the system must consequently satisfy. In descriptive specification 
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methods they are usually expressed in temporal logic formulae. Properties, such as 
livelock freedom, resynchronization, and termination are, for instance, liveness 
properties. 
 
LOTOS (Language of Temporal Ordering Specification): Algebraic formal de-
scription technique for the description of distributed systems; was standardized by 
ISO. LOTOS is based on the process calculus CCS of Milner for the behavioral 
description and the algebraic data specification language ACT ONE for the data 
description. It distinguishes two language versions: Basic LOTOS for the descrip-
tion of the process interactions and Full LOTOS which additionally includes the 
data description. 
 
LTS (Labeled Transition System): Operational semantics of Basic LOTOS. An 
LTS is defined as a quadruple of a nonempty set of states, a set of observable ac-
tions, a set of transition relations, and the initial state. 
 
Model checking: Automated proof technique that systematically checks whether 
a system design satisfies claimed properties. It can be applied in connection with 
finite state machines, Petri nets, and labeled transition systems. The properties to 
be checked are formulated in a temporal logic. Model checking applies state space 
exploration (see reachability analysis) to prove the property. If the property is not 
fulfilled a counterexample is formulated. Model checking has become a popular 
and preferred method for verifying communication protocols, distributed systems, 
and circuit designs. 
 
MSC (Message Sequence Charts): Standardized graphical description technique 
of the ITU-T for the representation/visualization of communication procedures. 
The language has two levels: Basic and High-level MSCs. Basic MSC allows only 
the presentation of selected communication procedures, while High-level MSC de-
scribes the composition of MSCs for complete system descriptions. MSC has 
mainly been used in the SDL context. It was integrated in UML 2 as sequence di-
agrams. 
 
Nondeterminism: Description principle in formal descriptions which does not de-
termine the occurrence order of events. Two kinds of nondeterminisms are applied 
in service and protocol specifications: simultaneous occurrence of events and dif-
ferent follow-up events for the same event. Nondeterminism is applied in more 
abstract specification levels; it is generally resolved towards the implementation. 
 
OSI reference model (Open Systems Interconnection Reference Model): Refer-
ence model of the ISO for setting up open heterogeneous networks. It lost its prac-
tical importance with the breakthrough of the Internet. Its importance now lies in 
the theoretical contributions of its development. 
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Petri net: Graphical description method for modeling systems with concurrent 
processes by using places, transitions, and tokens that are transported by switching 
the transitions between the places and thus simulating the system operations. Petri 
nets represent a more general form of state-transition models. They combine an in-
tuitive graphical representation with an analyzable mathematical formalism. Be-
side the basic form of place/transition nets other kinds of Petri nets are used, such 
as timed Petri nets, product nets, colored Petri nets, and others. Due to their high 
abstraction degree Petri nets are less applied for protocol description. They are 
mainly used for verification and performance analysis purposes. 
 
PICS (protocol implementation conformance statement): Statement on a protocol 
implementation to be tested by the implementer which documents implementation 
decisions in a questionnaire form, such as the protocol classes and options used, 
the value ranges of the parameters, e.g., the PDU sizes, or the time-out values set. 
 
PIXIT (protocol implementation extra information for testing): Additional infor-
mation on a protocol implementation to be tested that has to be filled out along 
with the PICS for the conformance test. It contains information about the system 
under test (SAP addresses, information about the realization of the upper tester in 
the SUT), administrative information (IUT identification, respective PICS form), 
etc. 
 
Protocol: Behavior convention for communication between hosts in a computer 
network that defines the temporal order of the interactions as well as the format 
(syntax and semantics) of the messages exchanged. A protocol provides one or 
more services. It can accordingly be divided into several phases. If the communi-
cation behavior of both sides is equal the protocol is called symmetric, otherwise 
asymmetric. 
 
Protocol architecture: Defined layering of protocols which are often dedicated to 
a certain application field. Protocol architectures differ from communication archi-
tectures by the fact that the interfaces between the protocols are defined by the 
protocols themselves and not by some general architectural elements like service 
access points or a defined layer concept. In the Internet context protocol architec-
tures are mainly used. 
 
Protocol data unit (PDU): Data unit exchanged in a communication protocol. It 
consists of a header, which contains control data, and a user data part, which trans-
ports data of the service user. Sometimes, but seldom, also a trailer with further 
control data is added. Depending on the protocol, PDUs are named differently, 
e.g., packets, segments, messages, and so on. The user data part is also called the 
payload.  
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Protocol function: Basis protocol mechanism that is used in many protocols. Typ-
ical examples of protocol functions are connection management, flow control, and 
error control. 
 
Protocol profile: Tailored protocol hierarchy dedicated to a certain application 
that specifies the protocol options and versions used in the different layers. Proto-
col profiles were mainly defined and used in the OSI context. 
 
Protocol specification: Informal or formal description of the protocol procedures. 
It describes the temporal order of interactions between peer entities and defines 
the format of the messages exchanged. The protocol specification defines among 
other things how the entities react to service primitives, incoming PDUs, or inter-
nal events. The protocol specification is basically the “implementation” of the ser-
vice specification. 
 
Protocol stack: Colloquial term for a dedicated protocol hierarchy in a communi-
cation or a protocol architecture that refers to the protocols used. 
 
Protocol validation: Process of evaluating the functional and nonfunctional prop-
erties of the design and the implementation of a protocol with respect to the user 
requirements. The protocol validation comprises all activities of the protocol de-
velopment process which serve this purpose, such as prototyping, performance 
analysis, and the various forms of protocol testing. 
 
Protocol verification: Evidence of the correctness of the protocol design by 
means of formal proof techniques. The aim of the protocol verification is to prove 
the correctness, completeness, and consistency of the protocol specification. It 
subdivides into the verification of general properties that must be met regardless 
of the specific semantics of the designed protocol, and the verification of specific 
properties that are determined by the semantics of the designed protocol. 
 
Prototyping: Commonly used method for protocol validation through executing 
the protocol specifications on a computer. It is supported by most FDT compilers. 
 
Reachability analysis: Verification method for distributed systems and protocols 
described by means of state-transition systems. It checks the reachability of all 
states by exploring the state space of the system. The analysis is based on the gen-
eration of the reachability graph. The reachability analysis allows the detection of 
general properties, such as deadlock freedom, livelock freedom, non-reachable ac-
tions, and others. The exhaustive exploration of the state space is limited by the 
state space explosion problem. Reachability analysis is one of the most commonly 
used verification methods for communication protocols. It is also applied in model 
checking.  
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Reachability graph: Graph generated by executing a distributed system or a pro-
tocol. It contains all reachable states as nodes and the associated state transitions 
as edges. The reachability graph is generated for reachability analysis, model 
checking, and Petri net-based verification. The generation of the reachability 
graph is limited by the state space explosion problem.  
 
Reference model: As a rule an informal description of a communication architec-
ture. A reference model describes the components of the communication architec-
ture and the interaction principles applied. It further defines the number of layers 
and their functionality. The terminology applied is often different in the various 
models. Usually the reference model also specifies the protocols that are deployed 
in the different layers. The most common examples of such reference models are 
the ISO OSI reference model and the B-ISDN reference model. 
 
Safety properties: Important properties in the design of communication protocols 
and distributed systems. Together with liveness properties they are the subject of 
the verification process. Safety properties state that nothing bad happens. They 
formulate conditions that are needed to avoid unwanted (bad) system behavior and 
that consequently the system may not violate. In descriptive specification methods 
they are usually expressed in temporal logic formulae. Properties, such as no un-
reachable actions and deadlock freedom are, for instance, safety properties. 
 
SDL (Specification and Description Language): Standardized formal description 
technique of the ITU-T for telecommunications systems and communication pro-
tocols based on extended finite state machines. SDL is a graphical, object-oriented 
language. There are two notation forms: the graphical notation SDL/GR and the 
phrase notation SDL/PR, which is primarily used for tool development. The lan-
guage development began in the 1970s. For a long time, SDL was updated in a 
cycle of four years. The currently used version is SDL 2000. A version 2010 is be-
ing approved. 
 
Segmentation: Protocol function used to decompose an (N)-SDU or PDU into 
several (N-1)-PDUs which are transferred independently and then reassembled in-
to the original data unit in the receiver entity. A special variant of segmentation is 
fragmentation, applied in the IP protocol. Here no new packet header is formed; 
instead an entry in the IP header is used to transport the fragment parameters. 
Fragmentation is needed because a maximum transfer unit (MTU) is used in the 
Internet which defines the maximum packet size that can be transmitted over a 
link. 
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Selective repeat: see Automatic repeat request 
 
Sequence number: Parameter in the PDU header used to number the PDUs sent 
in order to re-establish their order at the receiver side. Sequence numbers are also 
used for acknowledgements, usually increased by one. Sequence numbers are as-
signed modulo if the range is exhausted. In conjunction with an abrupt connection 
release this may cause inconsistencies. These problems can be avoided by using 
timestamps and freezing connection references. 
 
Service: Function or capability provided by a computer network or communica-
tion system. Services are subdivided in the manner of the service provision into 
symmetric and asymmetric services. Symmetric services are services that simulta-
neously provide the offered service at two or more service access points. Asym-
metric services are services that follow the client/server paradigm, i.e., there is a 
user – the client – that issues a service request and a system in the network – the 
server – that provides this service. Client and server use a communication service 
for their interaction. Most application and network services are of an asymmetric 
nature. Communication services in contrast provide a symmetric service. 
 
Service interface: Interface between the service users and the service provider, 
where the service is made available. 
 
Service primitive: Abstraction for describing the interactions between the service 
users and the service provider at the service interface. Service primitives do not 
prescribe how these interactions have to be implemented. 
 
Service specification: Description of the interactions at the service interface. It 
includes the description of the services provided, the respective service primitives, 
their parameters, and the presentation of the interactions at the service access 
points including causal dependencies between them. A distinction is made be-
tween local and global behavior. The local behavior describes the interactions at a 
service access point. The global behavior specifies the causal dependencies bet-
ween the local interactions at the corresponding service access points. 
 
Service access point (service access point, SAP): Point in the service interface 
where a service user can access the service provided. 
 
SLTS (Structured Labeled Transition System): Operational semantics of Full LO-
TOS. It extends an LTS by the internal action i and a many-sorted algebra for data 
description. 
 
State space explosion problem: Limitation of reachability graph generation due 
to lack of memory. When generating a reachability graph the states must be stored 
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to avoid multiple analyses and to support backtracking. This can lead to a very 
high demand on memory which eventually prevents an exhaustive state explora-
tion. 
 
TCP/IP protocol suite: Layered architecture of the Internet. It is a protocol archi-
tecture which has been established around the core Internet protocols: the connec-
tionless network protocol IP (Internet Protocol), the connection oriented transport 
protocol TCP (Transmission Control Protocol), and the connectionless transport 
protocol UDP (User Datagram Protocol). 
 
Temporal logics: Special type of modal logics. Temporal logics represent the 
most important descriptive description method for communication protocols and 
distributed systems. They provide a formal system for describing systems with re-
spect to time to represent desired properties as well as causal and temporal de-
pendencies between them. Temporal logics are divided into linear-time and bran-
ching-time temporal logics. The former are preferred for use in the protocol area. 
 
Test case: Part of a test suite which comprises all testing activities regarding a 
given test purpose. A test case represents an experiment that is executed on the 
IUT to check whether it meets a certain property defined in the specification. 
 
Test method: Test architecture that determines how an IUT and the test system 
interact. The term test method is preferably used compared to test architecture. 
 
Test purpose: Property defined in the protocol specification, e.g., a connection set 
up, which is tested by a test case.  
 
Test suite: Set of all test cases needed for the complete test of an implementation. 
Test suites are differentiated with respect to their ability to recognize erroneous 
implementations into exhaustive, sound, and complete test suites. 
 
Test verdict: Final expression of the test result. Mainly, three test verdicts are 
used: pass – if the test was passed successfully, fail – if the test was failed, and in-
conclusive – if the test outcome is not unique. A test verdict is assigned to each 
test case. The final test verdict of a test suite is determined by summing up the test 
verdicts of the test cases according to a given set of rules. 
 
Time sequence diagram: Informal graphical representation to describe the inter-
actions between service users and service provider at the service interface includ-
ing existing dependencies. They are also used to represent interactions between 
several protocol layers. Time sequence diagrams only describe a selected interac-
tion sequence. For representing dependencies between different time sequence 
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Timer: Clock used in protocols to supervise the arrival of acknowledgements and 
to avoid deadlock situations. When the specified waiting time is exceeded a time-
out is triggered that allows us to invoke an alternative reaction. The definition of 
appropriate time-out intervals may be complicated. 
 
Transparency: Principle applied in protocol design which means that user data 
are not accessible to the service provider, i.e., they are not used for controlling the 
protocol procedures. The user data must be delivered unchanged to the receiver. 
To implement this principle the user data, called the service data unit, are supple-
mented by protocol control fields, which are called the protocol control infor-
mation or the header. The protocol control information and the service data unit 
form a protocol data unit. The principle of transparency forms the basis for the 
“tunneling” concept applied in the Internet, when data are passed through a net-
work with another protocol architecture. 
 
TTCN-2 (Tree and Tabular Combined Notation): Test description language de-
veloped in the context of the OSI conformance testing methodology (Part 3 of the 
ISO 9646 standard). The characteristic elements of TTCN-2 are behavior trees and 
tables. It uses a snapshot semantics to define how to interpret the test cases. Alt-
hough a follow-up version has been defined TTCN-2 is still in use in practice. 
 
TTCN-3 (Testing and Test Control Notation): Follow-up version of TTCN-2 
developed by the European Telecommunications Standards Institute (ETSI) which 
is no longer confined to the testing of OSI protocols. It supports a wide range of 
tests (network-integration tests, end-to-end tests, interoperability tests, perfor-
mance tests) and various application areas (ISDN, ATM, Internet, middleware). 
This was achieved through a fundamental revision of the language, whereby the 
basic TTCN-2 concepts, behavior tree and table notation, have been largely aban-
doned. TTCN-3 has more the character of a modern programming language than a 
specification language.  
 
XDT (eXample Data Transfer) protocol: Teaching protocol used in this book as 
an example protocol to demonstrate protocol principles and specification tech-
niques. XDT is a connection-oriented data transmission protocol which transfers a 
large file over an insecure medium. It applies the go back N principle for data re-
transmission. XDT is more complex than other example protocols, such as the al-
ternating bit protocol or the INRES protocol. Specifications of XDT in various 
formal description techniques and methods can be found under http://www.pro-
tocol-engineering.tu-cottbus.de/index_xdt.htm.  

, state diagrams for each service access 
point. 
diagrams, additional means are needed, e.g.

http://www.pro-tocol-engineering.tu-cottbus.de/index_xdt.htm
http://www.pro-tocol-engineering.tu-cottbus.de/index_xdt.htm
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